WO2019163121A1 - 車両制御システム、車両制御方法、およびプログラム - Google Patents

車両制御システム、車両制御方法、およびプログラム Download PDF

Info

Publication number
WO2019163121A1
WO2019163121A1 PCT/JP2018/006918 JP2018006918W WO2019163121A1 WO 2019163121 A1 WO2019163121 A1 WO 2019163121A1 JP 2018006918 W JP2018006918 W JP 2018006918W WO 2019163121 A1 WO2019163121 A1 WO 2019163121A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
host vehicle
unit
control unit
Prior art date
Application number
PCT/JP2018/006918
Other languages
English (en)
French (fr)
Inventor
忠彦 加納
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2020501976A priority Critical patent/JP6972294B2/ja
Priority to CN201880089956.XA priority patent/CN111771234B/zh
Priority to US16/970,983 priority patent/US11396297B2/en
Priority to PCT/JP2018/006918 priority patent/WO2019163121A1/ja
Publication of WO2019163121A1 publication Critical patent/WO2019163121A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0059Estimation of the risk associated with autonomous or manual driving, e.g. situation too complex, sensor failure or driver incapacity
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/007Switching between manual and automatic parameter input, and vice versa
    • B60W2050/0073Driver overrides controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/223Posture, e.g. hand, foot, or seat position, turned or inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00

Definitions

  • the present invention relates to a vehicle control system, a vehicle control method, and a program.
  • a technique for determining whether or not a lane change is possible based on a relative speed or a relative distance with another vehicle existing in the lane to which the lane is changed when the host vehicle changes the lane is known (for example, a patent Reference 1).
  • the detection range of a sensor for detecting an object such as another vehicle is limited, even if it is determined that there is no other vehicle in the lane to which the lane is changed and that the lane can be changed.
  • the speed of the other vehicle existing outside the detection range of the sensor in the lane to which the lane is changed is high and the speed of the host vehicle is low, a situation where the lane should not be changed may occur.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a vehicle control system, a vehicle control method, and a program capable of changing lanes in accordance with the traveling state of the lane change destination. One of them.
  • a recognition unit for recognizing the surrounding situation of the own vehicle, and whether or not the own vehicle satisfies a condition for changing the lane from the own lane to the adjacent lane based on the surrounding situation recognized by the recognition unit
  • a determination unit that determines whether or not the condition is satisfied by the determination unit, and controls the acceleration / deceleration and steering of the host vehicle to move the host vehicle from the host lane to the adjacent lane.
  • a vehicle control system that suppresses the lane change control when the speed of the host vehicle is equal to or lower than a predetermined speed.
  • the vehicle control system according to (1) further includes a suppression control unit that suppresses the travel control unit from performing the lane change control when the speed of the host vehicle is equal to or lower than a predetermined speed. Is.
  • the vehicle control system causes the determination unit to suppress determination processing for determining whether or not the condition is satisfied when the speed of the host vehicle is equal to or lower than a predetermined speed. Further, a suppression control unit that suppresses the lane change control is further provided.
  • the suppression control unit derives a reference speed serving as a reference for the adjacent lane based on a surrounding situation recognized by the recognition unit.
  • the difference between the derived reference speed and the speed of the host vehicle is equal to or less than a threshold value, the lane change control by the travel control unit is not suppressed.
  • the vehicle control system is operated by an occupant of the own vehicle and adjusts a traveling direction of the own vehicle; and the occupant A detection unit that detects that the operation unit has been operated, and when the suppression control unit detects that the operation unit has been operated by the detection unit, the lane by the travel control unit When the change control is not suppressed and the detection unit does not detect that the operation unit is operated, the lane change control by the travel control unit is suppressed.
  • the vehicle control system according to any one of (2) to (5) further includes an operation unit operated by an occupant of the host vehicle, and the suppression control unit
  • the control mode is the first mode in which the occupant is requested to operate the operation unit
  • the lane change control by the travel control unit is not suppressed
  • the control mode of the host vehicle is the operation to the occupant.
  • the lane change control by the travel controller is suppressed.
  • the vehicle control system further includes an operation unit operated by an occupant of the host vehicle, wherein the suppression control unit
  • the determination unit determines that the condition is satisfied and the speed of the host vehicle is equal to or lower than a predetermined speed.
  • the lane change control by the travel control unit is suppressed until the control mode of the vehicle changes from the second mode to the first mode that requires the occupant to operate the operation unit, and the control mode of the host vehicle is the first mode.
  • the lane change control is performed by the travel control unit without suppressing the lane change control.
  • the vehicle control system includes a detection unit that detects that the operation unit is operated by the occupant, a recognition result by the recognition unit, and a detection result by the detection unit. And a switching control unit that switches the control mode of the host vehicle between the first mode and the second mode based on at least one of the above.
  • the recognition unit may determine that the determination unit includes another vehicle in front of the host vehicle in the host lane. In the own lane, it is determined whether or not the condition is satisfied in a situation where the other vehicle is present in front of the own vehicle, and the suppression control unit determines whether or not the own vehicle is in the own lane. When the determination unit determines that the condition is satisfied in a situation where the other vehicle exists ahead, the lane change control by the travel control unit is suppressed when the speed of the host vehicle is equal to or lower than a predetermined speed. Is.
  • the in-vehicle computer recognizes the surrounding situation of the own vehicle, and determines whether or not the own vehicle satisfies a condition for changing the lane from the own lane to the adjacent lane based on the recognized surrounding situation. When it is determined that the condition is satisfied, lane change control is performed to control the acceleration / deceleration and steering of the host vehicle to change the host vehicle from the host lane to the adjacent lane, and the host vehicle The vehicle control method which suppresses the said lane change control when the speed of the vehicle is below a predetermined speed.
  • the in-vehicle computer is made to recognize the surrounding situation of the own vehicle, and whether or not the own vehicle satisfies a condition for changing the lane from the own lane to the adjacent lane based on the recognized surrounding situation. If the vehicle is determined to satisfy the condition, acceleration / deceleration and steering of the host vehicle are controlled to perform lane change control for changing the host vehicle from the host lane to the adjacent lane, The program which suppresses the said lane change control when the speed of the said own vehicle is below a predetermined speed.
  • FIG. 2 is a functional configuration diagram of an automatic operation control unit 100.
  • FIG. It is a figure which shows a mode that the relative position and attitude
  • FIG. 1 is a configuration diagram of a vehicle system 1 using the vehicle control system of the first embodiment.
  • a vehicle hereinafter referred to as a host vehicle M
  • a host vehicle M on which the vehicle system 1 is mounted is, for example, a vehicle such as a two-wheel, three-wheel, or four-wheel vehicle, and a drive source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, Or a combination of these.
  • the electric motor operates using electric power generated by the electric generator connected to the internal combustion engine or electric discharge power of the secondary battery or the fuel cell.
  • the vehicle system 1 includes, for example, a camera 10, a radar device 12, a finder 14, an object recognition device 16, a communication device 20, an HMI (Human20Machine Interface) 30, a vehicle sensor 40, a navigation device 50, MPU (Map Positioning Unit) 60, vehicle interior camera 70, winker (direction indicator) 80, driving operator 90, automatic driving control unit 100, traveling driving force output device 200, brake device 210, And a steering device 220.
  • These devices and devices are connected to each other by a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like.
  • CAN Controller Area Network
  • serial communication line a wireless communication network
  • the camera 10 is a digital camera using a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • One or a plurality of cameras 10 are attached to arbitrary locations of the host vehicle M.
  • the camera 10 is attached to the upper part of the front windshield, the rear surface of the rearview mirror, or the like.
  • the camera 10 periodically and repeatedly images the periphery of the host vehicle M.
  • the camera 10 may be a stereo camera.
  • the radar device 12 radiates a radio wave such as a millimeter wave around the host vehicle M and detects a radio wave (reflected wave) reflected by the object to detect at least the position (distance and direction) of the object.
  • a radio wave such as a millimeter wave around the host vehicle M
  • a radio wave reflected wave
  • One or a plurality of radar devices 12 are attached to arbitrary locations of the host vehicle M.
  • the radar apparatus 12 may detect the position and velocity of the object by FM-CW (Frequency Modulated Continuous Wave) method.
  • FM-CW Frequency Modulated Continuous Wave
  • the finder 14 is LIDAR (Light Detection and Ranging).
  • the finder 14 irradiates light around the host vehicle M and measures scattered light.
  • the finder 14 detects the distance to the object based on the time from light emission to light reception.
  • the irradiated light is, for example, pulsed laser light.
  • One or a plurality of the finders 14 are attached to arbitrary locations of the host vehicle M.
  • the object recognition device 16 performs sensor fusion processing on the detection results of some or all of the camera 10, the radar device 12, and the finder 14, and recognizes the position, type, speed, movement direction, and the like of the object.
  • the recognized object is, for example, a vehicle, a guardrail, a power pole, a pedestrian, or a road sign.
  • the object recognition device 16 outputs the recognition result to the automatic driving control unit 100. Further, the object recognition device 16 may output the detection result of the camera 10, the radar device 12, or the finder 14 to the automatic driving control unit 100 as it is.
  • the communication device 20 uses, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like to communicate with other vehicles around the host vehicle M or wirelessly. It communicates with various server apparatuses via a base station.
  • a cellular network for example, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like to communicate with other vehicles around the host vehicle M or wirelessly. It communicates with various server apparatuses via a base station.
  • the HMI 30 presents various information to the passenger of the host vehicle M and accepts an input operation by the passenger.
  • the HMI 30 includes, for example, various display devices such as an LCD (Liquid Crystal Display) and an organic EL (Electroluminescence) display, various buttons such as a lane change start switch 30a, a speaker, a buzzer, a touch panel, and the like.
  • Each device of the HMI 30 is attached to any part of the instrument panel, the passenger seat, or the rear seat, for example.
  • the lane change start switch 30a is a switch for starting control for changing the lane of the host vehicle M (hereinafter, referred to as lane change) without the occupant operating the steering wheel 90a. Further, a winker lever 90d described later may also function as a switch for starting the vehicle line change.
  • Vehicle sensor 40 includes a vehicle speed sensor for detecting the speed V M of the vehicle M, the acceleration sensor for detecting acceleration, a yaw rate sensor for detecting the vertical axis of the angular velocity, an azimuth sensor for detecting the orientation of the vehicle M. Each sensor included in the vehicle sensor 40 outputs a detection signal indicating a detection result to the automatic driving control unit 100.
  • the navigation device 50 includes, for example, a GNSS (Global Navigation Satellite System) receiver 51, a navigation HMI 52, and a route determination unit 53.
  • the first map information 54 is stored in a storage device such as an HDD (Hard Disk Drive) or a flash memory. Holding.
  • the GNSS receiver 51 specifies the position of the host vehicle M based on the signal received from the GNSS satellite. The position of the host vehicle M may be specified or supplemented by INS (Inertial Navigation System) using the output of the vehicle sensor 40.
  • the navigation HMI 52 includes a display device, a speaker, a touch panel, keys, and the like. The navigation HMI 52 may be partly or wholly shared with the HMI 30 described above.
  • the route determination unit 53 for example, from the position of the host vehicle M specified by the GNSS receiver 51 (or any input position) to the destination input from the occupant using the navigation HMI 52 (hereinafter, The route on the map is determined with reference to the first map information 54.
  • the first map information 54 is information in which a road shape is expressed by, for example, a link indicating a road and nodes connected by the link.
  • the first map information 54 may include road curvature, POI (Point Of Interest) information, and the like.
  • the on-map route determined by the route determination unit 53 is output to the MPU 60. Further, the navigation device 50 may perform route guidance using the navigation HMI 52 based on the on-map route determined by the route determination unit 53.
  • the navigation apparatus 50 may be implement
  • the MPU 60 functions as, for example, the recommended lane determining unit 61 and holds the second map information 62 in a storage device such as an HDD or a flash memory.
  • the recommended lane determining unit 61 divides the route provided from the navigation device 50 into a plurality of blocks (for example, every 100 [m] with respect to the vehicle traveling direction), and refers to the second map information 62 for each block. Determine the recommended lane.
  • the recommended lane determining unit 61 performs determination such as what number of lanes from the left to travel.
  • the recommended lane determining unit 61 determines a recommended lane so that the host vehicle M can travel on a reasonable route for proceeding to the branch destination when there is a branch point or a merge point in the route.
  • the second map information 62 is map information with higher accuracy than the first map information 54.
  • the second map information 62 includes, for example, information on the center of the lane or information on the boundary of the lane.
  • the second map information 62 may include road information, traffic regulation information, address information (address / postal code), facility information, telephone number information, and the like.
  • the second map information 62 may be updated at any time by accessing another device using the communication device 20.
  • the in-vehicle camera 70 captures an image centered on the face of an occupant (especially an occupant seated in the driver's seat) seated on a seat installed in the vehicle interior.
  • the vehicle interior camera 70 is a digital camera using a solid-state image sensor such as a CCD or CMOS.
  • the vehicle interior camera 70 periodically images the occupant.
  • the captured image generated by the vehicle interior camera 70 is output to the automatic driving control unit 100.
  • the driving operation element 90 includes, for example, a steering wheel 90a, a plurality of operation amount detection sensors 90b, a contact detection sensor 90c, a winker lever (direction indicating switch) 90d for operating the winker 80, a lever operation detection sensor 90e, an accelerator pedal, a brake Includes various controls such as pedals and shift levers.
  • the steering wheel 90a is an example of an “operation unit”.
  • an operation amount detection sensor 90b that detects an operation amount of an operation by a passenger is attached to each operation member of the driving operation member 90.
  • the operation amount detection sensor 90b attached to the steering wheel 90a detects the steering angle or steering torque of the steering wheel
  • the operation amount detection sensor 90b attached to the accelerator pedal or the brake pedal detects the depression amount of each pedal. Is detected.
  • Each operation amount detection sensor 90b outputs a detection signal indicating a detection result to one or both of the automatic driving control unit 100, the traveling driving force output device 200, the brake device 210, and the steering device 220.
  • the operation amount detection sensor 90b is an example of a “detection unit”.
  • a contact detection sensor 90c is attached to the steering wheel 90a.
  • the contact detection sensor 90c is, for example, a capacitance sensor provided along the circumferential direction of the steering wheel 90a.
  • the contact detection sensor 90c detects that an object has approached or contacted the steering wheel 90a as a change in capacitance.
  • the contact detection sensor 90c outputs a predetermined detection signal to the automatic operation control unit 100 when the detected capacitance is greater than or equal to the threshold value.
  • the threshold value is set to a value lower than the capacitance generated when the occupant is holding the steering wheel 90a.
  • the contact detection sensor 90c may output a detection signal indicating the capacitance to the automatic operation control unit 100 regardless of whether or not the capacitance is equal to or greater than a threshold value.
  • the contact detection sensor 90c is another example of the “detection unit”.
  • the lever operation detection sensor 90e detects that the blinker lever 90d has been operated, and outputs a detection signal indicating the detection result to the automatic operation control unit 100.
  • the automatic operation control unit 100 includes, for example, a first control unit 120, a second control unit 160, and a third control unit 180.
  • Each component of the 1st control part 120, the 2nd control part 160, and the 3rd control part 180 is realized when processors, such as CPU (Central * Processing * Unit), run a program (software), for example.
  • processors such as CPU (Central * Processing * Unit)
  • Some or all of these components include hardware (circuitry) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). Part (including circuit)), or may be realized by cooperation of software and hardware. Details of the automatic operation control unit 100 will be described later.
  • the driving force output device 200 outputs a driving force (torque) for driving the vehicle to driving wheels.
  • the travel driving force output device 200 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, and the like, and a power ECU (Electronic Control Unit) that controls these.
  • the power ECU controls the above-described configuration according to information input from the second control unit 160 or information input from the driving operator 90.
  • the brake device 210 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU.
  • the brake ECU controls the electric motor according to the information input from the second control unit 160 or the information input from the driving operation element 90 so that the brake torque corresponding to the braking operation is output to each wheel.
  • the brake device 210 may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal included in the driving operator 90 to the cylinder via the master cylinder.
  • the brake device 210 is not limited to the configuration described above, and is an electronically controlled hydraulic brake device that controls the actuator according to information input from the second control unit 160 and transmits the hydraulic pressure of the master cylinder to the cylinder. Also good.
  • the steering device 220 includes, for example, a steering ECU and an electric motor.
  • the electric motor changes the direction of the steered wheels by applying a force to a rack and pinion mechanism.
  • the steering ECU drives the electric motor according to the information input from the second control unit 160 or the information input from the driving operator 90, and changes the direction of the steered wheels.
  • FIG. 2 is a functional configuration diagram of the automatic operation control unit 100.
  • the first control unit 120 includes, for example, a recognition unit 130 and an action plan generation unit 140.
  • the action plan generation unit 140 is an example of a “determination unit”.
  • the first control unit 120 realizes, for example, a function based on AI (Artificial Intelligence) and a function based on a model (a learning device such as a neural network) given in advance.
  • AI Artificial Intelligence
  • a model a learning device such as a neural network
  • the “recognize intersection” function executes recognition of an intersection by deep learning or the like and recognition based on a predetermined condition (such as a signal that can be matched with a pattern and road marking) in parallel. It is realized by scoring and comprehensively evaluating. This ensures the reliability of automatic driving.
  • the recognition unit 130 determines the positions of objects around the host vehicle M and the state such as speed and acceleration. recognize.
  • the position of the object is recognized as a position on an absolute coordinate with the representative point (the center of gravity, the center of the drive shaft, etc.) of the vehicle M as the origin.
  • the position of the object may be represented by a representative point such as the center of gravity or corner of the object, or may be represented by a represented area.
  • the “state” of the object may include acceleration or jerk of the object, or “behavioral state” (for example, whether or not the lane is changed or is about to be changed).
  • the recognition unit 130 recognizes the shape of the curve through which the host vehicle M will pass based on the captured image of the camera 10.
  • the recognizing unit 130 converts the shape of the curve from the captured image of the camera 10 to a real plane, and, for example, information representing the shape of the curve by using two-dimensional point sequence information or information equivalent to the model. To the action plan generation unit 140.
  • the recognition unit 130 recognizes, for example, the lane (traveling lane) in which the host vehicle M is traveling, and the relative position and posture of the host vehicle M with respect to the traveling lane. For example, the recognizing unit 130 recognizes a lane marking LM on the road from an image captured by the camera 10, and selects a lane partitioned by the two lane markings LM closest to the host vehicle M among the recognized lane markings LM. Recognize as a driving lane. And the recognition part 130 recognizes the position and attitude
  • FIG. 3 is a diagram illustrating a state where the recognition unit 130 recognizes the relative position and posture of the host vehicle M with respect to the traveling lane.
  • the recognition unit 130 recognizes the lane markings LM1 to LM3, and recognizes the region between the lane markings LM1 and LM2 closest to the host vehicle M as the traveling lane L1 of the host vehicle M. Then, the recognizing unit 130 sets an angle ⁇ formed with respect to a line connecting the lane center CL of the reference point (for example, the center of gravity) of the host vehicle M and the center lane CL of the traveling direction of the host vehicle M.
  • the vehicle is recognized as the relative position and posture of the host vehicle M with respect to the travel lane L1.
  • the recognition unit 130 may recognize the position of the reference point of the host vehicle M with respect to any side end of the host lane L1 as the relative position of the host vehicle M with respect to the traveling lane.
  • the recognition unit 130 may recognize an adjacent lane adjacent to the own lane, for example. For example, the recognizing unit 130 recognizes an area between the lane line closest to the host vehicle M next to the lane line that divides the own lane and the lane line of the own lane as an adjacent lane. In the example of FIG. 2, for example, the recognition unit 130 recognizes the area between the lane marking LM2 of the own lane and the lane marking LM3 next to the lane M2 next to the own vehicle M as the right adjacent lane L2.
  • the recognition unit 130 may recognize a travel lane by recognizing not only a road lane line but also a road lane line (road boundary) including a road lane line, a road shoulder, a curb, a median strip, a guardrail, and the like. . In this recognition, the position of the host vehicle M acquired from the navigation device 50 and the processing result by INS may be taken into account. The recognizing unit 130 may recognize a temporary stop line, an obstacle, a red light, a toll gate, and other road events.
  • the action plan generation unit 140 travels in the recommended lane determined by the recommended lane determination unit 61 in principle, and sequentially starts on the route in which the recommended lane is determined so that it can cope with the surrounding situation of the host vehicle M.
  • Events include, for example, a lane change event that changes the own vehicle M from its own lane to an adjacent lane, a merging event that joins the own vehicle M to the main line at a junction, A branch event for branching into a lane, a constant speed travel event for traveling in the same lane at a constant speed, another vehicle existing within a predetermined distance (for example, about 100 [m]) ahead of the host vehicle M (hereinafter referred to as a preceding vehicle).
  • “Follow-up” is, for example, a travel mode in which the relative distance (inter-vehicle distance) between the host vehicle M and the preceding vehicle is maintained constant.
  • an overtaking event in which the host vehicle M is once changed to an adjacent lane and the preceding vehicle is overtaken in the adjacent lane and then changed to the original lane again is avoided.
  • Braking and / or steering avoidance events curve driving events that drive curves, passing events that pass through predetermined points such as intersections, pedestrian crossings, and railroad crossings, automatic stop events, and automatic driving to end manual driving A takeover event for switching may be included.
  • the action plan generation unit 140 changes an already determined event to another event or changes a new event according to the surrounding situation recognized by the recognition unit 130 when the host vehicle M is traveling. Or plan. For example, when the own vehicle M is traveling in a section where a constant speed traveling event is planned, the action plan generating unit 140 is when the inter-vehicle distance between the preceding vehicle and the own vehicle M is less than a predetermined distance. If the adjacent lane is recognized by the recognition unit 130, the constant speed event may be changed to an overtaking event.
  • the action plan generation unit 140 detects that the winker lever 90d is operated by the lever operation detection sensor 90e, or if the lane change start switch 30a is operated, The event planned next to the activated event may be changed to a lane change event.
  • the action plan generation unit 140 generates a target track on which the host vehicle M will travel in the future in accordance with each event.
  • the target trajectory includes, for example, a velocity element.
  • the target track is expressed as a sequence of points (track points) that the host vehicle M should reach.
  • the track point is a point where the host vehicle M should reach every predetermined travel distance (for example, about several [m]) as a road distance.
  • the track point is a predetermined sampling time (for example, about 0 comma [sec]). ) Is generated as part of the target trajectory.
  • the track point may be a position to which the host vehicle M should arrive at the sampling time for each predetermined sampling time. In this case, information on the target speed and target acceleration is expressed by the interval between the trajectory points.
  • Various events are activated to generate a target track for changing the lane of the host vehicle M.
  • the action plan generation unit 140 sets a target position (hereinafter referred to as a lane change target position TA) that is a lane change destination in an adjacent lane, and another vehicle exists as an obstacle at the lane change target position TA. It is determined whether or not.
  • a target position hereinafter referred to as a lane change target position TA
  • FIG. 4 is a diagram schematically showing how the lane change target position TA is set in the adjacent lane.
  • L1 represents the own lane
  • L2 represents the right adjacent lane.
  • An arrow d represents the traveling (traveling) direction of the host vehicle M.
  • the action plan generation unit 140 is an adjacent lane adjacent to the own lane L1 on which the host vehicle M is traveling, and is selected from any one of two or more other vehicles traveling on the adjacent lane L2 to which the lane is changed. Two other vehicles (for example, two vehicles relatively close to the host vehicle M) are selected, and a lane change target position TA is set between the two selected other vehicles.
  • the lane change target position TA is set at the center of the adjacent lane.
  • the lane change target position TA is a relative position based on the positional relationship between the host vehicle M, the front reference vehicle mB, and the rear reference vehicle mC.
  • the action plan generation unit 140 After setting the lane change target position TA, the action plan generation unit 140 sets the prohibited area RA as shown in the figure based on the set position of the lane change target position TA. For example, the action plan generation unit 140 projects the host vehicle M onto the adjacent lane L2 to which the lane is changed, and sets a region having a slight margin before and after the projected host vehicle M as the prohibited region RA.
  • the prohibited area RA is set as an area extending from one lane line LM that divides the adjacent lane L2 to the other lane line LM.
  • generation part 140 does not have a part of other vehicles in the set prohibition area
  • TTC Time-To-Collision
  • B collision margin time
  • TTC (Time-To-Collision) (B) of the own vehicle M and the front reference vehicle mB is.
  • Th C
  • the other vehicle is obstructed at the lane change target position TA. Is determined not to exist.
  • “No other vehicles exist in the prohibited area RA” means, for example, that the prohibited area RA and the area indicating the other vehicle do not overlap each other when viewed from above.
  • the collision margin time TTC (B) is, for example, the distance between an extension line FM obtained by virtually extending the front end of the host vehicle M toward the adjacent lane L2 and the front reference vehicle mB. It is derived by dividing by the relative speed of the reference vehicle mB. Further, the collision margin time TTC (C) is, for example, the distance between the extension line RM obtained by virtually extending the rear end of the own vehicle M toward the adjacent lane L2 and the rear reference vehicle mC, and the own vehicle M and It is derived by dividing by the relative speed of the rear reference vehicle mC.
  • the threshold value Th (B) and the threshold value Th (C) may be the same value or different values.
  • the action plan generation unit 140 selects the other two vehicles from the other vehicles existing in the right adjacent lane L2, By newly setting the lane change target position TA, it is repeatedly performed whether or not another vehicle is present at the lane change target position TA. At this time, the automatic driving control unit 100 may generate a target track that causes the host vehicle M to stand by in its own lane until a lane change target position TA in which no other vehicle exists is set.
  • the action plan generation unit 140 determines a target speed to be included as a speed element in the target track to a speed at which the current speed of the own vehicle M is maintained,
  • the speed may be determined such that the inter-vehicle distance with the vehicle mA is constant, or the speed may be determined so that the host vehicle M moves to the side of the lane change target position TA.
  • the action plan generation unit 140 determines that no other vehicle exists as an obstacle.
  • the action plan generation unit 140 sets the lane change target position TA at an arbitrary position in front of or behind the other vehicle. It's okay.
  • the action plan generation unit 140 generates a target track for lane change when it is determined that no other vehicle exists as an obstacle at the lane change target position TA.
  • FIG. 5 is a diagram illustrating an example of a scene for generating a target trajectory.
  • the action plan generation unit 140 assumes that the preceding vehicle mA, the front reference vehicle mB, and the rear reference vehicle mC travel with a predetermined speed model, and the speed models of these three vehicles based on the velocity V M of the vehicle M, without interfering the own vehicle M as the previous run vehicle mA, the trajectory so as to be positioned between the front reference vehicle mB and rear reference vehicle mC at a certain time in the future Generate.
  • the action plan generation unit 140 generates a spline curve from the current position of the host vehicle M to the position of the forward reference vehicle mB at a certain time in the future, the center of the lane to which the lane is changed, and the end point of the lane change. Are smoothly connected to each other, and a predetermined number of orbit points K are arranged on the curve at equal or unequal intervals.
  • the action plan generation unit 140 generates a track so that at least one of the track points K is arranged in the lane change target position TA. As a result, a target track that changes the lane from the own lane to the adjacent lane is generated.
  • the action plan generation unit 140 further includes a lane line that divides the lane to which the lane is changed and the own lane. It is not a road marking (for example, a yellow solid line) indicating prohibition of lane change (prohibition of protrusion), that the lane to which the lane is changed is recognized (exist), and the yaw rate detected by the vehicle sensor 40 is a threshold value. less than, if it is to be output to the lane change is less than the speed V M is an upper limit speed of the vehicle M envisioned (e.g. 135 about [km / h]), such as various conditions are satisfied, the target A trajectory may be generated.
  • a road marking for example, a yellow solid line
  • the second control unit 160 controls the driving force output device 200, the brake device 210, and the steering device 220 so that the host vehicle M passes the target track generated by the action plan generation unit 140 at a scheduled time. Control.
  • the second control unit 160 is an example of a “travel control unit”.
  • the second control unit 160 includes, for example, a second control unit side acquisition unit 162, a speed control unit 164, and a steering control unit 166.
  • the second control unit side acquisition unit 162 acquires information on the target trajectory (orbit point) generated by the action plan generation unit 140 and stores it in a memory (not shown).
  • the speed control unit 164 controls the traveling driving force output device 200 or the brake device 210 based on the target speed included as a speed element in the target track stored in the memory.
  • the steering control unit 166 controls the steering device 220 according to the degree of curvature (curvature) of the target trajectory stored in the memory.
  • the processing of the speed control unit 164 and the steering control unit 166 is realized by, for example, a combination of feedforward control and feedback control.
  • the steering control unit 166 executes a combination of feed-forward control corresponding to the curvature of the road ahead of the host vehicle M and feedback control based on deviation from the target track.
  • the speed control unit 164 and the steering control unit 166 include the travel driving force output device 200, the brake The apparatus 210 and the steering apparatus 220 are controlled, and the vehicle lane change which changes the lane of the own vehicle M is implemented.
  • the second control unit 160 may operate the winker 80 when the vehicle line is changed. “Activation” includes, for example, turning on the blinker 80 that is not lit, turning off the blinker 80 that is lit, and blinking the blinker 80.
  • the third control unit 180 when a predetermined event is launched from a plurality of event planned by the action plan generating unit 140, in accordance with the speed V M of the vehicle M, the second control unit based on a predetermined event The traveling control of the host vehicle M is suppressed.
  • the predetermined event is an event accompanied by a lane change such as the lane change event described above, a merge event, a branch event, or an overtaking event.
  • the third control unit 180 includes, for example, a third control unit side acquisition unit 182, a switching control unit 184, an HMI control unit 186, an occupant state determination unit 188, and a suppression control unit 190.
  • the third control unit side acquisition unit 182 receives event activation information indicating that a predetermined event is activated when the predetermined event is activated by the behavior plan generation unit 140 and a target trajectory is generated, and the behavior plan generation unit 140 Get from.
  • the switching control unit 184 includes detection results of the camera 10, the radar device 12, the finder 14, the object recognition device 16, the vehicle sensor 40, the operation amount detection sensor 90b, the contact detection sensor 90c, and the like, and determination by an occupant state determination unit 188 described later. Based on the result, the control mode of the host vehicle M is controlled.
  • the control mode of the host vehicle M includes, for example, a manual operation mode, a first automatic operation mode, a second automatic operation mode, and the like.
  • the first automatic operation mode is an example of “first mode”
  • the second automatic operation mode is an example of “second mode”.
  • the manual driving mode is a mode in which the traveling driving force output device 200, the brake device 210, and the steering device 220 are controlled according to the operation amount of the driving operator 90 when operated by a passenger of the host vehicle M.
  • the second control unit 160 causes the traveling driving force output device 200, the brake In this mode, the device 210 and the steering device 220 are controlled.
  • the first automatic driving mode is executed in a section where the degree of difficulty of automatic driving is higher than that of a simple straight road, such as a curved road with a difference in elevation, such as a rampway on an expressway, near a toll booth, or an intersection.
  • the first automatic operation mode is an example of a “first mode”.
  • the second automatic driving mode is a mode in which tasks required for the occupant are lower than those in the first automatic driving mode, and the occupant of the host vehicle M does not hold the steering wheel 90a (hereinafter referred to as a hands-off state).
  • the traveling control output device 200, the brake device 210, and the steering device 220 are controlled by the second controller 160.
  • the second automatic driving mode is executed, for example, in a section where the degree of difficulty of automatic driving is lower than that in the first automatic driving mode and the road shape is a straight line (for example, a main line of an expressway). Therefore, in the second automatic operation mode, the degree of control of the automatic operation is higher than that in the first automatic operation mode.
  • the passenger is not necessarily in the hands-off state, and may be in the hands-on state.
  • the second automatic operation mode is an example of a “second mode”.
  • the switching control unit 184 changes the control mode of the host vehicle M to the first automatic driving mode when the event activation information acquired by the third control unit side acquisition unit 182 represents an event on a rampway on an expressway. Switch to.
  • the switching control unit 184 sets the control mode of the host vehicle M to the second automatic driving when the event activation information acquired by the third control unit side acquisition unit 182 represents an event on the main road of the highway. Switch to mode.
  • the switching control unit 184 allows the occupant of the host vehicle M to operate the accelerator pedal, the brake pedal, or the steering wheel 90a. When at least one of them is operated with a predetermined operation amount or more, the control mode of the host vehicle M is switched from one of the automatic operation modes to the manual operation mode.
  • the switching control unit 184 indicates that the event activation information acquired by the third control unit side acquisition unit 182 is a predetermined event, and further, the speed VM of the host vehicle M is set to a predetermined speed V Th ( For example, when the speed is 50 [km / h] or 60 [km / h] or less, the control mode of the host vehicle M is switched to the first automatic operation mode. That is, the switching control unit 184, when the velocity V M of the vehicle M is equal to or less than the predetermined speed V Th when the lane change is made, in order to implement the lane change by the automatic operation, the control mode of the vehicle M , Switch to a mode that requires the passengers to hand on.
  • V Th For example, when the speed is 50 [km / h] or 60 [km / h] or less, the control mode of the host vehicle M is switched to the first automatic operation mode. That is, the switching control unit 184, when the velocity V M of the vehicle M is equal to or less than the predetermined speed V Th when the
  • the HMI control unit 186 outputs information regarding switching of the mode to each display device or speaker of the HMI 30.
  • the occupant state determination unit 188 determines whether the occupant of the host vehicle M is in the hands-on state based on the detection result of the operation amount detection sensor 90b provided on the steering wheel 90a or the detection result of the contact detection sensor 90c, for example. Determine whether the hands-off state. For example, the occupant state determination unit 188 may determine that the occupant of the host vehicle M is in the hands-on state when the steering torque detected by the operation amount detection sensor 90b provided on the steering wheel 90a is equal to or greater than a threshold value. For example, this threshold value is set to a value lower than the steering torque applied to the shaft when the occupant is holding the steering wheel 90a.
  • the occupant state determination unit 188 may determine that the occupant of the host vehicle M is in the hands-on state when a predetermined detection signal indicating that the capacitance is equal to or greater than the threshold value is input from the contact detection sensor 90c. . In addition, the occupant state determination unit 188 may determine whether or not the occupant of the host vehicle M is in a hands-on state by analyzing a captured image of the in-vehicle camera 70.
  • the event start information acquired by the third controller side acquiring unit 182 indicates that a predetermined event, and velocity V M of the vehicle M which is detected by the vehicle sensor 40 is the predetermined speed V
  • the second control unit 160 is instructed to suppress control based on the target trajectory generated according to a predetermined event. That is, the suppression control unit 190, when an event with a lane change event or a lane change is executed, when the speed V M of the vehicle M is equal to or less than the predetermined speed V Th, automotive line changes according to the second control unit 160 Suppress.
  • the suppression control unit 190 instructs the action plan generation unit 140 to stop generating the target trajectory according to a predetermined event, instead of instructing the second control unit 160 to suppress the change in the lane. Also good.
  • the suppression control unit 190 may stop the action plan generation unit 140 from generating the target trajectory by suppressing (for example, stopping) the process of determining the various conditions described above. Thereby, the vehicle line change by the second control unit 160 is suppressed.
  • FIG. 6 is a flowchart illustrating an example of a flow of a series of processes performed by the third control unit 180 according to the first embodiment.
  • the process of this flowchart is executed when the event activation information acquired by the third control unit side acquisition unit 182 is information representing a predetermined event. That is, the processing of this flowchart is executed when the host vehicle M reaches a section where a predetermined event is planned, or when the lane change start switch 30a or the blinker lever 90d is operated.
  • the process of this flowchart may be started when the various switches and levers included in the HMI 30 are operated by an occupant of the host vehicle M.
  • the lane change target position TA is set, at least another vehicle that becomes the rear reference vehicle mC among the front reference vehicle mB and the rear reference vehicle mC is not recognized by the recognition unit 130.
  • the rear side is, for example, a region on the vehicle rear side with respect to the position of the door mirror of the host vehicle M in an adjacent lane adjacent to the host lane.
  • the front side with respect to the rear side is a region on the vehicle front side with respect to the position of the door mirror of the own vehicle M in the adjacent lane adjacent to the own lane.
  • the action plan generation unit 140 divides the lane change target lane from the lane to which the other lane is changed and the lane to which the lane is changed and the own lane. It is assumed that the lane marking is not a road marking indicating prohibition of lane change (prohibition of protrusion), that the lane to which the lane is changed is recognized, that the yaw rate is less than the threshold, and that it is output when the lane is changed it velocity V M of the vehicle M is less than the upper limit speed, depending on whether the various conditions is met whether it is possible to change to the adjacent lane is determined such.
  • suppression control unit 190 based on the information input from the vehicle sensor 40, the speed V M of the vehicle M is equal to or less than the predetermined speed V Th (step S100). For example, when the preceding vehicle mA is present in front of the host vehicle M and the preceding vehicle mA is later than the host vehicle M, an overtaking event is planned by the action plan generation unit 140. In such a case, until it is determined that the lane change to the adjacent lane is possible (until the above determination condition is satisfied), the action plan generation unit 140 keeps the inter-vehicle distance with the preceding vehicle mA constant. Then, a target trajectory for gradually decelerating the host vehicle M is generated, and this is output to the second control unit 160.
  • the host vehicle M waits for a lane change on the host lane while decelerating. At this time, by subtraction of the reduction in some cases the speed V M of the vehicle M is forced equal to or less than a predetermined velocity V Th. Further, when the speed limit of the own vehicle is set to a predetermined speed VTh or less, or when the upper limit speed is set to a predetermined speed VTh or less by an occupant of the own vehicle M, the speed VM of the own vehicle M is predetermined. Speed VTh or less.
  • the second control unit 160 is caused to change the vehicle line (step S102). For example, if there is another vehicle outside the detection range of the sensor behind the host vehicle M, the speed of the other vehicle that cannot be recognized is as high as about 80 [km / h] to 100 [km / h]. even the speed, the speed V M of the vehicle M is because it exceeds the predetermined speed V Th, the relative speed of the other vehicle and the host vehicle M that is not recognized is reduced.
  • suppression control unit 190 if the velocity V M of the vehicle M is equal to or less than the predetermined speed V Th, and the speed V M of the vehicle M, the reference speed of the adjacent lane is the lane change target A difference is derived (step S104). For example, when the recognition unit 130 recognizes the speed limit sign of the adjacent lane, the suppression control unit 190 specifies the speed limit of the adjacent lane from the numbers displayed on the speed limit sign and sets the specified speed limit to the adjacent lane. Derived as the reference speed.
  • the suppression control unit 190 may derive the average speed of one or more other vehicles recognized on the adjacent lane by the recognition unit 130 as the reference speed of the adjacent lane, and the suppression control unit 190 derives It was then compared with the velocity V M of the reference speed and the vehicle M in an adjacent lane, to derive these speed differences.
  • the suppression control unit 190 determines whether or not the speed difference is equal to or less than a threshold value (step S106). If the suppression control unit 190 determines that the speed difference is equal to or less than the threshold value, the process proceeds to S102, and the action plan generation unit 140 does not suppress the change in the lane by the second control unit 160 and responds to a predetermined event. Based on the generated target trajectory, the second control unit 160 changes the vehicle line.
  • the suppression control unit 190 suppresses the vehicle line change by the second control unit 160 (step S108).
  • the suppression control unit 190 may suppress the vehicle line change by stopping a part of the control of the second control unit 160 accompanying the vehicle line change, or suppress the vehicle line change by stopping all. May be.
  • the suppression control unit 190 causes the second control unit 160 to stop the steering control of the host vehicle M toward the adjacent lane, and to continue the steering control such as lane keeping or the speed control such as constant speed traveling. In order to suppress the change of the car line. Thereby, the processing of this flowchart is completed.
  • FIG. 7 is a diagram illustrating an example of a scene in which a change in an automobile line is suppressed.
  • the velocity V mA before run vehicle mA is equal to or less than the predetermined speed V Th, it indicates that the speed V M of the vehicle M is a speed exceeding the speed V mA before run vehicle mA Yes.
  • the occupant of the own vehicle M tilts the blinker lever 90d to the right side and instructs the automatic driving control unit 100 to change the lane. Is assumed.
  • the action plan generation unit 140 plans a lane change event for changing the own vehicle M from the own lane L1 to the adjacent lane L2 on the right side.
  • the winker lever 90d when the own vehicle M arrives before the branch point or the junction point, or when the vehicle ahead of the preceding vehicle mA is overtaken, the action plan generation unit 140 Other events with change events and lane changes may be planned.
  • generation part 140 sets lane change target position TA on the adjacent lane L2, and determines whether various conditions mentioned above are satisfy
  • the lane change target position TA is set behind the front reference vehicle mB. Is done.
  • the action plan generation unit 140 sets the lane change target position TA on the adjacent lane L2, there is an other vehicle as an obstacle at the lane change target position TA, or the lane change destination lane and the own lane If the lane marking between the two is a section line that prohibits lane change, the condition for determining that the lane change is possible is not satisfied, and therefore the target track for maintaining the own lane L1 is continuously generated. At this time, the action plan generator 140 decelerates the host vehicle M by reducing the target speed included as a speed element in the target track in order to keep the relative distance between the host vehicle M and the preceding vehicle mA constant.
  • suppression control unit 190 obtains the speed difference between the speed V M of the vehicle M and the reference speed V L2 of the adjacent lane L2, if the speed difference exceeds a threshold value, as shown in the context of time t3, Even if the action plan generation unit 140 determines that the lane change is possible between the time t2 and the time t3, the lane change by the second control unit 160 is suppressed.
  • the action plan generation unit 140 generates a target track that causes the host vehicle M to maintain the host lane L ⁇ b> 1 and outputs the target track to the second control unit 160.
  • This control when the vehicle M is slower than the predetermined speed V Th, other vehicles that are candidates for backward reference vehicle mC is the velocity V M greater rate than the vehicle M from outside the detection range of the sensor (e.g. In consideration of entering at a speed at which the speed difference is equal to or greater than a threshold value), the vehicle can be kept on the own lane L1 without changing the lane.
  • FIG. 8 is a flowchart illustrating another example of a flow of a series of processes performed by the third control unit 180 according to the first embodiment. Similarly to the process of the flowchart illustrated in FIG. 6, the process of this flowchart is also executed when the event activation information acquired by the third control unit side acquiring unit 182 is information representing a predetermined event. In addition to the processing of this flowchart, the action plan generation unit 140 determines whether or not a lane change to an adjacent lane is possible.
  • suppression control unit 190 based on the information input from the vehicle sensor 40, the speed V M of the vehicle M is equal to or less than the predetermined speed V Th (step S200).
  • Suppression control unit 190 if the velocity V M of the vehicle M is determined to exceed the predetermined speed V Th, without suppressing the automobile line changes according to the second control unit 160, according to a predetermined event by the action plan generating unit 140 Based on the target trajectory generated in this way, the second control unit 160 is caused to change the vehicle line (step S202).
  • suppression control unit 190 if the velocity V M of the vehicle M is equal to or less than the predetermined speed V Th, the control mode of the vehicle M is first automatic operation mode (automatic operation mode hands are needed) It is determined whether or not there is (step S204).
  • the suppression control unit 190 determines that the control mode of the host vehicle M is the first automatic operation mode, that is, if the occupant of the host vehicle M is in the hands-on state, the speed VM of the host vehicle M is set to the predetermined speed V. Since it is possible to change the vehicle line even if it is equal to or less than Th , the process proceeds to S202, the vehicle line change by the second control unit 160 is not suppressed, and is generated by the action plan generation unit 140 according to a predetermined event. Based on the target trajectory, the second control unit 160 changes the vehicle line.
  • the suppression control unit 190 determines that the control mode of the host vehicle M is not the first automatic driving mode but the second automatic driving mode (automatic driving mode that does not require hands-on), that is, If the passenger is a hands-off state, in order to speed V M of the vehicle M makes a car line changes in conditions that are less than the predetermined speed V Th, HMI control section 186, to each display device HMI30, vehicle A screen for requesting hands-on is displayed to the passenger of M (step S206). At this time, the HMI control unit 186 may output a voice requesting hands-on from the speaker of the HMI 30.
  • FIG. 9 is a diagram showing an example of a screen requesting a hands-on.
  • the HMI control unit 186 may display characters or images such as “Please grab the steering wheel 90a” on the screen.
  • the occupant state determination unit 188 automatically determines the detection result of the operation amount detection sensor 90b provided on the steering wheel 90a, the detection result of the contact detection sensor 90c, and the analysis result of the captured image of the vehicle interior camera 70. It is determined whether or not the occupant of the vehicle M is in a hands-on state (step S208).
  • the switching control unit 184 switches the control mode of the host vehicle M from the second automatic operation mode to the first automatic operation mode.
  • suppression control unit 190 advances the processing to S202, the second control unit
  • the second control unit 160 is caused to change the vehicle line based on the target trajectory generated according to the predetermined event by the action plan generation unit 140 without suppressing the vehicle line change by 160.
  • the suppression control unit 190 suppresses the vehicle line change by the second control unit 160 (step S210). Thereby, the processing of this flowchart is completed.
  • the automatic driving control unit 100 when the velocity V M of the vehicle M is equal to or less than the predetermined speed V Th, the place to suppress the car line changes would otherwise, any occupant of the own vehicle M in hands state For example, since it is possible to perform the steering control of the kite by operating the steering wheel 90a of the occupant, the vehicle line change is performed without suppressing the vehicle line change.
  • FIG. 10 is a diagram in which a scene in which a change in the automobile line is not suppressed is compared with a scene in which the change is suppressed.
  • the blinker lever 90d is operated at the scene at time t1
  • the action plan generation unit 140 schedules a lane change event that changes the host vehicle M from the host lane L1 to the adjacent lane L2 on the right side.
  • suppression control unit 190 the speed V M of the vehicle M is equal to or less than the predetermined speed V Th.
  • the velocity V M of the vehicle M is equal to or less than the predetermined speed V Th, hands the occupant of the own vehicle M is required.
  • the suppression control unit 190 suppresses the lane change by the second control unit 160 as in the scene at time t3, and causes the host vehicle M to wait on the lane L1 without changing the lane.
  • the speed V M of the host vehicle M is equal to or lower than the predetermined speed V Th. Is done.
  • the suppression control unit 190 does not suppress the vehicle line change by the second control unit 160 as in the scene at time t3 #, and causes the vehicle line change to be performed.
  • FIG. 11 is a flowchart illustrating another example of a flow of a series of processes performed by the third control unit 180 according to the first embodiment. The processing of this flowchart is also executed when the event activation information acquired by the third control unit side acquisition unit 182 is information representing a predetermined event, similarly to the processing of the flowchart illustrated in FIGS. 6 and 8. .
  • the action plan generation unit 140 determines whether or not a lane change to an adjacent lane is possible.
  • suppression control unit 190 based on the information input from the vehicle sensor 40, the speed V M of the vehicle M is equal to or less than the predetermined speed V Th (step S300).
  • Suppression control unit 190 if the velocity V M of the vehicle M is determined to exceed the predetermined speed V Th, whether it is determined to already be possible change to the adjacent lane by the action plan generating unit 140 If it is determined (step S302) and it is not yet determined by the action plan generation unit 140 that the lane change to the adjacent lane is possible, the process returns to S300.
  • the suppression control unit 190 does not suppress the lane change by the second control unit 160 and does not suppress the lane change. Based on the target trajectory generated according to a predetermined event by 140, the second control unit 160 is caused to change the vehicle line (step S304).
  • suppression control unit 190 if the velocity V M of the vehicle M is equal to or less than the predetermined speed V Th, the control mode of the vehicle M is first automatic operation mode (automatic operation mode hands are needed) It is determined whether or not there is (step S306).
  • Suppression control unit 190 when the control mode of the vehicle M is determined to be the first automatic operation mode, the occupant of the own vehicle M under velocity V M of the vehicle M is equal to or less than the predetermined speed V Th is hands Since it is in a state, the process proceeds to S302.
  • the suppression control unit 190 determines that the control mode of the host vehicle M is not the first automatic driving mode but the second automatic driving mode (automatic driving mode that does not require hands-on). Then, it is determined whether or not the action plan generation unit 140 has already determined that the lane change to the adjacent lane is possible (step S308), and the action plan generation unit 140 can still change the lane to the adjacent lane. If not, the process returns to S300.
  • the HMI control unit 186 causes each display device of the HMI 30 to display a screen requesting hands-on to the occupant of the host vehicle M, or to output a sound requesting hands-on from the speaker. (Step S310).
  • the occupant state determination unit 188 automatically determines the detection result of the operation amount detection sensor 90b provided on the steering wheel 90a, the detection result of the contact detection sensor 90c, and the analysis result of the captured image of the vehicle interior camera 70. It is determined whether or not the occupant of the vehicle M is in a hands-on state (step S312).
  • the HMI control unit 186 causes the HMI 30 to display a screen requesting hands-on or to output a sound requesting hands-on. And continue to demand a hands-on from the crew. If the occupant does not enter the hands-on state within a predetermined time after requesting the hands-on, the suppression control unit 190 may suppress the vehicle line change by the second control unit 160.
  • the switching control unit 184 switches the control mode of the host vehicle M from the second automatic operation mode to the first automatic operation mode.
  • suppression control unit 190 advances the processing to S304, the second control unit
  • the second control unit 160 is caused to change the vehicle line based on the target trajectory generated according to the predetermined event by the action plan generation unit 140 without suppressing the vehicle line change by 160. Thereby, the processing of this flowchart is completed.
  • the action plan generation unit 140 determines that the lane change is possible
  • the occupant of the host vehicle M is in the hands-on state.
  • the lane can be changed more smoothly in situations where lane changes are required.
  • FIG. 12 is a diagram illustrating an example of a scene where the lane change is suppressed until the hands-on state is reached when it is determined that the lane change to the adjacent lane is possible.
  • the blinker lever 90d is operated at the scene at time t1
  • the action plan generation unit 140 schedules a lane change event that changes the host vehicle M from the host lane L1 to the adjacent lane L2 on the right side.
  • suppression control unit 190, the speed V M of the vehicle M is equal to or less than the predetermined speed V Th.
  • the speed V M of the host vehicle M is equal to or lower than a predetermined speed V Th, so a hands-on by a passenger of the host vehicle M is required.
  • the HMI control unit 186 causes the HMI 30 to display a screen requesting a hands-on. Or by outputting a voice requesting a hands-on requesting the occupant to hands-on.
  • the suppression control unit 190 continues to suppress the lane change by the second control unit 160.
  • the suppression of the vehicle line change is canceled and the second control unit 160 is informed of the vehicle line. Make changes.
  • the recognition unit 130 that recognizes the surrounding situation of the host vehicle M, and the own vehicle M lanes from the own lane to the adjacent lane based on the surrounding situation recognized by the recognition unit 130. It is determined whether or not the condition for changing is satisfied, and the action plan generation unit 140 generates a target track for generating a target track for changing the lane when it is determined that the condition for changing the lane is satisfied.
  • the second control unit 160 for performing automotive line change control based on the target orbit generated by the action plan generating unit 140, when the speed V M of the vehicle M is equal to or less than the predetermined speed V Th, second The control unit 160 includes the suppression control unit 190 that suppresses the lane change control, or the action plan generation unit 140 suppresses the determination process of whether or not the lane change is possible. It is possible to perform a lane change to match the situation.
  • the velocity V M of the own vehicle M when it is less than the predetermined speed V Th, when the occupant is in hands state, which does not inhibit the car line changes, more flexible car Line changes can be implemented.
  • the suppression control unit 190 has been described as suppressing a lane change based on a target track generated in response to these events.
  • the second embodiment differs from the first embodiment described above in that it is determined whether or not to change the vehicle line depending on whether or not the event is necessary even if it is a predetermined event. The following description will focus on differences from the first embodiment, and descriptions of functions and the like common to the first embodiment will be omitted.
  • the suppression control unit 190 in the second embodiment for example, when the speed V M of the vehicle M is equal to or less than the predetermined speed V Th, event activation information acquired by the third controller side acquiring unit 182, overtaking event If it represents a predetermined event that does not necessarily need to be reached before reaching the destination, such as the change of the car line is suppressed, the event activation information is indispensable until reaching the destination such as a merge event or branch event When a predetermined event is represented, the vehicle line change is not suppressed.
  • FIG. 13 is a diagram illustrating an example of a scene in which a change in an automobile line is not suppressed at a predetermined event.
  • a branch point exists in front of the host vehicle M and a branch event is planned by the action plan generation unit 140.
  • suppression control unit 190 the speed V M of the vehicle M is equal to or less than the predetermined speed V Th.
  • the speed V M of the host vehicle M is equal to or lower than a predetermined speed V Th, so a hands-on by a passenger of the host vehicle M is required.
  • the occupant releases his hand from the steering wheel 90a and is in a hands-off state.
  • the suppression control unit 190 does not suppress the vehicle line change due to the branch event, and the second control The unit 160 is caused to change the automobile line.
  • the suppression control unit 190 is described above. In the same manner as the first embodiment, the vehicle line change is suppressed.
  • the vehicle when the vehicle can reach the destination even while traveling in its own lane without changing the lane, the other vehicle proceeds from outside the detection range of the sensor. If you can't reach the destination without changing the lane in consideration, or if you lose a lot of time until you reach the destination, Since the lane change is performed, it is possible to change the lane giving priority to the arrival at the destination while matching the traveling condition of the lane change destination.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of the automatic operation control unit 100 according to the embodiment.
  • the automatic operation control unit 100 includes a communication controller 100-1, a CPU 100-2, a RAM (Random Access Memory) 100-3, a ROM (Read Only Memory) 100-4, and a secondary storage device 100-5 such as a flash memory or HDD. And the drive device 100-6 are connected to each other via an internal bus or a dedicated communication line. The drive device 100-6 is loaded with a portable storage medium such as an optical disk.
  • the program 100-5a stored in the secondary storage device 100-5 is expanded in the RAM 100-3 by a DMA controller (not shown) or the like and executed by the CPU 100-2, whereby the first control unit 120, the second control The unit 160 and the third control unit 180 are realized. Further, the program referred to by the CPU 100-2 may be stored in a portable storage medium attached to the drive device 100-6, or may be downloaded from another device via a network.
  • Storage to store information;
  • a processor that executes a program stored in the storage, The processor executes the program, Recognize the surrounding situation of the vehicle, Based on the recognized surrounding situation, it is determined whether or not the own vehicle satisfies a condition for changing lanes from the own lane to the adjacent lane, When it is determined that the condition is satisfied, acceleration / deceleration and steering of the host vehicle are controlled, and lane change control is performed to change the lane of the host vehicle from the host lane to the adjacent lane, When the speed of the host vehicle is equal to or lower than a predetermined speed, the lane change control is configured to be suppressed. Vehicle control system.
  • the vehicle system 1 of the above-described embodiment may be applied to a system that performs driving support such as ALC (Auto-Lane-Change).
  • ALC Auto-Lane-Change

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

車両制御システムは、自車両の周辺状況を認識する認識部と、前記認識部により認識された周辺状況に基づいて、前記自車両が自車線から隣接車線へと車線変更するための条件を満たすか否かを判定する判定部と、前記判定部により前記条件を満たすと判定された場合に、前記自車両の加減速および操舵を制御して、前記自車両を前記自車線から前記隣接車線へと車線変更させる車線変更制御を行う走行制御部と、を備え、前記自車両の速度が所定速度以下の場合に、前記車線変更制御を抑制する。

Description

車両制御システム、車両制御方法、およびプログラム
 本発明は、車両制御システム、車両制御方法、およびプログラムに関する。
 自車両が車線変更する場合に、車線変更先の車線に存在する他車両との相対速度や相対距離に基づいて、車線変更が可能か否かを判定する技術が知られている(例えば、特許文献1参照)。
特開2000-20898号公報
 しかしながら、他車両などの物体を検出するセンサの検出範囲には限界があることから、車線変更先の車線に他車両が存在せず、車線変更が可能であると判定された場合であっても、車線変更先の車線においてセンサの検出範囲外に存在する他車両の速度が大きく自車両の速度が小さい場合、車線変更すべきでない状況が生じる場合がある。
 本発明は、このような事情を考慮してなされたものであり、車線変更先の走行状況に合わせた車線変更を行うことができる車両制御システム、車両制御方法、およびプログラムを提供することを目的の一つとする。
 (1):自車両の周辺状況を認識する認識部と、前記認識部により認識された周辺状況に基づいて、前記自車両が自車線から隣接車線へと車線変更するための条件を満たすか否かを判定する判定部と、前記判定部により前記条件を満たすと判定された場合に、前記自車両の加減速および操舵を制御して、前記自車両を前記自車線から前記隣接車線へと車線変更させる車線変更制御を行う走行制御部と、を備え、前記自車両の速度が所定速度以下の場合に、前記車線変更制御を抑制する車両制御システム。
 (2):(1)に記載の車両制御システムは、前記自車両の速度が所定速度以下の場合に、前記走行制御部に、前記車線変更制御を行うことを抑制させる抑制制御部を更に備えるものである。
 (3):(1)に記載の車両制御システムは、前記自車両の速度が所定速度以下の場合に、前記判定部に、前記条件を満たすか否かを判定する判定処理を抑制させることで、前記車線変更制御を抑制する抑制制御部を更に備えるものである。
 (4):(2)または(3)に記載の車両制御システムは、前記抑制制御部が、前記認識部により認識された周辺状況に基づいて、前記隣接車線の基準となる基準速度を導出し、前記導出した基準速度と前記自車両の速度との差分が閾値以下の場合に、前記走行制御部による前記車線変更制御を抑制しないものである。
 (5):(2)から(4)のうちいずれか1つに記載の車両制御システムは、前記自車両の乗員により操作され、前記自車両の進行方向を調節する操作部と、前記乗員により前記操作部が操作されたことを検出する検出部と、を更に備え、前記抑制制御部が、前記検出部によって前記操作部が操作されたことが検出された場合、前記走行制御部による前記車線変更制御を抑制せず、前記検出部によって前記操作部が操作されたことが検出されない場合、前記走行制御部による前記車線変更制御を抑制するものである。
 (6):(2)から(5)のうちいずれか1つに記載の車両制御システムは、前記自車両の乗員により操作される操作部を更に備え、前記抑制制御部が、前記自車両の制御モードが、前記乗員に前記操作部の操作を要求する第1モードである場合に、前記走行制御部による前記車線変更制御を抑制せず、前記自車両の制御モードが、前記乗員に前記操作部の操作を要求しない第2モードである場合に、前記走行制御部による前記車線変更制御を抑制するものである。
 (7):(2)から(6)のうちいずれか1つに記載の車両制御システムは、前記自車両の乗員により操作される操作部を更に備え、前記抑制制御部が、前記自車両の制御モードが前記乗員に前記操作部の操作を要求しない第2モードであるときに前記判定部により前記条件を満たすと判定され、且つ前記自車両の速度が所定速度以下の場合に、前記自車両の制御モードが前記第2モードから前記乗員に前記操作部の操作を要求する第1モードに遷移するまで、前記走行制御部による前記車線変更制御を抑制し、前記自車両の制御モードが前記第2モードから前記第1モードに遷移した場合に、前記車線変更制御を抑制せずに、前記走行制御部に前記車線変更制御を行わせるものである。
 (8):(6)または(7)に記載の車両制御システムは、前記乗員により前記操作部が操作されたことを検出する検出部と、前記認識部による認識結果および前記検出部による検出結果の少なくとも一方に基づいて、前記自車両の制御モードを、前記第1モードと前記第2モードとの間で切り替える切替制御部と、を更に備えるものである。
 (9):(2)から(8)のうちいずれか1つに記載の車両制御システムは、前記判定部が、前記自車線において前記自車両の前方に他車両が存在することが前記認識部により認識された場合、前記自車線において前記自車両の前方に前記他車両が存在する状況下で前記条件を満たすか否かを判定し、前記抑制制御部が、前記自車線において前記自車両の前方に前記他車両が存在する状況下で前記判定部により前記条件を満たすと判定された場合に、前記自車両の速度が所定速度以下の場合、前記走行制御部による前記車線変更制御を抑制するものである。
 (10):車載コンピュータが、自車両の周辺状況を認識し、前記認識した周辺状況に基づいて、前記自車両が自車線から隣接車線へと車線変更するための条件を満たすか否かを判定し、前記条件を満たすと判定した場合に、前記自車両の加減速および操舵を制御して、前記自車両を前記自車線から前記隣接車線へと車線変更させる車線変更制御を行い、前記自車両の速度が所定速度以下の場合に、前記車線変更制御を抑制する車両制御方法。
 (11):車載コンピュータに、自車両の周辺状況を認識させ、前記認識させた周辺状況に基づいて、前記自車両が自車線から隣接車線へと車線変更するための条件を満たすか否かを判定させ、前記条件を満たすと判定させた場合に、前記自車両の加減速および操舵を制御して、前記自車両を前記自車線から前記隣接車線へと車線変更させる車線変更制御を行わせ、前記自車両の速度が所定速度以下の場合に、前記車線変更制御を抑制させるプログラム。
 (1)から(11)によれば、車線変更先の走行状況に合わせた車線変更を行うことができる。
第1実施形態の車両制御システムを利用した車両システム1の構成図である。 自動運転制御ユニット100の機能構成図である。 認識部130により走行車線に対する自車両Mの相対位置および姿勢が認識される様子を示す図である。 隣接車線に車線変更ターゲット位置TAが設定される様子を模式的に示す図である。 目標軌道を生成する場面の一例を示す図である。 第1実施形態の第3制御部180による一連の処理の流れの一例を示すフローチャートである。 自動車線変更が抑制される場面の一例を示す図である。 第1実施形態の第3制御部180による一連の処理の流れの他の例を示すフローチャートである。 ハンズオンを要求する画面の一例を示す図である。 自動車線変更が抑制されない場面と抑制される場面とを対比させた図である。 第1実施形態の第3制御部180による一連の処理の流れの他の例を示すフローチャートである。 隣接車線への車線変更が可能であると判定された場合に、ハンズオン状態となるまで自動車線変更が抑制される場面の一例を示す図である。 所定のイベント時に自動車線変更が抑制されない場面の一例を示す図である。 実施形態の自動運転制御ユニット100のハードウェア構成の一例を示す図である。
 以下、図面を参照し、本発明の車両制御システム、車両制御方法、およびプログラムの実施形態について説明する。
 (第1実施形態)
 [全体構成]
 図1は、第1実施形態の車両制御システムを利用した車両システム1の構成図である。車両システム1が搭載される車両(以下、自車両Mと称する)は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせである。電動機を備える場合、電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。
 車両システム1は、例えば、カメラ10と、レーダ装置12と、ファインダ14と、物体認識装置16と、通信装置20と、HMI(Human Machine Interface)30と、車両センサ40と、ナビゲーション装置50と、MPU(Map Positioning Unit)60と、車室内カメラ70と、ウィンカー(方向指示器)80と、運転操作子90と、自動運転制御ユニット100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とを備える。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
 カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、自車両Mの任意の箇所に一つまたは複数が取り付けられる。自車両Mの前方を撮像する場合、カメラ10は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ10は、例えば、周期的に繰り返し自車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。
 レーダ装置12は、自車両Mの周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、自車両Mの任意の箇所に一つまたは複数が取り付けられる。レーダ装置12は、FM-CW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。
 ファインダ14は、LIDAR(Light Detection and Ranging)である。ファインダ14は、自車両Mの周辺に光を照射し、散乱光を測定する。ファインダ14は、発光から受光までの時間に基づいて、対象までの距離を検出する。照射される光は、例えば、パルス状のレーザー光である。ファインダ14は、自車両Mの任意の箇所に一つまたは複数が取り付けられる。
 物体認識装置16は、カメラ10、レーダ装置12、およびファインダ14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度、移動方向などを認識する。認識される物体は、例えば、車両や、ガードレール、電柱、歩行者、道路標識といった種類の物体である。物体認識装置16は、認識結果を自動運転制御ユニット100に出力する。また、物体認識装置16は、カメラ10、レーダ装置12、またはファインダ14の検出結果を、そのまま自動運転制御ユニット100に出力してよい。
 通信装置20は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用して、自車両Mの周辺に存在する他車両と通信し、或いは無線基地局を介して各種サーバ装置と通信する。
 HMI30は、自車両Mの乗員に対して各種情報を提示すると共に、乗員による入力操作を受け付ける。HMI30は、例えば、LCD(Liquid Crystal Display)や有機EL(Electroluminescence)ディスプレイなどの各種表示装置や、車線変更開始スイッチ30aなどの各種ボタン、スピーカ、ブザー、タッチパネル等を含む。HMI30の各機器は、例えば、インストルメントパネルの各部、助手席や後部座席の任意の箇所に取り付けられる。車線変更開始スイッチ30aは、乗員がステアリングホイール90aを操作することなく自車両Mを車線変更させる制御(以下、自動車線変更と称する)を開始させるためのスイッチである。また、後述するウィンカーレバー90dも、自動車線変更を開始させるためのスイッチとして機能してよい。
 車両センサ40は、自車両Mの速度Vを検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。車両センサ40に含まれる各センサは、検出結果を示す検出信号を自動運転制御ユニット100に出力する。
 ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機51と、ナビHMI52と、経路決定部53とを備え、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に第1地図情報54を保持している。GNSS受信機51は、GNSS衛星から受信した信号に基づいて、自車両Mの位置を特定する。自車両Mの位置は、車両センサ40の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。ナビHMI52は、表示装置、スピーカ、タッチパネル、キーなどを含む。ナビHMI52は、前述したHMI30と一部または全部が共通化されてもよい。経路決定部53は、例えば、GNSS受信機51により特定された自車両Mの位置(或いは入力された任意の位置)から、ナビHMI52を用いて乗員から入力された目的地までの経路(以下、地図上経路)を、第1地図情報54を参照して決定する。第1地図情報54は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。第1地図情報54は、道路の曲率やPOI(Point Of Interest)情報などを含んでもよい。経路決定部53により決定された地図上経路は、MPU60に出力される。また、ナビゲーション装置50は、経路決定部53により決定された地図上経路に基づいて、ナビHMI52を用いた経路案内を行ってもよい。なお、ナビゲーション装置50は、例えば、乗員の保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。また、ナビゲーション装置50は、通信装置20を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから返信された地図上経路を取得してもよい。
 MPU60は、例えば、推奨車線決定部61として機能し、HDDやフラッシュメモリなどの記憶装置に第2地図情報62を保持している。推奨車線決定部61は、ナビゲーション装置50から提供された経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報62を参照してブロックごとに推奨車線を決定する。推奨車線決定部61は、左から何番目の車線を走行するといった決定を行う。推奨車線決定部61は、経路において分岐箇所や合流箇所などが存在する場合、自車両Mが、分岐先に進行するための合理的な経路を走行できるように、推奨車線を決定する。
 第2地図情報62は、第1地図情報54よりも高精度な地図情報である。第2地図情報62は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、第2地図情報62には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報などが含まれてよい。第2地図情報62は、通信装置20を用いて他装置にアクセスすることにより、随時、アップデートされてよい。
 車室内カメラ70は、例えば、車室内に設置されたシートに着座する乗員(特に、運転席に着座する乗員)の顔を中心に撮像する。車室内カメラ70は、CCDやCMOS等の固体撮像素子を利用したデジタルカメラである。車室内カメラ70は、例えば、周期的に乗員を撮像する。車室内カメラ70により生成された撮像画像は、自動運転制御ユニット100に出力される。
 運転操作子90は、例えば、ステアリングホイール90aや、複数の操作量検出センサ90b、接触検出センサ90c、ウィンカー80を作動させるウィンカーレバー(方向指示スイッチ)90d、レバー操作検出センサ90e、アクセルペダル、ブレーキペダル、シフトレバーなどの各種操作子を含む。ステアリングホイール90aは、「操作部」の一例である。
 運転操作子90の各操作子には、例えば、乗員による操作の操作量を検出する操作量検出センサ90bが取り付けられている。例えば、ステアリングホイール90aに取り付けられた操作量検出センサ90bは、ステアリングホイールの操舵角や操舵トルクなどを検出し、アクセルペダルやブレーキペダルに取り付けられた操作量検出センサ90bは、各ペダルの踏込量を検出する。各操作量検出センサ90bは、検出結果を示す検出信号を自動運転制御ユニット100、もしくは、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一方または双方に出力する。操作量検出センサ90bは、「検出部」の一例である。
 また、ステアリングホイール90aには、接触検出センサ90cが取り付けられている。接触検出センサ90cは、例えば、ステアリングホイール90aの周方向に沿うように設けられた静電容量センサである。接触検出センサ90cは、ステアリングホイール90aに物体が近接または接触したことを、静電容量の変化として検出する。接触検出センサ90cは、検出した静電容量が閾値以上である場合、所定の検出信号を自動運転制御ユニット100に出力する。この閾値は、例えば、乗員がステアリングホイール90aを把持している場合に生じる静電容量よりも低い値に設定される。また、接触検出センサ90cは、静電容量が閾値以上であるか否かに関わらずに、静電容量を示す検出信号を自動運転制御ユニット100に出力してもよい。接触検出センサ90cは、「検出部」の他の例である。
 レバー操作検出センサ90eは、ウィンカーレバー90dが操作されたことを検出し、その検出結果を示す検出信号を自動運転制御ユニット100に出力する。
 自動運転制御ユニット100は、例えば、第1制御部120と、第2制御部160と、第3制御部180とを備える。第1制御部120、第2制御部160、および第3制御部180の各構成要素は、例えば、CPU(Central Processing Unit)などのプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。自動運転制御ユニット100の詳細については後述する。
 走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するパワーECU(Electronic Control Unit)とを備える。パワーECUは、第2制御部160から入力される情報、或いは運転操作子90から入力される情報に従って、上記の構成を制御する。
 ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUとを備える。ブレーキECUは、第2制御部160から入力される情報、或いは運転操作子90から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子90に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置210は、上記説明した構成に限らず、第2制御部160から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。
 ステアリング装置220は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、第2制御部160から入力される情報、或いは運転操作子90から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。
 [自動運転制御ユニットの機能構成]
 図2は、自動運転制御ユニット100の機能構成図である。第1制御部120は、例えば、認識部130と、行動計画生成部140とを備える。行動計画生成部140は、「判定部」の一例である。
 第1制御部120は、例えば、AI(Artificial Intelligence;人工知能)による機能と、予め与えられたモデル(ニューラルネットワークなどの学習器)による機能とを並行して実現する。例えば、「交差点を認識する」機能は、ディープラーニング等による交差点の認識と、予め与えられた条件(パターンマッチング可能な信号、道路標示などがある)に基づく認識とが並行して実行され、双方に対してスコア付けして総合的に評価することで実現される。これによって、自動運転の信頼性が担保される。
 認識部130は、カメラ10、レーダ装置12、およびファインダ14から物体認識装置16を介して入力される情報に基づいて、自車両Mの周辺にある物体の位置、および速度、加速度等の状態を認識する。物体の位置は、例えば、自車両Mの代表点(重心や駆動軸中心など)を原点とした絶対座標上の位置として認識される。物体の位置は、その物体の重心やコーナー等の代表点で表されてもよいし、表現された領域で表されてもよい。物体の「状態」とは、物体の加速度やジャーク、あるいは「行動状態」(例えば車線変更をしている、またはしようとしているか否か)を含んでもよい。また、認識部130は、カメラ10の撮像画像に基づいて、自車両Mがこれから通過するカーブの形状を認識する。認識部130は、カーブの形状をカメラ10の撮像画像から実平面に変換し、例えば、二次元の点列情報、或いはこれと同等なモデルを用いて表現した情報を、カーブの形状を示す情報として行動計画生成部140に出力する。
 また、認識部130は、例えば、自車両Mが走行している車線(走行車線)、並びに走行車線に対する自車両Mの相対位置および姿勢を認識する。認識部130は、例えば、カメラ10によって撮像された画像から道路の区画線LMを認識し、認識した区画線LMの中で自車両Mに最も近い2本の区画線LMにより区画された車線を走行車線として認識する。そして、認識部130は、認識した走行車線に対する自車両Mの位置や姿勢を認識する。
 図3は、認識部130により走行車線に対する自車両Mの相対位置および姿勢が認識される様子を示す図である。認識部130は、例えば、区画線LM1からLM3を認識し、自車両Mに最も近い区画線LM1およびLM2の間の領域を自車両Mの走行車線L1として認識する。そして、認識部130は、自車両Mの基準点(例えば重心)の走行車線中央CLからの乖離OS、および自車両Mの進行方向の走行車線中央CLを連ねた線に対してなす角度θを、走行車線L1に対する自車両Mの相対位置および姿勢として認識する。なお、これに代えて、認識部130は、自車線L1のいずれかの側端部に対する自車両Mの基準点の位置などを、走行車線に対する自車両Mの相対位置として認識してもよい。
 また、認識部130は、例えば、自車線に隣接する隣接車線を認識してよい。例えば、認識部130は、自車線を区画する区画線の次に自車両Mに近い区画線と、自車線の区画線との間の領域を隣接車線として認識する。図2の例では、例えば、認識部130は、自車線の区画線LM2と、その区画線LM2の次に自車両Mに近い区画線LM3との間の領域を右隣接車線L2として認識する。
 なお、認識部130は、道路区画線に限らず、道路区画線や路肩、縁石、中央分離帯、ガードレールなどを含む走路境界(道路境界)を認識することで、走行車線を認識してもよい。この認識において、ナビゲーション装置50から取得される自車両Mの位置やINSによる処理結果が加味されてもよい。また、認識部130は、一時停止線、障害物、赤信号、料金所、その他の道路事象を認識してもよい。
 行動計画生成部140は、原則的には推奨車線決定部61により決定された推奨車線を走行し、更に、自車両Mの周辺状況に対応できるように、推奨車線が決定された経路において順次起動するイベントを計画する。イベントには、例えば、自車両Mを自車線から隣接車線へと車線変更させる車線変更イベント、合流地点で自車両Mを本線に合流させる合流イベント、道路の分岐地点で自車両Mを目的側の車線に分岐させる分岐イベント、一定速度で同じ車線を走行する定速走行イベント、自車両Mの前方の所定距離(例えば100[m]程度)以内に存在する他車両(以下、前走車両と称する)に自車両Mを追従させる追従走行イベントなどが含まれる。「追従」とは、例えば、自車両Mと前走車両との相対距離(車間距離)を一定に維持させる走行態様である。また、イベントには、例えば、自車両Mを一旦隣接車線に車線変更させて前走車両を隣接車線において追い越してから再び元の車線へと車線変更させる追い越しイベント、障害物との接近を回避するための制動および/または操舵を行う回避イベント、カーブを走行するカーブ走行イベント、交差点や横断歩道、踏切などの所定のポイントを通過する通過イベント、自動停止イベント、自動運転を終了して手動運転に切り替えるためのテイクオーバイベントなどが含まれてよい。
 また、行動計画生成部140は、自車両Mが走行している際に認識部130により認識された周辺の状況に応じて、既に決定したイベントを他のイベントに変更したり、新たなイベントを計画したりする。例えば、行動計画生成部140は、定速走行イベントが計画された区間を自車両Mが走行しているときに、前走車両と自車両Mとの車間距離が所定距離未満となった場合において、認識部130により隣接車線が認識されている場合、定速走行イベントを追い越しイベントに変更してよい。
 また、行動計画生成部140は、レバー操作検出センサ90eによってウィンカーレバー90dが操作されたことが検出された場合や、車線変更開始スイッチ30aが操作された場合、現在起動しているイベント、または現在起動しているイベントの次に計画されたイベントを、車線変更イベントに変更してよい。
 行動計画生成部140は、各イベントに応じて、自車両Mが将来走行する目標軌道を生成する。目標軌道は、例えば、速度要素を含んでいる。例えば、目標軌道は、自車両Mの到達すべき地点(軌道点)を順に並べたものとして表現される。軌道点は、道なり距離で所定の走行距離(例えば数[m]程度)ごとの自車両Mの到達すべき地点であり、それとは別に、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとの目標速度および目標加速度が、目標軌道の一部として生成される。また、軌道点は、所定のサンプリング時間ごとの、そのサンプリング時刻における自車両Mの到達すべき位置であってもよい。この場合、目標速度や目標加速度の情報は軌道点の間隔で表現される。
 例えば、行動計画生成部140は、車線変更イベントが計画された区間や、合流イベント、分岐イベント、追い越しイベントなどの車線変更を伴うイベントが計画された区間に自車両Mが到達した場合、これらの各種イベントを起動して、自車両Mを車線変更させるための目標軌道を生成する。
 例えば、行動計画生成部140は、隣接車線において車線変更先とする目標位置(以下、車線変更ターゲット位置TAと称す)を設定し、この車線変更ターゲット位置TAに他車両が障害物として存在しているか否かを判定する。
 図4は、隣接車線に車線変更ターゲット位置TAが設定される様子を模式的に示す図である。図中L1は自車線を表し、L2は右隣接車線を表している。また、矢印dは自車両Mの進行(走行)方向を表している。例えば、行動計画生成部140は、自車両Mが走行する自車線L1に対して隣接する隣接車線であって、車線変更先の隣接車線L2を走行する一以上の他車両の中から任意の2台の他車両(例えば自車両Mに相対的に近い2台の車両)を選択し、選択した2台の他車両の間に車線変更ターゲット位置TAを設定する。例えば、車線変更ターゲット位置TAは、隣接車線の中央に設定される。以下、設定した車線変更ターゲット位置TAの直前に存在する他車両を「前方基準車両mB」と称し、車線変更ターゲット位置TAの直後に存在する他車両を「後方基準車両mC」と称して説明する。車線変更ターゲット位置TAは、自車両Mと前方基準車両mBおよび後方基準車両mCとの位置関係に基づく相対的な位置である。
 行動計画生成部140は、車線変更ターゲット位置TAを設定した後、車線変更ターゲット位置TAの設定位置を基に、図中に示すような禁止領域RAを設定する。例えば、行動計画生成部140は、自車両Mを車線変更先の隣接車線L2に射影し、射影した自車両Mの前後に若干の余裕距離を持たせた領域を禁止領域RAとする。禁止領域RAは、隣接車線L2を区画する一方の区画線LMから他方の区画線LMまで延在する領域として設定される。
 そして、行動計画生成部140は、設定した禁止領域RAに他車両の一部も存在せず、自車両Mと前方基準車両mBとの衝突余裕時間TTC(Time-To-Collision)(B)が閾値Th(B)よりも大きく、且つ自車両Mと後方基準車両mCとの衝突余裕時間TTC(C)が閾値Th(C)よりも大きい場合に、車線変更ターゲット位置TAに他車両が障害物として存在していないと判定する。「禁止領域RAに他車両が一部も存在しない」とは、例えば、上方から見て禁止領域RAと他車両を示す領域とが互いにオーバーラップしないことである。また、衝突余裕時間TTC(B)は、例えば、自車両Mの前端を隣接車線L2側に仮想的に延出させた延出線FMと前方基準車両mBとの距離を、自車両Mおよび前方基準車両mBの相対速度で除算することで導出される。また、衝突余裕時間TTC(C)は、例えば、自車両Mの後端を隣接車線L2側に仮想的に延出させた延出線RMと後方基準車両mCとの距離を、自車両Mおよび後方基準車両mCの相対速度で除算することで導出される。閾値Th(B)と閾値Th(C)は同じ値であってもよいし、異なる値であってもよい。
 車線変更ターゲット位置TAに他車両が障害物として存在していると判定した場合、行動計画生成部140は、右隣接車線L2に存在する他車両の中から他の2台の車両を選択し、新たに車線変更ターゲット位置TAを設定することで、車線変更ターゲット位置TAに他車両が存在しているか否かの判定処理を繰り返し行う。この際に、自動運転制御ユニット100は、他車両が存在していない車線変更ターゲット位置TAが設定されるまで、自車両Mを自車線で待機させる目標軌道を生成してよい。自車両Mを自車線で待機させる場合、行動計画生成部140は、目標軌道に速度要素として含める目標速度を、自車両Mの現在の速度が維持されるような速度に決定したり、前走車両mAとの車間距離が一定となるような速度に決定したり、車線変更ターゲット位置TAの側方に自車両Mが移動するように速度に決定したりしてよい。
 なお、車線変更ターゲット位置TAの設定時に隣接車線L2に他車両が一台も存在しない場合、行動計画生成部140は、禁止領域RAに干渉する他車両が存在しないことから、車線変更ターゲット位置TAに他車両が障害物として存在していないと判定してよい。また、車線変更ターゲット位置TAの設定時に隣接車線L2に他車両が一台のみ存在する場合、行動計画生成部140は、その他車両の前方や後方の任意の位置に車線変更ターゲット位置TAを設定してよい。
 行動計画生成部140は、車線変更ターゲット位置TAに他車両が障害物として存在していないと判定した場合、車線変更のための目標軌道を生成する。
 図5は、目標軌道を生成する場面の一例を示す図である。例えば、行動計画生成部140は、図示のように、前走車両mA、前方基準車両mBおよび後方基準車両mCが所定の速度モデルで走行するものと仮定し、これら3台の車両の速度モデルと自車両Mの速度Vとに基づいて、自車両Mが前走車両mAと干渉せずに、将来のある時刻において前方基準車両mBと後方基準車両mCとの間に位置するように軌道を生成する。例えば、行動計画生成部140は、現在の自車両Mの位置から、将来のある時刻における前方基準車両mBの位置や、車線変更先の車線の中央、且つ車線変更の終了地点までをスプライン曲線等の多項式曲線を用いて滑らかに繋ぎ、この曲線上に等間隔あるいは不等間隔で軌道点Kを所定個数配置する。この際、行動計画生成部140は、軌道点Kの少なくとも1つが車線変更ターゲット位置TA内に配置されるように軌道を生成する。これによって、自車両Mを自車線から隣接車線へと車線変更させる目標軌道が生成される。
 また、行動計画生成部140は、車線変更ターゲット位置TAに他車両が障害物として存在していないことに加えて、更に、車線変更先の車線と自車線との間を区画する区画線が、車線変更の禁止(はみ出しの禁止)を表す道路標示(例えば黄色実線)でないこと、車線変更先の車線が認識されていること(実在していること)、車両センサ40により検出されたヨーレートが閾値未満であること、車線変更時に出力されることが想定される自車両Mの速度Vが上限速度(例えば135[km/h]程度)未満であること、といった各種条件を満たす場合に、目標軌道を生成してもよい。車線変更ターゲット位置TAに他車両が障害物として存在していないことや、車線変更先の車線と自車線との間を区画する区画線が、車線変更の禁止(はみ出しの禁止)を表す道路標示でないこと、車線変更先の車線が認識されていること、ヨーレートが閾値未満であること、車線変更時に出力されることが想定される自車両Mの速度Vが上限速度未満であること、といった各種条件は、「自車両が自車線から隣接車線へと車線変更するための条件」の一例である。
 第2制御部160は、行動計画生成部140によって生成された目標軌道を、予定の時刻通りに自車両Mが通過するように、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御する。第2制御部160は、「走行制御部」の一例である。
 第2制御部160は、例えば、第2制御部側取得部162と、速度制御部164と、操舵制御部166とを備える。第2制御部側取得部162は、行動計画生成部140により生成された目標軌道(軌道点)の情報を取得し、メモリ(不図示)に記憶させる。速度制御部164は、メモリに記憶された目標軌道に速度要素として含まれる目標速度に基づいて、走行駆動力出力装置200またはブレーキ装置210を制御する。操舵制御部166は、メモリに記憶された目標軌道の曲がり具合(曲率)に応じて、ステアリング装置220を制御する。速度制御部164および操舵制御部166の処理は、例えば、フィードフォワード制御とフィードバック制御との組み合わせにより実現される。一例として、操舵制御部166は、自車両Mの前方の道路の曲率に応じたフィードフォワード制御と、目標軌道からの乖離に基づくフィードバック制御とを組み合わせて実行する。
 例えば、メモリに記憶された目標軌道が車線変更イベントや車線変更を伴うイベントに応じて生成された目標軌道である場合、速度制御部164および操舵制御部166は、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御して、自車両Mを車線変更させる自動車線変更を実施する。なお、第2制御部160は、自動車線変更を実施する際、ウィンカー80を作動させてよい。「作動」とは、例えば、点灯していないウィンカー80を点灯させること、点灯しているウィンカー80を消灯させること、ウィンカー80を点滅させることを含む。
 第3制御部180は、行動計画生成部140によって計画された複数のイベントの中から所定のイベントが起動される場合、自車両Mの速度Vに応じて、所定イベントに基づく第2制御部による自車両Mの走行制御を抑制する。所定のイベントとは、上述した車線変更イベントや、合流イベント、分岐イベント、追い越しイベントなどの車線変更を伴うイベントである。
 第3制御部180は、例えば、第3制御部側取得部182と、切替制御部184と、HMI制御部186と、乗員状態判定部188と、抑制制御部190とを備える。
 第3制御部側取得部182は、行動計画生成部140によって所定のイベントが起動され目標軌道が生成される際に、所定のイベントが起動されることを示すイベント起動情報を行動計画生成部140から取得する。
 切替制御部184は、カメラ10やレーダ装置12、ファインダ14、物体認識装置16、車両センサ40、操作量検出センサ90b、接触検出センサ90cなどの検出結果と、後述する乗員状態判定部188による判定結果に基づいて、自車両Mの制御モードを制御する。自車両Mの制御モードには、例えば、手動運転モード、第1自動運転モード、第2自動運転モードなどが含まれる。第1自動運転モードは、「第1モード」の一例であり、第2自動運転モードは、「第2モード」の一例である。
 手動運転モードは、自車両Mの乗員によって操作されたときの運転操作子90の操作量に応じて、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220が制御されるモードである。
 第1自動運転モードは、自車両Mの乗員がステアリングホイール90aを把持している状態(以下、ハンズオン状態と称する)である場合に、第2制御部160によって、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220が制御されるモードである。第1自動運転モードは、例えば、高速道路のランプウェイなどの高低差があるカーブ路や料金所付近、交差点など、単純な直線形状の道路と比べて自動運転の難易度が高い区間で実行される。第1自動運転モードは、「第1モード」の一例である。
 第2自動運転モードは、第1自動運転モードに比して、乗員に要求されるタスクが低いモードであり、自車両Mの乗員がステアリングホイール90aを把持していない状態(以下、ハンズオフ状態と称する)である場合に、第2制御部160によって、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220が制御されるモードである。第2自動運転モードは、例えば、第1自動運転モードに比して自動運転の難易度が低い、道路の形状が直線形状である区間(例えば高速道路の本線など)で実行される。従って、第2自動運転モードでは、第1自動運転モードに比して自動運転の制御の度合が高くなる。なお、第2自動運転モードでは、必ずしも乗員がハンズオフ状態である必要はなく、ハンズオン状態であってもよい。第2自動運転モードは、「第2モード」の一例である。
 例えば、切替制御部184は、第3制御部側取得部182によって取得されたイベント起動情報が高速道路のランプウェイでのイベントを表している場合、自車両Mの制御モードを第1自動運転モードに切り替える。
 また、例えば、切替制御部184は、第3制御部側取得部182によって取得されたイベント起動情報が高速道路の本線でのイベントを表している場合、自車両Mの制御モードを第2自動運転モードに切り替える。
 また、例えば、切替制御部184は、自車両Mの制御モードが第1自動運転モードまたは第2自動運転モードである場合に、自車両Mの乗員が、アクセルペダル、ブレーキペダル、またはステアリングホイール90aのうち少なくとも一つ以上を所定の操作量以上で操作した場合に、自車両Mの制御モードをいずれかの自動運転モードから手動運転モードに切り替える。
 また、例えば、切替制御部184は、第3制御部側取得部182によって取得されたイベント起動情報が所定のイベントであることを表し、更に、自車両Mの速度Vが所定速度VTh(例えば50[km/h]や60[km/h]程度)以下である場合に、自車両Mの制御モードを第1自動運転モードに切り替える。すなわち、切替制御部184は、車線変更が行われる場合に自車両Mの速度Vが所定速度VTh以下である場合、自動運転によって車線変更を実施するために、自車両Mの制御モードを、乗員にハンズオンを要求するモードに切り替える。
 HMI制御部186は、例えば、切替制御部184により自車両Mの制御モードが切り替えられた場合、そのモードの切り替えに関する情報を、HMI30の各表示装置やスピーカなどに出力させる。
 乗員状態判定部188は、例えば、ステアリングホイール90aに設けられた操作量検出センサ90bの検出結果や、接触検出センサ90cの検出結果に基づいて、自車両Mの乗員がハンズオン状態であるのか、またはハンズオフ状態であるのかを判定する。例えば、乗員状態判定部188は、ステアリングホイール90aに設けられた操作量検出センサ90bによって検出された操舵トルクが閾値以上である場合、自車両Mの乗員がハンズオン状態であると判定してよい。この閾値は、例えば、乗員がステアリングホイール90aを把持している場合にシャフトに与えられる操舵トルクよりも低い値に設定されている。また、乗員状態判定部188は、接触検出センサ90cから静電容量が閾値以上であることを示す所定の検出信号が入力された場合、自車両Mの乗員がハンズオン状態であると判定してよい。また、乗員状態判定部188は、車室内カメラ70の撮像画像を解析して、自車両Mの乗員がハンズオン状態であるか否かを判定してもよい。
 抑制制御部190は、第3制御部側取得部182によって取得されたイベント起動情報が所定のイベントであることを表し、且つ車両センサ40により検出された自車両Mの速度Vが所定速度VTh以下である場合に、所定のイベントに応じて生成された目標軌道に基づく制御を抑制するように第2制御部160に指示する。すなわち、抑制制御部190は、車線変更イベントまたは車線変更を伴うイベントが実行される場合に、自車両Mの速度Vが所定速度VTh以下である場合、第2制御部160による自動車線変更を抑制する。なお、抑制制御部190は、自動車線変更を抑制するよう第2制御部160に指示する代わりに、所定のイベントに応じた目標軌道の生成を停止するように行動計画生成部140に指示してもよい。また、抑制制御部190は、上記の各種条件を判定させる処理を抑制させる(例えば停止させる)ことで、行動計画生成部140が目標軌道を生成することを停止させてもよい。これによって、第2制御部160による自動車線変更が抑制される。
 [処理フロー]
 以下、第3制御部180による一連の処理の流れを、フローチャートを用いて説明する。図6は、第1実施形態の第3制御部180による一連の処理の流れの一例を示すフローチャートである。本フローチャートの処理は、第3制御部側取得部182によって取得されたイベント起動情報が所定のイベントを表す情報である場合に実行される。すなわち、本フローチャートの処理は、所定のイベントが計画された区間に自車両Mが到達した場合や、車線変更開始スイッチ30aまたはウィンカーレバー90dが操作された場合に実行される。また、本フローチャートの処理は、HMI30に含まれる各種スイッチやレバーが自車両Mの乗員によって操作された場合に開始されてもよい。以下の説明では、車線変更ターゲット位置TAを設定する際に、前方基準車両mBと後方基準車両mCとのうち、少なくとも後方基準車両mCとなる他車両が認識部130によって認識されていないものとして説明する。すなわち、レーダ装置12やファインダ14といった各種センサの検出範囲内において、自車両Mの後側方に他車両が存在していないものとする。後側方とは、例えば、自車線に隣接する隣接車線において、自車両Mのドアミラーの位置よりも車両後方側の領域である。また、後側方に対して前側方とは、自車線に隣接する隣接車線において、自車両Mのドアミラーの位置よりも車両前方側の領域である。
 なお、本フローチャートの処理とは別に、行動計画生成部140によって、車線変更ターゲット位置TAに他車両が障害物として存在していないことや、車線変更先の車線と自車線との間を区画する区画線が車線変更の禁止(はみ出しの禁止)を表す道路標示でないこと、車線変更先の車線が認識されていること、ヨーレートが閾値未満であること、車線変更時に出力されることが想定される自車両Mの速度Vが上限速度未満であること、といった各種条件が満たされるか否かに応じて隣接車線への車線変更が可能であるか否かが判定される。
 まず、抑制制御部190は、車両センサ40から入力された情報に基づいて、自車両Mの速度Vが所定速度VTh以下であるか否かを判定する(ステップS100)。例えば、自車両Mの前方に前走車両mAが存在し、この前走車両mAが自車両Mよりも遅い場合、行動計画生成部140によって追い越しイベントが計画される。このような場合、隣接車線への車線変更が可能であると判定されるまで(上記判定条件が満たされるまで)、行動計画生成部140は、前走車両mAとの車間距離が一定となるように自車両Mを徐々に減速させる目標軌道を生成し、これを第2制御部160に出力する。これによって、自車両Mは減速しながら自車線上で車線変更を待機することになる。このとき、減速の加減によっては自車両Mの速度Vがやむなく所定速度VTh以下となる場合がある。また、自車線の制限速度が所定速度VTh以下に設定されていたり、自車両Mの乗員によって上限速度が所定速度VTh以下に設定されていたりする場合、自車両Mの速度Vが所定速度VTh以下となる。
 抑制制御部190は、自車両Mの速度Vが所定速度VThを超えると判定した場合、第2制御部160による自動車線変更を抑制せず、行動計画生成部140によって所定のイベントに応じて生成された目標軌道に基づいて、第2制御部160に自動車線変更を行わせる(ステップS102)。例えば、仮に、自車両Mの後側方のセンサの検出範囲外に他車両が存在し、この認識できていない他車両の速度が80[km/h]~100[km/h]程度の大きい速度であっても、自車両Mの速度Vが所定速度VThを超えているため、認識できていない他車両と自車両Mとの相対速度が小さくなる。この結果、車線変更を開始した後に、センサの検出範囲外に存在する他車両がセンサの検出範囲内に進入した場合であっても、車線変更先の隣接車線において他車両との間に十分な車間距離を保つことができるため、車線変更を途中で中断したり、車線変更中に自車両Mを急に加速させたりするのを抑制することができる。
 一方、抑制制御部190は、自車両Mの速度Vが所定速度VTh以下であると判定した場合、自車両Mの速度Vと、車線変更先である隣接車線の基準速度との速度差分を導出する(ステップS104)。例えば、抑制制御部190は、認識部130によって隣接車線の速度制限標識が認識された場合、その速度制限標識に表示された数字から隣接車線の制限速度を特定し、特定した制限速度を隣接車線の基準速度として導出する。また、抑制制御部190は、認識部130によって隣接車線上で認識された一以上の他車両の平均速度などを隣接車線の基準速度として導出してもよい、そして、抑制制御部190は、導出した隣接車線の基準速度と自車両Mの速度Vとを比較して、これらの速度差分を導出する。
 次に、抑制制御部190は、速度差分が閾値以下であるか否かを判定する(ステップS106)。抑制制御部190は、速度差分が閾値以下であると判定した場合、S102に処理を進め、第2制御部160による自動車線変更を抑制せず、行動計画生成部140によって所定のイベントに応じて生成された目標軌道に基づいて、第2制御部160に自動車線変更を行わせる。
 一方、抑制制御部190は、速度差分が閾値を超えると判定した場合、第2制御部160による自動車線変更を抑制する(ステップS108)。例えば、抑制制御部190は、自動車線変更に伴う第2制御部160の制御の一部を停止させることで自動車線変更を抑制してもよいし、全部を停止させることで自動車線変更を抑制してもよい。例えば、抑制制御部190は、第2制御部160に対して、隣接車線へ向けた自車両Mの操舵制御を中止させ、車線維持といった操舵制御や、定速走行といった速度制御などは継続させることで、自動車線変更を抑制する。これによって本フローチャートの処理が終了する。
 図7は、自動車線変更が抑制される場面の一例を示す図である。例えば、時刻t1の場面では、前走車両mAの速度VmAが所定速度VTh以下であり、自車両Mの速度Vが前走車両mAの速度VmAを超える速度であることを表している。このような場合、自車両Mに前走車両mAを追い越させるために、図示のように、自車両Mの乗員がウィンカーレバー90dを右側に倒し、自動運転制御ユニット100に車線変更を指示することが想定される。ウィンカーレバー90dが操作された場合、行動計画生成部140は、自車両Mを自車線L1から右側の隣接車線L2へと車線変更させる車線変更イベントを計画する。なお、上述したように、ウィンカーレバー90dが操作されるほか、分岐地点や合流地点の手前に自車両Mが到達した場合や、前走車両mAを追い越す場合に、行動計画生成部140は、車線変更イベントや車線変更を伴う他のイベントを計画してよい。
 そして、行動計画生成部140は、隣接車線L2上に車線変更ターゲット位置TAを設定し、上述した各種条件を満たすか否かを判定する。時刻t2の場面では、前方基準車両mBと後方基準車両mCとのうち、後方基準車両mCが認識部130によって認識されていないことから、車線変更ターゲット位置TAは、前方基準車両mBの後方に設定される。
 例えば、行動計画生成部140は、隣接車線L2上に車線変更ターゲット位置TAを設定したものの、車線変更ターゲット位置TAに他車両が障害物として存在していたり、車線変更先の車線と自車線との間を区画する区画線が車線変更の禁止する区間線であったりした場合、車線変更を可能と判定する条件を満たさないことから、自車線L1を維持させる目標軌道を生成し続ける。この際、行動計画生成部140は、自車両Mと前走車両mAとの相対距離を一定に保つため、目標軌道に速度要素として含める目標速度を小さくすることで、自車両Mを減速させる。この結果、時刻t2の場面のように、自車両Mの速度Vが前走車両の速度VmAと数[%]~十数[%]程度の誤差の範囲で同じになり、自車両Mの速度Vが所定速度VTh以下となる場合がある。この場合、抑制制御部190は、自車両Mの速度Vと隣接車線L2の基準速度VL2との速度差分を求め、この速度差分が閾値を超える場合、時刻t3の場面で示すように、仮に、時刻t2から時刻t3の間において行動計画生成部140によって車線変更が可能であると判定された場合であっても、第2制御部160による自動車線変更を抑制する。これを受けて、行動計画生成部140は、自車両Mに自車線L1を維持させるような目標軌道を生成し、第2制御部160に出力する。このような制御によって、自車両Mが所定速度VThよりも遅い場合、後方基準車両mCの候補となる他車両が、センサの検出範囲外から自車両Mの速度Vよりも大きい速度(例えば速度差分が閾値以上となる速度)で進入してくることを考慮して、車線変更をせずに自車線L1上で待機させておくことができる。
 [その他(1)の処理フロー]
 また、第3制御部180は、図8に示すフローチャートに従って自動車線変更を抑制するか否かを決定してもよい。図8は、第1実施形態の第3制御部180による一連の処理の流れの他の例を示すフローチャートである。本フローチャートの処理も、図6に例示したフローチャートの処理と同様に、第3制御部側取得部182によって取得されたイベント起動情報が所定のイベントを表す情報である場合に実行される。また、本フローチャートの処理とは別に、行動計画生成部140によって隣接車線への車線変更が可能であるか否かが判定されるものとする。
 まず、抑制制御部190は、車両センサ40から入力された情報に基づいて、自車両Mの速度Vが所定速度VTh以下であるか否かを判定する(ステップS200)。
 抑制制御部190は、自車両Mの速度Vが所定速度VThを超えると判定した場合、第2制御部160による自動車線変更を抑制せず、行動計画生成部140によって所定のイベントに応じて生成された目標軌道に基づいて、第2制御部160に自動車線変更を行わせる(ステップS202)。
 一方、抑制制御部190は、自車両Mの速度Vが所定速度VTh以下であると判定した場合、自車両Mの制御モードが第1自動運転モード(ハンズオンが必要な自動運転モード)であるか否かを判定する(ステップS204)。
 抑制制御部190は、自車両Mの制御モードが第1自動運転モードであると判定した場合、すなわち、自車両Mの乗員がハンズオン状態である場合、自車両Mの速度Vが所定速度VTh以下であっても自動車線変更が可能であることから、S202に処理を進め、第2制御部160による自動車線変更を抑制せず、行動計画生成部140によって所定のイベントに応じて生成された目標軌道に基づいて、第2制御部160に自動車線変更を行わせる。
 一方、抑制制御部190によって自車両Mの制御モードが第1自動運転モードでなく、第2自動運転モード(ハンズオンが必要ない自動運転モード)であると判定された場合、すなわち、自車両Mの乗員がハンズオフ状態である場合、自車両Mの速度Vが所定速度VTh以下であるという条件下において自動車線変更を行うために、HMI制御部186は、HMI30の各表示装置に、自車両Mの乗員にハンズオンを要求する画面を表示させる(ステップS206)。なお、この際、HMI制御部186は、HMI30のスピーカから、ハンズオンを要求する音声を出力させてもよい。
 図9は、ハンズオンを要求する画面の一例を示す図である。図示の例のように、HMI制御部186は、「ステアリングホイール90aを掴んでください」といった文字や画像などを画面に表示させてよい。
 次に、乗員状態判定部188は、ステアリングホイール90aに設けられた操作量検出センサ90bの検出結果や、接触検出センサ90cの検出結果、車室内カメラ70の撮像画像の解析結果に基づいて、自車両Mの乗員がハンズオン状態であるのか否かを判定する(ステップS208)。
 乗員状態判定部188によって自車両Mの乗員がハンズオン状態であると判定された場合、切替制御部184は、自車両Mの制御モードを第2自動運転モードから第1自動運転モードに切り替える。これによって、自車両Mの速度Vが所定速度VTh以下であるときに自動車線変更を実施するための条件が成立するため、抑制制御部190は、S202に処理を進め、第2制御部160による自動車線変更を抑制せず、行動計画生成部140によって所定のイベントに応じて生成された目標軌道に基づいて、第2制御部160に自動車線変更を行わせる。
 一方、乗員状態判定部188によって自車両Mの乗員がハンズオン状態ではなく、ハンズオフ状態であると判定された場合、自車両Mの速度Vが所定速度VTh以下である条件下において自車両Mの制御モードを第2自動運転モードから第1自動運転モードに切り替えることができないため、抑制制御部190は、第2制御部160による自動車線変更を抑制する(ステップS210)。これによって本フローチャートの処理が終了する。このように、自動運転制御ユニット100は、自車両Mの速度Vが所定速度VTh以下である場合、本来であれば自動車線変更を抑制するところが、自車両Mの乗員がハンズオン状態であれば、乗員のステアリングホイール90aの操作によって咄嗟の操舵制御を行うことができるため、自動車線変更を抑制せずに、自動車線変更を実施させる。
 図10は、自動車線変更が抑制されない場面と抑制される場面とを対比させた図である。例えば、時刻t1の場面において、ウィンカーレバー90dが操作され、行動計画生成部140によって、自車両Mを自車線L1から右側の隣接車線L2へと車線変更させる車線変更イベントが計画されたとする。この場合、抑制制御部190は、自車両Mの速度Vが所定速度VTh以下であるか否かを判定する。例えば、時刻t1の次の時刻t2の場面では、自車両Mの速度Vが所定速度VTh以下となっているため、自車両Mの乗員にハンズオンが要求される。しかしながら、時刻t2の場面では、乗員がステアリングホイール90aから手を離し、ハンズオフ状態となっている。このような場合、抑制制御部190は、時刻t3の場面のように、第2制御部160による自動車線変更を抑制し、自車両Mを車線変更させずに自車線L1上で待機させる。
 一方、時刻t1の次の時刻t2#の場面では、時刻t2の場面と同様に、自車両Mの速度Vが所定速度VTh以下となっているため、自車両Mの乗員にハンズオンが要求される。時刻t2#の場面では、乗員がステアリングホイール90aに手を触れているため、ハンズオン状態となっている。従って、抑制制御部190は、時刻t3#の場面のように、第2制御部160による自動車線変更を抑制せず、自動車線変更を実施させる。
 [その他(2)の処理フロー]
 また、第3制御部180は、図11に示すフローチャートに従って自動車線変更を抑制するか否かを決定してもよい。図11は、第1実施形態の第3制御部180による一連の処理の流れの他の例を示すフローチャートである。本フローチャートの処理も、図6や図8に例示したフローチャートの処理と同様に、第3制御部側取得部182によって取得されたイベント起動情報が所定のイベントを表す情報である場合に実行される。また、本フローチャートの処理とは別に、行動計画生成部140によって隣接車線への車線変更が可能であるか否かが判定されるものとする。
 まず、抑制制御部190は、車両センサ40から入力された情報に基づいて、自車両Mの速度Vが所定速度VTh以下であるか否かを判定する(ステップS300)。
 抑制制御部190は、自車両Mの速度Vが所定速度VThを超えると判定した場合、行動計画生成部140によって既に隣接車線への車線変更が可能であると判定されているか否かを判定し(ステップS302)、行動計画生成部140によって未だ隣接車線への車線変更が可能であると判定されていない場合、S300に処理を戻す。
 一方、抑制制御部190は、行動計画生成部140によって既に隣接車線への車線変更が可能であると判定されている場合、第2制御部160による自動車線変更を抑制せず、行動計画生成部140によって所定のイベントに応じて生成された目標軌道に基づいて、第2制御部160に自動車線変更を行わせる(ステップS304)。
 一方、抑制制御部190は、自車両Mの速度Vが所定速度VTh以下であると判定した場合、自車両Mの制御モードが第1自動運転モード(ハンズオンが必要な自動運転モード)であるか否かを判定する(ステップS306)。抑制制御部190は、自車両Mの制御モードが第1自動運転モードであると判定した場合、自車両Mの速度Vが所定速度VTh以下である条件下で自車両Mの乗員がハンズオン状態であるため、S302に処理を進める。
 一方、抑制制御部190は、自車両Mの制御モードが第1自動運転モードでなく、第2自動運転モード(ハンズオンが必要ない自動運転モード)であると判定した場合、S302の処理と同様に、行動計画生成部140によって既に隣接車線への車線変更が可能であると判定されているか否かを判定し(ステップS308)、行動計画生成部140によって未だ隣接車線への車線変更が可能であると判定されていない場合、S300に処理を戻す。
 一方、行動計画生成部140によって既に隣接車線への車線変更が可能であると判定されている場合、自車両Mの乗員をハンズオン状態にさせ、自車両Mの制御モードを第2自動運転モードから第1自動運転モードに切り替えるために、HMI制御部186は、HMI30の各表示装置に、自車両Mの乗員にハンズオンを要求する画面を表示させたり、スピーカからハンズオンを要求する音声を出力させたりする(ステップS310)。
 次に、乗員状態判定部188は、ステアリングホイール90aに設けられた操作量検出センサ90bの検出結果や、接触検出センサ90cの検出結果、車室内カメラ70の撮像画像の解析結果に基づいて、自車両Mの乗員がハンズオン状態であるのか否かを判定する(ステップS312)。
 乗員状態判定部188によって車両Mの乗員がハンズオン状態であると判定されるまで、HMI制御部186は、HMI30にハンズオンを要求する画面を表示させたり、ハンズオンを要求する音声を出力させたりすることで、乗員にハンズオンを要求し続ける。なお、ハンズオンを要求してから所定時間内に乗員がハンズオン状態とならなかった場合、抑制制御部190は、第2制御部160による自動車線変更を抑制してよい。
 乗員状態判定部188によって車両Mの乗員がハンズオン状態であると判定された場合、切替制御部184は、自車両Mの制御モードを第2自動運転モードから第1自動運転モードに切り替える。これによって、自車両Mの速度Vが所定速度VTh以下であるときに自動車線変更を実施するための条件が成立するため、抑制制御部190は、S304に処理を進め、第2制御部160による自動車線変更を抑制せず、行動計画生成部140によって所定のイベントに応じて生成された目標軌道に基づいて、第2制御部160に自動車線変更を行わせる。これによって本フローチャートの処理が終了する。このように、自車両Mの速度Vが所定速度VTh以下である場合に、行動計画生成部140によって既に車線変更が可能であると判定されている場合、自車両Mの乗員がハンズオン状態となるまでは判定結果を保持し続けると共に、自動車線変更を抑制し、乗員がハンズオン状態となったタイミングで自動車線変更を実施させるため、センサの検出範囲外の他車両の存在を考慮しながら、車線変更が必要な場面でよりスムーズに車線変更を行うことができる。
 図12は、隣接車線への車線変更が可能であると判定された場合に、ハンズオン状態となるまで自動車線変更が抑制される場面の一例を示す図である。例えば、時刻t1の場面において、ウィンカーレバー90dが操作され、行動計画生成部140によって、自車両Mを自車線L1から右側の隣接車線L2へと車線変更させる車線変更イベントが計画されたとする。この場合、抑制制御部190は、自車両Mの速度Vが所定速度VTh以下であるか否かを判定する。例えば、時刻t1の次の時刻t2の場面では、自車両Mの速度Vが所定速度VTh以下となっているため、自車両Mの乗員によるハンズオンが必要となる。しかしながら、時刻t2の場面では、乗員がステアリングホイール90aから手を離し、ハンズオフ状態となっているため、次の時刻t3の場面では、HMI制御部186が、HMI30にハンズオンを要求する画面を表示させたり、ハンズオンを要求する音声を出力させたりすることで、乗員にハンズオンを要求する。この間、行動計画生成部140によって既に車線変更が可能であると判定されている場合であっても、抑制制御部190は、第2制御部160による自動車線変更を抑制し続ける。次に、時刻t4の場面において、乗員がステアリングホイール90aに手を触れ、ハンズオン状態となった場合に、次の時刻t5において、自動車線変更の抑制をキャンセルし、第2制御部160に自動車線変更を実施させる。
 以上説明した第1実施形態によれば、自車両Mの周辺状況を認識する認識部130と、認識部130により認識された周辺状況に基づいて、自車両Mが自車線から隣接車線へと車線変更するための条件を満たすか否かを判定し、行動計画生成部140により車線変更するための条件を満たすと判定した場合、自車両Mに車線変更させるための目標軌道を生成する行動計画生成部140と、行動計画生成部140により生成された目標軌道に基づいて自動車線変更制御を行う第2制御部160と、自車両Mの速度Vが所定速度VTh以下の場合に、第2制御部160に自動車線変更制御を抑制させたり、行動計画生成部140に車線変更の可否の判定処理を抑制させたりする抑制制御部190と、を備えることによって、車線変更先の走行状況に合わせた車線変更を行うことができる。
 例えば、自車両Mの後側方のセンサの検出範囲外に、認識できていない他車両が存在すると仮定した場合、自車両Mの速度Vが所定速度VTh以下である場合、認識できていない他車両の速度は、自車両Mと比べて相対的に大きくなる蓋然性が高い。この場合、認識できていない他車両と自車両Mとの相対速度が大きくなりやすいため、自車両Mが車線変更を開始した後に、センサの検出範囲外に存在する他車両がセンサの検出範囲内に進入してくると、車線変更先の隣接車線において他車両との間に十分な車間距離を保つことができない場合が生じる。これに対して、本実施形態では、自車両Mの速度Vが所定速度VTh以下である場合、車線変更を抑制するため、車線変更開始時には未だ認識できていない車線変更先の他車両の存在を考慮した上で車線変更を行うことができる。
 また、上述した第1実施形態によれば、自車両Mの速度Vが所定速度VTh以下である場合に、乗員がハンズオン状態である場合、自動車線変更を抑制しないため、より柔軟に自動車線変更を実施することができる。
 <第2実施形態>
 以下、第2実施形態について説明する。上述した第1実施形態では、自車両Mの速度Vが所定速度VTh以下であるときに、行動計画生成部140によって起動されるイベントが、車線変更イベントや、合流イベント、分岐イベント、追い越しイベントなどの車線変更を伴うイベントである場合、すなわち所定のイベントである場合、抑制制御部190が、これらのイベントに応じて生成された目標軌道に基づく自動車線変更を抑制するものとして説明した。これに対して、第2実施形態では、所定のイベントであってもイベントの必要不可否に応じて自動車線変更を抑制するか否かを決定する点で、上述した第1実施形態と異なる。以下、第1実施形態との相違点を中心に説明し、第1実施形態と共通する機能等についての説明は省略する。
 第2実施形態における抑制制御部190は、例えば、自車両Mの速度Vが所定速度VTh以下であるときに、第3制御部側取得部182によって取得されたイベント起動情報が、追い越しイベントといった目的地に到達するまでに必ずしも行う必要のない所定のイベントを表している場合、自動車線変更を抑制し、イベント起動情報が、合流イベントや分岐イベントといった目的地に到達するまでに必要不可欠な所定のイベントを表している場合、自動車線変更を抑制しない。
 図13は、所定のイベント時に自動車線変更が抑制されない場面の一例を示す図である。例えば、自車両Mの前方に分岐地点が存在し、行動計画生成部140によって分岐イベントが計画されたとする。この場合、抑制制御部190は、自車両Mの速度Vが所定速度VTh以下であるか否かを判定する。例えば、時刻t1の次の時刻t2の場面では、自車両Mの速度Vが所定速度VTh以下となっているため、自車両Mの乗員によるハンズオンが必要となる。しかしながら、時刻t2の場面では、乗員がステアリングホイール90aから手を離し、ハンズオフ状態となっている。しかしながら、分岐イベントは目的地に到達するまでに必要不可欠なイベントであることから、時刻t3の場面に示すように、抑制制御部190は、分岐イベントによる自動車線変更を抑制せず、第2制御部160に自動車線変更を行わせる。
 一方で、自車両Mの前方に分岐地点や合流地点が存在せず、前走車両mAが自車両Mよりも遅いことに起因して計画された追い越しイベントの場合、抑制制御部190は、上述した第1実施形態と同様に、自動車線変更を抑制する。
 以上説明した第2実施形態によれば、車線変更をせずに自車線を走行したままでも目的地に到達できるような場合には、センサの検出範囲外から他車両が進行してくることを考慮して自動車線変更を抑制し、車線変更をしなければ目的地に到達できない、或いは目的地に到達するまでに大幅にタイムロスしてしまう場合には、自動車線変更を抑制せずに、自動車線変更を実施するため、車線変更先の走行状況に合わせながら、目的地に到達することを優先した車線変更を行うことができる。
 [ハードウェア構成]
 上述した実施形態の自動運転制御ユニット100は、例えば、図14に示すようなハードウェアの構成により実現される。図14は、実施形態の自動運転制御ユニット100のハードウェア構成の一例を示す図である。
 自動運転制御ユニット100は、通信コントローラ100-1、CPU100-2、RAM(Random Access Memory)100-3、ROM(Read Only Memory)100-4、フラッシュメモリやHDD等の二次記憶装置100-5、およびドライブ装置100-6が、内部バスあるいは専用通信線によって相互に接続された構成となっている。ドライブ装置100-6には、光ディスク等の可搬型記憶媒体が装着される。二次記憶装置100-5に格納されたプログラム100-5aがDMAコントローラ(不図示)等によってRAM100-3に展開され、CPU100-2によって実行されることで、第1制御部120、第2制御部160、および第3制御部180が実現される。また、CPU100-2が参照するプログラムは、ドライブ装置100-6に装着された可搬型記憶媒体に格納されていてもよいし、ネットワークを介して他の装置からダウンロードされてもよい。
 上記実施形態は、以下のように表現することができる。
 情報を記憶するストレージと、
 前記ストレージに格納されたプログラムを実行するプロセッサと、を備え、
 前記プロセッサは、前記プログラムを実行することにより、
 自車両の周辺状況を認識し、
 前記認識した周辺状況に基づいて、前記自車両が自車線から隣接車線へと車線変更するための条件を満たすか否かを判定し、
 前記条件を満たすと判定した場合に、前記自車両の加減速および操舵を制御して、前記自車両を前記自車線から前記隣接車線へと車線変更させる車線変更制御を行い、
 前記自車両の速度が所定速度以下の場合に、前記車線変更制御を抑制するように構成された、
 車両制御システム。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。例えば、上述した実施形態の車両システム1は、ALC(Auto Lane Change)等の運転支援を行うシステムに適用されてもよい。
 1…車両システム、10…カメラ、12…レーダ装置、14…ファインダ、16…物体認識装置、20…通信装置、30…HMI、30a…車線変更開始スイッチ、40…車両センサ、50…ナビゲーション装置、60…MPU、70…車室内カメラ、80…ウィンカー、90…運転操作子、90a…ステアリングホイール、90b…操作量検出センサ、90c…接触検出センサ、90d…ウィンカーレバー、90e…レバー操作検出センサ、100…自動運転制御ユニット、120…第1制御部、130…認識部、140…行動計画生成部、160…第2制御部、162…第2制御部側取得部、164…速度制御部、166…操舵制御部、180…第3制御部、182…第3制御部側取得部、184…切替制御部、186…HMI制御部、188…乗員状態判定部、190…抑制制御部、200…走行駆動力出力装置、210…ブレーキ装置、220…ステアリング装置

Claims (11)

  1.  自車両の周辺状況を認識する認識部と、
     前記認識部により認識された周辺状況に基づいて、前記自車両が自車線から隣接車線へと車線変更するための条件を満たすか否かを判定する判定部と、
     前記判定部により前記条件を満たすと判定された場合に、前記自車両の加減速および操舵を制御して、前記自車両を前記自車線から前記隣接車線へと車線変更させる車線変更制御を行う走行制御部と、を備え、
     前記自車両の速度が所定速度以下の場合に、前記車線変更制御を抑制する、
     車両制御システム。
  2.  前記自車両の速度が所定速度以下の場合に、前記走行制御部に、前記車線変更制御を行うことを抑制させる抑制制御部を更に備える、
     請求項1に記載の車両制御システム。
  3.  前記自車両の速度が所定速度以下の場合に、前記判定部に、前記条件を満たすか否かを判定する判定処理を抑制させることで、前記車線変更制御を抑制する抑制制御部を更に備える、
     請求項1に記載の車両制御システム。
  4.  前記抑制制御部は、
      前記認識部により認識された周辺状況に基づいて、前記隣接車線の基準となる基準速度を導出し、
     前記導出した基準速度と前記自車両の速度との差分が閾値以下の場合に、前記走行制御部による前記車線変更制御を抑制しない、
     請求項2または3に記載の車両制御システム。
  5.  前記自車両の乗員により操作され、前記自車両の進行方向を調節する操作部と、
     前記乗員により前記操作部が操作されたことを検出する検出部と、を更に備え、
     前記抑制制御部は、
      前記検出部によって前記操作部が操作されたことが検出された場合、前記走行制御部による前記車線変更制御を抑制せず、
      前記検出部によって前記操作部が操作されたことが検出されない場合、前記走行制御部による前記車線変更制御を抑制する、
     請求項2から4のうちいずれか1項に記載の車両制御システム。
  6.  前記自車両の乗員により操作される操作部を更に備え、
     前記抑制制御部は、
      前記自車両の制御モードが、前記乗員に前記操作部の操作を要求する第1モードである場合に、前記走行制御部による前記車線変更制御を抑制せず、
      前記自車両の制御モードが、前記乗員に前記操作部の操作を要求しない第2モードである場合に、前記走行制御部による前記車線変更制御を抑制する、
     請求項2から5のうちいずれか1項に記載の車両制御システム。
  7.  前記自車両の乗員により操作される操作部を更に備え、
     前記抑制制御部は、
      前記自車両の制御モードが前記乗員に前記操作部の操作を要求しない第2モードであるときに前記判定部により前記条件を満たすと判定され、且つ前記自車両の速度が所定速度以下の場合に、前記自車両の制御モードが前記第2モードから前記乗員に前記操作部の操作を要求する第1モードに遷移するまで、前記走行制御部による前記車線変更制御を抑制し、
      前記自車両の制御モードが前記第2モードから前記第1モードに遷移した場合に、前記車線変更制御を抑制せずに、前記走行制御部に前記車線変更制御を行わせる、
     請求項2から6のうちいずれか1項に記載の車両制御システム。
  8.  前記乗員により前記操作部が操作されたことを検出する検出部と、
     前記認識部による認識結果および前記検出部による検出結果の少なくとも一方に基づいて、前記自車両の制御モードを、前記第1モードと前記第2モードとの間で切り替える切替制御部と、を更に備える、
     請求項6または7に記載の車両制御システム。
  9.  前記判定部は、前記自車線において前記自車両の前方に他車両が存在することが前記認識部により認識された場合、前記自車線において前記自車両の前方に前記他車両が存在する状況下で前記条件を満たすか否かを判定し、
     前記抑制制御部は、前記自車線において前記自車両の前方に前記他車両が存在する状況下で前記判定部により前記条件を満たすと判定された場合に、前記自車両の速度が所定速度以下の場合、前記走行制御部による前記車線変更制御を抑制する、
     請求項2から8のうちいずれか1項に記載の車両制御システム。
  10.  車載コンピュータが、
     自車両の周辺状況を認識し、
     前記認識した周辺状況に基づいて、前記自車両が自車線から隣接車線へと車線変更するための条件を満たすか否かを判定し、
     前記条件を満たすと判定した場合に、前記自車両の加減速および操舵を制御して、前記自車両を前記自車線から前記隣接車線へと車線変更させる車線変更制御を行い、
     前記自車両の速度が所定速度以下の場合に、前記車線変更制御を抑制する、
     車両制御方法。
  11.  車載コンピュータに、
     自車両の周辺状況を認識させ、
     前記認識させた周辺状況に基づいて、前記自車両が自車線から隣接車線へと車線変更するための条件を満たすか否かを判定させ、
     前記条件を満たすと判定させた場合に、前記自車両の加減速および操舵を制御して、前記自車両を前記自車線から前記隣接車線へと車線変更させる車線変更制御を行わせ、
     前記自車両の速度が所定速度以下の場合に、前記車線変更制御を抑制させる、
     プログラム。
PCT/JP2018/006918 2018-02-26 2018-02-26 車両制御システム、車両制御方法、およびプログラム WO2019163121A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020501976A JP6972294B2 (ja) 2018-02-26 2018-02-26 車両制御システム、車両制御方法、およびプログラム
CN201880089956.XA CN111771234B (zh) 2018-02-26 2018-02-26 车辆控制系统、车辆控制方法及存储介质
US16/970,983 US11396297B2 (en) 2018-02-26 2018-02-26 Vehicle control system, vehicle control method, and program
PCT/JP2018/006918 WO2019163121A1 (ja) 2018-02-26 2018-02-26 車両制御システム、車両制御方法、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006918 WO2019163121A1 (ja) 2018-02-26 2018-02-26 車両制御システム、車両制御方法、およびプログラム

Publications (1)

Publication Number Publication Date
WO2019163121A1 true WO2019163121A1 (ja) 2019-08-29

Family

ID=67687020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006918 WO2019163121A1 (ja) 2018-02-26 2018-02-26 車両制御システム、車両制御方法、およびプログラム

Country Status (4)

Country Link
US (1) US11396297B2 (ja)
JP (1) JP6972294B2 (ja)
CN (1) CN111771234B (ja)
WO (1) WO2019163121A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640312A (zh) * 2020-06-11 2020-09-08 腾讯科技(深圳)有限公司 一种车辆限速确定方法和相关装置
CN112622908A (zh) * 2019-10-07 2021-04-09 本田技研工业株式会社 车辆控制装置、车辆控制方法及存储介质
CN113104038A (zh) * 2021-03-31 2021-07-13 江铃汽车股份有限公司 车辆换道控制方法、装置、电子设备及可读存储介质
WO2021166426A1 (ja) * 2020-02-21 2021-08-26 株式会社デンソー 走行支援装置、走行支援方法、および走行支援プログラム
JP2021149118A (ja) * 2020-03-16 2021-09-27 本田技研工業株式会社 移動体制御装置、移動体及び移動体制御方法
WO2021193134A1 (ja) * 2020-03-25 2021-09-30 日立Astemo株式会社 情報処理装置、車載制御装置
JP2022067561A (ja) * 2020-10-20 2022-05-06 トヨタ自動車株式会社 自動運転システム
JP2022106190A (ja) * 2021-01-06 2022-07-19 本田技研工業株式会社 車両制御装置、車両制御装置の動作方法およびプログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771234B (zh) * 2018-02-26 2022-08-23 本田技研工业株式会社 车辆控制系统、车辆控制方法及存储介质
JP7243389B2 (ja) * 2019-03-29 2023-03-22 マツダ株式会社 車両走行制御装置
JP7303667B2 (ja) * 2019-05-31 2023-07-05 株式会社Subaru 自動運転支援装置
DE102020000593A1 (de) * 2020-01-30 2021-08-05 Daimler Ag Verfahren zum Betrieb eines Assistenzsystems
US11904890B2 (en) * 2020-06-17 2024-02-20 Baidu Usa Llc Lane change system for lanes with different speed limits
JP2022041288A (ja) * 2020-08-31 2022-03-11 トヨタ自動車株式会社 車両用表示装置、表示方法及びプログラム
CN112896166A (zh) * 2021-03-01 2021-06-04 苏州挚途科技有限公司 车辆换道方法、装置和电子设备
FR3121902A1 (fr) * 2021-04-19 2022-10-21 Psa Automobiles Sa Pilotage autonome d’un véhicule sous la supervision du conducteur
JP7335381B1 (ja) 2022-03-16 2023-08-29 本田技研工業株式会社 運転支援装置、車両、運転支援方法、およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197390A (ja) * 2015-04-03 2016-11-24 株式会社デンソー 起動提案装置及び起動提案方法
JP2016207060A (ja) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 車線変更支援装置
WO2017141788A1 (ja) * 2016-02-18 2017-08-24 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824784B2 (ja) 1998-06-30 2006-09-20 富士通株式会社 走行支援装置、車線変更可否判断装置、その方法及び記録媒体
JP2004210109A (ja) * 2002-12-27 2004-07-29 Yazaki Corp 車線変更支援装置
JP3925474B2 (ja) * 2003-07-18 2007-06-06 日産自動車株式会社 車線変更支援装置
JP2009274594A (ja) * 2008-05-15 2009-11-26 Hitachi Ltd 車線変更支援装置
JP4739400B2 (ja) * 2008-12-22 2011-08-03 日立オートモティブシステムズ株式会社 車両運転支援システム
WO2013145274A1 (ja) * 2012-03-30 2013-10-03 トヨタ自動車株式会社 運転支援装置
JP6241341B2 (ja) * 2014-03-20 2017-12-06 アイシン・エィ・ダブリュ株式会社 自動運転支援装置、自動運転支援方法及びプログラム
JP6407431B2 (ja) * 2014-11-18 2018-10-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 後方から急接近中の車両を示す出力、又は、後方から極度に急接近中の車両を示す出力に応答して、ホスト車両の運転者に警告を与える、又は、ホスト車両を自律制御するためのレーンアシストシステム及び方法
US9538334B2 (en) * 2015-01-15 2017-01-03 GEOTAB Incorporated Telematics furtherance visualization system
JP6078116B2 (ja) * 2015-07-09 2017-02-08 富士重工業株式会社 車両の運転支援装置
JP6446731B2 (ja) 2015-07-15 2019-01-09 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
JP6617534B2 (ja) * 2015-11-30 2019-12-11 株式会社デンソー 運転支援装置
JP6657881B2 (ja) * 2015-12-04 2020-03-04 株式会社デンソー 車両制御装置
JP2017114195A (ja) * 2015-12-22 2017-06-29 トヨタ自動車株式会社 車両制御装置
EP3196861B1 (de) * 2016-01-19 2023-08-02 Continental Autonomous Mobility Germany GmbH Verfahren und vorrichtung zur unterstützung eines fahrspurwechsels bei einem fahrzeug
JP6647389B2 (ja) 2016-03-29 2020-02-14 本田技研工業株式会社 自動運転制御装置
JP6493272B2 (ja) * 2016-03-30 2019-04-03 株式会社デンソー 走行支援装置
JP6390035B2 (ja) * 2016-05-23 2018-09-19 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JP6958001B2 (ja) * 2017-06-09 2021-11-02 トヨタ自動車株式会社 車線変更支援装置
JP6666883B2 (ja) * 2017-09-01 2020-03-18 株式会社Subaru 走行支援装置
JP2019043432A (ja) * 2017-09-05 2019-03-22 本田技研工業株式会社 車両制御システム、車両制御方法、およびプログラム
JP6859931B2 (ja) * 2017-11-15 2021-04-14 トヨタ自動車株式会社 自動運転システム
CN111771234B (zh) * 2018-02-26 2022-08-23 本田技研工业株式会社 车辆控制系统、车辆控制方法及存储介质
US11287814B2 (en) * 2018-08-07 2022-03-29 GM Global Technology Operations LLC Lane change detection system and method for an autonomous vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197390A (ja) * 2015-04-03 2016-11-24 株式会社デンソー 起動提案装置及び起動提案方法
JP2016207060A (ja) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 車線変更支援装置
WO2017141788A1 (ja) * 2016-02-18 2017-08-24 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112622908B (zh) * 2019-10-07 2024-04-02 本田技研工业株式会社 车辆控制装置、车辆控制方法及存储介质
CN112622908A (zh) * 2019-10-07 2021-04-09 本田技研工业株式会社 车辆控制装置、车辆控制方法及存储介质
JP7283416B2 (ja) 2020-02-21 2023-05-30 株式会社デンソー 走行支援装置、走行支援方法、および走行支援プログラム
JP2021133689A (ja) * 2020-02-21 2021-09-13 株式会社デンソー 走行支援装置、走行支援方法、および走行支援プログラム
WO2021166426A1 (ja) * 2020-02-21 2021-08-26 株式会社デンソー 走行支援装置、走行支援方法、および走行支援プログラム
JP7241046B2 (ja) 2020-03-16 2023-03-16 本田技研工業株式会社 移動体制御装置、移動体及び移動体制御方法
JP2021149118A (ja) * 2020-03-16 2021-09-27 本田技研工業株式会社 移動体制御装置、移動体及び移動体制御方法
WO2021193134A1 (ja) * 2020-03-25 2021-09-30 日立Astemo株式会社 情報処理装置、車載制御装置
JP2021157207A (ja) * 2020-03-25 2021-10-07 日立Astemo株式会社 情報処理装置、車載制御装置
JP7337741B2 (ja) 2020-03-25 2023-09-04 日立Astemo株式会社 情報処理装置、車載制御装置
CN111640312A (zh) * 2020-06-11 2020-09-08 腾讯科技(深圳)有限公司 一种车辆限速确定方法和相关装置
JP2022067561A (ja) * 2020-10-20 2022-05-06 トヨタ自動車株式会社 自動運転システム
JP7359127B2 (ja) 2020-10-20 2023-10-11 トヨタ自動車株式会社 自動運転システム
US11904862B2 (en) 2020-10-20 2024-02-20 Toyota Jidosha Kabushiki Kaisha Automated driving system
JP2022106190A (ja) * 2021-01-06 2022-07-19 本田技研工業株式会社 車両制御装置、車両制御装置の動作方法およびプログラム
JP7291162B2 (ja) 2021-01-06 2023-06-14 本田技研工業株式会社 車両制御装置、車両制御装置の動作方法およびプログラム
CN113104038B (zh) * 2021-03-31 2022-12-20 江铃汽车股份有限公司 车辆换道控制方法、装置、电子设备及可读存储介质
CN113104038A (zh) * 2021-03-31 2021-07-13 江铃汽车股份有限公司 车辆换道控制方法、装置、电子设备及可读存储介质

Also Published As

Publication number Publication date
JP6972294B2 (ja) 2021-11-24
JPWO2019163121A1 (ja) 2020-12-03
CN111771234B (zh) 2022-08-23
US20200398849A1 (en) 2020-12-24
US11396297B2 (en) 2022-07-26
CN111771234A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2019163121A1 (ja) 車両制御システム、車両制御方法、およびプログラム
WO2018216194A1 (ja) 車両制御システムおよび車両制御方法
US10960879B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6600878B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2018202966A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2019163010A1 (ja) 車両制御システム、車両制御方法、およびプログラム
JP2018172028A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2018203006A (ja) 車両制御システムおよび車両制御方法
JP2019159828A (ja) 車両制御装置、車両制御方法、およびプログラム
JP6586685B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2019156144A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2019128612A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2019137189A (ja) 車両制御システム、車両制御方法、およびプログラム
JPWO2019069347A1 (ja) 車両制御装置、車両制御方法、およびプログラム
CN110949389A (zh) 车辆控制装置、车辆控制方法及存储介质
WO2018123346A1 (ja) 車両制御装置、車両制御方法、及びプログラム
JP2019156133A (ja) 車両制御装置、車両制御方法、及びプログラム
CN115140086A (zh) 车辆控制装置、车辆控制方法及存储介质
WO2019167247A1 (ja) 車両制御装置、車両制御方法、及びプログラム
CN113942508A (zh) 控制装置、控制方法及存储介质
WO2019130483A1 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2019164729A (ja) 車両制御システム、車両制御方法、およびプログラム
JP2019096161A (ja) 車両制御装置、車両制御方法、およびプログラム
JP6648384B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7308880B2 (ja) 車両制御装置、車両制御方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501976

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906791

Country of ref document: EP

Kind code of ref document: A1