WO2018087828A1 - 車両制御装置、車両制御システム、車両制御方法、および車両制御プログラム - Google Patents

車両制御装置、車両制御システム、車両制御方法、および車両制御プログラム Download PDF

Info

Publication number
WO2018087828A1
WO2018087828A1 PCT/JP2016/083199 JP2016083199W WO2018087828A1 WO 2018087828 A1 WO2018087828 A1 WO 2018087828A1 JP 2016083199 W JP2016083199 W JP 2016083199W WO 2018087828 A1 WO2018087828 A1 WO 2018087828A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
remote
remote operation
unit
driving
Prior art date
Application number
PCT/JP2016/083199
Other languages
English (en)
French (fr)
Inventor
昭吾 赤羽
和之 金子
弦太 棒田
正彦 朝倉
嘉崇 味村
熊切 直隆
浩平 沖本
博典 高埜
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201680090380.XA priority Critical patent/CN109891472B/zh
Priority to JP2018549672A priority patent/JP6663506B2/ja
Priority to US16/344,822 priority patent/US11046332B2/en
Priority to PCT/JP2016/083199 priority patent/WO2018087828A1/ja
Publication of WO2018087828A1 publication Critical patent/WO2018087828A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0053Handover processes from vehicle to occupant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0027Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement involving a plurality of vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/007Switching between manual and automatic parameter input, and vice versa
    • B60W2050/0073Driver overrides controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/26Incapacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • the present invention relates to a vehicle control device, a vehicle control system, a vehicle control method, and a vehicle control program.
  • the present invention has been made in consideration of such circumstances, and is a vehicle control device, a vehicle control system, a vehicle control method, and a vehicle control program capable of performing a remote operation limited to a necessary scene. Is one of the purposes.
  • the invention according to claim 1 includes an acquisition unit (10, 16, 121) for acquiring a situation outside the vehicle, a driving operator (80) that is operated by a vehicle occupant for manual driving, and the acquisition unit.
  • An automatic operation for automatically controlling at least one of acceleration / deceleration or steering of the vehicle based on the acquired outside situation is executed, and when the first condition is satisfied, the automatic operation is terminated and the manual operation is performed.
  • the communication unit (20) communicating with the outside facility (300, other vehicle), and the automatic driving control unit
  • the communication unit is used to request the outside facility to perform remote operation, and the vehicle is less accelerated or decelerated or steered based on the control information received from the outside facility.
  • a vehicle control apparatus comprising the remotely operated control unit for executing the remotely operated to automatically control one and (160), the.
  • the invention according to claim 2 is the invention according to claim 1, further comprising a detection unit (162) for detecting the state of the vehicle occupant, wherein the second condition is the state of the vehicle occupant detected by the detection unit. Includes a state that is not suitable for performing the manual operation.
  • the invention according to claim 3 further includes an output unit (30) for outputting information in the invention according to claim 1, wherein the automatic operation control unit ends the automatic operation and switches to manual operation.
  • the output unit is configured to output information requesting to operate the driving operation element, and when the driving operation element is operated by a predetermined amount or more, the automatic operation is terminated and the manual operation is started.
  • the switching and the second condition include that the vehicle occupant does not operate the driving operator more than a predetermined amount after the automatic driving control unit is notified of the switching to the manual driving to the vehicle occupant.
  • the invention according to claim 4 is the invention according to claim 1, further comprising an input unit for receiving an input operation of a vehicle occupant, wherein the second condition is that a predetermined operation is performed on the input unit. Is included.
  • the acquisition unit includes a camera that images a vehicle periphery, and the remote operation control unit is captured by the camera using the communication unit.
  • the transmitted image is transmitted to the facility outside the vehicle.
  • the first condition is that execution of automatic driving is difficult, and the remote operation control unit is difficult to execute automatic driving.
  • Information based on the type or degree of the cause of the failure is transmitted to the facility outside the vehicle using the communication unit.
  • the automatic operation control unit is capable of executing a follow-up traveling that follows another vehicle that is performing the automatic driving, and the first condition is satisfied. On the basis of the establishment status, whether the automatic operation control unit executes the follow-up traveling or the remote operation control unit executes the remote operation.
  • the invention according to claim 8 is the invention according to claim 1, further comprising a display unit (SN, TL, HL) for displaying information inside or outside the vehicle, wherein the remote operation control unit performs the remote operation.
  • a display unit SN, TL, HL
  • the remote operation control unit performs the remote operation.
  • information indicating that the remote operation is being executed is displayed on the display unit.
  • the invention according to claim 9 is the invention according to claim 1, further comprising an input unit (30) for receiving an input operation of a vehicle occupant, wherein the remote operation control unit is configured to perform the input to the input unit.
  • the remote operation is started when an input operation for permitting remote operation is performed in advance.
  • the invention according to claim 10 is the invention according to claim 1, further comprising an input unit that receives an input operation of a vehicle occupant, wherein the remote operation control unit executes the remote operation and then inputs the input unit to the input unit.
  • the evaluation result of the remote operation input is transmitted to the facility outside the vehicle.
  • Invention of Claim 11 is a vehicle control system provided with the vehicle control apparatus of Claim 1, and the said exterior installation.
  • the invention according to claim 12 is the invention according to claim 11, wherein the first condition is that execution of automatic operation is difficult, and the remote operation control unit is difficult to execute automatic operation.
  • Information based on the type or degree of the cause of the failure is transmitted to the facility outside the vehicle using the communication unit, and the facility outside the vehicle includes a plurality of remote control devices (320) each operated by a remote operator, And an overall control device (310) for selecting a remote operator to perform a remote operation based on information received from the remote operation control unit.
  • the out-of-vehicle equipment converts conversion information that defines a conversion amount for generating the control information for the operation amount of a remote operator for each vehicle type. 332), and the control information is generated by converting the operation amount of the remote operator by the conversion information.
  • the computer acquires a situation outside the vehicle, executes automatic driving for automatically controlling at least one of acceleration / deceleration or steering of the vehicle based on the obtained situation outside the vehicle, and When the condition of 1 is satisfied, the automatic operation is terminated and switched to the manual operation, communicated with the facility outside the vehicle, and the second condition is satisfied when the automatic operation is switched to the manual operation.
  • the computer acquires the situation outside the vehicle, executes automatic driving for automatically controlling at least one of acceleration / deceleration or steering of the vehicle based on the obtained situation outside the vehicle, and
  • the automatic operation is terminated and switched to the manual operation, communicated with an external facility, and the second condition is satisfied when the automatic operation is switched to the manual operation.
  • the communication unit to request remote operation to the outside facility, and executing remote operation to automatically control at least one of acceleration / deceleration or steering of the vehicle based on control information received from the outside facility, It is a vehicle control program.
  • the seventh aspect of the present invention it is possible to further reduce the load of control and communication by temporarily following in a scene where remote operation is unnecessary.
  • the driver or a person outside the vehicle can quickly grasp the situation where the vehicle is placed.
  • FIG. 1 is a conceptual diagram of a vehicle control system 1.
  • FIG. 2 is a diagram illustrating an example of a configuration mounted on a vehicle M.
  • FIG. It is a figure which shows a mode that the relative position and attitude
  • FIG. It is a figure which shows a mode that a target track is produced
  • 4 is a flowchart partially showing processing executed by the automatic operation control unit 100.
  • 5 is a flowchart showing another example of processing executed by the automatic operation control unit 100. It is a figure which shows an example of the screen displayed while a to-be-remote drive is performed.
  • FIG. 1 It is a figure which shows a mode that information is displayed toward the exterior while a to-be-remote drive is performed. It is a figure which shows the apparatus structure in the remote operation management equipment. It is a figure which shows the structure of the remote control apparatus 320 typically. It is a figure which shows an example of the content of the control tendency conversion table. It is a figure which shows notionally a mode that remote operation is performed by the passenger
  • FIG. 3 is a flowchart illustrating an example of a flow of processing executed by a central control device 310. It is a figure which shows an example of the input screen which receives predetermined
  • FIG. 1 is a conceptual diagram of the vehicle control system 1.
  • the vehicle control system 1 is realized by communicating a plurality of vehicles M-1 to Mn (n is an arbitrary natural number) and the remote operation management facility 300 via a network NW.
  • vehicles M are, for example, a vehicle such as a two-wheel, three-wheel, or four-wheel vehicle, and a drive source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, or a combination thereof.
  • the electric motor operates using electric power generated by a generator connected to the internal combustion engine or electric discharge power of a secondary battery or a fuel cell.
  • the vehicle M is a vehicle capable of executing automatic driving for automatically controlling at least one of acceleration / deceleration and steering.
  • the network NW includes a base station, which is a wireless communication interface, a WAN (Wide Area Network), a LAN (Local Area Network), the Internet, a dedicated line, and the like.
  • a request for remote operation is transmitted from the vehicle M to the remote operation management facility 200 or from one vehicle M to another vehicle M, and the remote operation of the vehicle M is executed accordingly.
  • FIG. 2 is a diagram illustrating an example of a configuration mounted on the vehicle M.
  • the vehicle M includes, for example, a camera 10, a radar device 12, a finder 14, an object recognition device 16, a communication device 20, an HMI (Human Machine Interface) 30, a navigation device 50, and an MPU (Micro-Processing).
  • Unit 60 a vehicle sensor 70, a driving operator 80, a vehicle interior camera 90, an automatic driving control unit 100, a traveling driving force output device 200, a brake device 210, and a steering device 220 are mounted. .
  • a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like.
  • a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like.
  • the configuration illustrated in FIG. 2 is merely an example, and a part of the configuration may be omitted, or another configuration may be added. 2 includes at least the camera 10, the communication device 20, the driving operator 80, the first control unit 120, the second control unit 140, and the remote operation control unit 160. It is an example.
  • the camera 10 is a digital camera using a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • One or a plurality of cameras 10 are attached to any part of the vehicle M.
  • the camera 10 is attached to the upper part of the front windshield, the rear surface of the rearview mirror, or the like.
  • the camera 10 periodically and repeatedly images the periphery of the vehicle M.
  • the camera 10 may be a stereo camera.
  • the radar apparatus 12 radiates a radio wave such as a millimeter wave around the vehicle M and detects a radio wave (reflected wave) reflected by the object to detect at least the position (distance and azimuth) of the object.
  • a radio wave such as a millimeter wave around the vehicle M
  • a radio wave reflected wave
  • One or a plurality of radar devices 12 are attached to any part of the vehicle M.
  • the radar apparatus 12 may detect the position and velocity of the object by FM-CW (Frequency Modulated Continuous Wave) method.
  • FM-CW Frequency Modulated Continuous Wave
  • the finder 14 is a LIDAR (Light Detection and Ranging or Laser Imaging Detection and Ranging) that measures the scattered light with respect to the irradiated light and detects the distance to the target.
  • LIDAR Light Detection and Ranging or Laser Imaging Detection and Ranging
  • One or a plurality of finders 14 are attached to any part of the vehicle M.
  • the object recognition device 16 performs sensor fusion processing on the detection results of some or all of the camera 10, the radar device 12, and the finder 14 to recognize the position, type, speed, and the like of the object.
  • the object recognition device 16 outputs the recognition result to the automatic driving control unit 100.
  • the communication device 20 communicates with other vehicles around the vehicle M by using, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or a wireless base station. It communicates with various server devices via a station.
  • a cellular network for example, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or a wireless base station. It communicates with various server devices via a station.
  • the HMI 30 presents various information to the passenger of the vehicle M and accepts an input operation by the passenger.
  • the HMI 30 includes various display devices, speakers, buzzers, touch panels, switches, keys, and the like.
  • the navigation device 50 includes, for example, a GNSS (Global Navigation Satellite System) receiver 51, a navigation HMI 52, and a route determination unit 53.
  • the first map information 54 is stored in a storage device such as an HDD (Hard Disk Drive) or a flash memory. Holding.
  • the GNSS receiver specifies the position of the vehicle M based on the signal received from the GNSS satellite. The position of the vehicle M may be specified or supplemented by INS (Inertial Navigation System) using the output of the vehicle sensor 70.
  • the navigation HMI 52 includes a display device, a speaker, a touch panel, keys, and the like. The navigation HMI 52 may be partly or wholly shared with the HMI 30 described above.
  • the route determination unit 53 determines a route from the position of the vehicle M specified by the GNSS receiver 51 (or any input position) to the destination input by the occupant using the navigation HMI 52. This is determined with reference to the map information 54.
  • the first map information 54 is information in which a road shape is expressed by, for example, a link indicating a road and nodes connected by the link.
  • the first map information 54 may include road curvature, POI (Point Of Interest) information, and the like.
  • the route determined by the route determination unit 53 is output to the MPU 60. Further, the navigation device 50 may perform route guidance using the navigation HMI 52 based on the route determined by the route determination unit 53.
  • the navigation apparatus 50 may be implement
  • the MPU 60 functions as, for example, the recommended lane determining unit 61 and holds the second map information 62 in a storage device such as an HDD or a flash memory.
  • the recommended lane determining unit 61 divides the route provided from the navigation device 50 into a plurality of blocks (for example, every 100 [m] with respect to the vehicle traveling direction), and refers to the second map information 62 for each block. Determine the recommended lane.
  • the recommended lane determining unit 61 performs determination such as what number of lanes from the left to travel.
  • the recommended lane determining unit 61 determines a recommended lane so that the vehicle M can travel on a reasonable route for proceeding to the branch destination when there is a branching point or a joining point in the route.
  • the second map information 62 is map information with higher accuracy than the first map information 54.
  • the second map information 62 includes, for example, information on the center of the lane or information on the boundary of the lane.
  • the second map information 62 may include road information, traffic regulation information, address information (address / postal code), facility information, telephone number information, and the like.
  • Road information includes information indicating the type of road such as expressway, toll road, national road, prefectural road, road lane number, width of each lane, road gradient, road position (longitude, latitude, height). Information including 3D coordinates), curvature of lane curves, lane merging and branch point positions, signs provided on roads, and the like.
  • the second map information 62 may be updated at any time by accessing another device using the communication device 20.
  • the vehicle sensor 70 includes a vehicle speed sensor that detects the speed of the vehicle M, an acceleration sensor that detects acceleration, a yaw rate sensor that detects angular velocity around the vertical axis, a direction sensor that detects the direction of the vehicle M, and the like.
  • the driving operator 80 includes, for example, an accelerator pedal, a brake pedal, a shift lever, a steering wheel, and other operators.
  • a sensor that detects the amount of operation or the presence or absence of an operation is attached to the driving operator 80, and the detection result is the automatic driving control unit 100, or the traveling driving force output device 200, the brake device 210, and the steering device. 220 is output to one or both of 220.
  • the vehicle interior camera 90 images the upper body around the face of the occupant seated in the driver's seat. A captured image of the vehicle interior camera 90 is output to the automatic driving control unit 100.
  • the automatic operation control unit 100 includes, for example, a first control unit 120, a second control unit 140, and a remote operation control unit 160.
  • the first control unit 120, the second control unit 140, and the remote operation control unit 160 are each realized by a program (software) executed by a processor such as a CPU (Central Processing Unit).
  • a processor such as a CPU (Central Processing Unit).
  • some or all of the functional units of the first control unit 120, the second control unit 140, and the remote operation control unit 160 described below are LSI (Large Scale Integration) or ASIC (Application Specific Specific Integrated Circuit). It may be realized by hardware such as FPGA (Field-Programmable Gate Array) or may be realized by cooperation of software and hardware.
  • the 1st control part 120 is provided with the external world recognition part 121, the own vehicle position recognition part 122, and the action plan production
  • the external recognition unit 121 recognizes the positions of surrounding vehicles and the state such as speed and acceleration based on information input directly from the camera 10, the radar 12, and the finder 14 or via the object recognition device 16. To do.
  • the position of the surrounding vehicle may be represented by a representative point such as the center of gravity or corner of the surrounding vehicle, or may be represented by an area expressed by the outline of the surrounding vehicle.
  • the “state” of the surrounding vehicle may include acceleration and jerk of the surrounding vehicle, or “behavioral state” (for example, whether or not the lane is changed or is about to be changed).
  • the external environment recognition unit 121 may recognize the positions of guardrails, utility poles, parked vehicles, pedestrians, and other objects.
  • the own vehicle position recognition unit 122 recognizes, for example, the lane (traveling lane) in which the vehicle M is traveling, and the relative position and posture of the vehicle M with respect to the traveling lane.
  • the own vehicle position recognition unit 122 for example, a road around the vehicle M recognized from a pattern of road marking lines (for example, an array of solid lines and broken lines) obtained from the second map information 62 and an image captured by the camera 10.
  • the travel lane is recognized by comparing the lane marking pattern. In this recognition, the position of the vehicle M acquired from the navigation device 50 and the processing result by INS may be taken into consideration.
  • FIG. 3 is a diagram illustrating how the vehicle position recognition unit 122 recognizes the relative position and posture of the vehicle M with respect to the travel lane L1.
  • the own vehicle position recognizing unit 122 for example, an angle ⁇ formed with respect to a line connecting the deviation point OS of the reference point (for example, the center of gravity) of the vehicle M from the travel lane center CL and the travel lane center CL in the traveling direction of the vehicle M. Is recognized as the relative position and posture of the vehicle M with respect to the traveling lane L1.
  • the vehicle position recognition unit 122 may recognize the position of the reference point of the vehicle M with respect to any side end portion of the vehicle lane L1 as the relative position of the vehicle M with respect to the traveling lane. .
  • the relative position of the vehicle M recognized by the own vehicle position recognition unit 122 is provided to the recommended lane determination unit 61 and the action plan generation unit 123.
  • the action plan generation unit 123 determines events to be sequentially executed in the automatic driving so that the recommended lane determination unit 61 determines the recommended lane and travels along the recommended lane, and can cope with the surrounding situation of the vehicle M.
  • Events include, for example, a constant speed event that travels in the same lane at a constant speed, a follow-up event that follows the preceding vehicle, a lane change event, a merge event, a branch event, an emergency stop event, and automatic driving There are handover events to switch to manual operation. Further, during execution of these events, actions for avoidance may be planned based on the surrounding situation of the vehicle M (the presence of surrounding vehicles and pedestrians, lane narrowing due to road construction, etc.).
  • the action plan generator 123 generates a target trajectory on which the vehicle M will travel in the future.
  • the target trajectory includes, for example, a velocity element.
  • the target trajectory is generated as a set of target points (orbit points) that should be set at a plurality of future reference times for each predetermined sampling time (for example, about 0 comma [sec]) and reach these reference times. The For this reason, when the space
  • FIG. 4 is a diagram illustrating a state where a target track is generated based on the recommended lane.
  • the recommended lane is set so as to be convenient for traveling along the route to the destination.
  • the action plan generation unit 123 activates a lane change event, a branch event, a merge event, or the like when a predetermined distance before the recommended lane switching point (may be determined according to the type of event) is reached. If it becomes necessary to avoid an obstacle during the execution of each event, an avoidance trajectory is generated as shown in the figure.
  • the action plan generation unit 123 generates, for example, a plurality of target trajectory candidates, and selects an optimal target trajectory at that time based on the viewpoints of safety and efficiency.
  • the second control unit 140 includes a travel control unit 141.
  • the traveling control unit 141 controls the traveling driving force output device 200, the brake device 210, and the steering device 220 so that the vehicle M passes the target trajectory generated by the action plan generating unit 123 at a scheduled time. .
  • the driving force output device 200 outputs a driving force (torque) for driving the vehicle to driving wheels.
  • the travel driving force output device 200 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, and the like, and an ECU that controls these.
  • the ECU controls the above configuration according to information input from the automatic operation control unit 100 or information input from the driving operator 80.
  • the brake device 210 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU.
  • the brake ECU controls the electric motor according to the information input from the self-automatic driving control unit 100 or the information input from the driving operator 80 so that the brake torque corresponding to the braking operation is output to each wheel.
  • the brake device 210 may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal included in the driving operation element 80 to the cylinder via the master cylinder.
  • the brake device 210 is not limited to the configuration described above, and may be an electronically controlled hydraulic brake device that controls the actuator according to information input from the travel control unit 141 and transmits the hydraulic pressure of the master cylinder to the cylinder. Good.
  • the steering device 220 includes, for example, a steering ECU and an electric motor.
  • the electric motor changes the direction of the steered wheels by applying a force to a rack and pinion mechanism.
  • the steering ECU drives the electric motor according to the information input from the automatic driving control unit 100 or the information input from the driving operator 80, and changes the direction of the steered wheels.
  • the action plan generation unit 123 activates a handover event when the first condition is satisfied.
  • the first condition is a condition in which a plurality of conditions are ORed. For example, when any one of the conditions exemplified below is satisfied, it is determined that the first condition is satisfied. (1)
  • the vehicle M has reached the vicinity of a preset destination. (2)
  • the surrounding environment of the vehicle M is an environment where it is difficult to continue automatic driving. (3) An operation of a predetermined amount or more has been performed on the driving operator 80 (override).
  • the HMI 30 When the action plan generation unit 123 starts a handover event, first, the HMI 30 outputs information (handover request) for requesting to operate the driving operator 80, and an operation of a predetermined amount or more is performed on the driving operator 80. When it is done, the automatic operation is terminated and the operation is switched to manual operation. However, in the case of the override in (3) above, the output of information requesting to operate the driving operator 80 by the HMI 30 may be omitted, and the action plan generation unit 123 switches to manual driving instead. The information may be output to the HMI 30. For example, with respect to an accelerator pedal, the operation of a predetermined amount or more is an operation in which a state where the accelerator opening is equal to or larger than a threshold value continues for a predetermined time.
  • the action plan generation unit 123 gradually decreases the control gain related to the automatic driving, and finally, the operation amount of the driving operator 80 is directly applied to the traveling driving force output device 200, the brake device 210, and the steering device 220. Control as provided to. Thereafter, the automatic driving control unit 100 does not participate in the control (the signal may be relayed), and based on the operation amount of the driving operator 80, the driving force output device 200, the brake device 210, and the steering device Manual operation in which 220 operates is executed.
  • the remote operation control unit 160 requests the remote facility (referred to as the remote operation management facility 300 or another vehicle) to perform a remote operation using the communication device 20. Then, a remote operation is executed in which at least one of acceleration / deceleration and steering of the vehicle M is automatically controlled based on the control information received from the outside facility.
  • the remote operation control unit 160 includes, for example, an occupant state detection unit 162.
  • the second condition is, for example, a condition exemplified below.
  • the remote operation control unit 160 may determine that the second condition is satisfied when at least one of the following (A) or (B) is satisfied, or both (A) and (B): It may be determined that the second condition is satisfied when is satisfied.
  • (A) The occupant (driver) seated in the driver's seat detected by the occupant state detection unit 162 is not suitable for manual driving.
  • B Although a predetermined time has elapsed since the handover request, an operation of a predetermined amount or more in response to the handover request (may or may not be the same as the override criterion) has been performed.
  • the state of the driver is grasped by analyzing an image captured by the vehicle interior camera 90, for example.
  • the occupant state detection unit 162 continuously faces the direction of the line of sight grasped from the state where the driver's eyes are closed (sleep state), the relative positions of the black eyes and the entire eyes, and the like except for the front of the vehicle M.
  • the driver is determined to be in a state that is not suitable for manual driving.
  • a determination method for grasping the driver's state may be arbitrarily determined.
  • the occupant state detection unit 162 measures a heartbeat by an electrode attached to the steering wheel, and grasps the driver's state.
  • the driver's condition may be grasped by using a NIRS (NearfraInfra- Red Spectoroscopy) sensor or a seating weight sensor.
  • NIRS NearfraInfra- Red Spectoroscopy
  • the remote operation control unit 160 transmits at least an image captured by the camera 10, preferably a recognition result by the object recognition device 16, to the facility outside the vehicle using the communication device 20, and is returned. Based on the control information, the driving force output device 200, the brake device 210, and the steering device 220 are controlled.
  • FIG. 5 is a flowchart partially showing a process executed by the automatic operation control unit 100. The processing of this flowchart is started when automatic driving is started.
  • the action plan generator 123 waits until the first condition is satisfied (step S100). When the first condition is satisfied, the action plan generation unit 123 determines whether or not the first condition is satisfied by the override (step S102). When the first condition is satisfied by the override, the action plan generation unit 123 switches to manual operation (step S104).
  • the action plan generation unit 123 causes the HMI 30 to output a handover request (step S106).
  • the remote operation control unit 160 determines whether or not the second condition is satisfied (step S108). When the second condition is not satisfied, the remote operation control unit 160 notifies the action plan generation unit 123 to that effect, and the action plan generation unit 123 switches to manual operation (step S104).
  • the remote operation control unit 160 starts the remote operation (step S110) and continues the remote operation until this is finished (step S112).
  • the remote operation is terminated by the remote operator when the vehicle M is moved to a safe position by the remote operator, for example.
  • FIG. 6 is a flowchart showing another example of processing executed by the automatic operation control unit 100. The processing of this flowchart may be executed in parallel with the flowchart shown in FIG. 5 or may be executed independently.
  • the action plan generator 123 determines whether or not the first condition is expected to be satisfied (step S200). For example, the action plan generation unit 123 becomes an environment in which it is difficult to continue automatic driving at a destination of a vehicle M when it is within a predetermined distance or a predetermined time to a preset destination, or by communication or the like. The first condition is expected to be satisfied when there is a certain place.
  • the remote operation control unit 160 determines whether or not the driver is in a state suitable for driving (step S202). When the driver is in a state suitable for driving, one routine of this flowchart ends. The determination method in this step is as described above.
  • the remote operation control unit 160 starts the remote operation (step S204) and continues the remote operation until this is finished (step S206).
  • the remote operation control unit 160 may display information indicating the fact on the display device of the HMI 30 while the remote operation is being executed.
  • FIG. 7 is a diagram illustrating an example of a screen displayed while the remote operation is being executed.
  • this screen is provided with a cancel button CB for canceling the remote operation, and may include information on a remote operator or a remote operator.
  • the driver can quickly grasp the situation of the vehicle M immediately after waking up from a sleep state, for example.
  • the remote operation control unit 160 may display or notify information indicating the fact toward the outside of the vehicle while performing the remote operation.
  • FIG. 8 is a diagram illustrating a state in which information is displayed toward the outside of the vehicle while the remote operation is being performed.
  • the information displayed outside the vehicle is displayed, for example, by displaying that remote driving is being performed on a signage SN provided on a side surface of the vehicle body, a window, a hood, a bumper, or the like.
  • the signage SN is formed of an organic EL or a liquid crystal panel.
  • the light emitter may be rotated in the top lamp TL provided on the ceiling of the vehicle, or the headlamp TL may be irradiated with light of a color different from normal (for example, green). Further, in addition to (or instead of) the display, it may be notified outside the vehicle that the vehicle is being driven remotely.
  • FIG. 9 is a diagram showing a device configuration in the remote operation management facility 300.
  • the remote operation management facility 300 includes an overall control device 310 that communicates with a vehicle M (remotely operated vehicle) via a network NW, and a plurality of remote operation devices 320-1, 320-2, 320-. 3, ... are provided.
  • NW network
  • the remote control device when the remote control device is not distinguished, it is simply expressed as the remote control device 320.
  • a remote operator is seated and waiting in preparation for a remote operation request.
  • the overall control device 310 selects any one of the remote operation devices 320 in response to a remote operation request from the vehicle M, and receives information received from the vehicle M with respect to the selected remote operation device 320 (as described above, the camera 10), image, speed, angular speed, vehicle type, etc.) are transmitted to allow remote operation.
  • FIG. 10 is a diagram schematically showing the configuration of the remote control device 320.
  • the remote operation device 320 includes, for example, a display unit 321, a speaker 322, a seat 323, a steering wheel 324, pedals 325 such as an accelerator pedal and a brake pedal, and a remote operation control unit 330.
  • the display unit 321 displays an image captured by the camera 10 of the vehicle M, the speed of the vehicle M, the engine speed, and the like.
  • the display unit 321 may be an HMD (HeadHeMount Display).
  • the speaker 322 emits a warning sound according to the approach of the obstacle recognized by the object recognition device 16 of the vehicle M to the vehicle M.
  • a remote operator O is seated on the seat 323.
  • the remote operator O performs operations on driving operators such as the steering wheel 324 and the pedals 325. The operation amounts for these are detected by a sensor (not shown) and output to the remote operation control unit 330.
  • the driving operation element may be a driving operation element of another aspect such as a joystick.
  • the remote operation control unit 330 generates control information to be transmitted to the vehicle M based on the operation amount input from the driving operator, and transmits the control information to the overall control device 310.
  • the overall control device 310 transmits the control information generated in this way to the vehicle M.
  • the driving operator is provided with a reaction force output device for applying a reaction force to be generated depending on the operation amount.
  • information such as speed and angular velocity is preferably supplied from the vehicle M to the remote control device 320.
  • the control information transmitted to the vehicle M may be the operation amount itself with respect to the steering wheel 324 and the pedals 325, or the above operation amount is added to the vehicle speed and turning angle of the vehicle M at that time.
  • the calculated control amount to be given to the driving force output device 200, the brake device 210, or the steering device 220 (for example, throttle opening, brake torque, output torque of the assist motor of the steering device 220, etc.) may be calculated. .
  • the remote operation control unit 330 refers to the control tendency conversion table 332 and adjusts the control information in order to make the behavior change with respect to the operation amount uniform.
  • FIG. 11 is a diagram illustrating an example of the contents of the control tendency conversion table 332.
  • the control tendency conversion table 332 is information in which, for example, how many times the operation amount is increased to be used as control information (magnification) for each vehicle type. For example, if the accelerator opening magnification is 1.10 times, the accelerator opening based on the accelerator pedal operation of the remote control device 320 is multiplied by 1.10 to generate control information. In this way, by referring to the control tendency conversion table 332 for adjusting the control information for each vehicle type, the behavior change of the vehicle with respect to the operation amount can be made uniform even with different vehicle types.
  • FIG. 12 is a diagram conceptually illustrating a state in which a remote operation is performed by a vehicle occupant.
  • a vehicle M-1 is a vehicle that is executing the remote operation described above.
  • the driving operator is in a free state, and the driving operator that is originally used for driving the vehicle is a remote-operating driving operator. It can be used as a vehicle.
  • the remote operation management facility 300 may be interposed between the vehicles M-1 and M-2. That is, the remote operation request may be first transmitted to the remote operation management facility 300 and transferred to the vehicle M during automatic driving by the remote operation management facility 300.
  • FIG. 13 is a diagram illustrating an example of a configuration mounted on a vehicle M that performs remote operation.
  • the automatic driving control unit 100 mounted on the vehicle M that performs remote operation may have the same function as the automatic driving control unit 100 described above.
  • the vehicle M that performs remote operation is mounted with a HUD 40 and a remote operation control unit 180.
  • the remote operation control unit 180 displays an image taken by the camera 10 of the vehicle M performing the remote operation on the HUD, and based on the operation amount input from the driving operator 80 in a free state, Control information to be transmitted to the vehicle M performing the remote operation is generated and transmitted to the communication device 20.
  • the vehicle M performing the remote operation and the vehicle M performing the remote operation have been described separately, the vehicle M may be configured as having both of these functions. That is, the vehicle M may be capable of performing a remote operation when it is necessary to perform a remote operation and performing a remote operation in response to a request from another vehicle during the automatic operation.
  • the remote operator may be selected based on information from the vehicle M that transmits the remote operation request.
  • the vehicle M for example, the reason for starting the handover event (particularly, the type or degree of the cause that the surrounding environment of the vehicle M has become an environment in which automatic driving is difficult to continue), or discretely
  • the converted index is transmitted to the remote operation management facility 300.
  • FIG. 14 is a diagram illustrating an example of information transmitted from the vehicle M to the remote operation management facility 300.
  • a vehicle ID that is vehicle identification information, a communication ID that is communication identification information, and a link ID that is identification information of a link on which the vehicle M is traveling Information such as the direction of travel that indicates which direction the link is traveling, the reason that caused the remote operation request, and the reason rank that ranks (discretizes) the difficulty of remote operation for that reason is transmitted.
  • the reason rank A is the highest (the difficulty of remote operation is high).
  • the overall control device 310 of the remote operation management facility 300 refers to the remote operator list 312, selects a remote operator that matches the information received from the vehicle M, and operates the selected remote operator 320. To perform remote operation.
  • FIG. 15 is a diagram illustrating an example of the contents of the remote operator list 312.
  • Information such as a flag indicating whether or not the remote operation is being executed is stored.
  • the overall control device 310 selects a remote operator who has a comprehensive skill higher than the reason rank received from the vehicle M.
  • the transmitted reason rank is A
  • the remote operator with the general skill A and the remote operator ID 002 is selected.
  • the transmitted reason rank is C
  • the remote operator with the total skill of C or higher and the remote operator ID 001 or 002 is selected.
  • FIG. 16 is a flowchart illustrating an example of a flow of processing executed by the overall control device 310. The processing of this flowchart is repeatedly executed. First, the overall control device 310 determines whether a remote operation request has been received (step S300). If a remote operation request has not been received, the process proceeds to step S312 (described later).
  • the overall control device 310 refers to the remote operator list 312 (step S302), and there is a vacant remote operator seated on the remote operation device 320 (remote operator who is not executing the remote operation). It is determined whether or not there is (step S304).
  • the overall control device 310 When the remote operator has a vacancy, the overall control device 310 operates the remote operation device 320 on which the remote operator who is not executing the remote operation (the vacant operator in the figure) is seated to perform the remote operation (step) S306). On the other hand, when there is no vacancy in the remote operator, the overall control device 310 transfers the remote operation request to the vehicle that is automatically driving, and performs the remote operation (step S308). In this case, the communication between the vehicle performing the remote operation and the vehicle performing the remote operation may or may not be performed via the overall control device 310.
  • the overall control apparatus 310 updates the record related to the remote operator who has instructed the remote operation in the remote operator list 312 to “during remote operation: YES” (step S310).
  • the overall control device 310 determines whether or not the remote operation has been completed in any of the remote operation devices 320 or the vehicle (step S312).
  • the overall control apparatus 310 updates the record regarding the remote operator who has finished the remote operation to “NO during remote operation: NO” in the remote operator list 312 (step S314).
  • the evaluation result of the remote operation may be input by the vehicle occupant and transmitted to the overall control device 310 in the vehicle that has been remotely operated.
  • the evaluation result in this case is reflected in the evaluation item of the remote operator list 312.
  • the “second condition” determined in the flowchart illustrated in FIG. 5 or the like is in addition to (or instead of) the above-described conditions (A) and (B).
  • C) “The predetermined operation was performed by the vehicle occupant” may be included. The predetermined operation is performed on the display device of the HMI 30, which is a touch panel, for example.
  • FIG. 17 is a diagram illustrating an example of an input screen that receives a predetermined operation. In this input screen, a message area MA for requesting to start manual operation because automatic operation ends is displayed, and a remote operation request MB for requesting remote operation is provided. When this remote operation request MB is operated, a remote operation request is transmitted to the remote operation management facility 300, and the remote operation is started as described above. Thereby, the remote operation can be started according to the intention of the vehicle occupant.
  • the remote operation is automatically started when the second condition is satisfied when the handover event is activated.
  • the remote operation is started when permission by the vehicle occupant is obtained in advance. The permission by the vehicle occupant is input to the HMI 30 at the start of driving, for example.
  • FIG. 18 is a flowchart showing an example of the flow of processing executed by the automatic operation control unit 100 of the second embodiment. Processes other than step S109 in this flowchart are the same as the processes shown in the flowchart of FIG. In the flowchart of FIG. 17, when the second condition is satisfied, the remote operation control unit 160 determines whether or not the remote operation permission has been obtained in advance (step S109). When permission for remote operation is not obtained in advance, switching to manual operation is performed (step S104), and when permission for remote operation is obtained in advance, remote operation is started (step S110).
  • the second embodiment it may be included in the second condition that permission for remote operation is obtained in advance. Furthermore, if permission for remote operation is obtained in advance, the handover request is omitted, and if the first condition is satisfied (but not overridden), the remote operation is immediately started. Also good.
  • FIG. 19 is a flowchart illustrating an example of a flow of processing executed by the automatic operation control unit 100 according to the third embodiment. The process of this flowchart is executed instead of “start remote operation” in step S110 in the flowchart of FIG. 5 or step S204 in the flowchart of FIG.
  • the automatic operation control unit 100 determines whether or not follow-up traveling is possible (step S400). For example, when a preceding vehicle is present within a predetermined distance, it is determined that the follow-up traveling is possible. When the follow-up traveling is possible, the automatic operation control unit 100 temporarily performs the follow-up travel (step S402). “Temporarily” means, for example, when the vehicle occupant is in a sleep state, until the vehicle is awakened, and when the front of the vehicle is in a congested state, until the vehicle passes through the congested portion. On the other hand, if the follow-up running is not possible, the remote operation control unit 160 of the automatic operation control unit 100 starts the remote operation as in the first or second embodiment (step S404).
  • the same effects as those of the first embodiment can be obtained, and the control and communication load can be reduced by temporarily following in a scene where remote operation is unnecessary. it can.
  • the subject performing the remote operation is a person, but the subject performing the remote operation may be a virtual machine in which the latest automatic operation software is installed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

自動運転制御部により自動運転から手動運転に切り替えられる場合において第2の条件が成立した場合に、通信部を用いて車外設備に遠隔操作を依頼し、車外設備から受信した制御情報に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する被遠隔運転を実行する。

Description

車両制御装置、車両制御システム、車両制御方法、および車両制御プログラム
 本発明は、車両制御装置、車両制御システム、車両制御方法、および車両制御プログラムに関する。
 近年、加減速や操舵を自動的に行う自動運転について研究が進められている。これに関連し、自動運転中に前記判断手段により自動運転を行うための条件を満たしていないと判断された場合は、運転者に対して自動運転の解除を促す通知を行う技術が開示されている(特許文献1参照)。また、自律志向型の自動運転を実行不可であると判断した場合に、車両が外部機器と通信し、遠隔操作による他律志向型の自動運転を実行する技術が開示されている(特許文献2参照)。
特開2014-106854号公報 国際公開第2016/038931号
 しかしながら、従来の技術において、車両乗員による手動運転が実施できるのであれば、被遠隔運転に移行する必要が無い場合もある。
 本発明は、このような事情を考慮してなされたものであり、必要な場面に限定して被遠隔運転を行うことが可能な車両制御装置、車両制御システム、車両制御方法、および車両制御プログラムを提供することを目的の一つとする。
 請求項1に記載の発明は、車外の状況を取得する取得部(10、16、121)と、車両乗員により手動運転のための操作がなされる運転操作子(80)と、前記取得部により取得された車外の状況に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する自動運転を実行すると共に、第1の条件が成立した場合に、前記自動運転を終了して前記手動運転に切り替える自動運転制御部(120、140)と、車外設備(300、他車両)と通信する通信部(20)と、前記自動運転制御部により前記自動運転から前記手動運転に切り替えられる場合において第2の条件が成立した場合に、前記通信部を用いて前記車外設備に遠隔操作を依頼し、前記車外設備から受信した制御情報に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する被遠隔運転を実行する被遠隔運転制御部(160)と、を備える車両制御装置である。
 請求項2記載の発明は、請求項1記載の発明において、車両乗員の状態を検知する検知部(162)を更に備え、前記第2の条件は、前記検知部により検知された車両乗員の状態が、前記手動運転を行うのに適さない状態であることを含むものである。
 請求項3記載の発明は、請求項1記載の発明において、情報を出力する出力部(30)を更に備え、前記自動運転制御部は、前記自動運転を終了して手動運転に切り替えようとする際に、前記運転操作子を操作するように要求する情報を前記出力部に出力させ、前記運転操作子に対して所定量以上の操作がなされた場合に前記自動運転を終了して手動運転に切り替え、前記第2の条件は、前記自動運転制御部により前記手動運転への切り替えが車両乗員に通知された後、前記車両乗員が前記運転操作子を所定量以上操作しないことを含むものである。
 請求項4記載の発明は、請求項1記載の発明において、車両乗員の入力操作を受け付ける入力部を更に備え、前記第2の条件は、前記入力部に対して所定の操作がなされたことを含むものである。
 請求項5記載の発明は、請求項1記載の発明において、前記取得部は、車両周辺を撮像するカメラを含み、前記被遠隔運転制御部は、前記通信部を用いて、前記カメラにより撮像された画像を前記車外設備に送信するものである。
 請求項6記載の発明は、請求項1記載の発明において、前記第1の条件は、自動運転の実行が困難になったことであり、前記被遠隔運転制御部は、自動運転の実行が困難になった原因の種類または程度に基づく情報を、前記通信部を用いて前記車外設備に送信するものである。
 請求項7記載の発明は、請求項1記載の発明において、前記自動運転制御部は、自動運転を実行中の他車両に追従して走行する追従走行を実行可能であり、前記第1の条件の成立状況に基づいて、前記自動運転制御部が前記追従走行を実行するか、前記被遠隔運転制御部が前記被遠隔運転を実行するかを切り替えるものである。
 請求項8記載の発明は、請求項1記載の発明において、車内または車外に情報を表示する表示部(SN、TL、HL)を更に備え、前記被遠隔運転制御部は、前記被遠隔運転を実行する際に、前記被遠隔運転を実行していることを示す情報を、前記表示部に表示させるものである。
 請求項9記載の発明は、請求項1記載の発明において、車両乗員の入力操作を受け付ける入力部(30)を更に備え、前記被遠隔運転制御部は、前記入力部に対してなされた前記被遠隔運転を許可する旨の入力操作が予め行われている場合に、前記被遠隔運転を開始するものである。
 請求項10記載の発明は、請求項1記載の発明において、車両乗員の入力操作を受け付ける入力部を更に備え、前記被遠隔運転制御部は、前記被遠隔運転を実行した後、前記入力部に対して入力された遠隔操作の評価結果を、前記車外設備に送信するものである。
 請求項11記載の発明は、請求項1記載の車両制御装置と、前記車外設備と、を備える車両制御システムである。
 請求項12記載の発明は、請求項11記載の発明において、前記第1の条件は、自動運転の実行が困難になったことであり、前記被遠隔運転制御部は、自動運転の実行が困難になった原因の種類または程度に基づく情報を、前記通信部を用いて前記車外設備に送信し、前記車外設備は、それぞれ遠隔操作者により操作される複数の遠隔操作装置(320)と、前記被遠隔運転制御部から受信した情報に基づいて、遠隔操作を行わせる遠隔操作者を選択する統括制御装置(310)と、を備えるものである。
 請求項13記載の発明は、請求項11記載の発明において、前記車外設備は、車種ごとに、遠隔操作者の操作量に対して前記制御情報を生成する際の変換量を規定した変換情報(332)を備え、遠隔操作者の操作量を前記変換情報で変換して前記制御情報を生成するものである。
 請求項14記載の発明は、コンピュータが、車外の状況を取得し、取得された車外の状況に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する自動運転を実行すると共に、第1の条件が成立した場合に、前記自動運転を終了して前記手動運転に切り替え、車外設備と通信し、前記自動運転から前記手動運転に切り替えられる場合において第2の条件が成立した場合に、前記通信部を用いて前記車外設備に遠隔操作を依頼し、前記車外設備から受信した制御情報に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する被遠隔運転を実行する、車両制御方法である。
 請求項15記載の発明は、コンピュータに、車外の状況を取得させ、取得された車外の状況に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する自動運転を実行すると共に、第1の条件が成立した場合に、前記自動運転を終了して前記手動運転に切り替させ、車外設備と通信させ、前記自動運転から前記手動運転に切り替えられる場合において第2の条件が成立した場合に、前記通信部を用いて前記車外設備に遠隔操作を依頼させ、前記車外設備から受信した制御情報に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する被遠隔運転を実行させる、車両制御プログラムである。
 請求項1、5、9-11、14、15に記載の発明によれば、必要な場面に限定して被遠隔運転を行うことができる。
 請求項2、3に記載の発明によれば、更に、車両乗員が手動運転に移行できない可能性が高い場合に、被遠隔運転によって補うことができる。
 請求項4に記載の発明によれば、車両乗員の意図に応じて被遠隔運転を開始することができる。
 請求項6、12に記載の発明によれば、更に、車両がおかれた場面に応じた遠隔操作を行うことができる。
 請求項7に記載の発明によれば、更に、被遠隔運転が不要な場面では一時的に追従走行することで、制御や通信の負荷を低減することができる。
 請求項8に記載の発明によれば、更に、運転者や車外の人間に、車両のおかれた状況を速やかに把握させることができる。
車両制御システム1の概念図である。 車両Mに搭載される構成の一例を示す図である。 自車位置認識部122により走行車線L1に対する車両Mの相対位置および姿勢が認識される様子を示す図である。 推奨車線に基づいて目標軌道が生成される様子を示す図である。 自動運転制御ユニット100により実行される処理を部分的に示すフローチャートである。 自動運転制御ユニット100により実行される処理の他の例を示すフローチャートである。 被遠隔運転が実行されている間、表示される画面の一例を示す図である。 被遠隔運転が実行されている間、車外に向けて情報が表示される様子を示す図である。 遠隔操作管理設備300における装置構成を示す図である。 遠隔操作装置320の構成を模式的に示す図である。 制御傾向変換テーブル332の内容の一例を示す図である。 車両の乗員によって遠隔操作が実行される様子を概念的に示す図である。 遠隔操作を行う車両Mに搭載される構成の一例を示す図である。 車両Mから遠隔操作管理設備300に送信される情報の一例を示す図である。 遠隔操作者一覧312の内容の一例を示す図である。 統括制御装置310により実行される処理の流れの一例を示すフローチャートである。 所定の操作を受け付ける入力画面の一例を示す図である。 第2実施形態の自動運転制御ユニット100により実行される処理の流れの一例を示すフローチャートである。 第3実施形態の自動運転制御ユニット100により実行される処理の流れの一例を示すフローチャートである。
 以下、図面を参照し、本発明の車両制御装置、車両制御システム、車両制御方法、および車両制御プログラムの実施形態について説明する。
 <第1実施形態>
 [システム構成]
 図1は、車両制御システム1の概念図である。車両制御システム1は、複数の車両M-1~M-n(nは任意の自然数)と、遠隔操作管理設備300とがネットワークNWを介して通信することで実現される。以下、車両を区別しないときは車両Mと称する。車両Mは、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせである。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。また、車両Mは、加減速または操舵の少なくとも一方を自動的に制御する自動運転を実行可能な車両である。ネットワークNWは、無線通信のインターフェースである基地局、WAN(Wide Area Network)、LAN(Local Area Network)、インターネット、専用回線などを含む。
 車両制御システム1では、車両Mから遠隔運転管理設備200に、或いはある車両Mから他の車両Mに対して遠隔操作の依頼が送信され、それに応じて車両Mの遠隔操作が実行される。
 [車両構成]
 まずは、車両Mに搭載される構成について説明する。図2は、車両Mに搭載される構成の一例を示す図である。車両Mには、例えば、カメラ10と、レーダ装置12と、ファインダ14と、物体認識装置16と、通信装置20と、HMI(Human Machine Interface)30と、ナビゲーション装置50と、MPU(Micro-Processing Unit)60と、車両センサ70と、運転操作子80と、車室内カメラ90と、自動運転制御ユニット100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とが搭載される。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、図2に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。図2に示す構成のうち、カメラ10、通信装置20、運転操作子80、第1制御部120、第2制御部140、および被遠隔運転制御部160を少なくとも含むものが、「車両制御装置」の一例である。
 カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、車両Mの任意の箇所に一つまたは複数が取り付けられる。前方を撮像する場合、カメラ10は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ10は、例えば、周期的に繰り返し車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。
 レーダ装置12は、車両Mの周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、車両Mの任意の箇所に一つまたは複数が取り付けられる。レーダ装置12は、FM-CW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。
 ファインダ14は、照射光に対する散乱光を測定し、対象までの距離を検出するLIDAR(Light Detection and Ranging、或いはLaser Imaging Detection and Ranging)である。ファインダ14は、車両Mの任意の箇所に一つまたは複数が取り付けられる。
 物体認識装置16は、カメラ10、レーダ装置12、およびファインダ14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度などを認識する。物体認識装置16は、認識結果を自動運転制御ユニット100に出力する。
 通信装置20は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用して、車両Mの周辺に存在する他車両と通信し、或いは無線基地局を介して各種サーバ装置と通信する。
 HMI30は、車両Mの乗員に対して各種情報を提示すると共に、乗員による入力操作を受け付ける。HMI30は、各種表示装置、スピーカ、ブザー、タッチパネル、スイッチ、キーなどを含む。
 ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機51と、ナビHMI52と、経路決定部53とを備え、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に第1地図情報54を保持している。GNSS受信機は、GNSS衛星から受信した信号に基づいて、車両Mの位置を特定する。車両Mの位置は、車両センサ70の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。ナビHMI52は、表示装置、スピーカ、タッチパネル、キーなどを含む。ナビHMI52は、前述したHMI30と一部または全部が共通化されてもよい。経路決定部53は、例えば、GNSS受信機51により特定された車両Mの位置(或いは入力された任意の位置)から、ナビHMI52を用いて乗員により入力された目的地までの経路を、第1地図情報54を参照して決定する。第1地図情報54は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。第1地図情報54は、道路の曲率やPOI(Point Of Interest)情報などを含んでもよい。経路決定部53により決定された経路は、MPU60に出力される。また、ナビゲーション装置50は、経路決定部53により決定された経路に基づいて、ナビHMI52を用いた経路案内を行ってもよい。なお、ナビゲーション装置50は、例えば、ユーザの保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。また、ナビゲーション装置50は、通信装置20を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから返信された経路を取得してもよい。
 MPU60は、例えば、推奨車線決定部61として機能し、HDDやフラッシュメモリなどの記憶装置に第2地図情報62を保持している。推奨車線決定部61は、ナビゲーション装置50から提供された経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報62を参照してブロックごとに推奨車線を決定する。推奨車線決定部61は、左から何番目の車線を走行するといった決定を行う。推奨車線決定部61は、経路において分岐箇所や合流箇所などが存在する場合、車両Mが、分岐先に進行するための合理的な経路を走行できるように、推奨車線を決定する。
 第2地図情報62は、第1地図情報54よりも高精度な地図情報である。第2地図情報62は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、第2地図情報62には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報などが含まれてよい。道路情報には、高速道路、有料道路、国道、都道府県道といった道路の種別を表す情報や、道路の車線数、各車線の幅員、道路の勾配、道路の位置(経度、緯度、高さを含む3次元座標)、車線のカーブの曲率、車線の合流および分岐ポイントの位置、道路に設けられた標識等の情報が含まれる。第2地図情報62は、通信装置20を用いて他装置にアクセスすることにより、随時、アップデートされてよい。
 車両センサ70は、車両Mの速度を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、車両Mの向きを検出する方位センサ等を含む。
 運転操作子80は、例えば、アクセルペダル、ブレーキペダル、シフトレバー、ステアリングホイールその他の操作子を含む。運転操作子80には、操作量あるいは操作の有無を検出するセンサが取り付けられており、その検出結果は、自動運転制御ユニット100、もしくは、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一方または双方に出力される。
 車室内カメラ90は、運転席に着座した乗員の顔を中心として上半身を撮像する。車室内カメラ90の撮像画像は、自動運転制御ユニット100に出力される。
 自動運転制御ユニット100は、例えば、第1制御部120と、第2制御部140と、被遠隔運転制御部160とを備える。第1制御部120、第2制御部140、および被遠隔運転制御部160は、それぞれ、CPU(Central Processing Unit)などのプロセッサがプログラム(ソフトウェア)を実行することで実現される。また、以下に説明する第1制御部120、第2制御部140、および被遠隔運転制御部160の機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
 第1制御部120は、例えば、外界認識部121と、自車位置認識部122と、行動計画生成部123とを備える。
 外界認識部121は、カメラ10、レーダ12、およびファインダ14から直接的に、或いは物体認識装置16を介して入力される情報に基づいて、周辺車両の位置、および速度、加速度等の状態を認識する。周辺車両の位置は、その周辺車両の重心やコーナー等の代表点で表されてもよいし、周辺車両の輪郭で表現された領域で表されてもよい。周辺車両の「状態」とは、周辺車両の加速度やジャーク、あるいは「行動状態」(例えば車線変更をしている、またはしようとしているか否か)を含んでもよい。また、外界認識部121は、周辺車両に加えて、ガードレールや電柱、駐車車両、歩行者その他の物体の位置を認識してもよい。
 自車位置認識部122は、例えば、車両Mが走行している車線(走行車線)、並びに走行車線に対する車両Mの相対位置および姿勢を認識する。自車位置認識部122は、例えば、第2地図情報62から得られる道路区画線のパターン(例えば実線と破線の配列)と、カメラ10によって撮像された画像から認識される車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。この認識において、ナビゲーション装置50から取得される車両Mの位置やINSによる処理結果が加味されてもよい。
 そして、自車位置認識部122は、例えば、走行車線に対する車両Mの位置や姿勢を認識する。図3は、自車位置認識部122により走行車線L1に対する車両Mの相対位置および姿勢が認識される様子を示す図である。自車位置認識部122は、例えば、車両Mの基準点(例えば重心)の走行車線中央CLからの乖離OS、および車両Mの進行方向の走行車線中央CLを連ねた線に対してなす角度θを、走行車線L1に対する車両Mの相対位置および姿勢として認識する。なお、これに代えて、自車位置認識部122は、自車線L1のいずれかの側端部に対する車両Mの基準点の位置などを、走行車線に対する車両Mの相対位置として認識してもよい。自車位置認識部122により認識される車両Mの相対位置は、推奨車線決定部61および行動計画生成部123に提供される。
 行動計画生成部123は、推奨車線決定部61により決定されて推奨車線を走行するように、且つ、車両Mの周辺状況に対応できるように、自動運転において順次実行されるイベントを決定する。イベントには、例えば、一定速度で同じ走行車線を走行する定速走行イベント、前走車両に追従する追従走行イベント、車線変更イベント、合流イベント、分岐イベント、緊急停止イベント、自動運転を終了して手動運転に切り替えるためのハンドオーバイベントなどがある。また、これらのイベントの実行中に、車両Mの周辺状況(周辺車両や歩行者の存在、道路工事による車線狭窄など)に基づいて、回避のための行動が計画される場合もある。
 行動計画生成部123は、車両Mが将来走行する目標軌道を生成する。目標軌道は、例えば、速度要素を含んでいる。例えば、目標軌道は、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとに将来の基準時刻を複数設定し、それらの基準時刻に到達すべき目標地点(軌道点)の集合として生成される。このため、軌道点同士の間隔が広い場合、その軌道点の間の区間を高速に走行することを示している。
 図4は、推奨車線に基づいて目標軌道が生成される様子を示す図である。図示するように、推奨車線は、目的地までの経路に沿って走行するのに都合が良いように設定される。行動計画生成部123は、推奨車線の切り替わり地点の所定距離手前(イベントの種類に応じて決定されてよい)に差し掛かると、車線変更イベント、分岐イベント、合流イベントなどを起動する。各イベントの実行中に、障害物を回避する必要が生じた場合には、図示するように回避軌道が生成される。
 行動計画生成部123は、例えば、目標軌道の候補を複数生成し、安全性と効率性の観点に基づいて、その時点での最適な目標軌道を選択する。
 第2制御部140は、走行制御部141を備える。走行制御部141は、行動計画生成部123によって生成された目標軌道を、予定の時刻通りに車両Mが通過するように、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御する。
 被遠隔運転制御部160の機能については後述する。
 走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するECUとを備える。ECUは、自動運転制御ユニット100から入力される情報、或いは運転操作子80から入力される情報に従って、上記の構成を制御する。
 ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUとを備える。ブレーキECUは、自自動運転制御ユニット100から入力される情報、或いは運転操作子80から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子80に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置210は、上記説明した構成に限らず、走行制御部141から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。
 ステアリング装置220は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、自動運転制御ユニット100から入力される情報、或いは運転操作子80から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。
 [自動運転の終了]
 ここで、自動運転を終了して手動運転に切り替えるためのハンドオーバイベントについて説明する。行動計画生成部123は、第1の条件が成立した場合に、ハンドオーバイベントを起動する。第1の条件とは、複数の条件をOR結合した条件である。例えば、以下に例示する条件のうちいずれか一つが成立した場合に、第1の条件が成立したと判定される。
(1)車両Mが、予め設定された目的地付近に到達した。
(2)車両Mの周辺環境が、自動運転を継続困難な環境である。
(3)運転操作子80に対して、所定量以上の操作がなされた(オーバーライド)。
 行動計画生成部123は、ハンドオーバイベントを起動すると、まず、運転操作子80を操作するように要求する情報(ハンドオーバリクエスト)をHMI30に出力させ、運転操作子80に対して所定量以上の操作がなされた場合に、自動運転を終了して手動運転に切り替える。但し、上記(3)のオーバーライドの場合には、HMI30による、運転操作子80を操作するように要求する情報の出力は省略されてよく、行動計画生成部123は、代わりに手動運転に切り替わる旨の情報をHMI30に出力させてよい。所定量以上の操作とは、例えば、アクセルペダルに関して言えば、アクセル開度が閾値以上の状態が所定時間以上継続するような操作である。行動計画生成部123は、例えば、自動運転に係る制御ゲインを徐々に低下させ、最終的には運転操作子80の操作量が直接、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220に提供されるように制御する。その後は、自動運転制御ユニット100が制御に関与せず(信号の中継は行ってもよい)、運転操作子80の操作量に基づいて、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220が動作する手動運転が実行される。
 [被遠隔運転制御]
 以下、本実施形態による被遠隔運転制御について説明する。被遠隔運転制御部160は、ハンドオーバイベントが起動した場合において第2の条件が成立した場合に、通信装置20を用いて車外設備(遠隔操作管理設備300または他車両をいう)に遠隔操作を依頼し、車外設備から受信した制御情報に基づいて車両Mの加減速または操舵の少なくとも一方を自動的に制御する被遠隔運転を実行する。被遠隔運転制御部160は、例えば、乗員状態検知部162を備える。
 第2の条件とは、例えば、以下に例示する条件である。被遠隔運転制御部160は、以下の(A)または(B)のうち少なくとも一方が成立した場合に第2の条件が成立したと判定してもよいし、(A)と(B)の双方が成立した場合に第2の条件が成立したと判定してもよい。
(A)乗員状態検知部162により検知された、運転席に着座した乗員(運転者)が手動運転に適さない状態であること。
(B)ハンドオーバリクエストから所定時間経過したが、ハンドオーバリクエストに応答した所定量以上の操作(オーバーライドの基準と異なってもよいし、同じでもよい)がなされなかったこと。
 運転者の状態は、例えば、車室内カメラ90により撮像された画像を解析することで把握される。乗員状態検知部162は、例えば、運転者の眼が閉じられた状態(睡眠状態)、黒目と眼全体の相対位置などから把握される視線の向きが、車両Mの前方以外を継続的に向いている状態(脇見継続状態)、その他の状態である場合に、運転者が手動運転に適さない状態であると判定する。なお、運転者の状態を把握するための判定手法については任意に定めてよく、乗員状態検知部162は、例えば、ステアリングホイールに取り付けられた電極によって心拍を計測し、運転者の状態を把握してもよいし、NIRS(Near Infra- Red Spectoroscopy)センサや着座重量センサなどを利用して運転者の状態を把握してもよい。
 第2の条件が成立すると、被遠隔運転制御部160は、少なくともカメラ10により撮像された画像、好ましくは物体認識装置16による認識結果を、通信装置20を用いて車外設備に送信し、返信された制御情報に基づいて、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御する。
 図5は、自動運転制御ユニット100により実行される処理を部分的に示すフローチャートである。本フローチャートの処理は、自動運転が開始されたときに開始される。
 まず、行動計画生成部123が、第1の条件が成立するまで待機する(ステップS100)。第1の条件が成立すると、行動計画生成部123は、オーバーライドによって第1の条件が成立したか否かを判定する(ステップS102)。オーバーライドによって第1の条件が成立した場合、行動計画生成部123は、手動運転に切り替える(ステップS104)。
 オーバーライドによって第1の条件が成立したのではない場合、行動計画生成部123は、ハンドオーバリクエストをHMI30に出力させる(ステップS106)。
 次に、被遠隔運転制御部160は、第2の条件が成立したか否かを判定する(ステップS108)。第2の条件が成立しなかった場合、被遠隔運転制御部160は、その旨を行動計画生成部123に通知し、行動計画生成部123は、手動運転に切り替える(ステップS104)。
 第2の条件が成立した場合、被遠隔運転制御部160は、被遠隔運転を開始し(ステップS110)、これが終了するまで被遠隔運転を継続する(ステップS112)。被遠隔運転は、例えば、遠隔操作者によって安全な位置まで車両Mが移動されたときに、遠隔操作者によって終了される。
 なお、被遠隔運転制御部160は、第1の条件が成立する前であっても、被遠隔運転を開始するようにしてもよい。図6は、自動運転制御ユニット100により実行される処理の他の例を示すフローチャートである。本フローチャートの処理は、図5に示すフローチャートと並行して実行されてもよいし、単独で実行されてもよい。
 まず、行動計画生成部123が、第1の条件が成立すると予想されるか否かを判定する(ステップS200)。例えば、行動計画生成部123は、予め設定された目的地まで所定距離以内、または所定時間以内になった場合、或いは、通信などによって車両Mの進行先に、自動運転を継続困難な環境となっている場所が存在する場合に、第1の条件が成立すると予想する。
 行動計画生成部123により、第1の条件が成立すると予想される場合、被遠隔運転制御部160は、運転者が運転に適した状態であるか否かを判定する(ステップS202)。運転者が運転に適した状態である場合、本フローチャートの1ルーチンが終了する。本ステップの判定手法については、前述した通りである。
 運転者が運転に適した状態でない場合、被遠隔運転制御部160は、被遠隔運転を開始し(ステップS204)、これが終了するまで被遠隔運転を継続する(ステップS206)。
 係る制御によって、近い将来に自動運転が終了するような場面において、運転者が運転に適した状態でない場合には、速やかに被遠隔運転を開始することができる。
 被遠隔運転制御部160は、被遠隔運転を実行している間、その旨を示す情報をHMI30の表示装置に表示させてもよい。図7は、被遠隔運転が実行されている間、表示される画面の一例を示す図である。この画面には、例えば、表示装置がタッチパネルである場合、遠隔操作をキャンセルするためのキャンセルボタンCBが設けられる他、遠隔操作の事業者や遠隔操作者の情報などが含まれてよい。これによって、運転者は、例えば睡眠状態から覚醒した直後において、車両Mの状況を速やかに把握することができる。
 また、被遠隔運転制御部160は、被遠隔運転を実行している間、その旨を示す情報を車外に向けて表示または通知してもよい。図8は、被遠隔運転が実行されている間、車外に向けて情報が表示される様子を示す図である。車外に向けた情報の表示は、例えば、車体側面やウインドウ、ボンネット、バンパーなどに設けられたサイネージSNに、遠隔運転中であることを表示することで行われる。サイネージSNは、有機ELや液晶パネルなどで形成される。また、車両の天井に設けたトップランプTLにおいて発光体を回転させてもよいし、ヘッドランプTLに通常とは異なる色(例えば緑など)の光を照射させてもよい。また、表示に加えて(または代えて)、音声によって遠隔運転中であることを車外に通知してもよい。
 [車外設備]
 以下、遠隔操作を行う側の車外設備について説明する。図9は、遠隔操作管理設備300における装置構成を示す図である。図示するように、遠隔操作管理設備300には、ネットワークNWを介して車両M(被遠隔操作車両)と通信する統括制御装置310と、複数の遠隔操作装置320-1、320-2、320-3、…とが設けられる。以下、遠隔操作装置を区別しないときは、単に遠隔操作装置320と表記する。それぞれの遠隔操作装置320では、遠隔操作者が遠隔操作リクエストに備えて着座して待機している。統括制御装置310は、車両Mからの遠隔操作リクエストに応じていずれかの遠隔操作装置320を選択し、選択した遠隔操作装置320に対して、車両Mから受信した情報(前述したように、カメラ10により撮像された画像、速度、角速度、車種など)を送信し、遠隔操作を行わせる。
 図10は、遠隔操作装置320の構成を模式的に示す図である。遠隔操作装置320は、例えば、表示部321と、スピーカ322と、シート323と、ステアリングホイール324と、アクセルペダルおよびブレーキペダルなどのペダル類325と、遠隔操作制御部330とを備える。
 表示部321は、車両Mのカメラ10により撮像された画像、車両Mの速度やエンジン回転数などを表示する。なお、表示部321は、HMD(Head Mount Display)でもよい。スピーカ322は、車両Mの物体認識装置16により認識された障害物の車両Mへの接近に応じて警告音を発する。シート323には、遠隔操作者Oが着座する。遠隔操作者Oは、ステアリングホイール324やペダル類325などの運転操作子に対して操作を行う。これらに対する操作量は、図示しないセンサによって検出され、遠隔操作制御部330に出力される。運転操作子は、ジョイスティックなど、他の態様の運転操作子であってもよい。遠隔操作制御部330は、運転操作子から入力された操作量に基づいて、車両Mに送信する制御情報を生成し、統括制御装置310に送信する。統括制御装置310は、このように生成された制御情報を、車両Mに送信する。なお、運転操作子には、操作量によって生じるべき反力を作用させるための反力出力装置が付設されている。反力を正確に決定するために、車両Mから遠隔操作装置320に対して、速度や角速度などの情報が供給されると好適である。
 車両Mに送信される制御情報は、ステアリングホイール324やペダル類325に対する操作量そのものであってもよいし、その時点の車両Mの車速や旋回角度に対して上記の操作量が加えられることで計算される、走行駆動力出力装置200、ブレーキ装置210、またはステアリング装置220に与えるべき制御量(例えば、スロットル開度、ブレーキトルク、ステアリング装置220のアシストモータの出力トルクなど)であってもよい。
 ここで、上記の制御情報に対する応答の度合は、車両Mによって異なることが想定される。一方で、遠隔操作装置320を操作する遠隔操作者Oにとって、操作量に対する車両Mの挙動変化は一様であることが好ましい。このため、遠隔操作制御部330は、制御傾向変換テーブル332を参照し、操作量に対する挙動変化を一様にするために、制御情報を調整する。
 図11は、制御傾向変換テーブル332の内容の一例を示す図である。制御傾向変換テーブル332は、例えば、車種ごとに、操作量を何倍して制御情報とするか(倍率)が規定された情報である。例えば、アクセル開度倍率が1.10倍であれば、遠隔操作装置320のアクセルぺダル操作に基づくアクセル開度が、1.10倍されて制御情報が生成される。このように、車種ごとに制御情報を調整するための制御傾向変換テーブル332を参照することで、異なる車種であっても、操作量に対する車両の挙動変化を一様に近づけることができる。
 [車両からの遠隔操作]
 車両の遠隔操作は、遠隔操作管理設備300の遠隔操作装置320ではなく、自動運転中の車両の乗員によって行われてもよい。図12は、車両の乗員によって遠隔操作が実行される様子を概念的に示す図である。図中、車両M-1は、上記説明した被遠隔運転を実行中の車両である。また、車両M-2は、自動運転を実行しているため運転操作子がフリーの状態となっており、本来はその車両の運転操作に用いるための運転操作子を、遠隔操作の運転操作子として使用可能な車両である。この場合、車両M-2では、例えば、車両M-1から受信した画像をHUD(Head Up Display)などに表示し、あたかも車両M-1を運転しているような環境で遠隔操作が行われる。なお、この場合であっても、遠隔操作管理設備300が車両M-1とM-2の間に介在してもよい。すなわち、遠隔操作リクエストは、まず遠隔操作管理設備300に送信され、遠隔操作管理設備300によって、自動運転中の車両Mに転送されるようにしてもよい。
 図13は、遠隔操作を行う車両Mに搭載される構成の一例を示す図である。本図において、図2を用いて説明した機能と同様の機能を有するものに関しては、共通する符号を付している。すなわち、遠隔操作を行う車両Mに搭載される自動運転制御ユニット100は、上記説明した自動運転制御ユニット100と同様の機能を有してよい。
 遠隔操作を行う車両Mには、図2に示す構成の他、HUD40と、遠隔操作制御部180とが搭載される。遠隔操作制御部180は、被遠隔運転を行う車両Mのカメラ10により撮像された画像などをHUDに表示させ、フリーの状態になっている運転操作子80から入力された操作量に基づいて、被遠隔運転を行う車両Mに送信する制御情報を生成し、通信装置20に送信させる。
 なお、被遠隔運転を行う車両Mと、遠隔操作を行う車両Mとを別々に説明したが、これらの機能の双方を有するものとして車両Mが構成されてもよい。すなわち、車両Mは、被遠隔運転を行う必要がある場合には被遠隔運転を行うと共に、自動運転中に他車両からのリクエストに応じて遠隔操作を行うことができるものであってもよい。
 [遠隔操作者の選択]
 遠隔操作者は、遠隔操作リクエストを送信する車両Mからの情報に基づいて選択されてもよい。この場合、車両Mは、例えば、ハンドオーバイベントを起動するのに至った事由(特に、車両Mの周辺環境が、自動運転を継続困難な環境となった原因の種類または程度)、あるいはそれらを離散化した指標を、遠隔操作管理設備300に送信する。図14は、車両Mから遠隔操作管理設備300に送信される情報の一例を示す図である。図示するように、車両Mから遠隔操作管理設備300には、例えば、車両の識別情報である車両ID、通信識別情報である通信ID、車両Mが走行しているリンクの識別情報であるリンクID、リンクにおいてどちら方向を走行しているかを示す進行方向、遠隔操作リクエストの原因となった事由、およびその事由における遠隔操作の困難性をランク付け(離散化)した事由ランクなどの情報が送信される。ここでは、事由ランクAが最も高い(遠隔操作の困難性が高い)ものとする。
 遠隔操作管理設備300の統括制御装置310は、遠隔操作者一覧312を参照し、車両Mから受信した情報に合致する遠隔操作者を選択して、選択した遠隔操作者の操作する遠隔操作装置320に遠隔操作を行わせる。図15は、遠隔操作者一覧312の内容の一例を示す図である。遠隔操作者一覧312には、例えば、遠隔操作者の識別情報である遠隔操作者IDに対応付けて、遠隔操作の経験年数、遠隔操作の直近の評価、それらを総合的に評価した総合スキル、遠隔操作を実行中であるか否かを示すフラグなどの情報が格納される。
 例えば、統括制御装置310は、車両Mから受信した事由ランク以上の総合スキルを有する遠隔操作者を選択する。図14および図15の例では、車両IDが001の車両Mに関しては、送信した事由ランクがAであるため、総合スキルがAである遠隔操作者IDが002の遠隔操作者を選択する。一方、車両IDが002の車両Mに関しては、送信した事由ランクがCであるため、総合スキルがC以上である遠隔操作者IDが001または002の遠隔操作者を選択する。このような処理によって、遠隔操作の難易度に応じた適切な遠隔操作者を選択することができる。
 車両Mから遠隔操作管理設備300に遠隔操作リクエストが送信されると、遠隔操作管理設備300の統括制御装置310は、まず遠隔操作装置320で遠隔操作可能か否かを確認し、遠隔操作装置320で遠隔操作可能でない(すなわち遠隔操作者がフル稼働中である)場合に、自動運転中の車両に遠隔操作を依頼するようにしてもよい。この場合、遠隔操作者一覧312には、自動運転中の車両および運転者の情報も併せて格納されてよい。図16は、統括制御装置310により実行される処理の流れの一例を示すフローチャートである。本フローチャートの処理は、繰り返し実行される。まず、統括制御装置310は、遠隔操作リクエストを受信したか否かを判定する(ステップS300)。遠隔操作リクエストを受信しなかった場合はステップS312に進む(後述)。
 遠隔操作リクエストを受信した場合、統括制御装置310は、遠隔操作者一覧312を参照し(ステップS302)、遠隔操作装置320に着座した遠隔操作者に空きがある(遠隔操作実行中でない遠隔操作者がいる)か否かを判定する(ステップS304)。
 遠隔操作者に空きがある場合、統括制御装置310は、遠隔操作を実行中でない遠隔操作者(図中、空き操作者)の着座した遠隔操作装置320を作動させて遠隔操作を行わせる(ステップS306)。一方、遠隔操作者に空きがない場合、統括制御装置310は、自動運転中の車両に遠隔操作リクエストを転送し、遠隔操作を行わせる(ステップS308)。この場合、被遠隔運転を行う車両と、遠隔操作を行う車両との通信は、統括制御装置310を介してもよいし、介さなくてもよい。
 次に、統括制御装置310は、遠隔操作者一覧312において、遠隔操作を指示した遠隔操作者に関するレコードを、「遠隔操作実行中:YES」に更新する(ステップS310)。
 次に、統括制御装置310は、いずれかの遠隔操作装置320または車両において遠隔操作が終了したか否かを判定する(ステップS312)。遠隔操作が終了した場合、統括制御装置310は、遠隔操作者一覧312において、遠隔操作を終了した遠隔操作者に関するレコードを、「遠隔操作実行中:NO」に更新する(ステップS314)。
 遠隔操作が終了すると、被遠隔運転を行った車両において、車両乗員により遠隔操作の評価結果が入力され、統括制御装置310に送信されてもよい。この場合の評価結果は、遠隔操作者一覧312の評価の項目などに反映される。
 以上説明した第1実施形態の車両制御装置によれば、必要な場面に限定して被遠隔運転を行うことができる。
 なお、第1実施形態において、図5に例示したフローチャートなどで判断される「第2の条件」には、前述した(A)、(B)の条件に加えて(または、代えて)、(C)「所定の操作が車両乗員によってなされたこと」が含まれてもよい。所定の操作は、例えば、タッチパネルであるHMI30の表示装置に対してなされる。図17は、所定の操作を受け付ける入力画面の一例を示す図である。この入力画面には、自動運転が終了するため手動運転を開始することを要求するメッセージ領域MAが表示される他、遠隔操作をリクエストするための遠隔操作リクエストMBが設けられる。この遠隔操作リクエストMBが操作されると、遠隔操作管理設備300に遠隔操作リクエストが送信され、前述したように被遠隔運転が開始される。これにより、車両乗員の意図に応じて被遠隔運転を開始することができる。
 <第2実施形態>
 第1実施形態では、ハンドオーバイベントが起動した場合において第2の条件が成立した場合に、自動的に被遠隔運転を開始するものとして説明した。第2実施形態では、予め車両乗員による許可が得られている場合に、被遠隔運転が開始される。車両乗員による許可は、例えば、運転開始時に、HMI30に対して入力される。
 図18は、第2実施形態の自動運転制御ユニット100により実行される処理の流れの一例を示すフローチャートである。本フローチャートにおけるステップS109以外の処理は、図5のフローチャートに示す処理と同様であるため、説明を省略する。図17のフローチャートにおいて、第2の条件が成立すると、被遠隔運転制御部160は、予め被遠隔運転の許可が得られているか否かを判定する(ステップS109)。予め被遠隔運転の許可が得られていない場合は、手動運転に切り替え(ステップS104)、予め被遠隔運転の許可が得られている場合は、被遠隔運転を開始する(ステップS110)。
 なお、第2実施形態において、予め被遠隔運転の許可が得られていることを、第2の条件に含めてもよい。更に、予め被遠隔運転の許可が得られている場合には、ハンドオーバリクエストを省略し、第1の条件が成立した(但しオーバーライドではない)場合には、直ちに被遠隔運転を開始するようにしてもよい。
 以上説明した第2実施形態によれば、第1実施形態と同様の効果を奏する他、より車両乗員の意図を反映した制御を行うことができる。
 <第3実施形態>
 第3実施形態では、第1の条件および第2の条件が成立したときに、被遠隔操作だけでなく、一時的に前走車両に追従して走行することを制御の選択肢とする。図19は、第3実施形態の自動運転制御ユニット100により実行される処理の流れの一例を示すフローチャートである。本フローチャートの処理は、図5のフローチャートにおけるステップS110、または図6のフローチャートにおけるステップS204の「被遠隔操作を開始」に代えて実行される。
 まず、自動運転制御ユニット100は、追従走行が可能であるか否かを判定する(ステップS400)。例えば、所定距離以内に前走車両が存在する場合に、追従走行が可能と判定される。追従走行が可能である場合、自動運転制御ユニット100は、一時的に追従走行を行う(ステップS402)。「一時的に」とは、例えば、車両乗員が睡眠状態であれば、覚醒させるまでの間であり、車両の前方が混雑状態である場合であれば、混雑状態である箇所を通過するまでの間である、一方、追従走行が可能でない場合、自動運転制御ユニット100の被遠隔運転制御部160が、第1または第2実施形態と同様に被遠隔運転を開始する(ステップS404)。
 以上説明した第3実施形態によれば、第1実施形態と同様の効果を奏する他、被遠隔運転が不要な場面では一時的に追従走行することで、制御や通信の負荷を低減することができる。
 上記説明した各実施形態において、遠隔操作を行う主体は人であることを前提としたが、遠隔操作を行う主体は、最新の自動運転ソフトウェアを実装した仮想マシンであってもよい。
1 車両制御システム
10 カメラ
16 物体認識装置
20 通信装置
30 HMI
80 運転操作子
90 車室内カメラ
100 自動運転制御ユニット
120 第1制御部
140 第2制御部
160 被遠隔運転制御部
162 乗員状態検知部
300 遠隔操作管理設備
310 統括制御装置
312 遠隔操作者一覧
320 遠隔操作装置
332 制御傾向変換テーブル

Claims (15)

  1.  車外の状況を取得する取得部と、
     車両乗員により手動運転のための操作がなされる運転操作子と、
     前記取得部により取得された車外の状況に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する自動運転を実行すると共に、第1の条件が成立した場合に、前記自動運転を終了して前記手動運転に切り替える自動運転制御部と、
     車外設備と通信する通信部と、
     前記自動運転制御部により前記自動運転から前記手動運転に切り替えられる場合において第2の条件が成立した場合に、前記通信部を用いて前記車外設備に遠隔操作を依頼し、前記車外設備から受信した制御情報に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する被遠隔運転を実行する被遠隔運転制御部と、
     を備える車両制御装置。
  2.  車両乗員の状態を検知する検知部を更に備え、
     前記第2の条件は、前記検知部により検知された車両乗員の状態が、前記手動運転を行うのに適さない状態であることを含む、
     請求項1記載の車両制御装置。
  3.  情報を出力する出力部を更に備え、
     前記自動運転制御部は、前記自動運転を終了して手動運転に切り替えようとする際に、前記運転操作子を操作するように要求する情報を前記出力部に出力させ、前記運転操作子に対して所定量以上の操作がなされた場合に前記自動運転を終了して手動運転に切り替え、
     前記第2の条件は、前記自動運転制御部により前記手動運転への切り替えが車両乗員に通知された後、前記車両乗員が前記運転操作子を所定量以上操作しないことを含む、
     請求項1記載の車両制御装置。
  4.  車両乗員の入力操作を受け付ける入力部を更に備え、
     前記第2の条件は、前記入力部に対して所定の操作がなされたことを含む、
     請求項1記載の車両制御装置。
  5.  前記取得部は、車両周辺を撮像するカメラを含み、
     前記被遠隔運転制御部は、前記通信部を用いて、前記カメラにより撮像された画像を前記車外設備に送信する、
     請求項1記載の車両制御装置。
  6.  前記第1の条件は、自動運転の実行が困難になったことであり、
     前記被遠隔運転制御部は、自動運転の実行が困難になった原因の種類または程度に基づく情報を、前記通信部を用いて前記車外設備に送信する、
     請求項1記載の車両制御装置。
  7.  前記自動運転制御部は、自動運転を実行中の他車両に追従して走行する追従走行を実行可能であり、
     前記第1の条件の成立状況に基づいて、前記自動運転制御部が前記追従走行を実行するか、前記被遠隔運転制御部が前記被遠隔運転を実行するかを切り替える、
     請求項1記載の車両制御装置。
  8.  車内または車外に情報を表示する表示部を更に備え、
     前記被遠隔運転制御部は、前記被遠隔運転を実行する際に、前記被遠隔運転を実行していることを示す情報を、前記表示部に表示させる、
     請求項1記載の車両制御装置。
  9.  車両乗員の入力操作を受け付ける入力部を更に備え、
     前記被遠隔運転制御部は、前記入力部に対してなされた前記被遠隔運転を許可する旨の入力操作が予め行われている場合に、前記被遠隔運転を開始する、
     請求項1記載の車両制御装置。
  10.  車両乗員の入力操作を受け付ける入力部を更に備え、
     前記被遠隔運転制御部は、前記被遠隔運転を実行した後、前記入力部に対して入力された遠隔操作の評価結果を、前記車外設備に送信する、
     請求項1記載の車両制御装置。
  11.  請求項1記載の車両制御装置と、
     前記車外設備と、を備える車両制御システム。
  12.  前記第1の条件は、自動運転の実行が困難になったことであり、
     前記被遠隔運転制御部は、自動運転の実行が困難になった原因の種類または程度に基づく情報を、前記通信部を用いて前記車外設備に送信し、
     前記車外設備は、
     それぞれ遠隔操作者により操作される複数の遠隔操作装置と、
     前記被遠隔運転制御部から受信した情報に基づいて、遠隔操作を行わせる遠隔操作者を選択する統括制御装置と、を備える、
     請求項11記載の車両制御システム。
  13.  前記車外設備は、車種ごとに、遠隔操作者の操作量に対して前記制御情報を生成する際の変換量を規定した変換情報を備え、遠隔操作者の操作量を前記変換情報で変換して前記制御情報を生成する、
     請求項11記載の車両制御システム。
  14.  コンピュータが、
     車外の状況を取得し、
     取得された車外の状況に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する自動運転を実行すると共に、第1の条件が成立した場合に、前記自動運転を終了して手動運転に切り替え、
     車外設備と通信し、
     前記自動運転から前記手動運転に切り替えられる場合において第2の条件が成立した場合に、前記通信部を用いて前記車外設備に遠隔操作を依頼し、前記車外設備から受信した制御情報に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する被遠隔運転を実行する、
     車両制御方法。
  15.  コンピュータに、
     車外の状況を取得させ、
     取得された車外の状況に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する自動運転を実行すると共に、第1の条件が成立した場合に、前記自動運転を終了して手動運転に切り替させ、
     車外設備と通信させ、
     前記自動運転から前記手動運転に切り替えられる場合において第2の条件が成立した場合に、前記通信部を用いて前記車外設備に遠隔操作を依頼させ、前記車外設備から受信した制御情報に基づいて車両の加減速または操舵の少なくとも一方を自動的に制御する被遠隔運転を実行させる、
     車両制御プログラム。
PCT/JP2016/083199 2016-11-09 2016-11-09 車両制御装置、車両制御システム、車両制御方法、および車両制御プログラム WO2018087828A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680090380.XA CN109891472B (zh) 2016-11-09 2016-11-09 车辆控制系统、车辆控制方法及存储介质
JP2018549672A JP6663506B2 (ja) 2016-11-09 2016-11-09 車両制御システム、車両制御方法、および車両制御プログラム
US16/344,822 US11046332B2 (en) 2016-11-09 2016-11-09 Vehicle control device, vehicle control system, vehicle control method, and storage medium
PCT/JP2016/083199 WO2018087828A1 (ja) 2016-11-09 2016-11-09 車両制御装置、車両制御システム、車両制御方法、および車両制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083199 WO2018087828A1 (ja) 2016-11-09 2016-11-09 車両制御装置、車両制御システム、車両制御方法、および車両制御プログラム

Publications (1)

Publication Number Publication Date
WO2018087828A1 true WO2018087828A1 (ja) 2018-05-17

Family

ID=62110561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083199 WO2018087828A1 (ja) 2016-11-09 2016-11-09 車両制御装置、車両制御システム、車両制御方法、および車両制御プログラム

Country Status (4)

Country Link
US (1) US11046332B2 (ja)
JP (1) JP6663506B2 (ja)
CN (1) CN109891472B (ja)
WO (1) WO2018087828A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018184160A (ja) * 2017-03-28 2018-11-22 トヨタ リサーチ インスティテュート,インコーポレイティド ビークル制御を自律運転モードから切り替えるための電子制御ユニット、ビークル、及び方法
CN110228484A (zh) * 2019-06-17 2019-09-13 福州视驰科技有限公司 一种具有辅助驾驶功能的低时延智能远程驾驶系统
WO2020031370A1 (ja) * 2018-08-10 2020-02-13 三菱電機株式会社 運転計画作成装置、遠隔運転サーバおよび運転計画作成方法
WO2020152798A1 (ja) * 2019-01-23 2020-07-30 三菱電機株式会社 ドライバ異常対応装置、ドライバ異常対応システムおよびドライバ異常対応方法
JP2020529080A (ja) * 2017-07-28 2020-10-01 ニューロ・インコーポレーテッドNuro Incorporated ロボット車両のリモート操作のためのシステムおよび方法
JPWO2020202378A1 (ja) * 2019-03-29 2020-10-08
WO2020202380A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 制御装置、制御方法及びプログラム
JP2020164056A (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 制御装置、制御方法及びプログラム
JP2020204998A (ja) * 2019-06-19 2020-12-24 三菱電機株式会社 運転連携装置、運転連携方法、及び運転連携プログラム
JP6818118B1 (ja) * 2019-11-27 2021-01-20 株式会社日立製作所 演算装置、車載装置、自動運転システム
JP2021015567A (ja) * 2019-07-16 2021-02-12 トヨタ自動車株式会社 車両制御装置及び車両制御システム
JP2021017083A (ja) * 2019-07-17 2021-02-15 トヨタ自動車株式会社 車両制御装置及び車両制御システム
JP2021017214A (ja) * 2019-07-23 2021-02-15 トヨタ自動車株式会社 車両制御装置及び自動運転禁止システム
JP2021022240A (ja) * 2019-07-29 2021-02-18 トヨタ自動車株式会社 車両走行システム
JP2021026524A (ja) * 2019-08-06 2021-02-22 トヨタ自動車株式会社 車両走行システム
CN112486162A (zh) * 2019-09-12 2021-03-12 丰田自动车株式会社 车辆远程指示系统
JP2021043559A (ja) * 2019-09-06 2021-03-18 トヨタ自動車株式会社 車両及び遠隔操作システム
JP2021086638A (ja) * 2019-11-27 2021-06-03 株式会社日立製作所 演算装置、車載装置、自動運転システム
JPWO2021106185A1 (ja) * 2019-11-29 2021-06-03
JP2021527587A (ja) * 2019-01-16 2021-10-14 ベイジン バイドゥ ネットコム サイエンス アンド テクノロジー カンパニー リミテッド 車両制御方法および装置、電子機器、コンピュータ可読記憶媒体並びにコンピュータプログラム
WO2021210378A1 (ja) * 2020-04-14 2021-10-21 株式会社デンソー 遠隔支援装置及びプログラム
JP2022515419A (ja) * 2018-12-28 2022-02-18 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 自動車を少なくとも半自動的に誘導するための方法
JP2022144117A (ja) * 2021-03-18 2022-10-03 トヨタ自動車株式会社 自動運転装置、自動運転方法、及びプログラムセット
US20220356052A1 (en) * 2021-05-07 2022-11-10 Hyundai Motor Company System and method for remotely controlling vehicle
JP7485139B1 (ja) 2023-03-30 2024-05-16 トヨタ自動車株式会社 制御装置、遠隔操作装置、遠隔操作システム、および、遠隔操作方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046332B2 (en) * 2016-11-09 2021-06-29 Honda Motor Co., Ltd. Vehicle control device, vehicle control system, vehicle control method, and storage medium
JP6686869B2 (ja) * 2016-12-22 2020-04-22 株式会社デンソー 運転交代制御装置、及び運転交代制御方法
CN109229102A (zh) * 2017-07-04 2019-01-18 百度在线网络技术(北京)有限公司 无人驾驶车辆控制系统、方法和装置
US10684134B2 (en) * 2017-12-15 2020-06-16 Waymo Llc Using prediction models for scene difficulty in vehicle routing
US11726473B2 (en) * 2018-11-08 2023-08-15 Zoox, Inc. Autonomous vehicle guidance authority framework
US10843728B2 (en) * 2019-01-31 2020-11-24 StradVision, Inc. Method and device for delivering steering intention of autonomous driving module or driver to steering apparatus of subject vehicle more accurately
DE112019007132T5 (de) * 2019-03-29 2021-12-23 Honda Motor Co., Ltd. Entfernte Betriebsvorrichtung, entferntes Betriebsverfahren und Programm
JP7200862B2 (ja) * 2019-07-16 2023-01-10 トヨタ自動車株式会社 車両制御装置及び車両制御システム
JP7200864B2 (ja) * 2019-07-17 2023-01-10 トヨタ自動車株式会社 車両制御装置
JP7200867B2 (ja) * 2019-07-23 2023-01-10 トヨタ自動車株式会社 車両制御システム及び車両制御方法
JP7159991B2 (ja) * 2019-07-23 2022-10-25 トヨタ自動車株式会社 車両制御システム及び車両制御装置
JP7272164B2 (ja) * 2019-08-06 2023-05-12 トヨタ自動車株式会社 運転操作引継システム及び車両
JP7156208B2 (ja) * 2019-08-08 2022-10-19 トヨタ自動車株式会社 車両遠隔指示システム及び遠隔指示装置
JP7272172B2 (ja) * 2019-08-21 2023-05-12 トヨタ自動車株式会社 車両用操作システム
CN112758098B (zh) * 2019-11-01 2022-07-22 广州汽车集团股份有限公司 基于驾驶员状态等级的车辆驾驶权限接管控制方法及装置
CN111016924B (zh) * 2019-12-12 2022-07-12 长城汽车股份有限公司 自动驾驶车辆的远程驾驶控制方法、装置及远程驾驶系统
CN111061268A (zh) * 2019-12-12 2020-04-24 长城汽车股份有限公司 自动驾驶车辆的远程监管方法、装置及系统
CN111098863B (zh) * 2019-12-12 2022-03-29 长城汽车股份有限公司 自动驾驶车辆的远程驾驶请求方法、装置及用户终端
CN111016925B (zh) * 2019-12-12 2022-03-15 长城汽车股份有限公司 自动驾驶车辆的远程驾驶系统
JP6998363B2 (ja) * 2019-12-26 2022-01-18 本田技研工業株式会社 車両制御システム
US11513498B2 (en) 2020-08-03 2022-11-29 Caterpillar Paving Products Inc. Transitioning between manned control mode and unmanned control mode based on assigned priority
KR20220036424A (ko) * 2020-09-15 2022-03-23 현대자동차주식회사 전기 모터를 구비한 자동차 및 그를 위한 경고 출력 방법
WO2022164715A1 (en) * 2021-01-29 2022-08-04 Termson Management Llc Control mode selection and transitions
JP7425975B2 (ja) * 2021-04-23 2024-02-01 トヨタ自動車株式会社 遠隔機能選択装置
MX2022008716A (es) * 2021-07-20 2023-01-23 Polaris Inc Control de vehiculo automatico.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004295521A (ja) * 2003-03-27 2004-10-21 Fujitsu Ltd タクシー評価方法、タクシー評価プログラムおよびタクシー評価装置
JP2004295360A (ja) * 2003-03-26 2004-10-21 Denso Corp 車両遠隔運転装置および車両遠隔運転方法
JP2005011284A (ja) * 2003-06-23 2005-01-13 Nec Corp 輸送サービス評価システム及び方法並びに評価センタ端末
JP2014106854A (ja) * 2012-11-29 2014-06-09 Toyota Infotechnology Center Co Ltd 自動運転車両制御装置および方法
WO2016038931A1 (ja) * 2014-09-11 2016-03-17 本田技研工業株式会社 運転支援装置
JP2016074317A (ja) * 2014-10-07 2016-05-12 株式会社デンソー 車両の遠隔制御に用いられる命令判定装置および命令判定装置用のプログラム
JP2016095851A (ja) * 2014-11-13 2016-05-26 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 自律的な乗客用の乗り物のためのコンピューティング装置、コンピュータにより実施される方法及びシステム
JP2016132352A (ja) * 2015-01-19 2016-07-25 トヨタ自動車株式会社 自動運転車両システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006045383B3 (de) 2006-09-26 2007-12-13 Daimlerchrysler Ag Fahrzeug mit einer Ausstiegshilfe
EP1967931A3 (en) * 2007-03-06 2013-10-30 Yamaha Hatsudoki Kabushiki Kaisha Vehicle
JP4720781B2 (ja) 2007-05-07 2011-07-13 株式会社デンソー 車両制御装置のデータ書換システム
JP5124351B2 (ja) * 2008-06-04 2013-01-23 三洋電機株式会社 車両操作システム
CN101823435B (zh) 2009-03-03 2012-12-12 珠海市智汽电子科技有限公司 便于外置安装、便于手动/自动切换的车辆自动驾驶系统
US8430192B2 (en) * 2010-01-04 2013-04-30 Carla R. Gillett Robotic omniwheel vehicle
EP2550191B2 (fr) * 2010-03-26 2022-01-26 Siemens Mobility S.A.S. Méthode et système de gestion d'évènements particuliers liés au déplacement d'un véhicule guidé
US8532842B2 (en) 2010-11-18 2013-09-10 General Electric Company System and method for remotely controlling rail vehicles
CN102069763A (zh) 2010-12-28 2011-05-25 奇瑞汽车股份有限公司 一种车身控制器及其控制方法
CN102862568B (zh) 2012-08-31 2015-05-20 天津菲利科电子技术有限公司 远程实景代驾系统
US9342074B2 (en) * 2013-04-05 2016-05-17 Google Inc. Systems and methods for transitioning control of an autonomous vehicle to a driver
JP6042794B2 (ja) * 2013-12-03 2016-12-14 本田技研工業株式会社 車両制御方法
JP6221873B2 (ja) 2014-03-21 2017-11-01 アイシン・エィ・ダブリュ株式会社 自動運転支援装置、自動運転支援方法及びプログラム
JP6201916B2 (ja) 2014-07-04 2017-09-27 株式会社デンソー 車両の運転モード制御装置
JP2016151815A (ja) 2015-02-16 2016-08-22 株式会社デンソー 運転支援装置
EP4086721B1 (en) * 2015-03-11 2023-09-20 Kubota Corporation Work vehicle with a running control apparatus causing automatic running of the work vehicle, preferably an agricultural vehicle
JP6304086B2 (ja) * 2015-03-23 2018-04-04 トヨタ自動車株式会社 自動運転装置
DE102015015277A1 (de) * 2015-11-25 2017-06-01 Elektrobit Automotive Gmbh Technik zum automatisierten Anhalten eines Fahrzeugs in einem Zielbereich
US11046332B2 (en) * 2016-11-09 2021-06-29 Honda Motor Co., Ltd. Vehicle control device, vehicle control system, vehicle control method, and storage medium
US20190265710A1 (en) * 2016-11-11 2019-08-29 Honda Motor Co., Ltd. Vehicle control device, vehicle control system, vehicle control method, and vehicle control program
JP2019191893A (ja) * 2018-04-24 2019-10-31 本田技研工業株式会社 車両制御装置及びプログラム
JP7011973B2 (ja) 2018-05-02 2022-01-27 本田技研工業株式会社 車両制御装置及びプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004295360A (ja) * 2003-03-26 2004-10-21 Denso Corp 車両遠隔運転装置および車両遠隔運転方法
JP2004295521A (ja) * 2003-03-27 2004-10-21 Fujitsu Ltd タクシー評価方法、タクシー評価プログラムおよびタクシー評価装置
JP2005011284A (ja) * 2003-06-23 2005-01-13 Nec Corp 輸送サービス評価システム及び方法並びに評価センタ端末
JP2014106854A (ja) * 2012-11-29 2014-06-09 Toyota Infotechnology Center Co Ltd 自動運転車両制御装置および方法
WO2016038931A1 (ja) * 2014-09-11 2016-03-17 本田技研工業株式会社 運転支援装置
JP2016074317A (ja) * 2014-10-07 2016-05-12 株式会社デンソー 車両の遠隔制御に用いられる命令判定装置および命令判定装置用のプログラム
JP2016095851A (ja) * 2014-11-13 2016-05-26 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 自律的な乗客用の乗り物のためのコンピューティング装置、コンピュータにより実施される方法及びシステム
JP2016132352A (ja) * 2015-01-19 2016-07-25 トヨタ自動車株式会社 自動運転車両システム

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10845796B2 (en) 2017-03-28 2020-11-24 Toyota Research Institute, Inc. Electronic control units, vehicles, and methods for switching vehicle control from an autonomous driving mode
JP2018184160A (ja) * 2017-03-28 2018-11-22 トヨタ リサーチ インスティテュート,インコーポレイティド ビークル制御を自律運転モードから切り替えるための電子制御ユニット、ビークル、及び方法
JP2020529080A (ja) * 2017-07-28 2020-10-01 ニューロ・インコーポレーテッドNuro Incorporated ロボット車両のリモート操作のためのシステムおよび方法
JP7189931B2 (ja) 2017-07-28 2022-12-14 ニューロ・インコーポレーテッド ロボット車両のリモート操作のためのシステムおよび方法
WO2020031370A1 (ja) * 2018-08-10 2020-02-13 三菱電機株式会社 運転計画作成装置、遠隔運転サーバおよび運転計画作成方法
JPWO2020031370A1 (ja) * 2018-08-10 2020-12-17 三菱電機株式会社 運転計画作成装置、遠隔運転サーバおよび運転計画作成方法
JP2022515419A (ja) * 2018-12-28 2022-02-18 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 自動車を少なくとも半自動的に誘導するための方法
JP7155432B2 (ja) 2018-12-28 2022-10-18 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 自動車を少なくとも半自動的に誘導するための方法
JP7399892B2 (ja) 2019-01-16 2023-12-18 アポロ インテリジェント ドライビング テクノロジー(ペキン)カンパニー リミテッド 車両制御方法および装置、電子機器、コンピュータ可読記憶媒体並びにコンピュータプログラム
US11599122B2 (en) 2019-01-16 2023-03-07 Beijing Baidu Netcom Science And Technology Co., Ltd. Vehicle control method and device
JP2021527587A (ja) * 2019-01-16 2021-10-14 ベイジン バイドゥ ネットコム サイエンス アンド テクノロジー カンパニー リミテッド 車両制御方法および装置、電子機器、コンピュータ可読記憶媒体並びにコンピュータプログラム
JPWO2020152798A1 (ja) * 2019-01-23 2021-09-09 三菱電機株式会社 ドライバ異常対応装置、ドライバ異常対応システムおよびドライバ異常対応方法
WO2020152798A1 (ja) * 2019-01-23 2020-07-30 三菱電機株式会社 ドライバ異常対応装置、ドライバ異常対応システムおよびドライバ異常対応方法
JP7138732B2 (ja) 2019-01-23 2022-09-16 三菱電機株式会社 ドライバ異常対応装置、ドライバ異常対応システムおよびドライバ異常対応方法
CN111762168A (zh) * 2019-03-29 2020-10-13 本田技研工业株式会社 控制装置、控制方法以及存储介质
JP7369767B2 (ja) 2019-03-29 2023-10-26 本田技研工業株式会社 制御装置、制御方法及びプログラム
JP7297055B2 (ja) 2019-03-29 2023-06-23 本田技研工業株式会社 表示制御装置、表示制御方法及びプログラム
JP2020164056A (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 制御装置、制御方法及びプログラム
WO2020202380A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 制御装置、制御方法及びプログラム
JPWO2020202378A1 (ja) * 2019-03-29 2020-10-08
JP7154177B2 (ja) 2019-03-29 2022-10-17 本田技研工業株式会社 制御装置、制御方法及びプログラム
CN113574580A (zh) * 2019-03-29 2021-10-29 本田技研工业株式会社 控制装置、控制方法以及程序
JPWO2020202380A1 (ja) * 2019-03-29 2020-10-08
CN110228484A (zh) * 2019-06-17 2019-09-13 福州视驰科技有限公司 一种具有辅助驾驶功能的低时延智能远程驾驶系统
JP7221145B2 (ja) 2019-06-19 2023-02-13 三菱電機株式会社 運転連携装置、運転連携方法、及び運転連携プログラム
JP2020204998A (ja) * 2019-06-19 2020-12-24 三菱電機株式会社 運転連携装置、運転連携方法、及び運転連携プログラム
JP2021015567A (ja) * 2019-07-16 2021-02-12 トヨタ自動車株式会社 車両制御装置及び車両制御システム
JP7099412B2 (ja) 2019-07-16 2022-07-12 トヨタ自動車株式会社 車両制御装置及び車両制御システム
JP2021017083A (ja) * 2019-07-17 2021-02-15 トヨタ自動車株式会社 車両制御装置及び車両制御システム
JP7172892B2 (ja) 2019-07-17 2022-11-16 トヨタ自動車株式会社 車両制御装置及び車両制御システム
US11518411B2 (en) 2019-07-17 2022-12-06 Toyota Jidosha Kabushiki Kaisha Vehicle controller device and remote vehicle control system
JP7310403B2 (ja) 2019-07-23 2023-07-19 トヨタ自動車株式会社 車両制御装置及び自動運転禁止システム
US11584398B2 (en) 2019-07-23 2023-02-21 Toyota Jidosha Kabushiki Kaisha Vehicle control device, vehicle control method, and automatic driving prohibition system
JP2021017214A (ja) * 2019-07-23 2021-02-15 トヨタ自動車株式会社 車両制御装置及び自動運転禁止システム
JP7293949B2 (ja) 2019-07-29 2023-06-20 トヨタ自動車株式会社 車両走行システム
JP2021022240A (ja) * 2019-07-29 2021-02-18 トヨタ自動車株式会社 車両走行システム
JP2021026524A (ja) * 2019-08-06 2021-02-22 トヨタ自動車株式会社 車両走行システム
JP7310424B2 (ja) 2019-08-06 2023-07-19 トヨタ自動車株式会社 車両走行システム
JP2021043559A (ja) * 2019-09-06 2021-03-18 トヨタ自動車株式会社 車両及び遠隔操作システム
JP7221834B2 (ja) 2019-09-06 2023-02-14 トヨタ自動車株式会社 車両及び遠隔操作システム
JP7234872B2 (ja) 2019-09-12 2023-03-08 トヨタ自動車株式会社 車両遠隔指示システム
JP2021043788A (ja) * 2019-09-12 2021-03-18 トヨタ自動車株式会社 車両遠隔指示システム
CN112486162A (zh) * 2019-09-12 2021-03-12 丰田自动车株式会社 车辆远程指示系统
JP2021086638A (ja) * 2019-11-27 2021-06-03 株式会社日立製作所 演算装置、車載装置、自動運転システム
WO2021106295A1 (ja) * 2019-11-27 2021-06-03 株式会社日立製作所 演算装置、車載装置、自動運転システム
JP2021084527A (ja) * 2019-11-27 2021-06-03 株式会社日立製作所 演算装置、車載装置、自動運転システム
JP6818118B1 (ja) * 2019-11-27 2021-01-20 株式会社日立製作所 演算装置、車載装置、自動運転システム
JPWO2021106185A1 (ja) * 2019-11-29 2021-06-03
JP7146118B2 (ja) 2019-11-29 2022-10-03 三菱電機株式会社 車両制御装置及び車両制御方法
WO2021106185A1 (ja) * 2019-11-29 2021-06-03 三菱電機株式会社 車両制御装置及び車両制御方法
JP2021170191A (ja) * 2020-04-14 2021-10-28 株式会社デンソー 遠隔支援装置及びプログラム
WO2021210378A1 (ja) * 2020-04-14 2021-10-21 株式会社デンソー 遠隔支援装置及びプログラム
JP2022144117A (ja) * 2021-03-18 2022-10-03 トヨタ自動車株式会社 自動運転装置、自動運転方法、及びプログラムセット
JP7347465B2 (ja) 2021-03-18 2023-09-20 トヨタ自動車株式会社 自動運転装置、自動運転方法、及びプログラムセット
US20220356052A1 (en) * 2021-05-07 2022-11-10 Hyundai Motor Company System and method for remotely controlling vehicle
JP7485139B1 (ja) 2023-03-30 2024-05-16 トヨタ自動車株式会社 制御装置、遠隔操作装置、遠隔操作システム、および、遠隔操作方法

Also Published As

Publication number Publication date
US11046332B2 (en) 2021-06-29
CN109891472B (zh) 2021-11-26
JPWO2018087828A1 (ja) 2019-09-26
US20200047773A1 (en) 2020-02-13
JP6663506B2 (ja) 2020-03-11
CN109891472A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
JP6663506B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6650386B2 (ja) 遠隔運転制御装置、車両制御システム、遠隔運転制御方法、および遠隔運転制御プログラム
WO2018087880A1 (ja) 車両制御装置、車両制御システム、車両制御方法、および車両制御プログラム
US11407407B2 (en) Vehicle control device, vehicle control method, and storage medium
JP6646168B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6528336B2 (ja) 車両制御システムおよび車両制御方法
US10829129B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6496944B2 (ja) 車両用シート装置
JP6428746B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018138769A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
WO2019163121A1 (ja) 車両制御システム、車両制御方法、およびプログラム
CN109890679B (zh) 车辆控制系统、车辆控制方法及存储介质
WO2018100619A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2018062237A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JPWO2017158772A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018122973A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
US20200283022A1 (en) Vehicle control system, vehicle control method, and storage medium
JP2018091711A (ja) 車両制御システム、サーバ装置、車両制御方法、および車両制御プログラム
JP6532170B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP7159137B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7096183B2 (ja) 車両制御システム、車両制御方法、およびプログラム
JPWO2018138765A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JPWO2018179359A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2018124855A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2019156266A (ja) 車両制御装置、車両制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018549672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921331

Country of ref document: EP

Kind code of ref document: A1