WO2018123346A1 - 車両制御装置、車両制御方法、及びプログラム - Google Patents

車両制御装置、車両制御方法、及びプログラム Download PDF

Info

Publication number
WO2018123346A1
WO2018123346A1 PCT/JP2017/041663 JP2017041663W WO2018123346A1 WO 2018123346 A1 WO2018123346 A1 WO 2018123346A1 JP 2017041663 W JP2017041663 W JP 2017041663W WO 2018123346 A1 WO2018123346 A1 WO 2018123346A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
automatic driving
automatic operation
automatic
Prior art date
Application number
PCT/JP2017/041663
Other languages
English (en)
French (fr)
Inventor
淳之 石岡
了 水谷
徹 幸加木
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2018558902A priority Critical patent/JP6796145B2/ja
Priority to US16/471,612 priority patent/US11230290B2/en
Priority to CN201780080228.8A priority patent/CN110139791B/zh
Priority to DE112017006605.0T priority patent/DE112017006605T5/de
Publication of WO2018123346A1 publication Critical patent/WO2018123346A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0051Handover processes from occupants to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/05Type of road, e.g. motorways, local streets, paved or unpaved roads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/10Number of lanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/35Data fusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/103Speed profile

Definitions

  • the present invention relates to a vehicle control device, a vehicle control method, and a program.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a vehicle control device, a vehicle control method, and a program capable of realizing smooth switching to automatic driving. To do.
  • an automatic driving control unit that performs automatic driving of the vehicle, and an acquisition unit that acquires the movement state of the traveling direction and the lateral direction of the vehicle, the automatic driving control unit switching from manual driving
  • the vehicle control device executes the automatic driving so that the motion state acquired by the acquisition unit before starting the automatic driving is maintained for a predetermined time or a predetermined distance.
  • FIG. 1 is a configuration diagram of a vehicle system 1 including an automatic driving control unit 100.
  • the vehicle on which the vehicle system 1 is mounted is, for example, a vehicle such as a two-wheel, three-wheel, or four-wheel vehicle, and a drive source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, or a combination thereof.
  • the electric motor operates using electric power generated by a generator connected to the internal combustion engine or electric discharge power of a secondary battery or a fuel cell.
  • the vehicle control device 1 includes, for example, a camera 10, a radar device 12, a finder 14, an object recognition device 16, a communication device 20, an HMI (Human Machine ⁇ Interface) 30, and an ETC (Electronic Toll Collection system) vehicle-mounted device. 40, a navigation device 50, an MPU (Micro-Processing Unit) 60, a vehicle sensor 70, a driving operator 80, a vehicle interior camera 90, an automatic driving control unit 100, a traveling driving force output device 200, A brake device 210 and a steering device 220 are provided. These devices and devices are connected to each other by a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like.
  • CAN Controller Area Network
  • serial communication line a wireless communication network
  • the camera 10 is a digital camera using a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • One or a plurality of cameras 10 are attached to any part of a vehicle (hereinafter referred to as the host vehicle M) on which the vehicle control device 1 is mounted.
  • the camera 10 When imaging the front, the camera 10 is attached to the upper part of the front windshield, the rear surface of the rearview mirror, or the like.
  • the camera 10 periodically and repeatedly images the periphery of the host vehicle M.
  • the camera 10 may be a stereo camera.
  • the radar device 12 radiates a radio wave such as a millimeter wave around the host vehicle M and detects a radio wave (reflected wave) reflected by the object to detect at least the position (distance and direction) of the object.
  • a radio wave such as a millimeter wave around the host vehicle M
  • a radio wave reflected wave
  • One or a plurality of radar devices 12 are attached to arbitrary locations of the host vehicle M.
  • the radar apparatus 12 may detect the position and velocity of the object by FM-CW (Frequency Modulated Continuous Wave) method.
  • FM-CW Frequency Modulated Continuous Wave
  • the finder 14 is a LIDAR (Light Detection and Ranging or Laser Imaging Detection and Ranging) that measures the scattered light with respect to the irradiated light and detects the distance to the target.
  • LIDAR Light Detection and Ranging or Laser Imaging Detection and Ranging
  • One or a plurality of the finders 14 are attached to arbitrary locations of the host vehicle M.
  • the object recognition device 16 performs sensor fusion processing on the detection results of some or all of the camera 10, the radar device 12, and the finder 14 to recognize the position, type, speed, and the like of the object.
  • the object recognition device 16 outputs the recognition result to the automatic driving control unit 100.
  • the object recognition device 16 may output a part of information input from the camera 10, the radar device 12, or the finder 14 to the automatic operation control unit 100 as it is.
  • the communication device 20 communicates with other vehicles existing around the host vehicle M by using, for example, a cellular network, Wi-Fi (registered trademark) network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like. Alternatively, it communicates with various server devices via a wireless base station.
  • a cellular network Wi-Fi (registered trademark) network
  • Bluetooth registered trademark
  • DSRC Dedicated Short Range Communication
  • the HMI (display unit) 30 presents various information to the occupant of the host vehicle M and accepts an input operation by the occupant.
  • the HMI 30 includes various display devices, speakers, buzzers, touch panels, switches, keys, and the like.
  • the HMI 30 displays information that needs to be notified to the driver when switching to automatic driving as described later.
  • the ETC vehicle-mounted device 40 includes a mounting unit on which an ETC card is mounted and a wireless communication unit that communicates with an ETC roadside device provided at a gate of a toll road.
  • the wireless communication unit may be shared with the communication device 20.
  • the ETC vehicle-mounted device 40 exchanges information such as an entrance toll gate and an exit toll gate by communicating with the ETC roadside device.
  • the ETC roadside device determines a charge amount for the occupant of the host vehicle M based on these pieces of information, and proceeds with the billing process.
  • the navigation device 50 includes, for example, a GNSS (Global Navigation Satellite System) receiver 51, a navigation HMI 52, and a route determination unit 53.
  • the first map information 54 is stored in a storage device such as an HDD (Hard Disk Drive) or a flash memory. Holding.
  • the GNSS receiver specifies the position of the host vehicle M based on the signal received from the GNSS satellite. The position of the host vehicle M may be specified or supplemented by INS (Inertial Navigation System) using the output of the vehicle sensor 70.
  • the navigation HMI 52 includes a display device, a speaker, a touch panel, keys, and the like. The navigation HMI 52 may be partly or wholly shared with the HMI 30 described above.
  • the route determination unit 53 determines the route from the position of the host vehicle M specified by the GNSS receiver 51 (or any input position) to the destination input by the occupant using the navigation HMI 52. This is determined with reference to one map information 54.
  • the first map information 54 is information in which a road shape is expressed by, for example, a link indicating a road and nodes connected by the link.
  • the first map information 54 may include road curvature, POI (Point Of Interest) information, and the like.
  • the route determined by the route determination unit 53 is output to the MPU 60. Further, the navigation device 50 may perform route guidance using the navigation HMI 52 based on the route determined by the route determination unit 53.
  • the navigation device 50 may be realized, for example, by a function of a terminal device such as a smartphone or a tablet terminal held by the user. Further, the navigation device 50 may acquire the route returned from the navigation server by transmitting the current position and the destination to the navigation server via the communication device 20.
  • the MPU 60 functions as, for example, the recommended lane determining unit 61 and holds the second map information 62 in a storage device such as an HDD or a flash memory.
  • the recommended lane determining unit 61 divides the route provided from the navigation device 50 into a plurality of blocks (for example, every 100 [m] with respect to the vehicle traveling direction), and refers to the second map information 62 for each block. Determine the recommended lane.
  • the recommended lane determining unit 61 performs determination such as what number of lanes from the left to travel.
  • the recommended lane determining unit 61 determines a recommended lane so that the host vehicle M can travel on a reasonable route for proceeding to the branch destination when there is a branch point or a merge point in the route. Details will be described later.
  • the second map information 62 is map information with higher accuracy than the first map information 54.
  • the second map information 62 includes, for example, information on the center of the lane or information on the boundary of the lane.
  • the second map information 62 may include road information, traffic regulation information, address information (address / postal code), facility information, telephone number information, and the like.
  • Road information includes information indicating the type of road such as expressway, toll road, national road, prefectural road, road lane number, width of each lane, road gradient, road position (longitude, latitude, height). Information including 3D coordinates), curvature of lane curves, lane merging and branch point positions, signs provided on roads, and the like.
  • the second map information 62 may be updated at any time by accessing another device using the communication device 20.
  • the vehicle sensor 70 includes a vehicle speed sensor that detects the speed of the host vehicle M, an acceleration sensor that detects acceleration, a yaw rate sensor that detects angular velocity around the vertical axis, an orientation sensor that detects the direction of the host vehicle M, and the like.
  • the driving operator 80 includes, for example, an accelerator pedal, a brake pedal, a shift lever, a steering wheel, and other operators.
  • a sensor that detects the amount of operation or the presence or absence of an operation is attached to the driving operator 80, and the detection result is the automatic driving control unit 100, or the traveling driving force output device 200, the brake device 210, and the steering device. 220 is output to one or both of 220.
  • the vehicle interior camera 90 images the upper body around the face of the occupant seated in the driver's seat. A captured image of the vehicle interior camera 90 is output to the automatic driving control unit 100.
  • the automatic operation control unit 100 includes a first control unit 120 and a second control unit 140, for example.
  • the first control unit 120 and the second control unit 140 are each realized by a processor (CPU) such as a CPU (Central Processing Unit) executing a program (software).
  • CPU Central Processing Unit
  • Some or all of the functional units of the first control unit 120 and the second control unit 140 described below are LSI (Large Scale Integration), ASIC (Application Specific Specific Integrated Circuit), FPGA (Field-Programmable Gate Gate Array). ) Or the like, or may be realized by cooperation of software and hardware.
  • the first control unit 120 includes, for example, an external environment recognition unit 121, a vehicle position recognition unit 122, an action plan generation unit 123, an exercise state acquisition unit 124, and an HMI control unit (display control unit) 125.
  • the combination of the action plan generation unit 123 and the second control unit 140 is an example of an “automatic driving control unit”, and the addition of the motion state acquisition unit 124 to this is an example of a “vehicle control device”. .
  • the external environment recognition unit 121 recognizes the position, speed, acceleration, and the like of surrounding vehicles based on information input from the camera 10, the radar device 12, and the finder 14 via the object recognition device 16.
  • the position of the surrounding vehicle may be represented by a representative point such as the center of gravity or corner of the surrounding vehicle, or may be represented by an area expressed by the outline of the surrounding vehicle.
  • the “state” of the surrounding vehicle may include acceleration and jerk of the surrounding vehicle, or “behavioral state” (for example, whether or not the lane is changed or is about to be changed).
  • the external environment recognition unit 121 may recognize the positions of guardrails, utility poles, parked vehicles, pedestrians, and other objects.
  • the own vehicle position recognition unit 122 recognizes, for example, the lane (traveling lane) in which the host vehicle M is traveling, and the relative position and posture of the host vehicle M with respect to the traveling lane.
  • the own vehicle position recognition unit 122 for example, includes a road marking line pattern (for example, an arrangement of solid lines and broken lines) obtained from the second map information 62 and an area around the own vehicle M recognized from an image captured by the camera 10.
  • the traveling lane is recognized by comparing the road marking line pattern. In this recognition, the position of the host vehicle M acquired from the navigation device 50 and the processing result by INS may be taken into account.
  • FIG. 2 is a diagram illustrating a state in which the vehicle position recognition unit 122 recognizes the relative position and posture of the vehicle M with respect to the travel lane L1.
  • the own vehicle position recognizing unit 122 makes, for example, a line connecting the deviation OS of the reference point (for example, the center of gravity) of the own vehicle M from the travel lane center CL and the travel lane center CL in the traveling direction of the own vehicle M.
  • the angle ⁇ is recognized as the relative position and posture of the host vehicle M with respect to the traveling lane L1.
  • the host vehicle position recognition unit 122 recognizes the position of the reference point of the host vehicle M with respect to any side end of the host lane L1 as the relative position of the host vehicle M with respect to the traveling lane. Also good.
  • the relative position of the host vehicle M recognized by the host vehicle position recognition unit 122 is provided to the recommended lane determination unit 61 and the action plan generation unit 123.
  • the action plan generation unit 123 determines events to be sequentially executed in the automatic driving so that the recommended lane determination unit 61 determines the recommended lane and travels along the recommended lane, and can cope with the surrounding situation of the host vehicle M.
  • Events include, for example, a constant speed event that travels in the same lane at a constant speed, a follow-up event that follows the preceding vehicle, a lane change event, a merge event, a branch event, an emergency stop event, and automatic driving There are handover events to switch to manual operation. Further, during execution of these events, actions for avoidance may be planned based on the surrounding situation of the host vehicle M (the presence of surrounding vehicles and pedestrians, lane narrowing due to road construction, etc.).
  • the action plan generation unit 123 generates a target track on which the vehicle M will travel in the future.
  • the target track is expressed as a sequence of points (track points) that the host vehicle M should reach.
  • the trajectory point is a point where the host vehicle M should reach for each predetermined travel distance.
  • the target speed and target acceleration for each predetermined sampling time are the target trajectory. Generated as part of.
  • the track point may be a position to which the host vehicle M should arrive at the sampling time for each predetermined sampling time. In this case, information on the target speed and target acceleration is expressed by the interval between the trajectory points.
  • the action plan generation unit 123 generates an action plan that switches between automatic driving and manual driving at the start point and the end point of a section in which automatic driving is performed based on the action plan.
  • the movement state acquisition unit 124 acquires the movement state of the host vehicle M based on various data output from the vehicle sensor 70. For example, the motion state acquisition unit 124 acquires the state of acceleration / deceleration in the traveling direction of the host vehicle M and the state of acceleration / deceleration in the lateral direction orthogonal to the traveling direction.
  • the HMI control unit 125 displays information that needs to be notified to the driver via the HMI 30 when switching to automatic driving.
  • the action plan generation unit 123 changes the action plan for the traveling state of the host vehicle M after switching from manual driving to automatic driving based on the vehicle state data acquired by the exercise state acquisition unit 124. The control regarding this change will be described in detail later.
  • FIG. 3 is a diagram illustrating a state in which a target track is generated based on the recommended lane.
  • the recommended lane is set so as to be convenient for traveling along the route to the destination.
  • the action plan generation unit 123 activates a lane change event, a branch event, a merge event, or the like when a predetermined distance before the recommended lane switching point (may be determined according to the type of event) is reached. If it becomes necessary to avoid an obstacle during the execution of each event, an avoidance trajectory is generated as shown in the figure.
  • the action plan generation unit 123 generates, for example, a plurality of target trajectory candidates, and selects an optimal target trajectory at that time based on the viewpoints of safety and efficiency.
  • the second control unit 140 includes a travel control unit 141.
  • the travel control unit 141 controls the travel driving force output device 200, the brake device 210, and the steering device 220 so that the host vehicle M passes the target track generated by the action plan generation unit 123 at a scheduled time. To do.
  • the driving force output device 200 outputs a driving force (torque) for driving the vehicle to driving wheels.
  • the travel driving force output device 200 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, and the like, and an ECU that controls these.
  • the ECU controls the above-described configuration in accordance with information input from the travel control unit 141 or information input from the driving operator 80.
  • the brake device 210 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU.
  • the brake ECU controls the electric motor in accordance with the information input from the travel control unit 141 or the information input from the driving operation element 80 so that the brake torque corresponding to the braking operation is output to each wheel.
  • the brake device 210 may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal included in the driving operation element 80 to the cylinder via the master cylinder.
  • the brake device 210 is not limited to the configuration described above, and may be an electronically controlled hydraulic brake device that controls the actuator according to information input from the travel control unit 141 and transmits the hydraulic pressure of the master cylinder to the cylinder. Good.
  • the steering device 220 includes, for example, a steering ECU and an electric motor.
  • the electric motor changes the direction of the steered wheels by applying a force to a rack and pinion mechanism.
  • the steering ECU drives the electric motor according to the information input from the travel control unit 141 or the information input from the driving operator 80, and changes the direction of the steered wheels.
  • An alternative lane is a lane that can be temporarily set by the recommended lane determining unit 61.
  • the recommended lane determining unit 61 sets a target track on the recommended lane and selects to travel along the target track (see FIG. 3).
  • the recommended lane determining unit 61 sets a recommended lane and an alternative lane according to the following conditions. Note that the following conditions are examples, and some of the conditions may be omitted, or further conditions may be added.
  • the recommended lane determining unit 61 assigns the recommended lane to the leftmost lane (the rightmost in the case of right-hand traffic) with respect to the traveling direction of the host vehicle M. Set. That is, the recommended lane determining unit 61 sets the recommended lane so as not to travel in the alternative lane in principle.
  • the recommended lane determining unit 61 determines that a lane other than the traveling lane is the target track when the traveling lane decreases or branches within a predetermined distance (for example, 2 km) in front of the host vehicle M. And select the recommended lane. That is, the recommended lane determining unit 61 sets the recommended lane in advance so that the lane change is necessary when the own vehicle M continues to travel in the traveling lane.
  • a predetermined distance for example, 2 km
  • the recommended lane determining unit 61 when the direction of the destination is the branch destination lane at the branch point of the lane, is a branch destination lane or branch destination at a point a predetermined distance (for example, 1 km) before the branch point.
  • the recommended lane is selected with the lane adjacent to the target lane as the target track. That is, the recommended lane determining unit 61 sets the recommended lane in the branch destination lane or the lane adjacent to the branch destination lane so that the lane change is easy when the lane change is necessary.
  • the recommended lane determining unit 61 sets the recommended lane so as to join the main line at the junction.
  • the action plan generating unit 123 may set a new target track in an alternative lane that is adjacent to the recommended lane. For example, the action plan generation unit 123 may temporarily set a target track in the alternative lane and change the lane according to the situation around the host vehicle M.
  • the action plan generator 123 dynamically changes the action plan according to the surrounding situation based on the recognition result by the object recognition device 16. For example, when a low-speed vehicle or an obstacle is found ahead while traveling in a recommended lane, the action plan generation unit 123 selects a lane change event, sets a target track in an adjacent alternative lane, and changes the lane. The action plan generation unit 123 sets the target track from the recommended lane to the alternative lane, changes the lane, and after avoiding or overtaking an obstacle or a low-speed vehicle, changes the lane to the recommended lane and returns the action plan to return. Change (see FIG. 3).
  • the action plan generation unit 123 may generate an action plan from that time when switching from manual operation to automatic operation.
  • the control of the host vehicle M after switching from manual operation to automatic operation will be described in detail.
  • FIG. 4 is a diagram for explaining the track of the host vehicle M after switching from manual operation to automatic operation.
  • the action plan generation unit 123 sets an automatic driving transition section after switching from manual driving to automatic driving.
  • the automatic operation transition section is a section that is set to realize smooth switching to automatic operation.
  • the automatic driving transition section is set within a predetermined distance or a predetermined time from the point where the automatic driving is started. As shown in the figure, if the host vehicle M follows a target track based on a predetermined action plan, a sudden lane change may occur after the automatic operation is started. Such a sudden behavior may cause the driver to feel uncomfortable.
  • the action plan generation unit 123 sets the corrected target trajectory in the automatic driving transition section so that a sudden vehicle behavior does not occur.
  • the corrected target trajectory is set so as to maintain the motion state acquired by the motion state acquisition unit 124 before starting the automatic operation.
  • Maintaining the motion state is to keep the traveling direction of the host vehicle M acquired by the motion state acquisition unit 124 before starting the automatic driving and the speed in the lateral direction perpendicular to the traveling direction as constant as possible. That is, in the automatic driving transition section, a corrected target trajectory that can travel along a road is set without causing lane change or acceleration / deceleration of the host vehicle as much as possible.
  • the action plan generation unit 123 does not immediately match the speed with the target speed, but generates an action plan so that the current speed gradually changes from the current speed to the target speed.
  • 5 and 6 are diagrams illustrating the speed control of the host vehicle M in the automatic driving transition section.
  • the action plan generating unit 123 sets the action plan so that the speed gradually changes until the speed of the own vehicle M reaches the target speed V1. Generate.
  • the action plan generation unit 123 controls the travel control unit 141 in the automatic driving transition section to gradually change the accelerator opening so that the speed of the host vehicle M gradually reaches the target speed V1. For example, the traveling control unit 141 decreases or increases the acceleration with time to cause the speed of the host vehicle M to reach the target speed V1.
  • the action plan generator 123 if the action plan generator 123 is in the middle of reaching the target speed V1 due to acceleration / deceleration, the action plan generator 123 gradually changes the speed until the target speed V1 is reached (see FIG. 5). In addition, when the action plan generation unit 123 accelerates from a speed exceeding the target speed V1 or decelerates from a speed lower than the target speed V1, the action plan generation unit 123 gradually increases the reverse acceleration so as to reach the target speed V1. And change the speed (see FIG. 6). Thereby, the behavior of the host vehicle M such as sudden acceleration / deceleration is prevented.
  • the corrected target track is set to maintain the alternative lane in the automatic driving transition section.
  • the corrected target track is set to change the lane from the alternative lane to the recommended lane after passing the automatic driving transition section.
  • the action plan generation unit 123 travels a predetermined distance.
  • the lane change is started when the vehicle travels for a predetermined time.
  • the vehicle M travels a predetermined distance while maintaining the motion state during manual driving as much as possible.
  • automatic operation control is performed so that the vehicle travels for a predetermined time.
  • automatic driving control is performed so as to gradually change the speed in the traveling direction or the left-right direction.
  • the vehicle M travels a predetermined distance while maintaining the motion state during manual driving, or during a predetermined time. After traveling, the lane is changed to the recommended lane.
  • the target track corrected in the automatic driving transition section as described above, the behavior of the host vehicle such as sudden lane change or acceleration / deceleration is suppressed, and the driver is prevented from feeling uncomfortable. .
  • FIG. 7 is a diagram illustrating an image IM displayed on the HMI 30.
  • the image IM is displayed on the HMI 30 by the HMI control unit 125 linked with the action plan generation unit 123.
  • the image IM includes, for example, a text message “A right lane of a recommended lane (left lane in the case of right-hand traffic)”. After displaying this image IM, an event that occurs within a predetermined time such as “change lane” is displayed. Accordingly, the driver can cope with the behavior of the host vehicle M after the automatic driving is started.
  • FIG. 8 is a flowchart showing the flow of the automatic driving control process in the automatic driving transition section.
  • the movement state acquisition unit 124 acquires data relating to the movement state in the traveling direction and the lateral direction when the host vehicle M is in manual operation (step S10).
  • the automatic driving control unit 100 starts automatic driving by switching from manual driving based on the action plan (step S11).
  • step S13 When the automatic operation control unit 100 switches from manual operation to start automatic operation, the exercise state acquired by the exercise state acquisition unit 124 before starting the automatic operation is maintained for a predetermined time or a predetermined distance. Automatic operation is executed (step S13).
  • the vehicle control device 1 when switching from manual driving to automatic driving, smooth switching to automatic driving can be realized, and the driver can be prevented from feeling uncomfortable. And according to the vehicle control apparatus 1, the behavior of the own vehicle such as sudden lane change and acceleration / deceleration can be suppressed by setting the target track corrected in the automatic driving transition section.
  • the vehicle control device 1 when the host vehicle M is traveling in an alternative lane in the automatic driving transition section, the driver is informed that the lane in which the host vehicle M is traveling is different from a preset lane. Therefore, the driver can cope with the behavior of the host vehicle M after the automatic driving is started. Furthermore, according to the vehicle control device 1, when the host vehicle M is in the acceleration / deceleration state when the automatic driving is started, the speed is gradually changed until the speed of the host vehicle M reaches the target speed V1. Sudden acceleration / deceleration of the host vehicle M can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)

Abstract

車両の自動運転を実行する自動運転制御部(100)と、車両の進行方向及び横方向の運動状態を取得する取得部(124)と、を備え、自動運転制御部は、手動運転から切り替えて自動運転を開始したとき、自動運転を開始する前に取得部により取得されていた運動状態が所定時間または所定距離において維持されるように自動運転を実行する、車両制御装置(1)である。

Description

車両制御装置、車両制御方法、及びプログラム
 本発明は、車両制御装置、車両制御方法、及びプログラムに関する。
 本願は、2016年12月27日に、日本に出願された特願2016-253952号に基づき優先権を主張し、その内容をここに援用する。
 近年、車両の自動運転について研究が進められている。自動運転に関する技術には、一部の道路区間において運転支援のために自動運転を行うものがある。これに関連し、運転者の運転操作が必要な手動運転モードと自動運転モードとを切り替える自動運転に関する技術が知られている(特許文献1参照)。
日本国特開2016-137819号公報
 従来の技術では、手動運転から自動運転に切り替えた後に、急ハンドルや急な加減速が発生する可能性があった。
 本発明は、このような事情を考慮してなされたものであり、自動運転への円滑な切り替えを実現することを可能とする車両制御装置、車両制御方法、及びプログラムを提供することを目的とする。
 (1):車両の自動運転を実行する自動運転制御部と、前記車両の進行方向及び横方向の運動状態を取得する取得部と、を備え、前記自動運転制御部は、手動運転から切り替えて前記自動運転を開始したとき、前記自動運転を開始する前に前記取得部により取得されていた運動状態が所定時間または所定距離において維持されるように自動運転を実行する、車両制御装置である。
 (2):(1)に記載の車両制御装置であって、前記自動運転制御部が、前記手動運転から切り替えて前記自動運転を開始したとき、分岐による車線変更の必要性がある場合、所定距離を走行し、または所定時間の間を走行した場合に車線変更を開始するようにしてもよい。
 (3):(2)に記載の車両制御装置であって、情報を出力する出力部と、前記自動運転制御部が前記手動運転から切り替えて前記自動運転を開始した後、前記車両が走行する車線が予め設定された車線と異なる場合に、その旨の情報を前記出力部に出力させる出力制御部とを更に備えるようにしてもよい。
 (4):(1)から(3)のうちいずれかに記載の車両制御装置であって、前記自動運転制御部が、前記自動運転を開始した後、前記車両が加減速状態である場合は、前記車両の速度が目標速度に到達するまで前記速度を緩やかに変化させるようにしてもよい。
 (5):コンピュータが、車両の自動運転を実行し、前記車両の進行方向及び横方向の運動状態を取得し、手動運転から切り替えて前記自動運転を開始したとき、前記自動運転を開始する前に取得されていた運動状態が所定時間または所定距離において維持されるように自動運転を実行する、車両制御方法である。
 (6):コンピュータに、車両の自動運転を実行させ、前記車両の進行方向及び横方向の運動状態を取得させ、手動運転から切り替えて前記自動運転を開始したとき、前記自動運転を開始する前に取得されていた運動状態が所定時間または所定距離において維持されるように自動運転を実行させる、プログラムである。
 (1)、(5)、(6)によれば、手動運転から自動運転に切り替えた際に自動運転への円滑な切り替えを実現することができ、運転者に違和感を与えることを防止することができる。
 (2)によれば、自動運転移行区間で修正された目標軌道が設定されることにより、自車両の唐突な車線変更や加減速などの挙動を抑制することができる。
 (3)によれば、自動運転移行区間で自車両が代替車線を走行している場合、運転者に自車両が走行する車線が予め設定された車線と異なる旨の情報が示されるため、運転者は自動運転が開始された後の自車両の挙動に対して対処することができる。
 (4)によれば、自動運転を開始した後、自車両が加減速状態である場合は、自車両の速度が目標速度に到達するまで速度を緩やかに変化させるため、自車両の唐突な加減速を防止することができる。
実施形態に係る自動運転制御ユニットを含む車両制御装置の構成図である。 自車位置認識部により走行車線に対する自車両の相対位置および姿勢が認識される様子を示す図である。 推奨車線に基づいて目標軌道が生成される様子を示す図である。 手動運転から自動運転に切り替えた後の自車両の軌道について説明する図である。 自動運転移行区間における自車両の速度制御について示す図である。 自動運転移行区間における自車両の速度制御について示す図である。 HMIに表示される画像を示す図である。 自動運転移行区間における自動運転制御の処理の流れを示すフローチャートである。
 以下、図面を参照し、本発明の車両制御装置、車両制御方法、および車両制御プログラムの実施形態について説明する。以下、左側通行の法規が適用される場合について説明する。右側通行の法規が適用される道路では、特に説明がない限り、以下の説明及び図面において左右が逆の内容となる。 図1は、自動運転制御ユニット100を含む車両システム1の構成図である。車両システム1が搭載される車両は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせである。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。
 車両制御装置1は、例えば、カメラ10と、レーダ装置12と、ファインダ14と、物体認識装置16と、通信装置20と、HMI(Human Machine Interface)30と、ETC(Electronic Toll Collection system)車載器40と、ナビゲーション装置50と、MPU(Micro-Processing Unit)60と、車両センサ70と、運転操作子80と、車室内カメラ90と、自動運転制御ユニット100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とを備える。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
 カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、車両制御装置1が搭載される車両(以下、自車両Mと称する)の任意の箇所に一つまたは複数が取り付けられる。前方を撮像する場合、カメラ10は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ10は、例えば、周期的に繰り返し自車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。
 レーダ装置12は、自車両Mの周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、自車両Mの任意の箇所に一つまたは複数が取り付けられる。レーダ装置12は、FM-CW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。
 ファインダ14は、照射光に対する散乱光を測定し、対象までの距離を検出するLIDAR(Light Detection and Ranging、或いはLaser Imaging Detection and Ranging)である。ファインダ14は、自車両Mの任意の箇所に一つまたは複数が取り付けられる。
 物体認識装置16は、カメラ10、レーダ装置12、およびファインダ14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度などを認識する。物体認識装置16は、認識結果を自動運転制御ユニット100に出力する。物体認識装置16は、カメラ10、レーダ装置12、またはファインダ14から入力された情報の一部を、そのまま自動運転制御ユニット100に出力してもよい。
 通信装置20は、例えば、セルラー網やWi-Fi(登録商標)網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用して、自車両Mの周辺に存在する他車両と通信し、或いは無線基地局を介して各種サーバ装置と通信する。
 HMI(表示部)30は、自車両Mの乗員に対して各種情報を提示すると共に、乗員による入力操作を受け付ける。HMI30は、各種表示装置、スピーカ、ブザー、タッチパネル、スイッチ、キーなどを含む。HMI30は、後述のように自動運転に切り替わった際に運転者に報知が必要な情報が表示される。
 ETC車載器40は、ETCカードが装着される装着部と、有料道路のゲートに設けられたETC路側器と通信する無線通信部とを備える。無線通信部は、通信装置20と共通化されてもよい。ETC車載器40は、ETC路側器と通信することで入口料金所や出口料金所などの情報を交換する。ETC路側器は、これらの情報を元に自車両Mの乗員に対する課金額を決定し、請求処理を進める。
 ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機51と、ナビHMI52と、経路決定部53とを備え、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に第1地図情報54を保持している。GNSS受信機は、GNSS衛星から受信した信号に基づいて、自車両Mの位置を特定する。自車両Mの位置は、車両センサ70の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。ナビHMI52は、表示装置、スピーカ、タッチパネル、キーなどを含む。ナビHMI52は、前述したHMI30と一部または全部が共通化されてもよい。経路決定部53は、例えば、GNSS受信機51により特定された自車両Mの位置(或いは入力された任意の位置)から、ナビHMI52を用いて乗員により入力された目的地までの経路を、第1地図情報54を参照して決定する。第1地図情報54は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。第1地図情報54は、道路の曲率やPOI(Point Of Interest)情報などを含んでもよい。経路決定部53により決定された経路は、MPU60に出力される。また、ナビゲーション装置50は、経路決定部53により決定された経路に基づいて、ナビHMI52を用いた経路案内を行ってもよい。ナビゲーション装置50は、例えば、ユーザの保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。また、ナビゲーション装置50は、通信装置20を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから返信された経路を取得してもよい。
 MPU60は、例えば、推奨車線決定部61として機能し、HDDやフラッシュメモリなどの記憶装置に第2地図情報62を保持している。推奨車線決定部61は、ナビゲーション装置50から提供された経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報62を参照してブロックごとに推奨車線を決定する。推奨車線決定部61は、左から何番目の車線を走行するといった決定を行う。推奨車線決定部61は、経路において分岐箇所や合流箇所などが存在する場合、自車両Mが、分岐先に進行するための合理的な経路を走行できるように、推奨車線を決定する。詳しくは、後述する。
 第2地図情報62は、第1地図情報54よりも高精度な地図情報である。第2地図情報62は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、第2地図情報62には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報などが含まれてよい。道路情報には、高速道路、有料道路、国道、都道府県道といった道路の種別を表す情報や、道路の車線数、各車線の幅員、道路の勾配、道路の位置(経度、緯度、高さを含む3次元座標)、車線のカーブの曲率、車線の合流および分岐ポイントの位置、道路に設けられた標識等の情報が含まれる。第2地図情報62は、通信装置20を用いて他装置にアクセスすることにより、随時、アップデートされてよい。
 車両センサ70は、自車両Mの速度を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。
 運転操作子80は、例えば、アクセルペダル、ブレーキペダル、シフトレバー、ステアリングホイールその他の操作子を含む。運転操作子80には、操作量あるいは操作の有無を検出するセンサが取り付けられており、その検出結果は、自動運転制御ユニット100、もしくは、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一方または双方に出力される。
 車室内カメラ90は、運転席に着座した乗員の顔を中心として上半身を撮像する。車室内カメラ90の撮像画像は、自動運転制御ユニット100に出力される。
 自動運転制御ユニット100は、例えば、第1制御部120と、第2制御部140とを備える。第1制御部120と第2制御部140は、それぞれ、CPU(Central Processing Unit)などのプロセッサがプログラム(ソフトウェア)を実行することで実現される。また、以下に説明する第1制御部120と第2制御部140の機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
 第1制御部120は、例えば、外界認識部121と、自車位置認識部122と、行動計画生成部123と、運動状態取得部124と、HMI制御部(表示制御部)125とを備える。なお、行動計画生成部123と第2制御部140を合わせたものが「自動運転制御部」の一例であり、これに運動状態取得部124を加えたものが「車両制御装置」の一例である。
 外界認識部121は、カメラ10、レーダ装置12、およびファインダ14から物体認識装置16を介して入力される情報に基づいて、周辺車両の位置、および速度、加速度等の状態を認識する。周辺車両の位置は、その周辺車両の重心やコーナー等の代表点で表されてもよいし、周辺車両の輪郭で表現された領域で表されてもよい。周辺車両の「状態」とは、周辺車両の加速度やジャーク、あるいは「行動状態」(例えば車線変更をしている、またはしようとしているか否か)を含んでもよい。また、外界認識部121は、周辺車両に加えて、ガードレールや電柱、駐車車両、歩行者その他の物体の位置を認識してもよい。
 自車位置認識部122は、例えば、自車両Mが走行している車線(走行車線)、並びに走行車線に対する自車両Mの相対位置および姿勢を認識する。自車位置認識部122は、例えば、第2地図情報62から得られる道路区画線のパターン(例えば実線と破線の配列)と、カメラ10によって撮像された画像から認識される自車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。この認識において、ナビゲーション装置50から取得される自車両Mの位置やINSによる処理結果が加味されてもよい。
 そして、自車位置認識部122は、例えば、走行車線に対する自車両Mの位置や姿勢を認識する。図2は、自車位置認識部122により走行車線L1に対する自車両Mの相対位置および姿勢が認識される様子を示す図である。自車位置認識部122は、例えば、自車両Mの基準点(例えば重心)の走行車線中央CLからの乖離OS、および自車両Mの進行方向の走行車線中央CLを連ねた線に対してなす角度θを、走行車線L1に対する自車両Mの相対位置および姿勢として認識する。なお、これに代えて、自車位置認識部122は、自車線L1のいずれかの側端部に対する自車両Mの基準点の位置などを、走行車線に対する自車両Mの相対位置として認識してもよい。自車位置認識部122により認識される自車両Mの相対位置は、推奨車線決定部61および行動計画生成部123に提供される。
 行動計画生成部123は、推奨車線決定部61により決定されて推奨車線を走行するように、且つ、自車両Mの周辺状況に対応できるように、自動運転において順次実行されるイベントを決定する。イベントには、例えば、一定速度で同じ走行車線を走行する定速走行イベント、前走車両に追従する追従走行イベント、車線変更イベント、合流イベント、分岐イベント、緊急停止イベント、自動運転を終了して手動運転に切り替えるためのハンドオーバイベントなどがある。また、これらのイベントの実行中に、自車両Mの周辺状況(周辺車両や歩行者の存在、道路工事による車線狭窄など)に基づいて、回避のための行動が計画される場合もある。
 行動計画生成部123は、自車両Mが将来走行する目標軌道を生成する。目標軌道は、自車両Mの到達すべき地点(軌道点)を順に並べたものとして表現される。軌道点は、所定の走行距離ごとの自車両Mの到達すべき地点であり、それとは別に、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとの目標速度および目標加速度が、目標軌道の一部として生成される。また、軌道点は、所定のサンプリング時間ごとの、そのサンプリング時刻における自車両Mの到達すべき位置であってもよい。この場合、目標速度や目標加速度の情報は軌道点の間隔で表現される。
 行動計画生成部123は、行動計画に基づいて予め定められた自動運転を行う区間の始点及び終点において自動運転と手動運転とを相互に切り替える行動計画を生成する。運動状態取得部124は、車両センサ70が出力した各種データに基づいて自車両Mの運動状態を取得する。例えば、運動状態取得部124は、自車両Mの進行方向の加減速の状態、及び進行方向に直交する横方向の加減速の状態を取得する。HMI制御部125は、自動運転に切り替わった際に報知が必要な情報を、運転者にHMI30を介して表示する。行動計画生成部123は、運動状態取得部124が取得した車両状態のデータに基づいて手動運転から自動運転に切り替えた後の自車両Mの走行状態に対して行動計画を変更する。
この変更に関する制御については後に詳述する。
 図3は、推奨車線に基づいて目標軌道が生成される様子を示す図である。図示するように、推奨車線は、目的地までの経路に沿って走行するのに都合が良いように設定される。行動計画生成部123は、推奨車線の切り替わり地点の所定距離手前(イベントの種類に応じて決定されてよい)に差し掛かると、車線変更イベント、分岐イベント、合流イベントなどを起動する。各イベントの実行中に、障害物を回避する必要が生じた場合には、図示するように回避軌道が生成される。
 行動計画生成部123は、例えば、目標軌道の候補を複数生成し、安全性と効率性の観点に基づいて、その時点での最適な目標軌道を選択する。
 第2制御部140は、走行制御部141を備える。走行制御部141は、行動計画生成部123によって生成された目標軌道を、予定の時刻通りに自車両Mが通過するように、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御する。
 走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するECUとを備える。ECUは、走行制御部141から入力される情報、或いは運転操作子80から入力される情報に従って、上記の構成を制御する。
 ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUとを備える。ブレーキECUは、走行制御部141から入力される情報、或いは運転操作子80から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子80に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置210は、上記説明した構成に限らず、走行制御部141から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。
 ステアリング装置220は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、走行制御部141から入力される情報、或いは運転操作子80から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。
 次に、推奨車線決定部61によって推奨車線または代替車線が選択されて目標軌道が設定されることについて説明する。代替車線とは、推奨車線決定部61によって一時的に設定され得る車線である。推奨車線決定部61は、原則的に、推奨車線上に目標軌道を設定して、目標軌道に沿って走行するよう選択する(図3参照)。推奨車線決定部61は、以下の条件に従って推奨車線および代替車線を設定する。なお、以下の条件は、一例であり、条件の一部が省略されてもよいし、更に別の条件が追加されてもよい。
 (1)推奨車線決定部61は、推奨車線を設定する候補の車線が複数存在する場合、自車両Mの進行方向に対して最も左側(右側通行の場合は最も右側)の車線に推奨車線を設定する。即ち推奨車線決定部61は、原則的に代替車線を走行しないように推奨車線を設定する。
 (2)推奨車線決定部61は、自車両Mの前方の所定距離(例えば2km)以内において、走行中の車線が減少、または分岐する場合は、走行中の車線以外の他の車線を目標軌道にして推奨車線を選択する。即ち推奨車線決定部61は、走行中の車線を自車両Mが走行し続けると車線変更の必要性が生じる場合は、予め車線変更を行うよう推奨車線を設定する。
 (3)推奨車線決定部61は、車線の分岐点において、目的地の方向が分岐先の車線である場合、分岐点の所定距離(例えば1km)手前の地点で、分岐先の車線または分岐先の車線に隣接する車線を目標軌道にして推奨車線を選択する。即ち推奨車線決定部61は、車線変更の必要性が生じる場合は、車線変更を行い易いように分岐先の車線または分岐先の車線に隣接する車線に推奨車線を設定する。
 (4)車線の合流点において、支線から本線に合流可能な地点で、本線を目標軌道に設定する。即ち推奨車線決定部61は、合流点において本線に合流するように推奨車線を設定する。
 行動計画生成部123は、推奨車線決定部61が設定した推奨車線上に目標軌道を設定した場合、推奨車線の隣接車線である代替車線に新たな目標軌道を設定する場合がある。例えば、行動計画生成部123は、自車両Mの周囲の状況に応じて一時的に代替車線に目標軌道を設定し車線変更を行わせる場合がある。
 行動計画生成部123は、物体認識装置16による認識結果に基づいて、周囲の状況に応じて行動計画を動的に変更する。例えば、行動計画生成部123は、推奨車線を走行中に前方に低速車両や障害物が発見された場合、車線変更イベントを選択し、隣接する代替車線に目標軌道を設定し車線変更する。行動計画生成部123は、推奨車線から代替車線に目標軌道を設定して車線変更し、障害物や低速車両を回避したり追い越したりした後は推奨車線に車線変更して戻るように行動計画を変更する(図3参照)。
 また、行動計画生成部123は、手動運転から自動運転に切り替えたとき、その時点から行動計画を生成することがある。以下、手動運転から自動運転に切り替えた後の自車両Mの制御について詳述する。
 図4は、手動運転から自動運転に切り替えた後の自車両Mの軌道について説明する図である。行動計画生成部123は、手動運転から自動運転に切り替えた後、自動運転移行区間を設定する。自動運転移行区間は、自動運転への円滑な切り替えを実現するために設定される区間である。自動運転移行区間は、自動運転が開始された地点から所定の距離または所定の時間の間において設定される。図示するように、自車両Mには、予め定められた行動計画に基づく目標軌道に従うと、自動運転が開始された後に唐突な車線変更が生じる可能性がある。このような唐突な挙動は、運転者に違和感を与える虞がある。
 そこで、行動計画生成部123は、自動運転移行区間では修正された目標軌道を設定して、急激な車両挙動が生じないようにする。修正された目標軌道は、自動運転を開始する前に運動状態取得部124により取得されていた運動状態を維持するよう設定される。
 運動状態を維持するとは、自動運転を開始する前に運動状態取得部124により取得されていた自車両Mの進行方向及び進行方向に直交する横方向の速度をなるべく一定に保つことである。即ち、自動運転移行区間では自車両の車線変更や加減速がなるべく生じず、道なりに走行可能な修正された目標軌道が設定される。
 更に、行動計画生成部123は、速度を直ちに目標速度に一致させるのではなく、現在の速度から目標速度に緩やかに変化させるよう行動計画を生成する。図5及び図6は、自動運転移行区間における自車両Mの速度制御について示す図である。行動計画生成部123は、自動運転を開始した際、自車両Mが加減速状態であった場合は、自車両Mの速度が目標速度V1に到達するまで速度を緩やかに変化させるよう行動計画を生成する。
 行動計画生成部123は、自動運転移行区間で走行制御部141を制御してアクセル開度を緩やかに変化させて自車両Mの速度を目標速度V1まで緩やかに到達させる。例えば、走行制御部141は、加速度を時間経過に従って減少又は増加させて自車両Mの速度を目標速度V1に到達させる。
 具体的には、行動計画生成部123は、加減速によって目標速度V1に到達する途中であった場合は目標速度V1に到達するまで緩やかに速度を変化させる(図5参照)。また、行動計画生成部123は、目標速度V1を超える速度から加速し、又は目標速度V1を下回る速度から減速を行っていた場合は、目標速度V1に到達するように逆向きの加速を緩やかに行い、速度を変化させる(図6参照)。これにより、自車両Mの唐突な加減速などの挙動が防止される。
 自動運転移行区間で自車両Mが代替車線を走行している場合、修正された目標軌道は自動運転移行区間で代替車線を維持するように設定される。修正された目標軌道は、自動運転移行区間を過ぎると代替車線から推奨車線に車線変更するように設定される。この他、分岐による車線変更が計画されており、自動運転移行区間で自車両Mが現在走行している車線から車線変更の必要性がある場合、行動計画生成部123は、所定距離を走行し、または所定時間の間を走行した場合に車線変更を開始させる。
 例えば、自車両Mが推奨車線を走行している状態で自動運転移行区間に目標軌道が設定されている分岐車線がある場合、なるべく手動運転中の運動状態を維持しつつ、所定距離を走行し、または所定時間の間を走行するよう自動運転制御が行われる。そして、車線変更を行う際には進行方向または左右方向に徐々に速度変化を与えるよう自動運転制御が行われる。
 また、手動運転中の自車両Mが代替車線を走行している途中で自動運転が開始された場合、手動運転中の運動状態を維持しつつ、所定距離を走行し、または所定時間の間を走行した後、推奨車線への車線変更が行われる。上記のように自動運転移行区間で修正された目標軌道が設定されることにより、自車両の唐突な車線変更や加減速などの挙動が抑制され、運転者に違和感が与られることが防止される。
 自動運転移行区間で自車両Mが代替車線を走行している場合、運転者に自車両Mが走行する車線が予め設定された車線と異なる旨の情報を示す画像IMを表示してもよい。図7は、HMI30に表示される画像IMを示す図である。画像IMは、行動計画生成部123と連動したHMI制御部125によってHMI30に表示される。画像IMは、例えば、「推奨される車線の右側車線(右側通行においては左側車線)を通行しています。」というテキストメッセージからなる。この画像IMを表示した後、「車線変更します。」等の所定時間内に発生するイベントが表示される。これにより、運転者は、自動運転が開始された後の自車両Mの挙動に対して対処することができる。
 次に、自動運転移行区間における自動運転制御方法について説明する。図8は、自動運転移行区間における自動運転制御の処理の流れを示すフローチャートである。運動状態取得部124は、自車両Mが手動運転中における進行方向及び横方向の運動状態に関するデータを取得する(ステップS10)。自動運転制御ユニット100は、行動計画に基づいて手動運転から切り替えて自動運転を開始する(ステップS11)。
 自動運転制御ユニット100は、手動運転から切り替えて自動運転を開始したとき、自動運転を開始する前に運動状態取得部124により取得されていた運動状態が所定時間または所定距離において維持されるように自動運転を実行する(ステップS13)。
 上述したように車両制御装置1によると、手動運転から自動運転に切り替えた際に自動運転への円滑な切り替えを実現し、運転者に違和感を与えることを防止することができる。そして、車両制御装置1によると、自動運転移行区間で修正された目標軌道が設定されることにより、自車両の唐突な車線変更や加減速などの挙動を抑制することができる。
 また、車両制御装置1によると、自動運転移行区間で自車両Mが代替車線を走行している場合、運転者に自車両Mが走行する車線が予め設定された車線と異なる旨の情報が示されるため、運転者は自動運転が開始された後の自車両Mの挙動に対して対処することができる。さらにまた、車両制御装置1によると、自動運転を開始した際、自車両Mが加減速状態であった場合は、自車両Mの速度が目標速度V1に到達するまで速度を緩やかに変化させるため、自車両Mの唐突な加減速を防止することができる。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
1…車両制御装置、10…カメラ、12…レーダ装置、14…ファインダ、16…物体認識装置、20…通信装置、30…HMI、40…ETC車載器、50…ナビゲーション装置、51…GPS受信機、53…経路決定部、54…第1地図情報、60…MPU、61…推奨車線決定部、62…第2地図情報、70…車両センサ、80…運転操作子、90…車室内カメラ、100…自動運転制御ユニット、120…第1制御部、121…外界認識部、122…自車位置認識部、123…行動計画生成部、124…運動状態取得部、125…HMI制御部、140…第2制御部、141…走行制御部、200…走行駆動力出力装置、210…ブレーキ装置、220…ステアリング装置

Claims (6)

  1.  車両の自動運転を実行する自動運転制御部と、
     前記車両の進行方向及び横方向の運動状態を取得する取得部と、を備え、
     前記自動運転制御部は、手動運転から切り替えて前記自動運転を開始したとき、前記自動運転を開始する前に前記取得部により取得されていた運動状態が所定時間または所定距離において維持されるように自動運転を実行する、
     車両制御装置。
  2.  前記自動運転制御部は、前記手動運転から切り替えて前記自動運転を開始したとき、分岐による車線変更の必要性がある場合、所定距離を走行し、または所定時間の間を走行した場合に車線変更を開始する、
     請求項1に記載の車両制御装置。
  3.  情報を出力する出力部と、
     前記自動運転制御部が前記手動運転から切り替えて前記自動運転を開始した後、前記車両が走行する車線が予め設定された車線と異なる場合に、その旨の情報を前記出力部に出力させる出力制御部と、を更に備える、
     請求項2に記載の車両制御装置。
  4.  前記自動運転制御部は、前記自動運転を開始した後、前記車両が加減速状態である場合は、前記車両の速度が目標速度に到達するまで前記速度を緩やかに変化させる、
     請求項1から3のいずれか1項に記載の車両制御装置。
  5.  コンピュータが、
     車両の自動運転を実行し、
     前記車両の進行方向及び横方向の運動状態を取得し、
     手動運転から切り替えて前記自動運転を開始したとき、前記自動運転を開始する前に取得されていた運動状態が所定時間または所定距離において維持されるように自動運転を実行する、
     車両制御方法。
  6.  コンピュータに、
     車両の自動運転を実行させ、
     前記車両の進行方向及び横方向の運動状態を取得させ、
     手動運転から切り替えて前記自動運転を開始したとき、前記自動運転を開始する前に取得されていた運動状態が所定時間または所定距離において維持されるように自動運転を実行させる、
     プログラム。
PCT/JP2017/041663 2016-12-27 2017-11-20 車両制御装置、車両制御方法、及びプログラム WO2018123346A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018558902A JP6796145B2 (ja) 2016-12-27 2017-11-20 車両制御装置、車両制御方法、及びプログラム
US16/471,612 US11230290B2 (en) 2016-12-27 2017-11-20 Vehicle control device, vehicle control method, and program
CN201780080228.8A CN110139791B (zh) 2016-12-27 2017-11-20 车辆控制装置、车辆控制方法及存储介质
DE112017006605.0T DE112017006605T5 (de) 2016-12-27 2017-11-20 Fahrzeugsteuervorrichtung, fahrzeugsteuerverfahren und programm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016253952 2016-12-27
JP2016-253952 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123346A1 true WO2018123346A1 (ja) 2018-07-05

Family

ID=62707232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041663 WO2018123346A1 (ja) 2016-12-27 2017-11-20 車両制御装置、車両制御方法、及びプログラム

Country Status (5)

Country Link
US (1) US11230290B2 (ja)
JP (1) JP6796145B2 (ja)
CN (1) CN110139791B (ja)
DE (1) DE112017006605T5 (ja)
WO (1) WO2018123346A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515821A (ja) * 2017-03-10 2019-06-13 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッドBaidu.com Times Technology (Beijing) Co., Ltd. 自律走行モードへ再進入する自律走行車の制御のための方法及びシステム
US11921501B2 (en) 2018-12-19 2024-03-05 Toyota Jidosha Kabushiki Kaisha Automatic driving system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6912509B2 (ja) * 2019-03-27 2021-08-04 本田技研工業株式会社 車両制御装置、車両および車両制御方法
US11370435B2 (en) * 2019-09-04 2022-06-28 GM Global Technology Operations LLC Connected and automated vehicles, driving systems, and control logic for info-rich eco-autonomous driving
JP7078660B2 (ja) * 2020-03-16 2022-05-31 本田技研工業株式会社 走行制御装置、車両、走行制御方法及びプログラム
CN116215534A (zh) * 2022-12-08 2023-06-06 深圳曦华科技有限公司 超车事件的智能处理方法及相关装置和介质和程序

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089801A (ja) * 2013-11-07 2015-05-11 株式会社デンソー 運転制御装置
JP2016088334A (ja) * 2014-11-06 2016-05-23 本田技研工業株式会社 自動運転制御装置
JP2016124542A (ja) * 2014-12-30 2016-07-11 ビステオン グローバル テクノロジーズ インコーポレイテッド 自動運転インターフェイス
JP2016133985A (ja) * 2015-01-19 2016-07-25 トヨタ自動車株式会社 自動運転装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394100A (ja) 1989-09-04 1991-04-18 Canon Inc 電解研磨液及び電解研磨方法
US5535830A (en) * 1993-04-27 1996-07-16 Kabushiki Kaisha Komatsu Seisakusho Dozing control unit for a bulldozer
JP3094100B1 (ja) 1999-03-26 2000-10-03 建設省土木研究所長 自動運転制御装置
JP6241341B2 (ja) * 2014-03-20 2017-12-06 アイシン・エィ・ダブリュ株式会社 自動運転支援装置、自動運転支援方法及びプログラム
JP6221873B2 (ja) * 2014-03-21 2017-11-01 アイシン・エィ・ダブリュ株式会社 自動運転支援装置、自動運転支援方法及びプログラム
CN106458215A (zh) * 2014-06-06 2017-02-22 日立汽车系统株式会社 车辆的行驶控制装置
JP6488594B2 (ja) 2014-09-02 2019-03-27 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム
JP6394554B2 (ja) * 2014-10-31 2018-09-26 株式会社デンソー 運転支援装置
JP6176264B2 (ja) * 2015-01-19 2017-08-09 トヨタ自動車株式会社 自動運転車両システム
JP6375237B2 (ja) 2015-01-28 2018-08-15 日立オートモティブシステムズ株式会社 自動運転制御装置
JP6658886B2 (ja) * 2016-07-05 2020-03-04 日産自動車株式会社 走行制御方法及び走行制御装置
CA3036160A1 (en) * 2016-09-09 2018-03-15 Nissan Motor Co., Ltd. Vehicle travel control method and travel control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089801A (ja) * 2013-11-07 2015-05-11 株式会社デンソー 運転制御装置
JP2016088334A (ja) * 2014-11-06 2016-05-23 本田技研工業株式会社 自動運転制御装置
JP2016124542A (ja) * 2014-12-30 2016-07-11 ビステオン グローバル テクノロジーズ インコーポレイテッド 自動運転インターフェイス
JP2016133985A (ja) * 2015-01-19 2016-07-25 トヨタ自動車株式会社 自動運転装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515821A (ja) * 2017-03-10 2019-06-13 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッドBaidu.com Times Technology (Beijing) Co., Ltd. 自律走行モードへ再進入する自律走行車の制御のための方法及びシステム
US11921501B2 (en) 2018-12-19 2024-03-05 Toyota Jidosha Kabushiki Kaisha Automatic driving system

Also Published As

Publication number Publication date
JP6796145B2 (ja) 2020-12-02
US11230290B2 (en) 2022-01-25
JPWO2018123346A1 (ja) 2019-08-08
CN110139791B (zh) 2022-04-01
DE112017006605T5 (de) 2019-09-12
CN110139791A (zh) 2019-08-16
US20190382024A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP6494121B2 (ja) 車線変更推定装置、車線変更推定方法、およびプログラム
JP6646168B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018138769A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6715959B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6428746B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
US20180348779A1 (en) Vehicle control system, vehicle control method, and storage medium
WO2018122966A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018123344A1 (ja) 車両制御装置、車両制御方法、及びプログラム
WO2018158873A1 (ja) 車両制御装置、車両制御方法、およびプログラム
US20190071075A1 (en) Vehicle control system, vehicle control method, and vehicle control program
WO2018131290A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6738437B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6327424B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6796145B2 (ja) 車両制御装置、車両制御方法、及びプログラム
JP2018203006A (ja) 車両制御システムおよび車両制御方法
WO2018087801A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018131298A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2017165156A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018142560A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6696006B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JPWO2018138765A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018087862A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018142562A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6460420B2 (ja) 情報表示装置、情報表示方法、および情報表示プログラム
JP6663343B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558902

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17888858

Country of ref document: EP

Kind code of ref document: A1