WO2013099945A1 - 光学部材セット及びこれを用いた固体撮像素子 - Google Patents

光学部材セット及びこれを用いた固体撮像素子 Download PDF

Info

Publication number
WO2013099945A1
WO2013099945A1 PCT/JP2012/083653 JP2012083653W WO2013099945A1 WO 2013099945 A1 WO2013099945 A1 WO 2013099945A1 JP 2012083653 W JP2012083653 W JP 2012083653W WO 2013099945 A1 WO2013099945 A1 WO 2013099945A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optical member
resin
mass
preferable
Prior art date
Application number
PCT/JP2012/083653
Other languages
English (en)
French (fr)
Inventor
高桑 英希
啓之 山本
嶋田 和人
久保田 誠
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201280063416.7A priority Critical patent/CN104011567B/zh
Priority to KR1020147014920A priority patent/KR20140090232A/ko
Priority to EP12862041.6A priority patent/EP2799912A4/en
Publication of WO2013099945A1 publication Critical patent/WO2013099945A1/ja
Priority to US14/298,089 priority patent/US20140284747A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick

Definitions

  • the present invention relates to an optical member set and a solid-state imaging device using the same.
  • optical devices there are various types of optical devices, and many of them have a structure in which an antireflection low refractive index film is formed on the surface of an optical mechanism.
  • the optical mechanism is not limited to a flat surface shape, and includes a brightness enhancement lens and a diffusion lens of a backlight for liquid crystal, a Fresnel lens, a lenticular lens, or a microlens used for a screen of a video projection television.
  • the desired geometrical optical performance is obtained mainly by forming a microstructure with a resin material.
  • the device is adapted to the surface of these microstructures. A low refractive index film is formed.
  • the present inventor in a microlens unit (optical member set) or a solid-state imaging device having a light-transmitting cured film (first optical member) with a thickness that has been developed recently, We focused on the fact that the imaging sensitivity tends to be low due to the thickness.
  • the present invention addresses a specific problem in the microlens unit (optical member set) having the light-transmitting cured film (first optical member) having the above thickness, and can achieve a good light receiving sensitivity. It is an object to provide a lens unit (optical member set) and a solid-state imaging device using the lens unit (optical member set).
  • An optical member set including a first optical member obtained by curing a curable resin composition and a second optical member coated thereon, wherein the first optical member is refracted.
  • the optical member set according to [1] wherein the first optical member has a refractive index of 1.35 to 1.45, and the second optical member has a refractive index of 1.85 to 1.95.
  • N represents an integer of 20 to 1000.
  • the siloxane resin is a resin obtained by hydrolytic condensation of an alkyltrialkoxysilane represented by the following formula (2).
  • the second optical member includes a metal oxide particle (A) having a primary particle diameter of 1 nm to 100 nm and a graft copolymer (B) having a graft chain having 40 to 10,000 atoms excluding hydrogen atoms. ) And a solvent (C), the optical member set according to any one of [1] to [11], which is a photocured product of a dispersion composition.
  • the graft copolymer (B) has a repeating unit having a group X having a functional group of pKa14 or less and a side chain Y having 40 to 10,000 atoms, and contains a basic nitrogen atom
  • the resin (B1) has a repeating unit represented by the following formula (I-1) and a repeating unit represented by the following formula (I-2), or represented by the following formula (I-1):
  • A represents an integer of 1 to 5.
  • * represents a connecting portion between repeating units.
  • X represents a group having a functional group having a pKa of 14 or less,
  • Y represents a side chain having 40 to 10,000 atoms,
  • L represents a single bond, an alkylene group, an alkenylene group, an arylene group, a heteroarylene group, an imino group.
  • a plurality of convex lenses are employed as the second optical member, the plurality of convex lenses are arranged with their bulging directions substantially in the same direction, and the plurality of convex lenses transmit light from the bulging direction.
  • the concave portion formed between the plurality of convex lenses is filled with the light-transmitting cured film with substantially no gap, while the light-transmitting cured film has a convex lens.
  • a solid-state imaging device comprising the optical member set according to any one of [1] to [15] and a semiconductor light receiving unit.
  • microlens unit optical member set
  • solid-state imaging device using the microlens unit according to the present invention have a thick light-transmitting cured film (first optical member), good light receiving sensitivity (high) Reduction of average color density and noise) can be realized.
  • a microlens unit which is a preferred embodiment of the present invention has a laminated structure including a light-transmitting cured film and a microlens body coated thereon.
  • a lens unit that is incorporated in a solid-state imaging device (optical device) and includes a plurality of convex lenses and a light-transmitting cured film that covers the bulging direction thereof can be cited.
  • the light-transmitting cured film is provided with a specific refractive index lower than that of the lower microlens body, thereby realizing high light receiving sensitivity while maintaining the advantage of applying a thick low refractive index layer. can do.
  • the optical member set will be described using a microlens unit as an example
  • the first optical member will be described using a light-transmitting cured film as an example
  • the second optical member will be described using a microlens body as an example.
  • the light transmissive cured film (upper layer) in the present invention has a lower refractive index than the microlens body as the lower layer, and the refractive index is 1.25 or more, preferably 1.35 or more, and 1.39. The above is more preferable. By setting it as this lower limit value or more, the sensitivity of the camera module can be improved. From the same viewpoint, the refractive index is 1.45 or less, and preferably 1.43 or less. In the present invention, the refractive index is determined by the method employed in the examples unless otherwise specified.
  • the light transmissive cured film (upper layer) is composed of a cured film of a curable resin composition.
  • the light transmissive cured film of this embodiment can be formed of a light transmissive cured film forming resin composition containing a curable resin such as a siloxane resin in a solvent. It is preferable to select a siloxane resin or a fluorine-based resin as a constituent component of the upper layer because variations between pixels are reduced. Or it is preferable to use a hollow particle as a component contained in a composition.
  • the film thickness of the light transmissive cured film (first optical member) is not particularly limited, but is preferably 0.5 ⁇ m or more, and more preferably 0.6 ⁇ m or more. Although there is no particular upper limit, it is preferably 3.0 ⁇ m or less, more preferably 2.8 ⁇ m or less, further preferably 2.2 ⁇ m or less, and particularly preferably 1.5 ⁇ m or less. By setting the film thickness within this range, it is preferable because it is excellent in durability as a microlens unit and is excellent in adhesion to a cover glass even when used as a solid-state imaging device described later. In particular, in the case of thick coating, it may be more than 1 ⁇ m.
  • the light transmissive cured film may be composed of two or more layers. The film thickness here refers to the thickness from the height of the longest point of the lens body.
  • siloxane resin composition A siloxane resin is mentioned as a material which comprises the light transmissive cured film in this invention as above-mentioned.
  • the siloxane resin can be obtained through the hydrolysis reaction and the condensation reaction using the alkoxysilane raw material described later. More specifically, in the compound, a part or all of alkoxy groups of the alkyltrialkoxysilane are hydrolyzed to be converted into silanol groups, and at least a part of the generated silanol groups is condensed to form Si—O—Si. It can be said that a bond is formed.
  • the siloxane resin may be a siloxane resin having any silsesquioxane structure such as a cage type, a ladder type, or a random type.
  • the “cage type”, “ladder type”, and “random type” can refer to structures described in, for example, the chemistry and application development of silsesquioxane materials (CMC Publishing).
  • the siloxane resin of this embodiment preferably has a silsesquioxane structure represented by the following formula (1). -(R 1 SiO 3/2 ) n -Formula (1)
  • R 1 represents an alkyl group having 1 to 3 carbon atoms.
  • N represents an integer of 20 to 1000.
  • the alkyl group represented by R 1 is not particularly limited as long as the carbon number is within the above range, and examples thereof include a methyl group, an ethyl group, a propyl group, and an isopropyl group. Of these, a methyl group and an ethyl group are preferable, and a methyl group is most preferable.
  • the alkyl group represented by R 1 may be an alkyl group having no substituent or an alkyl group having a substituent, but is preferably an alkyl group having no substituent.
  • the substituent which the alkyl group represented by R 1 may have is preferably not a halogen atom or a group having an ethylenically unsaturated bond, and an amino group (preferably an amino group having 0 to 20 carbon atoms, For example, amino, N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc.), sulfonamide group (preferably a sulfonamide group having 0 to 20 carbon atoms, such as N, N-dimethyl Sulfonamides, N-phenylsulfonamides, etc.), acyloxy groups (preferably acyloxy groups having 1 to 20 carbon atoms such as acetyloxy, benzoyloxy, etc.), carbamoyl groups (preferably carbamoyl groups having 1 to 20 carbon atoms) For example, N, N-dimethylcarbamoyl, N-phenylcarbamoy
  • a silicon-containing polymer whose main chain is composed of siloxane bonds is called a polysiloxane or a siloxane resin. Since silicon has four bonds, the basic structural unit of polysiloxane is classified according to the number of organic groups typified by methyl and phenyl groups per silicon atom. It can be divided into two. In the following formula, R is an organic group.
  • silsesquioxane means a general term for polysiloxanes whose basic structural units are T units unless otherwise specified. Since silicon in silsesquioxane is bonded to three oxygens and oxygen is bonded to two silicons, the theoretical composition is RSiO 3/2 (the Latin word for three-half is “Sesquix (SESQUI) "). In the present embodiment, it is preferable that R in the formula of the T unit is the R 1 and the silsesquioxane structure site is included at the specific content.
  • the siloxane resin of the present embodiment is 65% by mass or more and 100% by mass or less of the entire siloxane resin contained in the cured film, that is, 65% by mass or more and 100% by mass of the entire siloxane resin contained in the resin composition for forming a light transmissive cured film. % Or less is composed of the above silsesquioxane structure. This proportion is preferably 80% by mass or more and 100% by mass or less, more preferably 95% by mass or more and 100% by mass or less, and most preferably 100% by mass (however, 100% by mass). Even in this case, other components such as inevitable impurities may be contained within a range that does not impair the desired effect.
  • the siloxane resin of this embodiment may contain the specific polysilsesquioxane structure individually by 1 type, or may contain 2 or more types.
  • the siloxane resin of this embodiment is preferably a hydrolytic condensate obtained by hydrolytic condensation of an alkyltrialkoxysilane.
  • an alkoxysilane raw material containing an alkyltrialkoxysilane can be used as a starting raw material.
  • the alkoxysilane raw material intends the starting raw material comprised from alkoxysilane (silicon compound which has an alkoxy group).
  • An alkyltrialkoxysilane is an organosilicon compound in which one alkyl group and three alkoxy groups are bonded to a silicon atom, and can be represented by the following formula (2).
  • Formula (2) R 2 Si (OR 3 ) 3 (R 2 represents an alkyl group having 1 to 3 carbon atoms, an alkoxyalkyl group having 1 to 8 carbon atoms, a fluoroalkyl group having 1 to 10 carbon atoms, and R 3 represents an alkyl group.)
  • the alkyl group of alkyltrialkoxysilane (R 2 in formula (2)) is not particularly limited as long as it is within the above range, and specifically, methyl group, ethyl group, propyl group, isopropyl group, methoxymethyl group, Methoxypropyl group, ⁇ -glycidoxymethyl group, ⁇ -glycidoxypropyl group, trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, perfluoroethyl group, perfluoropropyl group, tridecafluorooctyl group Etc.
  • a methyl group, an ethyl group, a ⁇ -glycidoxypropyl group, a trifluoromethyl group, a trifluoropropyl group, and a tridecafluorooctyl group are preferable, and a methyl group is most preferable.
  • the alkoxy group of the alkyltrialkoxysilane is not particularly limited, and examples thereof include a methoxy group and an ethoxy group. More specifically, R 3 in the formula (2) is preferably a linear or branched alkyl group having 1 to 20 carbon atoms. Of these, a carbon number of 1 to 10 is preferable, and a carbon number of 1 to 4 is more preferable. In particular, an ethoxy group in which R 3 in the formula (2) is an ethyl group is preferable because the hydrolysis rate can be easily controlled.
  • alkyltrialkoxysilane examples include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, and ⁇ -glycidoxypropyl.
  • alkyltrialkoxysilane examples include trimethoxysilane, trifluoropropyltrimethoxysilane, and tridecafluorooctyltrimethoxysilane.
  • methyltriethoxysilane, ethyltriethoxysilane, and trifluoropropyltrimethoxysilane are preferably used, and methyltriethoxysilane is most preferably used.
  • alkyl trialkoxysilane only 1 type may be used and 2 or more types may be used together.
  • the alkoxysilane raw material is preferably alkyltrialkoxysilane, more preferably 80% by mass or more and 100% by mass or less, and more preferably 95% by mass or more and 100% by mass or less. It is preferable that the content is within the range because the light receiving sensitivity is more effectively improved.
  • Tetraalkoxysilane As the alkoxysilane raw material, in addition to the trialkoxysilane, other alkoxysilanes can be used, and tetraalkoxysilane is particularly preferable. By containing tetraalkoxysilane, the crosslink density in the hydrolyzed condensate is increased, which is preferable in terms of further improving the electrical insulation, development resistance, and heat resistance of the film obtained by hardening.
  • Tetraalkoxysilane is an organosilicon compound in which four alkoxy groups are bonded to a silicon atom and can be represented by the following formula (3).
  • the alkoxy group of tetraalkoxysilane is not particularly limited, and examples thereof include a methoxy group and an ethoxy group. More specifically, R 4 in formula (3) is preferably a linear or branched alkyl group having 1 to 20 carbon atoms. Of these, a carbon number of 1 to 10 is preferable, and a carbon number of 1 to 4 is more preferable. In particular, an ethoxy group in which R 4 in the formula (3) is an ethyl group is preferable because the hydrolysis rate can be easily controlled.
  • tetraalkoxysilane examples include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraisobutoxysilane, tetra-tert-butoxysilane, and the like. . Of these, tetramethoxysilane and tetraethoxysilane are preferably used. In addition, as tetraalkoxysilane, only 1 type may be used and 2 or more types may be used together.
  • the content of tetraalkoxysilane in the alkoxysilane raw material is not particularly limited, but is preferably 35% by mass or less, more preferably 20% by mass or less, from the viewpoint that the heat resistance of the development resistance film of the composition is more excellent. preferable. Although there is no lower limit in particular, in order to obtain the effect of adding tetraalkoxysilane, it is preferably 0.01% by mass or more, and more preferably 0.1% by mass or more.
  • a substituent for which substitution / non-substitution is not specified means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • Preferred substituents include the following substituent T.
  • substituent T examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohex
  • a compound or a substituent when a compound or a substituent includes an alkyl group, an alkenyl group, etc., these may be linear or branched, and may be substituted or unsubstituted. When an aryl group, a heterocyclic group, or the like is included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
  • the siloxane resin contained in the resin composition for forming a light transmissive cured film of the present embodiment can be obtained through hydrolysis reaction and condensation reaction using the above-described alkoxysilane raw material.
  • hydrolysis reaction and the condensation reaction known methods can be used, and a catalyst such as an acid or a base may be used as necessary.
  • the catalyst is not particularly limited as long as the pH is changed.
  • the acid for example, nitric acid, oxalic acid, acetic acid, formic acid, hydrochloric acid, etc.
  • the alkali for example, Ammonia, triethylamine, ethylenediamine and the like can be mentioned.
  • the amount to be used is not particularly limited as long as the siloxane resin satisfies a predetermined molecular weight.
  • a solvent may be added to the reaction system for the hydrolysis reaction and the condensation reaction.
  • the solvent is not particularly limited as long as the hydrolysis reaction and the condensation reaction can be performed.
  • water alcohols such as methanol, ethanol, and propanol
  • ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monopropyl ether And esters such as methyl acetate, ethyl acetate, butyl acetate, and propylene glycol monomethyl ether acetate
  • ketones such as acetone, methyl ethyl ketone, and methyl isoamyl ketone.
  • a solvent different from the solvent containing the siloxane resin described later is preferably used, and an alcohol compound having 1 to 5 carbon atoms or an ether compound having 2 to 6 carbon atoms is more preferably used.
  • the conditions (temperature, time, amount of solvent) for the hydrolysis reaction and condensation reaction are appropriately selected according to the type of material used.
  • the weight average molecular weight of the siloxane resin used in this embodiment is 1,000 to 50,000. Among these, 2,000 to 45,000 is preferable, 2,500 to 25,000 is more preferable, and 3,000 to 25,000 is particularly preferable. By setting the weight average molecular weight within the above range, it is preferable that the light receiving sensitivity is easily improved. In addition, a weight average molecular weight is a value when it measures using well-known GPC (gel permeation chromatography), and converts into standard polystyrene.
  • GPC gel permeation chromatography
  • the content of the siloxane resin in the composition of the present embodiment is preferably more than 5% by mass and 50% by mass or less with respect to the total amount of the composition substances. Among these, 10 to 45% by mass is more preferable, and 15 to 40% by mass is particularly preferable.
  • the content is not less than the above lower limit value or more than the above lower limit value, it is difficult to generate voids, which is particularly good in improving the light receiving sensitivity.
  • the content is less than or equal to the above upper limit value, the film thickness becomes sufficiently thick and does not cause cracks and the like, and is highly practical.
  • the resin for forming a light transmissive cured film of the present embodiment preferably contains a surfactant having a polyoxyalkylene structure.
  • the polyoxyalkylene structure refers to a structure in which an alkylene group and a divalent oxygen atom are adjacent to each other, and specific examples include an ethylene oxide (EO) structure and a propylene oxide (PO) structure.
  • EO ethylene oxide
  • PO propylene oxide
  • the surfactant having a polyoxyalkylene structure various surfactants such as a fluorosurfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone surfactant as long as they have the polyoxyalkylene structure.
  • Surfactants can be used. Among these, nonionic surfactants, anionic surfactants, and silicone surfactants are preferable, nonionic surfactants and anionic surfactants are more preferable, and anionic surfactants are most preferable.
  • fluorosurfactant examples include Megafac F171, F172, F173, F176, F176, F177, F141, F142, F143, F144, R30, F437, F479, F482, F554, F780, F781 (above DIC Corporation), Florard FC430, FC431, FC171 (above, Sumitomo 3M Limited), Surflon S-382, S-141, S- 145, SC-101, SC-103, SC-104, SC-105, SC-106, SC1068, SC-381, SC-383, S393, KH-40 (above, manufactured by Asahi Glass Co., Ltd.) ), EFtop EF301, EF303, EF351, EF352 (above, manufactured by Gemco), PF636, PF65 , PF6320, PF6520, PF7002 (OMNOVA Co., Ltd.), and the like.
  • nonionic surfactant examples include glycerol, trimethylolpropane, trimethylolethane ethoxylate and propoxylate (for example, glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether (Emulgen 404 manufactured by Kao Corporation), polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, ELEBASE manufactured by Aoki Oil & Fat Co., Ltd. Examples include BUB-3.
  • anionic surfactants include W004, W005, W017 (manufactured by Yusho Co., Ltd.), EMULSOGEN COL-020, EMULSOGEN COA-070, EMULSOGEN COL-080 manufactured by Clariant Japan Co., Ltd., Daiichi Kogyo Examples include Prisurf A208B manufactured by Pharmaceutical Co., Ltd.
  • silicone surfactant examples include “Toray Silicone DC3PA”, “Toray Silicone SH7PA”, “Tore Silicone DC11PA”, “Tore Silicone SH21PA”, “Tore Silicone SH28PA”, “Toray Silicone” manufactured by Toray Dow Corning Co., Ltd.
  • examples of the surfactant having a preferred polyoxyalkylene structure of the present embodiment include surfactants represented by the following general formula (4).
  • Formula (4) R 5 O (R 6 O) m R 7 (In the above formula, R 5 represents an alkyl group having 1 to 20 carbon atoms, R 6 represents an alkylene group having 1 to 4 carbon atoms, and R 7 represents a hydrogen atom, a carboxyl group, or —PO 3 H 2 . M represents an integer of 1 to 8.)
  • R 5 in formula (4) may be a linear or branched alkyl group. Of these, 5 to 20 carbon atoms are preferable, and 12 to 18 carbon atoms are more preferable.
  • R 6 in Formula (4) may be a linear or branched alkylene group, and examples thereof include a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, and an isobutylene group. Among them, an ethylene group and an isopropylene group (a group that forms an adjacent O atom and an ethylene oxide structure or a propylene oxide structure) are preferable.
  • R 7 in formula (4) is preferably a hydrogen atom or a carboxyl group, and most preferably a carboxyl group.
  • the addition amount of the surfactant is not particularly limited, but as its lower limit, it is preferably added in a range of 1 part by mass or more with respect to 100 parts by mass of the curable resin, and 1.5 parts by mass or more. More preferably, it is most preferably 7.5 parts by mass or more. Although an upper limit is not specifically limited, 30 mass parts or less are preferable and 15 mass parts or less are more preferable.
  • surfactants may be used together with or separately from the surfactant having the above polyoxyalkylene structure.
  • surfactant those commonly used can be used, and among them, a silicone surfactant is preferably used in combination.
  • silicone surfactants include polysiloxane type surfactants in which an organic group is introduced into a side chain or a terminal, or a side chain and a terminal.
  • examples thereof include a carbinol group, a methacryl group, a polyether group, a mercapto group, a carboxyl group, a phenol group, a silanol group, and a diol group.
  • alkoxysilane compound ⁇ an alkylalkoxysilane compound having a specific carbon number
  • surfactant having the above polyoxyalkylene structure.
  • alkoxysilane compound ⁇ an alkoxysilane compound having an alkyl group having 4 to 12 carbon atoms (more preferably 6 to 10 carbon atoms) is preferably used.
  • this is represented by a general formula, it is preferably a compound represented by the following formula (5).
  • R 51 is the same group as R 4 .
  • R 52 is preferably an alkyl group having 4 to 12 carbon atoms, and more preferably an alkyl group having 6 to 10 carbon atoms.
  • n is an integer of 1 to 3.
  • the amount of the surfactant used in combination with the surfactant having a polyoxyalkylene structure may be arbitrarily adjusted.
  • the surfactant used in combination with 100 parts by mass of the surfactant having a polyoxyalkylene structure is preferably used in an amount of 0.01 to 100 parts by weight, more preferably 1 to 100 parts by weight, and even more preferably 10 to 100 parts by weight.
  • the curable resin composition or a cured film obtained by curing the curable resin composition preferably contains hollow particles.
  • hollow particles not only hollow structures but also porous fine particles may be used.
  • the hollow particle has a structure having a cavity inside and refers to a particle having a cavity surrounded by an outer shell, and the porous particle refers to a porous particle having a large number of cavities.
  • hollow particles or porous particles are appropriately referred to as “specific particles”.
  • the specific particles may be organic particles or inorganic particles.
  • the porosity of the specific particles is preferably 10 to 80%, more preferably 20 to 60%, and most preferably 30 to 60%.
  • the porosity of the specific particles is preferably in the above range from the viewpoint of reducing the refractive index and maintaining the durability of the particles.
  • hollow particles are more preferable and hollow silica particles are particularly preferable from the viewpoint of easily reducing the refractive index.
  • JP-A-2001-233611 As a method for producing hollow particles, for example, the method described in JP-A-2001-233611 can be applied.
  • a method for producing porous particles for example, methods described in JP-A Nos. 2003-327424, 2003-335515, 2003-226516, 2003-238140 and the like can be applied.
  • the specific particles preferably have an average primary particle diameter of 1 nm to 200 nm, more preferably 10 nm to 100 nm.
  • the average primary particle diameter of the specific particles can be determined from the photograph obtained by observing the dispersed particles with a transmission electron microscope. The projected area of the particles is obtained, and the equivalent circle diameter is obtained therefrom, which is the average primary particle diameter.
  • the average primary particle diameter in this specification is calculated by measuring the projected area of 300 or more particles and obtaining the equivalent circle diameter.
  • the refractive index of the specific particles is preferably 1.10 to 1.40, more preferably 1.15 to 1.35, and most preferably 1.15 to 1.30.
  • the refractive index here represents the refractive index of the entire particle, and when the particle is a hollow particle, it does not represent the refractive index of only the outer shell forming the hollow particle.
  • the refractive index of the porous particles can be measured with an Abbe refractometer (manufactured by Atago Co., Ltd.) (measurement temperature 25 ° C., wavelength 633 nm).
  • the specific particles are preferably hollow or porous inorganic particles from the viewpoint of lowering the refractive index.
  • the inorganic low refractive index particles include magnesium fluoride and silica particles, and silica particles are more preferable from the viewpoint of low refractive index properties, dispersion stability, and cost.
  • the average primary particle diameter of these inorganic particles is preferably 1 nm to 100 nm, and more preferably 1 nm to 60 nm.
  • the crystal system may be either crystalline or amorphous, and may be monodispersed particles or aggregated particles that satisfy a predetermined particle diameter.
  • the shape is most preferably a spherical shape, but may be a bead shape, a shape having a major axis / minor axis ratio of 1 or more, or an indefinite shape.
  • the specific surface area of the inorganic particles is preferably 10 m 2 / g to 2000 m 2 / g, more preferably 20 m 2 / g to 1800 m 2 / g, and 50 m 2 / g to 1500 m 2 / g. Is most preferred.
  • Inorganic particles have a physical surface, such as plasma discharge treatment or corona discharge treatment, in order to stabilize dispersion in the curable resin composition or to increase affinity and binding properties with the binder component.
  • Chemical surface treatment with a treatment, a surfactant, a coupling agent, or the like may be performed.
  • the use of a coupling agent is particularly preferred.
  • an alkoxy metal compound eg, titanium coupling agent, silane coupling agent
  • silane coupling treatment is particularly effective.
  • the organosilyl group (monoorganosilyl, diorganosilyl, triorganosilyl group) becomes silica particles by the reaction of the silane compound and the silanol group. It binds to the surface.
  • the organic group on the surface of the surface-treated silica particles include saturated or unsaturated hydrocarbon groups having 1 to 18 carbon atoms and halogenated hydrocarbon groups having 1 to 18 carbon atoms.
  • the above-mentioned coupling agent may be used as a surface treatment agent for inorganic particles in order to perform surface treatment in advance before the preparation of the coating solution for a low refractive index film, or may be added as an additive at the time of preparing the coating solution.
  • the inorganic particles are preferably dispersed in the medium in advance before the surface treatment in order to reduce the load of the surface treatment.
  • a more preferred embodiment of the specific particles is silica particles.
  • Commercially available particles can be preferably used as the specific particles made of silica.
  • Julia Catalytic Chemical's through rear series hinder particles, isopropanol (IPA) dispersion, 4-methyl-2-pentanone (MIBK) dispersion, etc., such as through rear 2320
  • OSCAL series Nissan Chemical Co., Ltd.
  • Snowtex series (porous particles, IPA dispersion, ethylene glycol dispersion, methyl ethyl ketone (MEK) dispersion, dimethylacetamide dispersion, MIBK dispersion, propylene glycol monomethyl acetate dispersion, propylene glycol monomethyl ether dispersion, methanol dispersion, ethyl acetate dispersion, butyl acetate) Dispersion, xylene-n-butanol dispersion, toluene dispersion, etc.
  • MEK methyl ethyl ketone
  • MIBK-SD-L, MIBK-ST, etc. Sirenax (porous particles) manufactured by Nittetsu Mining Co., Ltd., PL manufactured by Fuso Chemical Industry Co., Ltd. series Porous particles, IPA dispersion, toluene dispersion, propylene glycol monomethyl ether dispersion, methyl ethyl ketone dispersion, etc.
  • PL-1-IPA, PL-2L-PGME, etc., Aerosil series manufactured by EVONIK porous particles, propylene glycol acetate dispersion
  • Silica particles such as ethylene glycol dispersion, MIBK dispersion, etc.
  • silica particles are added to the photosensitive composition as a dispersion containing silica particles and a particle dispersant (details of the particle dispersant will be described later), the content of silica particles in the silica dispersion is 10 % By mass to 50% by mass is preferable, 15% by mass to 40% by mass is more preferable, and 15% by mass to 30% by mass is even more preferable.
  • the content of the specific particles with respect to the total solid content in the curable resin composition is preferably 5% by mass to 95% by mass, more preferably 10% by mass to 90% by mass, and 20% by mass to 90% by mass. More preferably, it is mass%.
  • the coating amount of the specific particles is preferably 1 mg / m 2 to 100 mg / m 2 , more preferably 5 mg / m 2 to 80 mg / m 2 , and still more preferably. 10 mg / m 2 to 60 mg / m 2 .
  • the coating amount of the specific particles is preferably 1 mg / m 2 or more, the effect of lowering the refractive index and the effect of improving scratch resistance can be surely obtained, and when it is 100 mg / m 2 or less, the surface of the cured film has fine irregularities. It is possible to suppress deterioration of the integrated reflectance.
  • the curable resin composition or a cured film obtained by curing the curable resin composition preferably contains a fluororesin.
  • a fluorine-based siloxane polymer described in JP-A No. 2004-21036 can be mentioned.
  • Fluorine-based resin is a resin containing fluorine in a substance molecule.
  • polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / perfluoro examples include alkyl vinyl ether copolymers, tetrafluoroethylene / ethylene copolymers, hexafluoropropylene / propylene copolymers, polyvinylidene fluorides, vinylidene fluoride / ethylene copolymers, among which polytetrafluoroethylene, tetra Fluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / ethylene copolymer, and polyvinylidene fluoride are preferred.
  • polytetrafluoroethylene and tetrafluoroethylene / ethylene copolymer are preferred, polytetrafluoroethylene is more preferred, and polytetrafluoroethylene-containing mixed powder comprising polytetrafluoroethylene particles and an organic polymer is also preferred.
  • the molecular weight of fluororesin such as polytetrafluoroethylene is preferably in the range of 100,000 to 10,000,000, more preferably in the range of 100,000 to 1,000,000, and is particularly effective for extrusion moldability and flame retardancy.
  • polytetrafluoroethylene-containing mixed powder composed of polytetrafluoroethylene particles and an organic polymer
  • Metal (registered trademark)” A series from Mitsubishi Rayon Co., Ltd.
  • METABBRENE (registered trademark)” A-3800 and the like are commercially available.
  • polytetrafluoroethylene “Teflon (registered trademark)” 6-J and the like are prone to agglomerate, and when mixed strongly with other resin compositions with a Henschel mixer or the like, agglomeration may occur due to agglomeration.
  • a polytetrafluoroethylene-containing mixed powder composed of polytetrafluoroethylene particles and an organic polymer is excellent in handling properties and dispersibility, and is particularly preferably used.
  • the polytetrafluoroethylene-containing mixed powder composed of the polytetrafluoroethylene particles and the organic polymer is not limited, but polytetrafluoroethylene disclosed in Japanese Patent Application Laid-Open No. 2000-226523. Examples thereof include polytetrafluoroethylene-containing mixed powder composed of particles and an organic polymer.
  • the organic polymer include aromatic vinyl monomers, acrylate monomers, and vinyl cyanide.
  • An organic polymer containing 10% by mass or more of a monomer may be a mixture thereof.
  • the polytetrafluoroethylene content in the polytetrafluoroethylene-containing mixed powder is 0.1% by mass to 90% by mass. It is preferable that it is mass%.
  • fluororesin an amorphous fluororesin, a copolymer oligomer containing a perfluoroalkyl group-containing acrylate or methacrylate, a fluorocoating agent, a fluorosurfactant, a fluorocarbon surface treatment containing an electron beam or an ultraviolet curing component
  • fluorine-based surface treatment agent containing an agent and a thermosetting component is also preferable.
  • alkyl acrylate or alkyl methacrylate is preferable.
  • amorphous fluororesin examples include Lumiflon manufactured by Asahi Glass Co., Ltd. and CYTOP.
  • Copolymer oligomers containing perfluoroalkyl group-containing (meth) acrylate and alkyl (meth) acrylate as main components include Nippon Oil & Fats Modiper F Series, Daikin Industries Unidyne, Dainippon Ink & Chemicals Examples thereof include F470 series, F480 series, F110 series, and the like, and block copolymerization is more preferable.
  • a fluorine-type coating agent Sumitomo 3M EGC1700 is mentioned.
  • fluorosurfactant examples include Megafac F114, F410 series, 440 series, 450, 490 series and the like manufactured by Dainippon Ink and Chemicals, Inc.
  • fluorine-based surface treating agent containing an electron beam or an ultraviolet curing component examples include Polyfox PF-3320 manufactured by Omniva Solutions, Cheminox FAMAC-8 manufactured by Unimatec, and EGC1720 manufactured by Sumitomo 3M.
  • fluorine-based surface treatment agent containing a thermosetting component examples include EGC1720 manufactured by Sumitomo 3M, NH-10 and NH-15 manufactured by Dainippon Ink and Chemicals, Inc.
  • amorphous fluororesins include resins having the following structural formula.
  • the fluororesin may be a mixture of a plurality of types of fluorine-containing compounds.
  • the addition amount of the fluorine-based resin is not particularly limited, but from the same viewpoint as the siloxane resin, the content is preferably in the same range as the siloxane resin.
  • the resin composition for forming a light transmissive cured film of the present embodiment may further contain a curing agent.
  • curing agent the hardening
  • curing agents can be easily obtained by reacting a metal alkoxide with a chelating agent.
  • chelating agents include ⁇ -diketones such as acetylacetone, benzoylacetone, and dibenzoylmethane; ⁇ -keto acid esters such as ethyl acetoacetate and ethyl benzoylacetate.
  • the metal group chelate compound include ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate, aluminum monoacetylacetate bis (ethyl acetoacetate), aluminum tris
  • Aluminum chelate compounds such as (acetylacetonate), ethyl acetoacetate magnesium monoisopropylate, magnesium bis (ethylacetoacetate), alkylacetoacetate magnesium monoisopropylate, magnesium chelate compounds such as magnesium bis (acetylacetonate), zirconium tetra Acetylacetonate, zirconium tributoxyacetylacetonate, di Benzalkonium acetylacetonate bis (ethylacetoacetate), manganese acetylacetonate, cobalt acetylacetonate, copper acetylacetonate, titanium acet
  • aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), magnesium bis (acetylacetonate), magnesium bis (ethylacetoacetate), and zirconium tetraacetylacetonate are preferred, and storage stability Considering availability, aluminum tris (acetylacetonate) and aluminum tris (ethyl acetoacetate) are particularly preferable.
  • the total content of the curing agent is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the total content of the siloxane resin. Particularly preferred is 0.01 to 0.5 parts by mass.
  • the resin composition for forming a light transmissive cured film (curable resin composition) of the present embodiment can be configured using an organic solvent.
  • the organic solvent is not particularly limited as long as it satisfies the solubility of each component and the applicability of the resin composition for forming a light-transmitting cured film, but in particular, the solubility, applicability, and safety of the binder are improved. It is preferable to select in consideration.
  • organic solvents examples include esters such as ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, and ethyl lactate.
  • Alkyl oxyacetate eg, methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate)
  • alkyl 3-oxypropionate Esters eg, methyl 3-oxypropionate, ethyl 3-oxypropionate, etc.
  • 2- Xylpropionic acid alkyl esters eg, methyl 2-oxypropionate, ethyl 2-oxypropionate, propyl 2-oxypropionate, etc.
  • ethers For example, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene Glycol mono n-butyl ether, propylene glycol mono tert-butyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, etc., and ketones
  • methyl ethyl ketone, cyclohexanone, 2-heptanone, 3-heptanone and the like, and aromatic hydrocarbons include, for example, tolulose,
  • the solvent to be applied is preferably 50 to 99.9% by mass in the total amount of the light transmissive cured film forming resin composition. More preferably, it is 95% by mass.
  • the amount of the compound is equal to or more than the above lower limit value, the coating property is good, which is preferable. In the case where it is not more than the above upper limit value, the coating property is also good, which is preferable.
  • the viscosity of the resin composition for forming a light transmissive cured film of the present embodiment is preferably adjusted from the viewpoint of forming a good permeable film having a thickness.
  • the specific viscosity range is not particularly limited, but is preferably 1 to 20 cP, more preferably 2 to 15 cP, and particularly preferably 4 to 6 cP. Unless otherwise specified, the viscosity value in this specification is based on the measurement method described later. Measurement method Measured at room temperature (about 25 ° C.) using an E-type viscometer “TV-20 type viscometer / corn plate type TVE-20L” (manufactured by Toki Sangyo). Sampling is the average of the values measured for viscosity 5 times every 100 seconds.
  • the composition means that two or more components exist substantially uniformly in a specific composition.
  • substantially uniform means that each component may be unevenly distributed within the range where the effects of the invention are exerted.
  • the composition is not particularly limited as long as the above definition is satisfied, is not limited to a fluid liquid or a paste, and includes a solid or powder composed of a plurality of components. Furthermore, even when there is a sediment, it means that the composition maintains a dispersion state for a predetermined time by stirring.
  • a microlens unit is incorporated in a solid-state imaging device, and includes a microlens body and a light-transmitting cured film that covers the microlens body.
  • the term “microlens body” includes the meaning of a microlens array, and may be collectively referred to simply as “lens members” or “lens members”.
  • the microlens array is used as a microlens body, it is ideal that the groove, which is the gap between the microlens bodies, is embedded in the light-transmitting cured film without any gap, and no voids are generated. .
  • the microlens unit does not generate void-derived noise in the light passing through the unit, and exhibits good quality performance.
  • the shape of the microlens body according to the present embodiment is not particularly limited, but a convex lens is preferably used.
  • the term “convex lens” refers to a lens including a plano-convex lens, a biconvex lens, a convex meniscus lens, etc., and having a portion bulging in at least one direction unless otherwise specified.
  • Specific examples of the shape of the convex lens include a polyhedron shape, a spherical shape, and an aspherical shape (a shape without a spherical aberration formed by a free-form surface).
  • Examples of the shape of the polyhedron include a regular polyhedron shape, a semi-regular polyhedron shape, a cylindrical shape, and a cylindrical shape. Further, if there is a light collecting effect, a Fresnel lens or the like is also included in the convex lens in the present invention.
  • the refractive index of the microlens body forming the lower layer of the cured film is 1.65 or more, preferably 1.75 or more, more preferably 1.85 or more, and particularly preferably 1.89 or more. By setting it as this lower limit value or more, the sensitivity of the camera module can be improved. From the same viewpoint, the refractive index is further 1.95 or less and preferably 1.93 or less. In the present invention, the refractive index means a value measured by the measurement method shown in the examples below unless otherwise specified.
  • the difference between the refractive index of the light transmissive cured film and the microlens body is not particularly limited, but is preferably 0.42 or more, and more preferably 0.45 or more. As an upper limit, it is preferable that it is 0.58 or less, and it is more preferable that it is 0.55 or less.
  • the lower layer preferably contains TiO 2 or zirconia, and preferably has the particles or hollow particles. Selecting this as the lower layer is preferable because variations among pixels are reduced.
  • the particle diameter of the particles is not particularly limited, but the average particle diameter is 1 nm to 100 nm, preferably 1 nm to 80 nm, and particularly preferably 1 nm to 50 nm.
  • the average particle diameter of the metal oxide fine particles refers to a value measured by the measurement method employed in Examples described below unless otherwise specified.
  • grain is not specifically limited, What is generally applied to this kind of product can be selected suitably, and can be used.
  • the bulging directions are arranged substantially in the same direction.
  • the arrangement means that two or more are arranged side by side at a predetermined interval, and the interval may be uniform or different.
  • it is two-dimensionally arranged in one plane, and more preferably two-dimensionally arranged at equal intervals.
  • the distance between the lenses is usually in the range of 10 to 1,000 nm, and more preferably 100 to 300 nm when densely arranged. In most cases, concave portions are formed between the lenses, and the shape thereof is determined by the shape of the bulging convex lens.
  • a concave portion having a cross section in which two V-shaped lines are formed by reverse arcs is formed.
  • the height (thickness) of the lens body is not particularly limited, but is preferably 200 to 1500 nm, and practically 200 to 1000 nm.
  • the width of the lens body is not particularly limited, but is 70 to 90% of the size of the pixel formed below (specifically, in the case of an image sensor having one pixel of 1.4 ⁇ m ⁇ , 0.98 ⁇ m to 1.26 ⁇ m) is practical.
  • the height of the lens body here refers to the height of the longest point of the lens body.
  • the embodiment that can be taken by the microlens unit in the present invention is not particularly limited, and can be appropriately selected according to the use and purpose of the microlens unit. Specific examples include the following, but the present invention is not limited to these configurations.
  • the term “coating” in this specification includes not only the case where the object is directly in contact with the object, but also covering with another layer.
  • First embodiment A mode in which the microlens body is directly coated with a light-transmitting cured film
  • Second mode A microlens body is coated with an overcoat layer, and further coated with a light-transmitting cured film
  • Third Aspect Aspect in which a layer of a light transmissive cured film is formed between the microlens body and the semiconductor light receiving unit Among the above, the first aspect is preferred. Hereinafter, the manufacturing method is demonstrated in detail about a 1st aspect.
  • the resin composition for forming a light transmissive cured film of this embodiment is preferably used as a material for forming an antireflection film or a low refractive index film.
  • a method of applying to a workpiece such as a lens body in order to form a cured film is not particularly limited, and any appropriate known application method can be applied. For example, a spin coating method, a dip coating method, a roller blade method, a spray method, or the like can be applied. As needed, it is preferable to heat-treat etc. to the apply
  • the coated film is preferably left at 60 to 200 ° C., more preferably 100 to 150 ° C., preferably 1 to 10 minutes, more preferably 1 to 5 minutes.
  • the solvent removal may be performed twice or more under different conditions.
  • the coated resin composition for forming a light-transmitting cured film is heated to further promote curing.
  • the heating temperature is not particularly limited as long as the coating film is cured, but it is usually preferably 150 to 400 ° C. Of these, 150 to 280 ° C. is preferable, and 150 to 240 ° C. is more preferable. If it is the said heating conditions, a coating film will fully harden
  • the heating time is not particularly limited, but is preferably 1 to 60 minutes, and more preferably 1 to 30 minutes.
  • the heating method is not particularly limited, and heating by a hot plate, oven, furnace, or the like can be applied.
  • the atmosphere during heating is not particularly limited, and an inert atmosphere, an oxidizing atmosphere, or the like can be applied.
  • the inert atmosphere can be realized by an inert gas such as nitrogen, helium, or argon.
  • the oxidizing atmosphere can be realized by a mixed gas of these inert gas and oxidizing gas, or air may be used. Examples of the oxidizing gas include oxygen, carbon monoxide, and oxygen dinitride.
  • the heating step can be performed under pressure, normal pressure, reduced pressure, or vacuum.
  • the cured film obtained by the heat treatment is mainly composed of organic silicon oxide (SiOC).
  • SiOC organic silicon oxide
  • an antireflection film As a suitable usage mode of the cured film in the present invention, an antireflection film may be mentioned. In particular, it is suitable as an antireflection film for an optical device using a solid-state imaging device or the like, for example, a microlens for an image sensor, a plasma display panel, a liquid crystal display, organic electroluminescence, or the like.
  • the specular average reflectance in the wavelength region of 450 to 650 nm is preferably 3% or less, more preferably 2% or less, and most preferably 1% or less.
  • the reflectance is preferably as small as possible, and most preferably 0.
  • the haze of the antireflection film is preferably 3% or less, more preferably 1% or less, and most preferably 0.5% or less.
  • the reflectance is preferably as small as possible, and most preferably substantially zero.
  • a solid-state imaging device includes a microlens unit on a semiconductor light receiving unit, and is incorporated so that a microlens body and a color filter are in contact with each other.
  • the light receiving element receives light passing through the light-transmitting cured film, the lens body, and the color filter in this order, and functions as an image sensor.
  • the light-transmitting cured film functions as an antireflection film, improves the light collection efficiency of the lens body, and the light collected efficiently by the lens body is detected by the light receiving element through the color filter. .
  • the upper and lower sides of the element or unit are not particularly limited, but unless otherwise specified, the light transmissive cured film side is the upper side or the outer side, and the light receiving element side is the lower side or the inner side.
  • Examples of solid-state imaging devices to which microlens arrays are applied include those described in Japanese Patent Application Laid-Open No. 2007-119744. Specifically, a transfer electrode is provided between a CCD region and a photoelectric conversion unit formed on the surface of the semiconductor substrate, and a light shielding film is formed thereon via an interlayer film. On the light shielding film, an interlayer insulating film made of BPSG (Boro-Phospho-Silicate Glass), a passivation film, a transparent planarizing film having a low refractive index made of acrylic resin, etc. are laminated. G. B. Are combined to form a color filter. Further, a large number of microlenses are arranged so as to be positioned above the photoelectric conversion portion which is a light receiving region via a protective film.
  • BPSG Bo-Phospho-Silicate Glass
  • the microlens unit preferably has the following configuration. That is, a plurality of convex lenses are applied as the microlens body, the plurality of convex lenses are arranged with their bulging directions substantially in the same direction, and the plurality of convex lenses are covered from the bulging direction.
  • the light-transmitting cured film is covered with the light-transmitting cured film, and the recessed portions formed between the plurality of convex lenses are filled with the light-transmitting cured film substantially without any gaps.
  • the opposite side of the lens body is a flat surface.
  • the microlens unit is also suitably used for other uses other than for a solid-state imaging device.
  • Other applications include, for example, various OA devices, liquid crystal display elements such as liquid crystal televisions, mobile phones, and projectors, and imaging optical systems for on-chip color filters such as facsimiles, electronic copying machines, and solid-state image sensors. These can be used for various applications.
  • the metal oxide particles are inorganic particles having a high refractive index, such as titanium (Ti), zirconium (Zr), aluminum (Al), silicon (Si), zinc (Zn) or magnesium ( Mg) oxide particles, and preferably titanium dioxide (TiO 2 ) particles, zirconium dioxide (ZrO 2 ) particles, or silicon dioxide (SiO 2 ) particles. It is more preferable that the The colorless or transparent titanium dioxide particles can be represented by the chemical formula TiO 2 , preferably have a purity of 70% or more, more preferably 80% or more, and further a purity of 85% or more. preferable.
  • Low-order titanium oxide, titanium oxynitride and the like represented by the general formula Ti n O 2n-1 are preferably 30% by mass or less, and 20% by mass or less. More preferably, the content is 15% by mass or less.
  • the primary particle diameter of the metal oxide particles is preferably 1 nm to 100 nm, more preferably 1 nm to 80 nm, and particularly preferably 1 nm to 50 nm. If the primary particle diameter of the metal oxide particles exceeds 100 nm, the refractive index and the transmittance may decrease. If it is less than 1 nm, the dispersibility and dispersion stability may decrease due to aggregation.
  • the average particle diameter of the metal oxide particles is determined by the measurement method employed in the examples described later.
  • the refractive index of the metal oxide particles is not particularly limited, but is preferably 1.75 to 2.70, more preferably 1.90 to 2.70 from the viewpoint of obtaining a high refractive index.
  • the method for measuring the refractive index is the same as that for the hollow particles.
  • the specific surface area of the metal oxide particles is preferably 10 m 2 / g to 400 m 2 / g, more preferably 20 m 2 / g to 200 m 2 / g, and 30 m 2 / g to 150 m 2 / g. Most preferably.
  • the shape of the metal oxide particles is not particularly limited. For example, it can be a rice grain shape, a spherical shape, a cubic shape, a spindle shape, or an indefinite shape.
  • the metal oxide particles may have been surface-treated with an organic compound.
  • organic compounds used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred.
  • the surface treatment may be carried out by using a single surface treatment agent or a combination of two or more surface treatment agents. It is also preferable that the surface of the metal oxide particles is covered with an oxide such as aluminum, silicon, or zirconia. Thereby, a weather resistance improves more.
  • titanium dioxide particles As a metal oxide particle, what is marketed can be used preferably.
  • examples of commercially available titanium dioxide particles include TTO series (TTO-51 (A), TTO-51 (C), etc.), TTO-S, and V series (TTO-S-1, TTO-) manufactured by Ishihara Sangyo Co., Ltd. S-2, TTO-V-3, etc.) and MT series (MT-01, MT-05, etc.) manufactured by Teika Corporation.
  • zirconium dioxide particles include, for example, UEP (Daiichi Rare Element Chemical Co., Ltd.), PCS (Nippon Denko Co., Ltd.), JS-01, JS-03, JS-04 (Nippon Denko ( And UEP-100 (Daiichi Rare Element Chemical Industries, Ltd.).
  • Examples of commercially available silicon dioxide particles include OG502-31 manufactured by Clariant Co.
  • the metal oxide particles may be used singly or in combination of two or more.
  • the content of the metal oxide particles in the composition is determined from the viewpoint of dispersion stability.
  • the amount is preferably 10 to 90% by mass, more preferably 10 to 50% by mass, still more preferably 12 to 40% by mass, and particularly preferably 15 to 35% by mass.
  • particularly for high-refractive-index microlenses it is 50% by mass to 90% by mass, more preferably 52% by mass to 85% by mass, and most preferably, based on the total solid content of the dispersion composition. It is 55% by mass to 80% by mass.
  • the dispersion composition of this embodiment contains a graft copolymer (hereinafter also referred to as “specific resin”).
  • the graft copolymer of this embodiment has a graft chain in which the number of atoms excluding hydrogen atoms is in the range of 40 to 10,000.
  • the graft chain in this case means from the base of the main chain of the copolymer (the atom bonded to the main chain in a group branched from the main chain) to the end of the group branched from the main chain.
  • the specific resin is a dispersion resin that imparts dispersibility to the metal oxide particles, and has an affinity for the solvent due to the graft chain. Excellent dispersion stability.
  • the graft copolymer preferably has 40 to 10,000 atoms, more preferably 100 to 500, and more preferably 150 to 260, excluding hydrogen atoms per graft chain. Further preferred. If this number is too small, the graft chain is short, so that the steric repulsion effect is reduced and the dispersibility and dispersion stability may be lowered. On the other hand, if the amount is too large, the graft chain becomes too long, and the adsorptive power to the metal oxide particles may be reduced, resulting in reduced dispersibility and dispersion stability.
  • the number of atoms excluding hydrogen atoms per graft chain is included from the base atom bonded to the polymer chain constituting the main chain to the end of the branch polymer branched from the main chain.
  • a poly (meth) acrylic structure, a polyester structure, a polyurethane structure, a polyurea structure, a polyamide structure, a polyether structure, etc. can be used, but the interaction between the graft chain and the solvent is improved.
  • a graft chain having a poly (meth) acrylic structure, a polyester structure and a polyether structure is preferable, and a polyester structure and a polyether structure are more preferable.
  • the graft copolymer preferably has a structural unit having a graft chain (repeating unit), and can be obtained, for example, by polymerizing a macromonomer having a polymer structure as a graft chain based on a conventional method,
  • the structure of such a macromonomer is not particularly limited as long as it has a substituent capable of reacting with the polymer main chain and has a graft chain that satisfies the requirements, but preferably a reactive double bond
  • a macromonomer having a functional group can be preferably used.
  • AA-6 manufactured by Toagosei Co., Ltd.
  • AA-10 manufactured by Toagosei Co., Ltd.
  • AB-6 manufactured by Toagosei Co., Ltd.
  • AS-6 Toagosei Co., Ltd.
  • AA-6 manufactured by Toagosei
  • AA-10 manufactured by Toagosei
  • AB-6 manufactured by Toagosei
  • AS-6 manufactured by Toagosei
  • AN-6 Toagosei Co., Ltd.
  • Bremer PME-4000 manufactured by NOF Corporation
  • the specific resin used in the present embodiment preferably includes at least a structural unit represented by any of the following formulas (1) to (4) as the structural unit having a graft chain.
  • X 1 , X 2 , X 3 , X 4 and X 5 each independently represent a hydrogen atom or a monovalent organic group. From the viewpoint of synthesis restrictions, a hydrogen atom or an alkyl group having 1 to 12 carbon atoms is preferable, a hydrogen atom or a methyl group is more preferable, and a methyl group is particularly preferable.
  • W 1 , W 2 , W 3 , and W 4 each independently represent an oxygen atom or NH, and particularly preferably an oxygen atom.
  • R 3 represents a branched or straight chain alkylene group (the number of carbon atoms is preferably 1 to 10, more preferably 2 or 3, and from the viewpoint of dispersion stability, —CH 2 —CH (CH 3 ) A group represented by — or a group represented by —CH (CH 3 ) —CH 2 — is preferred. Two or more types of R 3 having different structures may be mixed and used in the specific resin.
  • Y 1 , Y 2 , Y 3 , and Y 4 are each independently a divalent linking group and are not particularly limited in structure. Specific examples include the following linking groups (Y-1) to (Y-21). In the following structures, A and B represent bonds to the left terminal group and the right terminal group in formulas (1) to (4), respectively. Of the structures shown below, (Y-2) and (Y-13) are more preferred because of the ease of synthesis.
  • Z 1 , Z 2 , Z 3 , and Z 4 are each independently a hydrogen atom or a monovalent substituent, and the structure of the substituent is not particularly limited.
  • an alkyl group, a hydroxyl group examples include an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthioether group, an arylthioether group, a heteroarylthioether group, and an amino group.
  • the monovalent substituents represented by Z 1 to Z 3 are each independently an alkyl group having 5 to 24 carbon atoms or a carbon atom.
  • an alkoxy group having 5 to 24 carbon atoms is preferable, and among them, an alkoxy group having a branched alkyl group having 5 to 24 carbon atoms or a cyclic alkyl group having 5 to 24 carbon atoms is particularly preferable.
  • the monovalent substituent represented by Z 4 is preferably an alkyl group having 5 to 24 carbon atoms, and among them, each independently a branched alkyl group having 5 to 24 carbon atoms or a cyclic group having 5 to 24 carbon atoms.
  • Alkyl groups are preferred.
  • n, m, p, and q are each an integer of 1 to 500.
  • j and k each independently represents an integer of 2 to 8.
  • j and k are preferably integers of 4 to 6, and most preferably 5, from the viewpoint of dispersion stability.
  • R 4 represents a hydrogen atom or a monovalent organic group, and is not particularly limited in terms of structure, but is preferably a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, more preferably a hydrogen atom or an alkyl group. is there.
  • the alkyl group includes a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, or a cyclic alkyl group having 5 to 20 carbon atoms.
  • a linear alkyl group having 1 to 20 carbon atoms is more preferable, and a linear alkyl group having 1 to 6 carbon atoms is particularly preferable.
  • Two or more types of R 4 having different structures may be mixed and used in the specific resin.
  • the structural unit represented by the formula (1) is more preferably a structural unit represented by the following formula (1A) or (2A) from the viewpoint of dispersion stability.
  • X 1, Y 1, Z 1 and n are as defined X 1, Y 1, Z 1 and n in Formula (1), and preferred ranges are also the same.
  • X 2, Y 2, Z 2 and m are as defined X 2, Y 2, Z 2 and m in the formula (2), and preferred ranges are also the same.
  • the specific resin is more preferably one having a structural unit represented by the formula (1A).
  • the structural unit (repeating unit) having the graft chain is preferably contained in the range of 10% to 75%, and in the range of 12% to 50%, based on the total mass of the specific resin. More preferably, it is particularly preferably included in the range of 15% to 40%. Within this range, the dispersibility and dispersion stability of the metal oxide particles are high, and the uniformity of the film thickness in the coating film formed using the dispersion composition is further improved.
  • the specific resin may be a combination of two or more types of graft copolymers having different structures.
  • specific resin is a polymer which has the structural unit (repeating unit) which has an acid group with 25 mass% or more and 90 mass% or less with respect to the total mass of specific resin.
  • the content of the structural unit having an acid group is more preferably 50% by mass or more and 80% by mass or less, and most preferably 60% by mass or more and 75% by mass or less with respect to the total mass of the specific resin.
  • the content of the structural unit having an acid group is less than 25 masses with respect to the total mass of the specific resin, the adsorptivity to the metal oxide particles of the specific resin is insufficient and the dispersion stability is deteriorated.
  • a composition curable composition
  • a large-size (for example, 12 inch) wafer it is difficult to form a film having a small film thickness difference between the central portion and the peripheral portion of the wafer.
  • the content of the structural unit having an acid group is more than 90% by mass with respect to the total mass of the specific resin, the amount of the graft chain introduced into the specific resin becomes insufficient, resulting in poor dispersion stability.
  • the acid value of the specific resin can be suitably adjusted within the following preferable range.
  • the acid group can also function as a functional group capable of forming an interaction with the metal oxide particles in addition to the graft chain.
  • the acid group examples include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a phenolic hydroxyl group, and the like.
  • the carboxylic acid group It is preferably at least one selected from a group, a sulfonic acid group, and a phosphoric acid group, and a carboxylic acid group is particularly preferable.
  • the acid group structure is preferably a structure separated by 5 atoms or more from the main chain of the resin structure. Furthermore, as the acid group, a carboxylic acid bonded to an aromatic ring is most preferable.
  • the acid value of the specific resin is preferably in the range of 70 mgKOH / g to 350 mgKOH / g, more preferably in the range of 80 mgKOH / g to 300 mgKOH / g, and still more preferably in the range of 100 mgKOH / g to 250 mgKOH / g. It is a range.
  • the acid value of the specific resin can be calculated from the average content of acid groups in the specific resin, for example. Moreover, resin which has a desired acid value can be obtained by changing content of the monomer unit containing the acid group which comprises specific resin.
  • the specific resin may further have a structural unit (repeating unit) having a functional group capable of interacting with the metal oxide particles other than the graft chain and the acid group.
  • a structural unit having a functional group capable of forming an interaction with other metal oxide particles is not particularly limited in terms of structure.
  • a structural unit having a basic group or a structural unit having a coordinating group And structural units having a reactive group is not particularly limited in terms of structure.
  • the basic group examples include a primary amino group, a secondary amino group, a tertiary amino group, a heterocyclic ring containing an N atom, and an amide group. Particularly preferred is a tertiary amino group having good adsorption power to metal oxide particles and high dispersibility and dispersion stability. As said basic group, these can be used individually by 1 type or in combination of 2 or more types.
  • the specific resin may or may not contain a structural unit having a basic group (repeating unit), but when it is contained, the content of the structural unit having a basic group is 0 with respect to the total mass of the specific resin. 0.1 mass% or more and 50 mass% or less, and particularly preferably 0.1 mass% or more and 30 mass% or less.
  • Examples of the coordinating group and the reactive group include acetylacetoxy group, trialkoxysilyl group, isocyanate group, acid anhydride residue, acid chloride residue and the like. Particularly preferred is an acetylacetoxy group having good adsorption power to metal oxide particles and high dispersibility and dispersion stability.
  • the coordinating group and the reactive group these can be used alone or in combination of two or more.
  • the specific resin may or may not contain a structural unit (repeating unit) having a coordinating group or a reactive group, but if included, a structure having a coordinating group or a reactive group.
  • the unit content is 0.1% by mass or more and 50% by mass or less, and particularly preferably 0.1% by mass or more and 30% by mass or less with respect to the total mass of the specific resin.
  • the specific resin is different from the structural unit having a graft chain and the structural unit having an acid group, and has the following general formula (i) as a structural unit having a functional group capable of interacting with metal oxide particles. It may have at least one repeating unit obtained from the monomer represented by any one of (iii).
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom, a halogen atom (eg, fluorine, chlorine, bromine, etc.), or a carbon atom number of 1 to 6
  • An alkyl group (for example, a methyl group, an ethyl group, a propyl group, etc.).
  • R 1 , R 2 , and R 3 are more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and most preferably a hydrogen atom or a methyl group.
  • R 2 and R 3 are particularly preferably a hydrogen atom.
  • X represents an oxygen atom (—O—) or an imino group (—NH—), and is preferably an oxygen atom.
  • L is a single bond or a divalent linking group.
  • a divalent aliphatic group for example, an alkylene group, a substituted alkylene group, an alkenylene group, a substituted alkenylene group, an alkynylene group, a substituted alkynylene group
  • a divalent aromatic group for example, an arylene group
  • Substituted arylene groups divalent heterocyclic groups and their oxygen atoms (—O—), sulfur atoms (—S—), imino groups (—NH—), substituted imino groups (—NR 31 —, R 31 may be a combination with an aliphatic group, aromatic group or heterocyclic group) or a carbonyl group (—CO—).
  • the divalent aliphatic group may have a cyclic structure or a branched structure.
  • the aliphatic group has preferably 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the aliphatic group is preferably a saturated aliphatic group rather than an unsaturated aliphatic group.
  • the aliphatic group may have a substituent. Examples of the substituent include a halogen atom, a hydroxyl group, an aromatic group, and a heterocyclic group.
  • the number of carbon atoms of the divalent aromatic group is preferably 6 to 20, more preferably 6 to 15, and most preferably 6 to 10.
  • the aromatic group may have a substituent. Examples of the substituent include a halogen atom, a hydroxyl group, an aliphatic group, an aromatic group, and a heterocyclic group.
  • the divalent heterocyclic group preferably has a 5-membered or 6-membered ring as a heterocycle.
  • Another heterocyclic ring, an aliphatic ring or an aromatic ring may be condensed with the heterocyclic ring.
  • the heterocyclic group may have a substituent. Examples of substituents include halogen atoms, hydroxy groups, oxo groups ( ⁇ O), thioxo groups ( ⁇ S), imino groups ( ⁇ NH), substituted imino groups ( ⁇ N—R 32 , where R 32 is a fatty acid Aromatic group, aromatic group or heterocyclic group), aliphatic group, aromatic group and heterocyclic group.
  • L is preferably a single bond, an alkylene group or a divalent linking group containing an oxyalkylene structure.
  • the oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure.
  • L may contain a polyoxyalkylene structure containing two or more oxyalkylene structures.
  • the polyoxyalkylene structure is preferably a polyoxyethylene structure or a polyoxypropylene structure.
  • the polyoxyethylene structure is represented by — (OCH 2 CH 2 ) n —, and n is preferably an integer of 2 or more, and more preferably an integer of 2 to 10.
  • Z represents a functional group capable of interacting with the metal oxide particles, and is preferably the acid group, basic group, or reactive group described above.
  • a carboxylic acid group or a tertiary amino group is more preferable, and a carboxylic acid group is still more preferable.
  • Y represents a methine group or a nitrogen atom.
  • R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom (for example, fluorine, chlorine, bromine, etc.), or an alkyl group having 1 to 6 carbon atoms (for example, , Methyl group, ethyl group, propyl group, etc.), Z, or -LZ.
  • L and Z are as defined above.
  • R 4 , R 5 and R 6 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
  • R 1 , R 2 and R 3 are a hydrogen atom or a methyl group
  • L is a divalent linking group containing an alkylene group or an oxyalkylene structure.
  • a compound in which X is an oxygen atom or imino group and Z is a carboxylic acid group is preferable.
  • R 1 is a hydrogen atom or a methyl group
  • L is an alkylene group
  • Z is a carboxylic acid group
  • Y is a methine group. Is preferred.
  • a compound in which R 4 , R 5 , and R 6 are a hydrogen atom or a methyl group and Z is a carboxylic acid group is preferable.
  • Examples of typical compounds represented by formulas (i) to (iii) include methacrylic acid, crotonic acid, isocrotonic acid, compounds having an addition polymerizable double bond and a hydroxyl group in the molecule (for example, methacrylic acid 2 -Hydroxyethyl) and succinic anhydride reaction product, compound having addition polymerizable double bond and hydroxyl group in the molecule and phthalic anhydride reaction compound, compound having addition polymerizable double bond and hydroxyl group in the molecule And a reaction product of tetrahydroxyphthalic anhydride, a compound having an addition polymerizable double bond and a hydroxyl group in the molecule and trimellitic anhydride, a compound having an addition polymerizable double bond and a hydroxyl group in the molecule, and pyro Reaction with merit acid anhydride, acrylic acid, acrylic acid dimer, acrylic acid oligomer, maleic acid, itaconic acid, fumaric acid, 4-viny
  • the specific resin contained in the dispersion composition of metal oxide particles is a structural unit having the graft chain, the acid, in order to improve various performances such as image strength, as long as the effects of the present invention are not impaired.
  • the structural unit having a group and a structural unit having a functional group capable of interacting with the metal oxide particle which is different from these structural units, other structural units having various functions, for example, A structural unit having a functional group having an affinity for the dispersion medium used in the dispersion can be included as a structural unit derived from the copolymerization component.
  • acrylic esters such as alkyl acrylate (the alkyl group preferably has 1 to 20 carbon atoms), (specifically, for example, benzyl acrylate, 4-biphenyl acrylate, butyl Acrylate, sec-butyl acrylate, t-butyl acrylate, 4-t-butylphenyl acrylate, 4-chlorophenyl acrylate, pentachlorophenyl acrylate, 4-cyanobenzyl acrylate, cyanomethyl acrylate, cyclohexyl acrylate, 2-ethoxyethyl acrylate, ethyl acrylate 2-ethylhexyl acrylate, heptyl acrylate, hexyl acrylate, isobornyl acrylate, isopropyl acrylate, methyl acrylate, 3,5-dimethyl Ruadamantyl acrylate, 2-naphthyl acrylate, ne
  • Methacrylic acid esters for example, benzyl methacrylate, 4-biphenyl methacrylate, butyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, 4-alkyl methacrylate (preferably having 1 to 20 carbon atoms in the alkyl group)) t-butylphenyl methacrylate, 4-chlorophenyl methacrylate, pentachlorophenyl methacrylate, 4-cyanophenyl methacrylate, cyanomethyl methacrylate, cyclohexyl methacrylate, 2-ethoxyethyl methacrylate, ethyl methacrylate, 2-ethylhexyl methacrylate, heptyl methacrylate, hexyl methacrylate, isobol Nyl methacrylate, isopropyl methacrylate, methyl methacrylate, 3,5- Methyl adamantyl meth
  • Styrenes such as styrene and alkyl styrene (for example, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, isopropyl styrene, butyl styrene, hexyl styrene, cyclohexyl styrene, decyl styrene, benzyl styrene, chloromethyl styrene, Trifluoromethylstyrene, ethoxymethylstyrene, acetoxymethylstyrene, etc.), alkoxystyrene (eg, methoxystyrene, 4-methoxy-3-methylstyrene, dimethoxystyrene, etc.), halogen styrene (eg, chlorost
  • methacrylic acid esters, acrylamides, methacrylamides and styrenes are preferably used, and benzyl methacrylate, t-butyl methacrylate, 4-t-butylphenyl methacrylate, pentachlorophenyl methacrylate, 4-cyanophenyl methacrylate, cyclohexyl methacrylate, ethyl methacrylate, 2-ethylhexyl methacrylate, isobornyl methacrylate, isopropyl methacrylate, methyl methacrylate, 3,5-dimethyladamantyl methacrylate, 2- Naphthyl methacrylate, neopentyl methacrylate, phenyl methacrylate, tetrahydrofurfuryl methacrylate, 2-hydroxyethyl Methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxypropyl methacryl
  • Styrene methyl styrene, dimethyl styrene, trimethyl styrene, isopropyl styrene, butyl styrene, cyclohexyl styrene, chloromethyl styrene, trifluoromethyl styrene, ethoxymethyl styrene, acetoxymethyl styrene, methoxy styrene, 4-methoxy-3-methyl styrene , Chlorostyrene, dichlorostyrene, trichlorostyrene, tetrachlorostyrene, pentachlorostyrene, bromostyrene, dibromostyrene, iodostyrene, fluorostyrene, trifluorostyrene, 2-bromo-4-trifluoromethylstyrene, 4-fluoro-3 -Trifluoromethylstyrene.
  • radical polymerizable compounds can be used singly or in combination of two or more.
  • the specific resin may or may not contain the above-mentioned radical polymerizable compound, but when it is contained, the content of the structural unit corresponding to these radical polymerizable compounds is 0.000 relative to the total mass of the specific resin. It is 1 mass% or more and 50 mass% or less, Most preferably, it is 0.1 mass% or more and 30 mass% or less.
  • the specific resin can be synthesized by a conventionally known method.
  • the solvent used in the synthesis include ethylene dichloride, cyclohexanone, methyl ethyl ketone, acetone, methanol, ethanol, propanol, butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 2-methoxyethyl acetate, 1-methoxy- Examples include 2-propanol, 1-methoxy-2-propyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, toluene, ethyl acetate, methyl lactate, and ethyl lactate. These solvents may be used alone or in combination of two or more.
  • the specific resin include the following Exemplified Compounds 1 to 32, but the present invention is not limited to these.
  • the numerical value written together with each structural unit represents the content of the structural unit [mass%: described as (wt%)].
  • the numerical value written together with the repeating part of the side chain indicates the number of repetitions of the repeating part.
  • the weight average molecular weight (polystyrene equivalent value measured by GPC method) of the specific resin is preferably 5,000 or more and 300,000 or less, more preferably 7,000 or more and 100,000 or less. It is especially preferable that it is 000 or more and 50,000 or less.
  • the specific resin in the dispersion composition (I), the specific resin can be used alone or in combination of two or more.
  • the content of the specific resin with respect to the total solid content of the dispersion composition (I) is preferably in the range of 10 to 50% by mass, more preferably in the range of 11 to 40% by mass, from the viewpoint of dispersibility and dispersion stability.
  • the range of ⁇ 30% by mass is more preferable.
  • the dispersion composition (I) contains a dispersion resin other than the specific resin (hereinafter may be referred to as “other dispersion resin”) for the purpose of adjusting the dispersibility of the metal oxide particles. May be.
  • dispersion resins that can be used in the present invention include polymer dispersants [for example, polyamidoamine and its salt, polycarboxylic acid and its salt, high molecular weight unsaturated acid ester, modified polyurethane, modified polyester, modified poly ( (Meth) acrylate, (meth) acrylic copolymer, naphthalenesulfonic acid formalin condensate], polyoxyethylene alkyl phosphate ester, polyoxyethylene alkylamine, alkanolamine, pigment derivative, and the like.
  • Other dispersion resins can be further classified into linear polymers, terminal-modified polymers, graft polymers, and block polymers based on their structures.
  • dispersion resins include “Disperbyk-101 (polyamideamine phosphate), 107 (carboxylic acid ester), 110 (copolymer containing an acid group), 130 (polyamide), 161, manufactured by BYK Chemie.
  • the dispersion composition (I) may or may not contain other dispersion resin, but when it is contained, the content of the other dispersion resin with respect to the total solid content of the dispersion composition (I) is 1 to 20 masses. % Is preferable, and a range of 1 to 10% by mass is more preferable.
  • the solvent can be composed of various organic solvents.
  • Organic solvents that can be used here include acetone, methyl ethyl ketone, cyclohexane, ethyl acetate, ethylene dichloride, tetrahydrofuran, toluene, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether.
  • the manufacturing method of the dispersion composition used normally can be applied.
  • it can be produced by mixing metal oxide particles, a graft copolymer, and a solvent, and performing dispersion treatment using a circulation type dispersion device (bead mill) or the like.
  • the dispersible composition (I) of the present embodiment includes a polymerizable compound (D) and a polymerization initiator, and includes a curable composition for forming a high refractive index layer by including other components as necessary.
  • a composition is preferred.
  • the “curable composition” is a form of the “dispersion composition”.
  • the content of the oxide particles is 50% by mass to 90% by mass, more preferably 52% by mass to 85% by mass, and most preferably 55% by mass to 80% by mass.
  • the dispersion composition is a curable composition for forming a high refractive index layer, it has excellent dispersibility and dispersion stability, and has a very high refractive index, even when applied to a large-size wafer.
  • a film typically a transparent film having a small difference in film thickness between the central part and the peripheral part can be formed.
  • the present invention also relates to a transparent film formed using the curable composition for forming a high refractive index layer of the present embodiment.
  • the composition (I) of the present embodiment is preferably a transparent composition. More specifically, when a cured film having a thickness of 1.0 ⁇ m is formed from the composition, the thickness of the cured film is determined.
  • the composition has a light transmittance in the direction of 90% or more over the entire wavelength region of 400 to 700 nm. That is, the transparent film of the present embodiment is a film having a light transmittance of 90% or more over the entire wavelength region of 400 to 700 nm at a film thickness of 1.0 ⁇ m.
  • any means can be used.
  • the said physical property of the light transmittance can be suitably achieved also by adjusting the particle diameter of a metal oxide particle (A), and the kind and addition amount of a graft copolymer (B).
  • the light transmittance is 90% or more over the entire wavelength region of 400 to 700 nm. It is an important factor for developing the characteristics to be achieved.
  • the light transmittance is preferably 95% or more, more preferably 99% or more, and most preferably 100% over the entire wavelength region of 400 to 700 nm.
  • the curable composition for forming a high refractive index layer of the present embodiment substantially does not contain a colorant (the content of the colorant is 0 mass relative to the total solid content of the composition). %).
  • the polymerizable compound is an addition polymerizable compound having a polymerizable group such as at least one ethylenically unsaturated double bond, an epoxy group, or an oxetanyl group. Is selected from compounds having at least 1, preferably 2 or more. Such compounds are widely known in the technical field, and can be used without particular limitation in the present invention. These have chemical forms such as monomers, prepolymers, ie, multimers and oligomers such as dimers and trimers, or mixtures thereof and copolymers thereof.
  • Examples of monomers and copolymers thereof include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), and esters and amides thereof.
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters and amides thereof examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), and esters and amides thereof.
  • an ester of an unsaturated carboxylic acid and an aliphatic polyhydric alcohol compound, or an amide of an unsaturated carboxylic acid and an aliphatic polyvalent amine compound is used.
  • an addition reaction product of an unsaturated carboxylic acid ester or unsaturated carboxylic acid amide having a nucleophilic substituent such as a hydroxyl group, an amino group or a mercapto group with a monofunctional or polyfunctional isocyanate or epoxy, and A dehydration condensation reaction product with a monofunctional or polyfunctional carboxylic acid is also preferably used.
  • a substitution reaction product of an unsaturated carboxylic acid ester or unsaturated carboxylic acid amide having a leaving group such as a halogen group or a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable. It is.
  • the compounds described in paragraphs 0095 to 0108 of JP-A-2009-288705 can be preferably used in the present invention.
  • a first preferred form of the polymerizable compound is a monomer having at least one ethylenically unsaturated double bond (polymerizable monomer) or an oligomer having a polymerizable group (polymerizable oligomer) (hereinafter, polymerizable with a polymerizable monomer).
  • the polymerizable oligomers may be collectively referred to as “polymerizable monomers”.
  • the polymerizable monomer or the like is preferably a compound having at least one addition-polymerizable ethylene group and having an ethylenically unsaturated group having a boiling point of 100 ° C. or higher under normal pressure.
  • Examples include monofunctional acrylates and methacrylates such as polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, phenoxyethyl (meth) acrylate; polyethylene glycol di (meth) acrylate, trimethylolethanetri (Meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, hexanedio
  • polymerizable monomers include compounds having a fluorene ring and having two or more functional ethylenic polymerizable groups described in JP 2010-160418 A, JP 2010-129825 A, Patent 4364216, and the like. Polymers can also be used.
  • JP-A-10-62986 compounds described in JP-A-10-62986 as general formulas (1) and (2) together with specific examples thereof are compounds that have been (meth) acrylated after addition of ethylene oxide or propylene oxide to the polyfunctional alcohol. Can be used as a polymerizable monomer.
  • the polymerizable monomer used in the present invention is preferably a polymerizable monomer represented by the following general formulas (MO-1) to (MO-6). (In the formula, each of n is 0 to 14, and m is 1 to 8. Each of R, T, and Z present in a molecule is the same or different. When T is an oxyalkylene group, the terminal on the carbon atom side is bonded to R. At least one of R is a polymerizable group.)
  • n is preferably 0 to 5, more preferably 1 to 3.
  • m is preferably 1 to 5, and more preferably 1 to 3.
  • R is Is preferred, Is more preferable.
  • Specific examples of the radical polymerizable monomer represented by the above general formulas (MO-1) to (MO-6) include compounds described in paragraph numbers 0248 to 0251 of JP-A-2007-2699779 Can be suitably used in the present invention.
  • dipentaerythritol triacrylate (KAYARAD D-330 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercial product, KAYARAD D-320; Nippon Kayaku) Dipentaerythritol penta (meth) acrylate (manufactured by Co., Ltd.) (as a commercial product, KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (as a commercial product, KAYARAD DPHA; Nippon Kayaku Co., Ltd.) Company), and the structure in which these (meth) acryloyl groups are mediated by ethylene glycol and propylene glycol residues, diglycerin EO (ethylene oxide) modified (meth) acrylate (commercially available product
  • KAYARAD D-330 as a commercial
  • the polymerizable monomer is a polyfunctional monomer and may have an acid group such as a carboxyl group, a sulfonic acid group, or a phosphoric acid group. Therefore, if the ethylenic compound has an unreacted carboxyl group as in the case of a mixture as described above, this can be used as it is.
  • a non-aromatic carboxylic acid anhydride may be reacted with the group to introduce an acid group.
  • non-aromatic carboxylic acid anhydride examples include tetrahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, alkylated hexahydrophthalic anhydride, succinic anhydride, anhydrous Maleic acid is mentioned.
  • the monomer having an acid group is an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and a non-aromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound.
  • a polyfunctional monomer having an acid group is preferable, and in this ester, the aliphatic polyhydroxy compound is pentaerythritol and / or dipentaerythritol.
  • Examples of commercially available products include Aronix series M-305, M-510, and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • a preferable acid value of the polyfunctional monomer having an acid group is 0.1 to 40 mg-KOH / g, and particularly preferably 5 to 30 mg-KOH / g.
  • it is essential that the acid value of the entire polyfunctional monomer is within the above range. It is.
  • the polyfunctional monomer which has a caprolactone modified structure is not particularly limited as long as it has a caprolactone-modified structure in the molecule.
  • trimethylolethane, ditrimethylolethane, trimethylolpropane, ditrimethylolpropane which is obtained by esterifying polyhydric alcohols such as pentaerythritol, dipentaerythritol, tripentaerythritol, glycerin, diglycerol, trimethylolmelamine, (meth) acrylic acid and ⁇ -caprolactone.
  • functional (meth) acrylates Mention may be made of functional (meth) acrylates.
  • a polyfunctional monomer having a caprolactone-modified structure represented by the following formula (1) is preferable.
  • R 1 represents a hydrogen atom or a methyl group
  • m represents a number of 1 or 2
  • “*” represents a bond.
  • R 1 represents a hydrogen atom or a methyl group, and “*” represents a bond.
  • the polyfunctional monomer which has a caprolactone modified structure can be used individually or in mixture of 2 or more types.
  • polymerizable monomer or the like in the present invention is preferably at least one selected from the group of compounds represented by the following general formula (i) or (ii).
  • each E independently represents — ((CH 2 ) yCH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) —,
  • Each y independently represents an integer of 0 to 10
  • each X independently represents an acryloyl group, a methacryloyl group, a hydrogen atom, or a carboxyl group.
  • the total number of acryloyl groups and methacryloyl groups is 3 or 4
  • each m independently represents an integer of 0 to 10
  • the total of each m is an integer of 0 to 40. However, when the total of each m is 0, any one of X is a carboxyl group.
  • the total number of acryloyl groups and methacryloyl groups is 5 or 6, each n independently represents an integer of 0 to 10, and the total of each n is an integer of 0 to 60. However, when the total of each n is 0, any one of X is a carboxyl group.
  • m is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4. Further, the total of each m is preferably an integer of 2 to 40, more preferably an integer of 2 to 16, and particularly preferably an integer of 4 to 8.
  • n is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4. The total of each n is preferably an integer of 3 to 60, more preferably an integer of 3 to 24, and particularly preferably an integer of 6 to 12.
  • — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) — in general formula (i) or general formula (ii) is a terminal on the oxygen atom side. Is preferred in which X is bonded to X.
  • the compounds represented by the general formula (i) or (ii) may be used alone or in combination of two or more.
  • a form in which all six Xs are acryloyl groups is preferable.
  • the compound represented by the above general formula (i) or (ii) is a ring-opening skeleton obtained by ring-opening addition reaction of ethylene oxide or propylene oxide with pentaerythritol or dipentaerythritol, which is a conventionally known process. And a step of reacting, for example, (meth) acryloyl chloride with the terminal hydroxyl group of the ring-opening skeleton to introduce a (meth) acryloyl group. Each step is a well-known step, and a person skilled in the art can easily synthesize a compound represented by the general formula (i) or (ii).
  • a pentaerythritol derivative and / or a dipentaerythritol derivative is more preferable.
  • Specific examples include compounds represented by the following formulas (a) to (f) (hereinafter also referred to as “exemplary compounds (a) to (f)”).
  • exemplary compounds (a), (f) b), (e) and (f) are preferred.
  • Examples of commercially available monomers such as polymerizable monomers represented by the general formulas (i) and (ii) include SR-494, a tetrafunctional acrylate having four ethyleneoxy chains manufactured by Sartomer, manufactured by Nippon Kayaku Co., Ltd. DPCA-60, which is a hexafunctional acrylate having six pentyleneoxy chains, and TPA-330, which is a trifunctional acrylate having three isobutyleneoxy chains.
  • Examples of the polymerizable monomer include urethane acrylates described in JP-B-48-41708, JP-A-51-37193, JP-B-2-32293, JP-B-2-16765, and the like. Urethane compounds having an ethylene oxide skeleton described in JP-B-58-49860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418 are also suitable. Furthermore, as polymerizable monomers, addition polymerizable monomers having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238 are used.
  • urethane oligomers UAS-10, UAB-140 (manufactured by Sanyo Kokusaku Pulp), UA-7200 "(manufactured by Shin-Nakamura Chemical Co., Ltd., DPHA-40H (manufactured by Nippon Kayaku Co., Ltd.), -306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (manufactured by Kyoeisha) and the like.
  • a polyfunctional thiol compound having two or more mercapto (SH) groups in the same molecule is also suitable. Particularly preferred are those represented by the following general formula (I).
  • R 1 is an alkyl group
  • R 2 is an n-valent aliphatic group that may contain atoms other than carbon
  • R 0 is an alkyl group that is not H
  • n is 2 to 4.
  • polyfunctional thiol compound represented by the general formula (I) is specifically exemplified, 1,4-bis (3-mercaptobutyryloxy) butane [formula (II)] having the following structural formula: 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triasian-2,4,6 (1H, 3H5H) -trione [formula (III)], and pentaerythritol tetrakis (3 -Mercaptobutyrate) [formula (IV)] and the like.
  • These polyfunctional thiols can be used alone or in combination.
  • polymerizable monomer or oligomer having two or more epoxy groups or oxetanyl groups in the molecule as the polymerizable monomer.
  • a compound having an epoxy group or an oxetanyl group may be used as the polymerizable compound.
  • the compound having an epoxy group or oxetanyl group include a polymer having an epoxy group in a side chain, and a polymerizable monomer or oligomer having two or more epoxy groups in the molecule, and a bisphenol A type epoxy resin, Bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, aliphatic epoxy resin and the like can be mentioned. These compounds may be used commercially or obtained by introducing an epoxy group into the side chain of the polymer.
  • bisphenol A type epoxy resin JER827, JER828, JER834, JER1001, JER1002, JER1003, JER1055, JER1007, JER1009, JER1010 (above, Japan Epoxy Resin Co., Ltd.), EPICLON860, EPICLON1050, EPICLON1051, EPICLON1055 (manufactured by DIC Corporation), etc.
  • bisphenol F type epoxy resin is JER806, JER807, JER4004, JER4005, JER4007, JER4010 (above, Japan Epoxy Resin Co., Ltd.), EPICLON830, EPICLON835.
  • EPICLON N-740 EPICLON N-740, EPICLON N -770, EPICLON N-775 (manufactured by DIC Corporation), etc.
  • cresol novolac type epoxy resins include EPICLON N-660, EPICLON N-665, EPICLON N-670, EPICLON N-673, EPICLON N -680, EPICLON N-690, EPICLON N-695 (made by DIC Corporation), EOCN-1020 (made by Nippon Kayaku Co., Ltd.), etc.
  • ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation), JER1031S (manufactured by Japan Epoxy Resin Co., Ltd.) and the like.
  • polymer having an oxetanyl group in the side chain and the polymerizable monomer or oligomer having two or more oxetanyl groups in the molecule include Aronoxetane OXT-121, OXT-221, OX-SQ, PNOX ( As described above, Toagosei Co., Ltd.) can be used.
  • the introduction reaction includes tertiary amines such as triethylamine and benzylmethylamine, quaternary ammonium salts such as dodecyltrimethylammonium chloride, tetramethylammonium chloride, tetraethylammonium chloride, pyridine,
  • the reaction can be carried out in an organic solvent at a reaction temperature of 50 to 150 ° C. for several to several tens of hours using triphenylphosphine as a catalyst.
  • the amount of the alicyclic epoxy unsaturated compound introduced is preferably controlled so that the acid value of the obtained polymer is in a range satisfying 5 to 200 KOH ⁇ mg / g.
  • the molecular weight is preferably in the range of 500 to 5000000, more preferably 1000 to 500000 on a weight average.
  • the epoxy unsaturated compound those having a glycidyl group as an epoxy group such as glycidyl (meth) acrylate and allyl glycidyl ether can be used, but preferred are unsaturated compounds having an alicyclic epoxy group. Examples of such compounds include the following compounds.
  • amide monomers of aliphatic polyvalent amine compounds and unsaturated carboxylic acids include methylene bis-acrylamide, methylene bis-methacrylamide, 1,6-hexamethylene bis-acrylamide, 1,6-hexamethylene bis. -Methacrylamide, diethylenetriamine trisacrylamide, xylylene bisacrylamide, xylylene bismethacrylamide and the like.
  • examples of other preferable amide monomers include those having a cyclohexylene structure described in JP-B No. 54-21726.
  • urethane-based addition polymerizable compounds produced by using an addition reaction of isocyanate and hydroxyl group are also suitable. Specific examples thereof include, for example, one molecule described in JP-B-48-41708.
  • a vinylurethane compound containing two or more polymerizable vinyl groups in one molecule obtained by adding a vinyl monomer having a hydroxyl group represented by the following formula (V) to a polyisocyanate compound having two or more isocyanate groups: Etc.
  • R 7 and R 8 each independently represent a hydrogen atom or a methyl group.
  • urethane acrylates as described in JP-A-51-37193, JP-B-2-32293, JP-B-2-16765, JP-B-58-49860, JP-B-56- Urethane compounds having an ethylene oxide skeleton described in Japanese Patent No. 17654, Japanese Patent Publication No. 62-39417, and Japanese Patent Publication No. 62-39418 are also suitable.
  • polymerizable compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238. Can obtain a curable composition having a very high photosensitive speed.
  • polyester acrylates examples include polyester acrylates, epoxy resins and (meth) acrylic acid described in JP-A-48-64183, JP-B-49-43191, JP-B-52-30490, and JP-B-52-30490. Mention may be made of polyfunctional acrylates and methacrylates such as epoxy acrylates obtained by reaction. Further, specific unsaturated compounds described in JP-B-46-43946, JP-B-1-40337, JP-B-1-40336, and vinylphosphonic acid compounds described in JP-A-2-25493 are also included. Can be mentioned. In some cases, a structure containing a perfluoroalkyl group described in JP-A-61-22048 is preferably used. Furthermore, the Japan Adhesion Association magazine vol. 20, no. 7, photocurable monomers and oligomers described on pages 300 to 308 (1984) can also be used.
  • the details of usage methods can be arbitrarily set according to the final performance design of a curable composition.
  • it is selected from the following viewpoints. From the viewpoint of sensitivity, a structure having a large unsaturated group content per molecule is preferable, and in many cases, a bifunctional or higher functionality is preferable.
  • those having three or more functionalities are preferable, and further, different functional numbers and different polymerizable groups (for example, acrylic acid ester, methacrylic acid ester, styrene compound, vinyl ether compound, epoxy) It is also effective to adjust both sensitivity and strength by using a combination of a compound based on an oxetane compound or an oxetane compound).
  • the selection and use method of the polymerizable compound is also an important factor for the compatibility and dispersibility with other components (for example, polymerization initiator, metal oxide particles, etc.) contained in the curable composition.
  • the compatibility may be improved by using a low-purity compound or using two or more kinds of other components in combination.
  • a specific structure may be selected for the purpose of improving adhesion to a hard surface such as a substrate.
  • the content of the polymerizable compound (D) is preferably in the range of 1% by mass to 50% by mass with respect to the total solid content of the curable composition for forming a high refractive index layer. % Is more preferable, and a range of 5% by mass to 30% by mass is still more preferable. Within this range, the curability is good and preferable without lowering the refractive index.
  • the polymerization initiator is a compound that initiates and accelerates the polymerization of the (D) polymerizable compound, and is stable up to 45 ° C., but has a good polymerization initiation ability when heated at high temperatures. It is preferable. Further, the polymerization initiator preferably contains at least one compound having a molecular extinction coefficient of at least about 50 within a range of about 300 nm to 800 nm (more preferably 330 nm to 500 nm). Moreover, a polymerization initiator can be used individually or in combination of 2 or more types.
  • organic halogenated compounds for example, organic halogenated compounds, oxydiazole compounds, carbonyl compounds, ketal compounds, benzoin compounds, acridine compounds, organic peroxide compounds, azo compounds, coumarin compounds, azide compounds, metallocene compounds
  • examples include hexaarylbiimidazole compounds, organic boric acid compounds, disulfonic acid compounds, oxime ester compounds, onium salt compounds, and acylphosphine (oxide) compounds.
  • organic halogenated compound examples include Wakabayashi et al., “Bull. Chem. Soc. Japan” 42, 2924 (1969), US Pat. No. 3,905,815, Japanese Examined Patent Publication No. 46-4605, Japanese Laid-Open Patent Publication No. 48-36281, Japanese Laid-Open Patent Publication No. 55-32070, Japanese Laid-Open Patent Publication No. 60-239736, Japanese Laid-Open Patent Publication No. 61-169835, Japanese Laid-Open Patent Publication No. 61-169837, Japanese Laid-Open Patent Publication No. 62-58241. No.
  • an s-triazine derivative in which at least one mono-, di-, or trihalogen-substituted methyl group is bonded to the s-triazine ring specifically, for example, 2,4,6- Tris (monochloromethyl) -s-triazine, 2,4,6-tris (dichloromethyl) -s-triazine, 2,4,6-tris (trichloromethyl) -s-triazine, 2-methyl-4,6- Bis (trichloromethyl) -s-triazine, 2-n-propyl-4,6-bis (trichloromethyl) -s-triazine, 2- ( ⁇ , ⁇ , ⁇ -trichloroethyl) -4,6-bis (trichloro Methyl) -s-triazine, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine, 2- (
  • Examples of oxydiazole compounds include 2-trichloromethyl-5-styryl-1,3,4-oxodiazole, 2-trichloromethyl-5- (cyanostyryl) -1,3,4-oxodiazole, 2-trichloromethyl-5- (naphth-1-yl) -1,3,4-oxodiazole, 2-trichloromethyl-5- (4-styryl) styryl-1,3,4-oxodiazole, etc. Can be mentioned.
  • carbonyl compounds examples include benzophenone, Michler ketone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2-chlorobenzophenone, 4-bromobenzophenone, benzophenone derivatives such as 2-carboxybenzophenone, 2,2-dimethoxy -2-phenylacetophenone, 2,2-diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, ⁇ -hydroxy-2-methylphenylpropanone, 1-hydroxy-1-methylethyl- (p-isopropylphenyl) ketone, 1 -Hydroxy-1- (p-dodecylphenyl) ketone, 2-methyl- (4 ′-(methylthio) phenyl) -2-morpholino-1-propanone, 2- (dimethylamino) -2-[(4-methylphenol L) methyl] -1- [4- (4-morpholinyl) phenyl] -1
  • ketal compound examples include benzyl methyl ketal and benzyl- ⁇ -methoxyethyl ethyl acetal.
  • benzoin compound examples include m-benzoin isopropyl ether, benzoin isobutyl ether, benzoin methyl ether, methyl o-benzoylbenzoate and the like.
  • acridine compound examples include 9-phenylacridine, 1,7-bis (9-acridinyl) heptane and the like.
  • organic peroxide compound examples include trimethylcyclohexanone peroxide, acetylacetone peroxide, 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (tert-butylperoxide).
  • Examples of the azo compound include azo compounds described in JP-A-8-108621.
  • Examples of coumarin compounds include 3-methyl-5-amino-((s-triazin-2-yl) amino) -3-phenylcoumarin, 3-chloro-5-diethylamino-((s-triazin-2-yl). ) Amino) -3-phenylcoumarin, 3-butyl-5-dimethylamino-((s-triazin-2-yl) amino) -3-phenylcoumarin, and the like.
  • azide compound examples include organic azide compounds described in US Pat. No. 2,848,328, US Pat. No. 2,852,379 and US Pat. No. 2,940,853, 2,6-bis (4-azidobenzylidene) -4 -Ethylcyclohexanone (BAC-E) and the like.
  • metallocene compound examples include JP-A-59-152396, JP-A-61-151197, JP-A-63-41484, JP-A-2-249, JP-A-2-4705, Various titanocene compounds described in JP-A-5-83588, such as dicyclopentadienyl-Ti-bis-phenyl, dicyclopentadienyl-Ti-bis-2,6-difluorophenyl-1-yl, dicyclopenta Dienyl-Ti-bis-2,4-difluorophenyl-1-yl, dicyclopentadienyl-Ti-bis-2,4,6-trifluorophenyl-1-yl, dicyclopentadienyl-Ti- Bis-2,3,5,6-tetrafluorophenyl-1-yl, dicyclopentadienyl-Ti-bis-2,3,4,5,6-pentafluoro Enyl-1-yl
  • a hexaarylbiimidazole compound (rophine dimer compound) is preferable.
  • the hexaarylbiimidazole compound include lophine dimers described in JP-B-45-37377 and JP-B-44-86516, JP-B-6-29285, US Pat. No. 3,479,185, and the like.
  • organic borate compound examples include JP-A-62-143044, JP-A-62-1050242, JP-A-9-188865, JP-A-9-188686, JP-A-9-188710, JP-A-2000. -131837, Japanese Patent Application Laid-Open No. 2002-107916, Japanese Patent No. 2764769, Japanese Patent Application Laid-Open No. 2001116539, etc., and Kunz, Martin “Rad Tech'98. Proceeding April 19-22, 1998, Chicago”.
  • the organic boron iodonium complexes described in JP-A-9-188710, the organic boron phosphonium complexes described in JP-A-9-348710, JP-A-7-128785, JP-A-7-140589, JP-A-7- Specific examples include organoboron transition metal coordination complexes and the like described in JP-A-306527 and JP-A-7-292014.
  • Examples of the disulfone compound include compounds described in JP-A Nos. 61-166544 and 2002-328465.
  • hydroxyacetophenone compounds As the polymerization initiator, hydroxyacetophenone compounds, aminoacetophenone compounds, and acylphosphine compounds can also be suitably used. More specifically, for example, an aminoacetophenone initiator described in JP-A-10-291969 and an acylphosphine oxide initiator described in Japanese Patent No. 4225898 can also be used.
  • hydroxyacetophenone-based initiator IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379 (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator a compound described in JP-A-2009-191179 in which an absorption wavelength is matched with a long wave light source such as 365 nm or 405 nm can also be used.
  • acylphosphine-based initiator commercially available products such as IRGACURE-819 and DAROCUR-TPO (trade names: both manufactured by BASF) can be used.
  • an oxime compound is preferable from the viewpoints of curability, stability over time, and difficulty in coloring during post-heating.
  • oxime compounds include J.M. C. S. Perkin II (1979) 1653-1660), J. MoI. C. S. Perkin II (1979) 156-162, Journal of Photopolymer Science and Technology (1995) 202-232, Journal of Applied Polymer. Science (2012) pp. 725-731, compounds described in JP-A 2000-66385, compounds described in JP-A 2000-80068, JP-T 2004-534797, and the like.
  • oxime ester compounds other than those described above compounds described in JP-T-2009-519904 in which oxime is linked to carbazole N-position, compounds described in US Pat. No. 7,626,957 in which a hetero substituent is introduced into the benzophenone moiety, A compound described in Japanese Patent Application Laid-Open No. 2010-15025 and US Patent Publication No. 2009-292039 in which a nitro group is introduced at the dye moiety, a ketoxime compound described in International Patent Publication No. 2009-131189, the triazine skeleton and the oxime skeleton are the same A compound described in US Pat. No. 7,556,910 contained in the molecule, a compound described in Japanese Patent Application Laid-Open No. 2009-221114 having an absorption maximum at 405 nm and good sensitivity to a g-line light source, and the like may be used. .
  • the cyclic oxime compounds described in JP2007-231000A and JP2007-322744A can also be suitably used.
  • the cyclic oxime compounds fused to the carbazole dyes described in JP2010-32985A and JP2010-185072A have high light absorption and high sensitivity. preferable.
  • the compounds described in JP-A-2009-242469 having an unsaturated bond at a specific site of the oxime compound can be preferably used because high sensitivity can be achieved by regenerating the active radical from the polymerization inert radical. it can.
  • oxime compounds having a specific substituent as disclosed in JP-A-2007-2699779 examples include oxime compounds having a thioaryl group as disclosed in JP-A-2009-191061.
  • a compound represented by the following formula (OX) is also preferred, and a compound represented by (OX-1) is more preferred.
  • the oxime N—O bond may be an (E) oxime compound, a (Z) oxime compound, or a mixture of (E) and (Z) isomers. .
  • R and B are as defined in the following formula (OX-1).
  • a 1 is preferably —A—SAr of the formula (OX-1) or an alkyl group.
  • the alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
  • R and B each independently represent a monovalent substituent
  • A represents a divalent organic group
  • Ar represents an aryl group.
  • the monovalent substituent represented by R is preferably a monovalent nonmetallic atomic group.
  • the monovalent nonmetallic atomic group include an alkyl group, an aryl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic group, an alkylthiocarbonyl group, and an arylthiocarbonyl group.
  • these groups may have one or more substituents.
  • the substituent mentioned above may be further substituted by another substituent.
  • substituents examples include a halogen atom, an aryloxy group, an alkoxycarbonyl group or an aryloxycarbonyl group, an acyloxy group, an acyl group, an alkyl group, and an aryl group.
  • the monovalent substituent represented by B represents an aryl group, a heterocyclic group, an arylcarbonyl group, or a heterocyclic carbonyl group. These groups may be bonded to the methylene group via a linking group, and examples of the linking group include a single bond, a carbonyl group, a substituent Y described later, an alkyl group, or a combination thereof. These groups may have one or more substituents. Examples of the substituent include the above-described substituents. Moreover, the substituent mentioned above may be further substituted by another substituent.
  • Y, X, and n have the same meanings as Y, X, and n in formula (OX-2) described later, and preferred examples are also the same.
  • examples of the divalent organic group represented by A include an alkylene group having 1 to 12 carbon atoms, a cycloalkylene group having 3 to 12 carbon atoms, and an alkynylene group having 2 to 12 carbon atoms. Can be mentioned. These groups may have one or more substituents. Examples of the substituent include the above-described substituents. Moreover, the substituent mentioned above may be further substituted by another substituent.
  • a in the formula (OX-1) represents an unsubstituted alkylene group, an alkyl group (for example, a methyl group, an ethyl group, a tert-butyl group, dodecyl) from the viewpoint of increasing sensitivity and suppressing coloration with heating.
  • Group) substituted alkylene group, alkenyl group (eg vinyl group, allyl group) alkylene group, aryl group (eg phenyl group, p-tolyl group, xylyl group, cumenyl group, naphthyl group, anthryl) Group, a phenanthryl group, and a styryl group) are preferable.
  • the oxime compound represented by the formula (OX-1) is preferably a compound represented by the following formula (OX-2).
  • R and X each independently represent a monovalent substituent
  • a and Y each independently represent a divalent organic group
  • Ar represents an aryl group
  • n represents 0 to (It is an integer of 5.)
  • R, A and Ar in the formula (OX-2) have the same meanings as R, A and Ar in the formula (OX-1), and preferred examples are also the same.
  • examples of the monovalent substituent represented by X include an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an acyloxy group, an acyl group, an alkoxycarbonyl group, an amino group, and a heterocyclic ring.
  • X in the formula (OX-2) is preferably an alkyl group from the viewpoints of solvent solubility and improvement in absorption efficiency in the long wavelength region.
  • n represents an integer of 0 to 5, and an integer of 0 to 2 is preferable.
  • examples of the divalent organic group represented by Y include the structures Sub-1 to Sub-11 shown below.
  • “*” represents a bonding position between Y and an adjacent carbon atom in the formula (OX-2).
  • the structures Sub-1 and Sub-2 are preferable from the viewpoint of increasing sensitivity.
  • the oxime compound represented by the formula (OX-2) is preferably a compound represented by the following formula (OX-3).
  • R and X each independently represent a monovalent substituent
  • A represents a divalent organic group
  • Ar represents an aryl group
  • n is an integer of 0 to 5.
  • R, X, A, Ar, and n in formula (OX-3) have the same meanings as R, X, A, Ar, and n in formula (OX-2), respectively, and preferred examples are also the same. is there.
  • PIox-1 to (PIox-13) of oxime compounds that can be suitably used are shown below, but the present invention is not limited thereto.
  • the oxime compound has a function as a thermal polymerization initiator that is decomposed by heat to start and accelerate polymerization.
  • the oxime compound preferably has a maximum absorption wavelength in a wavelength region of 350 nm to 500 nm, more preferably has an absorption wavelength in a wavelength region of 360 nm to 480 nm, and has high absorbance at 365 nm and 455 nm. Particularly preferred.
  • the molar extinction coefficient at 365 nm or 405 nm of the oxime compound is preferably 1,000 to 300,000, more preferably 2,000 to 300,000, more preferably 5,000 to 200, from the viewpoint of sensitivity. Is particularly preferred. A known method can be used for the molar extinction coefficient of the compound.
  • an ultraviolet-visible spectrophotometer (Vary Inc., Carry-5 spectrophotometer) is used with an ethyl acetate solvent. It is preferable to measure at a concentration of / L.
  • oxime compound commercially available products such as IRGACURE OXE01 and IRGACURE OXE02 (both manufactured by BASF) can be suitably used.
  • onium salt compounds examples include S.I. I. Schlesinger, Photogr. Sci. Eng. , 18, 387 (1974), T.A. S. Bal et al, Polymer, 21, 423 (1980), diazonium salts, US Pat. No. 4,069,055, ammonium salts described in JP-A-4-365049, US Pat. No. 4,069, The phosphonium salts described in the specifications of Nos. 055 and 4,069,056, the specifications of European Patent No. 104,143, and the specifications of JP-A-2-150848 and JP-A-2-296514 And iodonium salts.
  • the iodonium salt is a diaryl iodonium salt and is preferably substituted with two or more electron donating groups such as an alkyl group, an alkoxy group, and an aryloxy group from the viewpoint of stability.
  • Examples of sulfonium salts include European Patent Nos. 370,693, 390,214, 233,567, 297,443, 297,442, U.S. Pat. Nos. 4,933,377, 4, 760,013, 4,734,444, 2,833,827, German Patent 2,904,626, 3,604,580, 3,604,581
  • the sulfonium salt described in the document is mentioned, and from the viewpoint of stability and sensitivity, it is preferably one substituted with an electron withdrawing group.
  • the electron withdrawing group preferably has a Hammett value greater than zero.
  • Examples of preferable electron withdrawing groups include halogen atoms and carboxylic acid groups.
  • sulfonium salts include sulfonium salts in which one substituent of the triarylsulfonium salt has a coumarin structure or an anthraquinone structure and absorbs at 300 nm or more.
  • a sulfonium salt in which the triarylsulfonium salt has an allyloxy group or an arylthio group as a substituent and has absorption at 300 nm or more can be mentioned.
  • onium salt compounds J. Org. V. Crivello et al, Macromolecules, 10 (6), 1307 (1977), J. MoI. V. Crivello et al, J.A. Polymer Sci. , Polymer Chem. Ed. , 17, 1047 (1979), a selenonium salt described in C.I. S. Wen et al, Teh, Proc. Conf. Rad. Curing ASIA, p478 Tokyo, Oct (1988) and onium salts such as arsonium salts.
  • acylphosphine (oxide) compound examples include Irgacure 819, Darocur 4265, and Darocur TPO manufactured by BASF.
  • (E) As a polymerization initiator, from the viewpoint of curability, a trihalomethyltriazine compound, a benzyldimethyl ketal compound, an ⁇ -hydroxyketone compound, an ⁇ -aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound Oxime compounds, triallylimidazole dimers, onium compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, 3- Compounds selected from the group consisting of aryl substituted coumarin compounds are preferred.
  • trihalomethyltriazine compounds More preferred are trihalomethyltriazine compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, oxime compounds, triallylimidazole dimers, onium compounds, benzophenone compounds, acetophenone compounds, and trihalo compounds. Most preferred is at least one compound selected from the group consisting of methyltriazine compounds, ⁇ -aminoketone compounds, oxime compounds, triallylimidazole dimers, and benzophenone compounds.
  • a curable composition for forming a high refractive index layer is provided on a color filter of a solid-state imaging device to form a microlens, it is particularly less colored during post-heating and has good curability.
  • the polymerization initiator (E) it is most preferable to use an oxime compound.
  • the content of the (E) polymerization initiator contained in the curable composition for forming a high refractive index layer is 0.1 mass relative to the total solid content of the curable composition. % To 10% by mass, more preferably 0.3% to 8% by mass, and still more preferably 0.5% to 5% by mass. Within this range, good curability can be obtained.
  • the curable composition for forming a high refractive index layer may further contain optional components described in detail below, if necessary. Hereinafter, optional components that the curable composition may contain will be described.
  • Polymerization inhibitor In order to prevent unnecessary polymerization of a compound having an ethylenically unsaturated double bond that can be polymerized during production or storage of the curable composition, it is preferable to add a polymerization inhibitor.
  • Polymerization inhibitors include phenolic hydroxyl group-containing compounds, N-oxide compounds, piperidine 1-oxyl free radical compounds, pyrrolidine 1-oxyl free radical compounds, N-nitrosophenylhydroxylamines, diazonium compounds, and cations Examples include dyes, sulfide group-containing compounds, nitro group-containing compounds, transition metal compounds such as FeCl3 and CuCl2.
  • the phenolic hydroxyl group-containing compound is hydroquinone, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4-thiobis (3-methyl-6-t-butylphenol), A compound selected from the group consisting of 2,2′-methylenebis (4-methyl-6-t-butylphenol), phenolic resins, and cresol resins is preferred.
  • N-oxide compounds include 5,5-dimethyl-1-pyrroline N-oxide, 4-methylmorpholine N-oxide, pyridine N-oxide, 4-nitropyridine N-oxide, 3-hydroxypyridine N-oxide, picoline A compound selected from the group consisting of acid N-oxide, nicotinic acid N-oxide, and isonicotinic acid N-oxide is preferred.
  • Piperidine 1-oxyl free radical compounds include piperidine 1-oxyl free radical, 2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-oxo-2,2,6,6-tetramethylpiperidine 1 -Oxyl free radical, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-acetamido-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-maleimide A compound selected from the group consisting of -2,2,6,6-tetramethylpiperidine 1-oxyl free radical and 4-phosphonoxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical Is preferred.
  • the pyrrolidine 1-oxyl free radical compound is preferably a 3-carboxyproxyl free radical (3-carboxy-2,2,5,5-tetramethylpyrrolidine 1-oxyl free radical).
  • N-nitrosophenylhydroxylamines are preferably compounds selected from the group consisting of N-nitrosophenylhydroxylamine cerium salts and N-nitrosophenylhydroxylamine aluminum salts.
  • the diazonium compound is selected from the group consisting of 4-diazophenyldimethylamine hydrogen sulfate, 4-diazodiphenylamine tetrafluoroborate, and 3-methoxy-4-diazodiphenylamine hexafluorophosphate Is preferred.
  • hydroquinone hydroquinone, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4-thiobis (3-methyl-6-t-) are preferable.
  • Butylphenol 2,2'-methylenebis (4-methyl-6-t-butylphenol) phenolic hydroxyl group-containing compound, piperidine 1-oxyl free radical or 2,2,6,6-tetramethylpiperidine 1-oxyl free Radical, 4-oxo-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-acetamido-2, 2,6,6-tetramethylpiperidine 1-oxyl free radical , 4-maleimido-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, and piperidine 1-oxyl free of 4-phosphonoxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical
  • a preferable addition amount of the polymerization inhibitor is preferably 0.01 parts by weight or more and 10 parts by weight or less, and more preferably 0.01 parts by weight or more and 8 parts by weight or less with respect to 100 parts by weight of the polymerization initiator (E). It is preferable that it is in the range of 0.05 parts by mass or more and 5 parts by mass or less. By setting it as the said range, the curing reaction suppression in a non-image part and the curing reaction acceleration in an image part are fully performed, and image forming property and a sensitivity become favorable.
  • the curable composition for forming a high refractive index layer of the present embodiment preferably further contains a binder polymer from the viewpoint of improving film properties.
  • a binder polymer a resin having a carboxyl group monomer alone or copolymerized, a monomer having an acid anhydride alone or copolymerized, and a resin in which an acid anhydride unit is hydrolyzed, half-esterified or half-amidated, Examples include epoxy acrylates obtained by modifying epoxy resins with unsaturated monocarboxylic acids and acid anhydrides.
  • Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, and 4-carboxylstyrene.
  • Examples of the monomer having an acid anhydride include maleic anhydride. It is done.
  • those obtained by adding a cyclic acid anhydride to a polymer having a hydroxyl group are useful.
  • a monomer other than the above-mentioned monomers can be used as the compound to be copolymerized.
  • examples of other monomers include the following compounds (1) to (12).
  • Vinyl ethers such as ethyl vinyl ether, 2-chloroethyl vinyl ether, hydroxyethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, octyl vinyl ether, and phenyl vinyl ether.
  • Vinyl esters such as vinyl acetate, vinyl chloroacetate, vinyl butyrate and vinyl benzoate.
  • Styrenes such as styrene, ⁇ -methylstyrene, methylstyrene, chloromethylstyrene, and p-acetoxystyrene.
  • Vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, propyl vinyl ketone, and phenyl vinyl ketone.
  • Olefins such as ethylene, propylene, isobutylene, butadiene, and isoprene.
  • N-vinylpyrrolidone (10) N-vinylpyrrolidone, acrylonitrile, methacrylonitrile and the like.
  • Unsaturated imides such as maleimide, N-acryloylacrylamide, N-acetylmethacrylamide, N-propionylmethacrylamide, N- (p-chlorobenzoyl) methacrylamide.
  • a methacrylic acid monomer having a hetero atom bonded to the ⁇ -position For example, compounds described in JP-A-2002-309057, JP-A-2002-311569 and the like can be mentioned.
  • the binder polymer preferably also contains a repeating unit formed by polymerizing a monomer component essentially comprising a compound represented by the following general formula (ED) (hereinafter sometimes referred to as “ether dimer”). .
  • ED general formula
  • R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
  • the curable composition for high refractive index layer formation of this embodiment can form the cured coating film which was very excellent also in heat resistance and transparency.
  • the hydrocarbon group having 1 to 25 carbon atoms which may have a substituent represented by R 1 and R 2 is not particularly limited, Linear or branched alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, t-amyl, stearyl, lauryl, 2-ethylhexyl; aryl groups such as phenyl; Alicyclic groups such as cyclohexyl, t-butylcyclohexyl, dicyclopentadienyl, tricyclodecanyl, isobornyl, adamantyl, 2-methyl-2-adamantyl; substituted with alkoxy such as 1-methoxyethy
  • ether dimer examples include dimethyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate, diethyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate, (N-propyl) -2,2 ′-[oxybis (methylene)] bis-2-propenoate, di (isopropyl) -2,2 ′-[oxybis (methylene)] bis-2-propenoate, di (n-butyl) ) -2,2 ′-[oxybis (methylene)] bis-2-propenoate, di (isobutyl) -2,2 ′-[oxybis (methylene)] bis-2-propenoate, di (t-butyl) -2, 2 ′-[oxybis (methylene)] bis-2-propenoate, di (t-amyl) -2,2 ′-[oxybis (methylene)] bis-2-prope , Di (stearyl) -2,2,2
  • dimethyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate, diethyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate, dicyclohexyl-2,2′- [Oxybis (methylene)] bis-2-propenoate and dibenzyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate are preferred.
  • These ether dimers may be used alone or in combination of two or more.
  • the structure derived from the compound represented by the general formula (ED) may be copolymerized with other monomers.
  • ether dimer dimer dimer dimer dimer dimer examples include, for example, a monomer for introducing an acid group, a monomer for introducing a radical polymerizable double bond, and an epoxy group. Monomers and other copolymerizable monomers other than these may be mentioned. Only 1 type may be used for such a monomer and it may use 2 or more types.
  • Examples of the monomer for introducing an acid group include monomers having a carboxyl group such as (meth) acrylic acid and itaconic acid, monomers having a phenolic hydroxyl group such as N-hydroxyphenylmaleimide, maleic anhydride, and anhydride. And monomers having a carboxylic anhydride group such as itaconic acid.
  • (meth) acrylic acid is particularly preferable.
  • the monomer for introducing an acid group may be a monomer that can give an acid group after polymerization, such as a monomer having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, Examples thereof include monomers having an epoxy group such as glycidyl (meth) acrylate, and monomers having an isocyanate group such as 2-isocyanatoethyl (meth) acrylate.
  • a monomer for introducing a radical polymerizable double bond when using a monomer capable of imparting an acid group after polymerization, it is necessary to perform a treatment for imparting an acid group after polymerization.
  • the treatment for adding an acid group after polymerization varies depending on the type of monomer, and examples thereof include the following treatment.
  • a treatment of adding an acid anhydride such as succinic anhydride, tetrahydrophthalic anhydride, maleic anhydride or the like can be mentioned.
  • a compound having an amino group and an acid group such as N-methylaminobenzoic acid or N-methylaminophenol is added, or, for example, (meth) acrylic
  • an acid anhydride such as succinic acid anhydride, tetrahydrophthalic acid anhydride, maleic acid anhydride to the hydroxyl group generated after adding an acid such as an acid
  • a monomer having an isocyanate group for example, a treatment of adding a compound having a hydroxyl group and an acid group such as 2-hydroxybutyric acid can be mentioned.
  • the content ratio is not particularly limited, In the monomer component, the content is preferably 5 to 70% by mass, more preferably 10 to 60% by mass.
  • Examples of the monomer for introducing a radical polymerizable double bond include, for example, monomers having a carboxyl group such as (meth) acrylic acid and itaconic acid; carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride Monomers having a group; monomers having an epoxy group such as glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, o- (or m-, or p-) vinylbenzyl glycidyl ether; .
  • a monomer for introducing a radical polymerizable double bond it is necessary to perform a treatment for imparting a radical polymerizable double bond after polymerization.
  • the treatment for imparting a radical polymerizable double bond after polymerization differs depending on the type of monomer that can impart a radical polymerizable double bond to be used, and examples thereof include the following treatment.
  • a monomer having a carboxyl group such as (meth) acrylic acid or itaconic acid
  • Treatment of adding a compound having an epoxy group such as vinylbenzyl glycidyl ether and a radically polymerizable double bond.
  • a treatment for adding a compound having a hydroxyl group and a radical polymerizable double bond such as 2-hydroxyethyl (meth) acrylate Is mentioned.
  • a monomer having an epoxy group such as glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, o- (or m-, or p-) vinylbenzyl glycidyl ether is used, (meth)
  • the process which adds the compound which has acid groups, such as acrylic acid, and a radically polymerizable double bond is mentioned.
  • the content ratio is particularly limited. However, it is preferably 5 to 70% by mass, more preferably 10 to 60% by mass in the total monomer components.
  • Examples of the monomer for introducing an epoxy group include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, o- (or m-, or p-) vinylbenzyl glycidyl ether, and the like. Can be mentioned.
  • the content ratio is not particularly limited, In the monomer component, the content is preferably 5 to 70% by mass, more preferably 10 to 60% by mass.
  • copolymerizable monomers include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n (meth) acrylate -Butyl, isobutyl (meth) acrylate, t-butyl (meth) acrylate, methyl 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, 2- (meth) acrylic acid 2- (Meth) acrylic acid esters such as hydroxyethyl; aromatic vinyl compounds such as styrene, vinyltoluene and ⁇ -methylstyrene; N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide; butadiene, isoprene and the like Butad
  • the content ratio is not particularly limited, but is 95% by mass. The following is preferable, and it is more preferable that it is 85 mass% or less.
  • the weight average molecular weight of the polymer obtained by polymerizing the monomer component containing the compound represented by the general formula (ED) is not particularly limited, but is formed by the viscosity of the colored radiation-sensitive composition and the composition. From the viewpoint of the heat resistance of the coating film, it is preferably 2000 to 200000, more preferably 5000 to 100,000, and still more preferably 5000 to 20000.
  • the acid value is preferably 30 to 500 mgKOH / g, more preferably 50 It should be ⁇ 400 mg KOH / g.
  • a polymer obtained by polymerizing a monomer component containing a compound represented by the general formula (ED) can be easily obtained by polymerizing at least the above-mentioned monomer essentially containing an ether dimer. . At this time, the cyclization reaction of the ether dimer proceeds simultaneously with the polymerization to form a tetrahydropyran ring structure.
  • the polymerization method applied to the synthesis of the polymer obtained by polymerizing the monomer component containing the compound represented by the general formula (ED) is not particularly limited, and various conventionally known polymerization methods can be adopted. However, it is particularly preferable to use a solution polymerization method.
  • exemplary compounds of a polymer obtained by polymerizing a monomer component containing a compound represented by the general formula (ED) are shown, but the present invention is not limited to these.
  • the composition ratio of the exemplary compounds shown below is mol%.
  • DM dimethyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate
  • BzMA benzyl methacrylate
  • MMA methyl methacrylate
  • MAA Methacrylic acid
  • GMA glycidyl methacrylate
  • the molar ratio of DM: BzMA: MMA: MAA: GMA is preferably 5 to 15:40 to 50: 5 to 15: 5 to 15:20 to 30.
  • the weight average molecular weight of such a polymer is preferably 9000 to 20000.
  • the polymer used in the present invention has a weight average molecular weight (polystyrene conversion value measured by GPC method) of preferably 1000 to 2 ⁇ 10 5 , more preferably 2000 to 1 ⁇ 10 5 , and more preferably 5000 to More preferably, it is 5 ⁇ 10 4 .
  • a (meth) acrylic resin having an allyl group, a vinyl ester group, and a carboxyl group in the side chain, and a side chain described in JP-A Nos. 2000-187322 and 2002-62698 are doubled.
  • An alkali-soluble resin having a bond and an alkali-soluble resin having an amide group in the side chain described in JP-A No. 2001-242612 are preferable because of excellent balance of film strength, sensitivity, and developability.
  • Examples of the above-mentioned polymers include: Dial NR series (manufactured by Mitsubishi Rayon Co., Ltd.), Photomer 6173 (COOH-containing polyurethane acrylic oligomer. Diamond Shamrock Co.
  • Japanese Patent Publication No. 7-12004 Japanese Patent Publication No. 7-120041, Japanese Patent Publication No. 7-120042, Japanese Patent Publication No. 8-12424, Japanese Patent Publication No. 63-287944, Japanese Patent Publication No. 63-287947.
  • Urethane binder polymers containing acid groups as described in JP-A-1-271741 and the like, and urethane binders having acid groups and double bonds in side chains as described in JP-A-2002-107918 Since the polymer is very excellent in strength, it is advantageous in terms of film strength.
  • Japanese Patent Application Laid-Open No. 2001-318463 is also preferable because of its excellent film strength.
  • polyvinyl pyrrolidone, polyethylene oxide, and the like are useful as the water-soluble linear organic polymer.
  • alcohol-soluble nylon, polyether of 2,2-bis- (4-hydroxyphenyl) -propane and epichlorohydrin are also useful.
  • the weight average molecular weight (polystyrene conversion value measured by GPC method) of the binder polymer that can be used in the curable composition of the present embodiment is preferably 5,000 or more, more preferably 10,000 or more and 300,000 or less.
  • the number average molecular weight is preferably 1,000 or more, and more preferably 2,000 or more and 250,000 or less.
  • the polydispersity (weight average molecular weight / number average molecular weight) is preferably 1 or more, more preferably 1.1 or more and 10 or less.
  • These binder polymers may be any of random polymers, block polymers, graft polymers and the like.
  • the binder polymer can be synthesized by a conventionally known method.
  • the solvent used in the synthesis include tetrahydrofuran, ethylene dichloride, cyclohexanone, methyl ethyl ketone, acetone, methanol, ethanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 2-methoxyethyl acetate, diethylene glycol dimethyl ether, 1-methoxy.
  • Examples include -2-propanol, 1-methoxy-2-propyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, toluene, ethyl acetate, methyl lactate, ethyl lactate, dimethyl sulfoxide, water and the like. These solvents are used alone or in combination of two or more.
  • Examples of the radical polymerization initiator used when synthesizing the binder polymer that can be used in the curable composition for forming a high refractive index layer of the present embodiment include known compounds such as an azo initiator and a peroxide initiator. .
  • the binder polymer can be used alone or in combination of two or more.
  • the curable composition for forming a high refractive index layer of this embodiment may or may not contain a binder polymer, but when it is contained, the content of the binder polymer relative to the total solid content of the curable composition. Is preferably 1% by mass to 40% by mass, more preferably 3% by mass to 30% by mass, and still more preferably 4% by mass to 20% by mass.
  • surfactant Various surfactants may be added to the curable composition of this embodiment from the viewpoint of further improving coatability.
  • various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • the same surfactants as used in the above-mentioned “resin composition for forming a light transmissive cured film” can be used.
  • the curable composition for forming a high refractive index layer of the present embodiment contains a fluorosurfactant, so that liquid properties (particularly fluidity) when prepared as a coating liquid are further improved.
  • the uniformity of coating thickness and liquid-saving properties can be further improved. That is, in the case of forming a film using a coating liquid to which a photosensitive transparent composition containing a fluorosurfactant is applied, by reducing the interfacial tension between the coated surface and the coating liquid, The wettability is improved, and the coating property to the coated surface is improved. For this reason, even when a thin film of about several ⁇ m is formed with a small amount of liquid, it is effective in that it is possible to more suitably form a film having a uniform thickness with small thickness unevenness.
  • the fluorine content in the fluorosurfactant is preferably 3% by mass to 40% by mass, more preferably 5% by mass to 30% by mass, and particularly preferably 7% by mass to 25% by mass.
  • a fluorine-based surfactant having a fluorine content in this range is effective in terms of uniformity of coating film thickness and liquid-saving properties, and has good solubility in a curable composition. Only one type of surfactant may be used, or two or more types may be combined.
  • the curable composition may or may not contain a surfactant.
  • the addition amount of the surfactant is 0.001% by mass to 2% with respect to the total mass of the curable composition. It is preferably 0.0% by mass, more preferably 0.005% by mass to 1.0% by mass.
  • additives such as a plasticizer and a sensitizer may be added to the curable composition for forming a high refractive index layer.
  • plasticizers include dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricresyl phosphate, dioctyl adipate, dibutyl sebacate, and triacetyl glycerin. , 10% by mass or less can be added with respect to the total mass of the polymerizable compound and the binder polymer.
  • the curable composition for forming a high refractive index layer of the present embodiment may contain an ultraviolet absorber.
  • an ultraviolet absorber a compound represented by the following general formula (I) which is a conjugated diene compound is particularly preferable.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and R 1 and R 2 May be the same as or different from each other, but do not represent a hydrogen atom at the same time.
  • R 3 and R 4 represent an electron withdrawing group.
  • the electron withdrawing group is an electron withdrawing group having a Hammett's substituent constant ⁇ p value (hereinafter, simply referred to as “ ⁇ p value”) of 0.20 or more and 1.0 or less. Preferably, it is an electron withdrawing group having a ⁇ p value of 0.30 or more and 0.8 or less.
  • ⁇ p value Hammett's substituent constant
  • Hammett's rule was found in 1935 by L. L. in order to quantitatively discuss the effect of substituents on the reaction or equilibrium of benzene derivatives. P. A rule of thumb proposed by Hammett, which is widely accepted today.
  • Substituent constants determined by Hammett's rule include a ⁇ p value and a ⁇ m value, and these values are described in many general books. A. Dean's “Lange's Handbook of Chemistry”, 12th edition, 1979 (Mc Graw-Hill) and “Area of Chemistry”, 122, 96-103, 1979 (Nanedo), Chemical Reviews, 91, 165-195, detailed in 1991. In the present invention, it does not mean that the values known in the literature described in these documents are limited to only certain substituents, but within the range when measured based on Hammett's law even if the value is unknown. Of course, it is included as long as it is included.
  • the electron withdrawing group having a ⁇ p value of 0.20 or more and 1.0 or less include an acyl group, an acyloxy group, a carbamoyl group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a cyano group, a nitro group, Dialkylphosphono group, diarylphosphono group, diarylphosphinyl group, alkylsulfinyl group, arylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, sulfonyloxy group, acylthio group, sulfamoyl group, thiocyanate group, thiocarbonyl group, at least An alkyl group substituted with two or more halogen atoms, an alkoxy group substituted with at least two halogen atoms, an aryloxy group substituted with at least two halogen atoms, or at least two hal
  • the ultraviolet absorbers represented by the general formula (I) are disclosed in JP-B 44-29620, JP-A 53-128333, JP-A 61-169831, JP-A 63-53543, and JP-A 63-53544. Can be synthesized by the methods described in JP-A 63-56651 and other publications, and WO 2009/123109 pamphlet. Specifically, the exemplified compound (1) can be synthesized by the method described in paragraph No. 0040 of WO2009 / 123109 pamphlet.
  • the curable composition of this embodiment may or may not contain an ultraviolet absorber, but when it is contained, the content of the ultraviolet absorber is 0.1 mass relative to the total solid content of the composition. % To 10% by mass is preferable, 0.1% to 5% by mass is more preferable, and 0.1% to 3% by mass is particularly preferable.
  • the lower layer (high refractive index layer) may be a dispersion composition II described below.
  • Dispersion composition II refers to a dispersion composition containing metal oxide particles (A) having a primary particle diameter of 1 nm to 100 nm, a specific dispersion resin (B), and a solvent (C).
  • the components other than the specific dispersion resin (B) are the same as those of the dispersion composition I.
  • Specific dispersion resin B As the dispersant for dispersing the high refractive index particles, it is preferable to use an oligoimine-based dispersant containing a nitrogen atom in at least one of the main chain and the side chain.
  • the oligoimine-based dispersant has a repeating unit having a partial structure X having a functional group of pKa14 or less and a side chain containing a side chain Y having 40 to 10,000 atoms, and has a main chain and a side chain.
  • a dispersion resin having a basic nitrogen atom in at least one hereinafter referred to as “specific dispersion resin (B)” as appropriate) is preferred.
  • the basic nitrogen atom is not particularly limited as long as it is a basic nitrogen atom.
  • the specific resin (B), the partial structure X, etc. and may have a partial structure W paired is preferably the partial structure W is a structure having a pK b 14 or less nitrogen atoms, pK b It is more preferable to contain a structure having 10 or less nitrogen atoms.
  • the base strength pK b means a pK b at a water temperature 25 ° C., is one of the index for quantitatively indicating the strength of the base, is synonymous with basicity constants.
  • the details of the preferable range of the partial structure X are the same as those of the partial structure X described later.
  • the details of the preferred range of the side chain Y are the same as those of the side chain Y described later.
  • the W preferably has a structure in which the linking part of the side chain Y is dissociated to become an ion binding site.
  • x, y, and z each represent a polymerization molar ratio of repeating units, and x is preferably 5 to 50, y is 5 to 60, and z is preferably 10 to 90.
  • l represents the number of linked polyester chains, and is an integer capable of forming a side chain having 40 to 10,000 atoms. l is preferably 5 to 100,000, more preferably 20 to 20,000, 40 to More preferably, it is 2,000.
  • the repeating unit whose copolymerization ratio is defined by x in the formula is the partial structure X
  • the repeating unit whose copolymerization ratio is defined by z in the formula is the partial structure Y.
  • the specific dispersion resin (B) includes (i) a poly (lower alkyleneimine) -based repeating unit, a polyallylamine-based repeating unit, a polydiallylamine-based repeating unit, a metaxylenediamine-epichlorohydrin polycondensate-based repeating unit, and a polyvinylamine-based repeating unit.
  • a dispersion resin having a side chain (ii) including a side chain Y having 40 to 10,000 atoms (hereinafter, appropriately referred to as “specific dispersion resin (B1)”) is particularly preferable.
  • the specific dispersion resin (B1) has the repeating unit (i). Thereby, the adsorption
  • the poly (lower alkyleneimine) may be a chain or a network.
  • the lower alkylene imine means an alkylene imine containing an alkylene chain having 1 to 5 carbon atoms.
  • the repeating unit (i) preferably forms a main chain portion in the specific dispersion resin.
  • the number average molecular weight of the main chain portion is preferably 100 to 10,000, more preferably 200 to 5,000. Is more preferable, and 300 to 2,000 is most preferable.
  • the number average molecular weight of the main chain portion can be measured by a polystyrene conversion value by GPC method.
  • the specific dispersion resin (B1) includes a repeating unit represented by the following formula (I-1) and a repeating unit represented by the formula (I-2), or a repeating unit represented by the formula (I-1) And a dispersion resin containing a repeating unit represented by the formula (I-2a).
  • R 1 and R 2 each independently represents a hydrogen atom, a halogen atom or an alkyl group (preferably having 1 to 6 carbon atoms).
  • a independently represents an integer of 1 to 5; * Represents a connecting part between repeating units.
  • R 8 and R 9 are the same groups as R 1 .
  • L is a single bond, an alkylene group (preferably having 1 to 6 carbon atoms), an alkenylene group (preferably having 2 to 6 carbon atoms), an arylene group (preferably having 6 to 24 carbon atoms), a heteroarylene group (having 1 to 6 carbon atoms).
  • an imino group preferably having a carbon number of 0 to 6
  • an ether group preferably having a carbon number of 0 to 6
  • a thioether group preferably having a carbonyl group, or a combination group thereof.
  • a single bond or —CR 5 R 6 —NR 7 — is preferable.
  • R 5 R 6 each independently represents a hydrogen atom, a halogen atom, or an alkyl group (preferably having 1 to 6 carbon atoms).
  • R 7 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • L a is a structural site ring structure formed together with CR 8 CR 9 and N, it is preferable together with the carbon atom of CR 8 CR 9 is a structural site that form a non-aromatic heterocyclic ring having 3 to 7 carbon atoms . More preferably, it is a structural part that forms a 5- to 7-membered non-aromatic heterocyclic ring by combining the carbon atom and N (nitrogen atom) of CR 8 CR 9 , and more preferably forms a 5-membered non-aromatic heterocyclic ring It is particularly preferred that it is a structural site that forms pyrrolidine. However, the structural site may further have a substituent such as an alkyl group.
  • X represents a group having a functional group of pKa14 or less.
  • Y represents a side chain having 40 to 10,000 atoms.
  • the specific dispersion resin (B1) preferably further has a repeating unit represented by the formula (I-3), the formula (I-4) or the formula (I-5) as a copolymerization component.
  • the specific dispersion resin (B1) includes such a repeating unit, the dispersion performance can be further improved.
  • R 1 , R 2 , R 8 , R 9 , L, La, and a are as defined in the formulas (I-1), (I-2), and (I-2a).
  • Ya represents a side chain having 40 to 10,000 atoms having an anionic group.
  • the repeating unit represented by the formula (I-3) is reacted by adding an oligomer or polymer having a group that reacts with an amine to form a salt to a resin having a primary or secondary amino group in the main chain.
  • Ya is preferably represented by the following formula (III-2).
  • R 1 and R 2 are particularly preferably hydrogen atoms.
  • a is preferably 2 from the viewpoint of obtaining raw materials.
  • the specific dispersion resin (B1) may further contain a lower alkyleneimine containing a primary or tertiary amino group as a repeating unit.
  • the group shown by said X, Y, or Ya may couple
  • Resins containing both a repeating unit having a group represented by X and a repeating unit having Y bonded to such a main chain structure are also included in the specific dispersion resin (B1).
  • the repeating unit represented by the formula (I-1) is preferably contained in an amount of 1 to 80 mol% in all repeating units contained in the specific dispersion resin (B1) from the viewpoint of storage stability and developability. Most preferably, it is contained in an amount of ⁇ 50 mol%.
  • the repeating unit represented by the formula (I-2) is preferably contained in an amount of 10 to 90 mol% in all repeating units contained in the specific dispersion resin (B1), and 30 to 70 Most preferably, it is contained in mol%.
  • the content ratio [(I-1) :( I-2)] of the repeating unit (I-1) and the repeating unit (I-2) is 10 in molar ratio.
  • the range is preferably 1: 1 to 1: 100, and more preferably 1: 1 to 1:10.
  • the repeating unit represented by the formula (I-3) used in combination is optionally contained in an amount of 0.5 to 20 mol% from the viewpoint of the effect among all the repeating units contained in the specific dispersion resin (B1).
  • the content is preferably 1 to 10 mol%, most preferably.
  • Partial structure X The partial structure X in each of the above formulas has a functional group having a pKa of 14 or less at a water temperature of 25 ° C.
  • pKa has the definition described in Chemical Handbook (II) (4th revised edition, 1993, edited by The Chemical Society of Japan, Maruzen Co., Ltd.).
  • the “functional group of pKa14 or less” is not particularly limited as long as the physical properties satisfy this condition, and examples thereof include those having a pKa satisfying the above range with known functional groups.
  • the following functional groups are preferred, and those having a pKa of 11 or less are particularly preferred. Although there is no particular lower limit, it is practical that it is -5 or more.
  • partial structure X examples include, for example, a carboxylic acid group (pKa: about 3 to 5), a sulfonic acid (pKa: about ⁇ 3 to ⁇ 2), —COCH 2 CO— (pKa: about 8 to 10), —COCH 2 CN (pKa: about 8 to 11), —CONHCO—, phenolic hydroxyl group, —R F CH 2 OH or — (R F ) 2 CHOH (R F represents a perfluoroalkylene group or a perfluoroalkyl group.
  • PKa About 9 to 11
  • sulfonamide groups pKa: about 9 to 11
  • carboxylic acid groups pKa: about 3 to 5
  • sulfonic acid groups pKa: about -3 to -2
  • —COCH 2 CO— pKa: about 8 to 10.
  • the partial structure X is preferably directly bonded to the basic nitrogen atom in the repeating unit having the basic nitrogen atom.
  • the partial structures X may be linked not only by a covalent bond but also in a form in which a salt is formed by ionic bonding.
  • the partial structure X those having a structure represented by the following formula (V-1), formula (V-2) or formula (V-3) are particularly preferable.
  • U represents a single bond or a divalent linking group.
  • d and e each independently represents 0 or 1;
  • Q represents an acyl group or an alkoxycarbonyl group.
  • Examples of the divalent linking group represented by U include alkylene (more specifically, for example, —CH 2 —, —CH 2 CH 2 —, —CH 2 CHMe— (Me is a methyl group), — (CH 2 ) 5 —, —CH 2 CH (n—C 10 H 21 ) —, etc.), an oxygen-containing alkylene (more specifically, for example, —CH 2 OCH 2 —, —CH 2 CH 2 OCH 2 CH 2-, etc.), arylene groups (eg, phenylene, tolylene, biphenylene, naphthylene, furylene, pyrrolylene, etc.), alkyleneoxy (eg, ethyleneoxy, propyleneoxy, phenyleneoxy, etc.), etc.
  • alkylene more specifically, for example, —CH 2 —, —CH 2 CH 2 —, —CH 2 CHMe— (Me is a methyl group), — (CH 2 ) 5 —, —CH 2
  • An alkylene group having 1 to 30 carbon atoms or an arylene group having 6 to 20 carbon atoms is preferable, and an alkylene group having 1 to 20 carbon atoms or an arylene group having 6 to 15 carbon atoms is most preferable.
  • d is preferably 1, and e is preferably 0.
  • Q represents an acyl group or an alkoxycarbonyl group.
  • acyl group in Q an acyl group having 1 to 30 carbon atoms (eg, formyl, acetyl, n-propanoyl, benzoyl, etc.) is preferable, and acetyl is particularly preferable.
  • alkoxycarbonyl group in Q Q is particularly preferably an acyl group, and an acetyl group is preferable from the viewpoint of ease of production and availability of a raw material (precursor X a of X).
  • the partial structure X is preferably bonded to the basic nitrogen atom in the repeating unit having a basic nitrogen atom. Thereby, the dispersibility and dispersion stability of titanium dioxide particles are dramatically improved. Partial structure X is also considered to contribute to dispersion stability by imparting solvent solubility and suppressing resin precipitation over time. Furthermore, since the partial structure X contains a functional group of pKa14 or less, it also functions as an alkali-soluble group. Thereby, developability is improved, and it is considered that both dispersibility, dispersion stability, and developability can be achieved.
  • the content of the functional group of pKa14 or less in the partial structure X is not particularly limited, but is preferably 0.01 to 5 mmol, particularly 0.05 to 1 mmol, with respect to 1 g of the specific dispersion resin (B1). preferable. From the viewpoint of developability, it is preferable that the acid value of the specific dispersion resin (B1) is contained in an amount of about 5 to 50 mgKOH / g. ⁇ Side chain Y Examples of Y include known polymer chains such as polyester, polyamide, polyimide, and poly (meth) acrylate that can be connected to the main chain portion of the specific dispersion resin (B1). The binding site with the specific dispersion resin (B1) in Y is preferably the terminal of the side chain Y.
  • Y is at least one selected from a poly (lower alkyleneimine) -based repeating unit, a polyallylamine-based repeating unit, a polydiallylamine-based repeating unit, a metaxylenediamine-epichlorohydrin polycondensate-based repeating unit, and a polyvinylamine-based repeating unit. It is preferably bonded to the nitrogen atom of the repeating unit having a nitrogen atom.
  • the bonding mode between the main chain portion such as a repeating unit having a nitrogen atom and Y is a covalent bond, an ionic bond, or a mixture of a covalent bond and an ionic bond.
  • Y is preferably ionically bonded to the nitrogen atom of the repeating unit having the basic nitrogen atom as an amide bond or carboxylate.
  • the number of atoms of the side chain Y is preferably 50 to 5,000, more preferably 60 to 3,000, from the viewpoints of dispersibility, dispersion stability, and developability.
  • the number average molecular weight of Y can be measured by the polystyrene conversion value by GPC method. At this time, it is practical to measure the molecular weight of Y before being incorporated into the resin.
  • the number average molecular weight of Y is particularly preferably 1,000 to 50,000, and most preferably 1,000 to 30,000 from the viewpoints of dispersibility, dispersion stability, and developability.
  • the molecular weight of Y can be specified from the polymer compound used as the raw material for Y, and the measurement method conforms to the measurement conditions by GPC described later. It is preferable that two or more side chain structures represented by Y are connected to the main chain in one molecule of the resin, and more preferably five or more are connected.
  • Y preferably has a structure represented by the formula (III-1).
  • Z is a polymer or oligomer having a polyester chain as a partial structure, and represents a residue obtained by removing a carboxyl group from a polyester having a free carboxylic acid represented by HO—CO—Z.
  • Ya is preferably the formula (III-2).
  • Z has the same meaning as Z in formula (III-1).
  • a polyester having a carboxyl group at one end is obtained by polycondensation of a carboxylic acid and a lactone, polycondensation of a hydroxy group-containing carboxylic acid, a polyhydric alcohol and a divalent carboxylic acid (or a cyclic acid anhydride). It can be obtained by condensation or the like.
  • Z is preferably-(L B ) nB -Z B.
  • Z B represents a hydrogen atom or a monovalent organic group.
  • Z B is an organic group, an alkyl group (preferably having 1 to 30 carbon atoms), an aryl group, a heterocyclic group, or the like is preferable.
  • Z B may further have a substituent, and examples of the substituent include an aryl group having 6 to 24 carbon atoms and a heterocyclic group having 3 to 24 carbon atoms.
  • L B is an alkylene group (having 1 to 6 carbon atoms is preferred), an alkenylene group (2 to 6 carbon atoms is preferred), an arylene group (6 to 24 carbon atoms is preferred), a heteroarylene group (having 1 to 6 carbon atoms Preferred), an imino group (preferably having a carbon number of 0 to 6), an ether group, a thioether group, a carbonyl group, or a combination thereof.
  • an alkylene group preferably having 1 to 6 carbon atoms
  • an ether group, a carbonyl group, or a linking group relating to a combination thereof is preferable.
  • the alkylene group may be branched or linear.
  • the alkylene group may have a substituent, and preferred substituents include an alkyl group (preferably 1 to 6 carbon atoms), an acyl group (preferably 2 to 6 carbon atoms), an alkoxy group (preferably 1 to 6 carbon atoms). Or an alkoxycarbonyl group (preferably having 2 to 8 carbon atoms).
  • nB is an integer of 5 to 100,000. nB number of L B may have a different structure, respectively.
  • p and q represent the number of linked polyester chains, and each independently represents 5 to 100,000.
  • R a represents a hydrogen atom or an alkoxycarbonyl group.
  • a method of reacting a resin having a primary or secondary amino group with a precursor x of a partial structure X and a precursor y of Y (2) a portion It can be produced by a method of polymerization of a monomer containing a structure corresponding to the structure X and a macromonomer containing Y.
  • a resin having a primary or secondary amino group in the main chain is synthesized, and then a precursor X of X and a precursor y of Y are reacted with the resin to polymerize nitrogen atoms existing in the main chain. It is preferable to produce by introducing by reaction.
  • JP2009-203462A for details of the manufacturing method, reference can be made to JP2009-203462A.
  • the molecular weight of the specific dispersion resin B is preferably 3,000 to 100,000 in terms of weight average molecular weight, and if the 5,000 to 55,000 weight average molecular weight is in the above range, The effects of the plurality of introduced adsorption sites are sufficiently exhibited, and performance with excellent adsorptivity to the surface of the titanium dioxide particles can be exhibited.
  • GPC was measured using HLC-8020GPC (manufactured by Tosoh Corporation) and columns as TSKgel SuperHZM-H, TSKgel SuperHZ4000, TSKgel SuperHZ200 (manufactured by Tosoh Corporation).
  • the carrier may be selected as appropriate, but tetrahydrofuran is used as long as it can be dissolved.
  • the dispersant for high refractive index particles can be used alone or in combination of two or more.
  • the content of the specific resin (B) with respect to the total solid content of the dispersion composition (II) is preferably in the range of 10 to 50% by mass, more preferably in the range of 11 to 40% by mass from the viewpoint of dispersibility and dispersion stability.
  • the range of 12 to 30% by mass is more preferable.
  • the curable composition of the present embodiment is preferably filtered with a filter for the purpose of removing foreign substances and reducing defects. If it is conventionally used for the filtration use etc., it can use without being specifically limited.
  • fluorine resin such as PTFE (polytetrafluoroethylene), polyamide resin such as nylon-6 and nylon-6,6, polyolefin resin such as polyethylene and polypropylene (PP) (including high density and ultra high molecular weight), etc. Filter.
  • polypropylene including high density polypropylene
  • the pore size of the filter is suitably about 0.01 to 7.0 ⁇ m, preferably about 0.01 to 2.5 ⁇ m, more preferably about 0.01 to 1.5 ⁇ m.
  • the filtering by the first filter may be performed only once or may be performed twice or more.
  • the second and subsequent pore sizes are larger than the pore size of the first filtering.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • a filter As a commercially available filter, for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. .
  • the second filter a filter formed of the same material as the first filter described above can be used.
  • the pore size of the second filter is suitably about 0.5 to 7.0 ⁇ m, preferably about 2.5 to 7.0 ⁇ m, more preferably about 4.5 to 6.0 ⁇ m. By setting it within this range, the component particles contained in the mixed solution remain mixed and mixed in the mixed solution, and foreign matters that hinder the preparation of a uniform and smooth curable composition in the subsequent step are removed. Can be removed.
  • the filtering by the first filter may be performed only with the dispersion, and the second filtering may be performed after mixing other components.
  • siloxane curable composition [Preparation of siloxane curable composition] The following components were blended to prepare siloxane curable composition A-1. In addition, the components shown in Table A below were blended to prepare siloxane curable compositions A-2 and Ac1.
  • Siloxane Hydrolysis condensate S-1 20 parts
  • Solvent propylene glycol monomethyl ether acetate (PGMEA) 62 parts
  • Solvent ethyl 3-ethoxypropionate (EEP) 16 parts
  • the siloxane curable composition A-1 was applied on a 4-inch silicon wafer, and pre-baked (100 ° C. for 2 minutes) and post-baked (230 ° C. for 10 minutes) to prepare a cured film.
  • hollow particle curable composition The following components were blended to prepare a hollow particle-containing siloxane curable composition A-3. Further, the components shown in Table A below were blended to prepare curable compositions A-4, A-5, and Ac2 .
  • Hollow particles Through rear 2320 (manufactured by JGC Catalysts and Chemicals) 55 parts Curing resin: Cyclomer P ACA230AA (abbreviation: 230AA) (Daicel Chemical Co., Ltd.) ...
  • the surfactant (Megafac) is composed of a compound containing a perfluoroalkyl group and having an ethylene oxide chain.
  • a cured film was prepared in the same manner as A-1 and the like, and the refractive index was measured in the same manner as described above.
  • ⁇ Lens body forming composition> [Preparation of titanium dioxide dispersion (dispersion composition)] Using a NPM manufactured by Shinmaru Enterprises Co., Ltd. as a circulation type dispersion device (bead mill), a mixture treatment having the following composition was subjected to a dispersion treatment as follows to obtain a titanium dioxide dispersion as a dispersion composition. . ⁇ Composition ⁇ ⁇ Titanium dioxide (TTO-51 (C) manufactured by Ishihara Sangyo Co., Ltd.): 150.0 parts ⁇ The following dispersion resin 1 (solid content 20% PGMEA solution): 165.0 parts ⁇ Propylene glycol monomethyl ether acetate: 142.5 Part
  • the dispersing device was operated under the following conditions. ⁇ Bead diameter: ⁇ 0.05mm ⁇ Bead filling rate: 60% by volume ⁇ Peripheral speed: 10m / sec ⁇ Pump supply amount: 30Kg / hour ⁇ Cooling water: Tap water ⁇ Bead mill annular passage volume: 1.0L ⁇ Amount of liquid mixture to be dispersed: 10kg
  • the average particle size was measured at 30 minute intervals (one pass time). The average particle diameter decreased with the dispersion time (pass number), but the amount of change gradually decreased. Dispersion was terminated when the average particle size change when the dispersion time was extended by 30 minutes became 5 nm or less. The average particle size of the titanium dioxide particles in this dispersion was 40 nm.
  • the average particle diameter of titanium dioxide or the like in this example is obtained by diluting a mixed liquid or dispersion containing titanium dioxide 80 times with propylene glycol monomethyl ether acetate, and subjecting the obtained diluted liquid to a dynamic light scattering method. The value obtained by using and measuring. This measurement was performed using Microtrack UPA-EX150 manufactured by Nikkiso Co., Ltd.
  • Titanium Dioxide-Containing Curable Composition B-1 -Titanium dioxide dispersion prepared above (dispersion composition)-80.5 parts-Solvent: propylene glycol monomethyl ether acetate-15 parts-Polymerizable compound: KAYARAD DPHA (Nippon Kayaku Co., Ltd.) ...
  • Polymerization initiator IRGACURE OXE-01 (manufactured by BASF) 0.10 parts Polymer A: benzyl methacrylate / methacrylic acid copolymer (Co (Polymerization ratio: 80/20 (wt%), weight average molecular weight: 12,000) (Manufactured by FFFC) ⁇ 0.5 parts ⁇ Surfactant: MegaFuck F-781 (manufactured by DIC Corporation) ⁇ 0.30 parts
  • the titanium dioxide-containing curable composition was applied onto a silicon wafer, and pre-baked (100 ° C. for 2 minutes) and post-baked (230 ° C. for 10 minutes) to prepare a cured film B-1.
  • the component ratio in the curable composition to be used was changed to the following composition ratio, and various titanium dioxide-containing curable compositions were prepared in the same manner as the titanium dioxide-containing curable composition B-1.
  • the refractive index measurement result of each cured film is also described.
  • the measuring method of the refractive index is the same as the measuring method of the low refractive index layer (Table A).
  • the sample B-4 was prepared in the same manner as the B-1 composition except that the titanium oxide was changed to zirconium oxide (PCS manufactured by Nippon Denko Co., Ltd.).
  • a light shielding film made of tungsten having an opening only in the light receiving portion of the photodiode is formed, and the entire surface of the formed light shielding film and the photodiode light receiving portion (opening in the light shielding film)
  • a device protective layer made of silicon nitride is formed so as to cover the substrate.
  • the length of one side is 1 A color filter having only a green pixel of 4 ⁇ m was prepared.
  • the curable compositions B-1 to B-6 and B-c1 described in the examples of the present invention prepared as described above were applied to a dry film thickness of 1.5 ⁇ m, and then 100 ° C. And heated on a hot plate for 2 minutes, and then heated on a hot plate at 230 ° C. for 10 minutes to be cured.
  • HPR-204ESZ-9-5 mPa ⁇ s (resist solution manufactured by FFEM, FUJIFILM Electronics Materials Co., Ltd.) is applied on this to a dry film thickness of 0.5 ⁇ m, and heated at 90 ° C. for 1 minute. And heated.
  • This coating film is 300 mJ / cm by an i-line stepper (product name: FPA-3000i5 +, manufactured by Canon Inc.) through a mask having many square patterns each having a side of 1.15 ⁇ m and a gap between patterns of 0.35 ⁇ m. 2 for exposure.
  • the mask was arranged so that a large number of square patterns in the mask were at positions corresponding to the green pixels of the color filter.
  • the substrate obtained as described above was subjected to a dry etching process using a dry etching apparatus (manufactured by Hitachi High-Technologies: U-621) under the following conditions, and a transparent film coating film having a high refractive index was micronized.
  • ⁇ RF power 800W ⁇
  • Antenna bias 100W ⁇
  • Photoresist etching rate 140 nm / min.
  • the curable compositions A-1 to A-10, Ac1, and Ac2 were applied so as to have a film thickness of 0.7 ⁇ m, and then heated on a hot plate at 230 ° C. for 10 minutes to obtain.
  • the sensor was assembled as a camera module to produce an image sensor.
  • Layer A Light transmissive cured film (low refractive index layer)
  • B layer Microlens body (high refractive index layer)
  • a high average color density (high sensitivity) can be achieved even in a microlens unit having a thick light-transmitting cured film.
  • this method may increase noise.
  • this noise can be reduced, and the light receiving sensitivity for digitization can be increased without variation.
  • Example 2 [Influence by thickness] About the set of said tests 101 and 110, the thing from which the thickness of an upper layer and a lower layer differs was produced variously and the test was done (Table 2). As a result, it was found that good performance was realized even when the thickness was changed.
  • Example 3 A curable composition was prepared and evaluated in the same manner as in A-1, except that 1 part of ECT-7 (manufactured by Nikko Chemicals Co., Ltd.) was used instead of Emulsogen COL-020. As a result, the average dye density and the relative dye density were also good.
  • ECT-7 is a surfactant having a polyoxyalkylene structure, and has a structure of R—O— (EO) 7 —COOH (R ⁇ C 13 alkyl group).
  • Example 4 Example 1 except that 1 part of ECT-7 (manufactured by Nikko Chemicals) and 0.02 part of KF6001 (manufactured by Shin-Etsu Silicone) were used in place of Emulsogen COL-020 in (Composition) of A-1.
  • a coating composition was prepared and evaluated in the same manner as described above. As a result, the average dye density and the relative dye density were also good.
  • Example 5 (Titanium dioxide-less high refractive index material composition)
  • the following composition was prepared.
  • pre-baking 100 ° C. for 2 min
  • post-baking 230 ° C. for 10 min
  • Solvent Propylene glycol monomethyl ether acetate 15 parts
  • Cyclohexanone 30 parts
  • Resin Ultra-high refractive index coating material UR202 made by Nissan Chemical Industries, Ltd.
  • Curing accelerator SB-A (Mitsubishi Gas Chemical) .... 5 parts epoxy resin: 157S65 (Mitsubishi Chemical Corporation) ... 17.5 parts
  • Surfactant MegaFuck F-781 (DIC) ... 0.5 parts
  • the siloxane curable composition A-1 was used in the same manner, and the titanium dioxide-less high refractive index material composition C-1 (Nissan Chemical) was used instead of the titanium dioxide-containing composition B-1.
  • a test body 201 was prepared in the same manner as the test body 101 except that an ultrahigh refractive index coating material UR202 (containing a refractive index of 1.76) manufactured by Kogyo Co., Ltd. was used.
  • UR202 ultrahigh refractive index coating material manufactured by Kogyo Co., Ltd.
  • ⁇ Siloxane curable composition A-20> (Synthesis of hydrolysis condensate) Hydrolysis / condensation reaction was performed using methyltriethoxysilane. The solvent used at this time was ethanol. The obtained hydrolysis condensate had a weight average molecular weight of about 10,000. The weight average molecular weight was confirmed by GPC according to the procedure described above. Components of the following composition were mixed with a stirrer to prepare composition A-20. The refractive index of the cured film formed of the composition A-20 was 1.30.
  • composition Hydrolyzed condensate (methyltriethoxysilane) 5 parts propylene glycol monomethyl ether acetate (PGMEA) 5 parts EMULSOGEN-COL-020 (anionic surfactant, manufactured by Clariant Co., Ltd.) ... 2 parts Thruria 2320 (20% by mass dispersion of hollow silica manufactured by JGC Catalysts & Chemicals) ... 88 parts
  • Example 6 The titanium dioxide-less high refractive index material composition C-1 (containing an ultrahigh refractive index coating material UR202 manufactured by Nissan Chemical Industries, Ltd.) of the test body 201 was used as an ultrahigh refractive index coating material UR202 manufactured by Nissan Chemical Industries, Ltd., and thioepoxy resin LPH1101 ( A test body 301 was obtained in the same manner as the test body 201 except that it was changed to Mitsubishi Gas Chemical Co., Ltd. For the test body 301, as with the test body 101, variations in average color density and relative color density were evaluated and confirmed to be good results.
  • test 301 a siloxane curable composition A-1 was prepared A-2 ⁇ A-10 and A-20 was changed to in the same manner as the test body 201 specimens 302-3 11.
  • specimens 302-3 11 in the same manner as the test body 101, to evaluate the variation of the average color density and the relative color density, it was confirmed that a good result.
  • Example 7 The ultrahigh refractive index coating material UR202 manufactured by Nissan Chemical Industries, Ltd., which is the titanium dioxide-less high refractive index material composition (containing the ultrahigh refractive index coating material UR202 manufactured by Nissan Chemical Industries, Ltd.) of the test body 201, is used as an episulfide resin MR-174 (Mitsui).
  • the test body 401 was obtained in the same manner as the test body 201 except that it was changed to “Chemical Co., Ltd.”. For the test body 401, as in the case of the test body 101, the variation in the average color density and the relative color density was evaluated, and it was confirmed that the results were good.
  • test 401 a siloxane curable composition A-1 was prepared A-2 ⁇ A-1 0 ⁇ beauty was changed to A-20 in the same manner as the test body 401 specimens 402-4 11.
  • specimens 402-4 11 in the same manner as the test body 101, to evaluate the variation of the average color density and the relative color density, it was confirmed that a good result.
  • Example 8 The titanium dioxide-less high refractive index material composition (containing the ultra high refractive index coating material UR202 manufactured by Nissan Chemical Industries, Ltd.) of the test body 201 was used as the thiourethane resin MR-7 ( A specimen 501 was obtained in the same manner as the specimen 201 except that it was changed to Mitsui Chemicals. The test body 501 was evaluated for variation in average color density and relative color density in the same manner as the test body 101, and it was confirmed that the test body 501 had good results. In test 501, a siloxane curable composition A-1 was prepared A-2 ⁇ A-1 0 ⁇ beauty A-20 was changed to in the same manner as the test body 501 specimens 502-5 11. For specimens 502-5 11, in the same manner as the test body 101, to evaluate the variation of the average color density and the relative color density was confirmed to be good results.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Silicon Polymers (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

良好な受光感度を実現することができる光学部材セット及びこれを用いた固体撮像素子を提供する。硬化性樹脂組成物を硬化させてなる第1の光学部材と、これに被覆された第2の光学部材とを有してなる光学部材セットであって、前記第1の光学部材は屈折率1.25~1.45であり、前記第2の光学部材は屈折率1.65~1.95である光学部材セット。

Description

光学部材セット及びこれを用いた固体撮像素子
 本発明は、光学部材セット及びこれを用いた固体撮像素子に関する。
 昨今、光学デバイスの種類は多岐にわたり、その多くは光学機構の表面に反射防止性の低屈折率膜を形成した構造を有する。光学機構として、表面形状が平坦なものに限らず、液晶用バックライトの輝度向上レンズや拡散レンズ、ビデオプロジェクションテレビのスクリーンに用いられるフレネルレンズやレンチキュラーレンズ、またはマイクロレンズなどが挙げられる。こうしたデバイスでは主に樹脂材料により微細構造を形成することで所望の幾何光学的な性能を得ており、通常、さらに反射防止性を付与するために、これらの微細構造体表面に適合したかたちで低屈折率膜が形成される。
 なかでも、固体撮像素子に用いられるマイクロレンズユニットの素材や構造等に関する研究開発は精力的に進められている(例えば特許文献1~3参照)。その背景には、固体撮像素子の微細化が進むとともに、効率的な集光を実現するための高性能化が求められていることが挙げられる。特に近年、高画素化に伴い1画素のサイズが極めて小さくなっている。また、1回の製造でより多くのデバイスを作成するため、使用されるウエハーサイズも大きくなっている。こうした背景を受け、マイクロレンズユニットの製造品質及び製品品質の向上は一層重要性を増している。
特開2006-186295号公報 特開2006-98985号公報 特開2007-119744号公報
 ところで、本発明者は、近時開発の進められている厚みのある光透過性硬化膜(第1の光学部材)を具備したマイクロレンズユニット(光学部材セット)ないしその固体撮像素子においては、その厚みに起因して撮像感度が低くなる傾向があることに着目した。
 本発明は、上記厚みのある光透過性硬化膜(第1の光学部材)を有するマイクロレンズユニット(光学部材セット)における特有の課題にも対応し、良好な受光感度を実現することができるマイクロレンズユニット(光学部材セット)及びこれを用いた固体撮像素子の提供を目的とする。
 上記の課題は以下の手段により解決された。
〔1〕硬化性樹脂組成物を硬化させてなる第1の光学部材と、これに被覆された第2の光学部材とを有してなる光学部材セットであって、第1の光学部材は屈折率1.25~1.45であり、第2の光学部材は屈折率1.65~1.95である光学部材セット。
〔2〕第1の光学部材は屈折率1.35~1.45であり、第2の光学部材は屈折率1.85~1.95である〔1〕に記載の光学部材セット。
〔3〕第1の光学部材が、シロキサン樹脂およびフッ素系樹脂の少なくともいずれかを含有する〔1〕または〔2〕に記載の光学部材セット。
〔4〕第1の光学部材が、さらに中空粒子を含有する〔1〕~〔3〕のいずれか1項に記載の光学部材セット。
〔5〕第2の光学部材がチタニアまたはジルコニアを含有する〔1〕~〔4〕のいずれか1項に記載の光学部材セット。
〔6〕第1の光学部材が膜状であり、その膜厚が0.5μm~3.0μmである〔1〕~〔5〕のいずれか1項に記載の光学部材セット。
〔7〕第1の光学部材の厚さが500nm~2800nmであり、第2の光学部材の厚さが200nm~1500nmである〔1〕~〔6〕のいずれか1項に記載の光学部材セット。
〔8〕第1の光学部材の屈折率と第2の光学部材の屈折率との差が0.45~0.55である〔1〕~〔7〕のいずれか1項に記載の光学部材セット。
〔9〕シロキサン樹脂の65質量%以上100質量%以下が下記式(1)で表されるシルセスキオキサン構造で構成されている〔2〕~〔8〕のいずれか1項に記載の光学部材セット。
 -(RSiO3/2-   式(1)
(上記式(1)中、Rは炭素数1~3のアルキル基を表す。nは20~1000の整数を表す。)
〔10〕第1の光学部材が、さらに界面活性剤を含有する〔1〕~〔9〕のいずれか1項に記載の光学部材セット。
〔11〕シロキサン樹脂が下記式(2)で表されるアルキルトリアルコキシシランを加水分解縮合し得られた樹脂である〔2〕~〔10〕のいずれか1項に記載の光学部材セット。
  RSi(OR   式(2)
(Rは炭素数1~3のアルキル基を表し、Rはアルキル基を表す。)
〔12〕第2の光学部材が、一次粒子径が1nm~100nmである金属酸化物粒子(A)と、水素原子を除いた原子数が40~10000のグラフト鎖を有するグラフト共重合体(B)と、溶媒(C)とを含有する分散組成物の光硬化物である〔1〕~〔11〕のいずれか1項に記載の光学部材セット。
〔13〕グラフト共重合体(B)が、pKa14以下の官能基を有する基Xを有する繰り返し単位と、原子数40~10,000の側鎖Yとを有し、かつ塩基性窒素原子を含有する樹脂(B1)である〔12〕に記載の光学部材セット。
〔14〕樹脂(B1)が、下記式(I-1)で表される繰り返し単位及び下記式(I-2)で表される繰り返し単位を有する、あるいは下記式(I-1)で表される繰り返し単位及び下記式(I-2a)で表される繰り返し単位を有する〔13〕に記載の光学部材セット。
Figure JPOXMLDOC01-appb-C000002
(R、R、R、及びRは、各々独立に、水素原子、ハロゲン原子又はアルキル基を表す。aは、1~5の整数を表す。*は繰り返し単位間の連結部を表す。XはpKa14以下の官能基を有する基を表す。Yは原子数40~10,000の側鎖を表す。Lは単結合、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、イミノ基、エーテル基、チオエーテル基、カルボニル基、またはこれらの組合せに係る連結基である。LはCRCRとN(窒素原子)とともに環構造を形成する原子群である。)
〔15〕第2の光学部材として複数の凸レンズが採用され、複数の凸レンズはその膨出方向を実質的に同一方向にむけて配列されており、かつ複数の凸レンズはその膨出方向から光透過性硬化膜をなす第1の光学部材により被覆されており、複数の凸レンズ間に形成された凹部には実質的に隙間無く光透過性硬化膜が充填され、一方、光透過性硬化膜において凸レンズの反対側は平坦面とされている〔1〕~〔14〕のいずれか1項に記載の光学部材セット。
〔16〕〔1〕~〔15〕のいずれか1項に記載の光学部材セットと、半導体受光ユニットとを備えた固体撮像素子。
 本発明におけるマイクロレンズユニット(光学部材セット)及びこれを用いた固体撮像素子は、厚みのある光透過性硬化膜(第1の光学部材)を有するものであっても、良好な受光感度(高い平均色濃度とノイズの低減)を実現することができる。
 本発明の好ましい実施形態であるマイクロレンズユニットは、光透過性硬化膜とこれに被覆されたマイクロレンズ体とを具備した積層構造を有する。このレンズユニットの実施例を挙げると、固体撮像素子(光学デバイス)に組み込まれ、複数の凸レンズとその膨出方向から被覆する光透過性硬化膜からなるものが挙げられる。本発明においては、上記光透過性硬化膜において、下層のマイクロレンズ体より低い特定の屈折率を付与したことにより、厚みのある低屈折率層を適用した利点を維持しつつ高い受光感度を実現することができる。以下、本発明について、その好ましい実施形態を中心に説明する。なお、光学部材セットについてはマイクロレンズユニットを例に、第1の光学部材については光透過性硬化膜を例に、第2の光学部材についてはマイクロレンズ体を例に説明する。
<光透過性硬化膜(第1の光学部材)>
(上層)
 本発明における光透過性硬化膜(上層)は下層となるマイクロレンズ体より低い屈折率を有し、その屈折率が1.25以上であり、1.35以上であることが好ましく、1.39以上がより好ましい。この下限値以上とすることで、カメラモジュールの感度を向上することができる。同様の観点から、当該屈折率は、1.45以下であり、1.43以下であることが好ましい。なお、本発明において屈折率は特に断らない限り、実施例で採用した方法によるものとする。
 前記光透過性硬化膜(上層)は、硬化性樹脂組成物の硬化膜で構成されている。本実施形態の光透過性硬化膜は、シロキサン樹脂等の硬化性樹脂を溶媒に含有させた光透過性硬化膜形成用樹脂組成物により形成することができる。上層の構成成分としてシロキサン樹脂もしくはフッ素系樹脂を選択することにより、画素間のバラツキが小さくなり好ましい。あるいは、組成物に含有させる成分として中空粒子を用いることが好ましい。
 前記光透過性硬化膜(第1の光学部材)の膜厚は、特に限定されないが、0.5μm以上であることが好ましく、0.6μm以上であることがより好ましい。上限は特にないが、3.0μm以下であることが好ましく、2.8μm以下であることがより好ましく、2.2μm以下であることがさらに好ましく、1.5μm以下であることが特に好ましい。膜厚をこの範囲とすることで、マイクロレンズユニットとしての耐久性に優れ、後述の固体撮像素子として用いた際もカバーガラスとの密着性に優れるため好ましい。特に厚塗りにする場合には1μm超であってもよい。なお、光透過性硬化膜は2層以上で構成されていてもよい。ここで言う膜厚とは、レンズ体の最長点の高さからの厚みをさす。
<シロキサン樹脂組成物>
 本発明における光透過性硬化膜を構成する材料として、上記のとおり、シロキサン樹脂が挙げられる。シロキサン樹脂は後述するアルコキシシラン原料を用いて、加水分解反応および縮合反応を介して得ることができる。より具体的には、該化合物は、アルキルトリアルコキシシランの一部または全部のアルコキシ基が加水分解してシラノール基に変換し、生成したシラノール基の少なくとも一部が縮合してSi-O-Si結合を形成したものということができる。シロキサン樹脂はかご型、はしご型、又はランダム型等のいずれのシルセスキオキサン構造を有するシロキサン樹脂であってもよい。なお、前記「かご型」、「はしご型」、及び「ランダム型」は、例えばシルセスキオキサン材料の化学と応用展開(シーエムシー出版)等に記載されている構造を参照することができる。
(シルセスキオキサン構造)
 本実施形態のシロキサン樹脂は下記式(1)で表されるシルセスキオキサン構造を有することが好ましい。
 -(RSiO3/2-   式(1)
(上記式(1)中、Rは炭素数1~3のアルキル基を表す。nは20~1000の整数を表す。)
 上記Rが示すアルキル基は上記炭素数の範囲であれば特に制限されないが、例えばメチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。中でもメチル基、エチル基が好ましく、最も好ましいのはメチル基である。また、Rが示すアルキル基は置換基を有さないアルキル基でも置換基を有するアルキル基でもよいが、置換基を有さないアルキル基であることが好ましい。
 Rが示すアルキル基が有してもよい置換基としては、ハロゲン原子、及びエチレン性不飽和結合を有する基ではないことが好ましく、アミノ基(好ましくは炭素原子数0~20のアミノ基、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルホンアミド基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルホンアミド、N-フェニルスルホンアミド等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、などが挙げられる。
 本発明においては、特に断らない限り、シロキサン結合で主鎖が構成される含ケイ素ポリマーをポリシロキサンないしシロキサン樹脂と呼ぶ。ケイ素には4つの結合手があるため、ポリシロキサンの基本構成単位は、メチル基やフェニル基に代表される有機基がケイ素原子1個につき何個あるかで分類され、下記に示すように4つに分けることができる。下式においてRは有機基である。
Figure JPOXMLDOC01-appb-C000003
 本発明において、シルセスキオキサンとは、特に断らない限り、基本構成単位がT単位であるポリシロキサンの総称を意味する。シルセスキオキサン中のケイ素は3個の酸素と結合し、酸素は2個のケイ素と結合しているため、その理論組成はRSiO3/2となる(2分の3を示すラテン語は「セスキ(SESQUI)」である。)。本実施形態においては、上記T単位の式においてRが上記Rであり、このシルセスキオキサン構造部位が上記特定の含有率で含まれていることが好ましい。
 本実施形態のシロキサン樹脂は、硬化膜に含まれるシロキサン樹脂全体の65質量%以上100質量%以下、即ち光透過性硬化膜形成用樹脂組成物に含まれるシロキサン樹脂全体の65質量%以上100質量%以下が上記のシルセスキオキサン構造で構成される。この割合は80質量%以上100質量%以下であることが好ましく、95質量%以上100質量%以下であることがより好ましく、実質的に100質量%であることがもっとも好ましい(ただし、100質量%の場合でも、不可避不純物など、所望の効果を損ねない範囲で他の成分が含まれていても良い。)。なお、本実施形態のシロキサン樹脂は、特定のポリシルセスキオキサン構造を1種単独で含んでいても、2種以上を含んでいてもよい。
 本実施形態のシロキサン樹脂は、アルキルトリアルコキシシランを加水分解縮合して得られる加水分解縮合物であることが好ましい。
(アルキルトリアルコキシシラン)
 本実施形態において加水分解縮合物を製造するために、出発原料として、アルキルトリアルコキシシランを含むアルコキシシラン原料を使用することができる。なお、アルコキシシラン原料とは、アルコキシシラン(アルコキシ基を有するケイ素化合物)から構成される出発原料を意図する。原料としてアルキルトリアルコキシシランを使用することにより、得られる加水分解縮合物の構造がよりフレキシブルとなり、さらに有機成分の存在により基板に対する濡れ性を高めることができる。
 アルキルトリアルコキシシランとは、ケイ素原子に一つのアルキル基と3つのアルコキシ基が結合する有機ケイ素化合物であり、下記の式(2)で表すことができる。
 式(2):RSi(OR
(Rは炭素数1~3のアルキル基、炭素数1~8のアルコキシアルキル基、炭素数1~10のフルオロアルキル基、を表し、Rはアルキル基を表す。)
 アルキルトリアルコキシシランのアルキル基(式(2)中のR)は上記の範囲であれば特に制限されないが、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、メトキシメチル基、メトキシプロピル基、γ-グリシドキシメチル基、γ-グリシドキシプロピル基、トリフルオロメチル基、トリフルオロエチル基、トリフルオロプロピル基、パーフルオロエチル基、パーフルオロプロピル基、トリデカフルオロオクチル基などが挙げられる。また、その中でメチル基、エチル基、γ-グリシドキシプロピル基、トリフルオロメチル基、トリフルオロプロピル基、トリデカフルオロオクチル基が好ましく、最も好ましいのはメチル基である。
 アルキルトリアルコキシシランのアルコキシ基は特に制限されないが、例えば、メトキシ基、エトキシ基などが挙げられる。より具体的に、式(2)中のRとしては、炭素数1~20の直鎖状または分岐状のアルキル基が好ましい。なかでも、炭素数1~10が好ましく、炭素数1~4がより好ましい。特に、加水分解速度の制御が容易である点から、式(2)中のRがエチル基である、エトキシ基が好ましい。
 アルキルトリアルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン、などが挙げられる。なかでも、メチルトリエトキシシラン、エチルトリエトキシシラン、トリフルオロプロピルトリメトキシシランが好適に用いられ、メチルトリエトキシシランが最も好ましく用いられる。なお、アルキルトリアルコキシシランとしては、1種のみを使用してもよいし、2種以上を併用してもよい。
 前記アルコキシシラン原料の65質量%以上がアルキルトリアルコキシシランであることが好ましく、80質量%以上100質量%以下であることがより好ましく、95質量%以上100質量%以下であることがより好ましい。含有量がその範囲内にあることにより、一層効果的に受光感度の良化がもたらされるため好ましい。
(テトラアルコキシシラン)
 アルコキシシラン原料としては上記のトリアルコキシシラン以外に、他のアルコキシシランを使用することができ、なかでもテトラアルコキシシランが好ましい。テトラアルコキシシランを含むことにより、加水分解縮合物中の架橋密度が増加し、硬膜して得られる皮膜の電気的絶縁性、耐現像性、耐熱性がより向上する点で好ましい。
 テトラアルコキシシランとは、ケイ素原子に4つのアルコキシ基が結合する有機ケイ素化合物であり、下記の式(3)で表すことができる。
 式(3):Si(OR
(Rは、それぞれ独立にアルキル基を表す。)
 テトラアルコキシシランのアルコキシ基は特に制限されないが、例えば、メトキシ基、エトキシ基などが挙げられる。より具体的には、式(3)中のRとしては、炭素数1~20の直鎖状または分岐状のアルキル基が好ましい。なかでも、炭素数1~10が好ましく、炭素数1~4がより好ましい。特に、加水分解速度の制御が容易である点から、式(3)中のRがエチル基である、エトキシ基が好ましい。
 テトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、テトライソブトキシシラン、テトラ-tert-ブトキシシランなどが挙げられる。なかでも、テトラメトキシシラン、テトラエトキシシランが好適に用いられる。
 なお、テトラアルコキシシランとしては、1種のみを使用してもよいし、2種以上を併用してもよい。
 アルコキシシラン原料中におけるテトラアルコキシシランの含有量は特に制限されないが、組成物の耐現像性の皮膜の耐熱性がより優れる点から、35質量%以下が好ましく、20質量%以下であることがより好ましい。下限値は特にないが、テトラアルコキシシランの添加効果を得る場合には、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。
 なお、本明細書において化合物の表示については、当該化合物そのもののほか、その塩、錯体、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、所定の形態で修飾された誘導体を含む意味である。また、本明細書において置換・無置換を明記していない置換基(連結基を含む)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルホンアミド基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルホンアミド、N-フェニルスルホンアミド等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、シアノ基、又はハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、シアノ基又はハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基又はシアノ基が挙げられる。
 化合物ないし置換基等がアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
(シロキサン樹脂の製造)
 本実施形態の光透過性硬化膜形成用樹脂組成物中に含まれるシロキサン樹脂は、上述したアルコキシシラン原料を用いて、加水分解反応および縮合反応を介して得ることができる。
 加水分解反応および縮合反応としては公知の方法を使用することができ、必要に応じて、酸または塩基などの触媒を使用してもよい。触媒としてはpHを変更させるものであれば特に制限がなく、具体的には、酸(有機酸、無機酸)としては、例えば硝酸、シュウ酸、酢酸、蟻酸、塩酸など、アルカリとしては、例えばアンモニア、トリエチルアミン、エチレンジアミンなどが挙げられる。使用する量は、シロキサン樹脂が所定の分子量を満たせば、特に限定されない。
 加水分解反応および縮合反応の反応系には、必要に応じて、溶媒を加えてもよい。溶媒としては加水分解反応および縮合反応が実施できれば特に制限されないが、例えば、水、メタノール、エタノール、プロパノールなどのアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテルなどのエーテル類、酢酸メチル、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、アセトン、メチルエチルケトン、メチルイソアミルケトンなどのケトン類などが挙げられる。なかでも、ここでは、後述するシロキサン樹脂を含有させる溶媒とは異なる溶媒を適用することが好ましく、炭素数1~5のアルコール化合物又は炭素数2~6のエーテル化合物を用いることがより好ましい。
 加水分解反応および縮合反応の条件(温度、時間、溶媒量)は使用される材料の種類に応じて、適宜最適な条件が選択される。
 本実施形態で使用されるシロキサン樹脂の重量平均分子量は、1,000~50,000である。なかでも、2,000~45,000が好ましく、2,500~25,000がより好ましく、3,000~25,000が特に好ましい。重量平均分子量を上記範囲とすることにより、受光感度の良化につながりやすく好ましい。
 なお、重量平均分子量は、公知のGPC(ゲル浸透クロマトグラフィー)を用いて測定し、標準ポリスチレンに換算したときの値である。特に断らない限り、GPC測定においては、カラムとしてWaters2695およびShodex製GPCカラムKF-805L(カラム3本を直結)を使用し、カラム温度40℃、試料濃度0.5質量%のテトラヒドロフラン溶液を50μl注入し、溶出溶媒としてテトラヒドロフランを毎分1mlの流量でフローさせ、RI検出装置(Waters2414)およびUV検出装置(Waters2996)にて試料ピークを検出することで行った。
 本実施形態の組成物中における上記シロキサン樹脂の含有量は、全組成物質量に対して、5質量%超50質量%以下であることが好ましく。なかでも、10~45質量%がより好ましく、15~40質量%が特に好ましい。含有量が上記下限値以上ないし超の場合、ボイドを発生させにくく受光感度の良化において特に良い。含有量が上記上限値以下の場合、膜厚が十分に厚くなりクラック等の発生原因とならず実用性に富む。
(界面活性剤)
 本実施形態の光透過性硬化膜形成用樹脂は、ポリオキシアルキレン構造を有する界面活性剤を含有することが好ましい。ポリオキシアルキレン構造とは、アルキレン基と二価の酸素原子が隣接して存在している構造のことをいい、具体的にはエチレンオキサイド(EO)構造、プロピレンオキサイド(PO)構造などが挙げられる。ポリオキシアルキレン構造を有する界面活性剤としては、該ポリオキシアルキレン構造を有する限りにおいてフッ素系界面活性剤、ノニオン界面活性剤、カチオン界面活性剤、アニオン界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。これらの中でもノニオン界面活性剤、アニオン界面活性剤、及びシリコーン系界面活性剤が好ましく、ノニオン界面活性剤、及びアニオン界面活性剤が更に好ましく、アニオン界面活性剤が最も好ましい。
 本実施形態の光透過性硬化膜形成用樹脂組成物を適用した塗布液を用いて膜形成する場合においては、被塗布面と塗布液との界面張力を低下させることにより、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。
 フッ素系界面活性剤としては、例えば、メガファックF171、同F172、同F173、同F176、同F177、同F141、同F142、同F143、同F144、同R30、同F437、同F479、同F482、同F554、同F780、同F781(以上、DIC(株)製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム(株)製)、サーフロンS-382、同S-141、同S-145、同SC-101、同SC-103、同SC-104、同SC-105、同SC1068、同SC-381、同SC-383、同S393、同KH-40(以上、旭硝子(株)製)、エフトップEF301、同EF303、同EF351、同EF352(以上、ジェムコ(株)製)、PF636、PF656、PF6320、PF6520、PF7002(OMNOVA社製)等が挙げられる。
 ノニオン界面活性剤として具体的には、グリセロール、トリメチロールプロパン、トリメチロールエタンのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセリンエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル(花王(株)製のエマルゲン 404等)、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、青木油脂工業(株)製のELEBASE BUB-3等が挙げられる。
 アニオン界面活性剤として具体的には、W004、W005、W017(裕商(株)社製)、クラリアントジャパン(株)製のEMULSOGEN COL-020、EMULSOGEN COA-070、EMULSOGEN COL-080、第一工業製薬(株)製のプライサーフ A208B等が挙げられる。
 シリコーン系界面活性剤としては、例えば、東レ・ダウコーニング(株)製「トーレシリコーンDC3PA」、「トーレシリコーンSH7PA」、「トーレシリコーンDC11PA」,「トーレシリコーンSH21PA」,「トーレシリコーンSH28PA」、「トーレシリコーンSH29PA」、「トーレシリコーンSH30PA」、「トーレシリコーンSH8400」、モメンティブ・パフォーマンス・マテリアルズ社製「TSF-4440」、「TSF-4300」、「TSF-4445」、「TSF-4460」、「TSF-4452」、信越シリコーン株式会社製「KP341」、「KF6001」、「KF6002」、ビックケミー社製「BYK307」、「BYK323」、「BYK330」、GELEST製「DBE-224」、「DBE-621」等が挙げられる。
 界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。
 また、本実施形態の好ましいポリオキシアルキレン構造を有する界面活性剤としては、下記一般式(4)で表される界面活性剤が挙げられる。
 式(4):RO(RO)
(上記式中、Rは炭素数1~20のアルキル基を表し、Rは炭素数1~4のアルキレン基を表し、Rは水素原子、カルボキシル基、又は-POを表す。mは1~8の整数を表す。)
 より具体的には、式(4)中のRとしては、直鎖状または分岐状のアルキル基であってよい。なかでも、炭素数5~20が好ましく、炭素数12~18がより好ましい。式(4)中のRとしては、直鎖状または分岐状のアルキレン基であってよく、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基などが挙げられる。中でもエチレン基、イソプロピレン基(隣接するO原子とエチレンオキサイド構造、又はプロピレンオキサイド構造を形成する基)が好ましい。式(4)中のRとしては、水素原子、又はカルボキシル基が好ましく、カルボキシル基が最も好ましい。
 界面活性剤の添加量は、特に限定されないが、その下限値としては、前述の硬化性樹脂100質量部に対し1質量部以上の範囲で添加されるのが好ましく、1.5質量部以上であることがより好ましく、7.5質量部以上が最も好ましい。上限値も特に限定されないが、30質量部以下が好ましく、15質量部以下がより好ましい。
 本実施形態の樹脂組成物においては、上記のポリオキシアルキレン構造を有する界面活性剤とともに、あるいはこれとは別に、その他の界面活性剤を用いてもよい。当該界面活性剤としては、常用されているものを用いることができるが、中でもシリコーン系界面活性剤を併用することが好ましい。好ましいシリコーン系界面活性剤としては、有機基を側鎖または末端、もしくは側鎖と末端に導入したポリシロキサン型界面活性剤が挙げられる。側鎖基としては、アミノ基、エポキシ基、カルビノール基、メルカプト基、カルボキシル基、水素基、ポリエーテル基、アラルキル基、フロロアルキル基、フェニル基、末端基としては、アミノ基、エポキシ基、カルビノール基、メタクリル基、ポリエーテル基、メルカプト基、カルボキシル基、フェノール基、シラノール基、ジオール基などが挙げられる。
 あるいは、上記のポリオキシアルキレン構造を有する界面活性剤とともに、特定炭素数のアルキルアルコキシシシラン化合物(以下、「アルコキシシラン化合物α」と称する。)を含有させることも好ましく、上記のポリオキシアルキレン構造を有する界面活性剤とシリコーン系界面活性剤とアルコキシシラン化合物αとの3種の界面活性剤を併用してもよい。このアルコキシシラン化合物αとしては、炭素数4~12(より好ましくは炭素数6~10)のアルキル基を有するアルコキシシラン化合物を適用することが好ましい。これを一般式で表すと、下記式(5)で表される化合物であることが好ましい。
 式(5):Si(OR51n-4(R52
 ここで、R51は前記Rと同義の基である。R52は炭素数4~12のアルキル基であることが好ましく、炭素数6~10のアルキル基であることがより好ましい。nは1~3の整数である。
 ポリオキシアルキレン構造を有する界面活性剤と併用する界面活性剤の配合量は任意に調整すればよいが、例えば、ポリオキシアルキレン構造を有する界面活性剤100質量部に対して、併用する界面活性剤を0.01~100質量部で用いることが好ましく、1~100質量部で用いることがより好ましく、10~100質量部で用いることがより好ましい。
(中空粒子)
 前記硬化性樹脂組成物ないしそれを硬化した硬化膜は、中空粒子を含むことが好ましい。中空粒子としては、中空構造はもちろん多孔質の微粒子を使用してもよい。中空粒子は、内部に空洞を有する構造のものであり、外郭に包囲された空洞を有する粒子を指し、多孔質粒子は、多数の空洞を有する多孔質の粒子を指す。以下、中空粒子又は多孔質粒子を、適宜「特定粒子」と称する。特定粒子は、有機粒子であっても、無機粒子であってもよい。
 特定粒子の空隙率は、好ましくは10~80%、さらに好ましくは20~60%、最も好ましくは30~60%である。特定粒子の空隙率を上述の範囲にすることが、低屈折率化と粒子の耐久性維持の観点で好ましい。
 特定粒子の中でも、屈折率を低下しやすい観点から、中空粒子であることがより好ましく、中空シリカ粒子であることが特に好ましい。例えば、中空粒子をシリカで構成した場合には、中空シリカ粒子は、屈折率の低い空気(屈折率=1.0)を有しているため、その屈折率は、通常のシリカ(屈折率=1.6)と比較して著しく低くなる。
 中空粒子の製造方法としては、例えば特開2001-233611号公報に記載されている方法を適用できる。また、多孔質粒子の製造方法は、例えば特開2003-327424号、同2003-335515号、同2003-226516号、同2003-238140号等の各公報に記載されている方法を適用できる。
 また、特定粒子は、平均一次粒子径が1nm~200nmであることが好ましく、10nm~100nmがより好ましい。
 特定粒子の平均一次粒子径は、分散した粒子を透過型電子顕微鏡により観察し、得られた写真から求めることができる。粒子の投影面積を求め、そこから円相当径を求め平均一次粒子径とする。本明細書における平均一次粒子径は、300個以上の粒子について投影面積を測定して、円相当径を求めて算出する。
 特定粒子の屈折率は、1.10~1.40が好ましく、更に好ましくは、1.15~1.35、最も好ましくは1.15~1.30である。
 ここでの屈折率は粒子全体として屈折率を表し、粒子が中空粒子である場合、中空粒子を形成している外殻のみの屈折率を表すものではない。粒子が多孔質粒子である場合、多孔質粒子の屈折率は、アッベ屈折率計(アタゴ(株)製)にて測定することができる(測定温度25℃,波長633nm)。
 特定粒子は、低屈折率化の観点からは、中空又は多孔質の無機粒子が好ましい。無機の低屈折率粒子としては、フッ化マグネシウムやシリカの粒子が挙げられ、低屈折率性、分散安定性、コストの観点から、シリカ粒子であることがより好ましい。
 これらの無機粒子の平均一次粒子径は、1nm~100nmであることが好ましく、1nm~60nmであることがより好ましい。
 無機粒子は、必要な空隙率を満たす限りにおいて、結晶系は、結晶質でも、アモルファスのいずれでもよく、また単分散粒子でも、所定の粒子径を満たすならば凝集粒子でも構わない。形状は、球形状が最も好ましいが、数珠状、長径と短径の比が1以上の形状、あるいは不定形状であってもよい。
 無機粒子の比表面積は、10m/g~2000m/gであることが好ましく、20m/g~1800m/gであることがさらに好ましく、50m/g~1500m/gであることが最も好ましい。
 無機粒子は、硬化性樹脂組成物中での、分散安定化を図るために、あるいは、バインダー成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていてもよい。カップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、シランカップリング処理が特に有効である。
 すなわち、無機粒子がシリカ粒子であり、カップリング剤がシラン化合物である場合、シラン化合物とシラノール基との反応により、オルガノシリル基(モノオルガノシリル、ジオルガノシリル、トリオルガノシリル基)がシリカ粒子の表面に結合するものである。表面処理されたシリカ粒子がその表面に有する有機基としては、飽和又は不飽和の炭素数1~18の炭化水素基、炭素数1~18のハロゲン化炭化水素基などが挙げられる。
 上記カップリング剤は、無機粒子の表面処理剤として低屈折率膜用塗布液の調製以前にあらかじめ表面処理を施すために用いられても、塗布液調製時にさらに添加剤として添加してもよい。
 無機粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。
 特定粒子のより好適な態様はシリカ粒子である。
 シリカからなる特定粒子としては市販されているものを好ましく用いることができる。
 例えば、日揮触媒化成(株)製スルーリアシリーズ(中空粒子、イソプロパノール(IPA)分散、4-メチル-2-ペンタノン(MIBK)分散など。例えばスルーリア2320など。)、OSCALシリーズ、日産化学(株)製スノーテックスシリーズ(多孔質粒子、IPA分散、エチレングリコール分散、メチルエチルケトン(MEK)分散、ジメチルアセトアミド分散、MIBK分散、プロピレングリコールモノメチルアセテート分散、プロピレングリコールモノメチルエーテル分散、メタノール分散、酢酸エチル分散、酢酸ブチル分散、キシレン-n-ブタノール分散、トルエン分散など。例えばMIBK-SD-L、MIBK-STなど。)、日鉄鉱業(株)製シリナックス(多孔質粒子)、扶桑化学工業(株)製PLシリーズ(多孔質粒子、IPA分散、トルエン分散、プロピレングリコールモノメチルエーテル分散、メチルエチルケトン分散など。例えばPL-1-IPA、PL-2L-PGMEなど。)、EVONIK社製アエロジルシリーズ(多孔質粒子、プロピレングリコールアセテート分散、エチレングリコール分散、MIBK分散など)などのシリカ粒子を用いることができる。
 シリカ粒子を、シリカ粒子と粒子分散剤(粒子分散剤の詳細は後述する)とを含有する分散液として、感光性組成物に添加する場合、シリカ粒子のシリカ分散液中の含有量は、10質量%~50質量%が好ましく、15質量%~40質量%がより好ましく、15質量%~30質量%がさらに好ましい。
 硬化性樹脂組成物中の全固形分に対する特定粒子の含有量は、5質量%~95質量%であることが好ましく、10質量%~90質量%であることがより好ましく、20質量%~90質量%であることが更に好ましい。
 硬化性樹脂組成物を用いて膜を形成する場合、特定粒子の塗設量は、1mg/m~100mg/mが好ましく、より好ましくは5mg/m~80mg/m、更に好ましくは10mg/m~60mg/mである。1mg/m以上であることによって、低屈折率化の効果や耐擦傷性の改良効果を確実に得ることができるとともに、100mg/m2以下であることによって、硬化膜の表面に微細な凹凸ができて積分反射率が悪化することを抑制できる。
(フッ素系樹脂)
 前記硬化性樹脂組成物ないしそれを硬化した硬化膜は、フッ素系樹脂を含むことが好ましい。例えば特開2004-21036号公報に記載のフッ素系のシロキサンポリマーが挙げられる。
 フッ素系樹脂とは、物質分子中にフッ素を含有する樹脂であり、具体的には、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/エチレン共重合体、ヘキサフルオロプロピレン/プロピレン共重合体、ポリビニリデンフルオライド、ビニリデンフルオライド/エチレン共重合体などが挙げられるが、中でもポリテトラフルオロエチレン、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/エチレン共重合体、ポリビニリデンフルオライドが好ましく、特にポリテトラフルオロエチレン、テトラフルオロエチレン/エチレン共重合体が好ましく、更にはポリテトラフルオロエチレンが好ましく、ポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体も好ましく用いられる。ポリテトラフルオロエチレンなどのフッ素系樹脂分子量は10万~1000万の範囲のものが好ましく、とくに10万~100万の範囲のものがより好ましく、押出成形性と難燃性にとくに効果がある。ポリテトラフルオロエチレンの市販品としては、三井・デュポンフロロケミカル(株)製の“テフロン(登録商標)”6-J、“テフロン(登録商標)”6C-J、“テフロン(登録商標)”62-J、旭アイシーアイフロロポリマーズ(株)製の“フルオン”CD1やCD076などが市販されている。また、ポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体の市販品としては、三菱レイヨン(株)から、“メタブレン(登録商標)”Aシリーズとして市販され、“メタブレン(登録商標)”A-3000、“メタブレン(登録商標)”A-3800などが市販されている。また、ポリテトラフルオロエチレンの“テフロン(登録商標)”6-Jなどは凝集し易いため、他の樹脂組成物と共にヘンシェルミキサーなどで機械的に強く混合すると凝集により塊が生じる場合があり、混合条件によってはハンドリング性や分散性に課題がある。一方、ポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体は前記のハンドリング性や分散性に優れ、とくに好ましく用いられる。前記のポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体とは、限定されるものではないが、特開2000-226523号公報で開示されているポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体などが挙げられ、前記の有機系重合体としては芳香族ビニル系単量体、アクリル酸エステル系単量体、及びシアン化ビニル系単量体を10質量%以上含有する有機系重合体などであり、それらの混合物でもよく、ポリテトラフルオロエチレン含有混合粉体中のポリテトラフルオロエチレンの含有量は0.1質量%~90質量%であることが好ましい。
 さらに、フッ素樹脂としては、アモルファスフッ素樹脂、パーフルオロアルキル基含有アクリレートまたはメタクリレートを含有する共重合オリゴマー、フッ素系コーティング剤、フッ素系界面活性剤、電子線または紫外線硬化成分を含有するフッ素系表面処理剤、熱硬化成分を含有するフッ素系表面処理剤なども好ましい。パーフルオロアルキル基含有アクリレートまたはメタクリレートを含有する共重合オリゴマーの他の共重合成分としては、アルキルアクリレートまたはアルキルメタクリレートが好ましい。
 以下に具体的な例を示す。アモルファスフッ素樹脂としては、旭硝子社製ルミフロン、同サイトップ(CYTOP)などが挙げられる。パーフルオロアルキル基含有(メタ)アクリレートとアルキル(メタ)アクリレートとを主成分とする共重合オリゴマーとしては、日本油脂社製モディパーFシリーズ、ダイキン工業社製ユニダイン、大日本インキ化学工業社製メガファックF470シリーズ、同F480シリーズ、同F110シリーズなどが挙げられ、共重合はブロック共重合がより好ましい。フッ素系コーティング剤としては、住友3M社製EGC1700が挙げられる。フッ素系界面活性剤としては、大日本インキ化学工業製メガファックF114、同F410シリーズ、同440シリーズ、同450、同490シリーズなどが挙げられる。電子線または紫外線硬化成分を含有するフッ素系表面処理剤としては、オムノヴァ・ソリューション社製ポリフォックスPF-3320、ユニマテック社製ケミノックスFAMAC-8、住友3M社製EGC1720などが挙げられる。熱硬化成分を含んだフッ素系表面処理剤としては、住友3M社製EGC1720、大日本インキ化学工業社製NH-10、NH-15などが挙げられる。
 アモルファスフッ素樹脂の例として下記の構造式を有する樹脂を挙げることができる。
Figure JPOXMLDOC01-appb-C000004
 フッ素樹脂は、複数種の含フッ素化合物の混合であってもよい。
 フッ素系樹脂の添加量は、特に限定されないが、前記シロキサン樹脂と同様の観点から、前記シロキサン樹脂と同様の含有率の範囲であることが好ましい。
(硬化剤)
 本実施形態の光透過性硬化膜形成用樹脂組成物は、さらに硬化剤を含有しても良い。硬化剤としては、Al、Mg、Mn、Ti、Cu、Co、Zn、Hf及びZrよりなる硬化剤が好ましく、これらを併用することもできる。
 これらの硬化剤は、金属アルコキシドにキレート化剤を反応させることにより容易に得ることができる。キレート化剤の例としては、アセチルアセトン、ベンゾイルアセトン、ジベンゾイルメタンなどのβ-ジケトン;アセト酢酸エチル、ベンゾイル酢酸エチルなどのβ-ケト酸エステルなどを用いることができる。
 金属基キレート化合物の好ましい具体的な例としては、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセテートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)等のアルミニウムキレート化合物、エチルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(エチルアセトアセテート)、アルキルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(アセチルアセトネート)等のマグネシウムキレート化合物、ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシアセチルアセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテート)、マンガンアセチルアセトナート、コバルトアセチルアセトナート、銅アセチルアセトナート、チタンアセチルアセトナート、チタンオキシアセチルアセトナートが挙げられる。これらのうち、好ましくは、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、マグネシウムビス(アセチルアセトネート)、マグネシウムビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトナートであり、保存安定性、入手容易さを考慮すると、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)が特に好ましい。
 硬化剤の総含有量は、シロキサン樹脂の全含有量100質量部に対して、好ましくは0.001質量部~10質量部であり、更に好ましくは、0.01質量部~5質量部であり、特に好ましくは0.01質量部~0.5質量部である。
(溶媒)
 本実施形態の光透過性硬化膜形成用樹脂組成物(硬化性樹脂組成物)は、一般には、有機溶剤を用いて構成することができる。有機溶剤は、各成分の溶解性や光透過性硬化膜形成用樹脂組成物の塗布性を満足すれば基本的には特に制限はないが、特に、バインダーの溶解性、塗布性、安全性を考慮して選ばれることが好ましい。また、本実施形態における光透過性硬化膜形成用樹脂組成物を調製する際には、2種類の有機溶剤を含んでもよい。
 有機溶剤としては、エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、オキシ酢酸アルキル(例:オキシ酢酸メチル、オキシ酢酸エチル、オキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-オキシプロピオン酸アルキルエステル類(例:3-オキシプロピオン酸メチル、3-オキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-オキシプロピオン酸アルキルエステル類(例:2-オキシプロピオン酸メチル、2-オキシプロピオン酸エチル、2-オキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-オキシ-2-メチルプロピオン酸メチル及び2-オキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等、並びに、エーテル類として、例えば、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノtert-ブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等、並びに、ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等、並びに、芳香族炭化水素類として、例えば、トルエン、キシレン等が好適に挙げられる。
 特に好ましくは、上記の3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノtert-ブチルエーテル、及びプロピレングリコールメチルエーテルアセテートである。
 本実施形態の光透過性硬化膜形成用樹脂組成物において、適用される溶媒は、光透過性硬化膜形成用樹脂組成物の全量中、50~99.9質量%であることが好ましく、60~95質量%であることがより好ましい。当該化合物の量が上記下限値以上の場合、塗布性が良好となり好ましい。上記上限値以下の場合も同様に塗布性が良好となり好ましい。
(粘度)
 本実施形態の光透過性硬化膜形成用樹脂組成物は、厚みのある良好な透過膜を形成する観点から、その粘度が調節されていることが好ましい。具体的な粘度の範囲は特に限定されないが、1~20cPであることが好ましく、2~15cPであることがより好ましく、4~6cPであることが特に好ましい。本明細書における粘度の値は、特に断らない限り、後記の測定方法によるものとする。
 ・測定方法
 E型粘度計「TV-20形粘度計・コーンプレートタイプ TVE-20L」(東機産業製)を用いて、室温(約25℃)で測定する。サンプリングは100秒ごとに5回粘度を測定した値の平均とする。
 なお、本発明において組成物とは、2以上の成分が特定の組成で実質的に均一に存在していることを言う。ここで実質的に均一とは発明の作用効果を奏する範囲で各成分が偏在していていもよいことを意味する。また、組成物とは上記の定義を満たす限り形態は特に限定されず、流動性の液体やペーストに限定されず、複数の成分からなる固体や粉末等も含む意味である。さらに、沈降物があるような場合でも、攪拌により所定時間分散状態を保つようなものも組成物に含む意味である。
<マイクロレンズユニット(光学部材セット)>
 本発明の好ましい実施形態に係るマイクロレンズユニットは、固体撮像素子に組み込まれ、マイクロレンズ体とこれを被覆する光透過性硬化膜とを有する。なお、マイクロレンズ体の語は、マイクロレンズアレイの意味を含み、単にレンズ体(lens member、lens members)と総称して言うことがある。マイクロレンズアレイがマイクロレンズ体として用いられる場合、マイクロレンズ体同士の間隙である溝部は光透過性硬化膜に隙間なく埋め込まれ、空隙(ボイド)等が全く発生していないことが理想的である。このような態様では、マイクロレンズユニットは該ユニットを通過する光にボイド由来のノイズを発生させることがなく、良好な品質性能を奏する。
 本実施形態に係るマイクロレンズ体の形状としては特に限定されないが、凸レンズが好ましく用いられる。本発明において凸レンズとは、特に断らない限り、平凸レンズ、両凸レンズ、凸メニスカスレンズ等を含み、少なくとも一方向に膨出した部位を有するレンズを指す。具体的な凸レンズの形状としては多面体状、球面状、及び非球面状(自由曲面で形成される球面収差のない形状)などが挙げられる。前記多面体の形状には、正多面体状、半正多面体状、円柱状、及びシリンドリカル形状などがあげられる。また、集光効果があればフレネルレンズ等も本発明における凸レンズに含まれる。
<マイクロレンズ体(第2の光学部材)>
(下層)
 前記硬化膜の下層をなすマイクロレンズ体の屈折率は1.65以上であり、1.75以上であることが好ましく、1.85以上であることがより好ましく、1.89以上が特に好ましい。この下限値以上とすることで、カメラモジュールの感度を向上することができる。同様の観点で、当該屈折率は、さらに1.95以下であり、1.93以下であることが好ましい。なお、本発明において屈折率は特に断らない限り、後記実施例に示した測定方法で測定した値を言う。
 前記光透過性硬化膜と当該マイクロレンズ体との屈折率との差は特に限定されないが、0.42以上であることが好ましく、0.45以上であることがより好ましい。上限としては、0.58以下であることが好ましく、0.55以下であることがより好ましい。
 前記下層がTiOまたはジルコニアを含有してなることが好ましく、その粒子ないし中空粒子を有することが好ましい。下層としてこれを選択することにより、画素間のバラツキが小さくなり好ましい。前記粒子の粒子径は特に限定されないが、平均粒子径で1nm~100nmであるが、1nm~80nmであることが好ましく、1nm~50nmであることが特に好ましい。本明細書において金属酸化物微粒子の平均粒子径とは、特に断らない限り、後記実施例で採用した測定方法により測定した値をいう。前記粒子の具体的な構成は特に限定されないが、この種の製品に一般に適用されるものを適宜選定して使用することができる。
 本実施形態のように、マイクロレンズ体がマイクロレンズアレイとして用いられる形態としては、その膨出方向を実質的に同一方向にむけて配列されるのが好ましい。ここで配列とは2つ以上が所定の間隔で並んで設置されたことをいい、その間隔は均一であっても、異なっていてもよい。好ましくは、1つの平面状に二次元配列されていることであり、等間隔で二次元配列されていることがより好ましい。また、レンズ間の間隔としては通常10~1,000nmの範囲であり、緻密に配列する場合には100~300nmであることがより好ましい。レンズ間には凹部が形成されていることが殆どであり、その形状としては、膨出した凸レンズの形状により定まる。断面において弓形(円弧と弦とで定義される面)の凸レンズであれば、V字の2つの線が逆円弧で構成された断面を持つ凹部が形成されることとなる。
 レンズ体の高さ(厚さ)は特に限定されないが、200~1500nmが好ましく、200~1000nmがであることが実際的である。レンズ体の幅は特に限定されないが、下に形成されている画素のサイズに対して70~90%(具体的には、1画素が1.4μm□のイメージセンサーの場合は、0.98μm~1.26μm)であることが実際的である。ここで言うレンズ体の高さとは、レンズ体の最長点の高さをさす。
<マイクロレンズユニットの製造方法>
 本発明におけるマイクロレンズユニットが取り得る実施態様としては特に制限はなく、マイクロレンズユニットの用途、目的に応じて適宜選択することができる。具体的な態様として下記があげられるが、本発明はこれらの構成に限定されるものではない。なお、本明細書で「被覆」というときには、対象物に直接当接して被覆する場合のみならず、他の層を介して被覆することを包含するものとする。
第一の態様:マイクロレンズ体が光透過性硬化膜で直接被覆されてなる態様
第二の態様:マイクロレンズ体がオーバーコート層で被覆されてなり、更に光透過性硬化膜で被覆されてなる態様
第三の態様:マイクロレンズ体と半導体受光ユニットの間に光透過性硬化膜の層が形成される態様
上記の中でも、第一の態様が好ましい。以下、第一の態様についてその製造方法を詳しく説明する。
(組成物の塗布)
 本実施形態の光透過性硬化膜形成用樹脂組成物は、反射防止膜や低屈折率膜の形成材料として用いることが好ましい。硬化膜を形成するためにレンズ体等の被加工物に塗布する方法は特に限定されないが、適宜の公知の塗布方法を適用することができる。例えば、スピンコート法、ディップコート法、ローラーブレード法、スプレー法などを適用することができる。必要に応じて、塗布された塗膜には加熱処理などを施し、塗膜中に含まれる溶媒を除去することが好ましい。
(硬化膜の形成)
 光透過性硬化膜形成用樹脂組成物を被加工物上に適用し、その後に、溶媒除去して硬化膜を形成することが好ましい。そのために、塗布後の塗膜を好ましくは60~200℃、より好ましくは100~150℃の条件下に、好ましくは1~10分、より好ましくは1~5分静置することにより行う。なお、該溶媒除去は、異なる条件で2回以上にわたって実施してもよい。
 本実施形態において、上記塗布された光透過性硬化膜形成用樹脂組成物は、加熱し、さらに硬化を促進させることが好ましい。このようにすることで、より安定な形態を実現し、耐現像性を高めることができる。その加熱温度は塗膜が硬化すれば特に制限されないが、通常、150~400℃であることが好ましい。なかでも、150~280℃が好ましく、150~240℃がより好ましい。上記加熱条件であれば、塗膜が十分に硬化し、優れた膜とすることができる。加熱時間としては特に制限されないが、1~60分であることが好ましく、1~30分であることがより好ましい。加熱の方法としては特に制限されず、ホットプレート、オーブン、ファーネス等による加熱を適用することができる。
 加熱の際の雰囲気としては特に制限されず、不活性雰囲気、酸化性雰囲気などを適用することができる。不活性雰囲気は、窒素、ヘリウム、アルゴンなどの不活性ガスにより実現できる。酸化性雰囲気は、これら不活性ガスと酸化性ガスの混合ガスにより実現することができる他、空気を利用してもよい。酸化性ガスとしては、例えば、酸素、一酸化炭素、二窒化酸素などを挙げることができる。加熱工程は、加圧下、常圧下、減圧下または真空中のいずれの圧力でも実施することができる。
 上記加熱処理により得られる硬化膜は、主に有機酸化ケイ素(SiOC)により構成されている。これにより、必要により、例えば微細パターンであっても、被加工物や硬化膜を精度良くエッチング加工することができ、微小な固体撮像素子の製造工程にも好適に対応することができる。
(反射防止膜)
 本発明における硬化膜の好適な使用態様として、反射防止膜が挙げられる。特に、固体撮像素子等を用いた光学デバイス、例えば、イメージセンサ用マイクロレンズ、プラズマディスプレイパネル、液晶ディスプレイ、有機エレクトロルミネッセンスなど用の反射防止膜として好適である。反射防止膜として使用した場合の反射率は低いほど好ましい。具体的には、450~650nmの波長領域での鏡面平均反射率が3%以下であることが好ましく、2%以下であることがさらに好ましく、1%以下であることが最も好ましい。なお、反射率は小さければ小さいほど好ましく、最も好ましくは0である。
 反射防止膜のヘイズは、3%以下であることが好ましく、1%以下であることがさらに好ましく、0.5%以下であることが最も好ましい。なお、反射率は小さければ小さいほど好ましく、最も好ましくは実質的に0である。
<固体撮像素子>
 本発明の好ましい実施形態に係る固体撮像素子は、半導体受光ユニット上にマイクロレンズユニットを有し、マイクロレンズ体とカラーフィルタが接するように組み込まれる。受光素子は光透過性硬化膜、レンズ体、及びカラーフィルタの順に通過する光を受光し、イメージセンサーとして機能する。具体的には、光透過性硬化膜が反射防止膜として機能し、レンズ体の集光効率を向上させ、レンズ体によって効率的に集められた光がカラーフィルタを介して受光素子に検知される。これらがRGBそれぞれに対応する光を検知する素子の全般に渡って機能するため、受光素子とレンズ体とが高密度に配列されている場合でも、極めて鮮明な画像を得ることができる。
 なお、素子ないしユニットの上方・下方は特に限定されないが、特に断らない限り、光透過性硬化膜の側を上方ないし外方とし、受光素子の側を下方ないし内方とする。
 マイクロレンズアレイを適用した固体撮像素子の例として、特開2007-119744号公報に記載のものが挙げられる。具体的には、半導体基板の表面に形成されたCCD領域や光電変換部の間に転送電極を有しており、その上には層間膜を介して遮光膜が形成されている。遮光膜の上には、BPSG(Boro-Phospho-Silicate Grass)等による層間絶縁膜、パッシベーション膜及びアクリル系樹脂等による低屈折率の透明平坦化膜が積層され、その上に、R.G.B.が組み合わされたカラーフィルタが形成されている。さらに保護膜を介して、受光領域である光電変換部の上方に位置するようにマイクロレンズが多数配列して形成されてなる。
 本発明の好ましい実施形態に係るマイクロレンズユニットは、下記の構成であることが好ましい。すなわち、前記マイクロレンズ体として複数の凸レンズが適用され、該複数の凸レンズはその膨出方向を実質的に同一方向にむけて配列されており、かつ該複数の凸レンズはその膨出方向から覆われて前記光透過性硬化膜により被覆されており、前記複数の凸レンズ間に形成された凹部には実質的に隙間無く前記光透過性硬化膜が充填されており、一方、該光透過性硬化膜において前記レンズ体の反対側は平坦面とされている。
 本発明においてマイクロレンズユニットは固体撮像素子用以外の他の用途にも好適に使用される。他の用途としては、例えば、各種のOA機器、液晶テレビ、携帯電話、プロジェクター等の液晶表示素子、ファクシミリ、電子複写機、固体撮像素子等のオンチップカラーフィルターの結像光学系等が挙げられ、これら種々の用途に利用することができる。
 以下、本発明における下層(高屈折率層)の好ましい実施形態について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本発明においては、後記実施形態の樹脂組成物のほか、市販の硬化性樹脂を好適に用いることができる。以下にその商品名(製品番号)を列記しておく。
(1)超高屈折率、高耐熱コーティング材料:UR-108、UR-202、UR-501、HR-102(日産化学工業社製)
(2)厚膜用高屈折率コーティング材料:UR-108、UR-204、HR-201(日産化学工業社製)
(3)チオエポキシ樹脂LPH1101(三菱ガス化学社製)
(4)エピスルフィド樹脂MR-174(三井化学社製)
(5)チオウレタン樹脂MR-7(三井化学社製)
(A)金属酸化物粒子
 金属酸化物粒子としては、屈折率の高い無機粒子であり、チタン(Ti)、ジルコニウム(Zr)、アルミニウム(Al)、ケイ素(Si)、亜鉛(Zn)又はマグネシウム(Mg)の酸化物粒子が挙げられ、二酸化チタン(TiO)粒子、二酸化ジルコニウム(ZrO)粒子又は二酸化珪素(SiO)粒子であることが好ましく、中でも二酸化チタン粒子(以下、単に「二酸化チタン」ということもある)であることがより好ましい。
 無色又は透明な二酸化チタン粒子としては、化学式TiOで表すことができ、純度が70%以上であることが好ましく、純度80%以上であることがより好ましく、純度85%以上であることが更に好ましい。一般式Ti2n-1(nは2~4の数を表す。)で表される低次酸化チタン、酸窒化チタン等は30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが更に好ましい。
 前記金属酸化物粒子の一次粒子径は1nm~100nmが好ましいが、1nm~80nmであることがより好ましく、1nm~50nmであることが特に好ましい。金属酸化物粒子の一次粒子径が100nmを超えると屈折率及び透過率が低下することがある。また1nm未満の場合には、凝集により分散性や分散安定性が低下する場合がある。
 金属酸化物粒子の平均粒子径は、後記実施例で採用した測定方法によるものとする。
 金属酸化物粒子の屈折率としては特に制限はないが、高屈折率を得る観点から、1.75~2.70であることが好ましく、1.90~2.70であることが更に好ましい。この屈折率の測定方法は前記中空粒子と同じである。
 また金属酸化物粒子の比表面積は、10m/g~400m/gであることが好ましく、20m/g~200m/gであることが更に好ましく、30m/g~150m/gであることが最も好ましい。
 また金属酸化物粒子の形状には特に制限はない。例えば、米粒状、球形状、立方体状、紡錘形状あるいは不定形状であることができる。
 金属酸化物粒子は、有機化合物により表面処理されたものであってもよい。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。中でもシランカップリング剤が好ましい。
 表面処理は、1種単独の表面処理剤でも、2種類以上の表面処理剤を組み合わせて実施してもよい。
 また金属酸化物粒子の表面が、アルミニウム、ケイ素、ジルコニアなどの酸化物により覆われていることもまた好ましい。これにより、より耐候性が向上する。
 金属酸化物粒子としては、市販されているものを好ましく用いることができる。
 二酸化チタン粒子の市販物としては、例えば石原産業(株)製TTOシリーズ(TTO-51(A)、TTO-51(C)など)、TTO-S、Vシリーズ(TTO-S-1、TTO-S-2、TTO-V-3など)、テイカ(株)製MTシリーズ(MT-01、MT-05など)などを挙げることができる。
 二酸化ジルコニウム粒子の市販物としては、例えば、UEP(第一稀元素化学工業(株)製)、PCS(日本電工(株)製)、JS-01、JS-03、JS-04(日本電工(株)製)、UEP-100(第一稀元素化学工業(株)製)などを挙げることができる。
 二酸化珪素粒子の市販物としては、例えば、OG502-31クラリアント社(Clariant Co.)製などを挙げることができる。
 金属酸化物粒子は、1種単独でも、2種以上を組み合わせて用いてもよい。
 また本実施形態の分散組成物(I)を構成する際、非常に高い屈折率を得るべく、組成物中の金属酸化物粒子の含有量は、分散安定性の観点から、分散組成物全固形分に対して10~90質量%であることが好ましく、10~50質量%であることがより好ましく、更に好ましくは12~40質量%であり、特に好ましくは15~35質量%である。
 一方、特に、高屈折率のマイクロレンズ用としては、分散組成物の全固形分に対して50質量%~90質量%であり、より好ましくは52質量%~85質量%であり、最も好ましくは55質量%~80質量%である。
 上記したように、近年では高画素化に伴い1画素のサイズが極めて小さく、より効率よく光を集めるべく、更に高い屈折率を有するマイクロレンズが要求されているが、金属酸化物粒子の含有量が、分散組成物の全固形分に対して50質量%未満であると、そのようなマイクロレンズを得難い。
 また、金属酸化物粒子の含有量が、分散組成物(I)の全固形分に対して90質量%を超えると、充分な量のグラフト共重合体(B)を存在させにくい等の理由から、分散性及び分散安定性が損なわれやすい。更に、分散組成物(硬化性組成物)が大サイズ(例えば12インチ)のウエハーに塗布した場合に、ウエハーの中心部と周辺部での膜厚差が小さい膜を形成しにくくなる。
(B)グラフト共重合体
 本実施形態の分散組成物は、グラフト共重合体(以下、「特定樹脂」ともいう)を含むものである。本実施形態のグラフト共重合体は、水素原子を除いた原子数が40~10000の範囲であるグラフト鎖を有している。この場合のグラフト鎖とは、共重合体の主鎖の根元(主鎖から枝分かれしている基において主鎖に結合する原子)から、主鎖から枝分かれしている基の末端までを示す。分散組成物において、この特定樹脂は、金属酸化物粒子に分散性を付与する分散樹脂であり、グラフト鎖による溶媒との親和性を有するために、金属酸化物粒子の分散性、及び、経時後の分散安定性に優れる。また、分散組成物としたとき、グラフト鎖と溶媒とが良好な相互作用を示すことにより、塗布膜における膜厚の均一性が悪化することが抑制されるものと考えられる。
 (B)グラフト共重合体としては、グラフト鎖1本あたりの水素原子を除いた原子数が40~10000であることが好ましく、100~500であることがより好ましく、150~260であることが更に好ましい。この数が少なすぎると、グラフト鎖が短いため、立体反発効果が小さくなり分散性や分散安定性が低下する場合がある。一方、多すぎるとグラフト鎖が長くなりすぎ、金属酸化物粒子への吸着力が低下して分散性や分散安定性が低下する場合がある。なお、グラフト鎖1本あたりの水素原子を除いた原子数とは、主鎖を構成する高分子鎖に結合している根元の原子から、主鎖から枝分かれしている枝ポリマーの末端までに含まれる水素原子以外の原子の数である。またグラフト共重合体にグラフト鎖が2種以上含まれる場合、少なくとも1種のグラフト鎖の水素原子を除いた原子数が上記要件を満たしていればよい。
 グラフト鎖のポリマー構造としては、ポリ(メタ)アクリル構造、ポリエステル構造、ポリウレタン構造、ポリウレア構造、ポリアミド構造、ポリエーテル構造などを用いることができるが、グラフト鎖と溶媒との相互作用性を向上させ、それにより分散性や分散安定性を高めるために、ポリ(メタ)アクリル構造、ポリエステル構造、ポリエーテル構造を有するグラフト鎖であることが好ましく、ポリエステル構造、ポリエーテル構造を有することがより好ましい。
 グラフト共重合体は、上記グラフト鎖を有する構造単位(繰り返し単位)を有することが好ましく、例えば、ポリマー構造をグラフト鎖として有するマクロモノマーを、常法に基づいて重合させることにより得ることができ、このようなマクロモノマーの構造としては、ポリマー主鎖部と反応可能な置換基を有し、かつ要件を満たすグラフト鎖を有していれば、特に限定されないが、好ましくは、反応性二重結合性基を有するマクロモノマーを好適に使用することができる。
 特定樹脂の合成に好適に用いられる市販マクロモノマーとしては、AA-6(東亞合成社製)、AA-10(東亞合成社製)、AB-6(東亞合成社製)、AS-6(東亞合成社製)、AN-6(東亞合成社製)、AW-6(東亞合成社製)、AA-714(東亞合成社製)、AY-707(東亞合成社製)、AY-714(東亞合成社製)、AK-5(東亞合成社製)、AK-30(東亞合成社製)、AK-32(東亞合成社製)、ブレンマーPP-100(日油社製)、ブレンマーPP-500(日油社製)、ブレンマーPP-800(日油社製)、ブレンマーPP-1000(日油社製)、ブレンマー55-PET-800(日油社製)、ブレンマーPME-4000(日油社製)、ブレンマーPSE-400(日油社製)、ブレンマーPSE-1300(日油社製)、ブレンマー43PAPE-600B(日油社製)、などが挙げられる。この中でも、好ましくは、AA-6(東亞合成社製)、AA-10(東亞合成社製)、AB-6(東亞合成社製)、AS-6(東亞合成社製)、AN-6(東亞合成社製)、ブレンマーPME-4000(日油社製)などが挙げられる。
 本実施形態に使用される特定樹脂は、上記グラフト鎖を有する構造単位として、少なくとも下記式(1)~式(4)のいずれかで表される構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000005
 X、X、X、X、及び、Xはそれぞれ独立に水素原子或いは1価の有機基を表す。合成上の制約の観点から、好ましくは水素原子、或いは炭素数1~12のアルキル基であり、水素原子或いはメチル基であることがより好ましく、メチル基が特に好ましい。
 W、W、W、及び、Wはそれぞれ独立に酸素原子或いはNHを表し、特に酸素原子が好ましい。
 Rは、分岐若しくは直鎖のアルキレン基(炭素数は1~10が好ましく、2又は3であることがより好ましい)を表し、分散安定性の観点から、-CH-CH(CH)-で表される基、又は、-CH(CH)-CH-で表される基が好ましい。特定樹脂中に構造の異なるRを2種以上混合して用いても良い。
 Y、Y、Y、及び、Yはそれぞれ独立に2価の連結基であり、特に構造上制約されない。具体的には、下記の(Y-1)~(Y-21)の連結基などが挙げられる。下記構造でA、Bはそれぞれ、式(1)~式(4)における左末端基、右末端基との結合を意味する。下記に示した構造のうち、合成の簡便性から、(Y-2)、(Y-13)であることがより好ましい。
Figure JPOXMLDOC01-appb-C000006
 Z、Z、Z、及び、Zは、それぞれ独立に、水素原子又は1価の置換基であり、置換基の構造は特に限定されないが、具体的には、アルキル基、水酸基、アルコキシ基、アリールオキシ基、或いはヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、或いはヘテロアリールチオエーテル基、アミノ基などが挙げられる。この中でも、特に分散性向上の観点から、立体反発効果を有することが好ましく、Z~Zで表される1価の置換基としては、各々独立に炭素数5~24のアルキル基又は炭素数5~24のアルコキシ基が好ましく、その中でも、特に各々独立に炭素数5~24の分岐アルキル基を有するアルコキシ基或いは炭素数5~24の環状アルキル基を有するアルコキシ基が好ましい。また、Zで表される1価の置換基としては、炭素数5~24のアルキル基が好ましく、その中でも、各々独立に炭素数5~24の分岐アルキル基或いは炭素数5~24の環状アルキル基が好ましい。
 n、m、p、及び、qはそれぞれ1~500の整数である。
 j及びkは、それぞれ独立に、2~8の整数を表す。
 j及びkは、分散安定性の観点から、4~6の整数が好ましく、5が最も好ましい。
 Rは水素原子又は1価の有機基を表し、特に構造上限定はされないが、好ましくは、水素原子、アルキル基、アリール基、ヘテロアリール基であり、更に好ましくは、水素原子、アルキル基である。該Rがアルキル基である場合、該アルキル基としては、炭素数1~20の直鎖状アルキル基、炭素数3~20の分岐状アルキル基、又は炭素数5~20の環状アルキル基が好ましく、炭素数1~20の直鎖状アルキル基がより好ましく、炭素数1~6の直鎖状アルキル基が特に好ましい。特定樹脂中に構造の異なるRを2種以上混合して用いても良い。
 前記式(1)で表される構造単位としては、分散安定性の観点から、下記式(1A)又は(2A)で表される構造単位であることがより好ましい。
Figure JPOXMLDOC01-appb-C000007
 式(1A)中、X、Y、Z及びnは、式(1)におけるX、Y、Z及びnと同義であり、好ましい範囲も同様である。
 式(2A)中、X、Y、Z及びmは、式(2)におけるX、Y、Z及びmと同義であり、好ましい範囲も同様である。
 特定樹脂としては、前記式(1A)で表される構造単位を有するものであることが更に好ましい。
 特定樹脂において、上記グラフト鎖を有する構造単位(繰り返し単位)は、質量換算で、特定樹脂の総質量に対し10%~75%の範囲で含むことが好ましく、12%~50%の範囲で含むことがより好ましく、15%~40%の範囲で含むことが特に好ましい。この範囲内であると金属酸化物粒子の分散性や分散安定性が高く、分散組成物を用いた形成した塗布膜における膜厚の均一性が更に良好になる。また、特定樹脂としては、2種以上の構造が異なるグラフト共重合体の組み合わせであってもよい。
 また、特定樹脂は、酸基を有する構造単位(繰り返し単位)を、特定樹脂の総質量に対し25質量%以上90質量%以下で有する重合体であることが好ましい。酸基を有する構造単位の含有量は、特定樹脂の総質量に対し50質量%以上80質量%以下であることがより好ましく、60質量%以上75質量%以下であることが最も好ましい。酸基を有する構造単位の含有量が、特定樹脂の総質量に対し25質量未満であると、特定樹脂の金属酸化物粒子への吸着性が不十分となって分散安定性が悪くなり、分散組成物(硬化性組成物)を大サイズ(例えば12インチ)のウエハーに塗布した場合に、ウエハーの中心部と周辺部での膜厚差が小さい膜を形成しにくくなる。
 酸基を有する構造単位の含有量が、特定樹脂の総質量に対し90質量%超過であると、上記グラフト鎖の特定樹脂への導入量が不十分となって分散安定性が悪くなり、同様に、ウエハーの中心部と周辺部での膜厚差が小さい膜を形成しにくくなる。
 また、酸基を有する構造単位の含有量が上記範囲内であることにより、特定樹脂の酸価を下記の好ましい範囲内に好適に調整できる。
 また、酸基は、グラフト鎖以外に金属酸化物粒子と相互作用を形成しうる官能基としても機能し得る。
 前記酸基としては、例えば、カルボン酸基、スルホン酸基、リン酸基、フェノール性水酸基などが挙げられ、金属酸化物粒子への吸着力と、分散性・分散安定性の観点から、カルボン酸基、スルホン酸基、及びリン酸基から選ばれる少なくとも1種であることが好ましく、カルボン酸基が特に好ましい。
 更に、酸基構造は、樹脂構造の主鎖より5原子分以上離れている構造が好ましい。更に酸基としては、芳香環に結合したカルボン酸が最も好ましい。
 前記酸基としては、これらを1種単独であるいは2種以上を組み合わせて用いることができる。
 上記特定樹脂の酸価は、70mgKOH/g以上350mgKOH/g以下の範囲であることが好ましく、より好ましくは80mgKOH/g以上300mgKOH/g以下の範囲、更に好ましくは100mgKOH/g以上250mgKOH/g以下の範囲である。酸価を上記範囲とすることにより、分散組成物が大サイズ(例えば12インチ)のウエハーに塗布された場合でも、ウエハーの中心部と周辺部での膜厚差が小さい膜をより確実に得ることができる。
 特定樹脂の酸価は、例えば、特定樹脂中における酸基の平均含有量から算出することができる。また、特定樹脂を構成する酸基を含有するモノマー単位の含有量を変化させることで所望の酸価を有する樹脂を得ることができる。
 特定樹脂は、上記グラフト鎖及び酸基以外の、金属酸化物粒子と相互作用を形成しうる官能基を有する構造単位(繰り返し単位)を更に有していても良い。このような、その他の金属酸化物粒子と相互作用を形成しうる官能基を有する構造単位は、特に構造上限定されないが、例えば、塩基性基を有する構造単位、配位性基を有する構造単位、反応性を有する基を有する構造単位などが挙げられる。
 前記塩基性基としては、例えば、第1級アミノ基、第2級アミノ基、第3級アミノ基、N原子を含むヘテロ環、アミド基などが挙げられる。特に好ましいものは、金属酸化物粒子への吸着力が良好で、かつ、分散性・分散安定性が高い第3級アミノ基である。前記塩基性基としては、これらを1種単独であるいは2種以上を組み合わせて用いることができる。
 特定樹脂は、塩基性基を有する構造単位(繰り返し単位)を含有してもしなくても良いが、含有する場合、塩基性基を有する構造単位の含有量は、特定樹脂の総質量に対し0.1質量%以上50質量%以下であり、特に好ましくは、0.1質量%以上30質量%以下である。
 前記配位性基、反応性を有する基としては、例えば、アセチルアセトキシ基、トリアルコキシシリル基、イソシアネート基、酸無水物残基、酸塩化物残基などが挙げられる。特に好ましいものは、金属酸化物粒子への吸着力が良好で、分散性・分散安定性が高いアセチルアセトキシ基である。前記配位性基、反応性を有する基としては、これらを1種単独であるいは2種以上を組み合わせて用いることができる。
 特定樹脂は、配位性基又は反応性を有する基を有する構造単位(繰り返し単位)を含有してもしなくても良いが、含有する場合、配位性基又は反応性を有する基を有する構造単位の含有量は、特定樹脂の総質量に対し0.1質量%以上50質量%以下であり、特に好ましくは、0.1質量%以上30質量%以下である。
 また、特定樹脂は、上記グラフト鎖を有する構造単位及び上記酸基を有する構造単位とは異なる、金属酸化物粒子と相互作用を形成しうる官能基を有する構造単位として、下記一般式(i)~(iii)のいずれかで表される単量体から得られる繰り返し単位の少なくとも1種を有していても良い。
Figure JPOXMLDOC01-appb-C000008
 上記式(i)~(iii)中、R、R、及びRは、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素、塩素、臭素等)、又は炭素原子数が1~6のアルキル基(例えば、メチル基、エチル基、プロピル基等)を表す。
 R、R、及びRは、より好ましくは水素原子、又は炭素原子数が1~3のアルキル基であり、最も好ましくは、水素原子又はメチル基である。R、及びRは、水素原子であることが特に好ましい。
 Xは、酸素原子(-O-)又はイミノ基(-NH-)を表し、酸素原子であることが好ましい。
 Lは、単結合又は2価の連結基である。2価の連結基としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、置換アリーレン基)、2価の複素環基及びそれらと酸素原子(-O-)、硫黄原子(-S-)、イミノ基(-NH-)、置換イミノ基(-NR31-、ここでR31は脂肪族基、芳香族基又は複素環基)又はカルボニル基(-CO-)との組み合わせ等が挙げられる。
 前記2価の脂肪族基は、環状構造又は分岐構造を有していてもよい。前記脂肪族基の炭素原子数は、1~20が好ましく、1~15がより好ましく、1~10が更に好ましい。
 脂肪族基は不飽和脂肪族基よりも飽和脂肪族基の方が好ましい。また、脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、ヒドロキシル基、芳香族基及び複素環基が挙げられる。
 前記2価の芳香族基の炭素原子数は、6~20が好ましく、6~15が更に好ましく、6~10が最も好ましい。また、前記芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、ヒドロキシル基、脂肪族基、芳香族基及び複素環基が挙げられる。
 前記2価の複素環基は、複素環として5員環又は6員環を有することが好ましい。複素環に他の複素環、脂肪族環又は芳香族環が縮合していてもよい。また、複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N-R32、ここでR32は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基及び複素環基が挙げられる。
 Lは、単結合、アルキレン基又はオキシアルキレン構造を含む2価の連結基であることが好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造であることがより好ましい。また、Lはオキシアルキレン構造を2以上繰り返して含むポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としてはポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、-(OCHCH-で表され、nは、2以上の整数が好ましく、2~10の整数であることがより好ましい。
 上記式(i)~(iii)中、Zは、金属酸化物粒子と相互作用を形成しうる官能基を表し、上記した酸基、塩基性基、又は反応性を有する基であることが好ましく、カルボン酸基、又は第三級アミノ基であることがより好ましく、カルボン酸基であることが更に好ましい。また、Yは、メチン基又は窒素原子を表す。
 上記式(iii)中、R、R、及びRは、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素、塩素、臭素等)、炭素原子数が1~6のアルキル基(例えば、メチル基、エチル基、プロピル基等)、Z、又は-L-Zを表す。ここでL及びZは、上記におけるものと同義である。R、R、及びRとしては、水素原子、又は炭素数が1~3のアルキル基が好ましく、水素原子がより好ましい。
 上記一般式(i)で表される単量体として、R、R、及びRが水素原子又はメチル基であって、Lがアルキレン基又はオキシアルキレン構造を含む2価の連結基であって、Xが酸素原子又はイミノ基であって、Zがカルボン酸基である化合物が好ましい。
 また、上記一般式(ii)で表される単量体として、Rが水素原子又はメチル基であって、Lがアルキレン基であって、Zがカルボン酸基であって、Yがメチン基である化合物が好ましい。また、上記一般式(iii)で表される単量体として、R、R、及びRが水素原子又はメチル基であって、Zがカルボン酸基である化合物が好ましい。
 式(i)~(iii)で表される代表的な化合物の例としては、メタクリル酸、クロトン酸、イソクロトン酸、分子内に付加重合性二重結合と水酸基を有する化合物(例えば、メタクリル酸2-ヒドロキシエチル)とコハク酸無水物の反応物、分子内に付加重合性二重結合と水酸基を有する化合物とフタル酸無水物の反応物、分子内に付加重合性二重結合と水酸基を有する化合物とテトラヒドロキシフタル酸無水物の反応物、分子内に付加重合性二重結合と水酸基を有する化合物と無水トリメリット酸の反応物、分子内に付加重合性二重結合及び水酸基を有する化合物とピロメリット酸無水物との反応物、アクリル酸、アクリル酸ダイマー、アクリル酸オリゴマー、マレイン酸、イタコン酸、フマル酸、4-ビニル安息香酸、ビニルフェノール、4-ヒドロキシフェニルメタクリルアミドなどが挙げられる。
 更に、金属酸化物粒子の分散組成物に含まれる前記特定樹脂は、画像強度などの諸性能を向上する目的で、本発明の効果を損なわない限りにおいて、前記グラフト鎖を有する構造単位、前記酸基を有する構造単位、及び、これらの構造単位とは異なる、金属酸化物粒子と相互作用を形成しうる官能基を有する構造単位に加えて、更に種々の機能を有する他の構造単位、例えば、分散物に用いられる分散媒との親和性を有する官能基、などを有する構造単位を共重合成分に由来する構造単位として含むことができる。
 特定樹脂に共重合可能な共重合成分としては、例えば、アクリル酸エステル類、メタクリル酸エステル類、スチレン類、アクリロニトリル類、メタクリロニトリル類、アクリルアミド類、メタクリルアミド類などから選ばれるラジカル重合性化合物が挙げられる。
 具体的には、例えば、アルキルアクリレート(該アルキル基の炭素原子数は1~20のものが好ましい)等のアクリル酸エステル類、(具体的には、例えば、ベンジルアクリレート、4-ビフェニルアクリレート、ブチルアクリレート、sec-ブチルアクリレート、t-ブチルアクリレート、4-t-ブチルフェニルアクリレート、4-クロロフェニルアクリレート、ペンタクロロフェニルアクリレート、4-シアノベンジルアクリレート、シアノメチルアクリレート、シクロヘキシルアクリレート、2-エトキシエチルアクリレート、エチルアクリレート、2-エチルヘキシルアクリレート、ヘプチルアクリレート、ヘキシルアクリレート、イソボルニルアクリレート、イソプロピルアクリレート、メチルアクリレート、3,5-ジメチルアダマンチルアクリレート、2-ナフチルアクリレート、ネオペンチルアクリレート、オクチルアクリレート、フェネチルアクリレート、フェニルアクリレート、プロピルアクリレート、トリルアクリレート、アミルアクリレート、テトラヒドロフルフリルアクリレート、2-ヒドロキシエチルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、5-ヒドロキシペンチルアクリレート、アリルアクリレート、2-アリロキシエチルアクリレート、プロパギルアクリレートなど)、
アルキルメタクリレート(該アルキル基の炭素原子は1~20のものが好ましい)等のメタクリル酸エステル類(例えば、ベンジルメタクリレート、4-ビフェニルメタクリレート、ブチルメタクリレート、sec-ブチルメタクリレート、t-ブチルメタクリレート、4-t-ブチルフェニルメタクリレート、4-クロロフェニルメタクリレート、ペンタクロロフェニルメタクリレート、4-シアノフェニルメタクリレート、シアノメチルメタクリレート、シクロヘキシルメタクリレート、2-エトキシエチルメタクリレート、エチルメタクリレート、2-エチルヘキシルメタクリレート、ヘプチルメタクリレート、ヘキシルメタクリレート、イソボルニルメタクリレート、イソプロピルメタクリレート、メチルメタクリレート、3,5-ジメチルアダマンチルメタクリレート、2-ナフチルメタクリレート、ネオペンチルメタクリレート、オクチルメタクリレート、フェネチルメタクリレート、フェニルメタクリレート、プロピルメタクリレート、トリルメタクリレート、アミルメタクリレート、テトラヒドロフルフリルメタクリレート、2-ヒドロキシエチルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート、5-ヒドロキシペンチルメタクリレート、アリルメタクリレート、2-アリロキシエチルメタクリレート、プロパギルメタクリレート、2-ジエチルアミノエチルメタクリレート、2-ジメチルアミノメタクリレートなど)、
スチレン、アルキルスチレン等のスチレン類(例えば、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブチルスチレン、ヘキシルスチレン、シクロへキシルスチレン、デシルスチレン、ベンジルスチレン、クロロメチルスチレン、トリフルオロメチルスチレン、エトキシメチルスチレン、アセトキシメチルスチレンなど)、アルコキシスチレン(例えばメトキシスチレン、4-メトキシ-3-メチルスチレン、ジメトキシスチレンなど)、ハロゲンスチレン(例えばクロロスチレン、ジクロロスチレン、トリクロロスチレン、テトラクロロスチレン、ペンタクロロスチレン、ブロモスチレン、ジブロモスチレン、ヨードスチレン、フルオロスチレン、トリフルオロスチレン、2-ブロモ-4-トリフルオロメチルスチレン、4-フルオロ-3-トリフルオロメチルスチレンなど)、アクリロニトリル、メタクリロニトリル等が挙げられる。
 これらラジカル重合性化合物のうち、好適に使用されるのは、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、スチレン類であり、特に好適に使用されるのは、ベンジルメタクリレート、t-ブチルメタクリレート、4-t-ブチルフェニルメタクリレート、ペンタクロロフェニルメタクリレート、4-シアノフェニルメタクリレート、シクロヘキシルメタクリレート、エチルメタクリレート、2-エチルヘキシルメタクリレート、イソボルニルメタクリレート、イソプロピルメタクリレート、メチルメタクリレート、3,5-ジメチルアダマンチルメタクリレート、2-ナフチルメタクリレート、ネオペンチルメタクリレート、フェニルメタクリレート、テトラヒドロフルフリルメタクリレート、2-ヒドロキシエチルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシプロピルメタクリレート、アリルメタクリレート、
アクリルアミド、N-メチルアクリルアミド、N-イソプロピルアクリルアミド、モルホリルアクリルアミド、ピペリジルアクリルアミド、N-t-ブチルアクリルアミド、N-シクロヘキシルアクリルアミド、N-フェニルアクリルアミド、N-ナフチルアクリルアミド、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-アリルアクリルアミド、4-ヒドロキシフェニルアクリルアミド、2-ヒドロキシフェニルアクリルアミド、N、N-ジメチルアクリルアミド、N、N-ジイソプロピルアクリルアミド、N、N-ジ-t-ブチルアクリルアミド、N、N-ジシクロヘキシルアクリルアミド、N、N-フェニルアクリルアミド、N、N-ジヒドロキシエチルアクリルアミド、N、N-ジアリルアクリルアミド、
メタクリルアミド、N-メチルメタクリルアミド、N-イソプロピルメタクリルアミド、モルホリルメタクリルアミド、ピペリジルメタクリルアミド、N-t-ブチルメタクリルアミド、N-シクロヘキシルメタクリルアミド、N-フェニルメタクリルアミド、N-ナフチルメタクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-ヒドロキシエチルメタクリルアミド、N-アリルメタクリルアミド、4-ヒドロキシフェニルメタクリルアミド、2-ヒドロキシフェニルメタクリルアミド、N、N-ジメチルメタクリルアミド、N、N-ジイソプロピルメタクリルアミド、N、N-ジ-t-ブチルメタクリルアミド、N、N-ジシクロヘキシルメタクリルアミド、N、N-フェニルメタクリルアミド、N、N-ジヒドロキシエチルメタクリルアミド、N、N-ジアリルメタクリルアミド、
スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、イソプロピルスチレン、ブチルスチレン、シクロへキシルスチレン、クロロメチルスチレン、トリフルオロメチルスチレン、エトキシメチルスチレン、アセトキシメチルスチレン、メトキシスチレン、4-メトキシ-3-メチルスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレン、テトラクロロスチレン、ペンタクロロスチレン、ブロモスチレン、ジブロモスチレン、ヨードスチレン、フルオロスチレン、トリフルオロスチレン、2-ブロモ-4-トリフルオロメチルスチレン、4-フルオロ-3-トリフルオロメチルスチレンである。
 これらのラジカル重合性化合物は、1種単独で、あるいは2種以上を組み合わせて用いることができる。特定樹脂は、上記のラジカル重合性化合物を含有してもしなくても良いが、含有する場合、これらのラジカル重合性化合物に対応する構造単位の含有量は、特定樹脂の総質量に対し0.1質量%以上50質量%以下であり、特に好ましくは、0.1質量%以上30質量%以下である。
 特定樹脂は、従来公知の方法により合成することができる。合成する際に用いられる溶媒としては、例えば、エチレンジクロリド、シクロヘキサノン、メチルエチルケトン、アセトン、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、2-メトキシエチルアセテート、1-メトキシ-2-プロパノール、1-メトキシ-2-プロピルアセテート、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、トルエン、酢酸エチル、乳酸メチル、乳酸エチルなどが挙げられる。これらの溶媒は単独あるいは2種以上混合してもよい。
 前記特定樹脂の具体例としては、以下の例示化合物1~32が挙げられるが、本発明はこれらに限定されない。下記例示化合物中、各構造単位に併記される数値(主鎖繰り返し単位に併記される数値)は、当該構造単位の含有量〔質量%:(wt%)と記載〕を表す。側鎖の繰り返し部位に併記される数値は、当該繰り返し部位の繰り返し数を示す。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 特定樹脂の重量平均分子量(GPC法で測定されたポリスチレン換算値)は、5,000以上300,000以下であることが好ましく、7,000以上100,000以下であることがより好ましく、10,000以上50,000以下であることが特に好ましい。
 分散組成物(I)において、特定樹脂は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 分散組成物(I)の全固形分に対する特定樹脂の含有量は、分散性、分散安定性の観点から、10~50質量%の範囲が好ましく、11~40質量%の範囲がより好ましく、12~30質量%の範囲が更に好ましい。
-その他の分散樹脂-
 分散組成物(I)には、金属酸化物粒子の分散性を調整する等の目的で、上記特定樹脂以外の分散樹脂(以下、「その他の分散樹脂」と称する場合がある)が含有されていてもよい。
 本発明に用いることができるその他の分散樹脂としては、高分子分散剤〔例えば、ポリアミドアミンとその塩、ポリカルボン酸とその塩、高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、ナフタレンスルホン酸ホルマリン縮合物〕、及び、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンアルキルアミン、アルカノールアミン、顔料誘導体等を挙げることができる。
 その他の分散樹脂は、その構造から更に直鎖状高分子、末端変性型高分子、グラフト型高分子、ブロック型高分子に分類することができる。
 その他の分散樹脂の具体例としては、BYK Chemie社製「Disperbyk-101(ポリアミドアミン燐酸塩)、107(カルボン酸エステル)、110(酸基を含む共重合物)、130(ポリアミド)、161、162、163、164、165、166、170(高分子共重合物)」、「BYK-P104、P105(高分子量不飽和ポリカルボン酸)、EFKA社製「EFKA4047、4050、4010、4165(ポリウレタン系)、EFKA4330、4340(ブロック共重合体)、4400、4402(変性ポリアクリレート)、5010(ポリエステルアミド)、5765(高分子量ポリカルボン酸塩)、6220(脂肪酸ポリエステル)、6745(フタロシアニン誘導体)、6750(アゾ顔料誘導体)」、味の素ファィンテクノ社製「アジスパーPB821、PB822」、共栄社化学社製「フローレンTG-710(ウレタンオリゴマー)」、「ポリフローNo.50E、No.300(アクリル系共重合体)」、楠本化成社製「ディスパロンKS-860、873SN、874、#2150(脂肪族多価カルボン酸)、#7004(ポリエーテルエステル)、DA-703-50、DA-705、DA-725」、花王社製「デモールRN、N(ナフタレンスルホン酸ホルマリン重縮合物)、MS、C、SN-B(芳香族スルホン酸ホルマリン重縮合物)」、「ホモゲノールL-18(高分子ポリカルボン酸)」、「エマルゲン920、930、935、985(ポリオキシエチレンノニルフェニルエーテル)」、「アセタミン86(ステアリルアミンアセテート)」、ルーブリゾール社製「ソルスパース5000(フタロシアニン誘導体)、22000(アゾ顔料誘導体)、13240(ポリエステルアミン)、3000、17000、27000(末端部に機能部を有する高分子)、24000、28000、32000、38500(グラフト型高分子)」、日光ケミカル者製「ニッコールT106(ポリオキシエチレンソルビタンモノオレート)、MYS-IEX(ポリオキシエチレンモノステアレート)」等が挙げられる。
 これらのその他の樹脂は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 分散組成物(I)はその他の分散樹脂を含有してもしなくても良いが、含有する場合、分散組成物(I)の全固形分に対するその他の分散樹脂の含有量は、1~20質量%の範囲が好ましく、1~10質量%の範囲がより好ましい。
(C)溶媒
 分散組成物(I)は溶媒を含むが、該溶媒は種々の有機溶剤を用いて構成することができる。
 ここで使用できる有機溶剤としては、アセトン、メチルエチルケトン、シクロヘキサン、酢酸エチル、エチレンジクロライド、テトラヒドロフラン、トルエン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、アセチルアセトン、シクロヘキサノン、ジアセトンアルコール、エチレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテルアセテート、3-メトキシプロパノール、メトキシメトキシエタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3-メトキシプロピルアセテート、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、乳酸メチル、乳酸エチルなどがある。
 これらの有機溶剤は、単独あるいは混合して使用することができる。分散組成物(I)における固形分の濃度は、2~60質量%であることが好ましい。
 分散組成物(I)の製造方法としては、特に制限はなく通常用いられる分散組成物の製造方法を適用することができる。例えば、金属酸化物粒子、グラフト共重合体、及び溶媒を混合し、循環型分散装置(ビーズミル)等を用いて分散処理することで製造することができる。
<硬化性組成物>
 本実施形態の分散性組成物(I)は、重合性化合物(D)と、重合開始剤とを含み、必要に応じてその他の成分を含むことによって構成される高屈折率層形成用硬化性組成物であることが好ましい。
 このように、本実施形態において、「硬化性組成物」は、「分散組成物」の一形態であるため、上記したように、高屈折率層形成用硬化性組成物の全固形分に対する金属酸化物粒子の含有量は、50質量%~90質量%であり、より好ましくは52質量%~85質量%であり、最も好ましくは55質量%~80質量%である。
 前記分散組成物が、高屈折率層形成用硬化性組成物とされることにより、分散性及び分散安定性に優れるとともに、屈折率が非常に高く、かつ大サイズのウエハーに塗布された場合でも、中心部と周辺部での膜厚差が小さい膜(代表的には透明膜)を形成できる。
 また、本発明は、本実施形態の高屈折率層形成用硬化性組成物を用いて形成された透明膜にも関する。
 また、本実施形態の組成物(I)は、透明な組成物であることが好ましく、より具体的には、組成物により膜厚1.0μmの硬化膜を形成した時、該硬化膜の厚み方向に対する光透過率が、400~700nmの波長領域全域に渡って90%以上となるような組成物である。
 すなわち、本実施形態の透明膜は、膜厚1.0μmにおいて、膜の厚み方向に対する光透過率が、400~700nmの波長領域全域に渡って90%以上となるような膜を言う。
 このような光透過率の物性は、硬化性組成物が、本実施形態の分散組成物(I)、重合性化合物(D)及び重合開始剤(E)を含有する限りにおいて、どのような手段によって達成されても良いが、例えば、重合性化合物(D)や、更に添加され得るバインダーポリマーの種類及び含有量の調整することにより、好適に達成される。また、金属酸化物粒子(A)の粒子径や、グラフト共重合体(B)の種類及び添加量を調整することによっても、上記光透過率の物性を好適に達成できる。
 本実施形態の高屈折率層形成用硬化性組成物及び透明膜に関し、上記光透過率が、400~700nmの波長領域全域に渡って90%以上であることは、特にマイクロレンズが、その求められる特性を発現するために重要な要素である。
 上記光透過率は、400~700nmの波長領域全域に渡って、95%以上であることが好ましく、99%以上であることがより好ましく、100%であることが最も好ましい。
 以上に鑑み、本実施形態の高屈折率層形成用硬化性組成物は、実質的には、着色剤を含有しない(着色剤の含有量は、組成物の全固形分に対して、0質量%であることが好ましい)。
(D)重合性化合物
 (D)重合性化合物は、少なくとも1個のエチレン性不飽和二重結合、エポキシ基、オキセタニル基などの重合性基を有する付加重合性化合物であり、これらの重合性基を少なくとも1個、好ましくは2個以上有する化合物から選ばれる。このような化合物は当該技術分野において広く知られるものであり、本発明においてはこれらを特に限定無く用いることができる。
 これらは、例えばモノマー、プレポリマー、すなわち2量体、3量体などの多量体及びオリゴマー、又はそれらの混合物並びにそれらの共重合体などの化学的形態をもつ。モノマー及びその共重合体の例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)や、そのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と脂肪族多価アミン化合物とのアミド類が用いられる。また、ヒドロキシル基やアミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル類あるいは不飽和カルボン酸アミド類と単官能若しくは多官能イソシアネート類あるいはエポキシ類との付加反応物、及び単官能若しくは、多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基や、エポキシ基等の親電子性置換基を有する不飽和カルボン酸エステルあるいは不飽和カルボン酸アミド類と単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物;更にハロゲン基や、トシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステルあるいは不飽和カルボン酸アミド類と単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン、ビニルエーテル等に置き換えた化合物群を使用することも可能である。これらの具体的な化合物としては、特開2009-288705号公報の段落番号0095~段落番号0108に記載されている化合物を本発明においても好適に用いることができる。
 重合性化合物の第一の好ましい形態は、少なくとも1個のエチレン性不飽和二重結合を有するモノマー(重合性モノマー)または重合性基を有するオリゴマー(重合性オリゴマー)(以下、重合性モノマーと重合性オリゴマーを合わせて「重合性モノマー等」ということがある。)を含む態様である。
 また、前記重合性モノマー等は、少なくとも1個の付加重合可能なエチレン基を有する、常圧下で100℃以上の沸点を持つエチレン性不飽和基を持つ化合物も好ましい。その例としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、等の単官能のアクリレートやメタアクリレート;ポリエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイロキシエチル)イソシアヌレート、グリセリンやトリメチロールエタン等の多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後(メタ)アクリレート化したもの、特公昭48-41708号、特公昭50-6034号、特開昭51-37193号各公報に記載されているようなウレタン(メタ)アクリレート類、特開昭48-64183号、特公昭49-43191号、特公昭52-30490号各公報に記載されているポリエステルアクリレート類、エポキシポリマーと(メタ)アクリル酸との反応生成物であるエポキシアクリレート類等の多官能のアクリレートやメタアクリレート及びこれらの混合物を挙げることができる。
 多官能カルボン酸にグリシジル(メタ)アクリレート等の環状エーテル基とエチレン性不飽和基を有する化合物を反応させ得られる多官能(メタ)アクリレートなども挙げることができる。
 また、その他の好ましい重合性モノマー等として、特開2010-160418、特開2010-129825、特許4364216等に記載される、フルオレン環を有し、エチレン性重合性基を2官能以上有する化合物、カルドポリマーも使用することが可能である。
 また、常圧下で100℃以上の沸点を有し、少なくとも一つの付加重合可能なエチレン性不飽和基を持つ化合物としては、特開2008-292970号公報の段落番号[0254]~[0257]に記載の化合物も好適である。
 また、特開平10-62986号公報において一般式(1)及び(2)としてその具体例と共に記載の、前記多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後に(メタ)アクリレート化した化合物も、重合性モノマーとして用いることができる。
 本発明で用いる重合性モノマーは、さらに、下記一般式(MO-1)~(MO-6)で表される重合性モノマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000018
(式中、nは、それぞれ、0~14であり、mは、それぞれ、1~8である。一分子内に複数存在するR、TおよびZは、それぞれ、同一であっても、異なっていてもよい。Tがオキシアルキレン基の場合には、炭素原子側の末端がRに結合する。Rのうち少なくとも1つは、重合性基である。)
 nは0~5が好ましく、1~3がより好ましい。
 mは1~5が好ましく、1~3がより好ましい。
 Rは、
Figure JPOXMLDOC01-appb-C000019
が好ましく、
Figure JPOXMLDOC01-appb-C000020
がより好ましい。
 上記一般式(MO-1)~(MO-6)で表される、ラジカル重合性モノマーの具体例としては、特開2007-269779号公報の段落番号0248~段落番号0251に記載されている化合物を本発明においても好適に用いることができる。
 中でも、重合性モノマー等としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬株式会社製)ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬株式会社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬株式会社製)、及びこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介している構造や、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としては M-460;東亜合成製)が好ましい。これらのオリゴマータイプも使用できる。
 例えば、RP-1040(日本化薬株式会社製)などが挙げられる。
 重合性モノマー等としては、多官能モノマーであって、カルボキシル基、スルホン酸基、リン酸基等の酸基を有していても良い。従って、エチレン性化合物が、上記のように混合物である場合のように未反応のカルボキシル基を有するものであれば、これをそのまま利用することができるが、必要において、上述のエチレン性化合物のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸基を導入しても良い。この場合、使用される非芳香族カルボン酸無水物の具体例としては、無水テトラヒドロフタル酸、アルキル化無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、アルキル化無水ヘキサヒドロフタル酸、無水コハク酸、無水マレイン酸が挙げられる。
 本発明において、酸基を有するモノマーとしては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルであり、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸基を持たせた多官能モノマーが好ましく、特に好ましくは、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトール及び/又はジペンタエリスリトールであるものである。市販品としては、例えば、東亞合成株式会社製の多塩基酸変性アクリルオリゴマーとして、アロニックスシリーズのM-305、M-510、M-520などが挙げられる。
 酸基を有する多官能モノマーの好ましい酸価としては、0.1~40mg-KOH/gであり、特に好ましくは5~30mg-KOH/gである。異なる酸基の多官能モノマーを2種以上併用する場合、或いは酸基を有しない多官能モノマーを併用する場合、全体の多官能モノマーとしての酸価が上記範囲に入るように調製することが必須である。
 また、重合性モノマー等として、カプロラクトン変性構造を有する多官能性単量体を含有することが好ましい。
 カプロラクトン変性構造を有する多官能性単量体としては、その分子内にカプロラクトン変性構造を有する限り特に限定されるものではないが、例えば、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、トリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸およびε-カプロラクトンをエステル化することにより得られる、ε-カプロラクトン変性多官能(メタ)アクリレートを挙げることができる。なかでも下記式(1)で表されるカプロラクトン変性構造を有する多官能性単量体が好ましい。
Figure JPOXMLDOC01-appb-C000021
(式中、6個のRは全てが下記式(2)で表される基であるか、または6個のRのうち1~5個が下記式(2)で表される基であり、残余が下記式(3)で表される基である。)
Figure JPOXMLDOC01-appb-C000022
(式中、Rは水素原子またはメチル基を示し、mは1または2の数を示し、「*」は結合手であることを示す。)
Figure JPOXMLDOC01-appb-C000023
(式中、Rは水素原子またはメチル基を示し、「*」は結合手であることを示す。)
 このようなカプロラクトン変性構造を有する多官能性単量体は、例えば、日本化薬(株)からKAYARAD DPCAシリーズとして市販されており、DPCA-20(上記式(1)~(3)においてm=1、式(2)で表される基の数=2、Rが全て水素原子である化合物)、DPCA-30(同式、m=1、式(2)で表される基の数=3、Rが全て水素原子である化合物)、DPCA-60(同式、m=1、式(2)で表される基の数=6、Rが全て水素原子である化合物)、DPCA-120(同式においてm=2、式(2)で表される基の数=6、Rが全て水素原子である化合物)等を挙げることができる。
 本発明において、カプロラクトン変性構造を有する多官能性単量体は、単独で又は2種以上を混合して使用することができる。
 また、本発明における重合性モノマー等としては、下記一般式(i)又は(ii)で表される化合物の群から選択される少なくとも1種であることも好ましい。
Figure JPOXMLDOC01-appb-C000024
 前記一般式(i)及び(ii)中、Eは、各々独立に、-((CH)yCHO)-、又は-((CHCH(CH)O)-を表し、yは、各々独立に0~10の整数を表し、Xは、各々独立に、アクリロイル基、メタクリロイル基、水素原子、又はカルボキシル基を表す。
 前記一般式(i)中、アクリロイル基及びメタクリロイル基の合計は3個又は4個であり、mは各々独立に0~10の整数を表し、各mの合計は0~40の整数である。但し、各mの合計が0の場合、Xのうちいずれか1つはカルボキシル基である。
 前記一般式(ii)中、アクリロイル基及びメタクリロイル基の合計は5個又は6個であり、nは各々独立に0~10の整数を表し、各nの合計は0~60の整数である。但し、各nの合計が0の場合、Xのうちいずれか1つはカルボキシル基である。
 前記一般式(i)中、mは、0~6の整数が好ましく、0~4の整数がより好ましい。また、各mの合計は、2~40の整数が好ましく、2~16の整数がより好ましく、4~8の整数が特に好ましい。
 前記一般式(ii)中、nは、0~6の整数が好ましく、0~4の整数がより好ましい。また、各nの合計は、3~60の整数が好ましく、3~24の整数がより好ましく、6~12の整数が特に好ましい。
 また、一般式(i)又は一般式(ii)中の-((CHCHO)-又は-((CHCH(CH)O)-は、酸素原子側の末端がXに結合する形態が好ましい。
 前記一般式(i)又は(ii)で表される化合物は1種単独で用いてもよいし、2種以上併用してもよい。特に、一般式(ii)において、6個のX全てがアクリロイル基である形態が好ましい。
 前記一般式(i)又は(ii)で表される化合物は、従来公知の工程である、ペンタエリスリト-ル又はジペンタエリスリト-ルにエチレンオキシド又はプロピレンオキシドを開環付加反応により開環骨格を結合する工程と、開環骨格の末端水酸基に、例えば(メタ)アクリロイルクロライドを反応させて(メタ)アクリロイル基を導入する工程と、から合成することができる。各工程は良く知られた工程であり、当業者は容易に一般式(i)又は(ii)で表される化合物を合成することができる。
 前記一般式(i)又は(ii)で表される化合物の中でも、ペンタエリスリトール誘導体及び/又はジペンタエリスリトール誘導体がより好ましい。
 具体的には、下記式(a)~(f)で表される化合物(以下、「例示化合物(a)~(f)」ともいう。)が挙げられ、中でも、例示化合物(a)、(b)、(e)、(f)が好ましい。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 一般式(i)、(ii)で表される重合性モノマー等の市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、日本化薬株式会社製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330などが挙げられる。
 また、重合性モノマー等としては、特公昭48-41708号、特開昭51-37193号、特公平2-32293号、特公平2-16765号に記載されているようなウレタンアクリレート類や、特公昭58-49860号、特公昭56-17654号、特公昭62-39417号、特公昭62-39418号記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。更に、重合性モノマー等として、特開昭63-277653号、特開昭63-260909号、特開平1-105238号に記載される、分子内にアミノ構造やスルフィド構造を有する付加重合性モノマー類を用いることによって、非常に感光スピードに優れた硬化性組成物を得ることができる。
 重合性モノマー等の市販品としては、ウレタンオリゴマーUAS-10、UAB-140(山陽国策パルプ社製)、UA-7200」(新中村化学社製、DPHA-40H(日本化薬社製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(共栄社製)などが挙げられる。
 重合性モノマー等としては、同一分子内に2個以上のメルカプト(SH)基を有する多官能チオール化合物も好適である。特に、下記一般式(I)で表すものが好ましい。
Figure JPOXMLDOC01-appb-C000027
(式中、Rはアルキル基、Rは炭素以外の原子を含んでもよいn価の脂肪族基、RはHではないアルキル基、nは2~4を表す。)
 上記一般式(I)で表される多官能チオール化合物を具体的に例示するならば、下記の構造式を有する1,4-ビス(3-メルカプトブチリルオキシ)ブタン〔式(II)〕、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジアン-2,4,6(1H,3H5H)-トリオン〔式(III)〕、及びペンタエリスリトール テトラキス(3-メルカプトブチレート)〔式(IV)〕等が挙げられる。これらの多官能チオールは1種または複数組み合わせて使用することが可能である。
Figure JPOXMLDOC01-appb-C000028
 本発明では、重合性モノマー等として、分子内に2個以上のエポキシ基又はオキセタニル基を有する重合性モノマーまたはオリゴマーを用いることも好ましい。
<<C:エポキシ基またはオキセタニル基を有する化合物>>
 本発明の第三の好ましい態様は、重合性化合物として、エポキシ基またはオキセタニル基を有する化合物を用いてもよい。エポキシ基またはオキセタニル基を有する化合物としては、具体的には側鎖にエポキシ基を有するポリマー、および分子内に2個以上のエポキシ基を有する重合性モノマーまたはオリゴマーがあり、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂肪族エポキシ樹脂等を挙げることができる。
 これらの化合物は、市販品を用いてもよいし、ポリマーの側鎖へエポキシ基を導入することによっても得られる。
 市販品としては、例えば、ビスフェノールA型エポキシ樹脂としては、JER827、JER828、JER834、JER1001、JER1002、JER1003、JER1055、JER1007、JER1009、JER1010(以上、ジャパンエポキシレジン(株)製)、EPICLON860、EPICLON1050、EPICLON1051、EPICLON1055(以上、DIC(株)製)等であり、ビスフェノールF型エポキシ樹脂としては、JER806、JER807、JER4004、JER4005、JER4007、JER4010(以上、ジャパンエポキシレジン(株)製)、EPICLON830、EPICLON835(以上、DIC(株)製)、LCE-21、RE-602S(以上、日本化薬(株)製)等であり、フェノールノボラック型エポキシ樹脂としては、JER152、JER154、JER157S70、JER157S65、(以上、ジャパンエポキシレジン(株)製)、EPICLON N-740、EPICLON N-740、EPICLON N-770、EPICLON N-775(以上、DIC(株)製)等であり、クレゾールノボラック型エポキシ樹脂としては、EPICLON N-660、EPICLON N-665、EPICLON N-670、EPICLON N-673、EPICLON N-680、EPICLON N-690、EPICLON N-695(以上、DIC(株)製)、EOCN-1020(以上、日本化薬(株)製)等であり、脂肪族エポキシ樹脂としては、ADEKA RESIN EP-4080S、同EP-4085S、同EP-4088S(以上、(株)ADEKA製)セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、EHPE3150、EPOLEAD PB 3600、同PB 4700(以上、ダイセル化学工業(株)製)、デナコール EX-211L、EX-212L、EX-214L、EX-216L、EX-321L、EX-850L(以上、ナガセケムテックス(株)製)等である。その他にも、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)、JER1031S(ジャパンエポキシレジン(株)製)等が挙げられる。
 側鎖にオキセタニル基を有するポリマー、および上述の分子内に2個以上のオキセタニル基を有する重合性モノマーまたはオリゴマーの具体例としては、アロンオキセタンOXT-121、OXT-221、OX-SQ、PNOX(以上、東亞合成(株)製)を用いることができる。
 ポリマー側鎖へ導入して合成する場合、導入反応は、例えばトリエチルアミン、ベンジルメチルアミン等の3級アミン、ドデシルトリメチルアンモニウムクロライド、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、等の4級アンモニウム塩、ピリジン、トリフェニルフォスフィン等を触媒として有機溶剤中、反応温度50~150℃で数~数十時間反応させることにより行える。脂環式エポキシ不飽和化合物の導入量は得られるポリマーの酸価が5~200KOH・mg/gを満たす範囲になるように制御すると好ましい。また、分子量は重量平均で500~5000000、更には1000~500000の範囲が好ましい。
 エポキシ不飽和化合物としてはグリシジル(メタ)アクリレートやアリルグリシジルエーテル等のエポキシ基としてグリシジル基を有するものも使用可能であるが、好ましいものは脂環式エポキシ基を有する不飽和化合物である。このようなものとしては例えば以下の化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000029
 また、脂肪族多価アミン化合物と不飽和カルボン酸とのアミドのモノマーの具体例としては、メチレンビス-アクリルアミド、メチレンビス-メタクリルアミド、1,6-ヘキサメチレンビス-アクリルアミド、1,6-ヘキサメチレンビス-メタクリルアミド、ジエチレントリアミントリスアクリルアミド、キシリレンビスアクリルアミド、キシリレンビスメタクリルアミド等がある。
 その他の好ましいアミド系モノマーの例としては、特公昭54-21726号公報記載のシクロへキシレン構造を有すものを挙げることができる。
 また、イソシアネートと水酸基の付加反応を用いて製造されるウレタン系付加重合性化合物も好適であり、そのような具体例としては、例えば、特公昭48-41708号公報中に記載されている1分子に2個以上のイソシアネート基を有するポリイソシアネート化合物に、下記式(V)で表され、水酸基を有するビニルモノマーを付加させた1分子中に2個以上の重合性ビニル基を含有するビニルウレタン化合物等が挙げられる。
 下記式(V)中、R及びRはそれぞれ独立して、水素原子又はメチル基を示す。
 HC=CRCOOCHCH(R)OH   式(V)
 また、特開昭51-37193号公報、特公平2-32293号公報、特公平2-16765号公報に記載されているようなウレタンアクリレート類や、特公昭58-49860号公報、特公昭56-17654号公報、特公昭62-39417号公報、特公昭62-39418号公報記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。更に、特開昭63-277653号公報、特開昭63-260909号公報、特開平1-105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する重合性化合物類を用いることによっては、非常に感光スピードに優れた硬化性組成物を得ることができる。
 その他の例としては、特開昭48-64183号、特公昭49-43191号、特公昭52-30490号、各公報に記載されているようなポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸を反応させて得られたたエポキシアクリレート類等の多官能のアクリレートやメタクリレートを挙げることができる。また、特公昭46-43946号公報、特公平1-40337号公報、特公平1-40336号公報記載の特定の不飽和化合物や、特開平2-25493号公報記載のビニルホスホン酸系化合物等も挙げることができる。また、ある場合には、特開昭61-22048号公報記載のペルフルオロアルキル基を含有する構造が好適に使用される。更に、日本接着協会誌vol.20、No.7、300~308ページ(1984年)に記載されている光硬化性モノマー及びオリゴマーも使用することができる。
 これらの重合性化合物について、その構造、単独使用か併用か、添加量等の使用方法の詳細は、硬化性組成物の最終的な性能設計にあわせて任意に設定できる。例えば、次のような観点から選択される。
 感度の点では1分子あたりの不飽和基含量が多い構造が好ましく、多くの場合、2官能以上が好ましい。また、硬化膜の強度を高くするためには、3官能以上のものがよく、更に、異なる官能数・異なる重合性基(例えばアクリル酸エステル、メタクリル酸エステル、スチレン系化合物、ビニルエーテル系化合物、エポキシ系化合物、オキセタン系化合物)のものを併用することで、感度と強度の両方を調節する方法も有効である。
 また、硬化性組成物に含有される他の成分(例えば、重合開始剤、金属酸化物粒子等)との相溶性、分散性に対しても、重合性化合物の選択・使用法は重要な要因であり、例えば、低純度化合物の使用や、2種以上の他の成分の併用により相溶性を向上させうることがある。また、基板などの硬質表面との密着性を向上させる目的で特定の構造を選択することもあり得る。
 高屈折率層形成用硬化性組成物の全固形分に対して、(D)重合性化合物の含有量は、1質量%~50質量%の範囲であることが好ましく、3質量%~40質量%の範囲であることがより好ましく、5質量%~30質量%の範囲であることが更に好ましい。
 この範囲内であると、屈折率を低下させることなく、硬化性が良好で好ましい。
(E)重合開始剤
 (E)重合開始剤は、(D)重合性化合物の重合を開始、促進する化合物であり、45℃までは安定であるが高温加熱時の重合開始能が良好であることが好ましい。
 また、前記重合開始剤は、約300nm~800nm(330nm~500nmがより好ましい。)の範囲内に少なくとも約50の分子吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。
 また、重合開始剤は、単独で、又は2種以上を併用して用いることができる。
 (E)重合開始剤としては、例えば、有機ハロゲン化化合物、オキシジアゾール化合物、カルボニル化合物、ケタール化合物、ベンゾイン化合物、アクリジン化合物、有機過酸化化合物、アゾ化合物、クマリン化合物、アジド化合物、メタロセン化合物、ヘキサアリールビイミダゾール化合物、有機ホウ酸化合物、ジスルホン酸化合物、オキシムエステル化合物、オニウム塩化合物、アシルホスフィン(オキシド)化合物が挙げられる。
 有機ハロゲン化化合物の具体例としては、若林等、「Bull.Chem.Soc.Japan」42、2924(1969)、米国特許第3,905,815号明細書、特公昭46-4605号公報、特開昭48-36281号公報、特開昭55-32070号公報、特開昭60-239736号公報、特開昭61-169835号公報、特開昭61-169837号公報、特開昭62-58241号公報、特開昭62-212401号公報、特開昭63-70243号公報、特開昭63-298339号公報、M.P.Hutt“Jurnal of Heterocyclic Chemistry”1(No3),(1970)」等に記載の化合物が挙げられ、特に、トリハロメチル基が置換したオキサゾール化合物、s-トリアジン化合物が挙げられる。
 s-トリアジン化合物として、より好適には、すくなくとも一つのモノ、ジ、又はトリハロゲン置換メチル基がs-トリアジン環に結合したs-トリアジン誘導体、具体的には、例えば、2,4,6-トリス(モノクロロメチル)-s-トリアジン、2,4,6-トリス(ジクロロメチル)-s-トリアジン、2,4,6-トリス(トリクロロメチル)-s-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-s-トリアジン、2―n-プロピル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(α,α,β-トリクロロエチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3,4-エポキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-クロロフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔1-(p-メトキシフェニル)-2,4-ブタジエニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-スチリル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-i-プロピルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-ナトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-フェニルチオ-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ベンジルチオ-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4,6-トリス(ジブロモメチル)-s-トリアジン、2,4,6-トリス(トリブロモメチル)-s-トリアジン、2-メチル-4,6-ビス(トリブロモメチル)-s-トリアジン、2-メトキシ-4,6-ビス(トリブロモメチル)-s-トリアジン等が挙げられる。
 オキシジアゾール化合物の例としては、2-トリクロロメチル-5-スチリル-1,3,4-オキソジアゾール、2-トリクロロメチル-5-(シアノスチリル)-1,3,4-オキソジアゾール、2-トリクロロメチル-5-(ナフト-1-イル)-1,3,4-オキソジアゾール、2-トリクロロメチル-5-(4-スチリル)スチリル-1,3,4-オキソジアゾールなどが挙げられる。
 カルボニル化合物の例としては、ベンゾフェノン、ミヒラーケトン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2-クロロベンゾフェノン、4-ブロモベンゾフェノン、2-カルボキシベンゾフェノン等のベンゾフェノン誘導体、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、α-ヒドロキシ-2-メチルフェニルプロパノン、1-ヒドロキシ-1-メチルエチル-(p-イソプロピルフェニル)ケトン、1-ヒドロキシ-1-(p-ドデシルフェニル)ケトン、2-メチル-(4’-(メチルチオ)フェニル)-2-モルホリノ-1-プロパノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、1,1,1-トリクロロメチル-(p-ブチルフェニル)ケトン、2-ベンジル-2-ジメチルアミノ-4-モルホリノブチロフェノン等のアセトフェノン誘導体、チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン誘導体、p-ジメチルアミノ安息香酸エチル、p-ジエチルアミノ安息香酸エチル等の安息香酸エステル誘導体等を挙げることができる。
 ケタール化合物の例としては、ベンジルメチルケタール、ベンジル-β-メトキシエチルエチルアセタールなどを挙げることができる。
 ベンゾイン化合物の例としては、m-ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインメチルエーテル、メチルo-ベンゾイルベンゾエートなどを挙げることができる。
 アクリジン化合物の例としては、9-フェニルアクリジン、1,7-ビス(9-アクリジニル)ヘプタンなどを挙げることができる。
 有機過酸化化合物としては、例えば、トリメチルシクロヘキサノンパーオキサイド、アセチルアセトンパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、2,2-ビス(tert-ブチルパーオキシ)ブタン、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、tert-ブチルクミルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-オキサノイルパーオキサイド、過酸化こはく酸、過酸化ベンゾイル、2,4-ジクロロベンゾイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジメトキシイソプロピルパーオキシカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、tert-ブチルパーオキシアセテート、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシネオデカノエート、tert-ブチルパーオキシオクタノエート、tert-ブチルパーオキシラウレート、3,3’,4,4’-テトラ-(t-ブチルパーオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ-(t-ヘキシルパーオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ-(p-イソプロピルクミルパーオキシカルボニル)ベンゾフェノン、カルボニルジ(t-ブチルパーオキシ二水素二フタレート)、カルボニルジ(t-ヘキシルパーオキシ二水素二フタレート)等が挙げられる。
 アゾ化合物としては、例えば、特開平8-108621号公報に記載のアゾ化合物等を挙げることができる。
 クマリン化合物としては、例えば、3-メチル-5-アミノ-((s-トリアジン-2-イル)アミノ)-3-フェニルクマリン、3-クロロ-5-ジエチルアミノ-((s-トリアジン-2-イル)アミノ)-3-フェニルクマリン、3-ブチル-5-ジメチルアミノ-((s-トリアジン-2-イル)アミノ)-3-フェニルクマリン等を挙げることができる。
 アジド化合物の例としては、米国特許第2848328号明細書、米国特許第2852379号明細書並びに米国特許第2940853号明細書に記載の有機アジド化合物、2,6-ビス(4-アジドベンジリデン)-4-エチルシクロヘキサノン(BAC-E)等が挙げられる。
 メタロセン化合物としては、特開昭59-152396号公報、特開昭61-151197号公報、特開昭63-41484号公報、特開平2-249号公報、特開平2-4705号公報、特開平5-83588号公報記載の種々のチタノセン化合物、例えば、ジシクロペンタジエニル-Ti-ビス-フェニル、ジシクロペンタジエニル-Ti-ビス-2,6-ジフルオロフェニル-1-イル、ジシクロペンタジエニル-Ti-ビス-2,4-ジフルオロフェニル-1-イル、ジシクロペンタジエニル-Ti-ビス-2,4,6-トリフルオロフェニル-1-イル、ジシクロペンタジエニル-Ti-ビス-2,3,5,6-テトラフルオロフェニル-1-イル、ジシクロペンタジエニル-Ti-ビス-2,3,4,5,6-ペンタフルオロフェニル-1-イル、ジメチルシクロペンタジエニル-Ti-ビス-2,6-ジフルオロフェニル-1-イル、ジメチルシクロペンタジエニル-Ti-ビス-2,4,6-トリフルオロフェニル-1-イル、ジメチルシクロペンタジエニル-Ti-ビス-2,3,5,6-テトラフルオロフェニル-1-イル、ジ-メチルシクロペンタジエニル-Ti-ビス-2,3,4,5,6-ペンタフルオロフェニル-1-イル、特開平1-304453号公報、特開平1-152109号公報記載の鉄-アレーン錯体等が挙げられる。
 ビイミダゾール系化合物としては、例えば、ヘキサアリールビイミダゾール化合物(ロフィンダイマー系化合物)等が好ましい。
 ヘキサアリールビイミダゾール化合物としては、例えば、特公昭45-37377号公報、特公昭44-86516号公報記載のロフィンダイマー類、特公平6-29285号公報、米国特許第3,479,185号、同第4,311,783号、同第4,622,286号等の各明細書に記載の種々の化合物、具体的には、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-ブロモフェニル))4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o,p-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラ(m-メトキシフェニル)ビイジダゾール、2,2’-ビス(o,o’-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-ニトロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-メチルフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-トリフルオロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール等が挙げられる。
 有機ホウ酸塩化合物としては、例えば、特開昭62-143044号、特開昭62-150242号、特開平9-188685号、特開平9-188686号、特開平9-188710号、特開2000-131837、特開2002-107916、特許第2764769号、特開200116539号、等の各公報、及び、Kunz,Martin“Rad Tech’98.Proceeding April 19-22,1998,Chicago”等に記載される有機ホウ酸塩、特開平6-157623号公報、特開平6-175564号公報、特開平6-175561号公報に記載の有機ホウ素スルホニウム錯体あるいは有機ホウ素オキソスルホニウム錯体、特開平6-175554号公報、特開平6-175553号公報に記載の有機ホウ素ヨードニウム錯体、特開平9-188710号公報に記載の有機ホウ素ホスホニウム錯体、特開平6-348011号公報、特開平7-128785号公報、特開平7-140589号公報、特開平7-306527号公報、特開平7-292014号公報等の有機ホウ素遷移金属配位錯体等が具体例として挙げられる。
 ジスルホン化合物の例としては、特開昭61-166544号公報、特開2002-328465号公報等に記載される化合物等が挙げられる。
 重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、及び、アシルホスフィン化合物も好適に用いることができる。より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号公報に記載のアシルホスフィンオキシド系開始剤も用いることができる。
 ヒドロキシアセトフェノン系開始剤としては、IRGACURE-184、DAROCUR-1173、IRGACURE-500、IRGACURE-2959,IRGACURE-127(商品名:いずれもBASF社製)を用いることができる。アミノアセトフェノン系開始剤としては、市販品であるIRGACURE-907、IRGACURE-369、及び、IRGACURE-379(商品名:いずれもBASF社製)を用いることができる。アミノアセトフェノン系開始剤として、365nmまたは405nm等の長波光源に吸収波長がマッチングされた特開2009-191179公報に記載の化合物も用いることができる。また、アシルホスフィン系開始剤としては市販品であるIRGACURE-819やDAROCUR-TPO(商品名:いずれもBASF社製)を用いることができる。
 (E)重合開始剤としては、硬化性、経時安定性、後加熱時に着色が起こりにくいという観点から、オキシム化合物が好ましい。
 オキシム化合物としては、J.C.S.Perkin II(1979)1653-1660)、J.C.S.Perkin II(1979)156-162、Journal of Photopolymer Science and Technology(1995)202-232、Journal of Applied Polymer
 Science(2012年)pp.725-731、特開2000-66385号公報記載の化合物、特開2000-80068号公報、特表2004-534797号公報記載の化合物等が挙げられる。
 また上記記載以外のオキシムエステル化合物として、カルバゾールN位にオキシムが連結した特表2009-519904号公報に記載の化合物、ベンゾフェノン部位にヘテロ置換基が導入された米国特許7626957号公報に記載の化合物、色素部位にニトロ基が導入された特開2010-15025号公報および米国特許公開2009-292039号記載の化合物、国際公開特許2009-131189号公報に記載のケトオキシム系化合物、トリアジン骨格とオキシム骨格を同一分子内に含有する米国特許7556910号公報に記載の化合物、405nmに吸収極大を有しg線光源に対して良好な感度を有する特開2009-221114号公報記載の化合物、などを用いてもよい。
 さらに、特開2007-231000号公報、及び、特開2007-322744号公報に記載される環状オキシム化合物も好適に用いることができる。環状オキシム化合物の中でも、特に特開2010-32985号公報、特開2010-185072号公報に記載されるカルバゾール色素に縮環した環状オキシム化合物は、高い光吸収性を有し高感度化の観点から好ましい。
 また、オキシム化合物の特定部位に不飽和結合を有する特開2009-242469号公報に記載の化合物も、重合不活性ラジカルから活性ラジカルを再生することで高感度化を達成でき好適に使用することができる。
 他にも、特開2007-269779号公報に示される特定置換基を有するオキシム化合物や、特開2009-191061号公報に示されるチオアリール基を有するオキシム化合物が挙げられる。
 具体的には、下記式(OX)で表される化合物も好ましく、(OX-1)で表される化合物がより好ましい。なお、オキシムのN-O結合が(E)体のオキシム化合物であっても、(Z)体のオキシム化合物であっても、(E)体と(Z)体との混合物であってもよい。
Figure JPOXMLDOC01-appb-C000030
 式(OX)中、R及びBは後記式(OX-1)と同義である。Aは式(OX-1)の-A-SArまたはアルキル基であることが好ましい。アルキル基は、炭素数1~12が好ましく、1~6であることがより好ましく、1~3であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000031
 式(OX-1)中、R及びBは各々独立に一価の置換基を表し、Aは二価の有機基を表し、Arはアリール基を表す。
 前記式(OX-1)中、Rで表される一価の置換基としては、一価の非金属原子団であることが好ましい。
 前記一価の非金属原子団としては、アルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環基、アルキルチオカルボニル基、アリールチオカルボニル基等が挙げられる。また、これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、さらに他の置換基で置換されていてもよい。
 置換基としてはハロゲン原子、アリールオキシ基、アルコキシカルボニル基又はアリールオキシカルボニル基、アシルオキシ基、アシル基、アルキル基、アリール基等が挙げられる。
 前記式(OX-1)中、Bで表される一価の置換基としては、アリール基、複素環基、アリールカルボニル基、又は、複素環カルボニル基を表す。これらの基は、連結基を介してメチレン基に結合していてもよく、その連結基としては、単結合、カルボニル基、後記置換基Y、アルキル基、またはそれらの組合せが挙げられる。また、これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。また、前述した置換基は、さらに他の置換基で置換されていてもよい。
 なかでも、特に好ましくは以下に示す構造である。
 下記の構造中、Y、X、及び、nは、それぞれ、後述する式(OX-2)におけるY、X、及び、nと同義であり、好ましい例も同様である。
Figure JPOXMLDOC01-appb-C000032
 前記式(OX-1)中、Aで表される二価の有機基としては、炭素数1~12のアルキレン基、炭素数3~12のシクロアルキレン基、炭素数2~12のアルキニレン基が挙げられる。また、これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。また、前述した置換基は、さらに他の置換基で置換されていてもよい。
 中でも、式(OX-1)におけるAとしては、感度を高め、加熱経時による着色を抑制する点から、無置換のアルキレン基、アルキル基(例えば、メチル基、エチル基、tert-ブチル基、ドデシル基)で置換されたアルキレン基、アルケニル基(例えば、ビニル基、アリル基)で置換されたアルキレン基、アリール基(例えば、フェニル基、p-トリル基、キシリル基、クメニル基、ナフチル基、アンスリル基、フェナントリル基、スチリル基)で置換されたアルキレン基が好ましい。
 前記式(OX-1)で表されるオキシム化合物は、下記式(OX-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000033
(式(OX-2)中、R及びXは各々独立に一価の置換基を表し、A及びYは各々独立に二価の有機基を表し、Arはアリール基を表し、nは0~5の整数である。)
 式(OX-2)におけるR、A、及びArは、前記式(OX-1)におけるR、A、及びArと同義であり、好ましい例も同様である。
 前記式(OX-2)中、Xで表される一価の置換基としては、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アシルオキシ基、アシル基、アルコキシカルボニル基、アミノ基、複素環基、ハロゲン原子が挙げられる。また、これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。また、前述した置換基は、さらに他の置換基で置換されていてもよい。
 これらの中でも、式(OX-2)におけるXとしては、溶剤溶解性と長波長領域の吸収効率向上の点から、アルキル基が好ましい。
 また、式(2)におけるnは、0~5の整数を表し、0~2の整数が好ましい。
 前記式(OX-2)中、Yで表される二価の有機基としては、以下に示す構造Sub-1~Sub-11が挙げられる。なお、以下に示される基において、「*」は、前記式(OX-2)において、Yと隣接する炭素原子との結合位置を示す。
 中でも、高感度化の観点から、構造Sub-1およびSub-2が好ましい。
Figure JPOXMLDOC01-appb-C000034
 さらに前記式(OX-2)で表されるオキシム化合物は、下記式(OX-3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000035
 式(OX-3)中、R及びXは各々独立に一価の置換基を表し、Aは二価の有機基を表し、Arはアリール基を表し、nは0~5の整数である。)
 式(OX-3)におけるR、X、A、Ar、及び、nは、前記式(OX-2)におけるR、X、A、Ar、及び、nとそれぞれ同義であり、好ましい例も同様である。
 以下好適に用いられるオキシム化合物の具体例(PIox-1)~(PIox-13)を以下に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000036
 オキシム化合物は、熱により分解し重合を開始、促進する熱重合開始剤としての機能を有する。
 また、オキシム化合物は、350nm~500nmの波長領域に極大吸収波長を有することが好ましく、360nm~480nmの波長領域に吸収波長を有するものであることがより好ましく、365nm及び455nmの吸光度が高いものが特に好ましい。
 オキシム化合物は、365nm又は405nmにおけるモル吸光係数は、感度の観点から、1,000~300,000であることが好ましく、2,000~300,000であることがより好ましく、5,000~200,000であることが特に好ましい。化合物のモル吸光係数は、公知の方法を用いることができるが、具体的には、例えば、紫外可視分光光度計(Varian社製Carry-5 spectrophotometer)にて、酢酸エチル溶媒を用い、0.01g/Lの濃度で測定することが好ましい。
 また、オキシム化合物としては、IRGACURE OXE01、及び、IRGACURE OXE02などの市販品(いずれも、BASF社製)も好適に使用できる。
 オニウム塩化合物としては、例えば、S.I.Schlesinger,Photogr.Sci.Eng.,18,387(1974)、T.S.Bal et al,Polymer,21,423(1980)に記載のジアゾニウム塩、米国特許第4,069,055号明細書、特開平4-365049号等に記載のアンモニウム塩、米国特許第4,069,055号、同4,069,056号の各明細書に記載のホスホニウム塩、欧州特許第104,143号の各明細書、特開平2-150848号、特開平2-296514号の各公報に記載のヨードニウム塩などが挙げられる。
 ヨードニウム塩は、ジアリールヨードニウム塩であり、安定性の観点から、アルキル基、アルコキシ基、アリールオキシ基等の電子供与性基で2つ以上置換されていることが好ましい。
 スルホニウム塩としては、欧州特許第370,693号、同390,214号、同233,567号、同297,443号、同297,442号、米国特許第4,933,377号、同4,760,013号、同4,734,444号、同2,833,827号、独国特許第2,904,626号、同3,604,580号、同3,604,581号の各明細書に記載のスルホニウム塩が挙げられ、安定性及び感度の観点から、好ましくは電子求引性基で置換されているものである。電子求引性基としては、ハメット値が0より大きいことが好ましい。好ましい電子求引性基の例としては、ハロゲン原子、カルボン酸基などが挙げられる。
 また、その他の好ましいスルホニウム塩としては、トリアリールスルホニウム塩の1つの置換基がクマリン構造又はアントアキノン構造を有し、300nm以上に吸収を有するスルホニウム塩が挙げられる。別の好ましいスルホニウム塩としては、トリアリールスルホニウム塩が、アリロキシ基、アリールチオ基を置換基に有する300nm以上に吸収を有するスルホニウム塩が挙げられる。
 また、オニウム塩化合物の例としては、J.V.Crivello et al,Macromolecules,10(6),1307(1977)、J.V.Crivello et al,J.Polymer Sci.,Polymer Chem.Ed.,17,1047(1979)に記載のセレノニウム塩、C.S.Wen et al,Teh,Proc.Conf.Rad.Curing ASIA,p478 Tokyo,Oct(1988)に記載のアルソニウム塩等のオニウム塩等が挙げられる。
 アシルホスフィン(オキシド)化合物としては、BASF社製のイルガキュア819、ダロキュア4265、ダロキュアTPOなどが挙げられる。
 (E)重合開始剤としては、硬化性の観点から、トリハロメチルトリアジン系化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン系化合物、フォスフィンオキサイド系化合物、メタロセン化合物、オキシム系化合物、トリアリルイミダゾールダイマー、オニウム系化合物、ベンゾチアゾール系化合物、ベンゾフェノン系化合物、アセトフェノン系化合物及びその誘導体、シクロペンタジエン-ベンゼン-鉄錯体及びその塩、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物からなる群より選択される化合物が好ましい。
 更に好ましくは、トリハロメチルトリアジン系化合物、α-アミノケトン化合物、アシルホスフィン系化合物、フォスフィンオキサイド系化合物、オキシム系化合物、トリアリルイミダゾールダイマー、オニウム系化合物、ベンゾフェノン系化合物、アセトフェノン系化合物であり、トリハロメチルトリアジン系化合物、α-アミノケトン化合物、オキシム系化合物、トリアリルイミダゾールダイマー、ベンゾフェノン系化合物からなる群より選ばれる少なくとも一種の化合物が最も好ましい。
 特に、高屈折率層形成用硬化性組成物を、固体撮像素子のカラーフィルタ上に設けてマイクロレンズとする場合には、特に、後加熱時の着色が少なく、かつ硬化性が良好であるため、(E)重合開始剤としては、オキシム系化合物を用いるのが最も好ましい。
 高屈折率層形成用硬化性組成物に含有される(E)重合開始剤の含有量(2種以上の場合は総含有量)は、硬化性組成物の全固形分に対し0.1質量%以上10質量%以下であることが好ましく、より好ましくは0.3質量%以上8質量%以下、更に好ましくは0.5質量%以上5質量%以下である。この範囲で、良好な硬化性が得られる。
 高屈折率層形成用硬化性組成物は、更に、必要に応じて、以下に詳述する任意成分を更に含有してもよい。以下、硬化性組成物が含有しうる任意成分について説明する。
[重合禁止剤]
 硬化性組成物の製造中あるいは保存中において重合可能なエチレン性不飽和二重結合を有する化合物の不要な重合を阻止するために、重合禁止剤を添加することが好ましい。
 重合禁止剤としては、フェノール系水酸基含有化合物、N-オキシド化合物類、ピペリジン1-オキシルフリーラジカル化合物類、ピロリジン1-オキシルフリーラジカル化合物類、N-ニトロソフェニルヒドロキシルアミン類、ジアゾニウム化合物類、及びカチオン染料類、スルフィド基含有化合物類、ニトロ基含有化合物類、FeCl3、CuCl2等の遷移金属化合物類が挙げられる。
 更に好ましい態様としては、以下の通りである。
 フェノール系水酸基含有化合物が、ハイドロキノン、p-メトキシフェノール、ジ-t-ブチル-p-クレゾール、ピロガロール、t-ブチルカテコール、ベンゾキノン、4,4-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、フェノール樹脂類、及びクレゾール樹脂類からなる群より選択される化合物であるのが好ましい。
 N-オキシド化合物類が、5,5-ジメチル-1-ピロリンN-オキシド、4-メチルモルホリンN-オキシド、ピリジンN-オキシド、4-ニトロピリジンN-オキシド、3-ヒドロキシピリジンN-オキシド、ピコリン酸N-オキシド、ニコチン酸N-オキシド、及びイソニコチン酸N-オキシドからなる群より選択される化合物であるのが好ましい。
 ピペリジン1-オキシル フリーラジカル化合物類が、ピペリジン1-オキシルフリーラジカル、2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-オキソ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-アセトアミド-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-マレイミド-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、及び4-ホスホノキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカルからなる群より選択される化合物であるのが好ましい。
 ピロリジン1-オキシルフリーラジカル化合物類が3-カルボキシプロキシルフリーラジカル(3-カルボキシ-2,2,5,5-テトラメチルピロリジン1-オキシルフリーラジカル)であるのが好ましい。
 N-ニトロソフェニルヒドロキシルアミン類が、N-ニトロソフェニルヒドロキシルアミン第一セリウム塩及びN-ニトロソフェニルヒドロキシルアミンアルミニウム塩からなる化合物群から選択される化合物であるのが好ましい。
 ジアゾニウム化合物類が、4-ジアゾフェニルジメチルアミンの硫酸水素塩、4-ジアゾジフェニルアミンのテトラフルオロホウ酸塩、及び3-メトキシ-4-ジアゾジフェニルアミンのヘキサフルオロリン酸塩からなる群より選択される化合物であるのが好ましい。
 上記例示化合物のなかでも、好ましくは、ハイドロキノン、p-メトキシフェノール、ジ-t-ブチル-p-クレゾール、ピロガロール、t-ブチルカテコール、ベンゾキノン、4,4-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)のフェノール系水酸基含有化合物、ピペリジン1-オキシル フリーラジカル若しくは、2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-オキソ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-アセトアミド-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-マレイミド-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、及び4-ホスホノキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカルのピペリジン1-オキシルフリーラジカル化合物、若しくはN-ニトロソフェニルヒドロキシルアミン第一セリウム塩及びN-ニトロソフェニルヒドロキシルアミンアルミニウム塩のN-ニトロソフェニルヒドロキシルアミン化合物であり、より好ましくは、2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-オキソ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-アセトアミド-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-マレイミド-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、及び4-ホスホノキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカルのピペリジン1-オキシルフリーラジカル化合物、若しくはN-ニトロソフェニルヒドロキシルアミン第一セリウム塩及びN-ニトロソフェニルヒドロキシルアミンアルミニウム塩のN-ニトロソフェニルヒドロキシルアミン化合物であり、更に好ましくは、-ニトロソフェニルヒドロキシルアミン第一セリウム塩及びN-ニトロソフェニルヒドロキシルアミンアルミニウム塩のN-ニトロソフェニルヒドロキシルアミン化合物である。
 重合禁止剤の好ましい添加量としては、(E)重合開始剤100質量部に対して、0.01質量部以上10質量部以下であることが好ましく、更に0.01質量部以上8質量部以下であることが好ましく、0.05質量部以上5質量部以下の範囲にあることが最も好ましい。
 上記範囲とすることで、非画像部における硬化反応抑制及び画像部における硬化反応促進が充分おこなわれ、画像形成性及び感度が良好となる。
[バインダーポリマー]
 本実施形態の高屈折率層形成用硬化性組成物は、皮膜特性向上などの観点から、更にバインダーポリマーを含むことが好ましい。
 前記バインダーポリマーとしてはカルボキシル基を有するモノマーを単独あるいは共重合させた樹脂、酸無水物を有するモノマーを単独あるいは共重合させ酸無水物ユニットを加水分解若しくはハーフエステル化若しくはハーフアミド化させた樹脂、エポキシ樹脂を不飽和モノカルボン酸及び酸無水物で変性させたエポキシアクリレート等が挙げられる。カルボキシル基を有するモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、4-カルボキシルスチレン等があげられ、酸無水物を有するモノマーとしては、無水マレイン酸等が挙げられる。
 また、同様に側鎖にカルボン酸基を有する酸性セルロース誘導体がある。この他に水酸基を有する重合体に環状酸無水物を付加させたものなどが有用である。
 バインダーポリマーとして、共重合体を用いる場合、共重合させる化合物として、先にあげたモノマー以外の他のモノマーを用いることもできる。他のモノマーの例としては、下記(1)~(12)の化合物が挙げられる。
 (1)2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート等の脂肪族水酸基を有するアクリル酸エステル類、及びメタクリル酸エステル類。
 (2)アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸アミル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸オクチル、アクリル酸ベンジル、アクリル酸-2-クロロエチル、グリシジルアクリレート、3,4-エポキシシクロヘキシルメチルアクリレート、ビニルアクリレート、2-フェニルビニルアクリレート、1-プロペニルアクリレート、アリルアクリレート、2-アリロキシエチルアクリレート、プロパルギルアクリレート等のアルキルアクリレート。
 (3)メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸アミル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸-2-クロロエチル、グリシジルメタクリレート、3,4-エポキシシクロヘキシルメチルメタクリレート、ビニルメタクリレート、2-フェニルビニルメタクリレート、1-プロペニルメタクリレート、アリルメタクリレート、2-アリロキシエチルメタクリレート、プロパルギルメタクリレート等のアルキルメタクリレート。
 (4)アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-エチルアクリルアミド、N-ヘキシルメタクリルアミド、N-シクロヘキシルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-フェニルアクリルアミド、N-ニトロフェニルアクリルアミド、N-エチル-N-フェニルアクリルアミド、ビニルアクリルアミド、ビニルメタクリルアミド、N,N-ジアリルアクリルアミド、N,N-ジアリルメタクリルアミド、アリルアクリルアミド、アリルメタクリルアミド等のアクリルアミド若しくはメタクリルアミド。
 (5)エチルビニルエーテル、2-クロロエチルビニルエーテル、ヒドロキシエチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、オクチルビニルエーテル、フェニルビニルエーテル等のビニルエーテル類。
 (6)ビニルアセテート、ビニルクロロアセテート、ビニルブチレート、安息香酸ビニル等のビニルエステル類。
 (7)スチレン、α-メチルスチレン、メチルスチレン、クロロメチルスチレン、p-アセトキシスチレン等のスチレン類。
 (8)メチルビニルケトン、エチルビニルケトン、プロピルビニルケトン、フェニルビニルケトン等のビニルケトン類。
 (9)エチレン、プロピレン、イソブチレン、ブタジエン、イソプレン等のオレフィン類。
 (10)N-ビニルピロリドン、アクリロニトリル、メタクリロニトリル等。
 (11)マレイミド、N-アクリロイルアクリルアミド、N-アセチルメタクリルアミド、N-プロピオニルメタクリルアミド、N-(p-クロロベンゾイル)メタクリルアミド等の不飽和イミド。
 (12)α位にヘテロ原子が結合したメタクリル酸系モノマー。例えば、特開2002-309057号、特開2002-311569号等の各公報に記載の化合物を挙げる事ができる。
 前記バインダーポリマーには、下記一般式(ED)で表される化合物(以下「エーテルダイマー」と称することもある。)を必須とする単量体成分を重合してなる繰り返し単位を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000037
(式(ED)中、R及びRは、それぞれ独立して、水素原子又は置換基を有していてもよい炭素数1~25の炭化水素基を表す。)
 これにより、本実施形態の高屈折率層形成用硬化性組成物は、耐熱性とともに透明性にも極めて優れた硬化塗膜を形成しうる。前記エーテルダイマーを示す前記一般式(ED)中、R及びRで表される置換基を有していてもよい炭素数1~25の炭化水素基としては、特に制限はないが、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、t-アミル、ステアリル、ラウリル、2-エチルヘキシル等の直鎖状又は分岐状のアルキル基;フェニル等のアリール基;シクロヘキシル、t-ブチルシクロヘキシル、ジシクロペンタジエニル、トリシクロデカニル、イソボルニル、アダマンチル、2-メチル-2-アダマンチル等の脂環式基;1-メトキシエチル、1-エトキシエチル等のアルコキシで置換されたアルキル基;ベンジル等のアリール基で置換されたアルキル基;等が挙げられる。これらの中でも特に、メチル、エチル、シクロヘキシル、ベンジル等のような酸や熱で脱離しにくい1級又は2級炭素の置換基が耐熱性の点で好ましい。
 前記エーテルダイマーの具体例としては、例えば、ジメチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジエチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-プロピル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(イソプロピル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(n-ブチル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(イソブチル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(t-ブチル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(t-アミル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(ステアリル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(ラウリル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(2-エチルヘキシル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(1-メトキシエチル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(1-エトキシエチル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジベンジル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジフェニル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジシクロヘキシル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(t-ブチルシクロヘキシル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(ジシクロペンタジエニル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(トリシクロデカニル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(イソボルニル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジアダマンチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジ(2-メチル-2-アダマンチル)-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート等が挙げられる。これらの中でも特に、ジメチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジエチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジシクロヘキシル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジベンジル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエートが好ましい。これらエーテルダイマーは、1種のみ使用してもよいし、2種以上使用してもよい。また、前記一般式(ED)で示される化合物由来の構造体は、その他のモノマーを共重合させてもよい。
 エーテルダイマーと共に共重合しうるその他の単量体としては、例えば、酸基を導入するための単量体、ラジカル重合性二重結合を導入するための単量体、エポキシ基を導入するための単量体、及び、これら以外の他の共重合可能な単量体が挙げられる。このような単量体は、1種のみを用いてもよいし、2種以上を用いてもよい。
 酸基を導入するための単量体としては、例えば、(メタ)アクリル酸やイタコン酸等のカルボキシル基を有するモノマー、N-ヒドロキシフェニルマレイミド等のフェノール性水酸基を有するモノマー、無水マレイン酸、無水イタコン酸等のカルボン酸無水物基を有するモノマー等が挙げられる。これらの中でも特に、(メタ)アクリル酸が好ましい。
 また、酸基を導入するための単量体は、重合後に酸基を付与しうる単量体であってもよく、例えば、2-ヒドロキシエチル(メタ)アクリレート等の水酸基を有する単量体、グリシジル(メタ)アクリレート等のエポキシ基を有する単量体、2-イソシアナートエチル(メタ)アクリレート等のイソシアネート基を有する単量体等が挙げられる。ラジカル重合性二重結合を導入するための単量体を用いる場合、重合後に酸基を付与しうる単量体を用いる場合、重合後に酸基を付与する処理を行う必要がある。重合後に酸基を付与する処理は、単量体の種類によって異なり、例えば、次の処理が挙げられる。水酸基を有する単量体を用いる場合であれば、例えば、コハク酸無水物、テトラヒドロフタル酸無水物、マレイン酸無水物等の酸無水物を付加させる処理が挙げられる。エポキシ基を有する単量体を用いる場合であれば、例えば、N-メチルアミノ安息香酸、N-メチルアミノフェノール等のアミノ基と酸基を有する化合物を付加させか、又は、例えば(メタ)アクリル酸のような酸を付加させた後に生じた水酸基に、例えば、コハク酸無水物、テトラヒドロフタル酸無水物、マレイン酸無水物等の酸無水物を付加させる処理が挙げられる。イソシアネート基を有する単量体を用いる場合であれば、例えば、2-ヒドロキシ酪酸等の水酸基と酸基を有する化合物を付加させる処理が挙げられる。
 一般式(ED)で表される化合物を含む単量体成分を重合してなる重合体が、酸基を導入するための単量体を含む場合、その含有割合は、特に制限されないが、全単量体成分中、5~70質量%が好ましく、より好ましくは10~60質量%である。
 ラジカル重合性二重結合を導入するための単量体としては、例えば、例えば、(メタ)アクリル酸、イタコン酸等のカルボキシル基を有するモノマー;無水マレイン酸、無水イタコン酸等のカルボン酸無水物基を有するモノマー;グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、o-(またはm-、またはp-)ビニルベンジルグリシジルエーテル等のエポキシ基を有するモノマー;等が挙げられる。ラジカル重合性二重結合を導入するための単量体を用いる場合、重合後にラジカル重合性二重結合を付与するための処理を行う必要がある。重合後にラジカル重合性二重結合を付与するための処理は、用いるラジカル重合性二重結合を付与しうるモノマーの種類によって異なり、例えば、次の処理が挙げられる。(メタ)アクリル酸やイタコン酸等のカルボキシル基を有するモノマーを用いる場合であれば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、o-(またはm-、またはp-)ビニルベンジルグリシジルエーテル等のエポキシ基とラジカル重合性二重結合とを有する化合物を付加させる処理が挙げられる。無水マレイン酸や無水イタコン酸等のカルボン酸無水物基を有するモノマーを用いる場合であれば、2-ヒドロキシエチル(メタ)アクリレート等の水酸基とラジカル重合性二重結合とを有する化合物を付加させる処理が挙げられる。グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、o-(またはm-、またはp-)ビニルベンジルグリシジルエーテル等のエポキシ基を有するモノマーを用いる場合であれば、(メタ)アクリル酸等の酸基とラジカル重合性二重結合とを有する化合物を付加させる処理が挙げられる。
 一般式(ED)で表される化合物を含む単量体成分を重合してなる重合体が、ラジカル重合性二重結合を導入するための単量体を含む場合、その含有割合は、特に制限されないが、全単量体成分中、5~70質量量%が好ましく、より好ましくは10~60質量%である。
 エポキシ基を導入するための単量体としては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、o-(またはm-、またはp-)ビニルベンジルグリシジルエーテル等が挙げられる。
 一般式(ED)で表される化合物を含む単量体成分を重合してなる重合体が、エポキシ基を導入するための単量体を含む場合、その含有割合は、特に制限されないが、全単量体成分中、5~70質量%が好ましく、より好ましくは10~60質量%である。
 他の共重合可能な単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸メチル2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-ヒドロキシエチル等の(メタ)アクリル酸エステル類;スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル化合物;N-フェニルマレイミド、N-シクロヘキシルマレイミド等のN-置換マレイミド類;ブタジエン、イソプレン等のブタジエンまたは置換ブタジエン化合物;エチレン、プロピレン、塩化ビニル、アクリロニトリル等のエチレンまたは置換エチレン化合物;酢酸ビニル等のビニルエステル類;等が挙げられる。これらの中でも、(メタ)アクリル酸メチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、スチレンが、透明性が良好で、耐熱性を損ないにくい点で好ましい。
 一般式(ED)で表される化合物を含む単量体成分を重合してなる重合体が、他の共重合可能な単量体を含む場合、その含有割合は特に制限されないが、95質量%以下が好ましく、85質量%以下であるのがより好ましい。
 一般式(ED)で表される化合物を含む単量体成分を重合してなる重合体の重量平均分子量は、特に制限されないが、着色感放射線性組成物の粘度、及び該組成物により形成される塗膜の耐熱性の観点から、好ましくは2000~200000、より好ましくは5000~100000であり、更に好ましくは5000~20000である。
 また、一般式(ED)で表される化合物を含む単量体成分を重合してなる重合体が酸基を有する場合には、酸価が、好ましくは30~500mgKOH/g、より好ましくは50~400mgKOH/gであるのがよい。
 一般式(ED)で表される化合物を含む単量体成分を重合してなる重合体は、少なくとも、エーテルダイマーを必須とする前記の単量体を重合することにより、容易に得ることができる。このとき、重合と同時にエーテルダイマーの環化反応が進行してテトラヒドロピラン環構造が形成される。
 一般式(ED)で表される化合物を含む単量体成分を重合してなる重合体の合成に適用される重合方法としては、特に制限はなく、従来公知の各種重合方法を採用することができるが、特に、溶液重合法によることが好ましい。詳細には、例えば、特開204-300204号公報に記載されるポリマー(a)の合成方法に準じて、一般式(ED)で表される化合物を含む単量体成分を重合してなる重合体を合成することができる
 以下、一般式(ED)で表される化合物を含む単量体成分を重合してなる重合体の例示化合物を示すが、本発明はこれらに限定されるものではない。下記に示す例示化合物の組成比はモル%である。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 本発明では特に、ジメチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート(以下「DM」と称する)、ベンジルメタクリレート(以下「BzMA」と称する)、メタクリル酸メチル(以下「MMA」と称する)、メタクリル酸(以下「MAA」と称する)、グリシジルメタクリレート(以下「GMA」と称する)を共重合させた重合体が好ましい。特に、DM:BzMA:MMA:MAA:GMAのモル比が5~15:40~50:5~15:5~15:20~30であることが好ましい。本発明で用いる共重合体を構成する成分の95質量%以上がこれらの成分であることが好ましい。また、かかる重合体の重量平均分子量は9000~20000であることが好ましい。
 本発明で用いる重合体は、重量平均分子量(GPC法で測定されたポリスチレン換算値)が1000~2×10であることが好ましく、2000~1×10であることがより好ましく、5000~5×10であることがさらに好ましい。
 これらの中で、側鎖にアリル基やビニルエステル基とカルボキシル基を有する(メタ)アクリル樹脂及び特開2000-187322号公報、特開2002-62698号公報に記載されている側鎖に二重結合を有するアルカリ可溶性樹脂や、特開2001-242612号公報に記載されている側鎖にアミド基を有するアルカリ可溶性樹脂が膜強度、感度、現像性のバランスに優れており、好適である。上述のポリマーの例としては、ダイヤナ-ルNRシリーズ(三菱レイヨン株式会社製)、Photomer6173(COOH含有 polyurethane acrylic oligomer. Diamond Shamrock Co.Ltd.,製)、ビスコートR-264、KSレジスト106(いずれも大阪有機化学工業株式会社製)、サイクロマーP ACA230AA等のサイクロマーPシリーズ、プラクセル CF200シリーズ(いずれもダイセル化学工業株式会社製)、Ebecryl3800(ダイセルユーシービー株式会社製)などが挙げられる。
 また、特公平7-12004号公報、特公平7-120041号公報、特公平7-120042号公報、特公平8-12424号公報、特開昭63-287944号公報、特開昭63-287947号公報、特開平1-271741号公報等に記載される酸基を含有するウレタン系バインダーポリマーや、特開2002-107918号公報に記載される酸基と二重結合を側鎖に有するウレタン系バインダーポリマーは、非常に、強度に優れるので、膜強度の点で有利である。
 また、欧州特許第993966号、欧州特許第1204000号、特開2001-318463号公報等に記載の酸基を有するアセタール変性ポリビニルアルコール系バインダーポリマーも、膜強度に優れており、好適である。
 更にこの他に水溶性線状有機ポリマーとして、ポリビニルピロリドンやポリエチレンオキサイド等が有用である。また硬化皮膜の強度を上げるためにアルコール可溶性ナイロンや2,2-ビス-(4-ヒドロキシフェニル)-プロパンとエピクロロヒドリンのポリエーテル等も有用である。
 本実施形態の硬化性組成物で使用しうるバインダーポリマーの重量平均分子量(GPC法で測定されたポリスチレン換算値)としては、好ましくは5,000以上であり、更に好ましくは1万以上30万以下の範囲であり、数平均分子量については好ましくは1,000以上であり、更に好ましくは2,000以上25万以下の範囲である。多分散度(重量平均分子量/数平均分子量)は1以上が好ましく、更に好ましくは1.1以上10以下の範囲である。
 これらのバインダーポリマーは、ランダムポリマー、ブロックポリマー、グラフトポリマー等いずれでもよい。
 バインダーポリマーは、従来公知の方法により合成できる。合成する際に用いられる溶媒としては、例えば、テトラヒドロフラン、エチレンジクロリド、シクロヘキサノン、メチルエチルケトン、アセトン、メタノール、エタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、2-メトキシエチルアセテート、ジエチレングリコールジメチルエーテル、1-メトキシ-2-プロパノール、1-メトキシ-2-プロピルアセテート、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、トルエン、酢酸エチル、乳酸メチル、乳酸エチル、ジメチルスルホキシド、水等が挙げられる。これらの溶媒は単独で又は2種以上混合して用いられる。
 本実施形態の高屈折率層形成用硬化性組成物において用いうるバインダーポリマーを合成する際に用いられるラジカル重合開始剤としては、アゾ系開始剤、過酸化物開始剤等公知の化合物が挙げられる。
 本実施形態の高屈折率層形成用硬化性組成物において、バインダーポリマーは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 本実施形態の高屈折率層形成用硬化性組成物は、バインダーポリマーを含有してもしなくても良いが、含有する場合、硬化性組成物の全固形分に対して、バインダーポリマーの含有量は、1質量%以上40質量%以下であることが好ましく、3質量%以上30質量%以下であることがより好ましく、4質量%以上20質量%以下であることが更に好ましい。
[界面活性剤]
 本実施形態の硬化性組成物は、塗布性をより向上させる観点から、各種の界面活性剤を添加してもよい。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。具体的には、前掲の「光透過性硬化膜形成用樹脂組成物」における界面活性剤と同様なものを使用できる。
 特に、本実施形態の高屈折率層形成用硬化性組成物は、フッ素系界面活性剤を含有することで、塗布液として調製したときの液特性(特に、流動性)がより向上することから、塗布厚の均一性や省液性をより改善することができる。
 即ち、フッ素系界面活性剤を含有する感光性透明組成物を適用した塗布液を用いて膜形成する場合においては、被塗布面と塗布液との界面張力を低下させることにより、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。このため、少量の液量で数μm程度の薄膜を形成した場合であっても、厚みムラの小さい均一厚の膜形成をより好適に行える点で有効である。
 フッ素系界面活性剤中のフッ素含有率は、3質量%~40質量%が好適であり、より好ましくは5質量%~30質量%であり、特に好ましくは7質量%~25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的であり、硬化性組成物中における溶解性も良好である。
 界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。
 硬化性組成物は、界面活性剤を含有してもしなくても良いが、含有する場合、界面活性剤の添加量は、硬化性組成物の全質量に対して、0.001質量%~2.0質量%が好ましく、より好ましくは0.005質量%~1.0質量%である。
[その他の添加剤]
 更に、高屈折率層形成用硬化性組成物に対しては、硬化皮膜の物性を改良するために可塑剤や感脂化剤等の公知の添加剤を加えてもよい。
 可塑剤としては、例えば、ジオクチルフタレート、ジドデシルフタレート、トリエチレングリコールジカプリレート、ジメチルグリコールフタレート、トリクレジルホスフェート、ジオクチルアジペート、ジブチルセバケート、トリアセチルグリセリン等があり、バインダーポリマーを使用した場合、重合性化合物とバインダーポリマーとの合計質量に対し10質量%以下添加することができる。
[紫外線吸収剤]
 本実施形態の高屈折率層形成用硬化性組成物は、紫外線吸収剤を含有してもよい。紫外線吸収剤としては、共役ジエン系化合物である下記一般式(I)で表される化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000040
 前記一般式(I)において、R及びRは、各々独立に、水素原子、炭素原子数1~20のアルキル基、又は炭素原子数6~20のアリール基を表し、RとRとは互いに同一でも異なっていてもよいが、同時に水素原子を表すことはない。
 前記一般式(I)において、R及びRは、電子求引基を表す。ここで電子求引基は、ハメットの置換基定数σp値(以下、単に「σp値」という。)が、0.20以上1.0以下の電子求引性基である。好ましくは、σp値が0.30以上0.8以下の電子求引性基である。
 ハメット則は、ベンゼン誘導体の反応又は平衡に及ぼす置換基の影響を定量的に論ずるために、1935年にL. P. Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則により求められた置換基定数には、σp値とσm値とがあり、これらの値は多くの一般的な成書に記載があるが、例えば、J.A. Dean編「Lange’s Handbook of Chemistry」第12版、1979年(Mc Graw-Hill)や「化学の領域増刊」、122号、96~103頁、1979年(南江堂)、Chemical Reviews, 91巻、165頁~195頁、1991年に詳しい。本発明では、これらの成書に記載の文献既知の値がある置換基にのみ限定されるという意味ではなく、その値が文献未知であってもハメット則に基づいて測定した場合にその範囲内に含まれる限り包含されることは勿論である。
 前記σp値が、0.20以上1.0以下の電子求引性基の具体例としては、アシル基、アシルオキシ基、カルバモイル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、シアノ基、ニトロ基、ジアルキルホスホノ基、ジアリールホスホノ基、ジアリールホスフィニル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホニルオキシ基、アシルチオ基、スルファモイ基、チオシアネート基、チオカルボニル基、少なくとも2つ以上のハロゲン原子で置換されたアルキル基、少なくとも2つ以上のハロゲン原子で置換されたアルコキシ基、少なくとも2つ以上のハロゲン原子で置換されたアリールオキシ基、少なくとも2つ以上のハロゲン原子で置換されたアルキルアミノ基、少なくとも2つ以上のハロゲン原子で置換されたアルキルチオ基、σp値0.20以上の他の電子求引性基で置換されたアリール基、複素環基、塩素原子、臭素原子、アゾ基、又はセレノシアネート基が挙げられる。これらの置換基のうち、更に置換基を有することが可能な基は、先に挙げたような置換基を更に有してもよい。
 以下、前記一般式(I)で表される化合物の好ましい具体例〔例示化合物(1)~(14)〕を示す。但し、本発明においては、これらに制限されるものではない。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 一般式(I)で表される紫外線吸収剤は、特公昭44-29620号、特開53-128333号、特開昭61-169831号、特開昭63-53543、特開昭63-53544号、特開昭63-56651号等の各公報、WO2009/123109号パンフレットに記載されている方法により合成することができる。具体的にはWO2009/123109号パンフレット段落番号0040に記載の方法で上記例示化合物(1)を合成することができる。
 本実施形態の硬化性組成物は、紫外線吸収剤を含有してもしなくても良いが、含有する場合、紫外線吸収剤の含有量は、組成物の全固形分に対して、0.1質量%~10質量%が好ましく、0.1質量%~5質量%がより好ましく、0.1質量%~3質量%が特に好ましい。
 また、下層(高屈折率層)は以下説明する分散組成物IIであってもよい。
<分散組成物II>
 分散組成物IIとは、一次粒子径が1nm~100nmである金属酸化物粒子(A)と、特定分散樹脂(B)と、溶媒(C)とを含有する分散組成物を指す。ここで、特定分散樹脂(B)以外の他の成分は前記分散組成物Iと同様である。
・特定分散樹脂B
 高屈折率粒子分散用分散剤として、主鎖及び側鎖の少なくとも一方に窒素原子を含むオリゴイミン系分散剤を用いることが好ましい。オリゴイミン系分散剤としては、pKa14以下の官能基を有する部分構造Xを有する繰り返し単位と、原子数40~10,000の側鎖Yを含む側鎖とを有し、かつ主鎖及び側鎖の少なくとも一方に塩基性窒素原子を有する分散樹脂(以下、適宜「特定分散樹脂(B)」と称する。)が好ましい。ここで、塩基性窒素原子とは、塩基性を呈する窒素原子であれば特に制限はない。
 特定樹脂(B)としては、前記部分構造X等と対をなす部分構造Wを有していてもよく、部分構造WはpK14以下の窒素原子を有する構造部であることが好ましく、pK10以下の窒素原子を有する構造を含有することがより好ましい。塩基強度pKとは、水温25℃でのpKをいい、塩基の強さを定量的に表すための指標のひとつであり、塩基性度定数と同義である。塩基強度pKと、後述の酸強度pKとは、pK=14-pKの関係にある。なお、部分構造Xと部分構造Wとが対になって塩構造を形成しているときには、それぞれが解離した構造を想定し、そこにプロトン(H)ないし水酸化物イオン(OH)がイオン結合した化合物として、そのpKaおよびpKbを評価する。部分構造Xについては、さらにその詳細を後記にて説明する。
 部分構造Xについてその好ましい範囲の詳細は後述する部分構造Xと同義である。また、前記側鎖Yについても、同様に、その好ましい範囲の詳細は後述する側鎖Yと同義である。上記Wは、側鎖Yの連結部が解離しイオン結合性の部位となった構造であることが好ましい。
 特定分散樹脂(B)の一例としては、下記式[B]で表される樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000044
 上記式中、x、y、及びzはそれぞれ繰り返し単位の重合モル比を示し、xは5~50、yは5~60、zは10~90であることが好ましい。lはポリエステル鎖の連結数を示し、原子数40~10,000の側鎖を形成し得る整数であり、lは、5~100,000が好ましく、20~20,000がより好ましく、40~2,000であることがさらに好ましい。式中のxで共重合比が規定される繰り返し単位が部分構造Xであり、式中のzで共重合比が規定される繰り返し単位が部分構造Yである。
 特定分散樹脂(B)は、(i)ポリ(低級アルキレンイミン)系繰り返し単位、ポリアリルアミン系繰り返し単位、ポリジアリルアミン系繰り返し単位、メタキシレンジアミン-エピクロルヒドリン重縮合物系繰り返し単位、及びポリビニルアミン系繰り返し単位から選択される少なくとも1種の、塩基性窒素原子を有する繰り返し単位であって、前記塩基性窒素原子に結合し、かつpKa14以下の官能基を有する部分構造Xを有する繰り返し単位(i)と、原子数40~10,000の側鎖Yを含む側鎖(ii)と、を有する分散樹脂(以下、適宜、「特定分散樹脂(B1)」と称する)であることが特に好ましい。
 特定分散樹脂(B1)は、前記繰り返し単位(i)を有する。これにより、粒子表面へ分散樹脂の吸着力が向上し、且つ粒子間の相互作用が低減できる。ポリ(低級アルキレンイミン)は鎖状であっても網目状であってもよい。ここで、低級アルキレンイミンとは、炭素数1~5のアルキレン鎖を含むアルキレンイミンを意味する。前記繰り返し単位(i)は、特定分散樹脂における主鎖部を形成することが好ましい。該主鎖部の数平均分子量、すなわち、特定分散樹脂(B1)から前記側鎖Y部分を含む側鎖を除いた部分の数平均分子量は、100~10,000が好ましく、200~5,000がさらに好ましく、300~2,000が最も好ましい。主鎖部の数平均分子量は、GPC法によるポリスチレン換算値により測定することができる。
 特定分散樹脂(B1)としては、下記式(I-1)で表される繰り返し単位及び式(I-2)で表される繰り返し単位、又は、式(I-1)で表される繰り返し単位及び式(I-2a)で表される繰り返し単位を含む分散樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000045
 R及びRは、各々独立に、水素原子、ハロゲン原子又はアルキル基(炭素数1~6が好ましい)を表す。aは、各々独立に、1~5の整数を表す。*は繰り返し単位間の連結部を表す。
 R及びRはRと同義の基である。
 Lは単結合、アルキレン基(炭素数1~6が好ましい)、アルケニレン基(炭素数2~6が好ましい)、アリーレン基(炭素数6~24が好ましい)、ヘテロアリーレン基(炭素数1~6が好ましい)、イミノ基(炭素数0~6が好ましい)、エーテル基、チオエーテル基、カルボニル基、またはこれらの組合せに係る連結基である。なかでも、単結合もしくは-CR-NR-(イミノ基がXもしくはYの方になる)であることが好ましい。ここで、Rは各々独立に、水素原子、ハロゲン原子、アルキル基(炭素数1~6が好ましい)を表す。Rは水素原子または炭素数1~6のアルキル基である。
 LはCRCRとNとともに環構造形成する構造部位であり、CRCRの炭素原子と合わせて炭素数3~7の非芳香族複素環を形成する構造部位であることが好ましい。さらに好ましくはCRCRの炭素原子及びN(窒素原子)を合わせて5~7員の非芳香族複素環を形成する構造部位であり、より好ましくは5員の非芳香族複素環を形成する構造部位であり、ピロリジンを形成する構造部位であることが特に好ましい。ただし、当該構造部位はさらにアルキル基等の置換基を有していてもよい。
 XはpKa14以下の官能基を有する基を表す。
 Yは原子数40~10,000の側鎖を表す。
 特定分散樹脂(B1)は、さらに式(I-3)、式(I-4)、または式(I-5)で表される繰り返し単位を共重合成分として有することが好ましい。特定分散樹脂(B1)が、このような繰り返し単位を含むことで、分散性能を更に向上させることができる。
Figure JPOXMLDOC01-appb-C000046
 R、R、R、R、L、La、及びaは式(I-1)、(I-2)、(I-2a)における規定と同義である。
 Yaはアニオン基を有する原子数40~10,000の側鎖を表す。式(I-3)で表される繰り返し単位は、主鎖部に一級又は二級アミノ基を有する樹脂に、アミンと反応して塩を形成する基を有するオリゴマー又はポリマーを添加して反応させることで形成することが可能である。Yaは後記式(III-2)であることが好ましい。
 式(I-1)~式(I-5)において、R及びRは特に水素原子であることが好ましい。aは2であることが原料入手の観点から好ましい。
 特定分散樹脂(B1)は、さらに一級又は三級のアミノ基を含有する低級アルキレンイミンを繰り返し単位として含んでいてもよい。なお、そのような低級アルキレンイミン繰り返し単位における窒素原子には、さらに、前記X、Y又はYaで示される基が結合していてもよい。このような主鎖構造に、Xで示される基が結合した繰り返し単位とYが結合した繰り返し単位の双方を含む樹脂もまた、特定分散樹脂(B1)に包含される。
 式(I-1)で表される繰り返し単位は、保存安定性・現像性の観点から、特定分散樹脂(B1)に含まれる全繰り返し単位中、1~80モル%含有することが好ましく、3~50モル%含有することが最も好ましい。式(I-2)で表される繰り返し単位は、保存安定性の観点から、特定分散樹脂(B1)に含まれる全繰り返し単位中、10~90モル%含有されることが好ましく、30~70モル%含有されることが最も好ましい。分散安定性及び親疎水性のバランスの観点からは、繰り返し単位(I-1)及び繰り返し単位(I-2)の含有比〔(I-1):(I-2)〕は、モル比で10:1~1:100の範囲であることが好ましく、1:1~1:10の範囲であることがより好ましい。所望により併用される式(I-3)で表される繰り返し単位は、特定分散樹脂(B1)に含まれる全繰り返し単位中、効果の観点からは、0.5~20モル%含有されることが好ましく、1~10モル%含有されることが最も好ましい。なお、ポリマー鎖Yaがイオン的に結合していることは、赤外分光法や塩基滴定により確認できる。
 なお、上記式(I-2)の共重合比に関する説明は、式(I-2a)、式(I-4)、式(I-5)で表される繰り返し単位についても同義であり、両者を含むときにはその総量を意味する。
・部分構造X
 上記各式中の部分構造Xは、水温25℃でのpKaが14以下の官能基を有する。ここでいう「pKa」とは、化学便覧(II)(改訂4版、1993年、日本化学会編、丸善株式会社)に記載されている定義のものである。「pKa14以下の官能基」は、物性がこの条件を満たすものであれば、その構造などは特に限定されず、公知の官能基でpKaが上記範囲を満たすものが挙げられるが、特にpKaが12以下である官能基が好ましく、pKaが11以下である官能基が特に好ましい。下限値は特にないが、-5以上であることが実際的である。部分構造Xとして具体的には、例えば、カルボン酸基(pKa:3~5程度)、スルホン酸(pKa:-3~-2程度)、-COCHCO-(pKa:8~10程度)、-COCHCN(pKa:8~11程度)、-CONHCO-、フェノール性水酸基、-RCHOH又は-(RCHOH(Rはペルフルオロアルキレン基もしくはペルフルオロアルキル基を表す。pKa:9~11程度)、スルホンアミド基(pKa:9~11程度)等が挙げられ、特にカルボン酸基(pKa:3~5程度)、スルホン酸基(pKa:-3~-2程度)、-COCHCO-(pKa:8~10程度)が好ましい。
 部分構造Xが有する官能基のpKaが14以下であることにより、高屈折粒子との相互作用を達成することができる。部分構造Xは、前記塩基性窒素原子を有する繰り返し単位における塩基性窒素原子に直接結合することが好ましい。部分構造Xは、共有結合のみならず、イオン結合して塩を形成する態様で連結していてもよい。部分構造Xとしては、特に、下記式(V-1)、式(V-2)又は式(V-3)で表される構造を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000047
 Uは単結合又は2価の連結基を表す。
 d及びeは、それぞれ独立して0又は1を表す。
 Qはアシル基又はアルコキシカルボニル基を表す。
 Uで表される2価の連結基としては、例えば、アルキレン(より具体的には、例えば、-CH-、-CHCH-、-CHCHMe-(Meはメチル基)、-(CH-、-CHCH(n-C1021)-等)、酸素を含有するアルキレン(より具体的には、例えば、-CHOCH-、-CHCHOCHCH-等)、アリーレン基(例えば、フェニレン、トリレン、ビフェニレン、ナフチレン、フラニレン、ピロリレン等)、アルキレンオキシ(例えば、エチレンオキシ、プロピレンオキシ、フェニレンオキシ等)等が挙げられるが、特に炭素数1~30のアルキレン基又は炭素数6~20のアリーレン基が好ましく、炭素数1~20のアルキレン又は炭素数6~15のアリーレン基が最も好ましい。
 また、生産性の観点から、dは1が好ましく、また、eは0が好ましい。
 Qはアシル基又はアルコキシカルボニル基を表す。Qにおけるアシル基としては、炭素数1~30のアシル基(例えば、ホルミル、アセチル、n-プロパノイル、ベンゾイル等)が好ましく、特にアセチルが好ましい。Qにおけるアルコキシカルボニル基としては、Qは、特にアシル基が好ましく、アセチル基が製造のし易さ、原料(Xの前駆体X)の入手性の観点から好ましい。
 部分構造Xは、塩基性窒素原子を有する繰り返し単位における該塩基性窒素原子と結合していることが好ましい。これにより、二酸化チタン粒子の分散性・分散安定性が飛躍的に向上する。部分構造Xは溶剤溶解性をも付与し、経時における樹脂の析出を抑え、これにより分散安定性に寄与すると考えられる。さらに、部分構造Xは、pKa14以下の官能基を含むものであるため、アルカリ可溶性基としても機能する。それにより、現像性が向上し、分散性・分散安定性・現像性の両立が可能になると考えられる。
 部分構造XにおけるpKa14以下の官能基の含有量は特に制限がないが、特定分散樹脂(B1)1gに対し、0.01~5mmolであることが好ましく、0.05~1mmolであることが特に好ましい。また、酸価の観点からは、特定分散樹脂(B1)の酸価が5~50mgKOH/g程度となる量、含まれることが、現像性の観点から好ましい。
・側鎖Y
 Yとしては、特定分散樹脂(B1)の主鎖部と連結できるポリエステル、ポリアミド、ポリイミド、ポリ(メタ)アクリル酸エステル等の公知のポリマー鎖が挙げられる。Yにおける特定分散樹脂(B1)との結合部位は、側鎖Yの末端であることが好ましい。
 Yは、ポリ(低級アルキレンイミン)系繰り返し単位、ポリアリルアミン系繰り返し単位、ポリジアリルアミン系繰り返し単位、メタキシレンジアミン-エピクロルヒドリン重縮合物系繰り返し単位、及びポリビニルアミン系繰り返し単位から選択される少なくとも1種の窒素原子を有する繰り返し単位の前記窒素原子と結合していることが好ましい。ポリ(低級アルキレンイミン)系繰り返し単位、ポリアリルアミン系繰り返し単位、ポリジアリルアミン系繰り返し単位、メタキシレンジアミン-エピクロルヒドリン重縮合物系繰り返し単位、及びポリビニルアミン系繰り返し単位から選択される少なくとも1種の塩基性窒素原子を有する繰り返し単位などの主鎖部とYとの結合様式は、共有結合、イオン結合、又は、共有結合及びイオン結合の混合である。Yと前記主鎖部の結合様式の比率は、共有結合:イオン結合=100:0~0:100であるが、95:5~5:95が好ましく、90:10~10:90が特に好ましい。
 Yは、前記塩基性窒素原子を有する繰り返し単位の前記窒素原子とアミド結合、又はカルボン酸塩としてイオン結合していることが好ましい。
 前記側鎖Yの原子数としては、分散性・分散安定性・現像性の観点から、50~5,000であることが好ましく、60~3,000であることがより好ましい。
 また、Yの数平均分子量はGPC法によるポリスチレン換算値により測定することができる。このとき、Yは樹脂に組み込む前の状態でその分子量を測定することが実際的である。Yの数平均分子量は、特に1,000~50,000が好ましく、1,000~30,000が分散性・分散安定性・現像性の観点から最も好ましい。Yの分子量は、Yの原料となる高分子化合物から特定することができ、その測定方法は後記GPCによる測定条件に順ずるものとする。
 Yで示される側鎖構造は、主鎖連鎖に対し、樹脂1分子中に、2つ以上連結していることが好ましく、5つ以上連結していることが特に好ましい。
 特に、Yは式(III-1)で表される構造を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000048
 式(III-1)中、Zはポリエステル鎖を部分構造として有するポリマー又はオリゴマーであり、HO-CO-Zで表される遊離のカルボン酸を有するポリエステルからカルボキシル基を除いた残基を表す。特定分散樹脂(B1)が式(I-3)~(I-5)で表される繰り返し単位を含有する場合、Yaが式(III-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000049
 式(III-2)中、Zは式(III-1)におけるZと同義である。上記部分構造Yは、片末端にカルボキシル基を有するポリエステルは、カルボン酸とラクトンの重縮合、ヒドロキシ基含有カルボン酸の重縮合、二価アルコールと二価カルボン酸(もしくは環状酸無水物)の重縮合などにより得ることができる。
 Zは好ましくは、-(LnB-Zであることが好ましい。
 Zは、水素原子又は1価の有機基を表す。Zが有機基であるとき、アルキル基(好ましくは炭素数1~30)、アリール基、複素環基などが好ましい。Zはさらに置換基を有していてもよく、当該置換基としては、炭素数6~24のアリール基、炭素数3~24の複素環基が挙げられる。
 Lは、アルキレン基(炭素数1~6が好ましい)、アルケニレン基(炭素数2~6が好ましい)、アリーレン基(炭素数6~24が好ましい)、ヘテロアリーレン基(炭素数1~6が好ましい)、イミノ基(炭素数0~6が好ましい)、エーテル基、チオエーテル基、カルボニル基、またはこれらの組合せに係る連結基である。なかでも、アルキレン基(炭素数1~6が好ましい)、エーテル基、カルボニル基、またはこれらの組合せに係る連結基であることが好ましい。アルキレン基は分岐でも直鎖であってもよい。アルキレン基は置換基を有していてもよく、好ましい置換基としては、アルキル基(好ましい炭素数1~6)、アシル基(好ましい炭素数2~6)、アルコキシ基(好ましい炭素数1~6)、またはアルコキシカルボニル基(好ましい炭素数2~8)である。nBは5~100,000の整数である。nB個のLはそれぞれ異なる構造であってもよい。
 特定分散樹脂(B)の具体的態様を、樹脂が有する繰り返し単位の具体的構造とその組合せにより以下に示すが、本発明はこれに限定されるものではない。下記式中、k、l、m、及びnはそれぞれ繰り返し単位の重合モル比を示し、kは1~80、lは10~90、mは0~80、nは0~70であり、且つk+l+m+n=100である。k、l、mで定義されるもの、k、lのみで定義されるものは、それぞれ、k+l+m=100、k+l=100を意味する。p及びqはポリエステル鎖の連結数を示し、それぞれ独立に5~100,000を表す。Rは水素原子又はアルコキシカルボニル基を表す。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
 特定分散樹脂(B1)を合成するには、(1)一級又は二級アミノ基を有する樹脂と、部分構造Xの前駆体x、及びYの前駆体yとを反応させる方法、(2)部分構造Xに対応する構造を含有するモノマーとYを含有するマクロモノマーとの重合による方法などにより製造することが可能である。まず、一級又は二級アミノ基を主鎖に有する樹脂を合成し、その後、該樹脂に、Xの前駆体x及びYの先駆体yを反応させて、主鎖に存在する窒素原子に高分子反応により導入することで製造することが好ましい。当該製造方法の詳細は、特開2009-203462等を参照することができる。
 前記特定分散樹脂Bの分子量としては、重量平均分子量で、3,000~100,000であることが好ましく、5,000~55,000重量平均分子量が前記範囲内であると、ポリマーの末端に導入された複数の前記吸着部位の効果が十分に発揮され、二酸化チタン粒子表面への吸着性に優れた性能を発揮し得る。なお、本明細書において、GPCは、特に断らない限り、HLC-8020GPC(東ソー(株)製)を用い、カラムをTSKgel SuperHZM-H、TSKgel SuperHZ4000、TSKgel SuperHZ200(東ソー社製)として測定した。キャリアは適宜選定すればよいが、溶解可能であるかぎり、テトラヒドロフランを用いる。
 本発明の感光性組成物において、高屈折率粒子用分散剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 分散組成物(II)の全固形分に対する特定樹脂(B)の含有量は、分散性、分散安定性の観点から、10~50質量%の範囲が好ましく、11~40質量%の範囲がより好ましく、12~30質量%の範囲がさらに好ましい。
 本実施形態の硬化性組成物は、異物の除去や欠陥の低減などの目的で、フィルタで濾過することが好ましい。従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂、ナイロン-6、ナイロン-6,6等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含む)等によるフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)が好ましい。
 フィルタの孔径は、0.01~7.0μm程度が適しており、好ましくは0.01~2.5μm程度、さらに好ましくは0.01~1.5μm程度である。この範囲とすることにより、溶解した顔料等に混入しており、後工程において均一及び平滑な硬化性組成物の調製を阻害する、微細な異物を確実に除去することが可能となる。
 フィルタを使用する際、異なるフィルタを組み合わせても良い。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合は1回目のフィルタリングの孔径より2回目以降の孔径が大きい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
 第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたものを使用することができる。第2のフィルタの孔径は、0.5~7.0μm程度が適しており、好ましくは2.5~7.0μm程度、さらに好ましくは4.5~6.0μm程度である。この範囲とすることにより、混合液に含有されている成分粒子を残存させたまま、混合液に混入しており、後工程でおいて均一及び平滑な硬化性組成物の調製を阻害する異物を除去することができる。
 例えば、第1のフィルタでのフィルタリングは、分散液のみで行い、他の成分を混合した後で、第2のフィルタリングを行ってもよい。
 以下に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例により限定して解釈されるものではない。なお、本実施例において「部」及び「%」とは特に断らない限りいずれも質量基準である。
<低屈折率層形成用組成物>
[シロキサンの調製]
 メチルトリエトキシシラン(MTES)及び/又はテトラエトキシシラン(TEOS)を用いて、加水分解・縮合反応を行い、加水分解縮合物S-1、S-2、S-c1を得た。このときに用いた溶媒は エタノールである。得られた加水分解縮合物S-1は重量平均分子量 約10000であった。
Figure JPOXMLDOC01-appb-T000060
[シロキサン硬化性組成物の調製]
 以下の成分を配合して、シロキサン硬化性組成物A-1を調製した。また、下記表Aの成分を配合して、シロキサン硬化性組成物A-2,A-c1を調製した。
・シロキサン:上記加水分解縮合物S-1      ・・・20部
・溶剤:プロピレングリコールモノメチルエーテルアセテート
                 (PGMEA) ・・・62部
・溶剤:3-エトキシプロピオン酸エチル(EEP) ・・・16部
・界面活性剤:EMULSOGEN-COL-020
            (クラリアントジャパン製) ・・・2部
 このシロキサン硬化性組成物A-1を4インチシリコンウエハー上に塗布後、プリベーク(100℃2min)、ポストベーク(230℃10min)を実施して硬化膜を作成した。
<屈折率の測定>
 前記硬化膜の屈折率を、ジェー・エー・ウーラム・ジャパン社製エリプソメーターを用いて測定した。測定条件は、633nmで、25℃とし、5点の平均値を採用した。結果を下記表Aに示した。
 樹脂組成物A-2,A-c1は下表のとおりの組成とし、上記と同様にして屈折率の測定を行った
[中空粒子硬化性組成物の調製]
 以下の成分を配合して、中空粒子含有シロキサン硬化性組成物A-3を調製した。また、下記表Aの成分を配合して、硬化性組成物A-4,A-5、A-c2を調製した。
・中空粒子:スルーリア2320(日揮触媒化成(株)製)   ・・・55部
・硬化性樹脂:サイクロマーP ACA230AA(略称:230AA)
              (ダイセル化学(株)製)    ・・・18部
・重合開始剤:IRGACURE OXE-01(BASF製)・・・0.05部
・界面活性剤:メガファックF-781
                (DIC(株)製)・・・0.01部
・溶剤:プロピレングリコールモノメチルエーテルアセテート
                 (PGMEA)・・・26.94部
 ここで補足をしておくと、界面活性剤(メガファック)は、パーフルオロアルキル基を含有し、エチレンオキシド鎖を有する化合物からなる。また、上記の硬化性樹脂(サイクロマーP ACA230AA)は、メタクリル酸とメタクリル酸メチルとメタクリル酸のカルボン酸末端に脂環式グリシジル基を導入したモノマーとの共重合物(Mw=14000、酸価37)である。
 この中空粒子を含有する硬化性組成物についてもA-1等と同様に硬化膜を作製し、さらに前記と同様にしてその屈折率を測定した。
Figure JPOXMLDOC01-appb-T000061
* 質量%
<略称の意味>
 PNB・・・プロピレングリコールモノn-ブチルエーテル
 PTB・・・プロピレングリコールモノtert-ブチルエーテル
 DMM・・・ジプロピレングリコールジメチルエーテル
 2-Hep・・・2-ヘプタノン
<レンズ体形成用組成物>
[二酸化チタン分散液(分散組成物)の調製]
 下記組成の混合液に対し、循環型分散装置(ビーズミル)として、シンマルエンタープライゼス株式会社製NPMを用いて、以下のようにして分散処理を行い、分散組成物として二酸化チタン分散液を得た。
~組成~
・二酸化チタン(石原産業(株)製 TTO-51(C)) : 150.0部
・下記分散樹脂1(固形分20%PGMEA溶液)     : 165.0部
・プロピレングリコールモノメチルエーテルアセテート   : 142.5部
Figure JPOXMLDOC01-appb-C000062
 また分散装置は以下の条件で運転した。
・ビーズ径:φ0.05mm
・ビーズ充填率:60体積%
・周速:10m/sec
・ポンプ供給量:30Kg/hour
・冷却水:水道水
・ビーズミル環状通路内容積:1.0L
・分散処理する混合液量:10kg
 分散開始後、30分間隔(1パスの時間)で平均粒子径の測定を行った。
 平均粒子径は分散時間(パス回数)とともに減少していったが、次第にその変化量が少なくなっていった。分散時間を30分間延長したときの平均粒子径変化が5nm以下となった時点で分散を終了した。尚、この分散液中の二酸化チタン粒子の平均粒子径は40nmであった。
 尚、本実施例における二酸化チタン等の平均粒子径は、二酸化チタンを含む混合液又は分散液を、プロピレングリコールモノメチルエーテルアセテートで80倍に希釈し、得られた希釈液について動的光散乱法を用いて測定することにより得られた値のことを言う。
 この測定は、日機装株式会社製マイクロトラックUPA-EX150を用いて行った。
[二酸化チタン含有硬化性組成物B-1の調製]
・上記で調製した二酸化チタン分散液(分散組成物)    ・・・80.5部
・溶剤:プロピレングリコール
           モノメチルエーテルアセテート     ・・・15部
・重合性化合物:KAYARAD DPHA
               (日本化薬(株)製)    ・・・3.6部
・重合開始剤:IRGACURE OXE-01(BASF製)・・・0.10部
・ポリマーA:ベンジルメタクリレート/メタクリル酸共重合体
 (共重合比:80/20(wt%)、重量平均分子量:12,000)
                    (FFFC社製) ・・・0.5部
・界面活性剤:メガファックF-781(DIC(株)製) ・・・0.30部
[硬化膜の形成]
 前記二酸化チタン含有硬化性組成物をシリコンウエハー上に塗布後、プリベーク(100℃2min)、ポストベーク(230℃10min)を実施して硬化膜B-1を作成した。
 使用する硬化性組成物中の成分比率を下記組成比に変更し、二酸化チタン含有硬化性組成物B-1と同様の工程により各種二酸化チタン含有硬化性組成物を調製した。なお、各硬化膜の屈折率測定結果も合わせて記す。屈折率の測定方法は、低屈折率層(表A)の測定方法と同じである。
Figure JPOXMLDOC01-appb-T000063
*1:TiO・・・二酸化チタン組成物
   ZrO・・・酸化ジルコニウム組成物
*2:質量%
<略称の意味>
(重合性化合物)
1031S・・・JER1031S(ジャパンエポキシレジン(株)製)
157S65・・・JER157S65(ジャパンエポキシレジン(株)製)
(ポリマー)
・ポリマーB・・・アクリベース (ベンジルメタクリレート/i-ブチルメタクリレート・2-ヒドロキシエチルメタクリレート・メタクリル酸共重合体とメトキシポリエチレングリコールとのグラフト共重合物、藤倉化成(株)製)
 上記試料B-4については、前記B-1組成物に対して、酸化チタンを酸化ジルコニウム(日本電工(株)製 PCS)に変えた以外同様にして調製したものを用いた。
[評価用イメージセンサーの作成]
 フォトダイオード及び転送電極が形成されたシリコンウエハー上に、フォトダイオードの受光部のみ開口したタングステンからなる遮光膜を形成し、形成された遮光膜全面及びフォトダイオード受光部(遮光膜中の開口部)を覆うようにして窒化シリコンからなるデバイス保護層を形成する。
 次に、形成されたデバイス保護層上に、特開2010-210702号公報の実施例16に記載された方法にて、緑色硬化性組成物のみを使用することにより、1辺の長さが1.4μmの緑色画素のみのカラーフィルタを作成した。
 この上に、上記のようにして調製した本発明の実施例記載の硬化性組成物B-1~B-6、B-c1を、乾燥膜厚1.5μmとなるように塗布後、100℃で2分間、ホットプレートで加熱後、230℃で10分間、ホットプレートで加熱し、硬化させた。
 さらに、この上にHPR-204ESZ-9-5mPa・s(富士フイルムエレクトロニクスマテリアルズ(株)FFEM社製レジスト液)を乾燥膜厚0.5μmとなるよう塗布し、90℃で1分間、ホットプレートで加熱した。この塗布膜を、1辺1.15μm、パターン間ギャップが0.35μmの正方パターンを多数有する用マスクを介してi線ステッパー(製品名:FPA-3000i5+、キャノン(株)製)により300mJ/cmで露光した。ここで、マスクは、マスクにおける多数の正方パターンが、それぞれ、上記カラーフィルタの緑色画素に対応する位置となるように配置した。
 これをアルカリ性現像液HPRD-429E(富士フイルムエレクトロニクスマテリアルズ(株)製)を用いて、室温にて60秒間、パドル現像した後、さらに20秒間純水を用いたスピンシャワーにてリンスを行った。その後更に、純水にて水洗を行い、その後、高速回転にて基板を乾燥させ、レジストパターンを形成した。200℃で300秒間、ホットプレートでポストベーク処理し、レジストをレンズ状の形状に整形した。このレンズの高さ(厚さ)hは約350nmであった。
 以上のようにして得られた基板を、ドライエッチング装置(日立ハイテクノロジーズ製:U-621)を使用し、下記条件にてドライエッチング処理を実施し、高屈折率である透明膜塗膜をマイクロレンズとして使用できるように加工した。
・RFパワー:800W
・アンテナバイアス:100W
・ウエハバイアス:500W
・チャンバー内圧:0.5Pa
・基板温度:50℃
・混合ガス種および流量:CF/C/O/Ar =
             175/25/50/200ml/分
・フォトレジストエッチングレート:140nm/分
 この上に、上記硬化性組成物A-1~A-10、A-c1、A-c2を膜厚0.7μmとなるように塗布後、230℃10分間ホットプレートで加熱し、得られたセンサーをカメラモジュールとして組み立て、イメージセンサーを作製した。
<色濃度の評価>
 得られたイメージセンサーを用いて、200ルクスの照度条件下にて白色版を撮影し、この画像を画像取り込みソフト(photograb-300[商品名]、富士フイルム(株)製)を用いて、8ビットのビットマップ形式でパソコンに取り込んだ。この評価により得られた平均色濃度が本デバイスの感度に相当し、数値が高いほど高感度であることを表す。また、相対色濃度が-10%以下の割合が大きいほど、ノイズが多いことを表す。
 なお、相対色濃度は下記式にて算出される。
 相対色濃度=(各画素の色濃度-平均色濃度)/平均色濃度×100%
この結果を、下記表に示す。
Figure JPOXMLDOC01-appb-T000064
 A層:光透過性硬化膜(低屈折率層)
 B層:マイクロレンズ体(高屈折率層)
 上記の結果より、本発明によれば、厚みのある光透過性硬化膜を具備するマイクロレンズユニットにおいても、高い平均色濃度(高感度)を達成することができることが分かる。また、感度を上げる方法として、デジタル的に単純に信号を増幅するという方法もあるが、この方法ではノイズが大きくなることがある。これに対して、本発明によればこのノイズを低減することができ、デジタル化のための受光感度をばらつきなく高めることができることが分かる。
(実施例2)[厚さによる影響]
 前記の試験101及び110のセットについて、上層及び下層の厚さの異なるものを種々作製して試験を行った(表2)。その結果、厚さを変化させても良好な性能が実現されることが分かった。
Figure JPOXMLDOC01-appb-T000065
(実施例3)
 前記A-1において、Emulsogen COL-020に変えて、ECT-7(日光ケミカルズ株式会社製)1部を用いた以外は同様に硬化性組成物を調製し評価した。その結果、平均色素濃度及び相対色素濃度のばらつきについても良好な結果であった。なお、ECT-7はポリオキシアルキレン構造を有する界面活性剤であり、R-O-(EO)-COOH(R=C13 アルキル基)の構造を有する。
(実施例4)
 A-1の(組成)において、Emulsogen COL-020に変えて、ECT-7(日光ケミカルズ株式会社製)1部及びKF6001(信越シリコーン社製)0.02部を用いた以外は、実施例1と同様に塗布組成物を調製し評価した。その結果、平均色素濃度及び相対色素濃度のばらつきについても良好な結果であった。
(実施例5)
(二酸化チタンレス高屈折率材料組成物)
 屈折率(1.68)の層を形成するために、下記組成物を調製した。なお、下記組成物C-1を用いる場合には、プリベーク(100℃2min)、ポストベーク(230℃10min)を実施して硬化膜を形成する。
溶剤:プロピレングリコールモノメチルエーテルアセテート   ・・・15部
   シクロヘキサノン                   ・・・30部
樹脂:日産化学工業社製超高屈折率コーティング材料UR202 ・・・32部
硬化促進剤:SB-A(三菱ガス化学)             ・・・5部
エポキシ樹脂:157S65(三菱化学社製)       ・・・17.5部
界面活性剤:メガファックF-781(DIC)       ・・・0.5部
 評価用イメージセンサ試験体101において、それと同様にシロキサン硬化性組成物A-1を用い、二酸化チタン含有組成物B-1の代わりに上記二酸化チタンレス高屈折率材料組成物C-1(日産化学工業社製超高屈折率コーティング材料UR202(屈折率1.76)含有)を用いたこと以外は試験体101と同様に試験体201を作製した。その試験体201について、試験体101と同様に、平均色濃度および相対色濃度のばらつきを評価し、良好な結果であることを確認した。
 試験体201において、シロキサン硬化性組成物A-1をA-2~A-10及び後述するA-20に変更したこと以外は試験体201と同様にして試験体202~21を作製した。試験体202~21について、試験体101と同様に、平均色濃度および相対色濃度のばらつきを評価し、良好な結果であることを確認した。
<シロキサン硬化性組成物A-20>
(加水分解縮合物の合成)
 メチルトリエトキシシランを用いて、加水分解・縮合反応を行った。このときに用いた溶媒はエタノールである。得られた加水分解縮合物は重量平均分子量約10,000であった。なお、上記重量平均分子量は先に説明の手順に沿ってGPCにより確認した。下記組成の成分を攪拌機で混合して、組成物A-20を調製した。組成物A-20で形成された硬化膜の屈折率は1.30であった。
(組成)
 加水分解縮合物(メチルトリエトキシシラン)    ・・・5部
 プロピレングリコールモノメチルエーテルアセテート
                   (PGMEA)・・・5部
 EMULSOGEN-COL-020(アニオン界面活性剤、クラリアント(株)製)
                          ・・・2部
 スルーリア2320(日揮触媒化成社製の中空シリカの20質量%分散液)
                          ・・・88部
Figure JPOXMLDOC01-appb-T000066
(実施例6)
 試験体201の二酸化チタンレス高屈折率材料組成物C-1(日産化学工業社製超高屈折率コーティング材料UR202含有)の日産化学工業社製超高屈折率コーティング材料UR202を、チオエポキシ樹脂LPH1101(三菱ガス化学社製)に変えたこと以外は、試験体201と同様にして試験体301を得た。試験体301について、試験体101と同様に、平均色濃度および相対色濃度のばらつきを評価し、良好な結果であることを確認した。
 試験体301において、シロキサン硬化性組成物A-1をA-2~A-10及びA-20に変更したこと以外は試験体201と同様にして試験体302~311を作製した。試験体302~311について、試験体101と同様に、平均色濃度および相対色濃度のばらつきを評価し、良好な結果であることを確認した。
(実施例7)
 試験体201の二酸化チタンレス高屈折率材料組成物(日産化学工業社製超高屈折率コーティング材料UR202含有)の日産化学工業社製超高屈折率コーティング材料UR202を、エピスルフィド樹脂MR-174(三井化学社製)に変えたこと以外は、試験体201と同様にして試験体401を得た。試験体401について、試験体101と同様に、平均色濃度および相対色濃度のばらつきを評価し、良好な結果であることを確認した。
 試験体401において、シロキサン硬化性組成物A-1をA-2~A-10及びA-20に変更したこと以外は試験体401と同様にして試験体402~411を作製した。試験体402~411について、試験体101と同様に、平均色濃度および相対色濃度のばらつきを評価し、良好な結果であることを確認した。
(実施例8)
 試験体201の二酸化チタンレス高屈折率材料組成物(日産化学工業社製超高屈折率コーティング材料UR202含有)の日産化学工業社製超高屈折率コーティング材料UR202を、チオウレタン樹脂MR-7(三井化学社製)に変えたこと以外は、試験体201と同様にして試験体501を得た。試験体501について、試験体101と同様に、平均色濃度および相対色濃度のばらつきを評価し、良好な結果であることを確認した。
 試験体501において、シロキサン硬化性組成物A-1をA-2~A-10及びA-20に変更したこと以外は試験体501と同様にして試験体502~511を作製した。試験体502~511について、試験体101と同様に、平均色濃度および相対色濃度のばらつきを評価し、良好な結果であることを確認した。

Claims (16)

  1.  硬化性樹脂組成物を硬化させてなる第1の光学部材と、これに被覆された第2の光学部材とを有してなる光学部材セットであって、
    前記第1の光学部材は屈折率1.25~1.45であり、前記第2の光学部材は屈折率1.65~1.95である光学部材セット。
  2.  前記第1の光学部材は屈折率1.35~1.45であり、前記第2の光学部材は屈折率1.85~1.95である請求項1に記載の光学部材セット。
  3.  前記第1の光学部材が、シロキサン樹脂およびフッ素系樹脂の少なくともいずれかを含有する請求項1または2に記載の光学部材セット。
  4.  前記第1の光学部材が、さらに中空粒子を含有する請求項1~3のいずれか1項に記載の光学部材セット。
  5.  前記第2の光学部材がチタニアまたはジルコニアを含有する請求項1~4のいずれか1項に記載の光学部材セット。
  6.  前記第1の光学部材が膜状であり、その膜厚が0.5μm~3.0μmである請求項1~5のいずれか1項に記載の光学部材セット。
  7.  前記第1の光学部材の厚さが500nm~2800nmであり、前記第2の光学部材の厚さが200nm~1500nmである請求項1~6のいずれか1項に記載の光学部材セット。
  8.  前記第1の光学部材の屈折率と前記第2の光学部材の屈折率との差が0.45~0.55である請求項1~7のいずれか1項に記載の光学部材セット。
  9.  前記シロキサン樹脂の65質量%以上100質量%以下が下記式(1)で表されるシルセスキオキサン構造で構成されている請求項3~8のいずれか1項に記載の光学部材セット。
     -(RSiO3/2-   式(1)
    (上記式(1)中、Rは炭素数1~3のアルキル基を表す。nは20~1000の整数を表す。)
  10.  前記第1の光学部材が、さらに界面活性剤を含有する請求項1~9のいずれか1項に記載の光学部材セット。
  11.  前記シロキサン樹脂が下記式(2)で表されるアルキルトリアルコキシシランを加水分解縮合し得られた樹脂である請求項3~10のいずれか1項に記載の光学部材セット。
      RSi(OR   式(2)
    (Rは炭素数1~3のアルキル基を表し、Rはアルキル基を表す。)
  12.  前記第2の光学部材が、一次粒子径が1nm~100nmである金属酸化物粒子(A)と、水素原子を除いた原子数が40~10000のグラフト鎖を有するグラフト共重合体(B)と、溶媒(C)とを含有する分散組成物の光硬化物である請求項1~11のいずれか1項に記載の光学部材セット。
  13.  前記グラフト共重合体(B)が、pKa14以下の官能基を有する基Xを有する繰り返し単位と、原子数40~10,000の側鎖Yとを有し、かつ塩基性窒素原子を含有する樹脂(B1)である請求項12に記載の光学部材セット。
  14.  前記樹脂(B1)が、下記式(I-1)で表される繰り返し単位及び下記式(I-2)で表される繰り返し単位を有する、あるいは下記式(I-1)で表される繰り返し単位及び下記式(I-2a)で表される繰り返し単位を有する請求項13に記載の光学部材セット。
    Figure JPOXMLDOC01-appb-C000001
    (R、R、R、及びRは、各々独立に、水素原子、ハロゲン原子又はアルキル基を表す。aは、1~5の整数を表す。*は繰り返し単位間の連結部を表す。XはpKa14以下の官能基を有する基を表す。Yは原子数40~10,000の側鎖を表す。Lは単結合、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、イミノ基、エーテル基、チオエーテル基、カルボニル基、またはこれらの組合せに係る連結基である。LはCRCRとN(窒素原子)とともに環構造を形成する原子群である。)
  15.  前記第2の光学部材として複数の凸レンズが採用され、該複数の凸レンズはその膨出方向を実質的に同一方向にむけて配列されており、かつ該複数の凸レンズはその膨出方向から光透過性硬化膜をなす前記第1の光学部材により被覆されており、前記複数の凸レンズ間に形成された凹部には実質的に隙間無く前記光透過性硬化膜が充填され、一方、該光透過性硬化膜において前記凸レンズの反対側は平坦面とされている請求項1~14のいずれか1項に記載の光学部材セット。
  16.  請求項1~15のいずれか1項に記載の光学部材セットと、半導体受光ユニットとを備えた固体撮像素子。
PCT/JP2012/083653 2011-12-28 2012-12-26 光学部材セット及びこれを用いた固体撮像素子 WO2013099945A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280063416.7A CN104011567B (zh) 2011-12-28 2012-12-26 光学构件组及使用该光学构件组的固体摄像元件
KR1020147014920A KR20140090232A (ko) 2011-12-28 2012-12-26 광학 부재 세트 및 이것을 사용한 고체 촬상 소자
EP12862041.6A EP2799912A4 (en) 2011-12-28 2012-12-26 SET OF OPTICAL ELEMENTS AND PARTICULAR IMAGE RECORDING ELEMENT THEREWITH
US14/298,089 US20140284747A1 (en) 2011-12-28 2014-06-06 Optical member set and solid-state imaging element using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-288123 2011-12-28
JP2011288123 2011-12-28
JP2012200532 2012-09-12
JP2012-200532 2012-09-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/298,089 Continuation US20140284747A1 (en) 2011-12-28 2014-06-06 Optical member set and solid-state imaging element using the same

Publications (1)

Publication Number Publication Date
WO2013099945A1 true WO2013099945A1 (ja) 2013-07-04

Family

ID=48697426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083653 WO2013099945A1 (ja) 2011-12-28 2012-12-26 光学部材セット及びこれを用いた固体撮像素子

Country Status (7)

Country Link
US (1) US20140284747A1 (ja)
EP (1) EP2799912A4 (ja)
JP (1) JP5922013B2 (ja)
KR (1) KR20140090232A (ja)
CN (1) CN104011567B (ja)
TW (1) TW201331611A (ja)
WO (1) WO2013099945A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046018A1 (ja) * 2013-09-25 2015-04-02 東レ株式会社 感光性遮光ペースト及びタッチセンサー用積層パターンの製造方法
JP2015118353A (ja) * 2013-12-20 2015-06-25 凸版印刷株式会社 半球形状のマイクロレンズ付カラーフィルタ
WO2023157793A1 (ja) * 2022-02-15 2023-08-24 三菱ケミカル株式会社 熱可塑性樹脂組成物、成形材料及び成形体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5976523B2 (ja) * 2011-12-28 2016-08-23 富士フイルム株式会社 光学部材セット及びこれを用いた固体撮像素子
TWI486709B (zh) * 2013-09-03 2015-06-01 Chi Mei Corp 彩色濾光片用感光性樹脂組成物及其應用
CN104448370A (zh) * 2014-10-30 2015-03-25 孟凡伟 一种抗酸洗保护膜及其制备方法
KR20170110070A (ko) * 2015-01-30 2017-10-10 도레이 카부시키가이샤 수지 조성물, 그것을 사용한 고체 촬상 소자 및 그 제조 방법
CN107586385B (zh) * 2016-07-08 2019-11-15 华南农业大学 一种纳米二氧化锆/含硫聚合物有机无机杂化树脂及其制备与应用
JP6503128B1 (ja) * 2018-02-13 2019-04-17 日本板硝子株式会社 膜、液状組成物、光学素子、及び撮像装置
US11069729B2 (en) * 2018-05-01 2021-07-20 Canon Kabushiki Kaisha Photoelectric conversion device, and equipment
JP2019195051A (ja) * 2018-05-01 2019-11-07 キヤノン株式会社 光電変換装置および機器
JPWO2022080186A1 (ja) * 2020-10-13 2022-04-21
WO2024117157A1 (ja) * 2022-11-30 2024-06-06 京セラ株式会社 拡散板、発光デバイス及びセンサモジュール

Citations (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2833827A (en) 1955-01-17 1958-05-06 Bayer Ag Tri (3, 5-di lower alkyl-4-hydroxy phenyl)-sulfonium chlorides and method of preparing same
US2852379A (en) 1955-05-04 1958-09-16 Eastman Kodak Co Azide resin photolithographic composition
US2940853A (en) 1958-08-21 1960-06-14 Eastman Kodak Co Azide sensitized resin photographic resist
US3479185A (en) 1965-06-03 1969-11-18 Du Pont Photopolymerizable compositions and layers containing 2,4,5-triphenylimidazoyl dimers
JPS4537377B1 (ja) 1965-06-03 1970-11-27
JPS4643946B1 (ja) 1967-11-09 1971-12-27
JPS4836281A (ja) 1971-09-03 1973-05-28
JPS4864183A (ja) 1971-12-09 1973-09-05
JPS4841708B1 (ja) 1970-01-13 1973-12-07
JPS4943191B1 (ja) 1969-07-11 1974-11-19
JPS506034B1 (ja) 1970-08-11 1975-03-10
US3905815A (en) 1971-12-17 1975-09-16 Minnesota Mining & Mfg Photopolymerizable sheet material with diazo resin layer
JPS5137193A (ja) 1974-09-25 1976-03-29 Toyo Boseki
JPS5230490B2 (ja) 1972-03-21 1977-08-09
US4069056A (en) 1974-05-02 1978-01-17 General Electric Company Photopolymerizable composition containing group Va aromatic onium salts
US4069055A (en) 1974-05-02 1978-01-17 General Electric Company Photocurable epoxy compositions containing group Va onium salts
JPS53128333A (en) 1977-04-15 1978-11-09 Fuji Photo Film Co Ltd Prevention of influences of ultraviolet ray upon photosensitive material of silver halogenide
JPS5421726B2 (ja) 1970-12-31 1979-08-01
DE2904626A1 (de) 1978-02-08 1979-08-09 Minnesota Mining & Mfg Triarylsulfoniumkomplexsalze, verfahren zu ihrer herstellung und diese salze enthaltende photopolymerisierbare gemische
JPS5532070A (en) 1978-08-29 1980-03-06 Fuji Photo Film Co Ltd Photosensitive resin composition
JPS5617654B2 (ja) 1970-12-28 1981-04-23
US4311783A (en) 1979-08-14 1982-01-19 E. I. Du Pont De Nemours And Company Dimers derived from unsymmetrical 2,4,5,-triphenylimidazole compounds as photoinitiators
JPS5849860B2 (ja) 1973-12-07 1983-11-07 ヘキスト アクチェンゲゼルシャフト コウジユウゴウセイフクシヤザイリヨウ
JPS59152396A (ja) 1983-02-11 1984-08-31 チバ−ガイギ− アクチエンゲゼルシヤフト メタロセン,その製造方法およびメタロセンを含む光重合性組成物
JPS60239736A (ja) 1984-05-14 1985-11-28 Fuji Photo Film Co Ltd 感光性組成物
JPS6122048A (ja) 1984-06-08 1986-01-30 ヘキスト・アクチエンゲゼルシヤフト 重合可能な化合物、その製法、およびこれを含有する放射線感性複写層
JPS61151197A (ja) 1984-12-20 1986-07-09 チバ‐ガイギー アーゲー チタノセン類およびこれらのチタノセン類を含有する照射重合開始剤
JPS61166544A (ja) 1985-01-18 1986-07-28 Fuji Photo Film Co Ltd 光可溶化組成物
JPS61169835A (ja) 1985-01-22 1986-07-31 Fuji Photo Film Co Ltd 光可溶化組成物
JPS61169831A (ja) 1985-01-19 1986-07-31 アグフア‐ゲヴエルト・アクチエンゲゼルシヤフト 感光性安定化写真記録材料
JPS61169837A (ja) 1985-01-22 1986-07-31 Fuji Photo Film Co Ltd 光可溶化組成物
EP0104143B1 (de) 1982-09-18 1986-10-29 Ciba-Geigy Ag Diaryljodosylsalze enthaltende photopolymerisierbare Zusammensetzungen
US4622286A (en) 1985-09-16 1986-11-11 E. I. Du Pont De Nemours And Company Photoimaging composition containing admixture of leuco dye and 2,4,5-triphenylimidazolyl dimer
JPS6258241A (ja) 1985-09-09 1987-03-13 Fuji Photo Film Co Ltd 感光性組成物
JPS62143044A (ja) 1985-11-20 1987-06-26 サイカラー・インコーポレーテッド 染料−ほう素化合物錯体を含有する光硬化性組成物およびその組成物を使用する感光性材料
JPS62150242A (ja) 1985-11-20 1987-07-04 サイカラー・インコーポレーテッド イオン性染料化合物を開始剤として含む感光性材料
DE3604580A1 (de) 1986-02-14 1987-08-20 Basf Ag Haertbare mischungen, enthaltend n-sulfonylaminosulfoniumsalze als kationisch wirksame katalysatoren
DE3604581A1 (de) 1986-02-14 1987-08-20 Basf Ag 4-acylbenzylsulfoniumsalze, ihre herstellung sowie sie enthaltende photohaertbare gemische und aufzeichnungsmaterialien
JPS6239417B2 (ja) 1978-05-20 1987-08-22 Hoechst Ag
JPS6239418B2 (ja) 1978-05-20 1987-08-22 Hoechst Ag
JPS62212401A (ja) 1986-03-14 1987-09-18 Fuji Photo Film Co Ltd 光重合性組成物
JPS6341484A (ja) 1986-08-01 1988-02-22 チバ−ガイギ− ア−ゲ− チタノセン、それらの製造法およびそれらを含有する組成物
JPS6353544A (ja) 1986-08-25 1988-03-07 Konica Corp 発汗現象及びスタチツクマ−ク発生を防止したハロゲン化銀写真感光材料
JPS6353543A (ja) 1986-08-23 1988-03-07 Konica Corp 発汗現象及びスタチツクマ−ク発生を防止したハロゲン化銀写真感光材料
JPS6356651A (ja) 1986-08-27 1988-03-11 Konica Corp 発汗現象及びスタチツクマ−ク発生を防止したハロゲン化銀写真感光材料
JPS6370243A (ja) 1986-09-11 1988-03-30 Fuji Photo Film Co Ltd 感光性組成物
US4760013A (en) 1987-02-17 1988-07-26 International Business Machines Corporation Sulfonium salt photoinitiators
JPS63260909A (ja) 1987-03-28 1988-10-27 ヘキスト・アクチエンゲゼルシヤフト 光重合性混合物及びこの混合物から製造される記録材料
JPS63277653A (ja) 1987-03-28 1988-11-15 ヘキスト・アクチエンゲゼルシヤフト 重合可能な化合物、これを含有する放射線重合可能な混合物及び放射線重合可能な記録材料
JPS63287944A (ja) 1987-05-21 1988-11-25 Fuji Photo Film Co Ltd 感光性組成物
JPS63287947A (ja) 1987-05-21 1988-11-25 Fuji Photo Film Co Ltd 感光性組成物
JPS63298339A (ja) 1987-05-29 1988-12-06 Fuji Photo Film Co Ltd 感光性組成物
JPH01105238A (ja) 1987-03-28 1989-04-21 Hoechst Ag 光重合可能な混合物および光重合可能な記録材料
JPH0140336B2 (ja) 1979-12-29 1989-08-28 Hoechst Ag
JPH0140337B2 (ja) 1979-12-29 1989-08-28 Hoechst Ag
JPH01271741A (ja) 1988-04-25 1989-10-30 Fuji Photo Film Co Ltd 感光性組成物
JPH02249A (ja) 1987-12-01 1990-01-05 Ciba Geigy Ag チタノセンおよびそれを含有する光重合性組成物
JPH024705A (ja) 1988-03-24 1990-01-09 Dentsply Internatl Inc 光硬化性組成物用チタナート開始剤
JPH0225493A (ja) 1988-05-21 1990-01-26 Hoechst Ag アルケニルホスホン酸エステルおよびアルケニルホスフイン酸エルテル、その製法並びに当該化合物を含有する放射線重合性混合物および記録材料
JPH0216765B2 (ja) 1980-09-29 1990-04-18 Hoechst Ag
JPH02150848A (ja) 1988-12-02 1990-06-11 Hitachi Ltd 光退色性放射線感応性組成物およびそれを用いたパターン形成法
US4933377A (en) 1988-02-29 1990-06-12 Saeva Franklin D Novel sulfonium salts and the use thereof as photoinitiators
JPH0232293B2 (ja) 1980-12-22 1990-07-19 Hoechst Ag
EP0390214A2 (en) 1989-03-31 1990-10-03 E.F. Johnson Company Method and apparatus for a distributive wide area network for a land mobile transmission trunked communication system
JPH02296514A (ja) 1989-05-12 1990-12-07 Matsushita Electric Ind Co Ltd 車両用サスペンション制御装置
EP0297442B1 (de) 1987-07-01 1991-02-27 BASF Aktiengesellschaft Sulfoniumsalze mit säurelabilen Gruppierungen
JPH04275459A (ja) * 1991-03-04 1992-10-01 Sharp Corp 固体撮像素子及びその製造方法
JPH04365049A (ja) 1991-06-12 1992-12-17 Fuji Photo Film Co Ltd 感光性組成物
JPH0583588A (ja) 1991-09-24 1993-04-02 Omron Corp 画像処理装置
EP0370693B1 (en) 1988-11-21 1994-04-06 Eastman Kodak Company Novel onium salts and the use thereof as photoinitiators
JPH0629285B2 (ja) 1983-10-14 1994-04-20 三菱化成株式会社 光重合性組成物
JPH06157623A (ja) 1992-08-14 1994-06-07 Toyo Ink Mfg Co Ltd 重合性組成物および重合方法
EP0297443B1 (de) 1987-07-01 1994-06-08 BASF Aktiengesellschaft Strahlungsempfindliches Gemisch für lichtempfindliche Beschichtungsmaterialien
JPH06175564A (ja) 1992-12-04 1994-06-24 Toyo Ink Mfg Co Ltd ホログラム記録材料及びそれを用いた体積位相型ホログラムの製造方法
JPH06175561A (ja) 1992-12-04 1994-06-24 Toyo Ink Mfg Co Ltd ホログラム記録媒体及びそれを用いた体積位相型ホログラムの製造方法
JPH06175554A (ja) 1992-12-03 1994-06-24 Toyo Ink Mfg Co Ltd 体積位相型ホログラムの製造方法
JPH06175553A (ja) 1992-12-03 1994-06-24 Toyo Ink Mfg Co Ltd ホログラム記録媒体及びそれを用いた体積位相型ホログラムの製造方法
JPH06348011A (ja) 1993-06-04 1994-12-22 Toyo Ink Mfg Co Ltd 光重合性組成物
JPH07128785A (ja) 1993-11-02 1995-05-19 Konica Corp 画像形成材料及び画像形成方法
JPH07140589A (ja) 1993-11-19 1995-06-02 Konica Corp 画像形成材料および画像形成方法
JPH07292014A (ja) 1994-04-25 1995-11-07 Nippon Paint Co Ltd 近赤外光重合性組成物
JPH07306527A (ja) 1994-05-11 1995-11-21 Konica Corp 画像形成材料及び画像形成方法
JPH07120041B2 (ja) 1987-05-21 1995-12-20 富士写真フイルム株式会社 感光性組成物
JPH07120042B2 (ja) 1987-05-21 1995-12-20 富士写真フイルム株式会社 感光性組成物
JPH0812424B2 (ja) 1987-11-19 1996-02-07 富士写真フイルム株式会社 感光性組成物
JPH08108621A (ja) 1994-10-06 1996-04-30 Konica Corp 画像記録媒体及びそれを用いる画像形成方法
JPH08124248A (ja) 1994-10-25 1996-05-17 Victor Co Of Japan Ltd 磁気記録再生装置
JPH09188686A (ja) 1995-11-24 1997-07-22 Ciba Geigy Ag 光重合のための酸安定性硼酸塩
JPH09188710A (ja) 1995-11-24 1997-07-22 Ciba Geigy Ag モノボランからのボレート光開始剤
JPH09188685A (ja) 1995-11-24 1997-07-22 Ciba Geigy Ag 光重合のためのボレート補助開始剤
JPH1062986A (ja) 1996-08-21 1998-03-06 Fuji Photo Film Co Ltd 感放射線性着色組成物
JP2764769B2 (ja) 1991-06-24 1998-06-11 富士写真フイルム株式会社 光重合性組成物
JPH10291969A (ja) 1996-12-06 1998-11-04 Ciba Specialty Chem Holding Inc 新規α−アミノアセトフェノン光開始剤
JP2000066385A (ja) 1998-08-18 2000-03-03 Ciba Specialty Chem Holding Inc 高感度で高レジスト厚さのi線ホトレジスト用スルホニルオキシム類
JP2000080068A (ja) 1998-06-26 2000-03-21 Ciba Specialty Chem Holding Inc 新規o―アシルオキシム光開始剤
JP2000131837A (ja) 1998-08-17 2000-05-12 Mitsubishi Chemicals Corp 光重合性組成物、光重合性平版印刷版及び画像形成方法
JP2000187322A (ja) 1998-10-15 2000-07-04 Mitsubishi Chemicals Corp 感光性組成物、画像形成材料及びそれを用いた画像形成方法
JP2001016539A (ja) 1999-06-30 2001-01-19 Canon Inc 画像入力装置およびその制御方法、情報処理装置およびその方法、印刷システム、並びに、記録媒体
JP2001233611A (ja) 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP2001242612A (ja) 2000-03-01 2001-09-07 Fuji Photo Film Co Ltd 画像記録材料
JP2001318463A (ja) 2000-05-11 2001-11-16 Fuji Photo Film Co Ltd ネガ型平版印刷版原版
JP2002062698A (ja) 2000-08-21 2002-02-28 Kyocera Corp 画像形成機
JP2002107916A (ja) 2000-09-27 2002-04-10 Fuji Photo Film Co Ltd 平版印刷版原版
JP2002107918A (ja) 2000-10-03 2002-04-10 Fuji Photo Film Co Ltd 感光性平版印刷版
JP2002309057A (ja) 2001-04-13 2002-10-23 Fuji Photo Film Co Ltd 酸分解型感光性組成物及び酸分解型平版印刷版
JP2002311569A (ja) 2001-04-13 2002-10-23 Fuji Photo Film Co Ltd 感光性組成物及びネガ型平版印刷版
JP2002328465A (ja) 2001-04-27 2002-11-15 Fuji Photo Film Co Ltd 平版印刷版原版
EP0993966B1 (de) 1998-10-13 2003-05-14 Agfa-Gevaert naamloze vennootschap Negativ arbeitendes, strahlungsempfindliches Gemisch zur Herstellung eines mit Wärme oder Infrarotlaser bebilderbaren Aufzeichnungsmaterials
JP2003226516A (ja) 2001-11-27 2003-08-12 Mitsubishi Chemicals Corp シリカ及びその製造方法
JP2003327424A (ja) 2002-03-05 2003-11-19 National Institute Of Advanced Industrial & Technology 高多孔質シリカキセロゲルの製造方法
JP2003335515A (ja) 2002-05-17 2003-11-25 National Institute Of Advanced Industrial & Technology 微細孔を有する三次元高規則性ナノポーラス無機多孔体及びその製造方法並びにその評価方法
JP2004031532A (ja) * 2002-06-25 2004-01-29 Toppan Printing Co Ltd 固体撮像素子の製造方法
JP2004061545A (ja) * 2002-07-24 2004-02-26 Sony Corp 投影用スクリーンおよびその製造方法
JP2004300204A (ja) 2003-03-28 2004-10-28 Nippon Shokubai Co Ltd 硬化性樹脂組成物およびその用途
JP2004534797A (ja) 2001-06-11 2004-11-18 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 組み合わされた構造を有するオキシムエステルの光開始剤
JP2005148681A (ja) * 2003-11-20 2005-06-09 Fuji Photo Film Co Ltd 反射防止フィルム、それを用いた偏光板および画像表示装置
JP2005283786A (ja) * 2004-03-29 2005-10-13 Jsr Corp マイクロレンズ反射防止膜用硬化性組成物及びこれを用いたマイクロレンズ用反射防止積層体
JP3718031B2 (ja) * 1997-07-23 2005-11-16 富士写真フイルム株式会社 反射防止膜及びそれを用いた画像表示装置
JP2006098985A (ja) 2004-09-30 2006-04-13 Dainippon Printing Co Ltd 固体撮像素子レンズ用感光性樹脂組成物、これを用いた固体撮像素子レンズ及び固体撮像素子レンズの形成方法、並びに固体撮像素子
JP2006186295A (ja) 2004-11-30 2006-07-13 Dainippon Printing Co Ltd 固体撮像素子用レンズ、固体撮像素子レンズ用撥水コーティング材料及び固体撮像素子
JP2007119744A (ja) 2005-09-28 2007-05-17 Toray Ind Inc 熱硬化性樹脂組成物
JP2007238884A (ja) * 2006-03-13 2007-09-20 Fujifilm Corp 光学物品
JP2007269779A (ja) 2006-02-24 2007-10-18 Fujifilm Corp オキシム誘導体、光重合性組成物、カラーフィルタおよびその製造方法
JP2007322744A (ja) 2006-05-31 2007-12-13 Fujifilm Corp 着色感光性樹脂組成物、及び感光性樹脂転写材料、並びに、カラーフィルタ、カラーフィルタの製造方法、及び液晶表示装置
JP2008292970A (ja) 2006-09-27 2008-12-04 Fujifilm Corp 化合物及びその互変異性体、金属錯体化合物、感光性着色硬化性組成物、カラーフィルタ、及びその製造方法
JP4225898B2 (ja) 2001-08-21 2009-02-18 チバ ホールディング インコーポレーテッド 深色モノ−及びビス−アシルホスフィンオキシド及びスルフィド並びに光開始剤としてのこれらの使用
JP2009519904A (ja) 2005-12-01 2009-05-21 チバ ホールディング インコーポレーテッド オキシムエステル光開始剤
US7556910B2 (en) 2005-12-01 2009-07-07 LF Chem, Ltd. Photosensitive composition comprising triazine-based photoactive compound containing oxime ester
JP2009191061A (ja) 2007-08-27 2009-08-27 Fujifilm Corp 新規化合物、光重合性組成物、カラーフィルタ用光重合性組成物、カラーフィルタ、及びその製造方法、固体撮像素子、並びに、平版印刷版原版
JP2009191179A (ja) 2008-02-15 2009-08-27 Toyo Ink Mfg Co Ltd 光重合開始剤、重合性組成物、および重合物の製造方法。
JP2009203462A (ja) 2008-01-31 2009-09-10 Fujifilm Corp 樹脂、顔料分散液、着色硬化性組成物、これを用いたカラーフィルタ及びその製造方法
JP2009221114A (ja) 2008-03-13 2009-10-01 Fujifilm Corp 重合開始機能を有する化合物、重合開始剤、重合性組成物、カラーフィルタ及びその製造方法、ならびに固体撮像素子
WO2009123109A1 (ja) 2008-03-31 2009-10-08 富士フイルム株式会社 感光性透明樹脂組成物、カラーフィルタの製造方法及びカラーフィルター
JP2009242469A (ja) 2008-03-28 2009-10-22 Fujifilm Corp 重合性組成物、カラーフィルタ、カラーフィルタの製造方法、及び固体撮像素子
WO2009131189A1 (ja) 2008-04-25 2009-10-29 三菱化学株式会社 ケトオキシムエステル系化合物及びその利用
JP4364216B2 (ja) 2005-12-30 2009-11-11 チェイル インダストリーズ インコーポレイテッド 感光性樹脂組成物及びこれを用いたブラックマトリックス
US20090292039A1 (en) 2006-12-27 2009-11-26 Adeka Corporation Oxime ester compound and photopolymerization initiator containing the same
US7626957B2 (en) 2003-04-04 2009-12-01 Samsung Electronics Co., Ltd. Home agent management apparatus and method
JP2010015025A (ja) 2008-07-04 2010-01-21 Adeka Corp 特定の光重合開始剤を含有する感光性組成物
JP2010032985A (ja) 2008-06-30 2010-02-12 Fujifilm Corp 新規化合物、重合性組成物、カラーフィルタ、及びその製造方法、固体撮像素子、並びに、平版印刷版原版
JP2010061066A (ja) * 2008-09-08 2010-03-18 Toray Ind Inc ディスプレイ用フィルター
WO2010044402A1 (ja) * 2008-10-17 2010-04-22 日立化成工業株式会社 低屈折率膜及びその製造方法、反射防止膜及びその製造方法、低屈折率膜用コーティング液セット、微粒子積層薄膜付き基材及びその製造方法、並びに光学部材
JP2010129825A (ja) 2008-11-28 2010-06-10 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2010160418A (ja) 2009-01-09 2010-07-22 Hitachi Chem Co Ltd 感光性樹脂組成物,並びにこれを用いた感光性エレメント,ソルダーレジスト及びプリント配線板
JP2010185072A (ja) 2009-01-15 2010-08-26 Fujifilm Corp 新規化合物、重合性組成物、カラーフィルタ、及びその製造方法、固体撮像素子、並びに、平版印刷版原版
JP2010210702A (ja) 2009-03-06 2010-09-24 Fujifilm Corp 固体撮像素子用着色硬化性組成物、カラーフィルタ、及びその製造方法
EP1204000B1 (en) 2000-11-06 2011-01-12 FUJIFILM Corporation Photosensitive lithographic printing plate
JP2011128632A (ja) * 2011-01-17 2011-06-30 Mitsui Chemicals Inc フッ素含有環状オレフィンポリマーを用いた反射防止膜
JP2011127096A (ja) * 2009-11-20 2011-06-30 Fujifilm Corp 分散組成物及び感光性樹脂組成物、並びに固体撮像素子
JP2012251125A (ja) * 2011-05-06 2012-12-20 Fujifilm Corp 分散組成物、並びに、これを用いた硬化性組成物、透明膜、マイクロレンズ、及び、固体撮像素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283730A (ja) * 2004-03-29 2005-10-13 Fuji Photo Film Co Ltd 反射防止フイルム、偏光板、および画像表示装置
US7119319B2 (en) * 2004-04-08 2006-10-10 Canon Kabushiki Kaisha Solid-state image sensing element and its design support method, and image sensing device
US7601427B2 (en) * 2005-04-26 2009-10-13 Fujifilm Corporation Curable composition, cured film, antireflection film, polarizing plate and liquid crystal display
JP4469781B2 (ja) * 2005-07-20 2010-05-26 パナソニック株式会社 固体撮像装置及びその製造方法
JP2007071917A (ja) * 2005-09-02 2007-03-22 Pentax Corp 反射防止構造を有する光学素子
EP2000150B1 (en) * 2006-03-24 2016-07-13 Toto Ltd. Titanium oxide complex particle, dispersion solution of the particle, and process for production of the particle
JP2008116522A (ja) * 2006-11-01 2008-05-22 Jsr Corp マイクロレンズ用反射防止膜形成用硬化性樹脂組成物及びマイクロレンズ用反射防止膜
JP5670616B2 (ja) * 2006-12-01 2015-02-18 株式会社カネカ ポリシロキサン系組成物
CN101669069B (zh) * 2007-05-17 2013-03-20 日产化学工业株式会社 感光性树脂和微透镜的制造方法
JP5340102B2 (ja) * 2008-10-03 2013-11-13 富士フイルム株式会社 分散組成物、重合性組成物、遮光性カラーフィルタ、固体撮像素子、液晶表示装置、ウェハレベルレンズ、及び撮像ユニット
CN102130138B (zh) * 2010-01-12 2013-01-02 中芯国际集成电路制造(上海)有限公司 图像传感器及其形成方法

Patent Citations (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2833827A (en) 1955-01-17 1958-05-06 Bayer Ag Tri (3, 5-di lower alkyl-4-hydroxy phenyl)-sulfonium chlorides and method of preparing same
US2852379A (en) 1955-05-04 1958-09-16 Eastman Kodak Co Azide resin photolithographic composition
US2940853A (en) 1958-08-21 1960-06-14 Eastman Kodak Co Azide sensitized resin photographic resist
US3479185A (en) 1965-06-03 1969-11-18 Du Pont Photopolymerizable compositions and layers containing 2,4,5-triphenylimidazoyl dimers
JPS4537377B1 (ja) 1965-06-03 1970-11-27
JPS4643946B1 (ja) 1967-11-09 1971-12-27
JPS4943191B1 (ja) 1969-07-11 1974-11-19
JPS4841708B1 (ja) 1970-01-13 1973-12-07
JPS506034B1 (ja) 1970-08-11 1975-03-10
JPS5617654B2 (ja) 1970-12-28 1981-04-23
JPS5421726B2 (ja) 1970-12-31 1979-08-01
JPS4836281A (ja) 1971-09-03 1973-05-28
JPS4864183A (ja) 1971-12-09 1973-09-05
US3905815A (en) 1971-12-17 1975-09-16 Minnesota Mining & Mfg Photopolymerizable sheet material with diazo resin layer
JPS5230490B2 (ja) 1972-03-21 1977-08-09
JPS5849860B2 (ja) 1973-12-07 1983-11-07 ヘキスト アクチェンゲゼルシャフト コウジユウゴウセイフクシヤザイリヨウ
US4069055A (en) 1974-05-02 1978-01-17 General Electric Company Photocurable epoxy compositions containing group Va onium salts
US4069056A (en) 1974-05-02 1978-01-17 General Electric Company Photopolymerizable composition containing group Va aromatic onium salts
JPS5137193A (ja) 1974-09-25 1976-03-29 Toyo Boseki
JPS53128333A (en) 1977-04-15 1978-11-09 Fuji Photo Film Co Ltd Prevention of influences of ultraviolet ray upon photosensitive material of silver halogenide
DE2904626A1 (de) 1978-02-08 1979-08-09 Minnesota Mining & Mfg Triarylsulfoniumkomplexsalze, verfahren zu ihrer herstellung und diese salze enthaltende photopolymerisierbare gemische
JPS6239417B2 (ja) 1978-05-20 1987-08-22 Hoechst Ag
JPS6239418B2 (ja) 1978-05-20 1987-08-22 Hoechst Ag
JPS5532070A (en) 1978-08-29 1980-03-06 Fuji Photo Film Co Ltd Photosensitive resin composition
US4311783A (en) 1979-08-14 1982-01-19 E. I. Du Pont De Nemours And Company Dimers derived from unsymmetrical 2,4,5,-triphenylimidazole compounds as photoinitiators
JPH0140336B2 (ja) 1979-12-29 1989-08-28 Hoechst Ag
JPH0140337B2 (ja) 1979-12-29 1989-08-28 Hoechst Ag
JPH0216765B2 (ja) 1980-09-29 1990-04-18 Hoechst Ag
JPH0232293B2 (ja) 1980-12-22 1990-07-19 Hoechst Ag
EP0104143B1 (de) 1982-09-18 1986-10-29 Ciba-Geigy Ag Diaryljodosylsalze enthaltende photopolymerisierbare Zusammensetzungen
JPS59152396A (ja) 1983-02-11 1984-08-31 チバ−ガイギ− アクチエンゲゼルシヤフト メタロセン,その製造方法およびメタロセンを含む光重合性組成物
JPH0629285B2 (ja) 1983-10-14 1994-04-20 三菱化成株式会社 光重合性組成物
JPS60239736A (ja) 1984-05-14 1985-11-28 Fuji Photo Film Co Ltd 感光性組成物
JPS6122048A (ja) 1984-06-08 1986-01-30 ヘキスト・アクチエンゲゼルシヤフト 重合可能な化合物、その製法、およびこれを含有する放射線感性複写層
JPS61151197A (ja) 1984-12-20 1986-07-09 チバ‐ガイギー アーゲー チタノセン類およびこれらのチタノセン類を含有する照射重合開始剤
JPS61166544A (ja) 1985-01-18 1986-07-28 Fuji Photo Film Co Ltd 光可溶化組成物
JPS61169831A (ja) 1985-01-19 1986-07-31 アグフア‐ゲヴエルト・アクチエンゲゼルシヤフト 感光性安定化写真記録材料
JPS61169837A (ja) 1985-01-22 1986-07-31 Fuji Photo Film Co Ltd 光可溶化組成物
JPS61169835A (ja) 1985-01-22 1986-07-31 Fuji Photo Film Co Ltd 光可溶化組成物
JPS6258241A (ja) 1985-09-09 1987-03-13 Fuji Photo Film Co Ltd 感光性組成物
US4622286A (en) 1985-09-16 1986-11-11 E. I. Du Pont De Nemours And Company Photoimaging composition containing admixture of leuco dye and 2,4,5-triphenylimidazolyl dimer
JPS62150242A (ja) 1985-11-20 1987-07-04 サイカラー・インコーポレーテッド イオン性染料化合物を開始剤として含む感光性材料
JPS62143044A (ja) 1985-11-20 1987-06-26 サイカラー・インコーポレーテッド 染料−ほう素化合物錯体を含有する光硬化性組成物およびその組成物を使用する感光性材料
DE3604581A1 (de) 1986-02-14 1987-08-20 Basf Ag 4-acylbenzylsulfoniumsalze, ihre herstellung sowie sie enthaltende photohaertbare gemische und aufzeichnungsmaterialien
DE3604580A1 (de) 1986-02-14 1987-08-20 Basf Ag Haertbare mischungen, enthaltend n-sulfonylaminosulfoniumsalze als kationisch wirksame katalysatoren
EP0233567B1 (de) 1986-02-14 1992-05-27 BASF Aktiengesellschaft Härtbare Mischungen, enthaltend N-Sulfonylaminosulfoniumsalze als kationisch wirksame Katalysatoren
US4734444A (en) 1986-02-14 1988-03-29 Basf Aktiengesellschaft Curable mixtures containing N-sulfonylaminosulfonium salts as cationically active catalysts
JPS62212401A (ja) 1986-03-14 1987-09-18 Fuji Photo Film Co Ltd 光重合性組成物
JPS6341484A (ja) 1986-08-01 1988-02-22 チバ−ガイギ− ア−ゲ− チタノセン、それらの製造法およびそれらを含有する組成物
JPS6353543A (ja) 1986-08-23 1988-03-07 Konica Corp 発汗現象及びスタチツクマ−ク発生を防止したハロゲン化銀写真感光材料
JPS6353544A (ja) 1986-08-25 1988-03-07 Konica Corp 発汗現象及びスタチツクマ−ク発生を防止したハロゲン化銀写真感光材料
JPS6356651A (ja) 1986-08-27 1988-03-11 Konica Corp 発汗現象及びスタチツクマ−ク発生を防止したハロゲン化銀写真感光材料
JPS6370243A (ja) 1986-09-11 1988-03-30 Fuji Photo Film Co Ltd 感光性組成物
US4760013A (en) 1987-02-17 1988-07-26 International Business Machines Corporation Sulfonium salt photoinitiators
JPH01105238A (ja) 1987-03-28 1989-04-21 Hoechst Ag 光重合可能な混合物および光重合可能な記録材料
JPS63260909A (ja) 1987-03-28 1988-10-27 ヘキスト・アクチエンゲゼルシヤフト 光重合性混合物及びこの混合物から製造される記録材料
JPS63277653A (ja) 1987-03-28 1988-11-15 ヘキスト・アクチエンゲゼルシヤフト 重合可能な化合物、これを含有する放射線重合可能な混合物及び放射線重合可能な記録材料
JPH07120041B2 (ja) 1987-05-21 1995-12-20 富士写真フイルム株式会社 感光性組成物
JPH07120042B2 (ja) 1987-05-21 1995-12-20 富士写真フイルム株式会社 感光性組成物
JPS63287947A (ja) 1987-05-21 1988-11-25 Fuji Photo Film Co Ltd 感光性組成物
JPS63287944A (ja) 1987-05-21 1988-11-25 Fuji Photo Film Co Ltd 感光性組成物
JPS63298339A (ja) 1987-05-29 1988-12-06 Fuji Photo Film Co Ltd 感光性組成物
EP0297442B1 (de) 1987-07-01 1991-02-27 BASF Aktiengesellschaft Sulfoniumsalze mit säurelabilen Gruppierungen
EP0297443B1 (de) 1987-07-01 1994-06-08 BASF Aktiengesellschaft Strahlungsempfindliches Gemisch für lichtempfindliche Beschichtungsmaterialien
JPH0812424B2 (ja) 1987-11-19 1996-02-07 富士写真フイルム株式会社 感光性組成物
JPH02249A (ja) 1987-12-01 1990-01-05 Ciba Geigy Ag チタノセンおよびそれを含有する光重合性組成物
US4933377A (en) 1988-02-29 1990-06-12 Saeva Franklin D Novel sulfonium salts and the use thereof as photoinitiators
JPH024705A (ja) 1988-03-24 1990-01-09 Dentsply Internatl Inc 光硬化性組成物用チタナート開始剤
JPH01271741A (ja) 1988-04-25 1989-10-30 Fuji Photo Film Co Ltd 感光性組成物
JPH0225493A (ja) 1988-05-21 1990-01-26 Hoechst Ag アルケニルホスホン酸エステルおよびアルケニルホスフイン酸エルテル、その製法並びに当該化合物を含有する放射線重合性混合物および記録材料
EP0370693B1 (en) 1988-11-21 1994-04-06 Eastman Kodak Company Novel onium salts and the use thereof as photoinitiators
JPH02150848A (ja) 1988-12-02 1990-06-11 Hitachi Ltd 光退色性放射線感応性組成物およびそれを用いたパターン形成法
EP0390214A2 (en) 1989-03-31 1990-10-03 E.F. Johnson Company Method and apparatus for a distributive wide area network for a land mobile transmission trunked communication system
JPH02296514A (ja) 1989-05-12 1990-12-07 Matsushita Electric Ind Co Ltd 車両用サスペンション制御装置
JPH04275459A (ja) * 1991-03-04 1992-10-01 Sharp Corp 固体撮像素子及びその製造方法
JPH04365049A (ja) 1991-06-12 1992-12-17 Fuji Photo Film Co Ltd 感光性組成物
JP2764769B2 (ja) 1991-06-24 1998-06-11 富士写真フイルム株式会社 光重合性組成物
JPH0583588A (ja) 1991-09-24 1993-04-02 Omron Corp 画像処理装置
JPH06157623A (ja) 1992-08-14 1994-06-07 Toyo Ink Mfg Co Ltd 重合性組成物および重合方法
JPH06175554A (ja) 1992-12-03 1994-06-24 Toyo Ink Mfg Co Ltd 体積位相型ホログラムの製造方法
JPH06175553A (ja) 1992-12-03 1994-06-24 Toyo Ink Mfg Co Ltd ホログラム記録媒体及びそれを用いた体積位相型ホログラムの製造方法
JPH06175564A (ja) 1992-12-04 1994-06-24 Toyo Ink Mfg Co Ltd ホログラム記録材料及びそれを用いた体積位相型ホログラムの製造方法
JPH06175561A (ja) 1992-12-04 1994-06-24 Toyo Ink Mfg Co Ltd ホログラム記録媒体及びそれを用いた体積位相型ホログラムの製造方法
JPH06348011A (ja) 1993-06-04 1994-12-22 Toyo Ink Mfg Co Ltd 光重合性組成物
JPH07128785A (ja) 1993-11-02 1995-05-19 Konica Corp 画像形成材料及び画像形成方法
JPH07140589A (ja) 1993-11-19 1995-06-02 Konica Corp 画像形成材料および画像形成方法
JPH07292014A (ja) 1994-04-25 1995-11-07 Nippon Paint Co Ltd 近赤外光重合性組成物
JPH07306527A (ja) 1994-05-11 1995-11-21 Konica Corp 画像形成材料及び画像形成方法
JPH08108621A (ja) 1994-10-06 1996-04-30 Konica Corp 画像記録媒体及びそれを用いる画像形成方法
JPH08124248A (ja) 1994-10-25 1996-05-17 Victor Co Of Japan Ltd 磁気記録再生装置
JPH09188710A (ja) 1995-11-24 1997-07-22 Ciba Geigy Ag モノボランからのボレート光開始剤
JPH09188685A (ja) 1995-11-24 1997-07-22 Ciba Geigy Ag 光重合のためのボレート補助開始剤
JPH09188686A (ja) 1995-11-24 1997-07-22 Ciba Geigy Ag 光重合のための酸安定性硼酸塩
JPH1062986A (ja) 1996-08-21 1998-03-06 Fuji Photo Film Co Ltd 感放射線性着色組成物
JPH10291969A (ja) 1996-12-06 1998-11-04 Ciba Specialty Chem Holding Inc 新規α−アミノアセトフェノン光開始剤
JP3718031B2 (ja) * 1997-07-23 2005-11-16 富士写真フイルム株式会社 反射防止膜及びそれを用いた画像表示装置
JP2000080068A (ja) 1998-06-26 2000-03-21 Ciba Specialty Chem Holding Inc 新規o―アシルオキシム光開始剤
JP2000131837A (ja) 1998-08-17 2000-05-12 Mitsubishi Chemicals Corp 光重合性組成物、光重合性平版印刷版及び画像形成方法
JP2000066385A (ja) 1998-08-18 2000-03-03 Ciba Specialty Chem Holding Inc 高感度で高レジスト厚さのi線ホトレジスト用スルホニルオキシム類
EP0993966B1 (de) 1998-10-13 2003-05-14 Agfa-Gevaert naamloze vennootschap Negativ arbeitendes, strahlungsempfindliches Gemisch zur Herstellung eines mit Wärme oder Infrarotlaser bebilderbaren Aufzeichnungsmaterials
JP2000187322A (ja) 1998-10-15 2000-07-04 Mitsubishi Chemicals Corp 感光性組成物、画像形成材料及びそれを用いた画像形成方法
JP2001016539A (ja) 1999-06-30 2001-01-19 Canon Inc 画像入力装置およびその制御方法、情報処理装置およびその方法、印刷システム、並びに、記録媒体
JP2001233611A (ja) 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP2001242612A (ja) 2000-03-01 2001-09-07 Fuji Photo Film Co Ltd 画像記録材料
JP2001318463A (ja) 2000-05-11 2001-11-16 Fuji Photo Film Co Ltd ネガ型平版印刷版原版
JP2002062698A (ja) 2000-08-21 2002-02-28 Kyocera Corp 画像形成機
JP2002107916A (ja) 2000-09-27 2002-04-10 Fuji Photo Film Co Ltd 平版印刷版原版
JP2002107918A (ja) 2000-10-03 2002-04-10 Fuji Photo Film Co Ltd 感光性平版印刷版
EP1204000B1 (en) 2000-11-06 2011-01-12 FUJIFILM Corporation Photosensitive lithographic printing plate
JP2002309057A (ja) 2001-04-13 2002-10-23 Fuji Photo Film Co Ltd 酸分解型感光性組成物及び酸分解型平版印刷版
JP2002311569A (ja) 2001-04-13 2002-10-23 Fuji Photo Film Co Ltd 感光性組成物及びネガ型平版印刷版
JP2002328465A (ja) 2001-04-27 2002-11-15 Fuji Photo Film Co Ltd 平版印刷版原版
JP2004534797A (ja) 2001-06-11 2004-11-18 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 組み合わされた構造を有するオキシムエステルの光開始剤
JP4225898B2 (ja) 2001-08-21 2009-02-18 チバ ホールディング インコーポレーテッド 深色モノ−及びビス−アシルホスフィンオキシド及びスルフィド並びに光開始剤としてのこれらの使用
JP2003226516A (ja) 2001-11-27 2003-08-12 Mitsubishi Chemicals Corp シリカ及びその製造方法
JP2003327424A (ja) 2002-03-05 2003-11-19 National Institute Of Advanced Industrial & Technology 高多孔質シリカキセロゲルの製造方法
JP2003335515A (ja) 2002-05-17 2003-11-25 National Institute Of Advanced Industrial & Technology 微細孔を有する三次元高規則性ナノポーラス無機多孔体及びその製造方法並びにその評価方法
JP2004031532A (ja) * 2002-06-25 2004-01-29 Toppan Printing Co Ltd 固体撮像素子の製造方法
JP2004061545A (ja) * 2002-07-24 2004-02-26 Sony Corp 投影用スクリーンおよびその製造方法
JP2004300204A (ja) 2003-03-28 2004-10-28 Nippon Shokubai Co Ltd 硬化性樹脂組成物およびその用途
US7626957B2 (en) 2003-04-04 2009-12-01 Samsung Electronics Co., Ltd. Home agent management apparatus and method
JP2005148681A (ja) * 2003-11-20 2005-06-09 Fuji Photo Film Co Ltd 反射防止フィルム、それを用いた偏光板および画像表示装置
JP2005283786A (ja) * 2004-03-29 2005-10-13 Jsr Corp マイクロレンズ反射防止膜用硬化性組成物及びこれを用いたマイクロレンズ用反射防止積層体
JP2006098985A (ja) 2004-09-30 2006-04-13 Dainippon Printing Co Ltd 固体撮像素子レンズ用感光性樹脂組成物、これを用いた固体撮像素子レンズ及び固体撮像素子レンズの形成方法、並びに固体撮像素子
JP2006186295A (ja) 2004-11-30 2006-07-13 Dainippon Printing Co Ltd 固体撮像素子用レンズ、固体撮像素子レンズ用撥水コーティング材料及び固体撮像素子
JP2007119744A (ja) 2005-09-28 2007-05-17 Toray Ind Inc 熱硬化性樹脂組成物
JP2009519904A (ja) 2005-12-01 2009-05-21 チバ ホールディング インコーポレーテッド オキシムエステル光開始剤
US7556910B2 (en) 2005-12-01 2009-07-07 LF Chem, Ltd. Photosensitive composition comprising triazine-based photoactive compound containing oxime ester
JP4364216B2 (ja) 2005-12-30 2009-11-11 チェイル インダストリーズ インコーポレイテッド 感光性樹脂組成物及びこれを用いたブラックマトリックス
JP2007269779A (ja) 2006-02-24 2007-10-18 Fujifilm Corp オキシム誘導体、光重合性組成物、カラーフィルタおよびその製造方法
JP2007238884A (ja) * 2006-03-13 2007-09-20 Fujifilm Corp 光学物品
JP2007322744A (ja) 2006-05-31 2007-12-13 Fujifilm Corp 着色感光性樹脂組成物、及び感光性樹脂転写材料、並びに、カラーフィルタ、カラーフィルタの製造方法、及び液晶表示装置
JP2008292970A (ja) 2006-09-27 2008-12-04 Fujifilm Corp 化合物及びその互変異性体、金属錯体化合物、感光性着色硬化性組成物、カラーフィルタ、及びその製造方法
US20090292039A1 (en) 2006-12-27 2009-11-26 Adeka Corporation Oxime ester compound and photopolymerization initiator containing the same
JP2009191061A (ja) 2007-08-27 2009-08-27 Fujifilm Corp 新規化合物、光重合性組成物、カラーフィルタ用光重合性組成物、カラーフィルタ、及びその製造方法、固体撮像素子、並びに、平版印刷版原版
JP2009203462A (ja) 2008-01-31 2009-09-10 Fujifilm Corp 樹脂、顔料分散液、着色硬化性組成物、これを用いたカラーフィルタ及びその製造方法
JP2009191179A (ja) 2008-02-15 2009-08-27 Toyo Ink Mfg Co Ltd 光重合開始剤、重合性組成物、および重合物の製造方法。
JP2009221114A (ja) 2008-03-13 2009-10-01 Fujifilm Corp 重合開始機能を有する化合物、重合開始剤、重合性組成物、カラーフィルタ及びその製造方法、ならびに固体撮像素子
JP2009242469A (ja) 2008-03-28 2009-10-22 Fujifilm Corp 重合性組成物、カラーフィルタ、カラーフィルタの製造方法、及び固体撮像素子
WO2009123109A1 (ja) 2008-03-31 2009-10-08 富士フイルム株式会社 感光性透明樹脂組成物、カラーフィルタの製造方法及びカラーフィルター
WO2009131189A1 (ja) 2008-04-25 2009-10-29 三菱化学株式会社 ケトオキシムエステル系化合物及びその利用
JP2010032985A (ja) 2008-06-30 2010-02-12 Fujifilm Corp 新規化合物、重合性組成物、カラーフィルタ、及びその製造方法、固体撮像素子、並びに、平版印刷版原版
JP2010015025A (ja) 2008-07-04 2010-01-21 Adeka Corp 特定の光重合開始剤を含有する感光性組成物
JP2010061066A (ja) * 2008-09-08 2010-03-18 Toray Ind Inc ディスプレイ用フィルター
WO2010044402A1 (ja) * 2008-10-17 2010-04-22 日立化成工業株式会社 低屈折率膜及びその製造方法、反射防止膜及びその製造方法、低屈折率膜用コーティング液セット、微粒子積層薄膜付き基材及びその製造方法、並びに光学部材
JP2010129825A (ja) 2008-11-28 2010-06-10 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2010160418A (ja) 2009-01-09 2010-07-22 Hitachi Chem Co Ltd 感光性樹脂組成物,並びにこれを用いた感光性エレメント,ソルダーレジスト及びプリント配線板
JP2010185072A (ja) 2009-01-15 2010-08-26 Fujifilm Corp 新規化合物、重合性組成物、カラーフィルタ、及びその製造方法、固体撮像素子、並びに、平版印刷版原版
JP2010210702A (ja) 2009-03-06 2010-09-24 Fujifilm Corp 固体撮像素子用着色硬化性組成物、カラーフィルタ、及びその製造方法
JP2011127096A (ja) * 2009-11-20 2011-06-30 Fujifilm Corp 分散組成物及び感光性樹脂組成物、並びに固体撮像素子
JP2011128632A (ja) * 2011-01-17 2011-06-30 Mitsui Chemicals Inc フッ素含有環状オレフィンポリマーを用いた反射防止膜
JP2012251125A (ja) * 2011-05-06 2012-12-20 Fujifilm Corp 分散組成物、並びに、これを用いた硬化性組成物、透明膜、マイクロレンズ、及び、固体撮像素子

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Chemical Manual", 1993, MARUZEN CO., LTD.
"Journal of Japanese Chemistry", vol. 122, 1979, NANKODO, pages: 96 - 103
"Lange's Hand book of Chemistry", 1979, MC GRAW-HILL
C.S. WEN ET AL., TEH, PROC. CONF. RAD. CURING ASIA, October 1988 (1988-10-01), pages 478
CHEMICAL REVIEWS, vol. 91, 1991, pages 165 - 195
J.C.S.PERKIN II, 1979, pages 156 - 162
J.C.S.PERKIN II, 1979, pages 1653 - 1660
J.V.CRIVEILO ET AL., MACROMOLECULES, vol. 10, no. 6, 1977, pages 1307
J.VCRIVELLO ET AL., J.POLYMER SCI., POLYMER CHEM. ED, vol. 17, 1979, pages 1047
JOURNAL OF APPLIED POLYMER SCIENCE, 2012, pages 725 - 731
JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 1995, pages 202 - 232
JOURNAL OF THE ADHESION SOCIETY OF JAPAN, vol. 20, no. 7, 1984, pages 300 - 308
KUNZ, MARTIN, RAD TECH'98. PROCEEDING, 19 April 1998 (1998-04-19)
S.I.SCHLESINGER, PHOTOGR.SCI.ENG., vol. 18, 1974, pages 387
T.S.BAL ET AL., POLYMER, vol. 21, 1980, pages 423
WAKABAYASHI ET AL., BULL. CHEM. SOC. JAPAN, vol. 42, 1969, pages 2924

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046018A1 (ja) * 2013-09-25 2015-04-02 東レ株式会社 感光性遮光ペースト及びタッチセンサー用積層パターンの製造方法
JP5733483B1 (ja) * 2013-09-25 2015-06-10 東レ株式会社 感光性遮光ペースト及びタッチセンサー用積層パターンの製造方法
JP2015118353A (ja) * 2013-12-20 2015-06-25 凸版印刷株式会社 半球形状のマイクロレンズ付カラーフィルタ
WO2023157793A1 (ja) * 2022-02-15 2023-08-24 三菱ケミカル株式会社 熱可塑性樹脂組成物、成形材料及び成形体
TWI843441B (zh) * 2022-02-15 2024-05-21 日商三菱化學股份有限公司 熱可塑性樹脂組成物、成形材料、成形體、車輛用構件、電氣電子構件、光學構件、醫療用構件、食品包裝及成形體的製造方法

Also Published As

Publication number Publication date
JP2014074874A (ja) 2014-04-24
JP5922013B2 (ja) 2016-05-24
US20140284747A1 (en) 2014-09-25
CN104011567A (zh) 2014-08-27
EP2799912A1 (en) 2014-11-05
KR20140090232A (ko) 2014-07-16
EP2799912A4 (en) 2015-07-29
TW201331611A (zh) 2013-08-01
CN104011567B (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5922013B2 (ja) 光学部材セット及びこれを用いた固体撮像素子
JP6140604B2 (ja) 赤外線反射膜形成用の硬化性樹脂組成物、赤外線反射膜及びその製造方法、並びに赤外線カットフィルタ及びこれを用いた固体撮像素子
JP6343446B2 (ja) 硬化性樹脂組成物、赤外線カットフィルタ及びこれを用いた固体撮像素子
JP5976523B2 (ja) 光学部材セット及びこれを用いた固体撮像素子
JP5976575B2 (ja) 低屈折率膜形成用硬化性組成物、光学部材セットの製造方法及び硬化性組成物の製造方法
JP5898887B2 (ja) 組成物、並びに、これを用いた透明膜、マイクロレンズ、固体撮像素子、透明膜の製造方法、マイクロレンズの製造方法、及び、固体撮像素子の製造方法
KR101651160B1 (ko) 분산 조성물, 이것을 사용한 경화성 조성물, 투명막, 마이크로렌즈, 및 고체 촬상 소자
JP2015187211A (ja) 着色組成物、硬化膜、カラーフィルタ、パターン形成方法、カラーフィルタの製造方法、固体撮像素子、および、画像表示装置
TWI712680B (zh) 遠紅外線透射性組成物、形成體、積層體、遠紅外線透射濾波器、固體攝像元件及紅外線照相機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147014920

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012862041

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012862041

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE