WO2011013707A1 - L-アミノ酸の製造法 - Google Patents
L-アミノ酸の製造法 Download PDFInfo
- Publication number
- WO2011013707A1 WO2011013707A1 PCT/JP2010/062708 JP2010062708W WO2011013707A1 WO 2011013707 A1 WO2011013707 A1 WO 2011013707A1 JP 2010062708 W JP2010062708 W JP 2010062708W WO 2011013707 A1 WO2011013707 A1 WO 2011013707A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- medium
- treatment
- strain
- amino acid
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 66
- 241000894006 Bacteria Species 0.000 claims abstract description 142
- 239000002609 medium Substances 0.000 claims abstract description 138
- 150000008575 L-amino acids Chemical class 0.000 claims abstract description 105
- 238000009825 accumulation Methods 0.000 claims abstract description 16
- 239000001963 growth medium Substances 0.000 claims abstract description 12
- 238000011282 treatment Methods 0.000 claims description 112
- 241000588724 Escherichia coli Species 0.000 claims description 111
- 238000000034 method Methods 0.000 claims description 110
- 150000004665 fatty acids Chemical class 0.000 claims description 97
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 88
- 229930195729 fatty acid Natural products 0.000 claims description 88
- 239000000194 fatty acid Substances 0.000 claims description 88
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 83
- 239000000047 product Substances 0.000 claims description 67
- 241000195493 Cryptophyta Species 0.000 claims description 56
- 239000002244 precipitate Substances 0.000 claims description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000003513 alkali Substances 0.000 claims description 22
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 19
- 239000008103 glucose Substances 0.000 claims description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 15
- 238000005119 centrifugation Methods 0.000 claims description 13
- 239000003960 organic solvent Substances 0.000 claims description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- 239000006228 supernatant Substances 0.000 claims description 12
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 10
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 10
- 241000186254 coryneform bacterium Species 0.000 claims description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 9
- 241000588921 Enterobacteriaceae Species 0.000 claims description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 9
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 8
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 claims description 6
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 claims description 6
- 241000196319 Chlorophyceae Species 0.000 claims description 6
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 6
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 claims description 6
- 241001464837 Viridiplantae Species 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 6
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 claims description 6
- 241000195628 Chlorophyta Species 0.000 claims description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 3
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 3
- 241000206761 Bacillariophyta Species 0.000 claims description 2
- 238000012258 culturing Methods 0.000 abstract description 8
- 230000001737 promoting effect Effects 0.000 abstract description 8
- 238000003306 harvesting Methods 0.000 abstract description 2
- 108090000623 proteins and genes Proteins 0.000 description 233
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 92
- 230000000694 effects Effects 0.000 description 86
- 108090000790 Enzymes Proteins 0.000 description 84
- 102000004190 Enzymes Human genes 0.000 description 83
- 229940088598 enzyme Drugs 0.000 description 83
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 75
- 239000000243 solution Substances 0.000 description 69
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 54
- 229910052799 carbon Inorganic materials 0.000 description 53
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 51
- 230000001965 increasing effect Effects 0.000 description 48
- 239000004473 Threonine Substances 0.000 description 47
- 229960002898 threonine Drugs 0.000 description 47
- 230000014509 gene expression Effects 0.000 description 46
- 239000004472 Lysine Substances 0.000 description 43
- 235000019766 L-Lysine Nutrition 0.000 description 40
- 108090000854 Oxidoreductases Proteins 0.000 description 38
- 108010074122 Ferredoxins Proteins 0.000 description 33
- 230000035772 mutation Effects 0.000 description 33
- 102000004316 Oxidoreductases Human genes 0.000 description 32
- 239000013612 plasmid Substances 0.000 description 32
- 108090001060 Lipase Proteins 0.000 description 31
- 235000001014 amino acid Nutrition 0.000 description 31
- 235000018102 proteins Nutrition 0.000 description 31
- 102000004169 proteins and genes Human genes 0.000 description 31
- 108010031852 Pyruvate Synthase Proteins 0.000 description 30
- 210000004027 cell Anatomy 0.000 description 30
- 239000003925 fat Substances 0.000 description 30
- 102000004882 Lipase Human genes 0.000 description 29
- 229920002472 Starch Polymers 0.000 description 29
- 229940024606 amino acid Drugs 0.000 description 29
- 235000019698 starch Nutrition 0.000 description 29
- 150000001413 amino acids Chemical class 0.000 description 28
- 244000005700 microbiome Species 0.000 description 28
- 241000186226 Corynebacterium glutamicum Species 0.000 description 27
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 27
- 239000004367 Lipase Substances 0.000 description 27
- 235000019421 lipase Nutrition 0.000 description 27
- 239000008107 starch Substances 0.000 description 27
- 239000003921 oil Substances 0.000 description 26
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 25
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 25
- 239000002585 base Substances 0.000 description 25
- 230000005764 inhibitory process Effects 0.000 description 25
- 229940076788 pyruvate Drugs 0.000 description 25
- 238000006467 substitution reaction Methods 0.000 description 24
- 108020004414 DNA Proteins 0.000 description 23
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 23
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 23
- 239000000523 sample Substances 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 22
- 229960002989 glutamic acid Drugs 0.000 description 22
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 21
- 238000000855 fermentation Methods 0.000 description 21
- 230000004151 fermentation Effects 0.000 description 21
- 241000588722 Escherichia Species 0.000 description 20
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 20
- 230000002829 reductive effect Effects 0.000 description 19
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 18
- 241000186031 Corynebacteriaceae Species 0.000 description 18
- 108010057366 Flavodoxin Proteins 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 18
- 230000000295 complement effect Effects 0.000 description 18
- 229960000310 isoleucine Drugs 0.000 description 17
- 239000000126 substance Substances 0.000 description 17
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 16
- 238000000605 extraction Methods 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 125000003275 alpha amino acid group Chemical group 0.000 description 15
- 230000012010 growth Effects 0.000 description 15
- 230000001851 biosynthetic effect Effects 0.000 description 14
- 230000001939 inductive effect Effects 0.000 description 14
- 239000002773 nucleotide Substances 0.000 description 14
- 125000003729 nucleotide group Chemical group 0.000 description 14
- 229960004295 valine Drugs 0.000 description 14
- -1 fatty acid ester Chemical class 0.000 description 13
- 239000011734 sodium Substances 0.000 description 13
- 229960004799 tryptophan Drugs 0.000 description 13
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 12
- 229930182844 L-isoleucine Natural products 0.000 description 12
- 241000195646 Parachlorella kessleri Species 0.000 description 12
- 239000000306 component Substances 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 12
- 241000186146 Brevibacterium Species 0.000 description 11
- 241000186216 Corynebacterium Species 0.000 description 11
- 241000196324 Embryophyta Species 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 10
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 10
- 241000588696 Pantoea ananatis Species 0.000 description 10
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 10
- 238000004945 emulsification Methods 0.000 description 10
- 229960002885 histidine Drugs 0.000 description 10
- 229960003136 leucine Drugs 0.000 description 10
- 241000701959 Escherichia virus Lambda Species 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 9
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 9
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 9
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 9
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 9
- 229930182821 L-proline Natural products 0.000 description 9
- 241000520272 Pantoea Species 0.000 description 9
- 230000002708 enhancing effect Effects 0.000 description 9
- 101150115959 fadR gene Proteins 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 229960004452 methionine Drugs 0.000 description 9
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 9
- 229960002429 proline Drugs 0.000 description 9
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 8
- 108020004306 Alpha-ketoglutarate dehydrogenase Proteins 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 241000660147 Escherichia coli str. K-12 substr. MG1655 Species 0.000 description 8
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 8
- 239000004395 L-leucine Substances 0.000 description 8
- 235000019454 L-leucine Nutrition 0.000 description 8
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 8
- 241000588912 Pantoea agglomerans Species 0.000 description 8
- 241000319304 [Brevibacterium] flavum Species 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 238000007664 blowing Methods 0.000 description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 description 8
- 101150035025 lysC gene Proteins 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 230000006798 recombination Effects 0.000 description 8
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 8
- 102000006589 Alpha-ketoglutarate dehydrogenase Human genes 0.000 description 7
- 241000195649 Chlorella <Chlorellales> Species 0.000 description 7
- 241001646716 Escherichia coli K-12 Species 0.000 description 7
- 108010064711 Homoserine dehydrogenase Proteins 0.000 description 7
- FFEARJCKVFRZRR-UHFFFAOYSA-N L-Methionine Natural products CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 7
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 7
- 229930195722 L-methionine Natural products 0.000 description 7
- 241000196305 Nannochloris Species 0.000 description 7
- 229960000723 ampicillin Drugs 0.000 description 7
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 150000004668 long chain fatty acids Chemical class 0.000 description 7
- 229960001153 serine Drugs 0.000 description 7
- 101150014006 thrA gene Proteins 0.000 description 7
- 101150000850 thrC gene Proteins 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 108091000044 4-hydroxy-tetrahydrodipicolinate synthase Proteins 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 108020004705 Codon Proteins 0.000 description 6
- 101710088194 Dehydrogenase Proteins 0.000 description 6
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 6
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 239000012228 culture supernatant Substances 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 230000002503 metabolic effect Effects 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 6
- 229960005190 phenylalanine Drugs 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 108010037870 Anthranilate Synthase Proteins 0.000 description 5
- 101000950981 Bacillus subtilis (strain 168) Catabolic NAD-specific glutamate dehydrogenase RocG Proteins 0.000 description 5
- 241000195585 Chlamydomonas Species 0.000 description 5
- 102100037579 D-3-phosphoglycerate dehydrogenase Human genes 0.000 description 5
- 241000588914 Enterobacter Species 0.000 description 5
- 108090001042 Hydro-Lyases Proteins 0.000 description 5
- 102000004867 Hydro-Lyases Human genes 0.000 description 5
- 229930064664 L-arginine Natural products 0.000 description 5
- 235000014852 L-arginine Nutrition 0.000 description 5
- 108091000041 Phosphoenolpyruvate Carboxylase Proteins 0.000 description 5
- 108010038555 Phosphoglycerate dehydrogenase Proteins 0.000 description 5
- 241000607142 Salmonella Species 0.000 description 5
- 238000012790 confirmation Methods 0.000 description 5
- 229960002433 cysteine Drugs 0.000 description 5
- 101150011371 dapA gene Proteins 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 238000004520 electroporation Methods 0.000 description 5
- 238000002744 homologous recombination Methods 0.000 description 5
- 230000006801 homologous recombination Effects 0.000 description 5
- 230000000968 intestinal effect Effects 0.000 description 5
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 230000001954 sterilising effect Effects 0.000 description 5
- 238000004659 sterilization and disinfection Methods 0.000 description 5
- WPLOVIFNBMNBPD-ATHMIXSHSA-N subtilin Chemical compound CC1SCC(NC2=O)C(=O)NC(CC(N)=O)C(=O)NC(C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NC(=C)C(=O)NC(CCCCN)C(O)=O)CSC(C)C2NC(=O)C(CC(C)C)NC(=O)C1NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C1NC(=O)C(=C/C)/NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C2NC(=O)CNC(=O)C3CCCN3C(=O)C(NC(=O)C3NC(=O)C(CC(C)C)NC(=O)C(=C)NC(=O)C(CCC(O)=O)NC(=O)C(NC(=O)C(CCCCN)NC(=O)C(N)CC=4C5=CC=CC=C5NC=4)CSC3)C(C)SC2)C(C)C)C(C)SC1)CC1=CC=CC=C1 WPLOVIFNBMNBPD-ATHMIXSHSA-N 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 238000009210 therapy by ultrasound Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- WTFXTQVDAKGDEY-UHFFFAOYSA-N (-)-chorismic acid Natural products OC1C=CC(C(O)=O)=CC1OC(=C)C(O)=O WTFXTQVDAKGDEY-UHFFFAOYSA-N 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 4
- 108010030844 2-methylcitrate synthase Proteins 0.000 description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 4
- 108010000700 Acetolactate synthase Proteins 0.000 description 4
- 108700028369 Alleles Proteins 0.000 description 4
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 4
- 108010055400 Aspartate kinase Proteins 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 108010071536 Citrate (Si)-synthase Proteins 0.000 description 4
- 101150071111 FADD gene Proteins 0.000 description 4
- 102100022624 Glucoamylase Human genes 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 108090000364 Ligases Proteins 0.000 description 4
- 239000006142 Luria-Bertani Agar Substances 0.000 description 4
- 108010048581 Lysine decarboxylase Proteins 0.000 description 4
- 239000005642 Oleic acid Substances 0.000 description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 4
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 4
- 238000005273 aeration Methods 0.000 description 4
- 101150005925 aspC gene Proteins 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229940041514 candida albicans extract Drugs 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- WTFXTQVDAKGDEY-HTQZYQBOSA-N chorismic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1OC(=C)C(O)=O WTFXTQVDAKGDEY-HTQZYQBOSA-N 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 101150099290 cyoC gene Proteins 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000006911 enzymatic reaction Methods 0.000 description 4
- 230000029142 excretion Effects 0.000 description 4
- 101150091570 gapA gene Proteins 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 101150095957 ilvA gene Proteins 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- FIKAKWIAUPDISJ-UHFFFAOYSA-L paraquat dichloride Chemical compound [Cl-].[Cl-].C1=C[N+](C)=CC=C1C1=CC=[N+](C)C=C1 FIKAKWIAUPDISJ-UHFFFAOYSA-L 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229960005322 streptomycin Drugs 0.000 description 4
- 101150111745 sucA gene Proteins 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 101150072448 thrB gene Proteins 0.000 description 4
- 239000012138 yeast extract Substances 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 3
- 108020004652 Aspartate-Semialdehyde Dehydrogenase Proteins 0.000 description 3
- 108010063377 Aspartokinase Homoserine Dehydrogenase Proteins 0.000 description 3
- 244000063299 Bacillus subtilis Species 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 3
- 101000779368 Bacillus subtilis (strain 168) Aspartokinase 3 Proteins 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 108010000898 Chorismate mutase Proteins 0.000 description 3
- 102000018832 Cytochromes Human genes 0.000 description 3
- 108010052832 Cytochromes Proteins 0.000 description 3
- 101100465553 Dictyostelium discoideum psmB6 gene Proteins 0.000 description 3
- 101100024384 Escherichia coli (strain K12) mscS gene Proteins 0.000 description 3
- 241001302584 Escherichia coli str. K-12 substr. W3110 Species 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- 101150099894 GDHA gene Proteins 0.000 description 3
- 102000016901 Glutamate dehydrogenase Human genes 0.000 description 3
- 244000068988 Glycine max Species 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- 101100277701 Halobacterium salinarum gdhX gene Proteins 0.000 description 3
- 108090000769 Isomerases Proteins 0.000 description 3
- 101100453819 Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) kgd gene Proteins 0.000 description 3
- 241000256658 Pantoea ananatis AJ13355 Species 0.000 description 3
- DTBNBXWJWCWCIK-UHFFFAOYSA-N Phosphoenolpyruvic acid Natural products OC(=O)C(=C)OP(O)(O)=O DTBNBXWJWCWCIK-UHFFFAOYSA-N 0.000 description 3
- 101100392454 Picrophilus torridus (strain ATCC 700027 / DSM 9790 / JCM 10055 / NBRC 100828) gdh2 gene Proteins 0.000 description 3
- 108010035004 Prephenate Dehydrogenase Proteins 0.000 description 3
- 101100169519 Pyrococcus abyssi (strain GE5 / Orsay) dapAL gene Proteins 0.000 description 3
- 241000588746 Raoultella planticola Species 0.000 description 3
- 101100116769 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) gdhA-2 gene Proteins 0.000 description 3
- 108050008280 Shikimate dehydrogenase Proteins 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 108010006873 Threonine Dehydratase Proteins 0.000 description 3
- 108010022394 Threonine synthase Proteins 0.000 description 3
- 102000006843 Threonine synthase Human genes 0.000 description 3
- 102100033451 Thyroid hormone receptor beta Human genes 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 108010075344 Tryptophan synthase Proteins 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- 241000179532 [Candida] cylindracea Species 0.000 description 3
- 239000000370 acceptor Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 108090000637 alpha-Amylases Proteins 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 108010019077 beta-Amylase Proteins 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 101150008667 cadA gene Proteins 0.000 description 3
- 210000003850 cellular structure Anatomy 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 238000012136 culture method Methods 0.000 description 3
- 101150101009 cyoA gene Proteins 0.000 description 3
- 101150038722 cyoB gene Proteins 0.000 description 3
- 101150092413 cyoE gene Proteins 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- 101150073654 dapB gene Proteins 0.000 description 3
- 101150057904 ddh gene Proteins 0.000 description 3
- 101150004992 fadA gene Proteins 0.000 description 3
- 101150069125 fadB gene Proteins 0.000 description 3
- 101150016526 fadE gene Proteins 0.000 description 3
- 101150094039 fadL gene Proteins 0.000 description 3
- 230000004129 fatty acid metabolism Effects 0.000 description 3
- 108010036889 fatty acid oxidation complex Proteins 0.000 description 3
- 101150100173 fdx gene Proteins 0.000 description 3
- 101150056064 glpK gene Proteins 0.000 description 3
- 101150106096 gltA gene Proteins 0.000 description 3
- 101150042350 gltA2 gene Proteins 0.000 description 3
- 101150032598 hisG gene Proteins 0.000 description 3
- 101150063051 hom gene Proteins 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 108010071598 homoserine kinase Proteins 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 101150109073 ldhD gene Proteins 0.000 description 3
- YAFQFNOUYXZVPZ-UHFFFAOYSA-N liproxstatin-1 Chemical compound ClC1=CC=CC(CNC=2C3(CCNCC3)NC3=CC=CC=C3N=2)=C1 YAFQFNOUYXZVPZ-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000018977 lysine Nutrition 0.000 description 3
- 239000012533 medium component Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 235000013379 molasses Nutrition 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 235000014593 oils and fats Nutrition 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 238000010979 pH adjustment Methods 0.000 description 3
- 108010085336 phosphoribosyl-AMP cyclohydrolase Proteins 0.000 description 3
- 101150023641 ppc gene Proteins 0.000 description 3
- 229940107700 pyruvic acid Drugs 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 101150117659 rhtA gene Proteins 0.000 description 3
- 108020001482 shikimate kinase Proteins 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 3
- 229960004441 tyrosine Drugs 0.000 description 3
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- KJZHLKZXRSCVKH-UHFFFAOYSA-N 1-methyl-4-(1-methyl-4h-pyridin-4-yl)-4h-pyridine Chemical compound C1=CN(C)C=CC1C1C=CN(C)C=C1 KJZHLKZXRSCVKH-UHFFFAOYSA-N 0.000 description 2
- 108020004465 16S ribosomal RNA Proteins 0.000 description 2
- 108050006180 3-dehydroquinate synthase Proteins 0.000 description 2
- CXABZTLXNODUTD-UHFFFAOYSA-N 3-fluoropyruvic acid Chemical compound OC(=O)C(=O)CF CXABZTLXNODUTD-UHFFFAOYSA-N 0.000 description 2
- LGVJIYCMHMKTPB-UHFFFAOYSA-N 3-hydroxynorvaline Chemical compound CCC(O)C(N)C(O)=O LGVJIYCMHMKTPB-UHFFFAOYSA-N 0.000 description 2
- DVNYTAVYBRSTGK-UHFFFAOYSA-N 5-aminoimidazole-4-carboxamide Chemical compound NC(=O)C=1N=CNC=1N DVNYTAVYBRSTGK-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 108010058756 ATP phosphoribosyltransferase Proteins 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 239000004382 Amylase Substances 0.000 description 2
- 102000013142 Amylases Human genes 0.000 description 2
- 108010065511 Amylases Proteins 0.000 description 2
- 229920000945 Amylopectin Polymers 0.000 description 2
- 102100034613 Annexin A2 Human genes 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- KDZOASGQNOPSCU-WDSKDSINSA-N Argininosuccinic acid Chemical compound OC(=O)[C@@H](N)CCC\N=C(/N)N[C@H](C(O)=O)CC(O)=O KDZOASGQNOPSCU-WDSKDSINSA-N 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 101000780609 Bacillus subtilis (strain 168) Aspartokinase 1 Proteins 0.000 description 2
- 108010077805 Bacterial Proteins Proteins 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 241001025270 Brevibacterium album Species 0.000 description 2
- 101100280051 Brucella abortus biovar 1 (strain 9-941) eryH gene Proteins 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 102100023441 Centromere protein J Human genes 0.000 description 2
- 241000195597 Chlamydomonas reinhardtii Species 0.000 description 2
- 241000191382 Chlorobaculum tepidum Species 0.000 description 2
- 108010003662 Chorismate synthase Proteins 0.000 description 2
- 241000206751 Chrysophyceae Species 0.000 description 2
- 102000006732 Citrate synthase Human genes 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 241001517047 Corynebacterium acetoacidophilum Species 0.000 description 2
- 241000909293 Corynebacterium alkanolyticum Species 0.000 description 2
- 241000186145 Corynebacterium ammoniagenes Species 0.000 description 2
- 241000337023 Corynebacterium thermoaminogenes Species 0.000 description 2
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 2
- 241000694959 Cryptococcus sp. Species 0.000 description 2
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 2
- 108010014468 Dihydrodipicolinate Reductase Proteins 0.000 description 2
- 241000222175 Diutina rugosa Species 0.000 description 2
- 241000588698 Erwinia Species 0.000 description 2
- 101100398755 Escherichia coli (strain K12) ldcC gene Proteins 0.000 description 2
- 241000362749 Ettlia oleoabundans Species 0.000 description 2
- 241000195619 Euglena gracilis Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- 108091022930 Glutamate decarboxylase Proteins 0.000 description 2
- 102000008214 Glutamate decarboxylase Human genes 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 241000206759 Haptophyceae Species 0.000 description 2
- 101000924474 Homo sapiens Annexin A2 Proteins 0.000 description 2
- 101000916406 Homo sapiens Calsyntenin-2 Proteins 0.000 description 2
- 101000907924 Homo sapiens Centromere protein J Proteins 0.000 description 2
- 101000693082 Homo sapiens Serine/threonine-protein kinase 11-interacting protein Proteins 0.000 description 2
- 241000605325 Hydrogenobacter thermophilus Species 0.000 description 2
- 102000004195 Isomerases Human genes 0.000 description 2
- 241000588748 Klebsiella Species 0.000 description 2
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 239000004201 L-cysteine Substances 0.000 description 2
- 235000013878 L-cysteine Nutrition 0.000 description 2
- 150000008545 L-lysines Chemical class 0.000 description 2
- 125000000393 L-methionino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(SC([H])([H])[H])([H])[H] 0.000 description 2
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-M L-valinate Chemical compound CC(C)[C@H](N)C([O-])=O KZSNJWFQEVHDMF-BYPYZUCNSA-M 0.000 description 2
- 239000005639 Lauric acid Substances 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 240000003183 Manihot esculenta Species 0.000 description 2
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 2
- 241001302042 Methanothermobacter thermautotrophicus Species 0.000 description 2
- 241001467578 Microbacterium Species 0.000 description 2
- 101100276041 Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) ctpD gene Proteins 0.000 description 2
- 101100235161 Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) lerI gene Proteins 0.000 description 2
- OLYPWXRMOFUVGH-LURJTMIESA-N N(2)-methyl-L-lysine Chemical compound CN[C@H](C(O)=O)CCCCN OLYPWXRMOFUVGH-LURJTMIESA-N 0.000 description 2
- BVIAOQMSVZHOJM-UHFFFAOYSA-N N(6),N(6)-dimethyladenine Chemical compound CN(C)C1=NC=NC2=C1N=CN2 BVIAOQMSVZHOJM-UHFFFAOYSA-N 0.000 description 2
- 241000195644 Neochloris Species 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 239000007990 PIPES buffer Substances 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 241000199919 Phaeophyceae Species 0.000 description 2
- 108010009736 Protein Hydrolysates Proteins 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 2
- 101100408135 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) phnA gene Proteins 0.000 description 2
- 108020005115 Pyruvate Kinase Proteins 0.000 description 2
- 102000013009 Pyruvate Kinase Human genes 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 101100492609 Talaromyces wortmannii astC gene Proteins 0.000 description 2
- 241000520244 Tatumella citrea Species 0.000 description 2
- 241001293481 Trebouxiophyceae Species 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229930003779 Vitamin B12 Natural products 0.000 description 2
- 241000206764 Xanthophyceae Species 0.000 description 2
- 101150116772 aatA gene Proteins 0.000 description 2
- 229960003767 alanine Drugs 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N aldehydo-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 102000004139 alpha-Amylases Human genes 0.000 description 2
- 229940024171 alpha-amylase Drugs 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 235000019418 amylase Nutrition 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009697 arginine Nutrition 0.000 description 2
- 229960003121 arginine Drugs 0.000 description 2
- 101150037081 aroA gene Proteins 0.000 description 2
- 101150107204 asd gene Proteins 0.000 description 2
- 229960005261 aspartic acid Drugs 0.000 description 2
- 230000001651 autotrophic effect Effects 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 2
- 150000005693 branched-chain amino acids Chemical class 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 101150033858 cyoD gene Proteins 0.000 description 2
- 101150100742 dapL gene Proteins 0.000 description 2
- 238000006114 decarboxylation reaction Methods 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 108010056578 diaminopimelate dehydrogenase Proteins 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 101150032129 egsA gene Proteins 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229940013640 flavin mononucleotide Drugs 0.000 description 2
- FVTCRASFADXXNN-SCRDCRAPSA-N flavin mononucleotide Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-SCRDCRAPSA-N 0.000 description 2
- 239000011768 flavin mononucleotide Substances 0.000 description 2
- FVTCRASFADXXNN-UHFFFAOYSA-N flavin mononucleotide Natural products OP(=O)(O)OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-UHFFFAOYSA-N 0.000 description 2
- QEWYKACRFQMRMB-UHFFFAOYSA-N fluoroacetic acid Chemical compound OC(=O)CF QEWYKACRFQMRMB-UHFFFAOYSA-N 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 101150057222 fpr gene Proteins 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 101150096836 fsaB gene Proteins 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 101150033931 gldA gene Proteins 0.000 description 2
- 101150040073 glpK2 gene Proteins 0.000 description 2
- 229930182478 glucoside Natural products 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 101150104722 gpmI gene Proteins 0.000 description 2
- 101150056694 hisC gene Proteins 0.000 description 2
- 101150054929 hisE gene Proteins 0.000 description 2
- 101150041745 hisI gene Proteins 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- ODBLHEXUDAPZAU-UHFFFAOYSA-N isocitric acid Chemical compound OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 2
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 description 2
- 229960003646 lysine Drugs 0.000 description 2
- 239000013028 medium composition Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 108010014405 methylcitrate synthase Proteins 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 125000001477 organic nitrogen group Chemical group 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 229930029653 phosphoenolpyruvate Natural products 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 101150000475 pntAB gene Proteins 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 101150067185 ppsA gene Proteins 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 210000001938 protoplast Anatomy 0.000 description 2
- 101150015622 pyk gene Proteins 0.000 description 2
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 2
- 235000019231 riboflavin-5'-phosphate Nutrition 0.000 description 2
- 239000002342 ribonucleoside Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- BRBKOPJOKNSWSG-UHFFFAOYSA-N sulfaguanidine Chemical compound NC(=N)NS(=O)(=O)C1=CC=C(N)C=C1 BRBKOPJOKNSWSG-UHFFFAOYSA-N 0.000 description 2
- 229960004257 sulfaguanidine Drugs 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 101150080369 tpiA gene Proteins 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 101150044170 trpE gene Proteins 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000019163 vitamin B12 Nutrition 0.000 description 2
- 239000011715 vitamin B12 Substances 0.000 description 2
- 108010062110 water dikinase pyruvate Proteins 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 101150051662 yddG gene Proteins 0.000 description 2
- 101150115337 yedA gene Proteins 0.000 description 2
- 101150028413 yfhL gene Proteins 0.000 description 2
- NZWPVDFOIUKVSJ-YFKPBYRVSA-N (2s)-2,6-diamino-n-hydroxyhexanamide Chemical compound NCCCC[C@H](N)C(=O)NO NZWPVDFOIUKVSJ-YFKPBYRVSA-N 0.000 description 1
- GMKATDLSKRGLMZ-WHFBIAKZSA-N (2s,3s)-2-amino-n-hydroxy-3-methylpentanamide Chemical compound CC[C@H](C)[C@H](N)C(=O)NO GMKATDLSKRGLMZ-WHFBIAKZSA-N 0.000 description 1
- OJJHFKVRJCQKLN-YFKPBYRVSA-N (4s)-4-acetamido-5-oxo-5-phosphonooxypentanoic acid Chemical compound OC(=O)CC[C@H](NC(=O)C)C(=O)OP(O)(O)=O OJJHFKVRJCQKLN-YFKPBYRVSA-N 0.000 description 1
- GIVGVNLRHLKCMH-DAXSKMNVSA-N (z)-n-(acetylcarbamoyl)-2-ethylbut-2-enamide Chemical compound CC\C(=C\C)C(=O)NC(=O)NC(C)=O GIVGVNLRHLKCMH-DAXSKMNVSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- FDCJDKXCCYFOCV-UHFFFAOYSA-N 1-hexadecoxyhexadecane Chemical compound CCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCC FDCJDKXCCYFOCV-UHFFFAOYSA-N 0.000 description 1
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 1
- IEORSVTYLWZQJQ-UHFFFAOYSA-N 2-(2-nonylphenoxy)ethanol Chemical compound CCCCCCCCCC1=CC=CC=C1OCCO IEORSVTYLWZQJQ-UHFFFAOYSA-N 0.000 description 1
- CDOCNWRWMUMCLP-UHFFFAOYSA-N 2-(dodecanoylamino)-4-methylpentanoic acid Chemical compound CCCCCCCCCCCC(=O)NC(C(O)=O)CC(C)C CDOCNWRWMUMCLP-UHFFFAOYSA-N 0.000 description 1
- NLMKTBGFQGKQEV-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-hexadecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO NLMKTBGFQGKQEV-UHFFFAOYSA-N 0.000 description 1
- LMSDCGXQALIMLM-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;iron Chemical compound [Fe].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O LMSDCGXQALIMLM-UHFFFAOYSA-N 0.000 description 1
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical compound CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 description 1
- QDGAVODICPCDMU-UHFFFAOYSA-N 2-amino-3-[3-[bis(2-chloroethyl)amino]phenyl]propanoic acid Chemical compound OC(=O)C(N)CC1=CC=CC(N(CCCl)CCCl)=C1 QDGAVODICPCDMU-UHFFFAOYSA-N 0.000 description 1
- AKSIYNOQZYMJED-UHFFFAOYSA-N 2-amino-4-(aminomethoxy)butanoic acid Chemical compound NCOCCC(N)C(O)=O AKSIYNOQZYMJED-UHFFFAOYSA-N 0.000 description 1
- ZAYJDMWJYCTABM-UHFFFAOYSA-N 2-azaniumyl-3-hydroxy-4-methylpentanoate Chemical compound CC(C)C(O)C(N)C(O)=O ZAYJDMWJYCTABM-UHFFFAOYSA-N 0.000 description 1
- WTOFYLAWDLQMBZ-UHFFFAOYSA-N 2-azaniumyl-3-thiophen-2-ylpropanoate Chemical compound OC(=O)C(N)CC1=CC=CS1 WTOFYLAWDLQMBZ-UHFFFAOYSA-N 0.000 description 1
- NZPACTGCRWDXCJ-UHFFFAOYSA-N 2-heptyl-4-hydroxyquinoline N-oxide Chemical compound C1=CC=CC2=[N+]([O-])C(CCCCCCC)=CC(O)=C21 NZPACTGCRWDXCJ-UHFFFAOYSA-N 0.000 description 1
- 102000052553 3-Hydroxyacyl CoA Dehydrogenase Human genes 0.000 description 1
- 108700020831 3-Hydroxyacyl-CoA Dehydrogenase Proteins 0.000 description 1
- 108010055522 3-hydroxybutyryl-CoA epimerase Proteins 0.000 description 1
- 102100029103 3-ketoacyl-CoA thiolase Human genes 0.000 description 1
- KEZRWUUMKVVUPT-UHFFFAOYSA-N 4-azaleucine Chemical compound CN(C)CC(N)C(O)=O KEZRWUUMKVVUPT-UHFFFAOYSA-N 0.000 description 1
- 108010017192 4-hydroxy-4-methyl-2-oxoglutarate aldolase Proteins 0.000 description 1
- XFGVJLGVINCWDP-UHFFFAOYSA-N 5,5,5-trifluoroleucine Chemical compound FC(F)(F)C(C)CC(N)C(O)=O XFGVJLGVINCWDP-UHFFFAOYSA-N 0.000 description 1
- 108010092060 Acetate kinase Proteins 0.000 description 1
- 108010003902 Acetyl-CoA C-acyltransferase Proteins 0.000 description 1
- 108700021045 Acetylglutamate kinase Proteins 0.000 description 1
- 108010049445 Acetylornithine transaminase Proteins 0.000 description 1
- 108010009924 Aconitate hydratase Proteins 0.000 description 1
- 102000009836 Aconitate hydratase Human genes 0.000 description 1
- 108010001058 Acyl-CoA Dehydrogenase Proteins 0.000 description 1
- 102000002735 Acyl-CoA Dehydrogenase Human genes 0.000 description 1
- 102100029589 Acylpyruvase FAHD1, mitochondrial Human genes 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 101100163490 Alkalihalobacillus halodurans (strain ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125) aroA1 gene Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 102000052866 Amino Acyl-tRNA Synthetases Human genes 0.000 description 1
- 108700028939 Amino Acyl-tRNA Synthetases Proteins 0.000 description 1
- 108010032178 Amino-acid N-acetyltransferase Proteins 0.000 description 1
- 102000007610 Amino-acid N-acetyltransferase Human genes 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 102100040894 Amylo-alpha-1,6-glucosidase Human genes 0.000 description 1
- 101710104691 Amylo-alpha-1,6-glucosidase Proteins 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 241000584629 Aosa Species 0.000 description 1
- 101100368748 Aquifex aeolicus (strain VF5) tal gene Proteins 0.000 description 1
- 101000640990 Arabidopsis thaliana Tryptophan-tRNA ligase, chloroplastic/mitochondrial Proteins 0.000 description 1
- 241001167018 Aroa Species 0.000 description 1
- 241001495180 Arthrospira Species 0.000 description 1
- 240000002900 Arthrospira platensis Species 0.000 description 1
- 235000016425 Arthrospira platensis Nutrition 0.000 description 1
- 101100452036 Aspergillus niger icdA gene Proteins 0.000 description 1
- 241001467606 Bacillariophyceae Species 0.000 description 1
- 101100216993 Bacillus subtilis (strain 168) aroD gene Proteins 0.000 description 1
- 101100021490 Bacillus subtilis (strain 168) lnrK gene Proteins 0.000 description 1
- 101100242035 Bacillus subtilis (strain 168) pdhA gene Proteins 0.000 description 1
- 101100096227 Bacteroides fragilis (strain 638R) argF' gene Proteins 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 108010029692 Bisphosphoglycerate mutase Proteins 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 241001453380 Burkholderia Species 0.000 description 1
- 241000589638 Burkholderia glumae Species 0.000 description 1
- 241000178343 Butea superba Species 0.000 description 1
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 description 1
- 102100021851 Calbindin Human genes 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000131329 Carabidae Species 0.000 description 1
- 229940123982 Cell wall synthesis inhibitor Drugs 0.000 description 1
- 241000923152 Charophyceae Species 0.000 description 1
- 241001147674 Chlorarachniophyceae Species 0.000 description 1
- 102100034229 Citramalyl-CoA lyase, mitochondrial Human genes 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 101100054574 Corynebacterium diphtheriae (strain ATCC 700971 / NCTC 13129 / Biotype gravis) acn gene Proteins 0.000 description 1
- 241001644925 Corynebacterium efficiens Species 0.000 description 1
- 241001485655 Corynebacterium glutamicum ATCC 13032 Species 0.000 description 1
- 241000003367 Cryptococcus sp. S-2 Species 0.000 description 1
- 241000223936 Cryptosporidium parvum Species 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- SRBFZHDQGSBBOR-SOOFDHNKSA-N D-ribopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@@H]1O SRBFZHDQGSBBOR-SOOFDHNKSA-N 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 108030003594 Diaminopimelate decarboxylases Proteins 0.000 description 1
- 108010001625 Diaminopimelate epimerase Proteins 0.000 description 1
- 241001529919 Dictyochophyceae Species 0.000 description 1
- 101100215150 Dictyostelium discoideum aco1 gene Proteins 0.000 description 1
- 101100378193 Dictyostelium discoideum aco2 gene Proteins 0.000 description 1
- 101100190555 Dictyostelium discoideum pkgB gene Proteins 0.000 description 1
- 101100310802 Dictyostelium discoideum splA gene Proteins 0.000 description 1
- 241000199914 Dinophyceae Species 0.000 description 1
- 241000195633 Dunaliella salina Species 0.000 description 1
- 239000004278 EU approved seasoning Substances 0.000 description 1
- 240000003133 Elaeis guineensis Species 0.000 description 1
- 235000001950 Elaeis guineensis Nutrition 0.000 description 1
- 101100491986 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) aromA gene Proteins 0.000 description 1
- 101100498063 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) cysB gene Proteins 0.000 description 1
- 108010023922 Enoyl-CoA hydratase Proteins 0.000 description 1
- 102000011426 Enoyl-CoA hydratase Human genes 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- 101000779367 Escherichia coli (strain K12) Lysine-sensitive aspartokinase 3 Proteins 0.000 description 1
- 101100117984 Escherichia coli (strain K12) eamB gene Proteins 0.000 description 1
- 101100447155 Escherichia coli (strain K12) fre gene Proteins 0.000 description 1
- 101100072034 Escherichia coli (strain K12) icd gene Proteins 0.000 description 1
- 101100454725 Escherichia coli (strain K12) leuE gene Proteins 0.000 description 1
- 101100400218 Escherichia coli (strain K12) lysO gene Proteins 0.000 description 1
- 241000702191 Escherichia virus P1 Species 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 241000195623 Euglenida Species 0.000 description 1
- 241000224472 Eustigmatophyceae Species 0.000 description 1
- 101710130885 FAD-AMP lyase (cyclizing) Proteins 0.000 description 1
- 108010046335 Ferredoxin-NADP Reductase Proteins 0.000 description 1
- 108050000235 Fructose-6-phosphate aldolases Proteins 0.000 description 1
- 102000001390 Fructose-Bisphosphate Aldolase Human genes 0.000 description 1
- 108010068561 Fructose-Bisphosphate Aldolase Proteins 0.000 description 1
- 101150039774 GAPA1 gene Proteins 0.000 description 1
- 241000192128 Gammaproteobacteria Species 0.000 description 1
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 1
- 241001517276 Glaucocystophyceae Species 0.000 description 1
- 102000005731 Glucose-6-phosphate isomerase Human genes 0.000 description 1
- 108010070600 Glucose-6-phosphate isomerase Proteins 0.000 description 1
- 102000005133 Glutamate 5-kinase Human genes 0.000 description 1
- 108700023479 Glutamate 5-kinases Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 108700016170 Glycerol kinases Proteins 0.000 description 1
- 102000057621 Glycerol kinases Human genes 0.000 description 1
- 108010015895 Glycerone kinase Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 101100295959 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) arcB gene Proteins 0.000 description 1
- 241000227166 Harrimanella hypnoides Species 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 108010003774 Histidinol-phosphatase Proteins 0.000 description 1
- 108050003783 Histidinol-phosphate aminotransferase Proteins 0.000 description 1
- 101000898082 Homo sapiens Calbindin Proteins 0.000 description 1
- 108010016979 Homoserine O-succinyltransferase Proteins 0.000 description 1
- 101100299372 Hydrogenobacter thermophilus (strain DSM 6534 / IAM 12695 / TK-6) pspA gene Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- 108010075869 Isocitrate Dehydrogenase Proteins 0.000 description 1
- 102000012011 Isocitrate Dehydrogenase Human genes 0.000 description 1
- 108010000200 Ketol-acid reductoisomerase Proteins 0.000 description 1
- 241000588915 Klebsiella aerogenes Species 0.000 description 1
- 101100123255 Komagataeibacter xylinus aceC gene Proteins 0.000 description 1
- OYIFNHCXNCRBQI-BYPYZUCNSA-N L-2-aminoadipic acid Chemical compound OC(=O)[C@@H](N)CCCC(O)=O OYIFNHCXNCRBQI-BYPYZUCNSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- 125000000998 L-alanino group Chemical group [H]N([*])[C@](C([H])([H])[H])([H])C(=O)O[H] 0.000 description 1
- 125000000570 L-alpha-aspartyl group Chemical group [H]OC(=O)C([H])([H])[C@]([H])(N([H])[H])C(*)=O 0.000 description 1
- IXHTVNGQTIZAFS-BYPYZUCNSA-N L-arginine hydroxamate Chemical compound ONC(=O)[C@@H](N)CCCN=C(N)N IXHTVNGQTIZAFS-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- 229930195714 L-glutamate Natural products 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- 125000003290 L-leucino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(C([H])([H])[H])([H])C([H])([H])[H] 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- 125000002068 L-phenylalanino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- GHSJKUNUIHUPDF-BYPYZUCNSA-N L-thialysine Chemical compound NCCSC[C@H](N)C(O)=O GHSJKUNUIHUPDF-BYPYZUCNSA-N 0.000 description 1
- 108010043075 L-threonine 3-dehydrogenase Proteins 0.000 description 1
- 101150021155 LIP2 gene Proteins 0.000 description 1
- 101100387236 Lactococcus lactis subsp. lactis (strain IL1403) dhaS gene Proteins 0.000 description 1
- 101100504994 Lactococcus lactis subsp. lactis (strain IL1403) glpO gene Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 101710098556 Lipase A Proteins 0.000 description 1
- 101710098554 Lipase B Proteins 0.000 description 1
- 101710153103 Long-chain-fatty-acid-CoA ligase FadD13 Proteins 0.000 description 1
- 108090000856 Lyases Proteins 0.000 description 1
- 101710099648 Lysosomal acid lipase/cholesteryl ester hydrolase Proteins 0.000 description 1
- 102100026001 Lysosomal acid lipase/cholesteryl ester hydrolase Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 108020004687 Malate Synthase Proteins 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108090000301 Membrane transport proteins Proteins 0.000 description 1
- 102000003939 Membrane transport proteins Human genes 0.000 description 1
- 101000859568 Methanobrevibacter smithii (strain ATCC 35061 / DSM 861 / OCM 144 / PS) Carbamoyl-phosphate synthase Proteins 0.000 description 1
- 241000203353 Methanococcus Species 0.000 description 1
- 241001529871 Methanococcus maripaludis Species 0.000 description 1
- 101100435931 Methanosarcina acetivorans (strain ATCC 35395 / DSM 2834 / JCM 12185 / C2A) aroK gene Proteins 0.000 description 1
- 101100261636 Methanothermobacter marburgensis (strain ATCC BAA-927 / DSM 2133 / JCM 14651 / NBRC 100331 / OCM 82 / Marburg) trpB2 gene Proteins 0.000 description 1
- 241000588771 Morganella <proteobacterium> Species 0.000 description 1
- 101100019512 Mus musculus Kiaa1109 gene Proteins 0.000 description 1
- 101100354186 Mycoplasma capricolum subsp. capricolum (strain California kid / ATCC 27343 / NCTC 10154) ptcA gene Proteins 0.000 description 1
- RFMMMVDNIPUKGG-YFKPBYRVSA-N N-acetyl-L-glutamic acid Chemical compound CC(=O)N[C@H](C(O)=O)CCC(O)=O RFMMMVDNIPUKGG-YFKPBYRVSA-N 0.000 description 1
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 102000000818 NADP Transhydrogenases Human genes 0.000 description 1
- 108010001609 NADP Transhydrogenases Proteins 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 108020004485 Nonsense Codon Proteins 0.000 description 1
- 101100276922 Nostoc sp. (strain PCC 7120 / SAG 25.82 / UTEX 2576) dapF2 gene Proteins 0.000 description 1
- 108010061618 O-succinylhomoserine (thiol)-lyase Proteins 0.000 description 1
- 241000353355 Oreosoma atlanticum Species 0.000 description 1
- 101710113020 Ornithine transcarbamylase, mitochondrial Proteins 0.000 description 1
- 108010069823 Oxaloacetate decarboxylase Proteins 0.000 description 1
- 102100026367 Pancreatic alpha-amylase Human genes 0.000 description 1
- 241000932831 Pantoea stewartii Species 0.000 description 1
- 241001494902 Pelagophyceae Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108700023175 Phosphate acetyltransferases Proteins 0.000 description 1
- 102000001105 Phosphofructokinases Human genes 0.000 description 1
- 108010069341 Phosphofructokinases Proteins 0.000 description 1
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 1
- 102000011025 Phosphoglycerate Mutase Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 101100124346 Photorhabdus laumondii subsp. laumondii (strain DSM 15139 / CIP 105565 / TT01) hisCD gene Proteins 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 108010015724 Prephenate Dehydratase Proteins 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 241000588768 Providencia Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 101100134871 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) aceE gene Proteins 0.000 description 1
- 101100217185 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) aruC gene Proteins 0.000 description 1
- 101100282114 Pseudomonas aeruginosa (strain UCBPP-PA14) gap2 gene Proteins 0.000 description 1
- 101001021643 Pseudozyma antarctica Lipase B Proteins 0.000 description 1
- 101710104378 Putative malate oxidoreductase [NAD] Proteins 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 101100453320 Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1) pfkC gene Proteins 0.000 description 1
- 108010053763 Pyruvate Carboxylase Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 241000206572 Rhodophyta Species 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- GGLZPLKKBSSKCX-UHFFFAOYSA-N S-ethylhomocysteine Chemical compound CCSCCC(N)C(O)=O GGLZPLKKBSSKCX-UHFFFAOYSA-N 0.000 description 1
- 101100281670 Salmonella typhi fsa gene Proteins 0.000 description 1
- 108091022908 Serine O-acetyltransferase Proteins 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- 241000592344 Spermatophyta Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 101100114621 Staphylococcus aureus (strain Newman) ctaB gene Proteins 0.000 description 1
- 101100256199 Starmerella bombicola sble gene Proteins 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 101100116197 Streptomyces lavendulae dcsC gene Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 101100022072 Sulfolobus acidocaldarius (strain ATCC 33909 / DSM 639 / JCM 8929 / NBRC 15157 / NCIMB 11770) lysJ gene Proteins 0.000 description 1
- 101100029403 Synechocystis sp. (strain PCC 6803 / Kazusa) pfkA2 gene Proteins 0.000 description 1
- 241001491687 Thalassiosira pseudonana Species 0.000 description 1
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 1
- 101100002724 Thermus thermophilus aroH gene Proteins 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 102100040653 Tryptophan 2,3-dioxygenase Human genes 0.000 description 1
- 101710136122 Tryptophan 2,3-dioxygenase Proteins 0.000 description 1
- 102000002501 Tryptophan-tRNA Ligase Human genes 0.000 description 1
- 241001465357 Ulvophyceae Species 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- 229930003451 Vitamin B1 Natural products 0.000 description 1
- 229930003471 Vitamin B2 Natural products 0.000 description 1
- 241000607734 Yersinia <bacteria> Species 0.000 description 1
- SZYSLWCAWVWFLT-UTGHZIEOSA-N [(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)-2-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxolan-2-yl]methyl octadecanoate Chemical compound O([C@@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@]1(COC(=O)CCCCCCCCCCCCCCCCC)O[C@H](CO)[C@@H](O)[C@@H]1O SZYSLWCAWVWFLT-UTGHZIEOSA-N 0.000 description 1
- DFPAKSUCGFBDDF-ZQBYOMGUSA-N [14c]-nicotinamide Chemical compound N[14C](=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-ZQBYOMGUSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 101150094017 aceA gene Proteins 0.000 description 1
- 101150113917 acnA gene Proteins 0.000 description 1
- 101150053555 acnB gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 125000000266 alpha-aminoacyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 239000003674 animal food additive Substances 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 101150075954 apeB gene Proteins 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- SCJNCDSAIRBRIA-DOFZRALJSA-N arachidonyl-2'-chloroethylamide Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)NCCCl SCJNCDSAIRBRIA-DOFZRALJSA-N 0.000 description 1
- 101150072344 argA gene Proteins 0.000 description 1
- 101150008194 argB gene Proteins 0.000 description 1
- 101150070427 argC gene Proteins 0.000 description 1
- 101150089042 argC2 gene Proteins 0.000 description 1
- 101150050866 argD gene Proteins 0.000 description 1
- 101150056313 argF gene Proteins 0.000 description 1
- 101150118463 argG gene Proteins 0.000 description 1
- 101150029940 argJ gene Proteins 0.000 description 1
- 101150090235 aroB gene Proteins 0.000 description 1
- 101150042732 aroC gene Proteins 0.000 description 1
- 101150040872 aroE gene Proteins 0.000 description 1
- 101150076125 aroG gene Proteins 0.000 description 1
- 101150007004 aroL gene Proteins 0.000 description 1
- 101150010999 aroP gene Proteins 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 101150070136 axeA gene Proteins 0.000 description 1
- 239000007640 basal medium Substances 0.000 description 1
- 230000037429 base substitution Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- BJYPZFUWWJSAKC-ARJAWSKDSA-N but-1-ene-1,2,4-tricarboxylic acid Chemical compound OC(=O)CC\C(C(O)=O)=C\C(O)=O BJYPZFUWWJSAKC-ARJAWSKDSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- NCEXYHBECQHGNR-UHFFFAOYSA-N chembl421 Chemical compound C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- OTAFHZMPRISVEM-UHFFFAOYSA-N chromone Chemical compound C1=CC=C2C(=O)C=COC2=C1 OTAFHZMPRISVEM-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 101150058227 cysB gene Proteins 0.000 description 1
- 101150111114 cysE gene Proteins 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 101150062988 dapF gene Proteins 0.000 description 1
- 230000000911 decarboxylating effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 101150101290 dhaK gene Proteins 0.000 description 1
- 101150038914 dhaL gene Proteins 0.000 description 1
- 101150021516 dhaM gene Proteins 0.000 description 1
- 101150066721 dhaR gene Proteins 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 229940092559 enterobacter aerogenes Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 108010055246 excisionase Proteins 0.000 description 1
- 101150027774 fadI gene Proteins 0.000 description 1
- 101150092019 fadJ gene Proteins 0.000 description 1
- 150000002185 fatty acyl-CoAs Chemical class 0.000 description 1
- 239000012526 feed medium Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 101150019247 fldA gene Proteins 0.000 description 1
- 101150081680 fldB gene Proteins 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 108010008221 formate C-acetyltransferase Proteins 0.000 description 1
- 231100000221 frame shift mutation induction Toxicity 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- RNBGYGVWRKECFJ-UHFFFAOYSA-N fructose-1,6-phosphate Natural products OC1C(O)C(O)(COP(O)(O)=O)OC1COP(O)(O)=O RNBGYGVWRKECFJ-UHFFFAOYSA-N 0.000 description 1
- 101150028429 fsa gene Proteins 0.000 description 1
- 101150030308 fsaA gene Proteins 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 101150073818 gap gene Proteins 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 101150028543 glpA gene Proteins 0.000 description 1
- 101150083364 glpB gene Proteins 0.000 description 1
- 101150019438 glpC gene Proteins 0.000 description 1
- 101150081661 glpD gene Proteins 0.000 description 1
- 101150020594 glpD1 gene Proteins 0.000 description 1
- 101150017132 glpE gene Proteins 0.000 description 1
- 101150071897 glpF gene Proteins 0.000 description 1
- 101150007853 glpG gene Proteins 0.000 description 1
- 101150051832 glpO gene Proteins 0.000 description 1
- 101150042759 glpQ gene Proteins 0.000 description 1
- 101150097706 glpR gene Proteins 0.000 description 1
- 101150095702 glpT gene Proteins 0.000 description 1
- 101150024374 glpX gene Proteins 0.000 description 1
- 150000002303 glucose derivatives Chemical class 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 229940049906 glutamate Drugs 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 108010050322 glutamate acetyltransferase Proteins 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- 102000005396 glutamine synthetase Human genes 0.000 description 1
- 108020002326 glutamine synthetase Proteins 0.000 description 1
- 108010064177 glutamine synthetase I Proteins 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 101150084612 gpmA gene Proteins 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 101150050908 hisA gene Proteins 0.000 description 1
- 101150107671 hisB gene Proteins 0.000 description 1
- 101150118121 hisC1 gene Proteins 0.000 description 1
- 101150113423 hisD gene Proteins 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 101150069930 ileS gene Proteins 0.000 description 1
- 101150020087 ilvG gene Proteins 0.000 description 1
- 101150015635 ilvI gene Proteins 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011419 induction treatment Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- BKWBIMSGEOYWCJ-UHFFFAOYSA-L iron;iron(2+);sulfanide Chemical compound [SH-].[SH-].[Fe].[Fe+2] BKWBIMSGEOYWCJ-UHFFFAOYSA-L 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002519 isoleucine derivatives Chemical class 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 101150041134 ldcC gene Proteins 0.000 description 1
- 101150087199 leuA gene Proteins 0.000 description 1
- 150000002614 leucines Chemical class 0.000 description 1
- 101150077696 lip-1 gene Proteins 0.000 description 1
- 235000019626 lipase activity Nutrition 0.000 description 1
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical compound [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 description 1
- 235000019136 lipoic acid Nutrition 0.000 description 1
- 101150003321 lpdA gene Proteins 0.000 description 1
- 101150033534 lysA gene Proteins 0.000 description 1
- 101150094164 lysY gene Proteins 0.000 description 1
- 101150039489 lysZ gene Proteins 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- 125000003071 maltose group Chemical group 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 230000003843 mucus production Effects 0.000 description 1
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- 230000037434 nonsense mutation Effects 0.000 description 1
- 230000037435 normal mutation Effects 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- XEEVLJKYYUVTRC-UHFFFAOYSA-N oxomalonic acid Chemical compound OC(=O)C(=O)C(O)=O XEEVLJKYYUVTRC-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 101150094986 pepC gene Proteins 0.000 description 1
- 101150038284 pfkA gene Proteins 0.000 description 1
- 101150004013 pfkA1 gene Proteins 0.000 description 1
- 101150100557 pfkB gene Proteins 0.000 description 1
- 101150060387 pfp gene Proteins 0.000 description 1
- 101150016647 pgmA gene Proteins 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 101150023849 pheA gene Proteins 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 108010068070 phosphoenolpyruvate carboxylase kinase Proteins 0.000 description 1
- 108010028025 phosphoribosyl-ATP pyrophosphatase Proteins 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 101150077403 priA gene Proteins 0.000 description 1
- 101150046501 proB gene Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000013587 production medium Substances 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 101150029104 prpC gene Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000013014 purified material Substances 0.000 description 1
- 108010060537 putidaredoxin Proteins 0.000 description 1
- 101150100525 pykA gene Proteins 0.000 description 1
- 101150053304 pykF gene Proteins 0.000 description 1
- RADKZDMFGJYCBB-UHFFFAOYSA-N pyridoxal hydrochloride Natural products CC1=NC=C(CO)C(C=O)=C1O RADKZDMFGJYCBB-UHFFFAOYSA-N 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 108010005284 pyruvate-flavodoxin oxidoreductase Proteins 0.000 description 1
- 150000004728 pyruvic acid derivatives Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000035806 respiratory chain Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 101150033014 rhtB gene Proteins 0.000 description 1
- 101150094644 rhtC gene Proteins 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 101150002295 serA gene Proteins 0.000 description 1
- JXOHGGNKMLTUBP-HSUXUTPPSA-N shikimic acid Chemical compound O[C@@H]1CC(C(O)=O)=C[C@@H](O)[C@H]1O JXOHGGNKMLTUBP-HSUXUTPPSA-N 0.000 description 1
- JXOHGGNKMLTUBP-JKUQZMGJSA-N shikimic acid Natural products O[C@@H]1CC(C(O)=O)=C[C@H](O)[C@@H]1O JXOHGGNKMLTUBP-JKUQZMGJSA-N 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- IFGCUJZIWBUILZ-UHFFFAOYSA-N sodium 2-[[2-[[hydroxy-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyphosphoryl]amino]-4-methylpentanoyl]amino]-3-(1H-indol-3-yl)propanoic acid Chemical compound [Na+].C=1NC2=CC=CC=C2C=1CC(C(O)=O)NC(=O)C(CC(C)C)NP(O)(=O)OC1OC(C)C(O)C(O)C1O IFGCUJZIWBUILZ-UHFFFAOYSA-N 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 235000019710 soybean protein Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229940082787 spirulina Drugs 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 1
- 229960002663 thioctic acid Drugs 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- 101150103782 thrL gene Proteins 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 101150037435 tnaB gene Proteins 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 108010045994 tricholysine Proteins 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 101150019416 trpA gene Proteins 0.000 description 1
- 101150081616 trpB gene Proteins 0.000 description 1
- 101150111232 trpB-1 gene Proteins 0.000 description 1
- 101150059846 trpS gene Proteins 0.000 description 1
- 238000000539 two dimensional gel electrophoresis Methods 0.000 description 1
- 101150049689 tyrP gene Proteins 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 235000010374 vitamin B1 Nutrition 0.000 description 1
- 239000011691 vitamin B1 Substances 0.000 description 1
- 235000019164 vitamin B2 Nutrition 0.000 description 1
- 239000011716 vitamin B2 Substances 0.000 description 1
- 235000019158 vitamin B6 Nutrition 0.000 description 1
- 239000011726 vitamin B6 Substances 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/08—Lysine; Diaminopimelic acid; Threonine; Valine
Definitions
- the present invention relates to a method for producing an L-amino acid using a microorganism.
- L-amino acids are used in various fields such as seasonings, food additives, feed additives, chemical products, and pharmaceuticals.
- L-amino acids such as L-threonine and L-lysine are industrially produced by fermentation using L-amino acid-producing bacteria such as Escherichia bacteria having the ability to produce L-amino acids.
- L-amino acid-producing bacteria strains isolated from the natural world, artificial mutants of the strains, recombinants in which L-amino acid biosynthetic enzymes are enhanced by gene recombination, and the like are used.
- Examples of the method for producing L-threonine include the methods described in Patent Documents 1 to 4.
- examples of the method for producing L-lysine include the methods described in Patent Documents 5 to 8.
- saccharides that is, glucose, fructose, sucrose, molasses, starch hydrolysate, and the like are used as carbon sources.
- a carbon source in the L-amino acid fermentation method is a saccharified starch derived from higher plants such as corn and cassava. Since these have low moisture content and high starch content, it is easy to obtain starch industrially.
- starch contained in microalgae has a content comparable to corn and cassava per dry weight, but the dry alga body weight per algal culture is less than 1%.
- Patent Documents 9 to 10 or Non-Patent Document 1 describe performing ethanol fermentation using microalgal starch, but the results of ethanol fermentation are not shown. In addition, no examples of saccharification of microalgal starch used for amino acid production have been shown so far.
- Escherichia coli which is a typical amino acid-producing bacterium, can grow using glycerol as a sole carbon source (Non-patent Document 2), and a long chain fatty acid having 12 or more carbon chains as a sole carbon source. It is known that it can grow as (Non-patent Document 3). Therefore, Escherichia coli can assimilate both long-chain fatty acids and glycerol, which are hydrolysates of fats and oils, but does not have lipase activity and cannot assimilate fats and oils directly. It is described in Patent Document 4. Furthermore, it is generally known that the solubility of long-chain fatty acids is extremely low.
- Non-Patent Document 5 the solubility is 0.1 g / L or more for lauric acid, but 0.0003 g / L or less for oleic acid.
- palmitic acid is 0.00000003 g / L or less is described. Therefore, it is difficult to assimilate glycerol and fatty acids with high water solubility at the same time.
- L-amino acids by direct fermentation using a hydrolyzate of fats and oils, which is a mixture of long-chain fatty acids and glycerol, as a carbon source. Has not been reported so far.
- Soybean seeds and oil palm (oil ⁇ palm) fruits which are oil plants generally used as edible fats and oils, contain about 20% fat.
- microalgae are known to produce fats and oils, and the yield of fats and oils per area greatly exceeds oil plants.
- the steps of alga body separation, dehydration, cell disruption, and purification are complicated and difficult. Therefore, there has been no report on the production of L-amino acids by direct fermentation using algae-derived fats and oils as a carbon source.
- Patent Documents 11, 12, and 13 Although a method for extracting an organic substance derived from chlorella has been known (Patent Documents 11, 12, and 13), it has been considered that crushing by a high temperature reaction is preferable. Furthermore, there has been no report on the production of L-amino acids by direct fermentation using this treated product as a carbon source. In addition, it has been known that nucleic acid-related substances are increased by self-digesting chlorella (Patent Document 14), but the production of L-amino acids by direct fermentation using this treated product as a carbon source has been reported so far. There is no.
- the present invention provides a more efficient L-amino acid production method, and in particular, L-amino acid fermentation production using microorganisms that have been conventionally carried out mainly using sugars derived from higher plants as a carbon source.
- a carbon source derived from microalgae for the method, a more inexpensive method for producing L-amino acids is provided.
- a method for producing an L-amino acid (A) A processed product of the microalgae that promotes the accumulation and production of L-amino acids by bacteria having L-amino acid-producing ability is prepared by culturing the microalgae in a medium and treating the culture at a medium temperature.
- the treatment temperature at the medium temperature is 70 ° C. or less.
- the treated product is a precipitate obtained by centrifugation after treatment at an intermediate temperature and contains a fatty acid.
- the treated product is a supernatant obtained by centrifugation after treatment at an intermediate temperature, and contains glucose or glycerol.
- the treated product is an extract obtained by extracting a fatty acid by further alkali treatment or organic solvent treatment after treatment at an intermediate temperature.
- the precipitate centrifuged after the treatment at an intermediate temperature is treated with an alkali or an organic solvent.
- the method as described above, wherein the alkali treatment is performed at a pH of 10.5 or more.
- the alkali treatment is performed at 60 ° C. or higher.
- the organic solvent treatment is performed with methanol, ethanol, 2-propanol, acetone, butanol, pentanol, hexanol, heptanol, octanol, chloroform, methyl acetate, ethyl acetate, dimethyl ether, diethyl ether, or hexane.
- microalgae are algae belonging to the green alga class, the treboxya alga class, or the diatom class.
- microalga is an algae belonging to Chlorophyceae.
- the bacterium is a bacterium belonging to the family Enterobacteriaceae or a coryneform bacterium.
- the bacterium belonging to the family Enterobacteriaceae is Escherichia coli.
- L-amino acids can be produced efficiently by using the present invention.
- Fatty acid content of Chorella kessleri treated at medium temperature Fatty acid content by medium temperature treatment of Nannochloris.
- Temporal change in fatty acid production rate by treatment of algae at medium temperature Examination of pH condition of fatty acid extraction alkali treatment.
- Examination of temperature conditions for alkali treatment of fatty acid extraction Examination of alkali treatment time for fatty acid extraction Examination of temperature condition of first stage treatment in two stage middle temperature treatment of algae Examination of the time of the first stage treatment and the time of the second stage treatment in the two-stage temperature treatment of algae Examination of solvent used for fatty acid extraction organic solvent treatment
- Microalgae used in the present invention and its culture method Any microalgae can be used in the present invention, but it is a microalgae that accumulates starch and / or fats and oils in the algae. It is preferable.
- Algae refers to all organisms that perform oxygen-generating photosynthesis, excluding moss plants, fern plants, and seed plants that inhabit the ground. Algae includes prokaryotes, cyanobacteria, eukaryotes, Glaucophyta, red plant algae (Rhodophyta), green plant gate (Chlorophyta), cryptophyte Gates (Cryptophyta), Haptophyta (Haptophyta), Hetero sparklephyta, Dinophyta, Euglenophyta, Euglenaphyta Included are various unicellular and multicellular organisms that are classified as Chlorarachniophyta. Microalgae refers to algae with a microscopic structure excluding seaweeds that are multicellular organisms from these algae (Biodiversity Series (3) Diversity and strains of algae: edited by Mitsuo Senbara 1999)).
- Plants including algae often use starch as storage polysaccharide (Ball, S. G. and Morell, M. K. 2003. Annual Review of Plant Biology, 54: 207-233).
- algae that accumulate starch and typical algae include the Plasinophyceae, Chlorophyceae, Trebouxiophyceae, and Aosa algae that belong to the green plant kingdom. (Ulvophyceae) and axle algae (Charophyceae).
- algae belonging to the Chlorophyceae and Trebouxiophyceae are well studied, and the algae belonging to the Chlorophyceae is Chlamydomonas, and the algae belonging to the Trevorxia algae is Chlorella. The genus is mentioned.
- Chlamydomonas genus Chlamydomonas reinhardtii (Ball, SG 1998. The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, pp. 549-567. Rochaix J.-D. M., and Merchant S. (Eds), Kluwer Academic Publishers), and Chlorella kessleri (formerly Chlorella ⁇ vulgaris) (Izumo, A. et al. 2007. Plant Science 172: 1138-1147) ).
- Chlamydomonas reinhardtii CC125 strain is exemplified as Chlamydomonas reinhardi
- Chlorellalorkessleri 11h strain is exemplified as Chlorella kessarelli.
- These strains can be found, for example, in the University of Texas Algae Culture Collection (The University Texas at Austin, The Culture Collection of Algae (UTEX), 1 University Station A6700, Austin, TX 78712-0183, USA), respectively. It is stored with a UTEX 263 accession number and can be obtained from UTEX.
- Chlorella Quesarelli 11h strain was stored in the IAM Culture Collection at the University of Tokyo Institute for Molecular Cell Biology with the storage number C-531, and then transferred to the National Institute for Environmental Studies, Microbial System Storage Facility (NIES) .
- the shares are also stored in the American Type Culture Collection (ATCC, PO Box 1549, Manassas, VA 20108, 1, United States of America) with the acceptance number of ATCC11468 and may be sold by ATCC. it can.
- Neochloris oleoabundance include Neochloris oleoabundans UTEX 1185, Nanochloris Espy is Nannochloris sp. These strains can be obtained from the University of Texas Algae Culture Collection (The University of Texas, Austin, The Culture Collection of Algae (UTEX), University, Station A6700, Austin, TX 78712-0183, USA).
- Neochloris Oreo abundance and Nanochloris SP are modified NORO medium (Yamaberi, K. et al. 1998. J. Mar. Biotechnol. 6: 44-48; Takagi, M. et al. 2000. Appl. Microbiol. Biotechnol) .54: 112-117) and Bold's Basal Medium (Tornabene, T. G. et al. 1983. Enzyme and Microb. Technol. 5: 435-440; Archibald, P. A. and Bold, H. C. 1970. Phytomorphology (20: 383-389) and Daigo IMK medium (Ota, M. et al. 2009. Bioresource Technology. 100: 5237-5242).
- F / 2 medium (Lie, C.-P. and Lin, L.-P. 2001. Bot. Bull. Acad. Sin. 42: 207-214) Etc. can be used suitably.
- a photobioreactor can also be used for culturing microalgae (WO2003 / 094598 pamphlet).
- the initial pH is preferably around 7-9 neutral, and pH adjustment is often not performed during culturing, but it may be done as needed.
- the culture temperature is preferably 25-35 ° C., and particularly around 28 ° C. is a commonly used temperature, but the culture temperature may be any temperature suitable for the algae used.
- air is blown into the culture medium, and an aeration rate of 0.1-2 vvm (volume per volume per minute) per one minute of the culture solution volume is often used as the aeration rate. Further, CO 2 is blown in order to accelerate the growth, but it is preferable to blow about 0.5-5% with respect to the aeration amount.
- the optimal intensity of light irradiation varies depending on the type of microalgae, but about 1,000-10,000 lux is often used.
- a white fluorescent lamp is generally used indoors, but is not limited thereto. It is also possible to incubate outdoors with sunlight. If necessary, the culture solution may be stirred or circulated with an appropriate strength.
- Algae are known to accumulate fats and oils in the algae when the nitrogen source is depleted (Thompson GA Jr. 1996. Biochim. Biophys. Acta 1302: 17-45), which limits the concentration of the nitrogen source.
- the medium can also be used for the main culture.
- the culture of microalgae includes a culture solution containing algal bodies and algal bodies recovered from the culture solution.
- the method for recovering the algal cells from the culture solution is possible by general centrifugation, filtration, or sedimentation by gravity using a flocculant (Grima, E. M. et al. 2003). Biotechnol. Advances 20: 491-515).
- the fatty acid contained in the processed product when used as a carbon source, it is preferable to concentrate the microalgae by centrifugation or the like before the treatment at an intermediate temperature.
- concentration of algal bodies the solution components are removed, and the concentration per unit solution of the dry weight of microalgae is 25 g / L or more, preferably 250 g / L or more (separated from the medium by a method such as centrifugation). Including suspending the algal bodies in a liquid to a desired concentration) and precipitating and separating the algal bodies from the medium.
- a microalgae culture is treated at medium temperature, and the microalgae treated product is used as a nutrient source for L-amino acid fermentation.
- the processed product of microalgae means a reaction solution obtained by processing a culture of microalgae at an intermediate temperature. Therefore, in the present specification, the phrases “treat at medium temperature” and “react at medium temperature” are synonymous.
- the treated product is a product obtained by subjecting the reaction solution treated at medium temperature to further extraction or fractionation and / or another treatment, and includes a mixture of organic substances derived from microalgae cells, and is capable of producing L-amino acid. Those that promote the production and accumulation of L-amino acids by bacteria having the above are also included.
- “Promoting the production and accumulation of L-amino acids” means that the organic matter contained in the treated product is substantially used as a source of carbon constituting the cell components and L-amino acids in the growth of bacteria and the production of L-amino acids. Any processed product that means a contribution and can make such a contribution is included in the “processed product that promotes production and accumulation of L-amino acid” in the present invention.
- the treated product promotes the production and accumulation of L-amino acid is confirmed by culturing the bacterium under the same conditions except for the presence or absence of the treated product, and comparing the production and accumulation amount of L-amino acid in the culture it can.
- L-amino acid accumulation may be any as long as it is improved compared to L-amino acid accumulation in the culture to which the treated product is not added, but it is preferably 10% or more, preferably 20% or more, more preferably compared to the culture without addition. It is desirable that L-amino acid accumulation is improved by 30% or more.
- the growth rate of microorganisms and the increase in the amount of microorganisms in the medium are also included in the “promoting the production and accumulation of L-amino acids” of the present invention. It is desirable that the rate and the amount of bacterial cells are increased by 10% or more, preferably 20% or more, and more preferably 30% or more compared to the culture without addition.
- the L of the present invention can be used as long as it can substantially contribute as a source of carbon constituting the bacterial cell component and L-amino acid in the growth of bacteria and the production of L-amino acid. -Included in processed products that promote amino acid production accumulation. Therefore, when the amount of L-amino acid produced and accumulated is increased as compared with the condition where no treated product is added, it is also included in the treated product of the present invention, but from the same amount of purified material as the contained carbon source. It is preferable that the L-amino acid production accumulation amount is improved as compared with the case where a carbon source is added.
- L-amino acid production accumulation is improved when the treatment process for purifying the carbon source is shortened as compared with the case where the carbon source comprising the purified substance is used.
- the shortening time of the treatment process is preferably shortened by 10% or more, preferably 20% or more, more preferably 30% or more.
- the intermediate temperature means a temperature sufficient to increase the amount of fatty acid or glycerol or glucose in the processed product, and the treatment is continuously performed at the same temperature, or the treatment is performed by lowering the temperature in the middle. May be.
- the first stage intermediate temperature treatment may be performed once at an intermediate temperature, and then the second stage intermediate temperature treatment may be performed at a constant temperature lower than that.
- the lower limit of the temperature at the continuous intermediate temperature treatment or the first stage intermediate temperature treatment is usually 40 ° C. or higher, preferably 45 ° C. or higher, more preferably 50 ° C. or higher
- the upper limit is usually 70 ° C. C. or lower, preferably 65 ° C.
- the lower limit of the temperature of the second stage intermediate temperature treatment is usually 30 ° C or higher, preferably 35 ° C or higher, more preferably 40 ° C or higher, and the upper limit is usually 55 ° C or lower, preferably 50 ° C or lower, Preferably it is 45 degrees C or less.
- the reaction at an intermediate temperature may be performed by reacting the culture obtained by the above-described algal culture method as it is, or may be concentrated as described above.
- the alga bodies that have been once centrifuged and then precipitated may be used as the reactant.
- the pH during the reaction may be adjusted to be weakly acidic, or the algal cells may be frozen once.
- the pH of weak acid is preferably 3.0 to 7.0, more preferably 4.0 to 6.0.
- the temperature for freezing usually means a temperature of -80 ° C or higher and 0 ° C or lower, preferably -20 ° C or lower, more preferably -50 ° C or lower for 1 hour or longer.
- the continuous treatment at a medium temperature is preferably performed for at least 1 hour or more, more preferably 5 hours or more.
- the reaction at the medium temperature is usually 48 hours or shorter, more preferably 24 hours or shorter.
- the first stage intermediate temperature treatment is usually 120 minutes or shorter, more preferably 60 minutes or shorter.
- the lower limit is preferably at least 1 hour, more preferably 4 hours or more, and the upper limit is usually 20 hours or less, more preferably 15 hours or less.
- the solution after treatment at medium temperature is treated in its volume or diluted and treated, and the precipitate is removed from the supernatant. Includes separating.
- organic solvent treatment it is preferred to separate the precipitate from the supernatant.
- the pH of the alkali treatment after the treatment at the medium temperature usually means pH 10.5 or more and pH 14 or less, preferably pH 11.5 or more, more preferably pH 12.5 or more.
- the alkali treatment temperature usually means 60 ° C. or higher, preferably 80 ° C. or higher, more preferably 90 ° C. or higher.
- the alkali treatment temperature is preferably 120 ° C. or lower.
- the alkali treatment time is preferably at least 10 minutes or more, preferably 30 minutes or more, more preferably 60 minutes or more.
- the alkali treatment time is preferably 150 minutes or less.
- the treatment with the organic solvent after the treatment at the medium temperature may be performed by drying the treated product and extracting the organic solvent, but may also be performed without drying.
- the organic solvent include methanol, ethanol, 2-propanol, acetone, butanol, pentanol, hexanol, heptanol, octanol, chloroform, methyl acetate, ethyl acetate, dimethyl ether, diethyl ether, hexane, and the like.
- the reaction solution is preferably separated into a precipitate and a supernatant by centrifugation. Further, after the treatment at medium temperature, the treated product may be used as it is as a medium component for L-amino acid fermentation.
- the precipitate contains a lot of fatty acids, but it is preferable to carry out an alkali treatment in order to micelleize the fatty acids into water. Furthermore, it is preferable to emulsify the precipitate in order to efficiently assimilate as a carbon source.
- the emulsification treatment include emulsification accelerator addition, stirring, homogenization, ultrasonic treatment and the like. It is thought that the emulsification treatment makes it easier for bacteria to assimilate fatty acids and L-amino acid fermentation becomes more effective.
- the emulsification treatment may be any process as long as the bacteria having L-amino acid-producing ability make it easy to assimilate fatty acids.
- an emulsification accelerator or a surfactant may be added as an emulsification method.
- the emulsification promoter include phospholipids and sterols.
- the surfactant in the nonionic surfactant, polyoxyethylene sorbitan fatty acid ester such as poly (oxyethylene) sorbitan monooleate (Tween ⁇ ⁇ 80), alkyl glucoside such as n-octyl ⁇ -D-glucoside, Examples thereof include sucrose fatty acid esters such as sucrose stearate and polyglycerin fatty acid esters such as polyglycerin stearate.
- Examples of the zwitterionic surfactant include N, N-dimethyl-N-dodecylglycine betaine which is an alkylbetaine.
- Triton X-100 Triton X-100
- polyoxyethylene (20) cetyl ether Brij-58
- nonylphenol ethoxylate Tegitol NP-40
- This operation may be any operation as long as it promotes emulsification and homogenization of the mixture of fatty acid and glycerol.
- stirring treatment, homogenizer treatment, homomixer treatment, ultrasonic treatment, high pressure treatment, high temperature treatment and the like can be mentioned, and stirring treatment, homogenizer treatment, ultrasonic treatment and combinations thereof are more preferable.
- the treatment with the above emulsification accelerator with the stirring treatment, the homogenizer treatment, and / or the ultrasonic treatment, and these treatments are desirably performed under alkaline conditions where fatty acids are more stable.
- the alkaline condition is preferably pH 9 or higher, more preferably pH 11 or higher.
- the precipitate contains fats and oils produced by microalgae, they can be hydrolyzed and added to the medium as a carbon source. It is also possible to hydrolyze a mixed solution of organic substances extracted with a solvent such as ethanol, a mixture of methanol and chloroform, or acetone. These solutions can be used as they are, but can also be concentrated by a treatment such as lyophilization or evaporation.
- This solution contains components that can be used as an organic nitrogen source such as amino acids and components that are effective for the growth of bacteria having amino acid-producing ability such as metals, and can also be used as a medium component that is not a carbon source.
- Oils and fats are esters of fatty acids and glycerol, also called triglycerides.
- the fatty acid species produced by hydrolysis are preferably those that can be assimilated as a carbon source by the bacteria used in the method of the present invention, and those having a high content are more preferable. preferable.
- Examples of long-chain fatty acid species that can be assimilated by bacteria having L-amino acid-producing ability include lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid.
- organisms include lipids that liberate fatty acids by hydrolysis in addition to fats and oils, and fatty acids generated by hydrolysis of lipids can also be used as a carbon source.
- lipids include simple lipids such as wax and ceramide, and examples of complex lipids include phospholipids and glycolipids.
- lipase may be reacted with the precipitate in order to hydrolyze the fats and oils.
- Lipase is an enzyme that hydrolyzes fats and oils into fatty acids and glycerol, and is also called triacylglycerol lipase or triacylglyceride lipase.
- Lipase has been found in various organisms, but any species of lipase can be used as long as it catalyzes the above reaction.
- various attempts have been made to produce biodiesel fuel, which is a fatty acid ester, from fats and alcohols using lipase enzymes (Fukuda, H., Kondo, A., and Noda, H. 2001. J. Biosci. Bioeng. 92, 405-416).
- lipases derived from microorganisms many lipases derived from the genera Bacillus, Burkholderia, Pseudomonas, and Staphylococcus are known (Jaeger, K. E., and Eggert, T. 2002. Curr. Opin. Biotechnol). . 13: 390-397).
- the base sequence of the gene encoding LipA (GenBank Accession No. M74010) derived from Bacillus subtilis is shown in SEQ ID NO: 1, and the amino acid sequence is shown in SEQ ID NO: 2.
- the base sequence of the gene encoding LipA (GenBank Accession No. X70354) derived from Burkholderia glumae is shown in SEQ ID NO: 3, and the amino acid sequence is shown in SEQ ID NO: 4.
- the base sequence of the gene encoding LipA (GenBank Accession No. D50587) derived from Pseudomonas aeruginosa is shown in SEQ ID NO: 5, and the amino acid sequence is shown in SEQ ID NO: 6.
- the base sequence of the lipase derived from Staphylococcus aureus (GenBank Accession No. M12715) is shown in SEQ ID NO: 7, and the amino acid sequence is shown in SEQ ID NO: 8.
- the lipase derived from the yeast Candida ⁇ antarctica (GenBank Accession No.Z30645) is one of the commonly used lipases (Breivik, H., Haraldsson, G. G. and Kristinsson, B. 1997. J. Am. Oil Chem . Soc. 74: 1425-1429).
- the base sequence of the gene encoding the lipase is shown in SEQ ID NO: 9, and the amino acid sequence is shown in SEQ ID NO: 10.
- yeast Candida rugosa (Candida cylindracea) is known to have five or more lipases encoded by different genes (Alberghina, L. and Lotti, M. 1997. Methods Enzymol. 284: 246- 260).
- LIP1 and LIP2 are known as major lipases.
- the nucleotide sequence of lip1 (GenBank Accession No. X64703) encoding LIP1 is shown in SEQ ID NO: 11, and the amino acid sequence is shown in SEQ ID NO: 12.
- the base sequence of the gene of lip2 (GenBank Accession No. X64703) encoding LIP2 is shown in SEQ ID NO: 13, and the amino acid sequence is shown in SEQ ID NO: 14.
- Candida genus yeast such as Candida cylindracea
- the CTG codon encoding leucine encodes serine in the universal code (Kawaguchi, Y. et al. 1989. Nature 341: 164-166; Ohama, T. et al. 1993. Nucleic Acids Res. 21: 4039-4045).
- SEQ ID NOs: 11 to 14 the amino acid corresponding to CTG is described as Leu for convenience, but is actually Ser.
- a lipase derived from the genus Cryptococcus for example, a lipase produced by Cryptococcus sp. S-2, and a lipase having a primary structure similar to that may be used (Japanese Patent Laid-Open No. 2004-73123).
- a lipase gene CS2 gene of Cryptococcus sp. S-2 (FERM 155 P-15155) is known (Japanese Patent Laid-Open No. 2004-73123).
- the base sequence of the CS2 gene is shown in SEQ ID NO: 18, and the amino acid sequence of the lipase precursor encoded by the CS2 gene is shown in SEQ ID NO: 19.
- positions -34 to -1 are expected to correspond to a signal peptide
- positions 1 to 205 are expected to correspond to a mature protein.
- Cryptococcus sp.S-2 is the National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center) (September 5, 85656 Tsukuba, Ibaraki, Japan) Deposited at eastern city 1-chome, 1st, 1st, center 6) with a deposit number of FERM P-15155, transferred to an international deposit based on the Budapest Treaty on April 25, 2008, and given the deposit number FERM BP-10961 .
- the above lipase can be prepared from the cells or cultures of the above microorganisms, but it can be expressed in other host microorganisms using genetic engineering techniques using genes encoding each lipase. It may be prepared by.
- a yeast-derived gene whose CTG codon encodes serine, such as Candida rugosa (Candida cylindracea)
- CTG must be changed to another universal codon encoding serine (Schmidt -Dannert, C. 1999. Bioorg. Med. Chem. 7: 2123-2130).
- the lipase is characterized by having a GXSXG motif called lipase box around the Ser at the active center, and three residues of Ser, Asp, and His called catalytic traid that are commonly found in lipases, esterases, and serine proteases.
- the preservation of the group is mentioned.
- lipase ⁇ box corresponds to positions 106 to 110
- catalytic traid represents Ser at position 108, Asp at position 164, and His at position 187. Two residues correspond.
- a lipase modified with an enzyme to improve activity and stability may be used.
- Modified Bacillus subtilis lipase A by Phage Display method (Droge et al., ChemBioChem, 2006, 7: 149-157.), And improved activity and stability by DNA shuffling (Suen et al., Protein Eng. Design & Selection, 2004, 17: 133-140), modified C.antactica Lipase B by CALB method (Zhang et al., Protein Eng., 2003, 16: 599-605), modified Pseudomonas aeruginosa lipase by CAST method ( Reets et al., Angew. Chem. Int. Ed., 2005, 44: 4192-4196.).
- a supernatant obtained by centrifuging a treated product reacted at an intermediate temperature may be used as the treated product.
- the supernatant liquid centrifuged by the medium temperature treatment of the present invention contains a fragmented product obtained by decomposing starch and glucose, and glycerol obtained by decomposing oil and fat. Therefore, you may use this glucose and glycerol as a carbon source.
- the supernatant obtained by centrifuging the treated product reacted at an intermediate temperature contains starch fragments. Accordingly, a processed product in which the amount of glucose is further increased by saccharifying the starch fragment of the supernatant with amyloglucosidase or the like may be used.
- Starch is composed of amylose in which glucose is linearly linked by ⁇ -1,4-glucoside bonds and amylopectin having both ⁇ -1,4-glucoside bonds and ⁇ -1,6-glucoside bonds in the branches. It is a high molecular polysaccharide.
- Amylase cocoon is a general term for enzymes that hydrolyze glucoside bonds such as starch.
- ⁇ -amylase ⁇ -amylase EC 3.2.1.1
- ⁇ -amylase ⁇ -amylase EC 3.2.1.2
- glucoamylase glucoamylase EC 3.2.1.3
- amyloglucosidase amylo-alpha-1,6-glucosidase EC: “HYPERLINK” “http://www.genome.jp/dbget-bin/www#bget?3.2.1.33” 3.2.1.33
- ⁇ -Amylase is an endo-type enzyme that randomly cleaves ⁇ -1,4-glucoside bonds such as starch and glycogen.
- ⁇ -amylase is an exo-type enzyme that sequentially degrades ⁇ -1,4-glucoside bonds in maltose units from the non-reducing end of starch.
- Glucoamylase or amyloglucosidase is an exo-type enzyme that sequentially degrades ⁇ -1,4-glucoside bonds in units of glucose from the non-reducing end of starch, and also degrades ⁇ -1,6-linkages contained in amylopectin. Since glucoamylase or amyloglucosidase directly produces glucose from starch, it is widely used in the production of glucose and is also a preferred enzyme in the present invention.
- a saccharified product can be obtained from an algal body by an enzymatic reaction.
- a combination of boiling, ultrasonic treatment, alkali treatment, etc. as pretreatment (Izumo, A. et al. 2007. Plan Science 172: 1138) -1147).
- the conditions for the enzyme reaction can be appropriately set according to the properties of the enzyme used.
- amyloglucosidase Sigma-Aldrich A-9228
- an enzyme concentration of 2 to 20 U / mL, a temperature of 40 to 60 ° C., and a pH of 4 to 6 are preferable.
- the pH adjustment when an organic acid that can be assimilated by bacteria used in the production of L-amino acid is used as a buffer, the organic acid can be used as a carbon source together with a saccharified product of starch.
- the enzyme reaction product can be added to the medium as it is.
- Bacteria used in the present invention bacteria having L-amino acid-producing ability are used. Bacteria are not particularly limited as long as they can efficiently produce L-amino acids from organic substances produced by microalgae, in particular, saccharified starches or hydrolyzed oils and fats, such as Escherichia, Pantoea, Examples include, but are not limited to, bacteria belonging to the family Enterobacteriaceae such as Enterobacter, and so-called coryneform bacteria belonging to the genus Brevibacterium, Corynebacterium, and Microbacterium.
- the L-amino acid-producing bacterium in the present invention may be modified so as to enhance the ability to assimilate fat hydrolysates and fatty acids. For example, deletion of a gene encoding a transcription factor FadR that has a DNA binding ability to regulate fatty acid metabolism found in the intestinal bacteria group (DiRusso, C. C. et al. 1992. J. Biol. Chem. 267: 8685-8691; DiRusso, C. C. et al. 1993. ol Mol. Microbiol. 7: 311-322).
- the Escherichia coli fadR gene is located at base numbers 1,234,161 to 1,234,880 on the genome sequence of Escherichia coli MG1655 registered under Genbank Accession No. U00096, and GenBank accession No. It is a gene encoding a protein registered in AAC74271.
- the fadR gene of Escherichia coli is shown in SEQ ID NO: 16.
- the expression level of one or more genes selected from fadA, fadB, fadI, fadJ, fadL, fadE, and fadD can be further enhanced. Good.
- the “fadL gene” in the present invention means a gene encoding an outer membrane transporter having an ability to take in long-chain fatty acids found in enteric bacteria (Kumar, G. B. and Black, P. N. 1993. J. Biol. Chem. 268: 15469-15476; Stenberg, F. et al. 2005. J. Biol. Chem. 280: 34409-34419).
- Specific examples of the gene encoding FadL include the gene located at nucleotide numbers 2549322 to 2460668 of the Escherichia coli genome sequence (Genbank Accession No. U00096) as the fadL gene of Escherichia coli. .
- the “fadD gene” in the present invention refers to a gene encoding an enzyme that catalyzes fatty acyl-CoA synthetase activity that generates fattyfaacyl-CoA from long-chain fatty acids found in enteric bacteria, and at the same time, is incorporated through the inner membrane. Meaning (Dirusso, C. C. and Black, P. N. 2004. J. Biol. Chem. 279: 49563-49566; Schmelter, T. et al. 2004. J. Biol. Chem. 279: 24163-24170 ).
- FadD include the gene located at nucleotide numbers 1877770 to 1860885 (complementary chain) of the Escherichia coli genome sequence (Genbank Accession No. U00096) as the fadD gene of Escherichia coli. can do.
- the “fadE gene” in the present invention means a gene encoding an enzyme that catalyzes an acyl-CoA dehydrogenase activity that oxidizes fatty acyl-CoA found in enteric bacteria (O'Brien, W. J. and Frerman, F. E. 1977. J. Bacteriol. 132: 532-540; Campbell, J. W. and Cronan, J. E. 2002. J. Bacteriol. 184: 3763759-3764).
- FadE As a gene encoding FadE, specifically, as the fadE gene of Escherichia coli, SEQ ID NO: located at nucleotide numbers 243303 to 240859 (complementary strand) of the Escherichia coli genome sequence (Genbank Accession No. U00096) A gene having the base sequence shown in 7 can be exemplified. SEQ ID NO: 8 shows the amino acid sequence encoded by the same gene.
- the “fadB gene” in the present invention is an ⁇ component of fatty acid oxidation complex found in the intestinal bacteria group, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, 3-hydroxyacyl-CoA epimerase, ⁇ 3-cis- A gene encoding an enzyme that catalyzes four activities of ⁇ 2-trans-enoyl-CoA isomerase (Pramanik, A. et al. 1979. J. Bacteriol. 137: 469-473; Yang, S. Y. and Schulz, H. 1983. J. Biol. Chem. 258: 9780-9785).
- FadB As a gene encoding FadB, specifically, a gene located at nucleotide numbers 4089994 to 4026805 (complementary chain) of the Escherichia coli genome sequence (Genbank Accession No. U00096) is exemplified as the fadB gene of Escherichia coli can do.
- the “fadA gene” in the present invention is a ⁇ component of fatty acid oxidation complex found in the intestinal bacteria group, and means a gene encoding an enzyme that catalyzes 3-ketoacyl-CoA thiolase activity (Pramanik, A. et al. 1979. J. Bacteriol. 137: 469-473).
- Specific examples of the gene encoding FadA include the gene located at base numbers 4026795 to 4025632 (complementary chain) of the Escherichia coli genome sequence (Genbank Accession No. U00096) as the fadA gene of Escherichia coli. can do.
- Fatty acid oxidation complex found in the intestinal bacteria group is known to have a complex of FadB and FadA, and the fadBA operon as a gene (Yang, angS. Y. et al 1990. J. Biol. Chem. 265: 10424-10429). Therefore, the entire operon can be amplified as the fadBA operon.
- CyoABCDE in the present invention is a group of genes encoding each subunit of a cytochrome bo type terminal oxidase complex (cytochrome ⁇ bo terminal oxidase complex), which is one of the terminal oxidases found in the intestinal bacteria group, cyoB means subunit I, cyoA means subunit II, cyoC means subunit III, cyoC means subunit IV, cyoE means a gene encoding an enzyme that catalyzes hemehemO synthase activity (Gennis, R. B.
- Specific examples of the gene encoding cyoA include the gene located at nucleotide numbers 450834 to 449887 (complementary chain) of the Escherichia coli genome sequence (Genbank Accession No. U00096) as the Escherichia coli cyoA gene. can do.
- Specific examples of the gene encoding cyoB include the gene located at nucleotide numbers 449865 to 447874 (complementary strand) of the Escherichia coli genome sequence (Genbank Accession No. U00096) as the Escherichia coli cyoB gene. can do.
- Specific examples of the gene encoding cyoC include the gene located at nucleotide numbers 478884 to 447270 (complementary chain) of the Escherichia coli genome sequence (Genbank Accession No. U00096) as the Escherichia coli cyoC gene. can do.
- Specific examples of the gene encoding cyoD include the gene located at nucleotide numbers 447270 to 446941 (complementary chain) of the Escherichia coli genome sequence (Genbank Accession No. U00096) as the Escherichia coli cyoD gene. can do.
- the gene encoding the cyoE gene is a gene located at nucleotide numbers 446929 to 446039 (complementary chain) of the Escherichia coli genome sequence (Genbank Accession No. U00096) as the Escherichia coli cyoE gene. It can be illustrated.
- the bacterium of the present invention may be a strain modified so that the activity of pyruvate synthase or pyruvate: NADP + oxidoreductase is increased. (See WO2009 / 031565)
- the “pyruvate synthase” in the present invention is an enzyme (EC 1.2) that reversibly catalyzes the following reaction for producing pyruvate from acetyl-CoA and CO 2 in the presence of an electron donor, for example, in the presence of ferredoxin or flavodoxin. .7.1).
- Pyruvate synthase is sometimes abbreviated as PS and is sometimes named pyruvate oxidoreductase, pyruvate ferredoxin oxidoreductase, pyruvate flavodoxin oxidoreductase, or pyruvate oxidoreductase.
- As the electron donor ferredoxin or flavodoxin can be used.
- Confirmation that the activity of pyruvate synthase is enhanced is achieved by preparing a crude enzyme solution from the microorganism before enhancement and the microorganism after enhancement and comparing the activity of pyruvate synthase.
- the activity of pyruvate synthase can be measured, for example, according to the method of Yoon et al. (Yoon, K. S. et al. 1997. Arch. Microbiol. 167: 275-279).
- the amount of reduced methyl viologen that increases due to decarboxylation of pyruvic acid is measured spectroscopically. It can be measured by measuring.
- One unit (U) of enzyme activity is expressed as a reduction amount of 1 ⁇ mol of methyl viologen per minute.
- the enzyme activity is preferably 1.5 times or more, more preferably 2 times or more, and even more preferably 3 times or more that of the parent strain.
- pyruvate synthase is produced by introducing the pyruvate synthase gene, but the enzyme activity is enhanced to such an extent that it can be measured. Is preferably 0.001 U / mg (bacterial protein) or more, more preferably 0.005 U / mg or more, and still more preferably 0.01 U / mg or more. Pyruvate synthase is sensitive to oxygen and is generally difficult to express and measure (Buckel, W.and Golding, B. T. 2006. Ann. Rev. of Microbiol. 60: 27-49). Therefore, when measuring enzyme activity, it is preferable to carry out the enzyme reaction by reducing the oxygen concentration in the reaction vessel.
- pyruvate synthase As a gene encoding pyruvate synthase, it is possible to use a pyruvate synthase gene of a bacterium having a reductive TCA cycle such as Chlorobium tepidum, Hydrogenobacter thermophilus, etc. . It is also possible to use a pyruvate synthase gene derived from bacteria belonging to the group of enterobacteria such as Escherichia coli.
- genes encoding pyruvate synthase are autotrophic methane producers such as Methanococcus maripaludis, Methanococcus janasti, Methanothermobacter thermautotrophicus, and other methanothermobacter thermautotrophicus (Autotrophic (methanogens) pyruvate synthase gene can be used.
- pyruvate: NADP + oxidoreductase means reversibly catalyzing the following reaction for producing pyruvic acid from acetyl-CoA and CO 2 in the presence of an electron donor, for example, in the presence of NADPH or NADH. Means enzyme (EC 1.2.1.15).
- Pyruvate: NADP + oxidoreductase is sometimes abbreviated as PNO and sometimes as pyruvate dehydrogenase.
- pyruvate dehydrogenase activity is an activity that catalyzes a reaction of oxidatively decarboxylating pyruvate to produce acetyl-CoA, as described later.
- Acid dehydrogenase is a separate enzyme from pyruvate: NADP + oxidoreductase.
- the amount of reduced methyl viologen that increases due to the decarboxylation of pyruvate is measured spectroscopically. It can be measured by measuring.
- One unit (U) of enzyme activity is expressed as a reduction amount of 1 ⁇ mol of methyl viologen per minute.
- the enzyme activity is preferably increased 1.5 times or more, more preferably 2 times or more, and even more preferably 3 times or more compared to the parent strain. Is desirable.
- pyruvate: NADP + oxidoreductase activity it is sufficient that pyruvate: NADP + oxidoreductase is generated by inserting the pyruvate synthase gene, but the enzyme activity is measured. It is preferably strengthened to the extent possible, preferably 0.001 U / mg (bacterial protein) or more, more preferably 0.005 U / mg or more, and still more preferably 0.01 U / mg or more.
- Pyruvate: NADP + oxidoreductase is sensitive to oxygen and is generally difficult to express and measure activity (Inui, H. et al. 1987. J. Biol. Chem. 262: 9130). -9135; Rotte, C. et al. 2001. Mol. Biol. Evol. 18: 710-720).
- NADP + oxidoreductase is a photosynthetic eukaryotic microorganism and is also classified as a protozoan.
- the Euglena gracilis pyruvate: NADP + oxidoreductase gene can be used. (GenBank Accession No. AB021127).
- the microorganism of the present invention is modified by increasing the activity of recycling the oxidized form of the electron donor necessary for the activity of pyruvate synthase to the reduced form as compared with the parent strain, for example, a wild strain or an unmodified strain,
- the microorganism may be modified so that the activity of pyruvate synthase is increased.
- Examples of the activity of recycling the oxidized form of the electron donor to the reduced form include ferredoxin-NADP + reductase activity.
- the microorganism may be modified so that the activity of pyruvate synthase is increased by modifying the activity to increase pyruvate synthase activity.
- the parent strain may have a gene that inherently encodes the electron donor recycling activity, or originally does not have the electron donor recycling activity. An activity may be imparted by introducing a gene to be encoded, and the L-amino acid producing ability may be improved.
- “Ferredoxin-NADP + reductase” refers to an enzyme (EC 1.18.1.2) that reversibly catalyzes the following reaction.
- This reaction is a reversible reaction, and reduced ferredoxin can be produced in the presence of NADPH and oxidized ferredoxin.
- Ferredoxin can be substituted for flavodoxin, and what is named flavodoxin-NADP + reductase also has an equivalent function.
- Ferredoxin-NADP + reductase has been confirmed to exist widely from microorganisms to higher organisms (Carrillo, N. and Ceccarelli, EA 2003. Eur. J. Biochem. 270: 1900-1915; Ceccarelli, EA et al. 2004. Biochim Biophys. Acta. 1698: 155-165), some have been named ferredoxin-NADP + oxidoreductase, NADPH-ferredoxin oxidoreductase.
- Confirmation that the activity of ferredoxin-NADP + reductase is enhanced is achieved by preparing a crude enzyme solution from the microorganism before modification and the microorganism after modification, and comparing the activity of ferredoxin-NADP + reductase.
- the activity of ferredoxin-NADP + reductase can be measured, for example, according to the method of Blaschkowski et al. (Blaschkowski, H. P. et al. 1982. Eur. J. Biochem. 123: 563-569). For example, it can be measured by spectroscopically measuring the decreasing amount of NADPH using ferredoxin as a substrate.
- One unit (U) of enzyme activity is expressed as an oxidation amount of 1 ⁇ mol NADPH per minute.
- the parent strain has ferredoxin-NADP + reductase activity, it is not necessary to enhance if the activity of the parent strain is sufficiently high, but it is preferably 1.5 times or more, more preferably 2 times or more as compared with the parent strain, Preferably, the enzyme activity is increased by 3 times or more.
- ferredoxin-NADP + reductase A gene encoding ferredoxin-NADP + reductase has been found in many biological species, and any gene having activity in the target L-amino acid producing strain can be used.
- the fpr gene In Escherichia coli, the fpr gene has been identified as flavodoxin-NADP + reductase (Bianchi, V. et al. 1993. J. Bacteriol. 175: 1590-1595). It is also known that Pseedomonas putida has NADPH-Putidaredoxin reductase gene and Putidaredoxin gene as operons (Koga, H. et al. 1989). J. Biochem. (Tokyo) 106: 831-836).
- Escherichia coli flavodoxin-NADP + reductase examples include the fpr gene located at base numbers 4111749 to 4112495 (complementary strand) of the genome sequence of Escherichia coli K-12 strain (GenBank Accession No. U00096) it can. Further, a ferredoxin-NADP + reductase gene has been found at the base numbers 25526234 to 2527211 of the genome sequence of Corynebacterium glutamicum (GenBank Accession No. BA00036) (GenBank Accession No. BAB99777).
- the activity of pyruvate synthase requires that ferredoxin or flavodoxin be present as an electron donor. Therefore, the microorganism may be modified so that the activity of pyruvate synthase is increased by modifying the ferredoxin or flavodoxin so as to improve the production ability.
- modification may be made so that ferredoxin or flavodoxin production ability is improved.
- the “ferredoxin” in the present invention is a protein that contains a non-heme iron atom (Fe) and a sulfur atom and binds an iron-sulfur cluster called a 4Fe-4S, 3Fe-4S, or 2Fe-2S cluster.
- “Flavodoxin” refers to a protein that functions as a one- or two-electron transmitter containing FMN (Flavin-mononucleotide) as a prosthetic genus.
- FMN Fevin-mononucleotide
- the parent strain used for the modification may have a gene that inherently encodes ferredoxin or flavodoxin, or originally has no ferredoxin or flavodoxin gene, but introduces a ferredoxin or flavodoxin gene. Thus, activity may be imparted and L-amino acid producing ability may be improved.
- ferredoxin or flavodoxin production is improved compared to the parent strain, for example, wild strain or unmodified strain, should be detected by SDS-PAGE, two-dimensional electrophoresis, or Western blot using an antibody.
- the production amount may be any as long as it is improved as compared to the wild strain or the unmodified strain, but for example, 1.5 times or more, more preferably 2 times or more, more preferably compared to the wild strain or the non-modified strain. It is desirable that it rises 3 times or more.
- the activity of ferredoxin and flavodoxin can be measured by adding to an appropriate redox reaction system.
- Boyer et al. Discloses a method of reducing the produced ferredoxin with ferredoxin-NADP + reductase and quantifying the reduction of cytochrome C by the resulting reduced ferredoxin (Boyer, ME et al. 2006. Biotechnol. Bioeng. 94: 128-138).
- the activity of flavodoxin can be measured by the same method by using flavodoxin-NADP + reductase.
- the gene encoding ferredoxin or flavodoxin is widely distributed, and any encoded ferredoxin or flavodoxin can be used as long as pyruvate synthase and an electron donor regeneration system are available.
- the fdx gene exists as a gene encoding ferredoxin having a 2Fe-2S cluster (Ta, D. T. and Vickery, L. E. 1992. J. Biol. Chem. 267: 11120 -11125), the yfhL gene is predicted as a ferredoxin gene having a 4Fe-4S cluster.
- the flavodoxin gene includes fldA gene (Osborne, C. et al. 1991. J. Bacteriol.
- ferredoxin I and ferredoxin II have been identified as 4Fe-4S type ferredoxin genes that serve as electron acceptors for pyruvate synthase (Yoon, K. S Et al. 2001. J. Biol. Chem. 276: 44027-44036).
- Ferredoxin genes or flavodoxin genes derived from bacteria having a reductive TCA cycle such as Hydrogenobacter thermophilus can also be used.
- the ferredoxin gene of Escherichia coli located at base numbers 2654770-2655105 (complementary strand) of the genome sequence of Escherichia coli K-12 strain (GenBank Accession No. U00096), and the base number Examples include the yfhL gene located at 2697685 to 2697945.
- a gene involved in glycerol metabolism may be modified.
- glpR gene As genes involved in glycerol metabolism, the expression of glpR gene (EP1715056) is weakened to increase the utilization of glycerol, or glpA, glpB, glpC, glpD, glpE, glpF, glpG, glpK, glpQ, Expression of glycerol metabolic genes (EP1715055A) such as glpT, glpX, tpiA, gldA, dhaK, dhaL, dhaM, dhaR, fsa and talC genes may be enhanced.
- glycerol dehydrogenase gene gldA
- dhaKLM PEP-dependent dihydroxyacetone kinase gene
- dak ATP-dependent dihydroxyacetone kinase gene
- glycerol kinase In glycerol kinase (glpK), it is preferable to use a desensitized glpK gene in which feedback inhibition by fructose-1,6-phosphate is released. (WO2008 / 081959, WO2008 / 107277)
- the Enterobacteriaceae family includes bacteria belonging to genera such as Escherichia, Enterobacter, Erbinia, Klebsiella, Pantoea, Photohubadus, Providencia, Salmonella, Serratia, Shigella, Morganella, and Yersinia.
- the bacteria belonging to the genus Escherichia that can be used in the present invention are not particularly limited.
- Neidhardt et al. Neidhardt, F. C. Ed. 1996. Escherichia coli and Salmonella: Cellular and Molecular Biology / Second Edition pp 2477-2483.
- Table 1 1. American Society for Microbiology Press, Washington, DC).
- Specific examples include Escherichia coli W3110 (ATCC 273325) and Escherichia coli MG1655 (ATCC 47076) derived from the wild type K-12 strain of the prototype.
- strains can be sold, for example, from the American Type Culture Collection (address P.O. Box 1549 Manassas, VA 20108, United States of America). That is, the registration number corresponding to each strain is given, and it can receive distribution using this registration number. The registration number corresponding to each strain is described in the catalog of American Type Culture Collection. The same applies to strains with the following ATCC numbers.
- the bacterium belonging to the genus Pantoea means that the bacterium is classified into the genus Pantoea according to the classification known to microbiologists. Certain types of Enterobacter agglomerans were recently reclassified as Pantoea agglomerans, Pantoea ananatis, Pantoea stewarti and others (Int. J. Syst. Bacteriol. 1993) . 43: 162-173).
- the bacteria belonging to the genus Pantoea include bacteria that have been reclassified to the genus Pantoea in this way.
- Pantoea citrea Pantoea citrea
- Pantoea Ananatis AJ13355 (FERM BP-6614) (European Patent Application Publication No. 0952221)
- Pantoea Ananatis AJ13356 (FERM BP-6615) (European Patent Application Publication No. 0952221)
- Enterobacter bacteria examples include Enterobacter agglomerans, Enterobacter aerogenes, and the like. Specifically, strains exemplified in European Patent Application Publication No. 952221 can be used. A representative strain of the genus Enterobacter is Enterobacter agglomerans ATCC12287.
- Examples of the genus Erwinia include Erbinia amylobola and Erwinia carotobola, and examples of the Klebsiella bacterium include Klebsiella planticola. Specifically, the following strains are mentioned.
- the “coryneform bacterium” has been conventionally classified into the genus Brevibacterium, but includes bacteria that are currently classified into the genus Corynebacterium (Liebl, W. et al. 1991. Int. J. Syst. Bacteriol., 41: 255-260), and Brevibacterium spp. Closely related to the genus Corynebacterium. Examples of such coryneform bacteria include the following.
- strains can be exemplified.
- Corynebacterium acetoacidophilum ATCC13870 Corynebacterium acetoglutamicum ATCC15806 Corynebacterium alkanolyticum ATCC21511 Corynebacterium carnae ATCC15991 Corynebacterium glutamicum ATCC13020, ATCC13032, ATCC13060
- Corynebacterium herculis ATCC13868 Brevibacterium divaricatam ATCC14020 Brevibacterium flavum ATCC13826, ATCC14067 Brevibacterium immariophilum ATCC14068 Brevibacterium lactofermentum ATCC13869 (Corynebacterium glutamicum ATCC13869) Brevibacterium rose ATCC13825 Brevibacterium saccharolyticum AT
- a bacterium having an amino acid-producing ability refers to a bacterium having an ability to produce an L-amino acid and secrete it into the medium when cultured in the medium.
- it refers to a bacterium capable of accumulating the target L-amino acid in the medium in an amount of preferably 0.5 g / L or more, more preferably 1.0 g / L or more.
- L-amino acids include L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-cysteine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L- Includes lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine and L-valine. In particular, L-threonine, L-lysine and L-glutamic acid are preferable.
- an auxotrophic mutant, an L-amino acid analog resistant strain or a metabolically controlled mutant, or a recombinant strain with enhanced expression of an L-amino acid biosynthetic enzyme can be applied to the breeding of amino acid-producing bacteria such as coryneform bacteria or Escherichia bacteria (amino acid fermentation, Academic Publishing Center, Inc., May 30, 1986, first edition) Issue, see pages 77-100).
- amino acid-producing bacteria such as coryneform bacteria or Escherichia bacteria (amino acid fermentation, Academic Publishing Center, Inc., May 30, 1986, first edition) Issue, see pages 77-100).
- the auxotrophy, analog resistance, metabolic control mutation and other properties imparted may be singly or may be two or more.
- L-amino acid biosynthesis enzymes whose expression is enhanced may be used alone or in combination of two or more.
- imparting properties such as auxotrophy, analog resistance, and metabolic regulation mutation may be combined with enhancement of biosynthetic enzymes.
- an auxotrophic mutant an analog resistant strain, or a metabolically controlled mutant having L-amino acid production ability
- the parent strain or the wild strain is subjected to normal mutation treatment, that is, irradiation with X-rays or ultraviolet rays, or N-methyl.
- the L-amino acid-producing ability can be imparted or enhanced by enhancing the enzyme activity by gene recombination.
- the enhancement of enzyme activity include a method of modifying a bacterium so that expression of a gene encoding an enzyme involved in L-amino acid biosynthesis is enhanced.
- an amplified plasmid in which a DNA fragment containing the gene is introduced into an appropriate plasmid for example, a plasmid vector containing at least a gene responsible for the replication replication function of the plasmid in a microorganism
- these genes can be achieved by making multiple copies on the chromosome by joining, transferring, etc., or by introducing mutations into the promoter regions of these genes (see International Publication No. 95/34672). .
- the promoter for expressing these genes may be any promoter that functions in coryneform bacteria, and the promoter of the gene itself used. Or may be modified.
- the expression level of the gene can also be controlled by appropriately selecting a promoter that functions strongly in coryneform bacteria, or by bringing the -35 and -10 regions of the promoter closer to the consensus sequence.
- the method for enhancing the expression of the enzyme gene as described above is described in International Publication No. 00/18935, European Patent Application Publication No. 1010755, and the like.
- L-threonine-producing bacteria Preferred as microorganisms having L-threonine-producing ability include bacteria in which one or more activities of L-threonine biosynthetic enzymes are enhanced.
- L-threonine biosynthesis enzymes include aspartokinase III (lysC), aspartate semialdehyde dehydrogenase (asd), aspartokinase I (thrA) encoded by the thr operon, homoserine kinase (thrB), threonine synthase ( thrC), aspartate aminotransferase (aspartate transaminase) (aspC).
- the parentheses are abbreviations for the genes (the same applies to the following description). Of these enzymes, aspartate semialdehyde dehydrogenase, aspartokinase I, homoserine kinase, aspartate aminotransferase, and threonine synthase are particularly preferred.
- the L-threonine biosynthetic gene may be introduced into a bacterium belonging to the genus Escherichia in which threonine degradation is suppressed. Examples of the Escherichia bacterium in which threonine degradation is suppressed include, for example, the TDH6 strain lacking threonine dehydrogenase activity (Japanese Patent Laid-Open No. 2001-346578).
- the enzyme activity of the L-threonine biosynthetic enzyme is suppressed by the final product, L-threonine. Therefore, in order to construct an L-threonine-producing bacterium, it is desirable to modify the L-threonine biosynthetic gene so that it is not subject to feedback inhibition by L-threonine.
- the thrA, thrB, and thrC genes constitute the threonine operon, but the threonine operon forms an attenuator structure, and the expression of the threonine operon inhibits isoleucine and threonine in the culture medium. The expression is suppressed by attenuation.
- This modification can be achieved by removing the leader sequence or attenuator of the attenuation region (Lynn, S. P. et al. 1987. J. Mol. Biol. 194: 59-69; 02/26993 pamphlet; see the International Publication No. 2005/049808 pamphlet).
- a threonine operon as governed by a presser and promoter may be constructed. (See European Patent No. 0593792)
- a strain resistant to ⁇ -amino- ⁇ -hydroxyvaleric acid (AHV) may be selected. Is possible.
- the threonine operon modified so as not to be subjected to feedback inhibition by L-threonine has an increased copy number in the host or is linked to a strong promoter to improve the expression level. Is preferred.
- the increase in copy number can be achieved by transferring the threonine operon onto the genome by transposon, Mu-phage, etc., in addition to amplification by plasmid.
- L-threonine biosynthetic enzyme it is also preferable to enhance the glycolytic system, TCA cycle, genes related to the respiratory chain, genes controlling gene expression, and sugar uptake genes.
- these genes effective for L-threonine production include transhydronase (pntAB) gene (European Patent 733712), phosphoenolpyruvate carboxylase gene (pepC) (International Publication No. 95/06114 pamphlet), Phosphoenolpyruvate synthase gene (pps) (European Patent No. 877090), pyruvate carboxylase gene of Coryneform bacterium or Bacillus genus bacteria (International Publication No. 99/18228, European Patent Publication No. 1092776) Is mentioned.
- pntAB transhydronase
- pepC phosphoenolpyruvate carboxylase gene
- pps Phosphoenolpyruvate synthase gene
- pps European Patent No. 8
- genes that confer resistance to L-threonine and genes that confer resistance to L-homoserine, or confer L-threonine resistance and L-homoserine resistance to the host include rhtA gene (Livshits, V. A. et al. 2003. Res. Microbiol. 154: 123-135), rhtB gene (European Patent Application Publication No. 0994190), rhtC gene ( European Patent Application Publication No. 1013765), yfiK, yeaS gene (European Patent Application Publication No. 1016710).
- rhtA gene Livshits, V. A. et al. 2003. Res. Microbiol. 154: 123-135)
- rhtB gene European Patent Application Publication No. 0994190
- rhtC gene European Patent Application Publication No. 1013765
- yfiK yeaS gene
- European Patent Application Publication No. 1016710 European Patent Application Publication No.
- L-threonine-producing bacteria or parent strains for inducing them examples include E. coli TDH-6 / pVIC40 (VKPM B-3996) (US Patent No. 5,175,107, US Patent No. 5,705,371), E. coli 472T23. / pYN7 (ATCC 98081) (U.S. Pat.No. 5,631,157), E.coli NRRL-21593 (U.S. Pat.No. 5,939,307), E.coli FERM BP-3756 (U.S. Pat.No. 5,474,918), E.coli FERM BP-3519 And FERM BP-3520 (U.S. Patent No. 5,376,538), E.
- E. coli MG442 (Gusyatiner et al., 1978. Genetika (in Russian), 14: 947-956), E. coli VL643 and VL2055 (European Patent Application Publication No. Strains belonging to the genus Escherichia, such as, but not limited to, 1149911).
- the TDH-6 strain lacks the thrC gene, is sucrose-utilizing, and the ilvA gene has a leaky mutation. This strain also has a mutation in the rhtA gene that confers resistance to high concentrations of threonine or homoserine.
- the B-3996 strain carries the plasmid pVIC40 in which the thrA * BC operon containing the mutated thrA gene is inserted into the RSF1010-derived vector. This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I which is substantially desensitized to feedback inhibition by threonine.
- E. coli VKPM B-5318 (EP 0593792B) can also be used as an L-threonine producing bacterium or a parent strain for inducing it.
- the B-5318 strain is isoleucine non-required, and the control region of the threonine operon in the plasmid pVIC40 is replaced by a temperature sensitive lambda phage C1 repressor and a PR promoter.
- VKPM B-5318 was assigned to Russian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on May 3, 1990 under the accession number VKPM B-5318. Has been deposited internationally.
- the thrA gene encoding Escherichia coli aspartokinase homoserine dehydrogenase I is located at base numbers 337 to 2,799 on the genome sequence of Escherichia coli MG1655 strain registered under Genbank Accession No. U00096, and GenBank Accession No. AAC73113. It is a gene encoding a protein registered in.
- the thrB gene encoding the homoserine kinase of Escherichia coli is located at base numbers 2,801-3,733 on the genome sequence of Escherichia coli MG1655 registered under Genbank Accession No. U00096, and is registered under GenBank accession No. AAC73114 It is a gene that encodes the protein.
- the thrC gene encoding the threonine synthase of Escherichia coli is located at base numbers 3,734-5,020 on the genome sequence of Escherichia coli MG1655 registered in Genbank Accession No. U00096, and is registered under GenBank accession No. AAC73115. It is a gene that encodes the protein. These three genes are encoded as a threonine operon consisting of thrLABC downstream of the thrL gene encoding the leader peptide. In order to increase the expression of the threonine operon, it is effective to remove the attenuator region that affects transcription, preferably from the operon (WO 2005/049808, WO2003 / 097839).
- mutant thrA gene encoding aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine, and the thrB and thrC genes are one operon from the well-known plasmid pVIC40 present in the threonine producing strain E. coli VKPM B-3996. Can be obtained as Details of plasmid pVIC40 are described in US Pat. No. 5,705,371.
- the rhtA gene has nucleotide numbers 848,433-849,320 on the genome sequence of Escherichia coli MG1655 strain registered in Genbank Accession No. U00096 acquired as a gene that gives resistance to homoserine and threonine (rht: resistant to threonine / homoserine). It is a gene that codes for a protein located in (complementary strand) and registered in GenBank Accession No. AAC73900. It has also been found that the rhtA23 mutation that improves rthA expression is a G ⁇ A substitution at position -1 relative to the ATG start codon (Livshits, V. A. et al. 2003. Res Microbiol. 154 : 123-135, European Patent Application No. 1013765).
- the asd gene of Escherichia coli is located at base numbers 3,571,798 to 5723,572,901 (complementary strand) on the genome sequence of Escherichia coli MG1655 strain registered in Genbank Accession No. U00096, and registered as GenBank accession No. AAC76458 It is a gene that encodes a protein. It can be obtained by PCR using primers prepared based on the nucleotide sequence of the gene (see White, T. J. et al. 1989. Trends Genet. 5: 185-189). The asd gene of other microorganisms can be obtained similarly.
- the aspC gene of Escherichia coli is located at base numbers 983, 742 to 984,932 (complementary strands) on the genome sequence of Escherichia coli MG1655 strain registered in Genbank Accession No. U00096, and registered with GenBank accession No. AAC74014 It is a gene that encodes a protein that can be obtained by PCR.
- the aspC gene of other microorganisms can be obtained similarly.
- L-Lysine-producing bacteria include L-lysine analog resistant strains and metabolic control mutants.
- L-lysine analogs include oxalysine, lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (hereinafter sometimes abbreviated as “AEC”), ⁇ -methyllysine, ⁇ -chloro.
- AEC S- (2-aminoethyl) -L-cysteine
- caprolactam etc. are mentioned, it is not limited to these.
- Mutants having resistance to these lysine analogs can be obtained by subjecting bacteria belonging to the family Enterobacteriaceae or coryneform bacteria to ordinary artificial mutation treatment.
- L-lysine-producing bacteria include Escherichia coli AJ11442 (FERM BP-1543, NRRL B-12185; see JP-A-56-18596 and US Pat. No. 4,346,170), Escherichia coli VL611. Strains (JP 2000-189180 A) and the like.
- WC196 strain see International Publication No. 96/17930 pamphlet
- L-lysine-producing bacteria can be constructed by increasing the enzyme activity of the L-lysine biosynthesis system. These increases in enzyme activity can be achieved by increasing the copy number of the gene encoding the enzyme in the cell or by modifying the expression regulatory sequence.
- the modification for enhancing the expression of the gene can be performed, for example, by increasing the copy number of the gene in the cell using a gene recombination technique.
- a DNA fragment containing the gapA gene may be ligated with a vector that functions in a host bacterium, preferably a multicopy vector, to produce a recombinant DNA, which is introduced into the bacterium and transformed.
- Increasing the gene copy number can also be achieved by having multiple copies of the above genes on the bacterial genomic DNA.
- homologous recombination is performed using a sequence present in multiple copies on the genomic DNA as a target.
- a sequence present in multiple copies on genomic DNA repetitive DNA and inverted repeats present at the end of a transposable element can be used.
- each gene may be linked in tandem beside the gapA gene present on the genome, or may be redundantly incorporated on an unnecessary gene on the genome.
- the gene expression can be enhanced by the method described in the pamphlet of International Publication No. 00/18935 using expression control sequences such as each promoter of the gene on genomic DNA or plasmid.
- Regulators that replace powerful genes, bring the -35 and -10 regions of each gene closer to consensus sequences, amplify regulators that increase gene expression, or reduce gene expression It can also be achieved by deleting or weakening.
- lac promoter for example, lac promoter, trp promoter, trc promoter, tac promoter, araBA promoter, lambda phage PR promoter, PL promoter, tet promoter, T7 promoter, ⁇ 10 promoter and the like are known as strong promoters. It is also possible to introduce a base substitution or the like into the promoter region or SD region of the gapA gene and modify it to a stronger one. Methods for evaluating promoter strength and examples of strong promoters are described in Goldstein et al. (Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev. 1995. 1: 105-128) and the like.
- L-lysine biosynthetic enzymes include dihydrodipicolinate synthase gene (dapA), aspartokinase gene (lysC), dihydrodipicolinate reductase gene (dapB), diaminopimelate decarboxylase gene (lysA) , Diaminopimelate dehydrogenase gene (ddh) (international publication No.
- the parent strain also encodes a gene (cyo) ((EP 1170376 A) involved in energy efficiency, a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) (US Pat. No. 5,830,716), and a protein having L-lysine excretion activity.
- cyo a gene involved in energy efficiency
- pntAB nicotinamide nucleotide transhydrogenase
- pntAB nicotinamide nucleotide transhydrogenase
- gdhA glutamate dehydrogenase
- Wild-type dihydrodipicolinate synthase derived from Escherichia coli is known to undergo feedback inhibition by L-lysine, and wild-type aspartokinase derived from Escherichia coli is subject to inhibition and feedback inhibition by L-lysine. It has been known. Therefore, when using the dapA gene and the lysC gene, these genes are preferably mutant genes that are not subject to feedback inhibition by L-lysine.
- DNA encoding a mutant dihydrodipicolinate synthase that is not subject to feedback inhibition by L-lysine examples include DNA encoding a protein having a sequence in which the histidine residue at position 118 is substituted with a tyrosine residue.
- the threonine residue at position 352 is replaced with an isoleucine residue
- the glycine residue at position 323 is replaced with an asparagine residue
- 318 Examples include DNA encoding AKIII having a sequence in which the methionine at the position is replaced with isoleucine (see US Pat. Nos. 5,610,010 and 6,040,160 for these variants). Mutant DNA can be obtained by site-specific mutagenesis such as PCR.
- RSFD80, pCAB1, and pCABD2 are known as plasmids containing mutant dapA encoding mutant mutant dihydrodipicolinate synthase and mutant lysC encoding mutant aspartokinase (USA) Patent No. 6040160).
- Escherichia coli JM109 strain US Pat. No. 6,040,160 transformed with this plasmid was named AJ12396, and this strain was established on 28 October 1993 at the Institute of Biotechnology, Ministry of International Trade and Industry. Deposited to the National Institute of Advanced Industrial Science and Technology (AIST) as Deposit No. FERM P-13936, transferred to an international deposit based on the Budapest Treaty on November 1, 1994, with the deposit number of FERM BP-4859 It is deposited with.
- RSFD80 can be obtained from AJ12396 strain by a known method.
- examples of such enzymes include homoserine dehydrogenase, lysine decarboxylase (cadA, ldcC), malic enzyme, etc., and a strain in which the activity of the enzyme is reduced or absent is disclosed in International Publication No. WO95 / 23864, It is described in WO96 / 17930 pamphlet, WO2005 / 010175 pamphlet and the like.
- both the cadA gene and ldcC gene encoding lysine decarboxylase it is preferable to reduce the expression of both the cadA gene and ldcC gene encoding lysine decarboxylase. Decrease in the expression of both genes can be performed according to the method described in WO2006 / 078039 pamphlet.
- a mutation that reduces or eliminates the activity of the enzyme in the cell is applied to the gene of the enzyme on the genome by a usual mutation treatment method or gene recombination technique. What is necessary is just to introduce.
- Such mutations can be introduced, for example, by deleting a gene encoding an enzyme on the genome by genetic recombination or by modifying an expression regulatory sequence such as a promoter or Shine-Dalgarno (SD) sequence. Achieved.
- a modified gene in which a partial sequence of the target gene is modified so that it does not produce a normally functioning enzyme is prepared, and a bacterium belonging to the family Enterobacteriaceae is transformed with the DNA containing the gene.
- a bacterium belonging to the family Enterobacteriaceae is transformed with the DNA containing the gene.
- the gene replacement using such homologous recombination is a method called “Red-driven integration” (Datsenko, K. A, and Wanner, B. L. 2000. Proc. Natl. Acad. Sci U S A.
- a preferred L-lysine-producing bacterium includes Escherichia coli WC196 ⁇ cadA ⁇ ldcC / pCABD2 (WO2006 / 078039). This strain was constructed by disrupting the cadA and ldcC genes encoding lysine decarboxylase and introducing plasmid pCABD2 (US Pat. No. 6,040,160) containing a lysine biosynthesis gene from WC196 strain. The WC196 strain was obtained from the W3110 strain derived from E. coli K-12, and encodes aspartokinase III in which feedback inhibition by L-lysine was released by replacing threonine at position 352 with isoleucine.
- the WC196 strain was named Escherichia coli AJ13069.
- WC196 ⁇ cadA ⁇ ldcC was named AJ110692, and was deposited internationally on October 7, 2008, at the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center (1-6 Chuo, 1-chome, 1-chome, Tsukuba, Ibaraki, 305-8566, Japan) And the accession number FERM BP-11027 is assigned.
- pCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from Escherichia coli having a mutation that is desensitized to feedback inhibition by L-lysine, and a mutation that is desensitized to feedback inhibition by L-lysine.
- a mutant lysC gene encoding aspartokinase III derived from Escherichia coli, dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and ddh encoding a diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum Contains genes (International Publication Nos. WO95 / 16042 and WO01 / 53459).
- Coryneform bacteria having the ability to produce L-lysine include AEC-resistant mutant strains (Brevibacterium lactofermentum AJ11082 (NRRL B-11470), etc .: Japanese Patent Publication Nos. 56-1914 and 56-1915 No. 57-14157, No. 57-14158, No. 57-30474, No. 58-10075, No. 59-4993, No. 61-35840, No. 62-24074, JP-B 62-36673, JP-B 5-11958, JP-B 7-112437, JP-B 7-112438); amino acids such as L-homoserine for its growth (See Japanese Patent Publication No. 48-28078, Japanese Patent Publication No.
- L-cysteine producing bacteria examples include E. coli JM15 (US Pat. No. 6,218,168) transformed with a different cysE allele encoding a serine acetyltransferase resistant to feedback inhibition. , Russian Patent Application No. 2003121601), E. coli W3110 (US Pat.No. 5,972,663) having an overexpressed gene encoding a protein suitable for excretion of a substance toxic to cells, cysteine desulfohydrase activity E. coli strains such as reduced E. coli strains (JP-A-11-155571) and E. coli W3110 (international publication No. 0127307) with increased activity of transcription regulators of the positive cysteine regulon encoded by the cysB gene. Examples include, but are not limited to, the strains to which they belong.
- L-leucine-producing bacteria examples include leucine-resistant E. coil strains (eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)) or ⁇ E. coli strains resistant to leucine analogs such as 2-thienylalanine, 3-hydroxyleucine, 4-azaleucine, and 5,5,5-trifluoroleucine (Japanese Patent Publication No. 62-34397 and JP-A-8-70879), Although strains belonging to the genus Escherichia such as E. coli strains obtained by the genetic engineering method described in International Publication No. 96/06926, E. coli H-9068 (Japanese Patent Laid-Open No. 8-70879) can be mentioned, It is not limited to these.
- the bacterium used in the present invention may be improved by increasing the expression of one or more genes involved in L-leucine biosynthesis.
- a gene of leuABCD operon represented by a mutant leuA gene (US Pat. No. 6,403,342) encoding isopropyl malate synthase which is preferably desensitized to feedback inhibition by L-leucine can be mentioned.
- the bacterium used in the present invention may be improved by increasing the expression of one or more genes encoding proteins that excrete L-amino acids from bacterial cells. Examples of such genes include b2682 gene and b2683 gene (ygaZH gene) (European Patent Application Publication No. 1239041).
- Coryneform bacteria producing L-isoleucine include coryneform bacteria (JP 2001-169788) in which a brnE gene encoding a branched-chain amino acid excretion protein is amplified, and L-isoleucine production by protoplast fusion with L-lysine producing bacteria.
- Coryneform bacterium imparted with ability JP-A 62-74293
- coryneform bacterium with enhanced homoserine dehydrogenase JP-A 62-91193
- threonine hydroxamate resistant strain JP 62-195293
- ⁇ - Examples include ketomarone resistant strains (Japanese Patent Laid-Open No. 61-15695) and methyllysine resistant strains (Japanese Patent Laid-Open No. 61-15696).
- L-histidine producing bacteria examples include E. coli 24 strain (VKPM B-5945, Russian Patent No. 2003677), E. coli 80 strain (VKPM B- 7270, Russian patent 2119536), E. coli NRRL B-12116-B12121 (US Pat.No. 4,388,405), E. coli H-9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (US) Patent No. 6,344,347), E. coli H-9341 (FERM BP-6674) (European Patent Application Publication No. 1085087), E. coli AI80 / pFM201 (US Pat.No. 6,258,554), and other strains belonging to the genus Escherichia However, it is not limited to these.
- L-histidine-producing bacteria or parent strains for inducing them include strains in which expression of one or more genes encoding L-histidine biosynthetic enzymes are increased.
- genes include ATP phosphoribosyltransferase gene (hisG), phosphoribosyl AMP cyclohydrolase gene (hisI), phosphoribosyl-ATP pyrophosphohydrolase gene (hisI), phosphoribosylformimino-5- Examples include aminoimidazole carboxamide ribotide isomerase gene (hisA), amide transferase gene (hisH), histidinol phosphate aminotransferase gene (hisC), histidinol phosphatase gene (hisB), and histidinol dehydrogenase gene (hisD). It is done.
- L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are known to be inhibited by L-histidine, and therefore L-histidine production ability is feedback-inhibited by the ATP phosphoribosyltransferase gene (hisG). Can be efficiently increased by introducing mutations that confer resistance to (Russian Patent Nos. 2003677 and 2119536).
- strains having L-histidine-producing ability include E. coli FERM-P 5038 and 5048 introduced with a vector carrying a DNA encoding an L-histidine biosynthesis enzyme (Japanese Patent Laid-Open No. 56-005099).
- E. coli strain (European Patent Application Publication No. 1016710) into which an amino acid transport gene was introduced, E. coli 80 imparted resistance to sulfaguanidine, DL-1,2,4-triazole-3-alanine and streptomycin Strains (VKPM B-7270, Russian Patent No. 2119536).
- L-glutamic acid-producing bacteria examples include, but are not limited to, strains belonging to the genus Escherichia such as E. coli VL334thrC + (EP 1172433).
- E. coli VL334 (VKPM B-1641) is an L-isoleucine and L-threonine auxotrophic strain having mutations in the thrC gene and the ilvA gene (US Pat. No. 4,278,765).
- the wild type allele of the thrC gene was introduced by a general transduction method using bacteriophage P1 grown on cells of wild type E. coli K-12 strain (VKPM B-7).
- VKPM B-8961 L-isoleucine-requiring L-glutamic acid producing bacterium VL334thrC +
- L-glutamic acid-producing bacteria or parent strains for deriving the same include, but are not limited to, strains with enhanced activity of one or more L-glutamic acid biosynthetic enzymes.
- examples of such genes include glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthetase (gltAB), isocitrate dehydrogenase (icdA), aconitate hydratase (acnA, acnB), citrate synthase (gltA), Methyl citrate synthase (prpC), phosphoenolpyruvate carbocilase (ppc), pyruvate dehydrogenase (aceEF, lpdA), pyruvate kinase (pykA, pykF), phosphoenolpyruvate synthase (ppsA), enolase ( eno),
- strains modified to increase expression of citrate synthetase gene, phosphoenolpyruvate carboxylase gene, and / or glutamate dehydrogenase gene include European Patent Application Publication No. 1078989, European Patent Application Publication No. 955368. And those disclosed in European Patent Application No. 952221.
- L-glutamic acid-producing bacteria or parent strains for deriving the same are those in which the activity of an enzyme that catalyzes the synthesis of a compound other than L-glutamic acid by diverging from the biosynthetic pathway of L-glutamic acid is reduced or absent Stocks are also mentioned.
- Examples of such enzymes include isocitrate triase (aceA), ⁇ -ketoglutarate dehydrogenase (sucA), phosphotransacetylase (pta), acetate kinase (ack), acetohydroxy acid synthase (ilvG), Examples include acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ldh), glutamate decarboxylase (gadAB), and the like.
- aceA isocitrate triase
- sucA ⁇ -ketoglutarate dehydrogenase
- pta phosphotransacetylase
- ack acetate kinase
- ilvG acetohydroxy acid synthase
- Examples include acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ld
- E. coli W3110sucA Kmr E. coli AJ12624 (FERM BP-3853) E. coli AJ12628 (FERM BP-3854) E. coli AJ12949 (FERM BP-4881)
- E. coli W3110sucA is a strain obtained by disrupting the ⁇ -ketoglutarate dehydrogenase gene of E. coli ⁇ W3110 (hereinafter also referred to as“ sucA gene ”). This strain is completely deficient in ⁇ -ketoglutarate dehydrogenase.
- examples of coryneform bacteria having reduced ⁇ -ketoglutarate dehydrogenase activity include the following strains.
- Brevibacterium lactofermentum L30-2 strain Japanese Unexamined Patent Publication No. 2006-340603
- Brevibacterium lactofermentum strain ⁇ S International pamphlet No.
- L-glutamic acid-producing bacteria include those belonging to the genus Escherichia and having resistance to an aspartic acid antimetabolite. These strains may be deficient in ⁇ -ketoglutarate dehydrogenase, for example, E. coli AJ13199 (FERM BP-5807) (US Patent No. 5,908,768), and FFRM P- with reduced L-glutamate resolution 12379 (US Pat. No. 5,393,671); AJ13138 (FERM BP-5565) (US Pat. No. 6,110,714) and the like.
- Pantoea ananatis AJ13355 strain An example of an L-glutamic acid-producing bacterium of Pantoea ananatis is Pantoea ananatis AJ13355 strain. This strain was isolated from the soil of Iwata City, Shizuoka Prefecture as a strain that can grow on a medium containing L-glutamic acid and a carbon source at a low pH. Pantoea Ananatis AJ13355 was commissioned on February 19, 1998 at the National Institute of Advanced Industrial Science and Technology, the Patent Biological Deposit Center (address: 1st, 1st, 1st, 1-chome, Tsukuba, Ibaraki, Japan, 305-8566).
- ⁇ KGDH ⁇ -ketoglutarate dehydrogenase
- Such strains include AJ13356 (US Pat. No. 6,331,419) in which the ⁇ KGDH-E1 subunit gene (sucA) of AJ13355 strain is deleted, and sucA derived from SC17 strain selected from AJ13355 strain as a low mucus production mutant.
- SC17sucA US Pat. No. 6,596,517) which is a gene-deficient strain.
- AJ13356 was founded on February 19, 1998 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center, 1-chome, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan 305-8566 No. 6) was deposited under the deposit number FERM P-16645, transferred to an international deposit under the Budapest Treaty on January 11, 1999, and given the deposit number FERM BP-6616.
- AJ13355 and AJ13356 are deposited as Enterobacter agglomerans in the above depository organization, but are described as Pantoea ananatis in this specification.
- the SC17sucA strain has been assigned a private number AJ417, and deposited on February 26, 2004 at the above-mentioned National Institute of Advanced Industrial Science and Technology as the accession number FERM BP-08646.
- SC17sucA / RSFCPG + pSTVCB strain As L-glutamic acid-producing bacteria of Pantoea ananatis, SC17sucA / RSFCPG + pSTVCB strain, AJ13601 strain, NP106 strain, and NA1 strain can be mentioned.
- the SC17sucA / RSFCPG + pSTVCB strain is different from the SC17sucA strain in that the plasmid RSFCPG containing the citrate synthase gene (gltA), phosphoenolpyruvate carboxylase gene (ppsA), and glutamate dehydrogenase gene (gdhA) derived from Escherichia coli, This is a strain obtained by introducing a plasmid pSTVCB containing a citrate synthase gene (gltA) derived from bacteria lactofermentum.
- the AJ13601 strain was selected from the SC17sucA / RSFCPG + pSTVCB strain as a strain exhibiting resistance to a high concentration of L-glutamic acid at low pH.
- the NP106 strain is a strain obtained by removing the plasmid RSFCPG + pSTVCB from the AJ13601 strain.
- AJ13601 shares were registered with the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (305-1856, Ibaraki, Japan, 1st-chome, 1st-chome, 1st-chome, 1st-centre, 6th). Deposited as 17516, transferred to an international deposit under the Budapest Treaty on July 6, 2000, and assigned the deposit number FERM BP-7207.
- a method for conferring L-glutamic acid-producing ability to coryneform bacteria a method of amplifying the yggB gene encoding mechanosensitive channel (International Publication WO2006 / 070944), a mutation introducing a mutation in the coding region It is also possible to use a method for introducing a type yggB gene.
- the yggB gene is located at base numbers 1,337,692-1,336,091 (complementary strand) on the genome sequence of Corynebacterium glutamicum ATCC 13032 registered under Genbank Accession No. NC # 003450, GenBank accession No. NP, also called NCgl1221 This gene encodes a membrane protein registered in # 600492.
- Other methods for imparting or enhancing L-glutamic acid-producing ability include a method for imparting resistance to organic acid analogs and respiratory inhibitors and a method for imparting sensitivity to cell wall synthesis inhibitors.
- a method of imparting monofluoroacetic acid resistance Japanese Patent Laid-Open No. 50-113209
- a method of imparting adenine resistance or thymine resistance Japanese Patent Laid-Open No. 57-065198
- a method of weakening urease Japanese Patent Laid-Open No. 52-038088
- a method for imparting resistance to malonic acid Japanese Patent Laid-Open No.
- Such resistant bacteria include the following strains. Brevibacterium flavum AJ3949 (FERM BP-2632: see JP-A-50-113209) Corynebacterium glutamicum AJ11628 (FERM P-5736; see JP 57-065198) Brevibacterium flavum AJ11355 (FERM P-5007; see JP-A-56-1889) Corynebacterium glutamicum AJ11368 (FERM P-5020; see JP 56-1889) Brevibacterium flavum AJ11217 (FERM P-4318; see JP-A-57-2689) Corynebacterium glutamicum AJ11218 (FERM P-4319; see JP-A-57-2689) Brevibacterium flavum AJ11564 (FERM P-5472; see JP 56-140895 A) Brevibacterium flavum AJ11439 (FERM P-5136; see JP-A-56-35981) Corynebacterium glutami
- L-phenylalanine-producing bacteria examples include E. coli AJ12739 (tyrA :: Tn10, tyrR) lacking chorismate mutase-prefenate dehydrogenase and tyrosine repressor ( VKPM B-8197) (WO 03/044191), E. coli HW1089 (ATCC 55371) carrying a mutant pheA34 gene encoding chorismate mutase-prefenate dehydratase with desensitized feedback inhibition (US Pat.No. 5,354,672) Strains belonging to the genus Escherichia such as E.
- E. coli MWEC101-b KR8903681
- E. coli NRRL B-12141 E. coli NRRL B-12141
- NRRL B-12145 E. coli NRRL B-12146
- NRRL B-12147 US Pat.No. 4,407,952
- E. coli K-12 [W3110 (tyrA) / pPHAB]
- E. coli K that retains the gene encoding chorismate mutase-prefenate dehydratase whose feedback inhibition has been released.
- -12 [W3110 (tyrA) / pPHAD] (FERM BP-12659)
- E. coli K-12 [W3110 (tyrA) / pPHATerm] (FERM BP-12662) and E. coli K-12 named AJ 12604 [W3110 (tyrA) / pBR-aroG4, pACMAB] (FERM BP-3579) can also be used (EP 488424 B1).
- L-phenylalanine producing bacteria belonging to the genus Escherichia having an increased activity of the protein encoded by the yedA gene or the yddG gene can also be used (US Patent Application Publication Nos. 2003/0148473 and 2003/0157667, International Publication No. 03/044192). .
- Coryneform bacteria that produce phenylalanine include Corynebacterium glutamica BPS-13 strains with reduced phosphoenolpyruvate carboxylase or pyruvate kinase activity (FERM BP-1777, K77 (FERM BP-2062) and K78 (FERM BP -2063) (European Patent Publication No. 331145, JP-A No. 02-303495), a tyrosine-requiring strain (JP-A No. 05-049489) and the like can be used.
- L-tryptophan-producing bacteria examples include E. coli JP4735 / pMU3028 (DSM10122) and JP6015 / pMU91 lacking tryptophanyl-tRNA synthetase encoded by the mutant trpS gene (DSM10123) (U.S. Pat.No. 5,756,345), E. coli having a serA allele encoding phosphoglycerate dehydrogenase not subject to feedback inhibition by serine and a trpE allele encoding an anthranilate synthase not subject to feedback inhibition by tryptophan.
- SV164 pGH5 (US Pat.No.
- E. coli AGX17 (pGX44) (NRRL B-12263) and AGX6 (pGX50) aroP (NRRL B-12264) lacking tryptophanase (US Pat.No. 4,371,614)
- Escherichia coli such as E. coli AGX17 / pGX50, pACKG4-pps (WO9708333, US Pat.No. 6,319,696) with increased phosphoenolpyruvate production capacity
- Strains include belonging to Rihia genus, but is not limited thereto.
- L-tryptophan-producing bacteria belonging to the genus Escherichia with increased activity of the protein encoded by the yedA gene or the yddG gene can also be used (US Patent Application Publications 2003/0148473 and 2003/0157667).
- L-tryptophan-producing bacteria or parent strains for inducing them examples include anthranilate synthase (trpE), phosphoglycerate dehydrogenase (serA), 3-deoxy-D-arabinohepturonic acid-7-phosphorus Acid synthase (aroG), 3-dehydroquinate synthase (aroB), shikimate dehydrogenase (aroE), shikimate kinase (aroL), 5-enolic acid pyruvylshikimate 3-phosphate synthase (aroA), chorismate synthase (aroC ), Prephenate dehydratase, chorismate mutase and tryptophan synthase (trpAB).
- trpE anthranilate synthase
- serA phosphoglycerate dehydrogenase
- aroG 3-deoxy-D-arabinohepturonic acid-7-phosphorus Acid synthas
- Prefenate dehydratase and chorismate mutase are encoded by the pheA gene as a bifunctional enzyme (chorismate mutase / prephenate dehydrogenase (CM / PDH)).
- phosphoglycerate dehydrogenase 3-deoxy-D-arabinohepturonic acid-7-phosphate synthase, 3-dehydroquinate synthase, shikimate dehydratase, shikimate kinase, 5-enolic acid Pyruvylshikimate 3-phosphate synthase, chorismate synthase, prefenate dehydratase, chorismate mutase-prefenate dehydrogenase are particularly preferred.
- strains having such mutations include E. coli SV164 carrying a desensitized anthranilate synthase and a mutant serA gene encoding phosphoglycerate dehydrogenase with desensitized feedback inhibition Examples include a transformant obtained by introducing the plasmid pGH5 ⁇ (International Publication No. 94/08031) into E. coli SV164.
- L-tryptophan-producing bacteria or parent strains for deriving the same examples include strains into which a tryptophan operon containing a gene encoding an inhibitory anthranilate synthase has been introduced (Japanese Patent Laid-Open Nos. 57-71397 and 1994). 62-244382, US Pat. No. 4,371,614). Furthermore, L-tryptophan-producing ability may be imparted by increasing the expression of a gene encoding tryptophan synthase in the tryptophan operon (trpBA). Tryptophan synthase consists of ⁇ and ⁇ subunits encoded by trpA and trpB genes, respectively. Furthermore, L-tryptophan production ability may be improved by increasing the expression of the isocitrate triase-malate synthase operon (WO 2005/103275).
- Coryneform bacteria include corynebacterium glutamicum AJ12118 (FERM BP-478 patent No.01681002), a coryneform bacterium introduced with a tryptophan operon (Japanese Patent Laid-Open No. 63240794), coryneform bacteria, which are resistant to sulfaguanidine. Coryneform bacteria (Japanese Patent Laid-Open No. 01994749) into which a gene encoding shikimate kinase derived therefrom has been introduced can be used.
- L-proline-producing bacteria examples include E. coli 702ilvA (VKPM B-8012) that lacks the ilvA gene and can produce L-proline (European Patent Publication) Examples include, but are not limited to, strains belonging to the genus Escherichia such as No. 1,172,433).
- the bacterium used in the present invention may be improved by increasing the expression of one or more genes involved in L-proline biosynthesis.
- An example of a gene preferable for L-proline-producing bacteria includes a proB gene (German Patent No. 3127361) encoding glutamate kinase that is desensitized to feedback inhibition by L-proline.
- the bacterium used in the present invention may be improved by increasing the expression of one or more genes encoding proteins that excrete L-amino acids from bacterial cells. Examples of such genes include b2682 gene and b2683 gene (ygaZH gene) gene (European Patent Publication No. 1,239,041).
- bacteria belonging to the genus Escherichia having L-proline-producing ability include NRRL B-12403 and NRRL B-12404 (British Patent No. 2075056), VKPM B-8012 (Russian Patent Application 2000124295), German Patent No. 3127361 And E. coli strains such as the plasmid variants described in Bloom FR et al (The 15th Miami winter symposium, 1983, p.34).
- L-arginine-producing bacteria examples include E. coli 237 strain (VKPM B-7925) (US Patent Application Publication No. 2002/058315) and mutant N- Derived strains carrying acetylglutamate synthase ( Russian Patent Application No. 2,001,112,869), E. coli 382 strain (VKPM B-7926) (European Patent Publication No.1,170,358), argA gene encoding N-acetylglutamate synthetase introduced Strains belonging to the genus Escherichia such as, but not limited to, arginine producing strains (European Patent Publication No. 1,170,361).
- L-arginine-producing bacteria or parent strains for inducing them include strains in which expression of one or more genes encoding L-arginine biosynthetic enzymes are increased.
- genes include N-acetylglutamylphosphate reductase gene (argC), ornithine acetyltransferase gene (argJ), N-acetylglutamate kinase gene (argB), acetylornithine transaminase gene (argD), ornithine carbamoyltransferase gene ( argF), arginosuccinate synthetase gene (argG), arginosuccinate lyase gene (argH), carbamoylphosphate synthetase gene (carAB).
- argC N-acetylglutamylphosphate reductase gene
- argJ ornithine acetyltransferase gene
- argB N-
- L-valine-producing bacteria examples include, but are not limited to, strains modified to overexpress the ilvGMEDA operon (US Pat. No. 5,998,178). Not. It is preferable to remove the ilvGMEDA operon region required for attenuation so that the operon expression is not attenuated by the produced L-valine. Furthermore, it is preferred that the ilvA gene of the operon is disrupted and the threonine deaminase activity is reduced. Examples of L-valine-producing bacteria or parent strains for deriving the same also include mutants having aminoacyl t-RNA synthetase mutations (US Pat. No. 5,658,766).
- E. coli VL1970 having a mutation in the ileS gene encoding isoleucine tRNA synthetase can be used.
- E. coli VL1970 was registered with Russian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on June 24, 1988 under the accession number VKPM B-4411. It has been deposited.
- VKPM Russian National Collection of Industrial Microorganisms
- a mutant strain (International Publication No. 96/06926) that requires lipoic acid for growth and / or lacks H + -ATPase can be used as a parent strain.
- L-valine-producing bacteria of coryneform bacteria include, for example, a strain modified so that expression of a gene encoding an enzyme involved in L-valinate biosynthesis is enhanced.
- an enzyme involved in L-valinate biosynthesis for example, an enzyme encoded by the ilvBNC operon, that is, an acetohydroxyacid synthase encoded by ilvBN and an isomeroreductase encoded by ivlC (International Publication No. 00/50624) Is mentioned.
- the attenuation is released to release the suppression of the expression by the produced L-valine. Is desirable.
- the coryneform bacterium having L-valine-producing ability may be performed by reducing or eliminating the activity of at least one enzyme involved in a substance metabolic pathway that reduces L-valine production. For example, it is conceivable to reduce the activity of threonine dehydratase involved in L-leucine synthesis or the enzyme involved in D-pantosenate synthesis (WO 00/50624).
- Another method for imparting L-valine-producing ability includes a method for imparting resistance to amino acid analogs and the like.
- L-isoleucine and L-methionine auxotrophs and mutant strains (FERM-18P-1841, FERM P that are resistant to D-ribose, purine ribonucleosides or pyrimidine ribonucleosides and have the ability to produce L-valine) -29, Japanese Patent Publication No. 53-025034) Strains, mutants resistant to polyketoids (FERM P-1763, FERM P-1764, Japanese Patent Publication No. 06-065314), and a medium containing acetic acid as the only carbon source.
- L-isoleucine-producing bacteria and L-isoleucine-producing bacteria or parent strains for inducing them include mutants having resistance to 6-dimethylaminopurine (Japanese Patent Laid-Open No. 5-304969), thiisoleucine, isoleucine hydroxamate Mutants having resistance to isoleucine analogs such as the above, and mutants having resistance to DL-ethionine and / or arginine hydroxamate (Japanese Patent Laid-Open No. 5-130882), but are not limited thereto.
- a recombinant strain transformed with a gene encoding a protein involved in L-isoleucine biosynthesis such as threonine deaminase and acetohydroxy acid synthase can also be used as a parent strain (JP-A-2-458, FR 0356739, and US Pat. No. 5,998,178).
- Coryneform bacteria producing L-isoleucine include coryneform bacteria (JP 2001-169788) in which a brnE gene encoding a branched-chain amino acid excretion protein is amplified, and L-isoleucine production by protoplast fusion with L-lysine producing bacteria.
- Coryneform bacterium imparted with ability JP-A 62-74293
- coryneform bacterium with enhanced homoserine dehydrogenase JP-A 62-91193
- threonine hydroxamate resistant strain JP 62-195293
- ⁇ - Examples include ketomarone resistant strains (Japanese Patent Laid-Open No. 61-15695) and methyllysine resistant strains (Japanese Patent Laid-Open No. 61-15696).
- L-methionine-producing bacteria or parent strains for deriving L-methionine-producing bacteria include, but are not limited to, L-threonine-requiring strains and mutant strains resistant to norleucine. 139471).
- a strain lacking a methionine repressor and a recombinant strain transformed with a gene encoding a protein involved in L-methionine biosynthesis such as homoserine transsuccinylase and cystathionine ⁇ -synthase can also be used as a parent strain.
- Japanese Patent Laid-Open No. 2000-139471 Japanese Patent Laid-Open No. 2000-139471.
- the gene used is not limited to the gene having the above-mentioned genetic information or a gene having a known sequence, and the function of the encoded protein is impaired.
- genes having conservative mutations such as homologues and artificially modified variants of the genes can also be used. That is, it may be a gene encoding a protein having a sequence including substitution, deletion, insertion or addition of one or several amino acids at one or several positions in the amino acid sequence of a known protein.
- “one or several” differs depending on the position of the amino acid residue in the three-dimensional structure of the protein and the type of amino acid residue, but specifically, preferably 1 to 20, more preferably 1 to 10 Means, more preferably 1-5.
- a conservative mutation is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. Is an amino acid having a hydroxyl group between Gln and Asn, in the case of a basic amino acid, between Lys, Arg, and His, and in the case of an acidic amino acid, between Asp and Glu. In some cases, it is a mutation that substitutes between Ser and Thr.
- substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys. , Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg Substitution, Glu to Gly, Asn, Gln, Lys or Asp substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe Substitution, Leu to Ile, Met, Val or Phe, Lys to Asn, Glu, Gln, His or Arg, Met to Ile, Leu, Val or Phe, Phe to Trp, Tyr, Met, Ile or Leu substitution, Ser to Thr or Ala substitution, Thr to Ser or Ala substitution, Trp to Phe or Tyr substitution
- amino acid substitutions, deletions, insertions, additions, or inversions as described above include naturally occurring mutations (mutants or variants) such as those based on individual differences or species differences of the microorganism from which the gene is derived. Also included by Such a gene can be modified, for example, by site-directed mutagenesis so that the amino acid residue at a specific site of the encoded protein contains substitutions, deletions, insertions or additions. Can be obtained by:
- the gene having a conservative mutation as described above has a homology of 80% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more with respect to the entire encoded amino acid sequence. And a gene encoding a protein having a function equivalent to that of a wild-type protein.
- each codon in the gene sequence may be replaced with a codon that is easy to use in the host into which the gene is introduced.
- the gene having a conservative mutation may be one obtained by a method usually used for mutation treatment such as treatment with a mutation agent.
- a gene is a DNA that hybridizes with a probe complementary to a known gene sequence or a probe that can be prepared from the complementary sequence under stringent conditions and encodes a protein having a function equivalent to that of a known gene product. Also good.
- stringent conditions refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
- DNAs having high homology for example, 80% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, are hybridized to each other.
- Conditions under which DNAs with low homology do not hybridize or conditions for washing of ordinary Southern hybridization, 60 ° C., 1 ⁇ SSC, 0.1% SDS, preferably 0.1 ⁇ SSC, 0.1% SDS, more preferably The conditions include washing once at a salt concentration and temperature corresponding to 68 ° C., 0.1 ⁇ SSC, and 0.1% SDS, more preferably 2 to 3 times.
- a part of the complementary sequence of the gene can also be used.
- Such a probe can be prepared by PCR using an oligonucleotide prepared on the basis of a known gene sequence as a primer and a DNA fragment containing these base sequences as a template.
- hybridization washing conditions include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
- microalgae are cultured in a medium, and the culture is treated at a medium temperature to thereby produce a L-amino acid-producing bacterium.
- a processed product of the microalgae that promotes the production and accumulation of L-amino acids is prepared, the bacteria are cultured in a medium containing the processed product of the microalgae, the L-amino acid is produced and accumulated in the culture, and the culture product
- the treated product is a reaction solution obtained by treating a culture of microalgae at a medium temperature, or is subjected to further extraction or fractionation and / or another treatment. It is considered that the organic substance produced by the reaction of the produced organic substance at a medium temperature or the organic substance changed by further treatment contains the organic substance.
- the treated product (hereinafter also referred to as “medium temperature treated product”) is preferably contained as a carbon source.
- fatty acid, glucose and glycerol are contained as a carbon source.
- the above “as a carbon source” means that it can substantially contribute as a source of carbon constituting the cell components and L-amino acids in the growth of bacteria and the production of L-amino acids. If the growth of bacteria or the production and accumulation of L-amino acids is better when cultured in the added medium than in the medium without the medium-temperature treated product, the medium-temperature treated product is evaluated as a carbon source.
- the culture medium may contain only a medium temperature processed material as a carbon source, and may contain another carbon source.
- any of batch culture, fed-batch culture, and continuous culture can be used, and the medium-temperature treated product in the medium is contained in the initial medium. It may be included in the feeding medium, or may be included in both of them.
- Fed-batch culture refers to a culture method in which a medium is fed continuously or intermittently into a culture container and the medium is not removed from the container until the end of the culture.
- Continuous culture refers to a method in which a medium is fed continuously or intermittently into a culture container and the medium (usually equivalent to the medium to be fed) is extracted from the container.
- the initial medium means a medium (medium at the start of the culture) used for batch culture (batch culture) before feeding the fed-batch medium in fed-batch culture or continuous culture. It means a medium supplied to a fermenter when fed-batch culture or continuous culture is performed.
- batch culture means a method in which a new medium is prepared every time, a strain is planted there, and no medium is added until harvest.
- the intermediate-temperature treated product to be used may be used at any concentration that is suitable for producing L-amino acids.
- concentration of glucose which is a saccharified starch is preferably about 0.05 w / v% to 50 w / v%, more preferably about 0.1 w / v% to 40 w / v%, particularly preferably 0.2 w / v.
- 20% w / v% is contained in the medium.
- the amount of glycerol and fatty acid which are hydrolysates of fats and oils is 0.01 to 10 w / v%, preferably 0.02 to 5 w / v%, more preferably 0.05 to 2 w / v%. It is desirable to make it.
- the intermediate-temperature treated product can be used alone or in combination with other carbon sources such as glucose, fructose, sucrose, molasses, and starch hydrolysate. In this case, the intermediate-temperature treated product and the other carbon source can be mixed at an arbitrary ratio, but the ratio of the organic matter produced by the microalgae in the carbon source is 10% by weight or more, more preferably 50% by weight. % Or more, more preferably 70% by weight.
- Other preferred carbon sources include glucose, fructose, sucrose, lactose, galactose, molasses, sugars such as sugar hydrolyzate obtained by hydrolysis of starch and biomass, alcohols such as ethanol and glycerol, fumar Organic acids such as acid, citric acid and succinic acid.
- the medium-temperature treated product may be contained at a constant concentration in all the steps of the culture, may be added only to the fed-batch medium or only to the initial medium, and other carbon sources are satisfied.
- temporary means that, for example, the medium-temperature processed product may be insufficient for a time within 10% or 20% or a maximum of 30% of the entire fermentation time.
- the concentration of the intermediate-temperature processed product may temporarily become 0, when there is a culture period in the medium containing the intermediate-temperature processed product, the “including the intermediate-temperature processed product as a carbon source” of the present invention. It is included in the wording.
- a medium conventionally used in the fermentation production of L-amino acids using microorganisms can be used except that it contains a medium-temperature treated product. That is, in addition to a carbon source, a normal medium containing a nitrogen source, inorganic ions, and other organic components as required can be used.
- a nitrogen source inorganic ammonium salts such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium acetate, and urea, or organic nitrogen such as nitrate and soybean hydrolysate, ammonia gas, aqueous ammonia, and the like can be used.
- peptone, yeast extract, meat extract, malt extract, corn steep liquor, soybean hydrolyzate and the like can also be used. Only 1 type of these nitrogen sources may be contained in the culture medium, and it may contain 2 or more types. These nitrogen sources can be used for both the initial medium and the fed-batch medium. In addition, the same nitrogen source may be used for both the initial culture medium and the feed medium, or a different nitrogen source from the initial culture medium may be used.
- the medium of the present invention preferably contains a phosphate source and a sulfur source in addition to a carbon source and a nitrogen source.
- phosphoric acid source phosphoric acid polymers such as potassium dihydrogen phosphate, dipotassium hydrogen phosphate and pyrophosphoric acid can be used.
- the sulfur source may be any one containing sulfur atoms, but sulfates such as sulfates, thiosulfates and sulfites, and sulfur-containing amino acids such as cysteine, cystine and glutathione are desirable. However, ammonium sulfate is desirable.
- the medium may contain a growth promoting factor (a nutrient having a growth promoting effect) in addition to the above components.
- a growth promoting factor a nutrient having a growth promoting effect
- the growth promoting factor include trace metals, amino acids, vitamins, nucleic acids, and peptone, casamino acid, yeast extract, soybean protein degradation products, and the like containing these.
- trace metals include iron, manganese, magnesium, calcium, and vitamins include vitamin B1, vitamin B2, vitamin B6, nicotinic acid, nicotinamide, and vitamin B12.
- L-lysine-producing bacteria that can be used in the present invention have many L-lysine biosynthetic pathways as described later, and L-lysine resolution is weakened. It is desirable to add one or more selected from homoserine, L-isoleucine, and L-methionine.
- the initial medium and fed-batch medium may have the same or different medium composition.
- the initial culture medium and the fed-batch medium may have the same or different sulfur concentration.
- the composition of each feeding medium may be the same or different.
- the medium used in the present invention may be either a natural medium or a synthetic medium as long as it contains a carbon source, a nitrogen source, and other components as necessary.
- the medium-temperature treated product may contain components used for amino acids in addition to the carbon source.
- the nitrogen source and other components can be reduced as compared with a normal medium as necessary.
- Cultivation is preferably carried out under aerobic conditions for 1 to 7 days, and the culture temperature is preferably 20 ° C. to 45 ° C., preferably 24 ° C. to 45 ° C., particularly preferably 33 to 42 ° C.
- the culture is preferably aeration culture, and the oxygen concentration is preferably adjusted to 5 to 50%, desirably about 10% of the saturation concentration.
- the pH during the culture is preferably 5-9.
- an inorganic or organic acidic or alkaline substance such as calcium carbonate, ammonia gas, aqueous ammonia or the like can be used for pH adjustment.
- the concentration of the accumulated L-amino acid may be any concentration as long as it can be collected and recovered from the medium or cells, but is preferably 1 g / L or more, more preferably 50 g / L or more, and even more preferably 100 g / L or more. is there.
- the pH during the cultivation is controlled to 6.5 to 9.0, and the pH of the medium at the end of the cultivation is controlled to 7.2 to 9.0.
- the fermenter pressure during the fermentation is controlled to be positive, or carbon dioxide gas or a mixed gas containing carbon dioxide gas is supplied to the medium so that at least 2 g of bicarbonate ions and / or carbonate ions in the medium are present.
- L-glutamic acid fermentation it is possible to perform culture while precipitating L-glutamic acid in the medium using a liquid medium adjusted to conditions under which L-glutamic acid is precipitated.
- conditions under which L-glutamic acid precipitates include pH 5.0 to 4.0, preferably pH 4.5 to 4.0, more preferably pH 4.3 to 4.0, and particularly preferably pH 4.0. Can do. (European Patent Application Publication No. 1078989)
- the L-amino acid can be collected from the culture solution by combining an ion exchange resin method, a precipitation method and other known methods.
- L-amino acid accumulates in the microbial cells, for example, the microbial cells are crushed by ultrasonic waves and the microbial cells are removed by centrifugation, and the L-amino acid is removed from the supernatant obtained by ion exchange resin method or the like.
- the recovered L-amino acid may be a free L-amino acid or a salt containing sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, or potassium salt.
- the L-amino acid collected in the present invention may contain microbial cells, medium components, moisture, and microbial metabolic byproducts in addition to the target L-amino acid.
- the purity of the collected L-amino acid is 50% or more, preferably 85% or more, particularly preferably 95% or more (US5,431,933, JP1214636B, US4,956,471, US4,777,051, US4946654, US5,840358, US6 , 238,714, US2005 / 0025878).
- Chlorella kessleri 11h strain obtained from University of Texas Algae Culture Collection (The University of Texas at Austin, The Culture Collection of Algae (UTEX), 1 University Station A6700, Austin, TX 78712-0183, USA) ( UTEX 263) and Nannochloris sp. UTEX LB 1999 strains were used.
- Example 1 Culture of microalgae Chlorella kessleri 11h strain Chlorella kessleri 11h strain was cultivated at 30 ° C in a 500 mL Erlenmeyer flask containing 100 mL of 0.2 x Gamborg B5 medium (Nippon Pharmaceutical), light intensity 7,000 lux (TOMY The culture was performed with a culture apparatus CL-301) for 7 days, and this was used as a preculture solution.
- Example 2 Decomposition of algae-derived fats and starches by medium temperature treatment After 9L of the culture broth cultured by the method described in Example 1 was precipitated by centrifugation, it was stored at -80 ° C for 24 hours. . 1 L of the culture supernatant was again added to the precipitate, 2 ml of which was placed in a test tube and incubated at 50 ° C. and 150 rpm for 18 hours. At that time, a treatment section was also provided to which 10 units of amyloglucosidase (Sigma-Aldrich A-9228) were added. These samples were precipitated by centrifugation, separated into a precipitate and a supernatant, and the amount of each organic matter contained in each was measured.
- the measurement results are shown in Table 1.
- the medium temperature treatment decreased the amount of fat and starch, while increasing the amount of fatty acids and glycerol or glucose as their degradation products. Also, fatty acids were localized in the precipitate, while glucose and glycerol were released into the supernatant. Furthermore, the amount of glucose produced increased by treating amyloglucosidase during the medium temperature treatment.
- Example 3 Preparation of Fatty Acid from Algae After 9 L of the culture broth cultured by the method described in Example 1 was precipitated by centrifugation, it was stored at ⁇ 80 ° C. for 24 hours. 500 mL of the culture supernatant was again added to the precipitate, 250 ml of which was placed in a 500 mL jar fermenter (ABLE) and incubated at 50 ° C. and 100 rpm for 18 hours. The obtained sample was precipitated by centrifugation, and the precipitate was suspended in 40 mL of ultrapure water. 12.5 ml of ultrapure water and 25 ml of 0.2N NaOH were added to 12.5 ml of the suspension, followed by stirring at 95 ° C. for 3 hours. The obtained fatty acid extract was filtered using filter paper. The fatty acid concentration of the extract was measured, and each was used as a carbon source for amino acid fermentation.
- Example 4 L-lysine production culture using algae-derived fatty acid as carbon source ⁇ 4-1> Construction of Escherichia coli L-lysine producing bacteria lacking fadR Transcription factor FadR that regulates fatty acid metabolism of Escherichia coli Is encoded by the fadR gene (SEQ ID NO: 15) (DiRusso, CC et al. 1992. J. Biol. Chem. 267: 8685-8691). As the parent strain for this gene disruption, the WC196 ⁇ cadA ⁇ ldcC strain described in International Patent Publication WO2006 / 078039 was used as an L-lysine producing strain of Escherichia coli.
- a synthetic oligonucleotide designed with a part of the target gene on the 5 ′ side of the synthetic oligonucleotide and a part of the antibiotic resistance gene on the 3 ′ side is used as a primer.
- a gene disrupted strain can be constructed in one step.
- the antibiotic resistance gene incorporated into the gene disruption strain can be removed (JP 2005-058227, WO 2005/010175).
- Plasmid pMW118-attL-kan-attR (JP 2005-058227, WO2005 / 010175) was used as a PCR template.
- pMW118-attL-kan-attR is a plasmid in which attL and attR genes, which are attachment sites of ⁇ phage, and kan gene, which is an antibiotic resistance gene, are inserted into pMW118 (Takara Bio Inc.). Inserted in order.
- the synthetic oligonucleotides shown in SEQ ID NOS: 16 and 17 having the sequences corresponding to both ends of attL and attR at the 3 ′ end of the primer and the 5 ′ end of the primer corresponding to a part of the fadR gene as the target gene are used as the primer. PCR was performed.
- the amplified PCR product was purified on an agarose gel and introduced into an Escherichia coli WC196 ⁇ cadA ⁇ ldcC strain containing a plasmid pKD46 having a temperature-sensitive replication ability by electroporation.
- Plasmid pKD46 (Datsenko, K. A. and Wanner, B. L. 2000. Proc. Natl. Acad. Sci. USA. 97: 6640-6645) is a ⁇ Red homologous recombination system controlled by the arabinose-inducible ParaB promoter.
- the plasmid pKD46 is necessary for integrating the PCR product into the chromosome of the WC196 ⁇ cadA ⁇ ldcC strain.
- a competent cell for electroporation was prepared as follows. Specifically, Escherichia coli WC196 strain cultured overnight at 30 ° C. in LB medium (trypton 10 g / L, Yeast extract 5 g / L, NaCl 10 g / L) containing 100 mg / L ampicillin (100 mg / L) and L-arabinose (1 mM) were diluted 100-fold with 5 mL of LB medium. The obtained dilution was allowed to grow until the OD600 was about 0.6 while aerated at 30 ° C., then concentrated 100 times, and washed three times with 10% glycerol so that it could be used for electroporation.
- Electroporation was performed using 70 ⁇ L of competent cells and approximately 100 ng of PCR product. After electroporation, add 1 mL of SOC medium (Sambrook, J. and Russell, DW 2001, Molecular Cloning, A Laboratory, Manual, Third Edition, Cold Spring, Harbor Laboratory, Press, and New York) at 37 ° C for 1 hour. Then, the plate was cultured on an LB agar medium containing Km (kanamycin) (40 mg / L) at 37 ° C. to select a Km-resistant recombinant.
- SOC medium Standardbrook, J. and Russell, DW 2001, Molecular Cloning, A Laboratory, Manual, Third Edition, Cold Spring, Harbor Laboratory, Press, and New York
- the deletion of the mutant fadR gene that could be identified by the kanamycin resistance gene was confirmed by PCR.
- the obtained fadR-deficient strain was named WC196 ⁇ cadA ⁇ ldcC ⁇ fadR :: att-kan strain.
- pMW-intxis-ts is a plasmid carrying a gene encoding ⁇ phage integrase (Int) and gene encoding excisionase (Xis) and having temperature-sensitive replication ability.
- the WC196 ⁇ cadA ⁇ ldcC ⁇ fadR att-kan strain competent cell obtained above was prepared according to a conventional method, transformed with the helper plasmid pMW-intxis-ts, and an LB agar medium containing 100 ⁇ g / L ampicillin at 30 ° C. Plated above, ampicillin resistant strains were selected.
- the WC196 ⁇ cadA ⁇ ldcC ⁇ fadR strain was transformed with a lysine production plasmid pCABD2 (WO95 / 16042) carrying the dapA, dapB, lysC and ddh genes according to a conventional method to obtain a WC196 ⁇ cadA ⁇ ldcC ⁇ fadR / pCABD2 strain.
- a glycerol stock of Escherichia coli WC196LCR / pCABD2 strain was thawed, 100 ⁇ L of each was uniformly applied to an L plate containing 25 mg / L of streptomycin, and cultured at 37 ° C. for 20 hours.
- Approximately 1/8 amount of the cells on the obtained plate was inoculated into 20 mL of the fermentation medium described below containing 25 mg / L of streptomycin in a Sakaguchi flask, and cultured at 37 ° C. for 48 hours in a reciprocating shake culture apparatus. did.
- the algae-derived sample that is the carbon source add Tween 80 to the algae-derived fatty acid extract to a concentration of 1%, and after stirring, adjust the pH to 7.0 using 1N HCl, and autoclave at 120 ° C for 20 minutes. What was done was used as a carbon source solution.
- the medium composition used for the culture is shown below.
- Example 5 Culture of microalgae Chlorella kessleri 11h strain Chlorella kessleri 11h strain was cultivated at 30 ° C in a 500 mL Erlenmeyer flask containing 100 mL of 0.2 x Gamborg B5 medium (Nippon Pharmaceutical), light intensity 7,000 lux (TOMY The culture was performed with a culture apparatus CL-301) for 7 days, and this was used as a preculture solution. Note that white light from a fluorescent lamp was used as the light source.
- Example 6 Temperature conditions for medium temperature treatment of algae 125 ml of the culture solution obtained in Example 5 was placed in a 500 mL jar fermenter (ABLE) and incubated at 150 rpm for 18 hours at each temperature. Each obtained sample was centrifuged, and the amount of fatty acid in the obtained precipitate was measured. The measurement results are shown in FIG. Compared to untreated, the amount of fatty acid increased by treatment at 40 ° C, and the amount increased significantly at 45 ° C.
- Example 7 Culture of the microalgae Nannochloris sp. Nannochloris sp. UTEX LB 1999 strain was cultivated in a 50 mL Erlenmeyer flask containing 10 mL of Daigo IMK (Nippon Pharmaceutical Co., Ltd.) medium at 30 ° C and light intensity of 7,000 lux ( The cells were cultured with shaking for 8 days in a TOMY culture device CL-301). Note that white light from a fluorescent lamp was used as the light source. Daigo artificial seawater SP (Nippon Pharmaceutical Co., Ltd.), which is artificial seawater, was used as the seawater component of the Daigo IMK medium.
- Example 8 Medium temperature treatment with Nannochloris sp. 0.5 ml of culture solution was placed in a 1.5 ml Eppendorf tube and incubated at 50 ° C. and 1000 rpm for 20 hours. Each sample was centrifuged, and the amount of fatty acid in the resulting precipitate was measured. The measurement results are shown in FIG. Compared with untreated, the amount of fatty acid increased significantly by treatment at 50 ° C, so it was confirmed that fatty acids were also produced by Nannochloris sp.
- Example 9 Culture of microalgae Chlorella kessleri 11h strain Chlorella kessleri 11h strain was cultivated at 30 ° C in a 500 mL medium bottle containing 300 mL of 0.2 x Gamborg B5 medium (Nippon Pharmaceutical Co., Ltd.), light intensity 7,000 lux (TOMY) A culture apparatus CL-301) was cultured for 7 days while blowing a mixed gas of air and 3% CO 2 at 250 mL / min, and this was used as a preculture solution. Note that white light from a fluorescent lamp was used as the light source.
- Example 10 Time-dependent change in temperature of medium temperature treatment of algae After adjusting the pH of the culture solution obtained in Example 9 to 4.5 with 1N HCl solution, 1 ml was put into a 1.5 ml Eppendorf tube, 1000 rpm, Incubated at each temperature for each time. Each obtained sample was centrifuged, and the amount of fatty acid in the obtained precipitate was measured. The measurement results are shown in FIG.
- the relative fatty acid production rate was defined as 100, which is the amount of fatty acid produced when the fat extracted from the untreated algal bodies was completely decomposed. At a temperature of 55 ° C or higher, the amount of fatty acid increased at 1 hr, and at a temperature of 50 ° C to 52 ° C, the amount of fatty acid significantly increased from 4 hr to 6 hr.
- Example 11 pH conditions for fatty acid extraction alkali treatment
- the culture solution obtained in Example 9 was centrifuged, the culture supernatant was added to the precipitate, and a 20-fold concentrated solution was prepared.
- the pH of the concentrated solution was adjusted to 4.5 with 1N HCl solution, and then 1 ml was put into a 1.5 ml Eppendorf tube and incubated at 52 ° C., 1000 rpm for 14 hours.
- 3N NaOH solution was added to the obtained samples to adjust each pH, followed by extraction at 90 ° C. and 1000 rpm for 3 hours, and the amount of fatty acid in these samples was measured. The measurement results are shown in FIG.
- the relative fatty acid recovery rate was defined as 100, which is the amount of fatty acid produced when the fat extracted from the untreated algal cells was completely decomposed. At pH 10.5, some fatty acids were extracted, the amount of fatty acids extracted increased at pH 11.5, and the amount increased significantly at pH 12.5.
- Example 12 Temperature conditions for fatty acid extraction alkali treatment The culture solution obtained in Example 9 was centrifuged, the culture supernatant was added to the precipitate, and a 20-fold concentrated solution was prepared. The pH of the concentrated solution was adjusted to 4.5 with 1N HCl solution, and then 1 ml was put into a 1.5 ml Eppendorf tube and incubated at 52 ° C., 1000 rpm for 14 hours. The pH of the obtained samples was adjusted to 12.5 with 3N NaOH solution, extracted at 1000 rpm for 3 hours at each temperature, and the amount of fatty acid in these samples was measured. The measurement results are shown in FIG.
- the relative fatty acid recovery rate was defined as 100, which is the amount of fatty acid produced when the fat extracted from the untreated algal cells was completely decomposed. Fatty acid extraction was confirmed at 60 ° C, the amount of fatty acid increased with increasing temperature, and the amount increased most at 90 ° C.
- Example 13 Fatty Acid Extraction Alkaline Treatment Time
- the culture solution obtained in Example 9 was centrifuged, and the culture supernatant was added to the precipitate to prepare a 20-fold concentrated solution.
- the pH of the concentrated solution was adjusted to 4.5 with 1N HCl solution, and then 1 ml was put into a 1.5 ml Eppendorf tube and incubated at 52 ° C., 1000 rpm for 14 hours.
- the pH of the obtained samples was adjusted to 12.5 with 3N NaOH solution and then extracted at 90 ° C. and 1000 rpm for each time, and the amount of fatty acid in these samples was measured. The measurement results are shown in FIG.
- the relative fatty acid recovery rate was defined as 100, which is the amount of fatty acid produced when the fat extracted from the untreated algal cells was completely decomposed.
- the amount of fatty acid increased at 30 min, and the amount increased significantly with time, 60 min and 90 min. Further, after 120 min, the amount of fatty acid did not increase further.
- Example 14 Cultivation of microalgae Chlorella kessleri 11h strain
- Chlorella kessleri 11h strain was cultivated at 500C in a 500 mL medium bottle containing 400 mL of 0.2 x Gamborg B5 medium (Nippon Pharmaceutical Co., Ltd.), light intensity of 7,000 lux (TOMY)
- a culture apparatus CL-301 was cultured for 7 days while blowing a mixed gas of air and 3% CO 2 at 250 mL / min, and this was used as a preculture solution. Note that white light from a fluorescent lamp was used as the light source.
- Example 15 Examination of temperature conditions of first stage treatment in two-stage intermediate temperature treatment of algae Centrifuge the culture solution obtained in Example 14, add sterilized water to the precipitate, and prepare a 40-fold concentrated solution did. After adjusting the pH of the concentrated solution to 4.5 with 3N HCl solution, put 500 ml into a 1.5 ml Eppendorf tube and preincubate at 50 ° C, 52 ° C, 55 ° C, 57 ° C and 60 ° C for 5 min. .
- each sample was incubated at 1000 rpm for 30 min at the same temperature as described above, and then the sample was incubated at 42 ° C., 1000 rpm, 4 hr 30 min or 9 hr 30 min to hydrolyze the fats and oils.
- the obtained sample was centrifuged, and the amount of fatty acid in the precipitate was measured.
- the measurement results are shown in FIG. Compared with continuous treatment at 52 ° C, fatty acid formation is hardly confirmed at 42 ° C and 4hr30min after induction at 50 ° C and 52 ° C for 30min, but after 42 ° C and 9hr30min, the amount of fatty acid produced by continuous treatment at 52 ° C It was confirmed that it exceeded.
- the induction treatment at 55 ° C. or higher for 30 minutes, in the 42 ° C. treatment, fatty acid production was confirmed from 4 hr 30 min, and the amount of fatty acid production increased as the induction temperature decreased.
- Example 16 Examination of the time of the first stage treatment and the time of the second stage treatment in the two-stage intermediate temperature treatment of algae
- the culture solution obtained in Example 14 is centrifuged, and sterilized water is added to the precipitate, A 40-fold concentrated solution was prepared.
- the pH of the concentrated solution was adjusted to 4.5 with 3N HCl solution, and then 600 ml was placed in a 1.5 ml Eppendorf tube and preincubated for 5 minutes at 55 ° C. by standing still. Next, after incubating each sample at 55 ° C. and 1000 rpm for 30 minutes, the sample was incubated at 42 ° C. and 1000 rpm for each time to hydrolyze the fats and oils.
- the obtained sample was centrifuged, and the amount of fatty acid in the precipitate was measured.
- the measurement results are shown in FIG.
- the amount of fatty acid produced increased from 2 hr, and the amount of fatty acid produced most increased at 8 hr.
- Example 17 Culture of microalgae Chlorella kessleri 11h strain Chlorella kessleri 11h strain was cultivated in a 1000 mL medium bottle containing 800 mL of 0.2 x Gamborg B5 medium (Nippon Pharmaceutical Co., Ltd.), light intensity 7,000 lux (manufactured by TOMY) Culturing apparatus CL-301) was cultured for 7 days while blowing a mixed gas of air and 3% CO 2 at 400 mL / min, and this was used as a preculture solution. Note that white light from a fluorescent lamp was used as the light source.
- Example 18 Examination of solvent used for fatty acid extraction organic solvent treatment
- the culture solution obtained in Example 17 was centrifuged, sterilized water was added to the precipitate, and a 40-fold concentrated solution was prepared. After adjusting the pH of the concentrate to 4.5 with 3N HCl solution, place 600 ml in a 1.5 ml Eppendorf tube, preincubate for 5 min at 55 ° C, stand still, incubate at 1000 rpm for 30 min at the same temperature, then at 42 ° C, 1000 rpm The oil was hydrolyzed for 12 hours. 250 ml of the obtained sample was centrifuged, and 500 ml of each solvent was added to a sample obtained by drying the precipitate at 65 ° C.
- the fatty acid extraction efficiency was determined by centrifuging 25 ml of the medium-temperature treatment solution, suspending the precipitate in 200 ml of 1% NaCl aqueous solution, and then placing it in a bead-type cell crushing tube to which 400 ml each of methanol and chloroform were added and extracted. Relative value based on 100 fatty acids.
- a dry untreated sample was extracted with methanol, ethanol, acetone and butanol, the fatty acid extraction efficiency was high.
- the extraction efficiency decreased.
- ethyl acetate the extraction efficiency decreased with dry and untreated samples.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
(1)L-アミノ酸の製造方法であって、
(a)微細藻類を培地で培養し、該培養物を中温度で処理することにより、L-アミノ酸生産能を有する細菌によるL-アミノ酸の生産蓄積を促進する該微細藻類の処理物を調製し、
(b)該細菌を、該微細藻類の処理物を含む培地に培養し、培養物中にL-アミノ酸を生産蓄積させ、
(c)該培養物からL-アミノ酸を採取することを特徴とするL-アミノ酸の製造法。
(2)前記中温度での処理の温度が40℃以上である、上記に記載の方法。
(3)前記中温度での処理の温度が70℃以下である、上記に記載の方法。
(4)前記処理物が、中温度での処理後に遠心分離した沈殿物であり、脂肪酸を含む、上記に記載の方法。
(5)前記処理物が、中温度での処理後に遠心分離した上清液であり、グルコースまたはグリセロールを含む、上記に記載の方法。
(6)前記処理物が、中温度での処理後にさらにアルカリ処理又は有機溶剤処理することにより、脂肪酸を抽出した抽出物である上記に記載の方法。
(7)中温度での処理後に遠心分離した沈殿物をアルカリ処理又は有機溶剤処理する上記に記載の方法。
(8)前記アルカリ処理がpH10.5以上で行われることを特徴とする、上記に記載の方法。
(9)前記アルカリ処理が60℃以上で行われることを特徴とする、上記に記載の方法。
(10) 上記有機溶剤処理が、メタノール、エタノール、2-プロパノール、アセトン、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、クロロホルム、酢酸メチル、酢酸エチル、ジメチルエーテル、ジエチルエーテル、又はヘキサンで行われることを特徴とする、上記に記載の方法。
(11)中温度での処理中に温度を低下させる上記に記載の方法。
(12)前記微細藻類が緑色植物門、不等毛植物門に属する藻類である、上記に記載の方法。
(13)前記微細藻類が緑藻綱、トレボキシア藻綱、又は珪藻綱に属する藻類である、上記に記載の方法。
(14)前記微細藻類が緑藻綱(Chlorophyceae)に属する藻類である、上記に記載の方法。
(15) 前記細菌が腸内細菌科に属する細菌またはコリネ型細菌である、上記に記載の方法。
(16)前記腸内細菌科に属する細菌がエシェリヒア・コリである上記に記載の方法。
<1>本発明で使用する微細藻類とその培養法
本発明における微細藻類(microalgae)は、どのようなものでも用いることが出来るが、スターチ及び/または油脂を藻体内に蓄積する微細藻類であることが好ましい。
本発明においては、微細藻類の培養物を中温度で処理し、その微細藻類の処理物をL-アミノ酸発酵の栄養源として用いる。
従って、処理物を添加していない条件に比べ、L-アミノ酸の生産蓄積量が増大している場合も本発明の処理物に含まれるが、含まれる炭素源と同量の精製された物質からなる炭素源を加えた場合と比べてL-アミノ酸生産蓄積量が向上していることが好ましい。
Burkholderia glumae由来のLipA(GenBank Accession No. X70354)をコードする遺伝子の塩基配列は配列番号3に、アミノ酸配列を配列番号4に示す。
Pseudomonas aeruginosa由来のLipA(GenBank Accession No. D50587)をコードする遺伝子の塩基配列を配列番号5に、アミノ酸配列を配列番号6に示す。
Staphylococcus aureus由来のリパーゼ(GenBank Accession No. M12715)の塩基配列を配列番号7に、アミノ酸配列を配列番号8に示す。
本発明においては、L-アミノ酸生産能を有する細菌を使用する。細菌としては、微細藻類により生産される有機物、特に、スターチの糖化物あるいは油脂の加水分解物からL-アミノ酸を効率よく製造し得るものであれば特に制限されず、例えばエシェリヒア属、パントエア属、エンテロバクター属等の腸内細菌科に属する細菌、及び、ブレビバクテリウム属、コリネバクテリウム属、ミクロバクテリウム属に属するいわゆるコリネ型細菌等が挙げられるが、これらに制限されない。
パントエア・アナナティスAJ13356株(FERM BP-6615)(欧州特許出願公開0952221号明細書)
エルビニア・カロトボーラ ATCC15713株
クレブシエラ・プランティコーラAJ13399株(FERM BP-6600)(欧州特許出願公開955368号明細書)
クレブシエラ・プランティコーラAJ13410株(FERM BP-6617)(欧州特許出願公開955368号明細書)
コリネバクテリウム・アセトグルタミカム
コリネバクテリウム・アルカノリティカム
コリネバクテリウム・カルナエ
コリネバクテリウム・グルタミカム
コリネバクテリウム・リリウム
コリネバクテリウム・メラセコーラ
コリネバクテリウム・サーモアミノゲネス (コリネバクテリウム・エフィシエンス)
コリネバクテリウム・ハーキュリス
ブレビバクテリウム・ディバリカタム
ブレビバクテリウム・フラバム
ブレビバクテリウム・インマリオフィラム
ブレビバクテリウム・ラクトファーメンタム(コリネバクテリウム・グルタミカム)
ブレビバクテリウム・ロゼウム
ブレビバクテリウム・サッカロリティカム
ブレビバクテリウム・チオゲニタリス
コリネバクテリウム・アンモニアゲネス
ブレビバクテリウム・アルバム
ブレビバクテリウム・セリヌム
ミクロバクテリウム・アンモニアフィラム
コリネバクテリウム・アセトアシドフィラム ATCC13870
コリネバクテリウム・アセトグルタミカム ATCC15806
コリネバクテリウム・アルカノリティカム ATCC21511
コリネバクテリウム・カルナエ ATCC15991
コリネバクテリウム・グルタミカム ATCC13020, ATCC13032, ATCC13060
コリネバクテリウム・リリウム ATCC15990
コリネバクテリウム・メラセコーラ ATCC17965
コリネバクテリウム・サーモアミノゲネス AJ12340(FERM BP-1539)
コリネバクテリウム・ハーキュリス ATCC13868
ブレビバクテリウム・ディバリカタム ATCC14020
ブレビバクテリウム・フラバム ATCC13826, ATCC14067
ブレビバクテリウム・インマリオフィラム ATCC14068
ブレビバクテリウム・ラクトファーメンタム ATCC13869(コリネバクテリウム・グルタミカムATCC13869)
ブレビバクテリウム・ロゼウム ATCC13825
ブレビバクテリウム・サッカロリティカム ATCC14066
ブレビバクテリウム・チオゲニタリス ATCC19240
コリネバクテリウム・アンモニアゲネス ATCC6871、ATCC6872
ブレビバクテリウム・アルバム ATCC15111
ブレビバクテリウム・セリヌム ATCC15112
ミクロバクテリウム・アンモニアフィラム ATCC15354
L-スレオニン生産能を有する微生物として好ましいものは、L-スレオニン生合成系酵素の1種又は2種以上の活性が増強された細菌が挙げられる。L-スレオニン生合成系酵素としては、アスパルトキナーゼIII(lysC)、アスパルテートセミアルデヒドデヒドロゲナーゼ(asd)、thrオペロンにコードされるアスパルトキナーゼI(thrA)、ホモセリンキナーゼ(thrB)、スレオニンシンターゼ(thrC)、アスパルテートアミノトランスフェラーゼ(アスパルテートトランスアミナーゼ)(aspC)が挙げられる。カッコ内は、その遺伝子の略記号である(以下の記載においても同様)。これらの酵素の中では、アスパルテートセミアルデヒドデヒドロゲナーゼ、アスパルトキナーゼI、ホモセリンキナーゼ、アスパルテートアミノトランスフェラーゼ、及びスレオニンシンターゼが特に好ましい。L-スレオニン生合成系遺伝子は、スレオニン分解が抑制されたエシェリヒア属細菌に導入してもよい。スレオニン分解が抑制されたエシェリヒア属細菌としては、例えば、スレオニンデヒドロゲナーゼ活性が欠損したTDH6株(特開2001-346578号)等が挙げられる。
以下、L-リジン生産菌及びその構築方法を例として示す。
例えば、L-リジン生産能を有する株としては、L-リジンアナログ耐性株又は代謝制御変異株が挙げられる。L-リジンアナログの例としては、オキサリジン、リジンヒドロキサメート、S-(2-アミノエチル)-L-システイン(以下、「AEC」と略記することがある。)、γ-メチルリジン、α-クロロカプロラクタムなどが挙げられるが、これらに限定されない。これらのリジンアナログに対して耐性を有する変異株は、腸内細菌科に属する細菌やコリネ型細菌を通常の人工変異処理に付すことによって得ることができる。L-リジン生産菌として具体的には、エシェリヒア・コリAJ11442株(FERM BP-1543、NRRL B-12185;特開昭56-18596号公報及び米国特許第4346170号明細書参照)、エシェリヒア・コリ VL611株(特開2000-189180号公報)等が挙げられる。また、エシェリヒア・コリのL-リジン生産菌として、WC196株(国際公開第96/17930号パンフレット参照)を用いることも出来る。
L-システイン生産菌又はそれを誘導するための親株の例としては、フィードバック阻害耐性のセリンアセチルトランスフェラーゼをコードする異なるcysEアレルで形質転換されたE. coli JM15(米国特許第6,218,168号、ロシア特許出願第2003121601号)、細胞に毒性の物質を排出するのに適したタンパク質をコードする過剰発現遺伝子を有するE. coli W3110 (米国特許第5,972,663号)、システインデスルフォヒドラーゼ活性が低下したE. coli株 (特開平11-155571号)、cysB遺伝子によりコードされる正のシステインレギュロンの転写制御因子の活性が上昇したE. coli W3110 (国際公開第0127307号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
L-ロイシン生産菌又はそれを誘導するための親株の例としては、ロイシン耐性のE. coil株 (例えば、57株 (VKPM B-7386, 米国特許第6,124,121号))またはβ-2-チエニルアラニン、3-ヒドロキシロイシン、4-アザロイシン、5,5,5-トリフルオロロイシンなどのロイシンアナログ耐性のE. coli株(特公昭62-34397号及び特開平8-70879号)、国際公開第96/06926号に記載された遺伝子工学的方法で得られたE. coli株、E. coli H-9068 (特開平8-70879号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
L-ヒスチジン生産菌又はそれを誘導するための親株の例としては、E. coli 24株 (VKPM B-5945、ロシア特許第2003677号)、E. coli 80株 (VKPM B-7270、ロシア特許第2119536号)、E. coli NRRL B-12116 - B12121 (米国特許第4,388,405号)、E. coli H-9342 (FERM BP-6675)及びH-9343 (FERM BP-6676) (米国特許第6,344,347号)、E. coli H-9341 (FERM BP-6674) (欧州特許出願公開第1085087号)、E. coli AI80/pFM201 (米国特許第6,258,554号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
L-グルタミン酸生産菌又はそれを誘導するための親株の例としては、E. coli VL334thrC+ (EP 1172433)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。E. coli VL334 (VKPM B-1641)は、thrC遺伝子及びilvA遺伝子に変異を有するL-イソロイシン及びL-スレオニン要求性株である(米国特許第4,278,765号)。thrC遺伝子の野生型アレルは、野生型E. coli K-12株 (VKPM B-7)の細胞で増殖したバクテリオファージP1を用いる一般的形質導入法により導入された。この結果、L-イソロイシン要求性のL-グルタミン酸生産菌VL334thrC+ (VKPM B-8961) が得られた。
E. coli W3110sucA::Kmr
E. coli AJ12624 (FERM BP-3853)
E. coli AJ12628 (FERM BP-3854)
E. coli AJ12949 (FERM BP-4881)
ブレビバクテリウム・ラクトファーメンタムL30-2株(特開2006-340603号明細書)
ブレビバクテリウム・ラクトファーメンタムΔS株(国際公開95/34672号パンフレット)
ブレビバクテリウム・ラクトファーメンタムAJ12821(FERM BP-4172;フランス特許公報9401748号明細書参照)
ブレビバクテリウム・フラバムAJ12822 (FERM BP-4173;フランス特許公報9401748号明細書)
コリネバクテリウム・グルタミカムAJ12823(FERM BP-4174;フランス特許公報9401748号明細書)
コリネバクテリウム・グルタミカムL30-2株(特開2006-340603号)
ブレビバクテリウム・フラバムAJ3949 (FERM BP-2632:特開昭50-113209参照)
コリネバクテリウム・グルタミカムAJ11628 (FERM P-5736;特開昭57-065198参照)
ブレビバクテリウム・フラバムAJ11355(FERM P-5007;特開昭56-1889号公報参照)
コリネバクテリウム・グルタミカムAJ11368(FERM P-5020;特開昭56-1889号公報参照)
ブレビバクテリウム・フラバムAJ11217(FERM P-4318;特開昭57-2689号公報参照)
コリネバクテリウム・グルタミカムAJ11218(FERM P-4319;特開昭57-2689号公報参照)
ブレビバクテリウム・フラバムAJ11564(FERM P-5472;特開昭56-140895公報参照)
ブレビバクテリウム・フラバムAJ11439(FERM P-5136;特開昭56-35981号公報参照)
コリネバクテリウム・グルタミカムH7684(FERM BP-3004;特開平04-88994号公報参照)
ブレビバクテリウム・ラクトファーメンタムAJ11426(FERM P-5123;特開平56-048890号公報参照)
コリネバクテリウム・グルタミカムAJ11440(FERM P-5137;特開平56-048890号公報参照)
ブレビバクテリウム・ラクトファーメンタムAJ11796(FERM P-6402;特開平58-158192号公報参照)
L-フェニルアラニン生産菌又はそれを誘導するための親株の例としては、コリスミ酸ムターゼ-プレフェン酸デヒドロゲナーゼ及びチロシンリプレッサーを欠損したE. coli AJ12739 (tyrA::Tn10, tyrR) (VKPM B-8197)(国際公開03/044191号)、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする変異型pheA34遺伝子を保持するE. coli HW1089 (ATCC 55371) (米国特許第 5,354,672号)、E. coli MWEC101-b (KR8903681)、E. coli NRRL B-12141, NRRL B-12145, NRRL B-12146及びNRRL B-12147 (米国特許第4,407,952号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。また、親株として、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする遺伝子を保持するE. coli K-12 [W3110 (tyrA)/pPHAB] (FERM BP-3566)、E. coli K-12 [W3110 (tyrA)/pPHAD] (FERM BP-12659)、E. coli K-12 [W3110 (tyrA)/pPHATerm] (FERM BP-12662)及びAJ 12604と命名されたE. coli K-12 [W3110 (tyrA)/pBR-aroG4, pACMAB] (FERM BP-3579)も使用できる(EP 488424 B1)。さらに、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属するL-フェニルアラニン生産菌も使用できる(米国特許出願公開2003/0148473号及び2003/0157667、国際公開03/044192号)。
L-トリプトファン生産菌又はそれを誘導するための親株の例としては、変異trpS遺伝子によりコードされるトリプトファニル-tRNAシンテターゼが欠損したE. coli JP4735/pMU3028 (DSM10122)及びJP6015/pMU91 (DSM10123) (米国特許第5,756,345号)、セリンによるフィードバック阻害を受けないフォスフォグリセリレートデヒドロゲナーゼをコードするserAアレル及びトリプトファンによるフィードバック阻害を受けないアントラニレートシンターゼをコードするtrpEアレルを有するE. coli SV164 (pGH5) (米国特許第6,180,373号)、トリプトファナーゼが欠損したE. coli AGX17 (pGX44) (NRRL B-12263)及びAGX6(pGX50)aroP (NRRL B-12264) (米国特許第4,371,614号)、フォスフォエノールピルビン酸生産能が増大したE. coli AGX17/pGX50,pACKG4-pps (WO9708333, 米国特許第6,319,696号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属するL-トリプトファン生産菌も使用できる(米国特許出願公開2003/0148473及び2003/0157667)。
L-プロリン生産菌又はそれを誘導するための親株の例としては、ilvA遺伝子が欠損し、L-プロリンを生産できるE. coli 702ilvA (VKPM B-8012) (欧州特許公開公報1,172,433号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
L-アルギニン生産菌又はそれを誘導するための親株の例としては、E. coli 237株 (VKPM B-7925) (米国特許出願公開2002/058315号)、及び、変異N-アセチルグルタメートシンターゼを保持するその誘導株(ロシア特許出願第2,001,112,869号)、E. coli 382株 (VKPM B-7926) (欧州特許公開公報1,170,358号)、N-アセチルグルタメートシンテターゼをコードするargA遺伝子が導入されたアルギニン生産株(欧州特許公開公報1,170,361号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
L-バリン生産菌又はそれを誘導するための親株の例としては、ilvGMEDAオペロンを過剰発現するように改変された株(米国特許第5,998,178号)が挙げられるが、これらに限定されない。アテニュエーションに必要なilvGMEDAオペロンの領域を除去し、生産されるL-バリンによりオペロンの発現が減衰しないようにすることが好ましい。さらに、オペロンのilvA遺伝子が破壊され、スレオニンデアミナーゼ活性が減少することが好ましい。
L-バリン生産菌又はそれを誘導するための親株の例としては、アミノアシルt-RNAシンテターゼの変異を有する変異株(米国特許第5,658,766号)も挙げられる。例えば、イソロイシンtRNAシンテターゼをコードするileS 遺伝子に変異を有するE. coli VL1970が使用できる。E. coli VL1970は、1988年6月24日、ロシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-4411で寄託されている。
L-イソロイシン生産菌又はそれを誘導するための親株の例としては、6-ジメチルアミノプリンに耐性を有する変異株(特開平5-304969号)、チアイソロイシン、イソロイシンヒドロキサメートなどのイソロイシンアナログに耐性を有する変異株、さらにDL-エチオニン及び/またはアルギニンヒドロキサメートに耐性を有する変異株(特開平5-130882号).が挙げられるが、これらに限定されない。さらに、スレオニンデアミナーゼ、アセトヒドロキシ酸シンターゼなどのL-イソロイシン生合成に関与するタンパク質をコードする遺伝子で形質転換された組換え株もまた親株として使用できる(特開平2-458号, FR 0356739, 及び米国特許第5,998,178号)。
L-メチオニン生産菌又はそれを誘導するための親株の例としては、L-スレオニン要求株、ノルロイシンに耐性を有する変異株が挙げられるが、これらに限定されない(特開2000-139471号)。さらに、メチオニンリプレッサーを欠損した株や、ホモセリントランスサクシニラーゼ、シスタチオニンγ-シンテースなどのL-メチオニン生合成に関与するタンパク質をコードする遺伝子で形質転換された組換え株もまた親株として使用できる(特開2000-139471号)。
本発明のL-アミノ酸の製造法においては、微細藻類を培地で培養し、該培養物を中温度で処理することにより、L-アミノ酸生産能を有する細菌によるL-アミノ酸の生産蓄積を促進する該微細藻類の処理物を調製し、該細菌を該微細藻類の処理物を含む培地で培養し、培養物中にL-アミノ酸を生産蓄積させ、該培養物からL-アミノ酸を採取することを特徴とする製造法である。前記処理物は、前述のように、微細藻類の培養物を中温度で処理した反応液、又は、それをさらに抽出もしくは分画及び/又は別の処理に付したものであるから、微細藻類により生産される有機物が中温度で反応して生じる有機物又はその有機物がさらに別の処理で変化した有機物を含むものと考えられる。
Chlorella kessleri 11h株を、100 mLの0.2×ガンボーグB5培地(日本製薬)を入れた500 mL容三角フラスコにて30℃、光強度7,000 lux(TOMY社製培養装置CL-301)で7日間振とう培養し、これを前培養液とした。0.2×ガンボーグB5 培地1.5 Lを入れた5 L容ミニジャーファーメンター(石川製作所製)に、前培養液30 mLを添加し、培養温度30℃、光強度20,000 luxにて、500 mL/minで3%CO2濃度の空気・CO2混合ガスを吹き込みながら、14日間培養を行った。尚、光源には、蛍光灯からの白色光を用いた。
KNO3 500 mg/L
MgSO4・7H2O 50 mg/L
NaH2PO4・H2O 30 mg/L
CaCl2・2H2O 30 mg/L
(NH4)2SO4 26.8 mg/L
Na2-EDTA 7.46 mg/L
FeSO4・7H2O 5.56 mg/L
MnSO4・H2O 2 mg/L
H3BO3 0.6 mg/L
ZnSO4・7H2O 0.4 mg/L
KI 0.15 mg/L
Na2MoO2・2H2O 0.05 mg/L
CuSO4・5H2O 0.005 mg/L
CoCl2・6H2O 0.005 mg/L
120℃ 15分 オートクレーブ殺菌
実施例1に記載の方法で培養した培養液9L分の藻体を遠心分離にて沈殿させた後、-80℃で24時間保存した。その沈殿物に1Lの培養上清液を再度加え、そのうち2mlを試験管に入れ、50℃、150rpmで18時間インキュベートした。その際、アミログルコシダーゼ(シグマ-アルドリッチ社A-9228)10ユニットを加えた処理区も設けた。それらのサンプルを遠心分離にて沈殿させ、沈殿物と上清に分けた後、それぞれに含まれる各有機物量を測定した。それらの測定の結果を表1に示した。未処理と比較して、中温処理は油脂及びスターチ量が減少するその一方で、それらの分解物である脂肪酸とグリセロールもしくはグルコース量が増加した。また、脂肪酸が沈殿物中に局在する一方で、グルコースとグリセロールは上清中に放出されていた。さらに、中温処理中にアミログルコシダーゼを処理することで、グルコースの生成量が増加した。
実施例1に記載の方法で培養した培養液9L分の藻体を遠心分離にて沈殿させた後、-80℃で24時間保存した。その沈殿物に500mLの培養上清液を再度加え、そのうち250mlを500 mL容量のジャーファーメンター(ABLE社)に入れ、50℃、100rpmで18時間インキュベートした。得られたサンプルを遠心分離にて沈殿させ、その沈殿物を40mLの超純水に懸濁させた。その懸濁液12.5mlに対して、12.5mlの超純水と0.2N NaOH 25ml加えた後に、95℃で3時間攪拌した。得られた脂肪酸抽出液をろ紙を用いてろ過した。その抽出液の脂肪酸濃度を測定し、それぞれをアミノ酸発酵の炭素源として用いた。
<4-1> fadRを欠損したエシェリヒア・コリL-リジン生産菌の構築
エシェリヒア・コリの脂肪酸代謝を調節する転写因子FadRはfadR遺伝子(配列番号15)によってコードされている(DiRusso, C. C. et al. 1992. J. Biol. Chem. 267: 8685-8691)。本遺伝子破壊の親株は、エシェリヒア・コリのL-リジン生産株として、国際特許公報WO2006/078039に記載のWC196ΔcadAΔldcC株を用いた。
L-リジン生産菌として上記<4-1>で構築したエシェリヒア・コリWC196ΔcadAΔldcΔfadR/pCABD2 (本菌株を「WC196LCR/pCABD2」と呼ぶ)を用いた。エシェリヒア・コリWC196LCR/pCABD2株のグリセロールストックを融解し、各100μLを、25mg/Lのストレプトマイシンを含むLプレートに均一に塗布し、37℃にて20時間培養した。得られたプレートのおよそ1/8量の菌体を、坂口フラスコの、25mg/Lのストレプトマイシンを含む以下に記載の発酵培地の20mLに接種し、往復振とう培養装置で37℃において48時間培養した。炭素源となる藻類由来のサンプルは、藻類由来の脂肪酸抽出液に1%濃度になるようにTween80を加え、攪拌後、pHを1N HClを用いて7.0に調整し、120℃、20分オートクレーブを行ったものを炭素源溶液として用いた。培養に用いた培地組成を以下に示す。
試薬オレイン酸 9.9 g/L
藻類由来の脂肪酸 9.9 g/L
のいずれか
(NH4)2SO4 24 g/L
KH2PO4 1.0 g/L
MgSO4・7H2O 1.0 g/L
FeSO4・7H2O 0.01 g/L
MnSO4・7H2O 0.01 g/L
Yeast Extract 2.0 g/L
PIPES (pH7.0) 20 g/L
KOHでpH7.0に調整し、110℃で10分オートクレーブを行なった。但し、炭素源、MgSO4・7H2O、PIPES緩衝液(pH7.0)は、それぞれ別殺菌した後、混合した。
Chlorella kessleri 11h株を、100 mLの0.2×ガンボーグB5培地(日本製薬)を入れた500 mL容三角フラスコにて30℃、光強度7,000 lux(TOMY社製培養装置CL-301)で7日間振とう培養し、これを前培養液とした。尚、光源には、蛍光灯からの白色光を用いた。0.2×ガンボーグB5 培地300 mLを入れた500mL容メディウムビンに、前培養液6 mLを添加し、培養温度30℃、光強度7,000 luxにて、250 mL/minで空気と3% CO2の混合ガスを吹き込みながら、12日間培養を行った。
KNO3 500 mg/L
MgSO4・7H2O 50 mg/L
NaH2PO4・H2O 30 mg/L
CaCl2・2H2O 30 mg/L
(NH4)2SO4 26.8 mg/L
Na2-EDTA 7.46 mg/L
FeSO4・7H2O 5.56 mg/L
MnSO4・H2O 2 mg/L
H3BO3 0.6 mg/L
ZnSO4・7H2O 0.4 mg/L
KI 0.15 mg/L
Na2MoO2・2H2O 0.05 mg/L
CuSO4・5H2O 0.005 mg/L
CoCl2・6H2O 0.005 mg/L
120℃ 15分 オートクレーブ殺菌
実施例5で得られた培養液125mlを500 mL容量のジャーファーメンター(ABLE社)に入れ、150rpm、18時間、各温度にてインキュベートした。得られた各サンプルを遠心分離し、得られた沈殿物中の脂肪酸量の測定を行った。それらの測定結果を図1に示した。未処理と比較して、40℃処理で脂肪酸量が増加し、45℃では著しくその量が増加した。
Nannochloris sp. UTEX LB 1999株を、10mLのダイゴIMK(日本製薬株式会社)培地を入れた50 mL容三角フラスコにて30℃、光強度7,000 lux(TOMY社製培養装置CL-301)で8日間振とう培養した。尚、光源には、蛍光灯からの白色光を用いた。ダイゴIMK培地の海水成分としては、人工海水であるダイゴ人工海水SP(日本製薬株式会社)を用いた。
NaNO3 200 mg/L
Na2HPO4 1.4 mg/L
K2HPO4 5 mg/L
NH4Cl 2.68 mg/L
Fe-EDTA 5.2 mg/L
Mn-EDTA 0.332 mg/L
Na2-EDTA 37.2 mg/L
ZnSO4・7H2O 0.023 mg/L
CoSO4・7H2O 0.014 mg/L
Na2MoO4・2H2O 0.0073 mg/L
CuSO4・5H2O 0.0025 mg/L
H2SeO3 0.0017 mg/L
Thiamin-HCl 0.2 mg/L
Biotin 0.0015 mg/L
Vitamin B12 0.0015 mg/L
MnCl2・4H2O 0.18 mg/L
ダイゴ人工海水SP 36 g/L
1N NaOHにてpH8.0に調整後、120℃にて10分 オートクレーブ殺菌
培養液0.5mlを1.5ml容量のエッペンドルフチューブに入れ、50℃、1000rpm、の条件で20時間インキュベートした。各サンプルを遠心分離し、得られた沈殿物中の脂肪酸量の測定を行った。それらの測定結果を図2に示した。未処理と比較して、50℃処理では著しく脂肪酸量が増加したことから、Nannochloris sp.でも中温処理で脂肪酸が生成することが確認された。
Chlorella kessleri 11h株を、300mLの0.2×ガンボーグB5培地(日本製薬)を入れた500 mL容メディウムビンにて30℃、光強度7,000 lux(TOMY社製培養装置CL-301)、250 mL/minで空気と3% CO2の混合ガスを吹き込みながら、7日間培養し、これを前培養液とした。尚、光源には、蛍光灯からの白色光を用いた。0.2×ガンボーグB5 培地300 mLを入れた500mL容メディウムビンに、前培養液6 mLを添加し、培養温度30℃、光強度7,000 luxにて、250 mL/minで空気と3% CO2の混合ガスを吹き込みながら、12日間培養を行った。
KNO3 500 mg/L
MgSO4・7H2O 50 mg/L
NaH2PO4・H2O 30 mg/L
CaCl2・2H2O 30 mg/L
(NH4)2SO4 26.8 mg/L
Na2-EDTA 7.46 mg/L
FeSO4・7H2O 5.56 mg/L
MnSO4・H2O 2 mg/L
H3BO3 0.6 mg/L
ZnSO4・7H2O 0.4 mg/L
KI 0.15 mg/L
Na2MoO2・2H2O 0.05 mg/L
CuSO4・5H2O 0.005 mg/L
CoCl2・6H2O 0.005 mg/L
120℃ 15分 オートクレーブ殺菌
実施例9で得られた培養液のpHを1NのHCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに1ml入れ、1000rpm、各温度で各時間インキュベートした。得られた各サンプルを遠心分離し、得られた沈殿物中の脂肪酸量の測定を行った。それらの測定結果を図3に示した。なお、相対脂肪酸生成率は、未処理の藻体から有機溶媒抽出された油脂が完全に分解された際に、生成した脂肪酸量を100とした。55℃以上の温度では、1hr目で脂肪酸量が増加し、50℃から52℃の温度では、4hrから6hr目に脂肪酸量が著しく増加した。
実施例9で得られた培養液を遠心分離し、その沈殿物に培養上清を加え、20倍濃縮液を調製した。その濃縮液のpHを1N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに1ml入れ、52℃、1000rpm、14hr時間インキュベートした。得られたサンプルに3N NaOH溶液を加え、各pHに調整後、90℃、1000rpmで3hr抽出し、それらのサンプル中の脂肪酸量の測定を行った。それらの測定結果を図4に示した。なお、相対脂肪酸回収率は、未処理の藻体から有機溶媒抽出された油脂が完全に分解された際に、生成した脂肪酸量を100とした。pH10.5では、若干脂肪酸が抽出され、pH11.5で脂肪酸の抽出量が増加し、pH12.5ではその量が著しく増加した。
実施例9で得られた培養液を遠心分離し、その沈殿物に培養上清を加え、20倍濃縮液を調製した。その濃縮液のpHを1N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに1ml入れ、52℃、1000rpm、14hr時間インキュベートした。得られたサンプルのpHを3N NaOH溶液で12.5に調整後、1000rpm、各温度で3hr抽出し、それらのサンプル中の脂肪酸量の測定を行った。それらの測定結果を図5に示した。なお、相対脂肪酸回収率は、未処理の藻体から有機溶媒抽出された油脂が完全に分解された際に、生成した脂肪酸量を100とした。60℃で、脂肪酸の抽出が確認され、温度の上昇と伴に、脂肪酸量が増加し、90℃で、最もその量が増加した。
実施例9で得られた培養液を遠心分離し、その沈殿物に培養上清を加え、20倍濃縮液を調製した。その濃縮液のpHを1N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに1ml入れ、52℃、1000rpm、14hr時間インキュベートした。得られたサンプルのpHを3N NaOH溶液で12.5に調整後、90℃、1000rpmで各時間抽出し、それらのサンプル中の脂肪酸量の測定を行った。それらの測定結果を図6に示した。なお、相対脂肪酸回収率は、未処理の藻体から有機溶媒抽出された油脂が完全に分解された際に、生成した脂肪酸量を100とした。脂肪酸量が、30minで増加し、60min、90minと時間の経過と伴にその量が著しく増加した。また、120min以降では、その脂肪酸量がさらに増加することはなかった。
Chlorella kessleri 11h株を、400mLの0.2×ガンボーグB5培地(日本製薬)を入れた500 mL容メディウムビンにて30℃、光強度7,000 lux(TOMY社製培養装置CL-301)、250 mL/minで空気と3% CO2の混合ガスを吹き込みながら、7日間培養し、これを前培養液とした。尚、光源には、蛍光灯からの白色光を用いた。0.2×ガンボーグB5 培地400 mLを入れた500mL容メディウムビンに、前培養液8mLを添加し、培養温度30℃、光強度7,000 luxにて、250 mL/minで空気と3% CO2の混合ガスを吹き込みながら、12日間培養を行った。
KNO3 500 mg/L
MgSO4・7H2O 50 mg/L
NaH2PO4・H2O 30 mg/L
CaCl2・2H2O 30 mg/L
(NH4)2SO4 26.8 mg/L
Na2-EDTA 7.46 mg/L
FeSO4・7H2O 5.56 mg/L
MnSO4・H2O 2 mg/L
H3BO3 0.6 mg/L
ZnSO4・7H2O 0.4 mg/L
KI 0.15 mg/L
Na2MoO2・2H2O 0.05 mg/L
CuSO4・5H2O 0.005 mg/L
CoCl2・6H2O 0.005 mg/L
120℃ 15分 オートクレーブ殺菌
実施例14で得られた培養液を遠心分離し、その沈殿物に滅菌水を加え、40倍濃縮液を調製した。その濃縮液のpHを3N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに500ml入れ、50℃、52℃、55℃、57℃、60℃の各温度、静置で5minプレインキュベーションした。次に、各サンプルを上記と同じ温度にて1000rpm、30minインキュベートした後、サンプルを42℃、1000rpm、4hr30minもしくは9hr30minインキュベートし、油脂の加水分解を行った。得られたサンプルを遠心分離し、その沈殿物中の脂肪酸量の測定を行った。それらの測定結果を図7 に示した。52℃連続処理と比較して、50℃及び52℃、30minの誘導後、42℃、4hr30minでは、ほとんど脂肪酸の生成が確認されないが、42℃、9hr30min後では、52℃連続処理の脂肪酸生成量を上回ることを確認した。また、55℃以上30minの誘導処理後、42℃処理では、4hr30minから脂肪酸の生成が確認され、それらの誘導温度の低下に伴って、脂肪酸生成量が増加した。
実施例14で得られた培養液を遠心分離し、その沈殿物に滅菌水を加え、40倍濃縮液を調製した。その濃縮液のpHを3N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに600ml入れ、55℃、静置で5minプレインキュベーションした。次に、各サンプルを55℃、1000rpm、30minインキュベートした後、サンプルを42℃、1000rpm、各時間インキュベートし、油脂の加水分解を行った。得られたサンプルを遠心分離し、その沈殿物中の脂肪酸量の測定を行った。それらの測定結果を図8に示した。55℃、10min及び20minの誘導温度では、それぞれ4hr目及び6hr目で脂肪酸生成量が増加した。一方で、55℃、30minの誘導温度では、2hrから脂肪酸生成量が増加した後、8hr目で最も脂肪酸生成量が増加した。
Chlorella kessleri 11h株を、800mLの0.2×ガンボーグB5培地(日本製薬)を入れた1000mL容メディウムビンにて30℃、光強度7,000 lux(TOMY社製培養装置CL-301)、400mL/minで空気と3% CO2の混合ガスを吹き込みながら、7日間培養し、これを前培養液とした。尚、光源には、蛍光灯からの白色光を用いた。0.2×ガンボーグB5 培地800 mLを入れた1000mL容メディウムビンに、前培養液16mLを添加し、培養温度30℃、光強度7,000 luxにて、400mL/minで空気と3% CO2の混合ガスを吹き込みながら、14日間培養を行った。
KNO3 500 mg/L
MgSO4・7H2O 50 mg/L
NaH2PO4・H2O 30 mg/L
CaCl2・2H2O 30 mg/L
(NH4)2SO4 26.8 mg/L
Na2-EDTA 7.46 mg/L
FeSO4・7H2O 5.56 mg/L
MnSO4・H2O 2 mg/L
H3BO3 0.6 mg/L
ZnSO4・7H2O 0.4 mg/L
KI 0.15 mg/L
Na2MoO2・2H2O 0.05 mg/L
CuSO4・5H2O 0.005 mg/L
CoCl2・6H2O 0.005 mg/L
120℃ 15分 オートクレーブ殺菌
実施例17で得られた培養液を遠心分離し、その沈殿物に滅菌水を加え、40倍濃縮液を調製した。その濃縮液のpHを3N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに600ml入れ、55℃、静置で5minプレインキュベーションし、同温度で1000rpm、30minインキュベートした後、42℃、1000rpm、12時間、油脂の加水分解を行った。得られたサンプル250mlを遠心し、その沈殿物を65℃、遠心エバポレーターで50min乾燥したサンプルもしくは乾燥未処理サンプルに各溶媒をそれぞれ500ml加えた。それらのサンプルを45℃、1000rpmで30min抽出し、各サンプル中の脂肪酸量の測定を行った。それらの測定結果を図9に示した。なお、脂肪酸抽出効率は、中温処理液25mlを遠心し、その沈殿物を200mlの1%NaCl水溶液に懸濁後、メタノールとクロロホルムをそれぞれ400mlずつ添加したビース式の細胞破砕チューブに入れ、抽出した脂肪酸量を100とした相対値である。乾燥未処理のサンプルをメタノール、エタノール、アセトン及びブタノールで抽出した場合、高い脂肪酸抽出効率である一方で、乾燥後、各溶剤で抽出した場合では、それらの抽出効率が減少した。また、酢酸エチルでは、乾燥及びその未処理サンプルで、その抽出効率が減少した。
Claims (16)
- L-アミノ酸の製造方法であって、
(a)微細藻類を培地で培養し、該培養物を中温度で処理することにより、L-アミノ酸生産能を有する細菌によるL-アミノ酸の生産蓄積を促進する該微細藻類の処理物を調製し、
(b)該細菌を、該微細藻類の処理物を含む培地に培養し、培養物中にL-アミノ酸を生産蓄積させ、
(c)該培養物からL-アミノ酸を採取することを特徴とするL-アミノ酸の製造法。 - 前記中温度での処理の温度が40℃以上である、請求項1に記載の方法。
- 前記中温度での処理の温度が70℃以下である、請求項1に記載の方法。
- 前記処理物が、中温度での処理後に遠心分離した沈殿物であり、脂肪酸を含む、請求項1~3のいずれか一項に記載の方法。
- 前記処理物が、中温度での処理後に遠心分離した上清液であり、グルコースまたはグリセロールを含む、請求項1~3のいずれか一項に記載の方法。
- 前記処理物が中温度での処理後にさらにアルカリ処理又は有機溶剤処理することにより、脂肪酸を抽出した抽出物である請求項1~3のいずれかに記載の方法。
- 中温度での処理後に遠心分離した沈殿物をアルカリ処理又は有機溶剤処理する請求項6に記載の方法。
- 前記アルカリ処理がpH10.5以上で行われる、請求項6又は7に記載の方法。
- 前記アルカリ処理が60℃以上で行われる、請求項8に記載の方法。
- 上記有機溶剤がメタノール、エタノール、アセトン、2-プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、クロロホルム、酢酸メチル、酢酸エチル、ジメチルエーテル、ジエチルエーテル、又はヘキサンで行われる、請求項6又は7に記載の方法。
- 中温度での処理中に温度を低下させる請求項1~10のいずれか一項に記載の方法。
- 前記微細藻類が緑色植物門、不等毛植物門に属する藻類である請求項1~11のいずれか一項に記載の方法。
- 前記微細藻類が緑藻綱、トレボキシア藻綱、又は珪藻綱に属する藻類である、請求項12に記載の方法。
- 前記微細藻類が緑藻綱(Chlorophyceae)に属する藻類である、請求項13に記載の方法。
- 前記細菌が腸内細菌科に属する細菌またはコリネ型細菌である請求項1~14のいずれか一項に記載の方法。
- 前記腸内細菌科に属する細菌がエシェリヒア・コリである請求項15に記載の方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10804453A EP2460883A4 (en) | 2009-07-29 | 2010-07-28 | PROCESS FOR THE PREPARATION OF L-AMINO ACID |
CN201080033906.3A CN102471790B (zh) | 2009-07-29 | 2010-07-28 | 产生l-氨基酸的方法 |
BRPI1014661-0A BRPI1014661B1 (pt) | 2009-07-29 | 2010-07-28 | Método para produzir um l-aminoácido |
JP2011524813A JPWO2011013707A1 (ja) | 2009-07-29 | 2010-07-28 | L−アミノ酸の製造法 |
US13/360,016 US8771981B2 (en) | 2009-07-29 | 2012-01-27 | Method for producing an L-amino acid |
US14/288,557 US20140363857A1 (en) | 2009-07-29 | 2014-05-28 | Method for Producing an L-Amino Acid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009176518 | 2009-07-29 | ||
JP2009-176518 | 2009-07-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/360,016 Continuation US8771981B2 (en) | 2009-07-29 | 2012-01-27 | Method for producing an L-amino acid |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011013707A1 true WO2011013707A1 (ja) | 2011-02-03 |
Family
ID=43529359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/062708 WO2011013707A1 (ja) | 2009-07-29 | 2010-07-28 | L-アミノ酸の製造法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US8771981B2 (ja) |
EP (1) | EP2460883A4 (ja) |
JP (1) | JPWO2011013707A1 (ja) |
CN (1) | CN102471790B (ja) |
BR (1) | BRPI1014661B1 (ja) |
WO (1) | WO2011013707A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2248906A1 (en) * | 2008-01-23 | 2010-11-10 | Ajinomoto Co., Inc. | Method of producing l-amino acid |
WO2012099172A1 (ja) * | 2011-01-18 | 2012-07-26 | 味の素株式会社 | 脂肪酸エステルの製造法 |
JP2012239452A (ja) * | 2011-05-24 | 2012-12-10 | Ajinomoto Co Inc | 澱粉高蓄積微細藻類及びそれを用いたグルコースの製造法、並びに目的物質の製造法 |
WO2013008931A1 (ja) * | 2011-07-14 | 2013-01-17 | 味の素株式会社 | 脂肪酸類の製造法 |
US20130344550A1 (en) * | 2012-06-08 | 2013-12-26 | Utah State University | Methods of bioplastic production |
WO2014192940A1 (ja) * | 2013-05-31 | 2014-12-04 | 味の素株式会社 | 糖グリセロールの製造法 |
WO2015064648A1 (ja) * | 2013-11-01 | 2015-05-07 | 味の素株式会社 | 脂肪酸を生成する緑藻類 |
KR101540252B1 (ko) | 2013-02-25 | 2015-08-06 | 경북대학교 산학협력단 | 동결건조된 미생물 배양액을 이용한 식물성 오일로부터 하이드록시 지방산을 제조하는 방법 |
WO2016092828A1 (ja) * | 2014-12-09 | 2016-06-16 | 花王株式会社 | 藻類の破砕方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8765425B2 (en) | 2011-03-23 | 2014-07-01 | Butamax Advanced Biofuels Llc | In situ expression of lipase for enzymatic production of alcohol esters during fermentation |
US8759044B2 (en) | 2011-03-23 | 2014-06-24 | Butamax Advanced Biofuels Llc | In situ expression of lipase for enzymatic production of alcohol esters during fermentation |
CN103131738B (zh) * | 2013-02-08 | 2014-01-15 | 宁夏伊品生物科技股份有限公司 | 用改变乌头酸酶调控元件的细菌发酵生产l-赖氨酸的方法 |
CN103146772B (zh) * | 2013-02-08 | 2014-06-18 | 宁夏伊品生物科技股份有限公司 | 用乌头酸酶表达弱化和/或酶活性降低的细菌发酵生产l-赖氨酸的方法 |
CN103981230B (zh) * | 2013-02-08 | 2019-03-19 | 内蒙古伊品生物科技有限公司 | 用乌头酸酶表达弱化和/或酶活性降低的细菌发酵生产l-赖氨酸的方法 |
JP2016192903A (ja) * | 2013-09-17 | 2016-11-17 | 味の素株式会社 | 海藻由来バイオマスからのl−アミノ酸の製造方法 |
EP3000872B1 (en) * | 2014-09-26 | 2019-09-18 | Politechnika Lódzka | Microbiological medium for a microbiological consortium applied in the technology of biological purification of biogas |
WO2018115333A1 (en) * | 2016-12-21 | 2018-06-28 | Evonik Degussa Gmbh | Fermentation medium comprising boron suitable for the production of alcohol |
US10927339B2 (en) | 2017-03-17 | 2021-02-23 | Industrial Technology Research Institute | Mutant of Bacillus thuringiensis and application thereof |
CN114874958B (zh) * | 2021-02-05 | 2024-01-16 | 中国科学院天津工业生物技术研究所 | 生产l-脯氨酸的菌株及其构建方法和应用 |
CN116286566A (zh) * | 2022-07-13 | 2023-06-23 | 南京盛德生物科技研究院有限公司 | 一种l-高丝氨酸高产菌株及其构建方法和应用 |
Citations (183)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3708395A (en) | 1969-07-23 | 1973-01-02 | Kyowa Hakko Kogyo Kk | Process for producing l-lysine |
JPS4828078A (ja) | 1971-08-14 | 1973-04-13 | ||
US3825472A (en) | 1972-04-27 | 1974-07-23 | Ajinomoto Kk | Method of producing l-lysine by fermentation |
JPS5031093A (ja) | 1973-07-26 | 1975-03-27 | ||
JPS5053588A (ja) | 1973-09-22 | 1975-05-12 | ||
JPS50113209A (ja) | 1974-02-13 | 1975-09-05 | ||
JPS5238088A (en) | 1975-09-19 | 1977-03-24 | Ajinomoto Co Inc | Preparation of l-glutamic acid |
JPS52102498A (en) | 1976-02-20 | 1977-08-27 | Ajinomoto Co Inc | Preparation of l-lysine |
JPS531833A (en) | 1976-06-28 | 1978-01-10 | Shin Kobe Electric Machinery | Method of producing battery separator |
JPS539394A (en) | 1976-07-09 | 1978-01-27 | Kyowa Hakko Kogyo Co Ltd | Preparation of l-lysine by fermentation |
JPS5325034A (en) | 1976-08-19 | 1978-03-08 | Fujii Denko | Anti precipitation device for horizontal movement |
JPS5343591A (en) | 1976-10-01 | 1978-04-19 | Hitachi Ltd | Atomizing device for flameless atomic absorption analysis |
JPS5386089A (en) | 1976-12-29 | 1978-07-29 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS5386090A (en) | 1976-12-29 | 1978-07-29 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS559759A (en) | 1978-07-07 | 1980-01-23 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS559783A (en) | 1978-07-10 | 1980-01-23 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS559784A (en) | 1978-07-10 | 1980-01-23 | Ajinomoto Co Inc | Preparation of l-lysine |
JPS561915A (en) | 1979-06-21 | 1981-01-10 | Nec Corp | Hologram and production of hologram and light beam scanner |
JPS561914A (en) | 1979-06-15 | 1981-01-10 | Leitz Ernst Gmbh | Camera mounted on microscope |
JPS561889A (en) | 1979-06-20 | 1981-01-10 | Ajinomoto Co Inc | Preparation of l-glutamic acid by fermentation |
JPS565099A (en) | 1979-06-25 | 1981-01-20 | Ajinomoto Co Inc | Production of l-histidine through fermentation process and microorganism used therefor |
JPS566499A (en) | 1979-06-26 | 1981-01-23 | Sanyo Electric Co | Hybrid integrated circuit unit |
JPS568692A (en) | 1979-07-03 | 1981-01-29 | Kyowa Hakko Kogyo Co Ltd | Preparation of l-lysine by fermentation |
JPS5618596A (en) | 1979-07-23 | 1981-02-21 | Ajinomoto Co Inc | Production of l-lysine through fermentation process |
JPS5632995A (en) | 1979-08-28 | 1981-04-02 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS5635981A (en) | 1979-08-31 | 1981-04-08 | Ajinomoto Co Inc | Novel variant |
JPS5639778A (en) | 1979-09-10 | 1981-04-15 | Ajinomoto Co Inc | Novel modified strain |
JPS5648890A (en) | 1979-08-10 | 1981-05-02 | Ajinomoto Co Inc | Preparation of l-glutamic acid by fermentation |
US4278765A (en) | 1978-06-30 | 1981-07-14 | Debabov Vladimir G | Method for preparing strains which produce aminoacids |
JPS56140895A (en) | 1980-04-02 | 1981-11-04 | Ajinomoto Co Inc | Preparation of l-glutamic acid by fermentation |
GB2075056A (en) | 1980-04-14 | 1981-11-11 | Ajinomoto Kk | L-proline-producing Microorganisms |
JPS572689A (en) | 1981-03-23 | 1982-01-08 | Ajinomoto Co Inc | Preparation of l-glutamic acid |
JPS5714158A (en) | 1980-07-01 | 1982-01-25 | Nihon Radiator Co | Refrigeration cycle |
JPS5714157A (en) | 1980-06-27 | 1982-01-25 | Matsushita Electric Ind Co Ltd | Refrigerant flow rate control for airconditioner |
JPS5730474A (en) | 1980-07-31 | 1982-02-18 | Victor Co Of Japan Ltd | Slow-motion reproduction system of magnetic reproducing device |
JPS5765198A (en) | 1980-10-09 | 1982-04-20 | Ajinomoto Co Inc | Fermentative production of l-glutamic acid |
JPS5771397A (en) | 1980-08-22 | 1982-05-04 | Ajinomoto Co Inc | Preparation of l-tryptophan by fermentation method |
JPS5810075A (ja) | 1981-07-09 | 1983-01-20 | 安藤 雅威 | 賽を「おう」用した遊具 |
DE3127361A1 (de) | 1981-07-08 | 1983-02-03 | Schering Ag, 1000 Berlin Und 4619 Bergkamen | Herstellung und anwendung von plasmiden mit genen fuer die biosynthese von l-prolin |
JPS58158192A (ja) | 1982-03-15 | 1983-09-20 | Ajinomoto Co Inc | 発酵法によるl−グルタミン酸の製造方法 |
US4407952A (en) | 1979-06-15 | 1983-10-04 | Ajinomoto Company Incorporated | Method for producing L-phenylalanine by fermentation |
US4411997A (en) | 1980-12-29 | 1983-10-25 | Ajinomoto Company Incorporated | Method for producing L-lysine by fermentation |
JPS594993A (ja) | 1982-07-01 | 1984-01-11 | Nippon Kokan Kk <Nkk> | 調質型鋼管の溶接方法 |
JPS6087788A (ja) | 1983-08-29 | 1985-05-17 | Ajinomoto Co Inc | 発酵法によるl―アミノ酸の製造法 |
JPS60137298A (ja) | 1983-12-23 | 1985-07-20 | Ajinomoto Co Inc | 発酵法によるl−トリプトフアンの製造法 |
JPS6115696A (ja) | 1984-06-29 | 1986-01-23 | Ajinomoto Co Inc | 発酵法によるl−イソロイシンの製造法 |
JPS6115695A (ja) | 1984-06-29 | 1986-01-23 | Ajinomoto Co Inc | 発酵法によるl−イソロイシンの製造方法 |
JPS6135840A (ja) | 1984-07-30 | 1986-02-20 | Sofutaade Kogyo Kk | 触媒の交換方法 |
JPS6224074A (ja) | 1985-07-25 | 1987-02-02 | Toyota Motor Corp | 潤滑装置 |
JPS6234397A (ja) | 1985-08-08 | 1987-02-14 | Mitsubishi Electric Corp | ダイナミツクメモリ装置 |
JPS6236673A (ja) | 1985-08-09 | 1987-02-17 | Konishiroku Photo Ind Co Ltd | 感光性平版印刷版の処理方法 |
JPS6274293A (ja) | 1985-09-28 | 1987-04-06 | Kyowa Hakko Kogyo Co Ltd | L−イソロイシンの製造法 |
JPS6291193A (ja) | 1985-06-05 | 1987-04-25 | Kyowa Hakko Kogyo Co Ltd | L−スレオニンおよびl−イソロイシンの製造法 |
JPS62195293A (ja) | 1986-02-22 | 1987-08-28 | Kyowa Hakko Kogyo Co Ltd | 発酵法によるl−イソロイシンの製造法 |
JPS62244382A (ja) | 1986-04-16 | 1987-10-24 | Ajinomoto Co Inc | 新規プロモーター及び該プロモーターを用いた遺伝子発現方法 |
JPS62278977A (ja) | 1986-05-26 | 1987-12-03 | Kurorera Kogyo Kk | クロレラ抽出物の製造方法 |
JPS63240794A (ja) | 1987-03-30 | 1988-10-06 | Ajinomoto Co Inc | L−トリプトフアンの製造法 |
US4777051A (en) | 1986-06-20 | 1988-10-11 | Ajinomoto Co., Inc. | Process for the production of a composition for animal feed |
JPH01214636A (ja) | 1988-02-23 | 1989-08-29 | Toto Ltd | 和風便器の施工方法 |
EP0331145A2 (en) | 1988-03-04 | 1989-09-06 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing amino acids |
KR890003681B1 (ko) | 1987-03-26 | 1989-09-30 | 주식회사 미원 | 미생물에 의한 l-페닐 알라닌의 제조방법 |
JPH02458A (ja) | 1987-10-12 | 1990-01-05 | Ajinomoto Co Inc | 発酵法によるl―イソロイシンの製造法 |
EP0356739A1 (en) | 1988-08-03 | 1990-03-07 | Ajinomoto Co., Inc. | Recombinant DNA, microorganism carrying said recombinant DNA, and process for producing L-amino acids by the use of said microorganism |
JPH02109985A (ja) | 1988-02-22 | 1990-04-23 | Eurolysine | 細菌染色体上ヘの目的遺伝子の組み込み方法及び該方法によって得られた細菌 |
WO1990004636A1 (en) | 1988-10-25 | 1990-05-03 | Vsesojuzny Nauchno-Issledovatelsky Institut Genetiki I Selektsii Promyshlennykh Mikroorganizmov (Vniigenetika) | Strain of bacteria escherichia coli, producer of l-threonine |
US4946654A (en) | 1984-04-07 | 1990-08-07 | Bayer Aktiengesellschaft | Process for preparing granulates |
US4956471A (en) | 1986-04-28 | 1990-09-11 | Ajinomoto Company, Inc. | Process for isolating and purifying amino acids |
JPH02303495A (ja) | 1989-05-17 | 1990-12-17 | Kyowa Hakko Kogyo Co Ltd | 芳香族アミノ酸の製造法 |
JPH0488994A (ja) | 1990-07-30 | 1992-03-23 | Kyowa Hakko Kogyo Co Ltd | 発酵法によるl―グルタミン酸の製造法 |
JPH057491A (ja) | 1990-10-15 | 1993-01-19 | Ajinomoto Co Inc | 温度感受性プラスミド |
JPH0511958A (ja) | 1991-07-01 | 1993-01-22 | N T T Data Tsushin Kk | サーバ・クライアント型ウインドウシステム |
JPH0549489A (ja) | 1991-08-22 | 1993-03-02 | Ajinomoto Co Inc | 発酵法によるl−フエニルアラニンの製造法 |
JPH05130882A (ja) | 1991-11-11 | 1993-05-28 | Kyowa Hakko Kogyo Co Ltd | 発酵法によるl−イソロイシンの製造法 |
JPH05227977A (ja) | 1991-09-20 | 1993-09-07 | Ajinomoto Co Inc | エシェリヒア・コリによる新規l−スレオニン生産菌の創成とそれによるl−スレオニンの生産方法 |
JPH05304969A (ja) | 1992-02-25 | 1993-11-19 | Kyowa Hakko Kogyo Co Ltd | 発酵法によるアミノ酸の製造法 |
RU2003677C1 (ru) | 1992-03-30 | 1993-11-30 | Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов | Штамм бактерий ESCHERICHIA COLI - продуцент L-гистидина |
JPH0665314A (ja) | 1992-01-31 | 1994-03-08 | Spherilene Srl | オレフィンの重合用の成分及び触媒 |
WO1994008031A1 (de) | 1992-09-28 | 1994-04-14 | Consortium für elektrochemische Industrie GmbH | Mikroorganismen für die produktion von tryptophan und verfahren zu ihrer herstellung |
EP0593792A1 (en) | 1992-10-14 | 1994-04-27 | Ajinomoto Co., Inc. | Novel L-threonine-producing microbacteria and a method for the production of L-threonine |
JPH06125779A (ja) | 1984-09-27 | 1994-05-10 | Ajinomoto Co Inc | 組換えdnaを有するコリネ型細菌を用いる芳香族アミノ酸の製造法 |
US5354672A (en) | 1992-11-24 | 1994-10-11 | Ian Fotheringham | Materials and methods for hypersecretion of amino acids |
JPH06102028B2 (ja) | 1985-10-04 | 1994-12-14 | 協和醗酵工業株式会社 | アミノ酸の製造法 |
US5376538A (en) | 1991-09-04 | 1994-12-27 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing L-threonine with strains of E coli resistant to phenylalanine and leucine |
US5378616A (en) | 1991-08-07 | 1995-01-03 | Ajinomoto Co., Inc. | Mutant Escherichia coli capable of enhanced L-glutamic acid production by fermentation |
WO1995006114A1 (fr) | 1993-08-24 | 1995-03-02 | Ajinomoto Co., Inc. | Allele de phosphenolpyruvate carboxylase, gene de cet allele et procede de production de l'acide amine |
JPH07112438A (ja) | 1993-10-18 | 1995-05-02 | Nissei Plastics Ind Co | 複数種の成形材料供給装置 |
JPH07112437A (ja) | 1993-10-19 | 1995-05-02 | Tajiri:Kk | プラスチック廃棄物の減容機 |
WO1995016042A1 (fr) | 1993-12-08 | 1995-06-15 | Ajinomoto Co., Inc. | Procede de production de l-lysine par fermentation |
US5431933A (en) | 1991-09-17 | 1995-07-11 | Degussa Aktiengesellschaft | Animal feed supplement based on a fermentation broth amino acid, a process for its production and its use |
WO1995023864A1 (fr) | 1994-03-04 | 1995-09-08 | Ajinomoto Co., Inc. | Procede de production de l-lysine |
WO1995034672A1 (fr) | 1994-06-14 | 1995-12-21 | Ajinomoto Co., Inc. | GENE A DESHYDROGENASE α-CETOGLUTARIQUE |
WO1996006926A1 (fr) | 1994-08-30 | 1996-03-07 | Ajinomoto Co., Inc. | Procede pour produire de la l-valine et de la l-leucine |
JPH0870879A (ja) | 1994-06-30 | 1996-03-19 | Kyowa Hakko Kogyo Co Ltd | 発酵法によるl−ロイシンの製造法 |
WO1996017930A1 (fr) | 1994-12-09 | 1996-06-13 | Ajinomoto Co., Inc. | Nouveau gene de decarboxylase de lysine et procede de production de lysine l |
US5573945A (en) | 1994-01-10 | 1996-11-12 | Ajinomoto Co., Inc. | Mutant and method for producing L-glutamic acid by fermentation |
WO1996040934A1 (fr) | 1995-06-07 | 1996-12-19 | Ajinomoto Co., Inc. | Procede de production de l-lysine |
EP0488424B1 (en) | 1990-11-30 | 1997-03-05 | Ajinomoto Co., Inc. | Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation |
WO1997008333A1 (fr) | 1995-08-30 | 1997-03-06 | Ajinomoto Co., Inc. | Procede de production d'acides amines levogyres |
JPH0975094A (ja) | 1995-09-14 | 1997-03-25 | Japan Kurorera Konsaruteeshiyon:Kk | クロレラ藻体由来の緑色抽出液とその製造法 |
US5658766A (en) | 1991-05-30 | 1997-08-19 | Ajinomoto Co., Inc. | Strains of Escherichia coli which produce isoleucine or valine and a method for their production |
US5661012A (en) | 1992-11-10 | 1997-08-26 | Ajinomoto Co., Inc. | Method for the production of L-threonine by fermentation, using mutated DNA encoding aspartokinase III |
US5705371A (en) | 1990-06-12 | 1998-01-06 | Ajinomoto Co., Inc. | Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine |
WO1998004715A1 (en) | 1996-07-30 | 1998-02-05 | Archer-Daniels-Midland Company | Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production |
US5756345A (en) | 1995-09-05 | 1998-05-26 | Degussa Aktiengesellschaft | Production of tryptophan by the bacterium Escherichia coli |
JPH10165180A (ja) | 1996-12-05 | 1998-06-23 | Ajinomoto Co Inc | L−リジンの製造法 |
RU2119536C1 (ru) | 1997-01-21 | 1998-09-27 | Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов | Штамм escherichia coli - продуцент l-гистидина |
US5830716A (en) | 1993-10-28 | 1998-11-03 | Ajinomoto Co., Inc. | Increased amounts of substances by modifying a microorganism to increase production of NADPH from NADH |
US5840358A (en) | 1996-05-31 | 1998-11-24 | Degussa Aktiengesellschaft | Process for the preparation of an animal feed supplement based on fermentation broth |
WO1999018228A2 (de) | 1997-10-04 | 1999-04-15 | Forschungszentrum Jülich GmbH | Verfahren zur mikrobiellen herstellung von aminosäuren der aspartat- und/oder glutamatfamilie und im verfahren einsetzbare mittel |
US5908768A (en) | 1996-04-23 | 1999-06-01 | Ajinomoto Co., Inc. | Process for producing L-glutamic acid by fermentation with E. coli resistant to aspartic acid antimetabolite |
JPH11155571A (ja) | 1997-11-25 | 1999-06-15 | Ajinomoto Co Inc | L−システインの製造法 |
US5972663A (en) | 1997-06-19 | 1999-10-26 | Consortium Fur Elektrochemische Industrie Gmbh | Microorganisms and processes for the fermentative preparation of L-cysteine, L-cystine, N-acetylserine or thiazolidine derivatives |
EP0952221A2 (en) | 1998-03-18 | 1999-10-27 | Ajinomoto Co., Ltd. | L-Glutamic acid-producing bacterium and method for producing L-glutamic acid |
EP0955368A2 (en) | 1998-03-18 | 1999-11-10 | Ajinomoto Co., Ltd. | L-glutamic acid-producing bacterium and method for producing l-glutamic acid |
US5998178A (en) | 1994-05-30 | 1999-12-07 | Ajinomoto Co., Ltd. | L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation |
JP3006929B2 (ja) | 1990-09-18 | 2000-02-07 | 協和醗酵工業株式会社 | 発酵法によるl−バリンの製造法 |
WO2000018935A1 (fr) | 1998-09-25 | 2000-04-06 | Ajinomoto Co.,Inc. | Procede de construction d'une bacterie produisant des acides amines, et procede de production d'acides amines par une technique de fermentation utilisant ladite bacterie |
EP0994190A2 (en) | 1998-10-13 | 2000-04-19 | Ajinomoto Co., Inc. | DNA conferring L-homoserine resistance to bacteria, and its use |
JP2000139471A (ja) | 1998-11-17 | 2000-05-23 | Ajinomoto Co Inc | 発酵法によるl−メチオニンの製造法 |
JP2000157276A (ja) | 1998-11-24 | 2000-06-13 | Ajinomoto Co Inc | サーマス属細菌のl−リジン生合成系遺伝子 |
EP1010755A1 (en) | 1998-12-18 | 2000-06-21 | Ajinomoto Co., Inc. | Method for producing L-Glutamic acid by fermentation |
EP1013765A1 (en) | 1998-12-23 | 2000-06-28 | Ajinomoto Co., Ltd. | Gene and method for producing L-amino acids |
EP1016710A2 (en) | 1998-12-30 | 2000-07-05 | Ajinomoto Co., Inc. | Method for producing L-amino acids |
US6110714A (en) | 1995-08-23 | 2000-08-29 | Ajinomoto Co., Inc. | Process for producing L-glutamic acid by fermentation |
WO2000050624A1 (de) | 1999-02-22 | 2000-08-31 | Forschungszentrum Jülich GmbH | Verfahren zur mikrobiellen herstellung von l-valin |
JP2000253879A (ja) | 1999-03-09 | 2000-09-19 | Ajinomoto Co Inc | L−リジンの製造法 |
US6124121A (en) | 1997-10-29 | 2000-09-26 | Ajinomoto Co., Inc. | Method for producing L-leucine |
WO2000061723A1 (fr) | 1999-04-09 | 2000-10-19 | Ajinomoto Co., Inc. | Bacteries produisant du l-amino acide et procede de production de l-amino acide |
WO2001004339A1 (fr) * | 1999-07-07 | 2001-01-18 | Kyowa Hakko Kogyo Co., Ltd. | Procede de production d'acide gras hydroxyle et de delta-lactone |
EP1078989A2 (en) | 1999-08-20 | 2001-02-28 | Ajinomoto Co., Ltd. | Method for producing L-glutamic acid by fermentation accompanied by precipitation |
JP2001057896A (ja) | 1999-06-15 | 2001-03-06 | Ajinomoto Co Inc | L−リジンの製造法 |
EP1085087A2 (en) | 1999-09-20 | 2001-03-21 | Kyowa Hakko Kogyo Co., Ltd. | Method for producing amino acids by fermentation using aminoquinoline resistant bacterial strains |
US6218168B1 (en) | 1995-10-26 | 2001-04-17 | CONSORTIUM FüR ELEKTROCHEMISCHE INUDSTRIE GMBH | Process for preparing O-acetylserine, L-cysteine and L-cysteine-related products |
EP1092776A1 (en) | 1999-10-14 | 2001-04-18 | Ajinomoto Co., Inc. | Method for producing L-amino acid by fermentation |
WO2001027307A1 (de) | 1999-10-14 | 2001-04-19 | Consortium für elektrochemische Industrie GmbH | Verfahren zur fermentativen herstellung von l-cystein oder l-cystein-derivaten |
US6238714B1 (en) | 1999-05-05 | 2001-05-29 | Degussa-Huls Ag | Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof |
JP2001169788A (ja) | 1999-10-27 | 2001-06-26 | Degussa Huels Ag | 分枝アミノ酸の排出をコードするヌクレオチド配列、その単離法および使用 |
US6258554B1 (en) | 1998-07-03 | 2001-07-10 | Kyowa Hakko Kogyo Co., Ltd. | Method for producing metabolites biologically synthesized via phosphoribosyl pyrophosphate |
US6303383B1 (en) | 1999-03-16 | 2001-10-16 | Ajinomoto Co., Inc. | Temperature sensitive plasmid for coryneform bacteria |
EP1149911A2 (en) | 2000-04-26 | 2001-10-31 | Ajinomoto Co., Ltd. | Amino acid producing strains belonging to the genus Escherichia and method for producing amino acid |
EP1170358A1 (en) | 2000-07-06 | 2002-01-09 | Ajinomoto Co., Ltd. | L-arginine producing Escherichia coli and method of producing L-arginine |
EP1170376A1 (en) | 2000-07-05 | 2002-01-09 | Ajinomoto Co., Inc. | Method for producing substances utilizing microorganisms |
EP1170361A2 (en) | 2000-06-28 | 2002-01-09 | Ajinomoto Co., Inc. | New mutant N-Acetylglutamate synthase and method for L-Arginine production |
EP1172433A1 (en) | 2000-07-06 | 2002-01-16 | Ajinomoto Co., Inc. | Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine |
US6344347B1 (en) | 1999-09-20 | 2002-02-05 | Kyowa Hakko Kogyo Co., Ltd. | Method for producing L-amino acids by fermentation |
US20020025564A1 (en) | 2000-08-24 | 2002-02-28 | Ajinomoto Co., Inc. | Method for producing basic amino acid |
WO2002026993A1 (en) | 2000-09-28 | 2002-04-04 | Archer-Daniels-Midland Company | Escherichia coli strains which over-produce l-threonine and processes for the production of l-threonine by fermentation |
US20020058315A1 (en) | 2000-09-26 | 2002-05-16 | Ajinomoto Co., Inc. | Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine |
US6403342B1 (en) | 1999-07-09 | 2002-06-11 | Anjinomoto Co., Inc. | DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine |
US20020110876A1 (en) | 2000-08-11 | 2002-08-15 | Ajinomoto Co., Inc. | Method for producing threonine and isoleucine |
EP1239041A2 (en) | 2001-02-13 | 2002-09-11 | Ajinomoto Co., Inc. | Method for producing L-amino acid using bacteria belonging to the genus Escherichia |
RU2000124295A (ru) | 2000-09-26 | 2003-02-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Бактерия, обладающая способностью к продукции l-глутаминовой кислоты, l-пролина или l-аргинина, и способ получения l-глутаминовой кислоты, l-пролина или l-аргинина |
JP2003135066A (ja) | 1999-03-19 | 2003-05-13 | Ajinomoto Co Inc | L−リジンの製造法 |
WO2003044192A1 (fr) | 2001-11-23 | 2003-05-30 | Ajinomoto Co.,Inc. | Procede de production de l-aminoacides a l'aide d'escherichia |
WO2003044191A1 (fr) | 2001-11-23 | 2003-05-30 | Ajinomoto Co.,Inc. | Procede de production de l-aminoacides a l'aide d'escherichia |
US6596517B2 (en) | 2001-02-20 | 2003-07-22 | Ajinomoto Co., Inc. | Method for producing L-glutamic acid |
WO2003094598A1 (en) | 2002-05-13 | 2003-11-20 | Greenfuel Technologies Corporation | Photobioreactor and process for biomass production and mitigation of pollutants in flue gases |
WO2003097839A1 (en) | 2002-05-15 | 2003-11-27 | Cj Corporation | Nucleotide sequence of threonine operon irrepressible by isoleucine and method for producing l-threonine using transformed host cell containing the same |
JP2004504853A (ja) * | 2000-07-19 | 2004-02-19 | ビタテネ、ソシエダッド アノニマ | β−カロテンの製造方法 |
JP2004073123A (ja) | 2002-08-20 | 2004-03-11 | National Research Inst Of Brewing | リパーゼcs2遺伝子 |
EP1484410A1 (en) | 2003-06-05 | 2004-12-08 | Ajinomoto Co., Ltd. | Fermentation methods and genetically modified bacteria with increased substrate and byproduct uptake. |
WO2005010175A1 (en) | 2003-07-29 | 2005-02-03 | Ajinomoto Co., Inc. | Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity |
US20050025878A1 (en) | 2003-07-11 | 2005-02-03 | Degussa Ag | Process for the granulation of an animal feedstuff additive |
RU2003121601A (ru) | 2003-07-16 | 2005-02-27 | Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") (RU) | Мутантная серинацетилтрансфераза |
WO2005049808A1 (en) | 2003-11-21 | 2005-06-02 | Ajinomoto Co., Inc. | Method for producing l-amino acid by fermentation |
JP2005176851A (ja) * | 1990-02-13 | 2005-07-07 | Martek Biosciences Corp | ドコサヘキサエン酸およびドコサヘキサエン酸を含む化合物 |
WO2005073390A2 (en) | 2004-01-30 | 2005-08-11 | Ajinomoto Co., Inc. | L-amino acid-producing microorganism and method for producing l-amino acid |
WO2005103275A1 (ja) | 2004-04-26 | 2005-11-03 | Ajinomoto Co., Ltd. | 発酵法によるl-トリプトファンの製造法 |
US20060135308A1 (en) | 2003-07-04 | 2006-06-22 | Samuel Abraham | Differential for motor vehicles with device for locking thereof |
WO2006070944A2 (en) | 2004-12-28 | 2006-07-06 | Ajinomoto Co., Inc. | L-glutamic acid-producing microorganism and a method for producing l-glutamic acid |
WO2006078039A1 (en) | 2005-01-18 | 2006-07-27 | Ajinomoto Co., Inc. | L-amino acid producing microorganism and a method for producing l-amino acid |
WO2006095964A1 (en) | 2005-03-08 | 2006-09-14 | Hyun Jin Jin | Method for abstract of liquid extract from chlorella |
EP1715055A2 (de) | 2005-04-22 | 2006-10-25 | Degussa GmbH | Verfahren zur Herstellung von L-Aminosäuren unter Verwendung verbesserter Stämme der Familie Enterobacteriaceae |
EP1715056A1 (de) | 2005-04-23 | 2006-10-25 | Degussa AG | Verfahren zur Herstellung von L-Aminosäuren unter Verwendung verbesserter Stämme der Familie Enterobacteriaceae |
JP2006340603A (ja) | 2003-06-23 | 2006-12-21 | Ajinomoto Co Inc | L−グルタミン酸の製造法 |
EP1813677A1 (en) | 2004-10-07 | 2007-08-01 | Ajinomoto Co., Inc. | Process for producing basic substance |
US20070202582A1 (en) | 2006-02-28 | 2007-08-30 | Bush Ronnie A | Process for the production of ethanol from algae |
WO2008081959A1 (en) | 2006-12-22 | 2008-07-10 | Ajinomoto Co., Inc. | A method for producing an l-amino acid by fermentation using a bacterium having an enhanced ability to utilize glycerol |
JP2008167746A (ja) * | 2006-12-11 | 2008-07-24 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
WO2008102861A1 (ja) | 2007-02-22 | 2008-08-28 | Ajinomoto Co., Inc. | L-アミノ酸の製造法 |
WO2008107277A1 (de) | 2007-03-05 | 2008-09-12 | Evonik Degussa Gmbh | Verfahren zur herstellung von l-aminosäuren unter verwendung von stämmen der familie enterobacteriaceae |
WO2009031565A1 (ja) | 2007-09-04 | 2009-03-12 | Ajinomoto Co., Inc. | アミノ酸生産微生物及びアミノ酸の製造法 |
WO2009093703A1 (ja) * | 2008-01-23 | 2009-07-30 | Ajinomoto Co., Inc. | L-アミノ酸の製造法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4088982B2 (ja) | 1996-10-15 | 2008-05-21 | 味の素株式会社 | 発酵法によるl−アミノ酸の製造法 |
AU2000230762A1 (en) | 2000-01-21 | 2001-07-31 | Ajinomoto Co. Inc. | Process for producing l-lysine |
RU2215783C2 (ru) | 2001-05-15 | 2003-11-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото - Генетика" | МУТАНТНАЯ N-АЦЕТИЛГЛУТАМАТ СИНТАЗА (ВАРИАНТЫ), ФРАГМЕНТ ДНК, ШТАММ БАКТЕРИИ Escherichia coli - ПРОДУЦЕНТ АРГИНИНА (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА |
JP2009118740A (ja) | 2006-03-03 | 2009-06-04 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
KR100885616B1 (ko) * | 2006-06-26 | 2009-02-24 | 씨제이제일제당 (주) | 글리세롤을 이용한 아미노산의 생산 방법 |
DE102006044467B4 (de) * | 2006-09-21 | 2008-07-17 | Lurgi Gmbh | Verfahren zur kontinuierlichen Herstellung von Fettsäure-Methylester oder Fettsäure-Ethylester |
WO2008072761A2 (en) | 2006-12-11 | 2008-06-19 | Ajinomoto Co., Inc. | Method for producing an l-amino acid |
WO2009011354A1 (ja) | 2007-07-19 | 2009-01-22 | Ajinomoto Co., Inc. | L-アミノ酸の製造法 |
JP2011167071A (ja) | 2008-05-22 | 2011-09-01 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
-
2010
- 2010-07-28 JP JP2011524813A patent/JPWO2011013707A1/ja active Pending
- 2010-07-28 EP EP10804453A patent/EP2460883A4/en not_active Withdrawn
- 2010-07-28 WO PCT/JP2010/062708 patent/WO2011013707A1/ja active Application Filing
- 2010-07-28 BR BRPI1014661-0A patent/BRPI1014661B1/pt active IP Right Grant
- 2010-07-28 CN CN201080033906.3A patent/CN102471790B/zh not_active Expired - Fee Related
-
2012
- 2012-01-27 US US13/360,016 patent/US8771981B2/en active Active
-
2014
- 2014-05-28 US US14/288,557 patent/US20140363857A1/en not_active Abandoned
Patent Citations (207)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3708395A (en) | 1969-07-23 | 1973-01-02 | Kyowa Hakko Kogyo Kk | Process for producing l-lysine |
JPS4828078A (ja) | 1971-08-14 | 1973-04-13 | ||
US3825472A (en) | 1972-04-27 | 1974-07-23 | Ajinomoto Kk | Method of producing l-lysine by fermentation |
JPS5031093A (ja) | 1973-07-26 | 1975-03-27 | ||
JPS5053588A (ja) | 1973-09-22 | 1975-05-12 | ||
JPS50113209A (ja) | 1974-02-13 | 1975-09-05 | ||
JPS5238088A (en) | 1975-09-19 | 1977-03-24 | Ajinomoto Co Inc | Preparation of l-glutamic acid |
JPS52102498A (en) | 1976-02-20 | 1977-08-27 | Ajinomoto Co Inc | Preparation of l-lysine |
JPS531833A (en) | 1976-06-28 | 1978-01-10 | Shin Kobe Electric Machinery | Method of producing battery separator |
JPS539394A (en) | 1976-07-09 | 1978-01-27 | Kyowa Hakko Kogyo Co Ltd | Preparation of l-lysine by fermentation |
JPS5325034A (en) | 1976-08-19 | 1978-03-08 | Fujii Denko | Anti precipitation device for horizontal movement |
JPS5343591A (en) | 1976-10-01 | 1978-04-19 | Hitachi Ltd | Atomizing device for flameless atomic absorption analysis |
JPS5386089A (en) | 1976-12-29 | 1978-07-29 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS5386090A (en) | 1976-12-29 | 1978-07-29 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
US4278765A (en) | 1978-06-30 | 1981-07-14 | Debabov Vladimir G | Method for preparing strains which produce aminoacids |
JPS559759A (en) | 1978-07-07 | 1980-01-23 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS559784A (en) | 1978-07-10 | 1980-01-23 | Ajinomoto Co Inc | Preparation of l-lysine |
JPS559783A (en) | 1978-07-10 | 1980-01-23 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS561914A (en) | 1979-06-15 | 1981-01-10 | Leitz Ernst Gmbh | Camera mounted on microscope |
US4407952A (en) | 1979-06-15 | 1983-10-04 | Ajinomoto Company Incorporated | Method for producing L-phenylalanine by fermentation |
JPS561889A (en) | 1979-06-20 | 1981-01-10 | Ajinomoto Co Inc | Preparation of l-glutamic acid by fermentation |
JPS561915A (en) | 1979-06-21 | 1981-01-10 | Nec Corp | Hologram and production of hologram and light beam scanner |
US4388405A (en) | 1979-06-25 | 1983-06-14 | Ajinomoto Company Incorporated | Method for producing L-histidine by fermentation |
JPS565099A (en) | 1979-06-25 | 1981-01-20 | Ajinomoto Co Inc | Production of l-histidine through fermentation process and microorganism used therefor |
JPS566499A (en) | 1979-06-26 | 1981-01-23 | Sanyo Electric Co | Hybrid integrated circuit unit |
JPS568692A (en) | 1979-07-03 | 1981-01-29 | Kyowa Hakko Kogyo Co Ltd | Preparation of l-lysine by fermentation |
JPS5618596A (en) | 1979-07-23 | 1981-02-21 | Ajinomoto Co Inc | Production of l-lysine through fermentation process |
US4346170A (en) | 1979-07-23 | 1982-08-24 | Ajinomoto Company, Incorporated | Method for producing L-lysine by fermentation |
JPS5648890A (en) | 1979-08-10 | 1981-05-02 | Ajinomoto Co Inc | Preparation of l-glutamic acid by fermentation |
JPS5632995A (en) | 1979-08-28 | 1981-04-02 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS5635981A (en) | 1979-08-31 | 1981-04-08 | Ajinomoto Co Inc | Novel variant |
JPS5639778A (en) | 1979-09-10 | 1981-04-15 | Ajinomoto Co Inc | Novel modified strain |
JPS56140895A (en) | 1980-04-02 | 1981-11-04 | Ajinomoto Co Inc | Preparation of l-glutamic acid by fermentation |
GB2075056A (en) | 1980-04-14 | 1981-11-11 | Ajinomoto Kk | L-proline-producing Microorganisms |
JPS5714157A (en) | 1980-06-27 | 1982-01-25 | Matsushita Electric Ind Co Ltd | Refrigerant flow rate control for airconditioner |
JPS5714158A (en) | 1980-07-01 | 1982-01-25 | Nihon Radiator Co | Refrigeration cycle |
JPS5730474A (en) | 1980-07-31 | 1982-02-18 | Victor Co Of Japan Ltd | Slow-motion reproduction system of magnetic reproducing device |
JPS5771397A (en) | 1980-08-22 | 1982-05-04 | Ajinomoto Co Inc | Preparation of l-tryptophan by fermentation method |
US4371614A (en) | 1980-08-22 | 1983-02-01 | Ajinomoto Co., Inc. | E.Coli bacteria carrying recombinant plasmids and their use in the fermentative production of L-tryptophan |
JPS5765198A (en) | 1980-10-09 | 1982-04-20 | Ajinomoto Co Inc | Fermentative production of l-glutamic acid |
US4411997A (en) | 1980-12-29 | 1983-10-25 | Ajinomoto Company Incorporated | Method for producing L-lysine by fermentation |
JPS572689A (en) | 1981-03-23 | 1982-01-08 | Ajinomoto Co Inc | Preparation of l-glutamic acid |
DE3127361A1 (de) | 1981-07-08 | 1983-02-03 | Schering Ag, 1000 Berlin Und 4619 Bergkamen | Herstellung und anwendung von plasmiden mit genen fuer die biosynthese von l-prolin |
JPS5810075A (ja) | 1981-07-09 | 1983-01-20 | 安藤 雅威 | 賽を「おう」用した遊具 |
JPS58158192A (ja) | 1982-03-15 | 1983-09-20 | Ajinomoto Co Inc | 発酵法によるl−グルタミン酸の製造方法 |
JPS594993A (ja) | 1982-07-01 | 1984-01-11 | Nippon Kokan Kk <Nkk> | 調質型鋼管の溶接方法 |
JPS6087788A (ja) | 1983-08-29 | 1985-05-17 | Ajinomoto Co Inc | 発酵法によるl―アミノ酸の製造法 |
JPS60137298A (ja) | 1983-12-23 | 1985-07-20 | Ajinomoto Co Inc | 発酵法によるl−トリプトフアンの製造法 |
US4946654A (en) | 1984-04-07 | 1990-08-07 | Bayer Aktiengesellschaft | Process for preparing granulates |
JPS6115696A (ja) | 1984-06-29 | 1986-01-23 | Ajinomoto Co Inc | 発酵法によるl−イソロイシンの製造法 |
JPS6115695A (ja) | 1984-06-29 | 1986-01-23 | Ajinomoto Co Inc | 発酵法によるl−イソロイシンの製造方法 |
JPS6135840A (ja) | 1984-07-30 | 1986-02-20 | Sofutaade Kogyo Kk | 触媒の交換方法 |
JPH06125779A (ja) | 1984-09-27 | 1994-05-10 | Ajinomoto Co Inc | 組換えdnaを有するコリネ型細菌を用いる芳香族アミノ酸の製造法 |
JPS6291193A (ja) | 1985-06-05 | 1987-04-25 | Kyowa Hakko Kogyo Co Ltd | L−スレオニンおよびl−イソロイシンの製造法 |
JPS6224074A (ja) | 1985-07-25 | 1987-02-02 | Toyota Motor Corp | 潤滑装置 |
JPS6234397A (ja) | 1985-08-08 | 1987-02-14 | Mitsubishi Electric Corp | ダイナミツクメモリ装置 |
JPS6236673A (ja) | 1985-08-09 | 1987-02-17 | Konishiroku Photo Ind Co Ltd | 感光性平版印刷版の処理方法 |
JPS6274293A (ja) | 1985-09-28 | 1987-04-06 | Kyowa Hakko Kogyo Co Ltd | L−イソロイシンの製造法 |
JPH06102028B2 (ja) | 1985-10-04 | 1994-12-14 | 協和醗酵工業株式会社 | アミノ酸の製造法 |
JPS62195293A (ja) | 1986-02-22 | 1987-08-28 | Kyowa Hakko Kogyo Co Ltd | 発酵法によるl−イソロイシンの製造法 |
JPS62244382A (ja) | 1986-04-16 | 1987-10-24 | Ajinomoto Co Inc | 新規プロモーター及び該プロモーターを用いた遺伝子発現方法 |
US4956471A (en) | 1986-04-28 | 1990-09-11 | Ajinomoto Company, Inc. | Process for isolating and purifying amino acids |
JPS62278977A (ja) | 1986-05-26 | 1987-12-03 | Kurorera Kogyo Kk | クロレラ抽出物の製造方法 |
US4777051A (en) | 1986-06-20 | 1988-10-11 | Ajinomoto Co., Inc. | Process for the production of a composition for animal feed |
KR890003681B1 (ko) | 1987-03-26 | 1989-09-30 | 주식회사 미원 | 미생물에 의한 l-페닐 알라닌의 제조방법 |
JPS63240794A (ja) | 1987-03-30 | 1988-10-06 | Ajinomoto Co Inc | L−トリプトフアンの製造法 |
JPH02458A (ja) | 1987-10-12 | 1990-01-05 | Ajinomoto Co Inc | 発酵法によるl―イソロイシンの製造法 |
JPH02109985A (ja) | 1988-02-22 | 1990-04-23 | Eurolysine | 細菌染色体上ヘの目的遺伝子の組み込み方法及び該方法によって得られた細菌 |
JPH01214636A (ja) | 1988-02-23 | 1989-08-29 | Toto Ltd | 和風便器の施工方法 |
EP0331145A2 (en) | 1988-03-04 | 1989-09-06 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing amino acids |
EP0356739A1 (en) | 1988-08-03 | 1990-03-07 | Ajinomoto Co., Inc. | Recombinant DNA, microorganism carrying said recombinant DNA, and process for producing L-amino acids by the use of said microorganism |
WO1990004636A1 (en) | 1988-10-25 | 1990-05-03 | Vsesojuzny Nauchno-Issledovatelsky Institut Genetiki I Selektsii Promyshlennykh Mikroorganizmov (Vniigenetika) | Strain of bacteria escherichia coli, producer of l-threonine |
US5175107A (en) | 1988-10-25 | 1992-12-29 | Ajinomoto Co., Inc. | Bacterial strain of escherichia coli bkiim b-3996 as the producer of l-threonine |
US5631157A (en) | 1988-10-25 | 1997-05-20 | Ajinomoto Co., Inc. | Bacterial strain of Escherichia coli VNII genetika 472T23 as the producer of L-threonine |
JPH02303495A (ja) | 1989-05-17 | 1990-12-17 | Kyowa Hakko Kogyo Co Ltd | 芳香族アミノ酸の製造法 |
JP2005176851A (ja) * | 1990-02-13 | 2005-07-07 | Martek Biosciences Corp | ドコサヘキサエン酸およびドコサヘキサエン酸を含む化合物 |
US5705371A (en) | 1990-06-12 | 1998-01-06 | Ajinomoto Co., Inc. | Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine |
JPH0488994A (ja) | 1990-07-30 | 1992-03-23 | Kyowa Hakko Kogyo Co Ltd | 発酵法によるl―グルタミン酸の製造法 |
JP3006929B2 (ja) | 1990-09-18 | 2000-02-07 | 協和醗酵工業株式会社 | 発酵法によるl−バリンの製造法 |
JPH057491A (ja) | 1990-10-15 | 1993-01-19 | Ajinomoto Co Inc | 温度感受性プラスミド |
EP0488424B1 (en) | 1990-11-30 | 1997-03-05 | Ajinomoto Co., Inc. | Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation |
US5658766A (en) | 1991-05-30 | 1997-08-19 | Ajinomoto Co., Inc. | Strains of Escherichia coli which produce isoleucine or valine and a method for their production |
JPH0511958A (ja) | 1991-07-01 | 1993-01-22 | N T T Data Tsushin Kk | サーバ・クライアント型ウインドウシステム |
US5393671A (en) | 1991-08-07 | 1995-02-28 | Ajinomoto Co., Inc. | Mutant Escherichia coli capable of enhanced L-glutamic acid production |
US5378616A (en) | 1991-08-07 | 1995-01-03 | Ajinomoto Co., Inc. | Mutant Escherichia coli capable of enhanced L-glutamic acid production by fermentation |
JPH0549489A (ja) | 1991-08-22 | 1993-03-02 | Ajinomoto Co Inc | 発酵法によるl−フエニルアラニンの製造法 |
US5376538A (en) | 1991-09-04 | 1994-12-27 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing L-threonine with strains of E coli resistant to phenylalanine and leucine |
US5431933A (en) | 1991-09-17 | 1995-07-11 | Degussa Aktiengesellschaft | Animal feed supplement based on a fermentation broth amino acid, a process for its production and its use |
JPH05227977A (ja) | 1991-09-20 | 1993-09-07 | Ajinomoto Co Inc | エシェリヒア・コリによる新規l−スレオニン生産菌の創成とそれによるl−スレオニンの生産方法 |
JPH05130882A (ja) | 1991-11-11 | 1993-05-28 | Kyowa Hakko Kogyo Co Ltd | 発酵法によるl−イソロイシンの製造法 |
JPH0665314A (ja) | 1992-01-31 | 1994-03-08 | Spherilene Srl | オレフィンの重合用の成分及び触媒 |
US5474918A (en) | 1992-02-25 | 1995-12-12 | Kyowa Kakko Kogyo Co., Ltd. | Process for the production of L-threonine and L-isoleucine by fermentation of Escherichia coli |
JPH05304969A (ja) | 1992-02-25 | 1993-11-19 | Kyowa Hakko Kogyo Co Ltd | 発酵法によるアミノ酸の製造法 |
RU2003677C1 (ru) | 1992-03-30 | 1993-11-30 | Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов | Штамм бактерий ESCHERICHIA COLI - продуцент L-гистидина |
WO1994008031A1 (de) | 1992-09-28 | 1994-04-14 | Consortium für elektrochemische Industrie GmbH | Mikroorganismen für die produktion von tryptophan und verfahren zu ihrer herstellung |
US6180373B1 (en) | 1992-09-28 | 2001-01-30 | Consortium f{umlaut over (u)}r elektrochemische Industrie GmbH | Microorganisms for the production of tryptophan and process for the preparation thereof |
EP0593792B1 (en) | 1992-10-14 | 1997-05-14 | Ajinomoto Co., Inc. | Novel L-threonine-producing microbacteria and a method for the production of L-threonine |
EP0593792A1 (en) | 1992-10-14 | 1994-04-27 | Ajinomoto Co., Inc. | Novel L-threonine-producing microbacteria and a method for the production of L-threonine |
US5661012A (en) | 1992-11-10 | 1997-08-26 | Ajinomoto Co., Inc. | Method for the production of L-threonine by fermentation, using mutated DNA encoding aspartokinase III |
US5354672A (en) | 1992-11-24 | 1994-10-11 | Ian Fotheringham | Materials and methods for hypersecretion of amino acids |
WO1995006114A1 (fr) | 1993-08-24 | 1995-03-02 | Ajinomoto Co., Inc. | Allele de phosphenolpyruvate carboxylase, gene de cet allele et procede de production de l'acide amine |
JPH07112438A (ja) | 1993-10-18 | 1995-05-02 | Nissei Plastics Ind Co | 複数種の成形材料供給装置 |
JPH07112437A (ja) | 1993-10-19 | 1995-05-02 | Tajiri:Kk | プラスチック廃棄物の減容機 |
EP0733712B1 (en) | 1993-10-28 | 2001-12-12 | Ajinomoto Co., Inc. | Process for producing substance |
US5830716A (en) | 1993-10-28 | 1998-11-03 | Ajinomoto Co., Inc. | Increased amounts of substances by modifying a microorganism to increase production of NADPH from NADH |
JPH11192088A (ja) | 1993-12-08 | 1999-07-21 | Ajinomoto Co Inc | 発酵法によるl−リジンの製造法 |
WO1995016042A1 (fr) | 1993-12-08 | 1995-06-15 | Ajinomoto Co., Inc. | Procede de production de l-lysine par fermentation |
US6040160A (en) | 1993-12-08 | 2000-03-21 | Ajinomoto Co., Inc. | Method of producing L-lysine by fermentation |
US5573945A (en) | 1994-01-10 | 1996-11-12 | Ajinomoto Co., Inc. | Mutant and method for producing L-glutamic acid by fermentation |
WO1995023864A1 (fr) | 1994-03-04 | 1995-09-08 | Ajinomoto Co., Inc. | Procede de production de l-lysine |
US5998178A (en) | 1994-05-30 | 1999-12-07 | Ajinomoto Co., Ltd. | L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation |
WO1995034672A1 (fr) | 1994-06-14 | 1995-12-21 | Ajinomoto Co., Inc. | GENE A DESHYDROGENASE α-CETOGLUTARIQUE |
JPH0870879A (ja) | 1994-06-30 | 1996-03-19 | Kyowa Hakko Kogyo Co Ltd | 発酵法によるl−ロイシンの製造法 |
WO1996006926A1 (fr) | 1994-08-30 | 1996-03-07 | Ajinomoto Co., Inc. | Procede pour produire de la l-valine et de la l-leucine |
WO1996017930A1 (fr) | 1994-12-09 | 1996-06-13 | Ajinomoto Co., Inc. | Nouveau gene de decarboxylase de lysine et procede de production de lysine l |
US5827698A (en) | 1994-12-09 | 1998-10-27 | Ajinomoto Co., Inc. | Lysine decarboxylase gene and method of producing l-lysine |
WO1996040934A1 (fr) | 1995-06-07 | 1996-12-19 | Ajinomoto Co., Inc. | Procede de production de l-lysine |
US6110714A (en) | 1995-08-23 | 2000-08-29 | Ajinomoto Co., Inc. | Process for producing L-glutamic acid by fermentation |
US6319696B1 (en) | 1995-08-30 | 2001-11-20 | Ajinomoto Co., Inc. | Process for producing L-amino acids |
EP0877090B1 (en) | 1995-08-30 | 2005-11-23 | Ajinomoto Co., Inc. | Process for producing l-amino acids |
WO1997008333A1 (fr) | 1995-08-30 | 1997-03-06 | Ajinomoto Co., Inc. | Procede de production d'acides amines levogyres |
US5756345A (en) | 1995-09-05 | 1998-05-26 | Degussa Aktiengesellschaft | Production of tryptophan by the bacterium Escherichia coli |
JPH0975094A (ja) | 1995-09-14 | 1997-03-25 | Japan Kurorera Konsaruteeshiyon:Kk | クロレラ藻体由来の緑色抽出液とその製造法 |
US6218168B1 (en) | 1995-10-26 | 2001-04-17 | CONSORTIUM FüR ELEKTROCHEMISCHE INUDSTRIE GMBH | Process for preparing O-acetylserine, L-cysteine and L-cysteine-related products |
US5908768A (en) | 1996-04-23 | 1999-06-01 | Ajinomoto Co., Inc. | Process for producing L-glutamic acid by fermentation with E. coli resistant to aspartic acid antimetabolite |
US5840358A (en) | 1996-05-31 | 1998-11-24 | Degussa Aktiengesellschaft | Process for the preparation of an animal feed supplement based on fermentation broth |
US5939307A (en) | 1996-07-30 | 1999-08-17 | The Archer-Daniels-Midland Company | Strains of Escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production |
WO1998004715A1 (en) | 1996-07-30 | 1998-02-05 | Archer-Daniels-Midland Company | Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production |
JPH10165180A (ja) | 1996-12-05 | 1998-06-23 | Ajinomoto Co Inc | L−リジンの製造法 |
RU2119536C1 (ru) | 1997-01-21 | 1998-09-27 | Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов | Штамм escherichia coli - продуцент l-гистидина |
US5972663A (en) | 1997-06-19 | 1999-10-26 | Consortium Fur Elektrochemische Industrie Gmbh | Microorganisms and processes for the fermentative preparation of L-cysteine, L-cystine, N-acetylserine or thiazolidine derivatives |
WO1999018228A2 (de) | 1997-10-04 | 1999-04-15 | Forschungszentrum Jülich GmbH | Verfahren zur mikrobiellen herstellung von aminosäuren der aspartat- und/oder glutamatfamilie und im verfahren einsetzbare mittel |
US6124121A (en) | 1997-10-29 | 2000-09-26 | Ajinomoto Co., Inc. | Method for producing L-leucine |
JPH11155571A (ja) | 1997-11-25 | 1999-06-15 | Ajinomoto Co Inc | L−システインの製造法 |
US6331419B1 (en) | 1998-03-18 | 2001-12-18 | Ajinomoto Co., Inc. | L-glutamic acid-producing bacterium and method for producing L-glutamic acid |
EP0952221A2 (en) | 1998-03-18 | 1999-10-27 | Ajinomoto Co., Ltd. | L-Glutamic acid-producing bacterium and method for producing L-glutamic acid |
EP0955368A2 (en) | 1998-03-18 | 1999-11-10 | Ajinomoto Co., Ltd. | L-glutamic acid-producing bacterium and method for producing l-glutamic acid |
US6258554B1 (en) | 1998-07-03 | 2001-07-10 | Kyowa Hakko Kogyo Co., Ltd. | Method for producing metabolites biologically synthesized via phosphoribosyl pyrophosphate |
WO2000018935A1 (fr) | 1998-09-25 | 2000-04-06 | Ajinomoto Co.,Inc. | Procede de construction d'une bacterie produisant des acides amines, et procede de production d'acides amines par une technique de fermentation utilisant ladite bacterie |
EP0994190A2 (en) | 1998-10-13 | 2000-04-19 | Ajinomoto Co., Inc. | DNA conferring L-homoserine resistance to bacteria, and its use |
JP2000139471A (ja) | 1998-11-17 | 2000-05-23 | Ajinomoto Co Inc | 発酵法によるl−メチオニンの製造法 |
JP2000157276A (ja) | 1998-11-24 | 2000-06-13 | Ajinomoto Co Inc | サーマス属細菌のl−リジン生合成系遺伝子 |
EP1010755A1 (en) | 1998-12-18 | 2000-06-21 | Ajinomoto Co., Inc. | Method for producing L-Glutamic acid by fermentation |
EP1013765A1 (en) | 1998-12-23 | 2000-06-28 | Ajinomoto Co., Ltd. | Gene and method for producing L-amino acids |
EP1016710A2 (en) | 1998-12-30 | 2000-07-05 | Ajinomoto Co., Inc. | Method for producing L-amino acids |
JP2000189180A (ja) | 1998-12-30 | 2000-07-11 | Ajinomoto Co Inc | L―アミノ酸の製造法 |
WO2000050624A1 (de) | 1999-02-22 | 2000-08-31 | Forschungszentrum Jülich GmbH | Verfahren zur mikrobiellen herstellung von l-valin |
JP2000253879A (ja) | 1999-03-09 | 2000-09-19 | Ajinomoto Co Inc | L−リジンの製造法 |
US6303383B1 (en) | 1999-03-16 | 2001-10-16 | Ajinomoto Co., Inc. | Temperature sensitive plasmid for coryneform bacteria |
JP2003135066A (ja) | 1999-03-19 | 2003-05-13 | Ajinomoto Co Inc | L−リジンの製造法 |
WO2000061723A1 (fr) | 1999-04-09 | 2000-10-19 | Ajinomoto Co., Inc. | Bacteries produisant du l-amino acide et procede de production de l-amino acide |
US6238714B1 (en) | 1999-05-05 | 2001-05-29 | Degussa-Huls Ag | Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof |
JP2001057896A (ja) | 1999-06-15 | 2001-03-06 | Ajinomoto Co Inc | L−リジンの製造法 |
WO2001004339A1 (fr) * | 1999-07-07 | 2001-01-18 | Kyowa Hakko Kogyo Co., Ltd. | Procede de production d'acide gras hydroxyle et de delta-lactone |
US6403342B1 (en) | 1999-07-09 | 2002-06-11 | Anjinomoto Co., Inc. | DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine |
EP1078989A2 (en) | 1999-08-20 | 2001-02-28 | Ajinomoto Co., Ltd. | Method for producing L-glutamic acid by fermentation accompanied by precipitation |
EP1085087A2 (en) | 1999-09-20 | 2001-03-21 | Kyowa Hakko Kogyo Co., Ltd. | Method for producing amino acids by fermentation using aminoquinoline resistant bacterial strains |
US6344347B1 (en) | 1999-09-20 | 2002-02-05 | Kyowa Hakko Kogyo Co., Ltd. | Method for producing L-amino acids by fermentation |
WO2001027307A1 (de) | 1999-10-14 | 2001-04-19 | Consortium für elektrochemische Industrie GmbH | Verfahren zur fermentativen herstellung von l-cystein oder l-cystein-derivaten |
EP1092776A1 (en) | 1999-10-14 | 2001-04-18 | Ajinomoto Co., Inc. | Method for producing L-amino acid by fermentation |
JP2001169788A (ja) | 1999-10-27 | 2001-06-26 | Degussa Huels Ag | 分枝アミノ酸の排出をコードするヌクレオチド配列、その単離法および使用 |
EP1149911A2 (en) | 2000-04-26 | 2001-10-31 | Ajinomoto Co., Ltd. | Amino acid producing strains belonging to the genus Escherichia and method for producing amino acid |
JP2001346578A (ja) | 2000-04-26 | 2001-12-18 | Ajinomoto Co Inc | アミノ酸生産菌及びアミノ酸の製造法 |
EP1170361A2 (en) | 2000-06-28 | 2002-01-09 | Ajinomoto Co., Inc. | New mutant N-Acetylglutamate synthase and method for L-Arginine production |
EP1170376A1 (en) | 2000-07-05 | 2002-01-09 | Ajinomoto Co., Inc. | Method for producing substances utilizing microorganisms |
EP1172433A1 (en) | 2000-07-06 | 2002-01-16 | Ajinomoto Co., Inc. | Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine |
EP1170358A1 (en) | 2000-07-06 | 2002-01-09 | Ajinomoto Co., Ltd. | L-arginine producing Escherichia coli and method of producing L-arginine |
JP2004504853A (ja) * | 2000-07-19 | 2004-02-19 | ビタテネ、ソシエダッド アノニマ | β−カロテンの製造方法 |
US20020110876A1 (en) | 2000-08-11 | 2002-08-15 | Ajinomoto Co., Inc. | Method for producing threonine and isoleucine |
US20020025564A1 (en) | 2000-08-24 | 2002-02-28 | Ajinomoto Co., Inc. | Method for producing basic amino acid |
JP2002065287A (ja) | 2000-08-24 | 2002-03-05 | Ajinomoto Co Inc | 塩基性アミノ酸の製造方法 |
RU2000124295A (ru) | 2000-09-26 | 2003-02-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Бактерия, обладающая способностью к продукции l-глутаминовой кислоты, l-пролина или l-аргинина, и способ получения l-глутаминовой кислоты, l-пролина или l-аргинина |
US20020058315A1 (en) | 2000-09-26 | 2002-05-16 | Ajinomoto Co., Inc. | Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine |
WO2002026993A1 (en) | 2000-09-28 | 2002-04-04 | Archer-Daniels-Midland Company | Escherichia coli strains which over-produce l-threonine and processes for the production of l-threonine by fermentation |
EP1239041A2 (en) | 2001-02-13 | 2002-09-11 | Ajinomoto Co., Inc. | Method for producing L-amino acid using bacteria belonging to the genus Escherichia |
US6596517B2 (en) | 2001-02-20 | 2003-07-22 | Ajinomoto Co., Inc. | Method for producing L-glutamic acid |
RU2001112869A (ru) | 2001-05-15 | 2003-03-20 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Новая мутантная n-ацетилглутамат синтаза и способ получения l-аргинина |
WO2003044191A1 (fr) | 2001-11-23 | 2003-05-30 | Ajinomoto Co.,Inc. | Procede de production de l-aminoacides a l'aide d'escherichia |
US20030157667A1 (en) | 2001-11-23 | 2003-08-21 | Ajinomoto Co., Inc. | Method for producing L-amino acids using bacteria belonging to the genus escherichia |
US20030148473A1 (en) | 2001-11-23 | 2003-08-07 | Ajinomoto Co., Inc. | Method for producing L-amino acid using bacteria belonging to the genus escherichia |
WO2003044192A1 (fr) | 2001-11-23 | 2003-05-30 | Ajinomoto Co.,Inc. | Procede de production de l-aminoacides a l'aide d'escherichia |
WO2003094598A1 (en) | 2002-05-13 | 2003-11-20 | Greenfuel Technologies Corporation | Photobioreactor and process for biomass production and mitigation of pollutants in flue gases |
WO2003097839A1 (en) | 2002-05-15 | 2003-11-27 | Cj Corporation | Nucleotide sequence of threonine operon irrepressible by isoleucine and method for producing l-threonine using transformed host cell containing the same |
JP2004073123A (ja) | 2002-08-20 | 2004-03-11 | National Research Inst Of Brewing | リパーゼcs2遺伝子 |
EP1484410A1 (en) | 2003-06-05 | 2004-12-08 | Ajinomoto Co., Ltd. | Fermentation methods and genetically modified bacteria with increased substrate and byproduct uptake. |
JP2006340603A (ja) | 2003-06-23 | 2006-12-21 | Ajinomoto Co Inc | L−グルタミン酸の製造法 |
US20060135308A1 (en) | 2003-07-04 | 2006-06-22 | Samuel Abraham | Differential for motor vehicles with device for locking thereof |
US20050025878A1 (en) | 2003-07-11 | 2005-02-03 | Degussa Ag | Process for the granulation of an animal feedstuff additive |
RU2003121601A (ru) | 2003-07-16 | 2005-02-27 | Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") (RU) | Мутантная серинацетилтрансфераза |
WO2005010175A1 (en) | 2003-07-29 | 2005-02-03 | Ajinomoto Co., Inc. | Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity |
JP2005058227A (ja) | 2003-07-29 | 2005-03-10 | Ajinomoto Co Inc | L−リジンまたはl−スレオニンの製造法 |
WO2005049808A1 (en) | 2003-11-21 | 2005-06-02 | Ajinomoto Co., Inc. | Method for producing l-amino acid by fermentation |
WO2005073390A2 (en) | 2004-01-30 | 2005-08-11 | Ajinomoto Co., Inc. | L-amino acid-producing microorganism and method for producing l-amino acid |
WO2005103275A1 (ja) | 2004-04-26 | 2005-11-03 | Ajinomoto Co., Ltd. | 発酵法によるl-トリプトファンの製造法 |
EP1813677A1 (en) | 2004-10-07 | 2007-08-01 | Ajinomoto Co., Inc. | Process for producing basic substance |
WO2006070944A2 (en) | 2004-12-28 | 2006-07-06 | Ajinomoto Co., Inc. | L-glutamic acid-producing microorganism and a method for producing l-glutamic acid |
WO2006078039A1 (en) | 2005-01-18 | 2006-07-27 | Ajinomoto Co., Inc. | L-amino acid producing microorganism and a method for producing l-amino acid |
WO2006095964A1 (en) | 2005-03-08 | 2006-09-14 | Hyun Jin Jin | Method for abstract of liquid extract from chlorella |
EP1715055A2 (de) | 2005-04-22 | 2006-10-25 | Degussa GmbH | Verfahren zur Herstellung von L-Aminosäuren unter Verwendung verbesserter Stämme der Familie Enterobacteriaceae |
EP1715056A1 (de) | 2005-04-23 | 2006-10-25 | Degussa AG | Verfahren zur Herstellung von L-Aminosäuren unter Verwendung verbesserter Stämme der Familie Enterobacteriaceae |
US20070202582A1 (en) | 2006-02-28 | 2007-08-30 | Bush Ronnie A | Process for the production of ethanol from algae |
JP2008167746A (ja) * | 2006-12-11 | 2008-07-24 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
WO2008081959A1 (en) | 2006-12-22 | 2008-07-10 | Ajinomoto Co., Inc. | A method for producing an l-amino acid by fermentation using a bacterium having an enhanced ability to utilize glycerol |
WO2008102861A1 (ja) | 2007-02-22 | 2008-08-28 | Ajinomoto Co., Inc. | L-アミノ酸の製造法 |
WO2008107277A1 (de) | 2007-03-05 | 2008-09-12 | Evonik Degussa Gmbh | Verfahren zur herstellung von l-aminosäuren unter verwendung von stämmen der familie enterobacteriaceae |
WO2009031565A1 (ja) | 2007-09-04 | 2009-03-12 | Ajinomoto Co., Inc. | アミノ酸生産微生物及びアミノ酸の製造法 |
WO2009093703A1 (ja) * | 2008-01-23 | 2009-07-30 | Ajinomoto Co., Inc. | L-アミノ酸の製造法 |
Non-Patent Citations (87)
Title |
---|
"Amino Acid Fermentation", 30 May 1986, GAKKAI SHUPPAN CENTER (LTD., pages: 77 - 100 |
"Escherichia coli and Salmonella: Cellular and Molecular Biology,Second Edition,", 1996, AMERICAN SOCIETY FOR MICROBIOLOGY PRESS, pages: 2477 - 2483 |
ALBERGHINA, L.; LOTTI, M., METHODS ENZYMOL., vol. 284, 1997, pages 246 - 260 |
ARCHIBALD, P.A.; BOLD, H.C., PHYTOMORPHOLOGY, vol. 20, 1970, pages 383 - 389 |
BALL, S.G.: "Chlamydomonas", 1998, KLUWER ACADEMIC PUBLISHERS, article "Molecular Biology of Chloroplasts and Mitochondria", pages: 549 - 567 |
BALL, S.G.; MORELL, M.K., ANNUAL REVIEW OF PLANT BIOLOGY, vol. 54, 2003, pages 207 - 233 |
BLASCHKOWSKI, H.P. ET AL., EUR. J. BIOCHEM., vol. 123, 1982, pages 563 - 569 |
BOYER, M.E. ET AL., BIOTECHNOL. BIOENG., vol. 94, 2006, pages 128 - 138 |
BREIVIK, H.; HARALDSSON, G.G.; KRISTINSSON, B., J. AM. OIL CHEM. SOC., vol. 74, 1997, pages 1425 - 1429 |
BRENNER, D.J.; FARMER III J.J. FAMILY I.: "Bergey's Manual of Systematic Bacteriology, Volume Two: The Proteobacteria Part B: The Gammaproteobacteria", 2005, SPRINGER, pages: 587 - 669 |
BUCKEL, W.; GOLDING, B.T., ANN. REV. OF MICROBIOL., vol. 60, 2006, pages 27 - 49 |
CAMPBELL, J.W.; CRONAN, J.E., J. BACTERIOL., vol. 184, 2002, pages 3759 - 3764 |
CARRILLO, N.; CECCARELLI, E.A., EUR. J. BIOCHEM., vol. 270, 2003, pages 1900 - 1915 |
CECCARELLI, E.A. ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 1698, 2004, pages 155 - 165 |
CHEPURI ET AL.: "J. Biol. Chem.", vol. 265, 1990, pages: 11185 - 11192 |
CHISTI Y., BIOTECHNOL. ADV., vol. 25, 2007, pages 294 - 306 |
CHISTI, Y.: "Biodiesel from microalgae.", BIOTECHNOL ADV., vol. 25, 2007, pages 294 - 306, XP026983679 * |
CHO E.H.; GUMPORT R.I.; GARDNER J.F., J. BACTERIOL., vol. 184, 2002, pages 5200 - 5203 |
CHO, E.H.; GUMPORT, R.I.; GARDNER, J.F., J. BACTERIOL., vol. 184, 2002, pages 5200 - 5203 |
CLARK, D.P.; CRONAN JR.; J.E.: "Escherichia coli and Salmonella Cellular and Molecular Biology", 1996, AMERICAN SOCIETY FOR MICROBIOLOGY PRESS, pages: 343 - 357 |
CTRNACTA, V. ET AL., J. EUKARYOT. MICROBIOL., vol. 53, 2006, pages 225 - 231 |
DATABASE GENBANK BLATTNER,F.R., ET AL.: "The complete genome sequence of Escherichia coli K-12", Database accession no. AAC76458 |
DATABASE GENBANK NAKAGAWA,S.: "Complete genomic sequence of Corynebacterium glutamicum ATCC 13032", Database accession no. BAB98495 |
DATABASE GENBANK NAKAMURA,Y.: "Structural Analysis of Arabidopsis thaliana Chromosome 3. I", Database accession no. BAB00036 |
DATABASE GENBANK NAKAZAWA,M., ET AL.: "The origin of pyruvate: NADP+ oxidoreductase in mitochondria of Euglena gracilis", Database accession no. AB021127 |
DATSENKO, K.A.; WANNER, B.L., PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 6640 - 6645 |
DATSENKO, K.A.; WANNER, B.L., PROC. NATL. ACAD. SCI. USA., vol. 97, 2000, pages 6640 - 6645 |
DATSENKO, K.A; WANNER, B.L., PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 6640 - 6645 |
DIRUSSO, C.C. ET AL., J. BIOL. CHEM., vol. 267, 1992, pages 8685 - 8691 |
DIRUSSO, C.C. ET AL., MOL. MICROBIOL., vol. 7, 1993, pages 311 - 322 |
DIRUSSO, C.C.; BLACK, P.N., J. BIOL. CHEM., vol. 279, 2004, pages 49563 - 49566 |
DROGE ET AL., CHEMBIOCHEM, vol. 7, 2006, pages 149 - 157 |
FUKUDA, H.; KONDO, A.; NODA, H., J. BIOSCI. BIOENG., vol. 92, 2001, pages 405 - 416 |
GAUDU, P.; WEISS, B., J. BACTERIOL., vol. 182, 2000, pages 1788 - 1793 |
GENNIS, R.B.; STEWART, V.: "Escherichia coli and Salmonella Cellular and Molecular Biology", 1996, AMERICAN SOCIETY FOR MICROBIOLOGY PRESS, pages: 217 - 261 |
GRIMA, E.M. ET AL., BIOTECHNOL. ADVANCES, vol. 20, 2003, pages 491 - 515 |
GUSYATINER ET AL., GENETIKA (IN RUSSIAN, vol. 14, 1978, pages 947 - 956 |
INT. J. SYST. BACTERIOL., vol. 43, 1993, pages 162 - 173 |
INUI, H. ET AL., J. BIOL. CHEM., vol. 262, 1987, pages 9130 - 9135 |
IZUMO A. ET AL., PLANT SCIENCE, vol. 172, 2007, pages 1138 - 1147 |
IZUMO A. ET AL.: "Chlorella vulgaris", PLANT SCIENCE, vol. 172, 2007, pages 1138 - 1147 |
JAEGER, K.E.; EGGERT, T., CURR. OPIN. BIOTECHNOL., vol. 13, 2002, pages 390 - 397 |
KAWAGUCHI, Y. ET AL., NATURE, vol. 341, 1989, pages 164 - 166 |
KOGA, H. ET AL., J. BIOCHEM. (TOKYO, vol. 106, 1989, pages 831 - 836 |
KUMAR, G.B.; BLACK, P.N., J. BIOL. CHEM., vol. 268, 1993, pages 15469 - 15476 |
LIE, C.-P.; LIN, L.-P., BOT. BULL. ACAD. SIN., vol. 42, 2001, pages 207 - 214 |
LIEBL; W. ET AL., INT. J. SYST. BACTERIOL., vol. 41, 1991, pages 255 - 260 |
LIN, E.C.C.: "Escherichia coli and Salmonella Cellular and Molecular Biology", 1996, AMERICAN SOCIETY FOR MICROBIOLOGY PRESS, pages: 307 - 342 |
LIVSHITS, V.A. ET AL., RES. MICROBIOL., vol. 154, 2003, pages 123 - 135 |
LYNN, S.P. ET AL., J. MOL. BIOL., vol. 194, 1987, pages 59 - 69 |
MATSUMOTO, M. ET AL., APPL. BIOCHEM. BIOTECHNOL., vol. 105, no. 108, 2003, pages 247 - 254 |
MCLEAN K.J. ET AL., BIOCHEM. SOC. TRANS., vol. 33, 2005, pages 796 - 801 |
MITSUO CHIHARA: "Biodiversity Series (3) Diversity and Pedigree of Algae", 1999, SHOKABO PUBLISHING CO., LTD. |
NAKAZAWA, M. ET AL., FEBS LETT., vol. 479, 2000, pages 155 - 156 |
O'BRIEN, W.J.; FRERMAN, F.E., J. BACTERIOL., vol. 132, 1977, pages 532 - 540 |
OHAMA, T. ET AL., NUCLEIC ACIDS RES., vol. 21, 1993, pages 4039 - 4045 |
OSBORNE C. ET AL., J. BACTERIOL., vol. 173, 1991, pages 1729 - 1737 |
OYAMA Y. ET AL., PLANTA, vol. 224, 2006, pages 646 - 654 |
PRAMANIK, A. ET AL., J. BACTERIOL., vol. 137, 1979, pages 469 - 473 |
QIU Z.; GOODMAN M.F., J. BIOL. CHEM., vol. 272, 1997, pages 8611 - 8617 |
REETS ET AL., ANGEW. CHEM., vol. 44, 2005, pages 4192 - 4196 |
ROBERTSON, G.H. ET AL., J. AGRIC. FOOD CHEM., vol. 54, 2006, pages 353 - 365 |
ROTTE, C. ET AL., MOL. BIOL. EVOL., vol. 18, 2001, pages 710 - 720 |
SAMBROOK, J. ET AL.: "Molecular Cloning A Laboratory Manual/Second Edition,", 1989, COLD SPRING HARBOR LABORATORY PRESS |
SAMBROOK, J.; RUSSELL, D.W.: "Molecular Cloning A Laboratory Manual/", 2001, COLD SPRING HARBOR LABORATORY PRESS |
SCHMELTER, T. ET AL., J. BIOL. CHEM., vol. 279, 2004, pages 24163 - 24170 |
SCHMIDT-DANNERT, C., BIOORG. MED. CHEM., vol. 7, 1999, pages 2123 - 2130 |
SPOLAORE, P. ET AL., J. BIOSCI. BIOENG., vol. 101, 2006, pages 87 - 96 |
STENBERG, F. ET AL., J. BIOL. CHEM., vol. 280, 2005, pages 34409 - 34419 |
SUEN ET AL., PROTEIN ENG. DESIGN & SELECTION, vol. 17, 2004, pages 133 - 140 |
TA, D.T.; VICKERY, L.E., J. BIOL. CHEM., vol. 267, 1992, pages 11120 - 11125 |
TAKAGI, M. ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 54, 2000, pages 112 - 117 |
THOMPSON G.A. JR., BIOCHIM. BIOPHYS. ACTA, vol. 1302, 1996, pages 17 - 45 |
TONON, T. ET AL., PHYTOCHEMISTRY, vol. 61, 2002, pages 15 - 24 |
TORNABENE, T.G. ET AL., ENZYME AND MICROB. TECHNOL., vol. 5, 1983, pages 435 - 440 |
VALLE F. ET AL., GENE, vol. 23, 1983, pages 199 - 209 |
VORUM, H. ET AL., BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1126, 1992, pages 135 - 142 |
WANG, J.P. ET AL., J. AGRIC. FOOD CHEM., vol. 54, 2006, pages 9405 - 9410 |
WENTE, S.R.; SCHACHMAN, H.K., J. BID. CHEM., vol. 266, 1991, pages 20833 - 20839 |
WHITE, T.J. ET AL., TRENDS GENET, vol. 5, 1989, pages 185 |
WINKLER W.C., CURR. OPIN. CHEM. BIOL., vol. 9, 2005, pages 594 - 602 |
YAMABERI, K. ET AL., J. MAR. BIOTECHNOL., vol. 6, 1998, pages 44 - 48 |
YANG, S.Y. ET AL., J. BIOL. CHEM., vol. 265, 1990, pages 10424 - 10429 |
YANG, S.Y.; SCHULZ, H., J. BIOL. CHEM., vol. 258, 1983, pages 9780 - 9785 |
YOON, K.S. ET AL., ARCH. MICROBIAL., vol. 167, 1997, pages 275 - 279 |
YOON, K.S. ET AL., J. BIOL. CHEM., vol. 276, 2001, pages 44027 - 44036 |
ZHANG ET AL., PROTEIN ENG., vol. 16, 2003, pages 599 - 605 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8354254B2 (en) | 2008-01-23 | 2013-01-15 | Ajinomoto Co., Inc. | Method for producing an L-amino acid |
EP2248906A4 (en) * | 2008-01-23 | 2012-07-11 | Ajinomoto Kk | PROCESS FOR THE PREPARATION OF L-AMINO ACID |
EP2248906A1 (en) * | 2008-01-23 | 2010-11-10 | Ajinomoto Co., Inc. | Method of producing l-amino acid |
US8728772B2 (en) | 2008-01-23 | 2014-05-20 | Ajinomoto Co., Inc. | Method for producing an L-amino acid |
JPWO2012099172A1 (ja) * | 2011-01-18 | 2014-06-30 | 味の素株式会社 | 脂肪酸エステルの製造法 |
WO2012099172A1 (ja) * | 2011-01-18 | 2012-07-26 | 味の素株式会社 | 脂肪酸エステルの製造法 |
JP5924268B2 (ja) * | 2011-01-18 | 2016-05-25 | 味の素株式会社 | 脂肪酸エステルの製造法 |
JP2012239452A (ja) * | 2011-05-24 | 2012-12-10 | Ajinomoto Co Inc | 澱粉高蓄積微細藻類及びそれを用いたグルコースの製造法、並びに目的物質の製造法 |
WO2013008931A1 (ja) * | 2011-07-14 | 2013-01-17 | 味の素株式会社 | 脂肪酸類の製造法 |
US20130344550A1 (en) * | 2012-06-08 | 2013-12-26 | Utah State University | Methods of bioplastic production |
KR101540252B1 (ko) | 2013-02-25 | 2015-08-06 | 경북대학교 산학협력단 | 동결건조된 미생물 배양액을 이용한 식물성 오일로부터 하이드록시 지방산을 제조하는 방법 |
WO2014192940A1 (ja) * | 2013-05-31 | 2014-12-04 | 味の素株式会社 | 糖グリセロールの製造法 |
WO2015064648A1 (ja) * | 2013-11-01 | 2015-05-07 | 味の素株式会社 | 脂肪酸を生成する緑藻類 |
WO2016092828A1 (ja) * | 2014-12-09 | 2016-06-16 | 花王株式会社 | 藻類の破砕方法 |
JPWO2016092828A1 (ja) * | 2014-12-09 | 2017-09-14 | 花王株式会社 | 藻類の破砕方法 |
US10676690B2 (en) | 2014-12-09 | 2020-06-09 | Kao Corporation | Method for rupture of algae |
Also Published As
Publication number | Publication date |
---|---|
US8771981B2 (en) | 2014-07-08 |
CN102471790B (zh) | 2014-10-29 |
JPWO2011013707A1 (ja) | 2013-01-10 |
US20120202255A1 (en) | 2012-08-09 |
BRPI1014661A2 (pt) | 2020-08-04 |
US20140363857A1 (en) | 2014-12-11 |
EP2460883A1 (en) | 2012-06-06 |
BRPI1014661B1 (pt) | 2020-12-15 |
EP2460883A4 (en) | 2013-01-16 |
CN102471790A (zh) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5526785B2 (ja) | L−アミノ酸の製造法 | |
US8771981B2 (en) | Method for producing an L-amino acid | |
CN107893089B (zh) | 用于生产l-氨基酸的方法 | |
WO2007100009A1 (ja) | L-アミノ酸の製造法 | |
WO2012077739A1 (ja) | L-アミノ酸の製造法 | |
WO2009142286A1 (ja) | L-アミノ酸の製造法 | |
WO2018030507A1 (ja) | L-アミノ酸の製造法 | |
WO2015041265A1 (ja) | 海藻由来バイオマスからのl-アミノ酸の製造方法 | |
JP2008167746A (ja) | L−アミノ酸の製造法 | |
WO2015064648A1 (ja) | 脂肪酸を生成する緑藻類 | |
US20140127761A1 (en) | Method for Producing Fatty Acid | |
JP2016208852A (ja) | 脂肪酸を生成する緑藻改変株 | |
US8975045B2 (en) | Mutant RpsA gene and method for producing L-amino acid | |
JP2010246483A (ja) | L−アミノ酸の製造法 | |
US20150218605A1 (en) | Method for Producing L-Amino Acid | |
US20150211033A1 (en) | Method for Producing L-Amino Acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080033906.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10804453 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011524813 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201000345 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010804453 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1014661 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1014661 Country of ref document: BR Kind code of ref document: A2 Effective date: 20111229 |