WO2007100009A1 - L-アミノ酸の製造法 - Google Patents

L-アミノ酸の製造法 Download PDF

Info

Publication number
WO2007100009A1
WO2007100009A1 PCT/JP2007/053803 JP2007053803W WO2007100009A1 WO 2007100009 A1 WO2007100009 A1 WO 2007100009A1 JP 2007053803 W JP2007053803 W JP 2007053803W WO 2007100009 A1 WO2007100009 A1 WO 2007100009A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
amino acid
glycerol
dehydrogenase
bacterium
Prior art date
Application number
PCT/JP2007/053803
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Usuda
Kazuhiko Matsui
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to EP07737522.8A priority Critical patent/EP2003209B1/en
Publication of WO2007100009A1 publication Critical patent/WO2007100009A1/ja
Priority to US12/202,484 priority patent/US20090093029A1/en
Priority to US14/027,365 priority patent/US20140045228A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/227Tryptophan

Definitions

  • the present invention relates to a method for producing an L-amino acid using a microorganism.
  • L-amino acids are used in various fields such as seasonings, food additives, feed additives, chemical products, and pharmaceuticals. Background art
  • L-amino acids such as L-threonine and L-lysine are industrially produced by fermentation using L-amino acid-producing bacteria such as Escherichia bacteria having the ability to produce these L-amino acids.
  • L-amino acid-producing bacteria strains isolated from nature, human mutants of these strains, recombinants in which L-amino acid biosynthetic enzymes are enhanced by gene recombination, and the like are used.
  • Examples of the method for producing L threonine include the methods described in Patent Documents:!
  • examples of the method for producing L-lysine include the methods described in Patent Documents 5 to 8.
  • Patent Document 1 JP-A-5-304969
  • Patent Document 2 Pamphlet of International Publication No. 98/04715
  • Patent Document 3 Japanese Patent Laid-Open No. 05-227977
  • Patent Document 4 US Patent Application Publication No. 2002/0110876
  • Patent Document 5 Japanese Patent Laid-Open No. 10-165180
  • Patent Document 6 Japanese Patent Laid-Open No. 11-92088
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2000-253879
  • Patent Document 8 JP 2001-057896 A
  • a low-cost L-amino acid can be obtained by using a new raw material in the conventional fermentation method for L-amino acid using microorganisms that have been mainly performed using saccharides as a carbon source.
  • the manufacturing method of this is provided.
  • the present inventors have cultivated bacteria belonging to the family Enterobacteriaceae and having L_amino acid-producing ability in a medium containing glycerol as a carbon source. It was found that L_amino acids can be produced in the same or more than a medium using sugar as a carbon source. Furthermore, as glycerol, it has been found that crude glycerol of low purity produced as a by-product in biodiesel fuel production, which is industrially produced worldwide, has a higher growth promoting effect than pure glycerol. The present invention has been completed based on the knowledge.
  • the present invention is as follows.
  • a bacterium belonging to the family Enterobacteriaceae and capable of producing L-amino acid is cultured in a medium containing glycerol as a carbon source, and L-amino acid is produced and accumulated in the culture, and L-amino acid is produced from the culture.
  • a method for producing L-amino acids characterized in that
  • the L-amino acid is L-threonine
  • the bacterium is aspartate semialdehyde dehydrogenase, aspartokinase I encoded by the thr operon, homoserine kinase, aspartate aminotransferase, and The method, wherein the activity of one or more enzymes selected from the group consisting of threonine synthase is enhanced.
  • the L amino acid is L lysine
  • the bacterium is dihydrodipicolinate reductor.
  • Diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphonolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and succinyl diamino The aforementioned method, wherein the activity of one or more enzymes selected from the group consisting of pimelate deacylase is enhanced and / or the activity of lysine decarboxylase is attenuated.
  • the L_amino acid is L-gnoretamic acid
  • the bacterium is selected from the group consisting of glutamate dehydrogenase, citrate synthase, phosphoenolpyruvate carboxylase, and methyl thioate synthase.
  • the L-amino acid is L-tryptophan
  • the bacterium is phosphoglycerate dehydrogenase, 3-deoxy D-arabinohepturonic acid 7-phosphate synthase, 3-dehydroquinate synthase, shikimate dehydrogenase, shikimi
  • the activity of one or more enzymes selected from the group consisting of acid kinase, 5-enolpyruvylshikimate 3-phosphate synthase, chorismate synthase, prefenate dehydratase, and chorismate mutase is enhanced. The above method.
  • Glycerol refers to the substance with the official name Propane_l, 2,3-triol.
  • crude glycerol refers to glycerol containing impurities produced industrially.
  • Crude glycerol is industrially produced by hydrolyzing fats and oils in contact with water at high temperature and high pressure, or by esterification reaction for biodiesel fuel production.
  • Biodiesel fuel is a fatty acid methyl ester produced by transesterification from fats and methanol, and crude glycerol is produced as a byproduct of this reaction (Fukuda, H., Kondo, A., and Noda, H. 2001, J. Biosci. Bioeng. 92, 405-416).
  • the power varies depending on the manufacturing method.
  • Such salts and methanol reach several percent.
  • ions derived from alkali or acid used for neutralization thereof such as sodium, potassium, chloride ion and sulfate ion are 2 to 7%, preferably 3 to 6% based on the weight of crude glycerol. %, More preferably 4 to 5.8% preferred.
  • the methanol is contained as an impurity, it is not necessary, but it is preferably contained less than 0.01%.
  • the crude glycerol may contain trace amounts of metals, organic acids, phosphorus, fatty acids and the like.
  • the organic acid included include formic acid and acetic acid.
  • the organic acid may not be included as an impurity, but preferably 0.01% or less.
  • trace metals contained in the crude glycerol include magnesium, iron, calcium, manganese, copper, and zinc, which are preferred for the growth of microorganisms.
  • Magnesium, iron, and calcium may be contained in a total amount of 0.00001 to 0.1%, preferably 0.0005 to 0.1%, more preferably 0.004 to 0.05%, and still more preferably 0.007 to 0.01%, based on the weight of the crude glycerol. I like it.
  • manganese, copper and zinc the total content is preferably 0.000005 to 0.01%, more preferably 0.000007 to 0.005%, and still more preferably 0.00001 to 0.001%.
  • the purity of the crude glycerol is preferably 10% or more, more preferably 50% or more, further preferably 70% or more, and particularly preferably 80% or more. As long as the impurity content satisfies the above range, the purity of glycerol may be 90% or more.
  • a preferred crude glycerol in the present invention is a crude glycerol produced in the production of biodiesel fuel.
  • the preferred crude glycerol in the present invention means glycerol capable of producing more L-amino acids when used as a carbon source compared to the same amount of reagent glycerol. Producing more L_amino acids compared to reagent glycerol compared to using reagent glycerol as a carbon source.
  • L means an increase in amino acid production capacity%, preferably 10%, more preferably 20% or more.
  • Reagent glycerol means glycerol which is commercially available as a so-called reagent grade or glycerol having an equivalent purity, and it is particularly preferable that the purity is 99% by weight or more, and pure glycerol is particularly preferable.
  • the same amount of reagent glycerol as crude glycerol means that when the crude glycerol contains water, the amount of reagent glycerol is the same as the remaining weight excluding water.
  • the crude glycerol may be diluted with a solvent such as water.
  • a solvent such as water
  • the above description regarding the content of glycerol and impurities applies to the crude glycerol before dilution. That is, when the crude glycerol contains a solvent such as water, the solvent is removed so that the solvent content is preferably 30% by weight or less, more preferably 20% by weight or less, and even more preferably 10% by weight or less.
  • the content range of glycerol and impurities is satisfied, it corresponds to “crude glycerol” in the present invention.
  • a bacterium belonging to the family Enterobacteriaceae and having an L amino acid-producing ability is used.
  • Enterobacteriaceae include bacteria belonging to genera such as Escherichia, Enteropactor, Ervinia, Klebsiella, Pantoea, Photorha grapes, Providencia, Salmonella, Serratia, Shigura, Morganella, Yersinia and others.
  • NCBI National Center for Biotechn ology Information
  • Bacteria classified into the family Enterobacteriaceae according to the classification method used are preferred.
  • the bacterium belonging to the genus Escherichia is not particularly limited, but means that the bacterium is classified into the genus Escherichia according to a classification known to a specialist in microbiology.
  • Examples of bacteria belonging to the genus Escherichia used in the present invention include, but are not limited to, Escherichia coli (E. coli).
  • the bacteria belonging to the genus Escherichia that can be used in the present invention are not particularly limited.
  • Ta ble 1. Includes those described in the American Society for Microbiology Press, Washington, DC. Specific examples include Escherichia coli W3110 (ATCC 27325) and Escherichia coli MG1655 (ATCC 47076) derived from the prototype wild type K12 strain.
  • strains are, for example, American type culture 'collection (address P.O. Box)
  • Bacteria belonging to the genus Pantoea means that the bacterium is classified as belonging to the genus Pantoea according to the classification known to microbiologists. Certain types of enteropactor 'agglomerans have recently been reclassified into Pantoea's Glomerance, Pantoea's Ananatis, Pantoea's Stealty, etc. (Int. J. Syst. Bacteriol ., 43, 162-173 (1993)). In the present invention, the bacteria belonging to the genus Pantoea include bacteria that have been reclassified to the genus Pantoea in this way.
  • the bacterium used in the present invention has a reduced expression of glpR gene (EP17 15056), glpA, glpB, glpC, glpD, glpE, glpF, glpG, glpK, Expression of glycerol metabolism genes (EP1715055A) such as glpQ, glpT, glpX, tpiA, gldA, dhaK ⁇ dhaL, dhaM ⁇ dhaR ⁇ fsa and ta gene may be enhanced.
  • the bacterium having an amino acid-producing ability refers to a bacterium having an ability to produce L-amino acid and secrete it into the medium when cultured in the medium.
  • it refers to a bacterium capable of accumulating the target L-amino acid in the medium in an amount of preferably 0.5 g / L or more, more preferably 1.0 g / L or more.
  • L-amino acids include L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-cystine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L- Contains lysine, L_methionine, L-phenenolealanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine and L-valine.
  • L-threonine, L-lysine and L-glutamic acid are preferred.
  • L-amino acid-producing ability To impart L-amino acid-producing ability, the acquisition of auxotrophic mutants, L-amino acid analog-resistant strains or metabolically controlled mutants, and the expression of L_amino acid biosynthetic enzymes were enhanced. Conventional methods such as the creation of recombinant strains that have been adopted for breeding amino acid-producing bacteria such as coryneform bacteria or bacteria belonging to the genus Escherichia can be applied (Amino Acid Fermentation, Japan Publishing Center, Inc., 1986 5). 30th month, first edition, 77-: 100 pages).
  • the auxotrophy, analog resistance, metabolic control mutation, and other properties imparted may be single or two or more.
  • L_ amino acid biosynthetic enzymes whose expression is enhanced may be used alone or in combination of two or more. Furthermore, imparting properties such as auxotrophy, analog resistance, and metabolic regulation mutation may be combined with enhancement of biosynthetic enzymes.
  • an auxotrophic mutant, an analog-resistant strain, or a metabolically controlled mutant having L amino acid-producing ability the parent strain or wild strain is subjected to normal mutation treatment, that is, irradiation with X-rays or ultraviolet rays, or N Methyl-N, 12 Throot N Treated with a treatment with a mutant such as ditrosoguanidine, etc., and shows auxotrophy, analog resistance, or metabolically controlled mutations among the mutants obtained, and produces L amino acids You can get the power S by selecting the ones that have the ability.
  • the L amino acid-producing ability can also be imparted or enhanced by enhancing enzyme activity by gene recombination.
  • the enhancement of enzyme activity include a method of modifying a bacterium so that expression of a gene encoding an enzyme involved in L amino acid biosynthesis is enhanced.
  • an amplified plasmid in which a DNA fragment containing the gene is introduced into an appropriate plasmid, for example, a plasmid vector containing at least a gene responsible for the replication and replication function of the plasmid in a microorganism, is introduced.
  • these genes can be achieved by making multiple copies on the chromosome by joining, transferring, etc., or introducing mutations into the promoter region of these genes (International Publication Pamphlet W095 / 34672). reference).
  • any promoter may be used so long as it functions in coryneform bacteria, and it may be the promoter of the gene itself to be used or a modified one.
  • the expression level of a gene can also be regulated by appropriately selecting a promoter that functions strongly in coryneform bacteria, or by bringing the 35th and 10th regions of the promoter closer to the consensus sequence.
  • the method for enhancing the expression of the enzyme gene as described above is described in WO00 / 18935 pamphlet, European Patent Application Publication No. 1010755, and the like.
  • Preferable microorganisms having L-threonine-producing ability include bacteria with enhanced activity of one or more L-threonine biosynthesis enzymes.
  • L-threonine biosynthesis enzymes include aspartokinase III (lysC), aspartate semialdehyde dehydrogenase ( as d), aspartokinase I (thrA) encoded by the thr operon, and homoserine kinase ( thrB), threonine synthase (thrC), and aspartate aminotransferase (aspartrate transaminase) (aspC).
  • the inside of Katsuko is an abbreviation of the gene (the same applies to the following description).
  • aspartate semialdehyde dehydrogenase aspartokinase I
  • homoserine kinase aspartate aminotransferase
  • threonine synthase is particularly preferred.
  • the L-threonine biosynthesis gene may be introduced into a bacterium belonging to the genus Escherichia in which threonine degradation is suppressed.
  • bacteria belonging to the genus Escherichia in which threonine degradation is suppressed include the TDH6 strain lacking threonine dehydrogenase activity (Japanese Patent Laid-Open No. 2001-346578).
  • the enzymatic activity of the L-threonine biosynthetic enzyme is suppressed by the final product, L-threonine. Therefore, in order to construct an L-threonine-producing bacterium, it is desirable to modify the L-threonine biosynthetic gene so that it is not subject to feedback inhibition by L-threonine.
  • the thrA, thrB, and thrC genes above constitute the threonine operon.
  • the threonine operon forms an attenuator structure, and the threonine operon Expression is inhibited by isoleucine and threonine in the culture medium, and expression is suppressed by attenuation.
  • This modification can be achieved by removing the leader region or the attenuation region of the attenuation region.
  • a unique promoter S may be substituted with a non-natural promoter (see WO98 / 04715 pamphlet), or the expression of a gene involved in threonine biosynthesis is expressed by lambda phage.
  • a threonine operon may be constructed that is governed by the repressor and promoter. (See European Patent No. 0593792)
  • a strain resistant to a-amino- ⁇ -hydroxyvaleric acid (AHV) may be selected. It is possible.
  • the threonine operon that has been modified in such a way that it is not subject to feedback inhibition by L-threonine is linked to a force that increases the copy number in the host or to a strong promoter, and the expression level is It is preferable to improve.
  • the increase in copy number can be achieved by transferring the threonine operon on the genome by transposon, Mu-phage, etc. in addition to amplification by plasmid.
  • L-threonine biosynthetic enzyme In addition to the L-threonine biosynthetic enzyme, it is also preferable to enhance the genes involved in glycolysis, TCA cycle, respiratory chain, genes controlling gene expression, and sugar uptake genes.
  • L-threonine-producing genes include transhydronase (pntAB) gene (European Patent 733712), phosphoenolpyruvate carboxylase gene (P mark C) (International Publication No. 95/06114 Pamphlet) ), Phosphoenolpyruvate synthase gene (pps) (European Patent No. 877090), pyruvate carboxylase gene of coryneform or Bacillus genus (International Publication No. 99/18228, European Application Publication No. 1092776) Is mentioned.
  • pntAB transhydronase
  • P mark C International Publication No. 95/06114 Pamphlet
  • pps Phosphoenolpyruvate synthase gene
  • a gene conferring resistance to L-threonine the gene conferring resistance to L-homoserine, and the addition of L-threonine resistance and L-homoserine resistance to the host are added. It is also suitable to give.
  • genes that confer resistance include rhtA gene (Res. Microbio 1. 154: 123-135 (2003)), rhtB gene (European Patent Application Publication No. 0994190), rht C gene (European Patent Application Publication No. 1013765). No. description), yfiK, yeaS gene (European Patent Application Publication No. 1016710).
  • methods described in European Patent Application Publication No. 0994190 and International Publication No. 90/04636 can be referred to.
  • L-threonine-producing bacteria or parent strains for deriving them include E. coli TDH-6 / pVIC40 (VKPM B-3996) (US Pat. No. 5,175,107, US Pat. , 705,371), E. coli 472T23 / pYN7 (ATCC 98081) (US Pat. No. 5,631,157), E. coli NRRL-21593 (US Pat. No. 5,939,307), E. coli FERM BP -3756 (US Pat. No. 5,474,918), E. coli FERM BP-3519 and FERM BP-3520 (US Pat. No. 5,376,538), E.
  • E. coli MG442 (Gu syatiner et al, Genetika (in Russian) ), 14, 947-956 (1978)), E. coli VL643 and VL2055 (EP 1149911 A), and other strengths including, but not limited to, strains belonging to the genus Escherichia.
  • the TDH-6 strain lacks the thrC gene, is sucrose-assimilating, and has an ilvA gene force S leaky mutation. This strain also has a mutation in the rhtA gene that confers resistance to high concentrations of threonine or homoserine.
  • This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I which is substantially desensitized to feedback inhibition by threonine.
  • the B-3996 stock was deposited on 19 November 1987 with the accession number RIA 1867 in the all-union 'Scientific' Center 1 'Ob' Antibiotics (Nagatinskaya Street 3_A, 117105 Moscow, Russia). This strain was also transferred to Lucian 'National' Collection 'Ob' Industrial 'Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on April 7, 1987. Deposited at 3996.
  • VKPM Lucian 'National' Collection 'Ob' Industrial 'Microorganisms
  • E. coli VKPM B-5318 (EP 0593792B) can also be used as an L_threonine-producing bacterium or a parent strain for inducing it.
  • B-5318 is an isoleucine non-requirement, and the control region force of the threonine operon in plasmid PVIC40 is temperature sensitive lambda phage C1 repressor. And the PR promoter.
  • VKPM B-5318 was assigned to Lucian 'National' Collection 'Ob Industrial Microorganisms (V KPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on May 3, 1990. It is deposited internationally at -5318.
  • the thrA gene encoding aspartokinase homoserine dehydrogenase I of Escherichia coli has been elucidated (nucleotide numbers 337 to 2799, GenBank accession NC — 0 00913.2, gi: 49175990).
  • the thrA gene is located between the thrL gene and the thrB gene in the chromosome of E. coli K-12.
  • the thrB gene encoding homoserine kinase of Escherichia coli has been elucidated (nucleotide numbers 2801 to 3733, GenBank accessi on NC_000913.2, gi: 49175990).
  • the thrB gene is located between the thrA gene and the thrC gene in the chromosome of E. coli K-12.
  • the thrC gene encoding the threonine synthase of Escherichia coli has been elucidated (nucleotide numbers 3734-5020, GenBank accession NC— 000913.2, gi: 49175990).
  • the thrC gene is located between the thrB gene and the yaaX open reading frame in the chromosome of E. coli K-12. All three of these genes function as a single threonine operon.
  • the attenuator region that affects transcription is preferably removed from the operon (WO2005 / 049808, WO2003 / 097839).
  • Mutant thrA encoding aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine, and thrB gene and thrC gene are known plasmids present in threonine-producing strain E. coli VKPM B-3996 It can be acquired as one operon from pVIC40. Details of plasmid pVIC40 are described in US Pat. No. 5,705,371.
  • the rhtA gene is present on the 18th minute of the Coli chromosome near the glnHPQ operon, which encodes an element of the glutamine transport system.
  • the rhtA gene is identical to ORF1 (ybiF gene, nucleotide number 764-16541, GenBank accession number AAA218541, gi: 440181), and is located between the pexB gene and the ompX gene.
  • the unit that expresses the protein encoded by ORF1 is called the rhtA gene (rht: resistant to homoserine and threonine). It was also found that the rhtA23 mutation is a G ⁇ A substitution at position -1 relative to the ATG start codon. ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A ).
  • the asd gene of E. coli has already been clarified (nucleotide numbers 3572511 to 3571408, GenBank accession NC_000913.1, gi: 16131307), and by PCR using a primer prepared based on the base sequence of the gene. (See White, TJ et al., Tren ds Genet., 5, 185 (1989)). Other microbial asd genes can be obtained as well.
  • the aspC gene of E. coli has already been clarified (nucleotide numbers 983742 to 984932, GenBank accession NC — 000913.1, gi: 16128895) and can be obtained by PCR.
  • the aspC gene of other microorganisms can be obtained similarly.
  • L-lysine-producing bacteria belonging to the genus Escherichia include mutants having resistance to L-lysine analogues.
  • L-lysine analogues inhibit the growth of bacteria belonging to the genus Escherichia, but this inhibition is completely or partially desensitized when L-lysine is present in the medium.
  • L lysine analogues include, but are not limited to, oxalidine, lysine hydroxamate, S- (2-aminoethyl) L cysteine (AEC), y-methyl lysine, ⁇ -chlorocaprolatatam, and so on. Les.
  • Mutants having resistance to these lysine analogs can be obtained by subjecting bacteria belonging to the genus Escherichia to normal artificial mutation treatment.
  • Specific examples of bacterial strains useful for the production of L-lysine include Escherichia coli AJ11442 (FERM BP-1543, NRRL B-12185; see US Pat. No. 4,346,170) and Escherichia coli VL611. In these microorganisms, feedback inhibition of aspanolet kinase by L-lysine is released.
  • the WC196 strain can be used as an L-lysine-producing bacterium of Escherichia coli. This strain was bred by conferring AEC resistance to the W3110 strain derived from Escherichia coli K-12. This strain was named Escherichia coli AJ13069.December 6, 1994, National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute of Advanced Industrial Science and Technology (AIST), ⁇ 305-8566 Japan Ibaraki Tsukuba Sakai Higashi 1-chome 1 1 Central 6) Contract number FER Deposited as MP-14690, transferred to an international deposit under the Budapest Treaty on September 29, 1995, and assigned the accession number FERM BP-5252 (US Pat. No. 5,827,698).
  • L-lysine-producing bacteria or parent strains for deriving the same also include strains in which one or more activities of L-lysine biosynthesis enzyme are enhanced.
  • L-lysine biosynthesis enzymes include dihydrodipicolinate synthase (dapA), aspartokinase (lysC), dihydrodipicolinate reductase (dapB), diaminopimelate decarboxylase (lysA), diaminopimelate dehydrogenase (ddh) (US patent) 6,040, 160), phosphoenolpyruvate carboxylase (ppc), aspartate semialdehyde dehydrogenase gene, diaminopimelate epimerase (dapF), tetrahydrodipicolinate succinylase (dap D), succinyl diaminopimelate Powers including, but not limited to, deacylase (dapE) and aspartase (aspA) (EP 1 25
  • dihydrodipicolinate reductase diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, And succinyl diaminovimelic acid deacylase is particularly preferred.
  • the parent strain is a gene involved in energy efficiency (cyo) (EP 1170376 A), a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) (US Pat.No. 5,830,716), ybjE gene (WO2005 / 073390), Or, the expression level of these combinations increases.
  • L-lysine-producing bacteria or parent strains for deriving them include reduced or deficient activity of enzymes that catalyze reactions that branch off from the L-lysine biosynthesis pathway to produce compounds other than L-lysine. The stock which is doing is also mentioned.
  • enzymes that catalyze reactions that branch off from the biosynthetic pathway of L_lysine to produce compounds other than L—lysine include homoserine dehydrogenase, lysine decarboxylase (US Pat. No. 5,827,698), and malate enzyme ( WO2005 / 010175).
  • Preferred L-lysine-producing bacteria include Escherichia coli WC196DcadADldc / pCABD2 (WO2006 / 078039). This strain is a WC196 strain in which the cad A and ldcC genes encoding lysine decarboxylase are disrupted, and the strain described in US Pat. No. 6,040,160. Smid is a strain obtained by introduction of pCABD2.
  • PCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from Escherichia coli having a mutation that has been desensitized to feedback inhibition by L-lysine, and feedback inhibition by L-lysine has been eliminated.
  • Mutant lysC gene encoding aspartokinase III derived from Escherichia coli with mutation, dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and Brevibaterium 'ratatofarmentum It contains the ddh gene encoding the derived diaminobimelate dehydrogenase.
  • Escherichia coli W3110 (tyrA) / pCABD2 carrying this plasmid was named AJ12604, and on January 28, 1991, National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (address ⁇ 305-8566, Ibaraki, Japan) Deposited with FERM P-11975 deposit number at Tsukuba Rakuto 1-chome 1 1-center 6), transferred to international deposit under the Budapest Treaty on September 26, 1991, and FERM BP-35 79 Deposited by number.
  • L-cystine producing bacteria or parent strains for inducing them examples include E. coli JM15 (US Pat. No. 6,218,168, Russia) transformed with a different cysE allele encoding a serine acetyltransferase resistant to feedback inhibition.
  • E. coli JM15 US Pat. No. 6,218,168, Russia
  • E. coli W3110 US Pat.No. 5,972,663
  • E. coli W3110 US Pat.No. 5,972,663
  • E. coli W3110 with an overexpressed gene encoding a protein suitable for excretion of toxic substances into cells
  • cysteine desulfhydrase activity E. coli strains (JP11155571A2)
  • E. coli W3110 WO0127307A1
  • other strains belonging to the genus Escherichia with increased activity of the transcriptional regulator of the positive cystine regulon encoded by the cysB gene Not.
  • L leucine-producing bacteria or parent strains for inducing the same examples include leucine-resistant E • coil strains (eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)) or j3 — 2 —E.coli strains resistant to leucine analogs such as phenylalanine, 3-hydroxyleucine, 4-azaleucine, 5, 5, 5-trifluoroleucine (JP-B-62-34397 and JP-A-8-70879), WO96 Strains belonging to the genus Escherichia such as E. coli strains and E. coli H-9068 (JP-A-8-70879) obtained by the genetic engineering method described in / 06926, but are not limited thereto. I can't.
  • the bacterium used in the present invention may be improved by increasing the expression of one or more genes involved in L-mouth isin biosynthesis.
  • a leuABCD operon represented by a mutant leuA gene (US Pat. No. 6,403,342) encoding isopropyl malate synthase, which is preferably desensitized to feedback inhibition by L-leucine, is used.
  • the bacterium used in the present invention may be improved by increasing the expression of one or more genes encoding proteins that excrete L_ amino acids from bacterial cells. Examples of such genes include b2682 gene and b2683 gene (ygaZH gene) (EP 1239041 A2).
  • L-histidine-producing bacteria or parent strains for inducing them include E. coli 24 strain (VKPM B-5945, RU2003677), E. coli 80 strain (VKPM B-7270, RU2119536), E. coli NR RL B-12116-B12121 (US Patent No. 4,388,405), E. coli H-9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (US Patent No. 6,344,347), E. coli H-9341 (FERM B P-6674) (EP1085087), E. coli AI80 / pFM201 (US Pat. No. 6,258,554) and other forces S, including but not limited to strains belonging to the genus Escherichia.
  • Examples of L-histidine-producing bacteria or parent strains for deriving the same also include strains in which expression of one or more genes encoding L-histidine biosynthetic enzymes are increased.
  • Examples of such genes include the ATP phosphoribosyltransferase gene (hisG), the phosphorifosyl AMP cyclohydrolase gene (hisl), the phosphorifosyl-ATP pyrophosphohydrolase gene (hisl), and the phosphorifosylformimimino.
  • hisA -5-Aminoimidazole carboxamide ribotide isomerase gene
  • his H amide transferase gene
  • hisC histidinol phosphate aminotransferase gene
  • hisB histidinol phosphatase gene
  • hisD histidinol dehydrogenase gene
  • L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are known to be inhibited by L-histidine. Therefore, L-histidine-producing ability is determined by the ATP phosphoryltransferase gene (hisG Mutations that confer resistance to feedback inhibition Can be efficiently increased ( Russian Patent Nos. 2003677 and 2119536).
  • strains having the ability to produce L histidine include E. coli FERM-P 5038 and 5048 into which a vector carrying a DNA encoding an L histidine biosynthetic enzyme has been introduced (Japanese Patent Laid-Open No. 56-005099). ), E. coli strain into which an amino acid transport gene has been introduced (EP1016710A), E. coli strain 80 with resistance to sulfaguanidine, DL-1,2,4-triazole-3-alanine and streptomycin (VKPM B-7270) , Russian Patent No. 2119536).
  • L-gnoretamic acid-producing bacteria or parent strains for deriving the same include, but are not limited to, strains belonging to the genus Escherichia such as E. coli VL33 4thrC + (EP 1172433).
  • E. coli VL334 (VKPM B-1641) is an L-isoleucine and L-threonine-requiring strain having mutations in the thrC gene and the ilvA gene (US Pat. No. 4,278,765).
  • the wild type allele of the thrC gene was introduced by a general transduction method using butteriophage P1 grown in cells of the wild type E. coli K12 strain (VKPM B_7).
  • VKPM B-8961 L-isoleucine-requiring L-glutamic acid-producing bacterium VL334thrC +
  • L-gnoretamic acid-producing bacteria or parent strains for deriving the same include, but are not limited to, a strain with enhanced activity of one or more L-dalamic acid biosynthetic enzymes.
  • examples of such genes include glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthetase (gltAB), isocitrate dehydrogenase (icdA), aconate hydratase (acnA, acnB), citrate synthase (gltA) ), Methyl citrate sinter (p ⁇ C), phosphoenol pyruvate carbocilase (ppc), pyruvate dehydrogenase (aceEF, lpdA), pyruvate kinase (pykA, pykF), phosphoenol pyruvate Synthase (ppdhA), glut
  • strains that have been modified to increase expression of the citrate synthetase gene, the phosphoenolpyruvate carboxylase gene, and / or the gnoretamate dehydrogenase gene include EP1078989A, EP955368A, and EP952221A. Those disclosed in (1).
  • L-gnoretamic acid-producing bacteria or parent strains for deriving them include activity of enzymes that catalyze the synthesis of compounds other than L-glutamic acid by branching from the biosynthetic pathway of L-daltamic acid. Also included are strains that are reduced or deficient.
  • Such enzymes include isocitrate lyase (aceA), hypoketoglutarate dehydrogenase (sucA), phosphoto lance acetylase (pta), acetate kinase (ack), acetate hydroxy acid synthase (ilv G), acetate lactate synthase ( ⁇ ), formate acetyl transferase (pfl), lactate dehydrogenase (ldh), glutamate decarboxylase (gadAB) and the like.
  • aceA isocitrate lyase
  • sucA hypoketoglutarate dehydrogenase
  • pta phosphoto lance acetylase
  • ack acetate kinase
  • ilv G acetate hydroxy acid synthase
  • formate acetyl transferase
  • ldh lactate dehydrogenase
  • glutamate decarboxylase gadAB
  • E. coli W3110sucA is a strain obtained by disrupting the E- coli W3110 hypoketoglutarate dehydrogenase gene (hereinafter also referred to as "sucA gene"). This strain is completely deficient in ⁇ -ketognoletalate dehydrogenase.
  • L-gnoretamic acid-producing bacteria include those belonging to the genus Escherichia and having resistance to aspartic acid antagonists. These strains may be deficient in hyketoglutarate dehydrogenase, for example, E. coli AJ13199 (FERM BP-5807) (US Pat. No. 5,908,768), and L-gnoretamic acid FFRM P_12379 (US (National Patent No. 5,393,671); AJ13138 (FERM BP-5565) (US Patent No. 6,110,714).
  • Pantoea anana tes AJ13355 strain An example of an L-glutamic acid-producing bacterium of Pantoea ananatis is Pantoea anana tes AJ13355 strain. This strain was isolated from the soil of Kamata Pass in Shizuoka Prefecture as a strain that can grow on a medium containing L-gnoretamic acid and a carbon source at low pH. On February 19, 1998, Panto-Ananatis AJ13355 was registered as a patent biological deposit center of the National Institute of Advanced Industrial Science and Technology. Was deposited under the accession number FERM P-16644, transferred to an international deposit under the Budapest Treaty on 11 January 1999, and given the accession number FERM BP-6614. The strain was identified as Enterobacter ag glomerans at the time of its isolation, and was deposited as Enterobacter agglomerans AJ13355. anana tis).
  • L-gnoretamic acid-producing bacteria of Panto'ananatis include bacteria belonging to the genus Pantoea in which ⁇ -ketognoletaleate dehydrogenase (a KGDH) activity is deficient or a KGDH activity is reduced.
  • Such strains include AJ13356 (US Pat. No. 6,331,419) in which the ct KGDH-E 1 subunit gene ( SUC A) of AJ13355 strain is deleted, and SC17 selected as a mucus low-producing mutant strain from AJ13355 strain.
  • SC17sucA US Pat. No. 6,596,517) which is a sucA gene deficient strain derived from the strain.
  • AJ13356 was founded on February 19, 1998, National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (Currently the National Institute of Advanced Industrial Science and Technology (AIST), Biological Depositary Center, ⁇ 305-8566 1) Deposited under FERM P-16645 at No. 6), transferred to an international deposit under the Budapest Treaty on 11 January 1999, and given the FERM BP-6616.
  • AJ13355 and AJ13356 are deposited as Enterobacter agglomerans in the above depository organization, but are described as Pantoea ananatis in this specification.
  • the SC17sucA strain was assigned the private number AJ417 and was deposited at the National Institute of Advanced Industrial Science and Technology as the Patent Biological Deposit Center on February 26, 2004 under the accession number FERM BP-08646.
  • SC17sucA / RSFC PG + pSTVCB strain is a plasmid RSFCPG containing the citrate synthase gene (gltA), the phosphoenolpyruvate carboxylase gene (ppsA), and the glutamate dehydrogenase gene (gdhA) derived from Escherichia coli.
  • AJ13601 strain was selected from the SC17sucA / RSFCPG + pSTVC B strain as a strain resistant to high concentrations of L-gnoretamic acid at low pH.
  • the NP106 strain is a strain obtained by removing the plasmid RSFCPG + pSTVCB from the AJ13601 strain as described in the Examples.
  • L-phenylalanine-producing bacteria or parent strains for inducing them examples include E.coli AJ12739 (tyrA :: TnlO, tyrR) (VKPM) deficient in chorismate mutase-prefenate dehydrogenase and tyrosine repressor. B_8197) (WO03 / 044191), E. coli HW1089 (ATCC 55371) carrying a mutant phe A34 gene encoding chorismate mutase-prefenate dehydratase with desensitized feedback inhibition (US Pat.No. 5,354,672) Strains belonging to the genus Escherichia such as E.
  • E. coli MWEC101-b KR8903681
  • E. coli NRRL B-12141 E. coli NRRL B-12141, NRRL B-12145, NRRL B_l 2146 and NRRL B-12147 (US Pat.No. 4,407,952).
  • E. coli K-12 [W3110 (tyrA) / pPHAB]
  • E. coli K- that retains the gene encoding chorismate mutase-prefenate dehydratase with feedback inhibition released 12 [W3110 (tyr A) / pPHAD] (FERM BP_12659)
  • coli K-12 [W3110 (tyrA) / pPHATerm] (FERM B P-12662) and E. coli K-12 named AJ 12604 [ W3110 (tyrA) / pBR-aroG4, pAC MAB] (FERM BP-3579) can also be used (EP 488424 Bl).
  • Dialanin-producing bacteria can also be used (US Patent Application Publications 2003/0148473 A1 and 2003/01 57667 Al, WO03 / 044192).
  • L-trybutophane-producing bacteria or parent strains for inducing them examples include E. coli JP4735 / PMU3028 (DSM10122) and JP6015 / pMU91 (deficient in the tryptophanyl-tRNA synthetase encoded by the mutant t ⁇ S gene. (DSM10123) (U.S. Pat.No. 5,756,345), serA allele encoding phosphoglycerate dehydrogenase not subject to feedback inhibition by serine and tn ⁇ E allele encoding anthranilate synthase not subject to feedback inhibition by tryptophan.
  • E. coli SV164 pGH5 (US Pat. No. 6,180,373), E.
  • L-trifutophan-producing bacteria belonging to the genus Escherichia with increased activity of the protein encoded by the yedA gene or the yddG gene can also be used (US Patent Application Publications 2003/0148473 A1 and 2003/0157667 Al).
  • L-trybutophane-producing bacteria or parent strains for inducing them include anthranilate synthase (t ⁇ E), phosphoglycerate dehydrogenase (serA), 3-deoxy D arabino hepturonic acid ⁇ phosphate synthase (aroG), 3 dehydroquinate synthase (aroB), shikimate dehydrogenase (aroE), shikimate kinase (aroL), 5-enol pyruvylshikimate 3-phosphate synthase (aroA), chorismate synthase (aroC)
  • t ⁇ E anthranilate synthase
  • serA phosphoglycerate dehydrogenase
  • aroG 3-deoxy D arabino hepturonic acid ⁇ phosphate synthase
  • aroB 3 dehydroquinate synthase
  • aroE shikimate dehydrogenase
  • aroL shiki
  • Presulfate dehydratase and chorismate mutase are encoded by the pheA gene as a bifunctional enzyme (CM-PD).
  • CM-PD bifunctional enzyme
  • phosphoglycerate dehydrogenase, 3-deoxy-1D-alapinohepronophosphate-1_phosphate synthase, 3_dehydroquinate synthase, shikimate dehydratase, shikimate kinase, 5-benoleic acid pyruvyl shikimate 3_phosphate synthase, chorismate synthase, prephosphate dehydratase, coli Smutate mutase-prefenate dehydrogenase is particularly preferred.
  • strains having such mutations include E. coli SV164 carrying a desensitized anthranilate synthase and a mutant serA gene encoding phosphoglycerate dehydrogenase from which feedback inhibition has been released. And a transformant obtained by introducing plasmid pGH5 (WO 94/08031) into E. coli SV164.
  • L_trybutophane-producing bacteria or parent strains for deriving the same include strains into which a tryptophan operon containing a gene encoding an inhibitory anthranilate synthase has been introduced (Japanese Patent Laid-Open No. 57-71397) JP, 62-244382, U.S. Pat. No. 4,371,614). Furthermore, L-tryptophan-producing ability may be imparted by increasing the expression of a gene encoding tryptophan synthase in the tryptophan operon (t ⁇ BA). Tryptophan synthase consists of ⁇ and ⁇ subunits encoded by t ⁇ A and t ⁇ B genes, respectively. Furthermore, L-tryptophan production ability may be improved by increasing the expression of isocitrate triase-malate synthase operon (WO2005 / 103275)
  • L proline-producing bacteria or parent strains for inducing them include strains belonging to the genus Escherichia, such as ⁇ ⁇ coli 702ilvA (VKPM B-8012) (EP 1172433), which lacks the ilvA gene and can produce L proline.
  • the powers mentioned are not limited to these.
  • the bacterium used in the present invention may be improved by increasing the expression of one or more genes involved in L_proline biosynthesis.
  • An example of a gene preferable for L-proline-producing bacteria includes a proB gene (German Patent No. 3127361) that codes for gnoretamate kinase that has been desensitized to feedback inhibition by L-proline.
  • the bacteria used in the present invention may be improved by increasing the expression of one or more genes encoding proteins that excrete L one amino acid from bacterial cells. Examples of such genes include b2682 gene and b2683 gene (ygaZH gene) (EP1239041 A2).
  • bacteria belonging to the genus Escherichia having L-proline producing ability include NRRL B-12 403 and NRRL B-12404 (British Patent No. 2075056), VKPM B-8012 (Russian Patent Application 2 000124295), Examples include E. coli strains such as plasmid mutants described in German Patent No. 3127361 and plasmid mutants described in Bloom FR et al (The 15th Miami winter symposium, 1983, p. 34).
  • L-arginine-producing bacteria or parent strains for inducing them examples include E. coli 237 strain (VKPM B-7925) (US Patent Application Publication 2002/058315 Al) and mutant N-acetylidanolate synthase.
  • Examples include, but are not limited to, strains belonging to the genus Escherichia such as a strain (EP1170361A1).
  • Examples of L-arginine-producing bacteria or parent strains for deriving the same also include strains in which expression of one or more genes encoding L-arginine biosynthetic enzymes are increased.
  • examples of such genes include the N-acetyl glutamyl phosphate reductase gene (argC), the ornitine acetyl transferase gene (argj), the N_acetyl daltamate kinase gene (argB), the acetyl olnitine transaminase gene ( argD), ornithine rubamoyltransferase gene (argF), arginosuccinate synthetase gene (argG), arginosuccinate lyase gene (argH), and rubamoyl phosphate synthetase gene (carAB).
  • argC N-acetyl glutamyl phosphate reductase gene
  • argj ornitine ace
  • L-valine-producing bacteria or parent strains for inducing them include, but are not limited to, strains modified to overexpress the ilvGMEDA operator (US Pat. No. 5,998,178). Nare ,. It is preferable to remove the region of the ilvGMEDA operon required for attenuation so that the operon expression is not attenuated by the L-parin produced. Furthermore, it is preferable that the ilvA gene of the operon is disrupted to reduce the threonine deaminase activity.
  • L-valine-producing bacteria or parent strains for inducing them include aminoacyl t_RNA
  • E. coli VL1970 having a mutation in the ileS gene encoding isoleucine tRNA synthetase can be used.
  • E. coli VL1970 was issued on 24 June 1988 in Lucian 'National' Collection 'Ob'Industrial'Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) with accession number VKPM B -Deposited at 4411.
  • VKPM Lucian 'National' Collection 'Ob'Industrial'Microorganisms
  • a mutant strain (WO96 / 06926) that requires lipoic acid for growth and / or lacks H + -ATPase can be used as a parent strain.
  • L-isoleucine-producing bacteria or parent strains for deriving them include mutant strains resistant to 6-dimethyloleaminobrin (Japanese Patent Laid-Open No. 5-304969), thiisoleucine, iso-orthoisine hydroxamate, etc. Mutants that are resistant to isoleucine analogs, as well as mutants that are resistant to DL-ethionine and Z or arginine hydroxamate (JP-A-5-130882). ,.
  • a recombinant strain transformed with a gene encoding a protein involved in L-isoleucine biosynthesis such as threonine deaminase and acetohydroxy acid synthase can also be used as a parent strain (JP-A-2-458, FR 0356739, and US Pat. No. 5,998,178).
  • the gene used is not limited to the gene having the above-described gene information or a gene having a known sequence, and the function of the encoded protein is not limited. As long as it is not impaired, a gene having a conservative mutation such as a homologue or artificially modified gene of the gene can also be used. That is, a gene encoding a protein having a sequence containing a substitution, deletion, insertion or addition of one or several amino acids at one or several positions in the amino acid sequence of a known protein. There may be.
  • amino acid residues differs depending on the position of the amino acid residue in the three-dimensional structure of the protein and the type of amino acid residue, but specifically, preferably 1 to 20, more preferably. Means 1-10, more preferably 1-5.
  • Conservative mutations are polar between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid.
  • an amino acid a salt between Gln and Asn When it is a basic amino acid, it is placed between Lys, Arg, and His, when it is an acidic amino acid, it is between Asp and Glu, and when it is an amino acid having a hydroxyl group, it is placed between Ser and Thr.
  • substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, Arg to Gln, His or Lys. Substitution from Asn to Glu, Gln, Lys, His or Asp, Asp force, et al. From Asn, Glu or Gin, Cys to Ser or Ala, Gin to Asn, Glu, Lys, His, Asp Or Arg, Glu to Gly, Asn, Gln, Lys or Asp, Gly to Pro, His to Asn, Lys, Gln, Arg or Tyr, lie force, et al.
  • amino acid substitutions, deletions, insertions, attachments, or inversions as described above include naturally occurring mutations (mutant or mutants) based on individual differences or species differences of the microorganism from which the gene is derived. including those produced by variants).
  • Such a gene can be generated, for example, by site-directed mutagenesis so that the amino acid residues at specific sites of the encoded protein include substitutions, deletions, insertions or additions. Can be obtained by modifying.
  • a gene having a conservative mutation as described above is 80% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, based on the entire encoded amino acid sequence. And a gene that encodes a protein having the same homology and having a function equivalent to that of the wild-type protein.
  • each codon in the gene sequence can be used in the host into which the gene is introduced, or can be replaced with a codon.
  • a gene having a conservative mutation may be obtained by a method usually used for mutation treatment, such as treatment with a mutation agent.
  • a gene is hybridized under a stringent condition with a complementary sequence of a known gene sequence or a probe that can be prepared from the complementary sequence, and is equivalent to a known gene product. It may be a DNA encoding a protein having the following functions.
  • stringent conditions refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • DNAs with high homology for example, 80% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, are hybridized to each other. This is a condition under which DNAs with lower homology do not hybridize with each other, or under normal Southern hybridization 60 conditions.
  • the conditions include washing once, more preferably 2 to 3 times at a salt concentration and temperature corresponding to C, 0.1 X SSC and 0.1% SDS.
  • the probe a part of the complementary sequence of the gene can also be used.
  • a probe can be prepared by PCR using an oligonucleotide prepared on the basis of a known gene sequence as a primer and a DNA fragment containing these base sequences as a cage.
  • the hybridization washing conditions include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
  • a bacterium that belongs to the family Enterobacteriaceae and has the ability to produce L-amino acid is cultured in a medium containing glycerol as a carbon source, and L-amino acid is produced and accumulated in the culture. Collect L-amino acids from the culture.
  • Glycerol to be used may be used at any concentration that is suitable for producing L-amino acid. When used as a single carbon source in the medium, it is preferably about 0. lw / v% to 50 w / v%, more preferably about 0.5 w / v% to 40 w / v%, particularly preferably lwZv% to 30 w / About v% is contained in the medium. Glycerol can also be used in combination with other carbon sources such as dalcose, fructose, sucrose, molasses and starch hydrolysates.
  • glycerol and other carbon sources can be mixed in any ratio S, the ratio of glycerol in the carbon source is 10 wt% or more, more preferably 50 wt% or more, more preferably Is preferably 70% by weight.
  • Other preferred carbon sources are glucose, fructose, sucrose, ratatoose, galactose, molasses, starch hydrolysates, sugars obtained by hydrolysis of biomass, Alcohols such as tanol, and organic acids such as fumaric acid, succinic acid, and succinic acid. Of these, the gnole course is preferred. Also particularly preferred is a mixture comprising crude glycerol and glycolose in a weight ratio of 50:50 to 90:10.
  • glycerol may be added depending on the consumption of glycerol during the culture.
  • a preferable medium in the present invention is a medium supplemented with crude glycerol.
  • the crude glycerol may be added to the medium so that the concentration of glycerol is the above concentration, depending on the purity of glycerol.
  • both glycerol and crude glycerol may be added to the medium.
  • a medium to be used a medium conventionally used in the fermentation production of L_amino acids using microorganisms can be used. That is, in addition to a carbon source, a normal medium containing a nitrogen source, inorganic ions, and other organic components as required can be used.
  • a nitrogen source inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate, organic nitrogen such as soybean hydrolysate, ammonia gas, aqueous ammonia and the like can be used.
  • Organic micronutrient sources include vitamin B, L-homoserine, etc.
  • the medium used in the present invention may be either a natural medium or a synthetic medium as long as it contains a carbon source, a nitrogen source, inorganic ions, and other organic trace components as required.
  • Cultivation should be carried out under aerobic conditions: for ⁇ 7 days, the culture temperature should be 24 ° C-45 ° C, and the pH during cultivation should be 5-9.
  • inorganic or organic acidic or alkaline substances, ammonia gas, etc. can be used.
  • L-amino acids can be recovered from the culture medium by combining an ion exchange resin method, a precipitation method, and other known methods. When L-amino acid accumulates in the microbial cells, for example, the microbial cells are disrupted by ultrasonic waves, and the microbial cells are removed by centrifugation. Amino acids can be recovered.
  • reagent grade grade manufactured by Nacalai Testa Co., Ltd.
  • crude glycerol GLYREX, Nowit DCA_F, and R Glycer in
  • the glycerol purity of this crude glycerol was 86% by weight for crude glycerol GLYREX, 79% by weight for crude glycerol Nowit DCA-F, and 78% by weight for crude glycerol R Glycerin.
  • GLYREX is manufactured by FOX PETROLI Italy (FOX PETROLI SPA Sede legale e uffici, vi a Senigallia 29, 61100 Pesaro), from SVG Italy (SVG ITALIA SrL Via A. Majani, 2, 40122 Bologna (BO)) Crude Daly Seronore, sold as an animal feed additive, was obtained.
  • Nowit DCA—F is available from Nordische Oelwerke Walther Carrouxy (Nordische Oelwerke Walther Carroux GmbH & Co KG, Postfach 930247 Industri estrasse 61-65, 21107 Hamburg).
  • R Glycerin is a crude glycerol sold by the German company Inter-Harz (Inter-Harz GmbH Postfach 1411 Rostock- Koppel 17, 25314 Elmshom, 25365 Kl. Oifenseth-Sparrieshoop).
  • Escherichia coli MG1655 strain was cultured on LB agar medium (tryptone 10 g, yeast extract 5 g / L, NaC 1 10 g / L, agar 15 g / L) at 37 ° C for 16 hours, cells were scraped with ase, Suspended in 0.9% NaC1.
  • LB agar medium tryptone 10 g, yeast extract 5 g / L, NaC 1 10 g / L, agar 15 g / L
  • M9 medium Na HPO 7 ⁇ ⁇ 12.8 g / L, K HPO 0.6 g, NaCl, containing 0.4% (w / v) glucose, reagent glycerol or crude glycerol as carbon source.
  • This culture broth was diluted, spread on an LB agar medium, and cultured at 37 ° C for 16 hours. In order to accurately measure the degree of growth, the number of grown colonies was counted as the number of viable bacteria. Table 1 shows the average value of the results of culturing in two test tubes.
  • Escherichia coli VKPM B-5318 an L-threonine-producing bacterium
  • a LB agar medium tryptone 10 g / L, yeast extract 5 g / re NaCl 10 g / L, agar 15 g / L L
  • the cells on the agar medium are scraped, inoculated into a 500 ml volumetric flask containing 20 mL of L-threonine production medium containing 20 mg / L of streptomycin sulfate, and cultured at 40 ° C for 24 hours. went.
  • the main culture was carried out in a medium using glucose, reagent glycerol and crude glycerol alone as a carbon source, and a medium using glucose and reagent glycerol 1: 1 or glucose and crude glycerol 1: 1. .
  • the total amount of carbon source was adjusted to 40 g / L.
  • Escherichia coli WC196DcadADldc / pCABD2 (this strain is referred to as “WC196LC / pCABD2”) described in WO 2006/078039 pamphlet was used as an L-lysine-producing bacterium.
  • Escherichia coli WC196LC / pCABD2 was cultured at 37 ° C for 24 hours on LB agar medium (trypton 10 g / L, yeast extract 5 g / L, NaCl 10 g / L agar 15 g / L) containing streptomycin sulfate 20 mg / L did.
  • the cells on the agar medium are scraped off, inoculated into a 500 ml volumetric flask containing 20 mL of L-lysine production medium containing 20 mg / L of streptomycin sulfate, and cultured at 37 ° C for 48 hours. went.
  • the main culture consists of a medium using glucose, reagent daricerol, and crude glycerol alone as a carbon source, and a medium using glucose and reagent glycerol 1: 1, or glucose and crude glycerol 1: 1. It carried out in.
  • the total carbon source amount was set at 40g / L.
  • the amount of L-lysine increased when either F or R Glycerin or crude glycerol was used.
  • Plasmid RSFPPG was constructed by replacing the methyl succinate synthase gene of Escherichia coli (p ⁇ C) (WO 2006/0516 60 pamphlet).
  • Primer 1 SEQ ID NO: 1
  • primer 2 SEQ ID NO: 2
  • PCR was carried out using RSFCPG in a saddle shape to obtain a fragment of about 14.9 kb.
  • the methyltaenoic acid synthase gene p ⁇ C
  • primer 4 SEQ ID NO: 4
  • the chromosomal DNA of Escherichia coli strain W3110 was used as a saddle type. PCR was performed, and a fragment of about 1.2 kb was obtained.
  • RSFPPG This was called RSFPPG.
  • the plasmid RSFPPG was introduced into Pantoea ananatis NP106 strain, which is an L-glutamic acid-producing bacterium, to construct an L-glutamic acid-producing bacterium NP106 / RSFPPG (this strain is referred to as “NA1 strain”).
  • the NP106 strain was obtained as follows. Pantoea's Ananatis AJ1 3601 strain exemplified above was cultured overnight in LBGM9 liquid medium at 34 ° C, diluted to 100-200 colonies per plate, and LBGM9 plate containing tetracycline 12.5mg / L We applied to. The colonies that emerged were replicated on an LBGM9 plate containing tetracycline 12.5 mg / re and chloramphenicol 25 mg / L, and a strain that became chloramphenicol-sensitive was selected, and a strain from which pSTVCB had dropped was obtained and named G106S. .
  • the G106S strain was cultured with shaking in LBGM9 liquid medium at 34 ° C overnight, diluted to 100 to 200 colonies per plate, and applied to an LBGM9 plate containing no drug. The colonies that appeared were replicated on LBGM9 plates containing 12.5 mg / L of tetracycline and LBGM9 plates containing no drug, and the strains that became tetracycline-sensitive were selected. A strain in which RSFCPG had dropped was obtained and named NP106. The NP106 strain thus obtained is a strain that does not have both plasmids RSFCPG and pSTVCB carried by the AJ13601 strain.
  • the amount of L-glutamic acid was increased compared to the amount of L-glutamic acid when gnolecose was used as the carbon source. Furthermore, when crude glycerol GLYR EX is used, the amount of L-glutamic acid is significantly higher than when glucose or reagent glycerol is used, and a higher amount of L-glutamic acid is obtained than when sucrose is used. I was able to.
  • SEQ ID NO: 1 Primer for amplifying the gltA gene other than the ORF
  • SEQ ID NO: 2 Primer for amplifying the non-ORF part of gltA gene
  • SEQ ID NO: 3 Primer for prpC gene amplification
  • SEQ ID NO: 4 Primer for prpC gene amplification

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

腸内細菌科に属し、L-アミノ酸生産能を有する細菌をグリセロール、特に粗グリセロールを炭素源とする培地に培養し、培養物中にL-アミノ酸を生産蓄積させ、該培養物からL-アミノ酸を採取することにより、L-アミノ酸を製造する。

Description

明 細 書
L—アミノ酸の製造法
技術分野
[0001] 本発明は、微生物を用いた L—アミノ酸の製造法に関する。 L—アミノ酸は、調味料 、食品添加物、飼料添加物、化学製品、医薬品などの様々な分野に利用される。 背景技術
[0002] Lースレオニン、 L リジン等の L アミノ酸は、これらの L アミノ酸生産能を有する ェシエリヒア属細菌等の L アミノ酸生産菌を用いて発酵法により工業生産されてい る。これらの L アミノ酸生産菌としては、 自然界から分離した菌株または該菌株の人 ェ変異株、遺伝子組換えにより L アミノ酸生合成酵素が増強された組換え体等が 用いられている。 L スレオニンの製造法としては、例えば、特許文献:!〜 4に記載さ れた方法を挙げることができる。一方、 L—リジンの製造法としては、例えば、特許文 献 5〜8に記載された方法を挙げることができる。
発酵法による L アミノ酸の工業生産においては、炭素源として糖類、すなわち、グ ルコース、フラクトース、スクロース、廃糖蜜、澱粉加水分解物等が使用されている。 特許文献 1 :特開平 5— 304969号公報
特許文献 2 :国際公開第 98/04715号パンフレット
特許文献 3:特開平 05— 227977号公報
特許文献 4 :米国特許出願公開第 2002/0110876号明細書
特許文献 5 :特開平 10— 165180号公報
特許文献 6:特開平 11 - 192088号公報
特許文献 7 :特開 2000— 253879号公報
特許文献 8 :特開 2001— 057896号公報
発明の開示
発明が解決しょうとする課題
[0003] 本発明は、従来、主として糖類を炭素源として行われてきた微生物を用いた Lーァ ミノ酸の発酵製造法に対し、新たな原料を使用することにより、より安価な L—アミノ酸 の製造法を提供するものである。
課題を解決するための手段
[0004] 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、腸内細菌科に属し 、L_アミノ酸生産能を有する細菌をグリセロールを炭素源とする培地に培養すること により、糖類を炭素源とする培地と同等またはそれ以上に L_アミノ酸を生産できるこ とを見出した。さらに、グリセロールとして、全世界的に工業生産が行われているバイ ォディーゼル燃料生産において副生物として生成する純度の低い粗グリセロールが 、純粋なグリセロールよりも高い生育促進効果を有することを見出し、この知見に基づ き本発明を完成するに至った。
[0005] すなわち、本発明は以下のとおりである。
(1)腸内細菌科に属し、 L アミノ酸生産能を有する細菌をグリセロールを炭素源とし て含む培地に培養し、培養物中に L アミノ酸を生産蓄積させ、該培養物から Lーァ ミノ酸を採取することを特徴とする L アミノ酸の製造法。
(2)培地中のグリセロールの初発濃度が l〜30w/v%である前記方法。
(3)前記培地が粗グリセロールを添加した培地である前記方法。
(4)前記粗グリセロール力バイオディーゼル燃料生産にぉレ、て産生される粗グリセ口 ールである前記方法。
(5)前記粗グリセロール力 炭素源として用いたときに試薬グリセロールと比較して、 より多くの L—アミノ酸を生産することが出来るグリセロールである、前記方法。
(6)前記細菌がェシエリヒア属に属する細菌である前記方法。
(7)前記細菌がパントエア属に属する細菌である前記方法。
(8)前記細菌がェシエリヒア'コリである前記方法。
(9)前記 L—アミノ酸が L—スレオニンまたは L—リジンである前記方法。
(10)前記 L—アミノ酸が L—スレオニンであり、前記細菌がァスパルテートセミアルデ ヒドデヒドロゲナーゼ、 thrオペロンにコードされるァスパルトキナーゼ I、ホモセリンキナ ーゼ、ァスパルテートアミノトランスフェラーゼ、及び、スレオニンシンターゼからなる 群より選択される 1種または 2種以上の酵素の活性が増強されている前記方法。
(11)前記 L アミノ酸が L リジンであり、前記細菌がジヒドロジピコリン酸レダクタ一 ゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、フォス フォェノールピルべ一トカルボキシラーゼ、ァスパルテートアミノトランスフェラーゼ、ジ アミノピメリン酸ェピメラーゼ、ァスパルテートセミアルデヒドデヒドロゲナーゼ、テトラヒ ドロジピコリン酸スクシ二ラーゼ、及び、スクシニルジアミノピメリン酸デアシラーゼから なる群より選択される 1種または 2種以上の酵素の活性が増強されている、及び/また は、リジンデカルボキシラーゼの活性が弱化されている前記方法。
(12)前記 L_アミノ酸が L—グノレタミン酸であり、前記細菌がグルタメートデヒドロゲナ ーゼ、クェン酸シンターゼ、ホスホェノールピルビン酸カルボキシラーゼ、メチルタエ ン酸シンターゼからなる群より選択される 1種または 2種以上の酵素の活性が増強さ れている、及び/または、 ひ一ケトグルタル酸デヒドロゲナーゼの活性が弱化されてい る前記方法。
(13)前記 L—アミノ酸が L—トリプトファンであり、前記細菌がフォスフォグリセレート デヒドロゲナーゼ、 3 デォキシ D ァラビノヘプッロン酸 7—リン酸シンターゼ、 3—デヒドロキネートシンターゼ、シキミ酸デヒドロゲナーゼ、シキミ酸キナーゼ、 5—ェ ノール酸ピルビルシキミ酸 3—リン酸シンターゼ、コリスミ酸シンターゼ、プレフェン酸 デヒドラターゼ、及び、コリスミ酸ムターゼからなる群より選択される 1種または 2種以上 の酵素の活性が増強されてレ、る前記方法。
発明を実施するための最良の形態
以下、本発明を詳細に説明する。
< 1 >本発明で使用するグリセロール
グリセロールは、正式名称 Propane_l,2,3-triolである物質を指す。本発明において 、粗グリセロールは、工業的に生産される不純物を含むグリセロールをいう。粗グリセ ロールは、油脂を高温、高圧下で水と接触させ加水分解することによって、あるいは 、バイオディーゼル燃料生産のためのエステルイ匕反応によって、工業的に生産され る。バイオディーゼル燃料とは、油脂とメタノールからエステル交換反応により生成す る脂肪酸メチルエステルのことであり、この反応の副生物として粗グリセロールが生成 する(Fukuda, H., Kondo, A., and Noda, H. 2001, J. Biosci. Bioeng. 92, 405—416を 参照のこと)。バイオディーゼル燃料生産プロセスでは、エステル交換にはアルカリ触 媒法が用いられることが多ぐ中和時に酸を加えるため、水と不純物を含んだ純度 70 〜95重量%程度の粗グリセロールが生成する。バイオディーゼル燃料生産において 産生される粗グリセロールは、水に加えて、残存メタノールや触媒である NaOH等のァ ルカリとその中和に用いられる K SO等の酸との塩を不純物として含んでいる。メーカ
2 4
一や製法により差はある力 このような塩類やメタノールは数パーセントに達する。こ こでナトリウム、カリウム、塩化物イオン、硫酸イオン等の、アルカリやその中和に用い られた酸に由来するイオン類は、粗グリセロールの重量に対し、 2〜7%、好ましくは 3 〜6%、さらに好ましくは 4〜5.8%含まれていることが好ましレ、。メタノーノレは、不純物と して含まれてレ、なくてもょレ、が、望ましくは 0.01%以下含まれてレ、ることが好ましレ、。
[0007] さらに、粗グリセロール中には、微量の金属、有機酸、リン、脂肪酸などを含むこと がある。含まれる有機酸としては、蟻酸、酢酸等が挙げられ、不純物として含まれてい なくてもよいが、望ましくは 0.01%以下含まれていることが好ましい。粗グリセロールに 含まれる微量の金属としては、微生物の生育に必要な微量金属が好ましぐ例えば マグネシウム、鉄、カルシウム、マンガン、銅、亜鉛等が挙げられる。マグネシウム、鉄 、カルシウムは、粗グリセロールの重量に対し、合計で 0.00001〜0.1%、好ましくは 0.0 005〜0.1%、より好ましくは 0.004〜0.05%、さらに好ましくは 0.007〜0.01%含まれてい ることが好ましレ、。マンガン、銅、亜鉛としては、合計で 0.000005〜0.01%、より好ましく は 0.000007〜0.005%、さらに好ましくは 0.00001〜0.001%含まれていることが好ましい
[0008] 粗グリセロールのグリセロールの純度としては 10%以上であればよぐ好ましくは 50 %以上であり、さらに好ましくは 70%以上、特に好ましくは 80%以上である。不純物 の含有量が上記の範囲を満たす限り、グリセロールの純度は 90%以上であってもよ レ、。
[0009] 本発明において好ましい粗グリセロールは、バイオディーゼル燃料の生産において 産生される粗グリセロールである。また本発明において好ましい粗グリセロールは、炭 素源として用いたときに同量の試薬グリセロールと比較して、より多くの L—アミノ酸を 生産することが出来るグリセロールを意味する。試薬グリセロールと比較して、より多く の L_アミノ酸を生産するとは、試薬グリセロールを炭素源として用いた場合に比べ、 L アミノ酸の生産量力 %、好ましくは 10%、さらに好ましくは 20%以上上昇すること を意味する。 「試薬グリセロール」とは、いわゆる試薬グレードとして市販されているグ リセロール又はそれと同等の純度のグリセロールを意味し、純度が 99重量%以上で あることが好ましぐ特に好ましいのは純グリセロールである。 「粗グリセロールと同量 の試薬グリセロール」とは、粗グリセロールが水を含む場合、水を除いた残部の重量 と同量の試薬グリセロールを意味する。
[0010] 本発明において、粗グリセロールは、水等の溶媒で希釈して使用してもよい。その 場合、上記のグリセロール及び不純物の含有量に関する記載は、希釈前の粗グリセ ロールに適用される。すなわち、粗グリセロールが水等の溶媒を含む場合、溶媒の含 有量が好ましくは 30重量%以下、より好ましくは 20重量%以下、さらに好ましくは 10 重量%以下となるように溶媒を除去したときに、上記のグリセロール及び不純物の含 有量の範囲を満たせば、本発明における「粗グリセロール」に該当する。
[0011] < 2 >本発明で使用する細菌
本発明においては、腸内細菌科に属し、 L アミノ酸生産能を有する細菌を使用す る。
腸内細菌科は、ェシエリヒア、ェンテロパクター、エルビニァ、クレブシエラ、パントェ ァ、フォトルハブドウス、プロビデンシァ、サルモネラ、セラチア、シグラ、モルガネラ、 ィエルシニア等の属に属する細菌を含む。特に、 NCBI (National Center for Biotechn ology Information)のァ1 ~~タべ1 ~~ス (http://www.ncbi.nlm. mh.gov/Taxonomy/Browser /wwwtax.cgi?id=91347)で用いられている分類法により腸内細菌科に分類されている 細菌が好ましい。
[0012] ェシエリヒア属に属する細菌とは、特に制限されないが、当該細菌が微生物学の専 門家に知られている分類により、ェシヱリヒア属に分類されていることを意味する。本 発明において使用されるェシエリヒア属に属する細菌の例としては、ェシエリヒア'コリ (E.coli)が挙げられるが、これに限定されなレ、。
[0013] 本発明において使用することができるェシエリヒア属に属する細菌は、特に制限さ れないが、例えば、ナイトハルトらの著書(Neidhardt, F. C. Ed. 1996. Escherichia col l and salmonella: し ellular and Molecular Biology/Second Edition pp. 2477-2483. Ta ble 1. American Society for Microbiology Press, Washington, D.C.)に記述されてい る系統のものが含まれる。具体的には、プロトタイプの野生株 K12株由来のェシエリヒ ァ'コリ W3110 (ATCC 27325)、ェシエリヒア 'コリ MG1655 (ATCC 47076)等が挙げ られる。
[0014] これらの菌株は、例えばアメリカン.タイプ.カルチャー 'コレクション(住所 P.O. Box
1549 Manassas, VA 20108, United States of America)より分譲を受けることが出来る 。すなわち各菌株に対応する登録番号が付与されており、この登録番号を利用して 分譲を受けることが出来る。各菌株に対応する登録番号は、アメリカン'タイプ'カル チヤ一 ·コレクションのカタログに記載されてレ、る。
パントエア属に属する細菌とは、当該細菌が微生物学の専門家に知られている分 類により、パントエア属に分類されていることを意味する。ェンテロパクター 'アグロメラ ンスのある種のものは、最近、 16S rRNAの塩基配列分析等に基づき、パントエア'ァ グロメランス、パントエア'アナナティス、パントエア'ステヮルティィその他に再分類さ れた (Int. J. Syst. Bacteriol., 43, 162-173 (1993))。本発明において、パントエア属に 属する細菌には、このようにパントエア属に再分類された細菌も含まれる。
[0015] 本発明に用いる細菌は、グリセロールの資化性を高めるために、 glpR遺伝子(EP17 15056)の発現が弱化されているか、 glpA、 glpB、 glpC、 glpD、 glpE、 glpF、 glpG、 glpK 、 glpQ、 glpT、 glpX、 tpiA、 gldA、 dhaKゝ dhaL、 dhaMゝ dhaRゝ fsa及び ta 遺伝子等の グリセロール代謝遺伝子(EP1715055A)の発現が強化されていてもよい。
[0016] 本発明において、アミノ酸生産能を有する細菌とは、培地に培養したとき、 L アミ ノ酸を生産し、培地中に分泌する能力を有する細菌をいう。また、好ましくは、 目的と する L—アミノ酸を好ましくは 0.5g/L以上、より好ましくは 1.0g/L以上の量を培地に蓄 積させることができる細菌をいう。 L一アミノ酸は、 L—ァラニン、 L—アルギニン、 L- ァスパラギン、 L—ァスパラギン酸、 L—システィン、 L—グルタミン酸、 L—グルタミン、 グリシン、 L—ヒスチジン、 L—イソロイシン、 L—ロイシン、 L—リジン、 L_メチォニン、 L—フエニノレアラニン、 L—プロリン、 L—セリン、 L—スレオニン、 L—トリプトファン、 L —チロシン及び L—バリンを含む。特に、 L—スレォニン、 L—リジン及び L—グルタミ ン酸が好ましい。 以下、前記のような細菌に L アミノ酸生産能を付与する方法、又は前記のような細 菌 L アミノ酸生産能を増強する方法について述べる。
[0017] L アミノ酸生産能を付与するには、栄養要求性変異株、 L アミノ酸のアナログ耐 性株又は代謝制御変異株の取得や、 L_アミノ酸の生合成系酵素の発現が増強さ れた組換え株の創製等、従来、コリネ型細菌又はェシエリヒア属細菌等のアミノ酸生 産菌の育種に採用されてきた方法を適用することができる(アミノ酸発酵、(株)学会 出版センター、 1986年 5月 30日初版発行、第 77〜: 100頁参照)。ここで、 L—アミノ酸 生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の 性質は、単独でもよぐ 2種又は 3種以上であってもよい。また、発現が増強される L_ アミノ酸生合成系酵素も、単独であっても、 2種又は 3種以上であってもよレ、。さらに、 栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の増 強が組み合わされてもよい。
[0018] L アミノ酸生産能を有する栄養要求性変異株、アナログ耐性株、又は代謝制御 変異株を取得するには、親株又は野生株を通常の変異処理、すなわち X線や紫外 線の照射、または N メチルー N,一二トロー N 二トロソグァ二ジン等の変異剤処理 などによって処理し、得られた変異株の中から、栄養要求性、アナログ耐性、又は代 謝制御変異を示し、かつ L アミノ酸生産能を有するものを選択することによって得る こと力 Sできる。
[0019] また、 L アミノ酸生産能の付与又は増強は、遺伝子組換えによって、酵素活性を 増強することによつても行うことが出来る。酵素活性の増強は、例えば、 L アミノ酸の 生合成に関与する酵素をコードする遺伝子の発現が増強するように細菌を改変する 方法を挙げることができる。遺伝子の発現を増強するための方法としては、遺伝子を 含む DNA断片を、適当なプラスミド、例えば微生物内でプラスミドの複製増殖機能を 司る遺伝子を少なくとも含むプラスミドベクターに導入した増幅プラスミドを導入するこ と、または、これらの遺伝子を染色体上で接合、転移等により多コピー化すること、ま たこれらの遺伝子のプロモーター領域に変異を導入することにより達成することもでき る(国際公開パンフレット W095/34672号参照)。
[0020] 上記増幅プラスミドまたは染色体上に目的遺伝子を導入する場合、これらの遺伝子 を発現させるためのプロモーターはコリネ型細菌において機能するものであればい かなるプロモーターであっても良ぐ用いる遺伝子自身のプロモーターであってもよ いし、改変したものでもよレ、。コリネ型細菌で強力に機能するプロモーターを適宜選 択することや、プロモーターの一35、一10領域をコンセンサス配列に近づけることによ つても遺伝子の発現量の調節が可能である。以上のような、酵素遺伝子の発現を増 強する方法は、 WO00/18935号パンフレット、欧州特許出願公開 1010755号明細書 等に記載されている。
[0021] 以下、細菌に L一アミノ酸生産能を付与する方法、及び L一アミノ酸生産能が付与 された細菌について例示する。
[0022] Lースレオニン生産菌
L—スレオニン生産能を有する微生物として好ましいものは、 L—スレオニン生合成 系酵素の 1種又は 2種以上の活性が増強された細菌が挙げられる。 L—スレオニン生 合成系酵素としては、ァスパルトキナーゼ III (lysC)、ァスパルテートセミアルデヒドデ ヒドロゲナーゼ(asd)、 thrオペロンにコードされるァスパルトキナーゼ I (thrA)、ホモセ リンキナーゼ(thrB)、スレオニンシンターゼ(thrC)、ァスパルテートアミノトランスフエ ラーゼ(ァスパルテートトランスアミナーゼ) (aspC)が挙げられる。カツコ内は、その遺 伝子の略記号である(以下の記載においても同様)。これらの酵素の中では、ァスパ ルテートセミアルデヒドデヒドロゲナーゼ、ァスパルトキナーゼ I、ホモセリンキナーゼ、 ァスパルテートアミノトランスフェラーゼ、及びスレオニンシンターゼが特に好ましレ、。
Lースレオニン生合成系遺伝子は、スレオニン分解が抑制されたェシエリヒア属細菌 に導入してもよい。スレオニン分解が抑制されたェシエリヒア属細菌としては、例えば 、スレオニンデヒドロゲナーゼ活性が欠損した TDH6株(特開 2001— 346578号)等が 挙げられる。
[0023] Lースレオニン生合成系酵素は、最終産物の Lースレオニンによって酵素活性が抑 制される。従って、 L—スレオニン生産菌を構築するためには、 L—スレオニンによる フィードバック阻害を受けないように L—スレオニン生合成系遺伝子を改変することが 望ましレ、。また、上記 thrA、 thrB, thrC遺伝子は、スレオニンオペロンを構成している 、スレオニンオペロンは、ァテニユエ一ター構造を形成しており、スレオニンオペ口 ンの発現は、培養液中のイソロイシン、スレオニンに阻害を受け、ァテニユエーシヨン により発現が抑制される。この改変は、ァテニユエーシヨン領域のリーダー配列あるい は、ァテニユエ一ターを除去することにより達成出来る。 (Lynn, S. P. , Burton, W. S., Donohue, T. J. , Gould, R. M. , Gumport, R. I. , and Gardner, J. F. J. Mol. Biol. 194: 59-69 (1987);国際公開第 02/26993号パンフレット;国際公開第 2005/049808号パン フレット参,照)
[0024] スレオニンオペロンの上流には、固有のプロモーターが存在する力 S、非天然のプロ モーターに置換してもよいし (WO98/04715号パンフレット参照)、スレオニン生合成 関与遺伝子の発現がラムダファージのリプレッサーおよびプロモーターにより支配さ れるようなスレオニンオペロンを構築してもよい。 (欧州特許第 0593792号明細書参照 )また、 L—スレォニンによるフィードバック阻害を受けないように細菌を改変するため に、 a -amino- β -hydroxyvaleric acid (AHV)に耐性な菌株を選抜することも可能で ある。
[0025] このように L スレオニンによるフィ ドバック阻害を受けなレ、ように改変されたスレ ォニンオペロンは、宿主内でコピー数が上昇している力、あるいは強力なプロモータ 一に連結し、発現量が向上していることが好ましい。コピー数の上昇は、プラスミドに よる増幅の他、トランスポゾン、 Mu—ファージ等でゲノム上にスレオニンオペロンを転 移させることによつても達成出来る。
[0026] Lースレオニン生合成系酵素以外にも、解糖系、 TCA回路、呼吸鎖に関する遺伝 子や遺伝子の発現を制御する遺伝子、糖の取り込み遺伝子を強化することも好適で ある。これらの L—スレオニン生産に効果がある遺伝子としては、トランスヒドロナーゼ (pntAB)遺伝子(欧州特許 733712号明細書)、ホスホェノールピルビン酸カルボキシ ラーゼ遺伝子(P印 C) (国際公開 95/06114号パンフレット)、ホスホェノールピルビン酸 シンターゼ遺伝子 (pps) (欧州特許 877090号明細書)、コリネ型細菌あるいはバチルス 属細菌のピルビン酸カルボキシラーゼ遺伝子(国際公開 99/18228号パンフレット、欧 州出願公開 1092776号明細書)が挙げられる。
[0027] また、 L—スレォニンに耐性を付与する遺伝子、 L—ホモセリンに耐性を付与する遺 伝子の発現を強化することや、宿主に L—スレオニン耐性、 L—ホモセリン耐性を付 与することも好適である。耐性を付与する遺伝子としては、 rhtA遺伝子 (Res. Microbio 1. 154:123— 135 (2003))、 rhtB遺伝子(欧州特許出願公開第 0994190号明細書)、 rht C遺伝子(欧州特許出願公開第 1013765号明細書)、 yfiK、 yeaS遺伝子(欧州特許出 願公開第 1016710号明細書)が挙げられる。また宿主に L—スレオニン耐性を付与す る方法は、欧州特許出願公開第 0994190号明細書や、国際公開第 90/04636号パン フレット記載の方法を参照出来る。
[0028] L—スレオニン生産菌又はそれを誘導するための親株の例としては、 E. coli TDH- 6/pVIC40 (VKPM B-3996) (米国特許第 5, 175, 107号、米国特許第 5,705,371号)、 E. coli 472T23/pYN7 (ATCC 98081) (米国特許第 5, 631,157号)、 E. coli NRRL-21593 ( 米国特許第 5,939,307号)、 E. coli FERM BP-3756 (米国特許第 5,474,918号)、 E. coli FERM BP-3519及び FERM BP- 3520 (米国特許第 5, 376,538号)、 E. coli MG442 (Gu syatiner et al, Genetika (in Russian), 14, 947—956 (1978))、 E. coli VL643及び VL20 55 (EP 1149911 A)などのェシエリヒア属に属する株が挙げられる力 これらに限定さ れない。
[0029] TDH-6株は thrC遺伝子を欠損し、スクロース資化性であり、また、その ilvA遺伝子 力 Sリーキー (leaky)変異を有する。この株はまた、 rhtA遺伝子に、高濃度のスレオニン またはホモセリンに対する耐性を付与する変異を有する。 B-3996株は、 RSF1010由 来ベクターに、変異 thrA遺伝子を含む thrA*BCオペロンを挿入したプラスミド pVIC40 を保持する。この変異 thrA遺伝子は、スレオニンによるフィードバック阻害が実質的 に解除されたァスパルトキナーゼホモセリンデヒドロゲナーゼ Iをコードする。 B-3996 株は、 1987年 11月 19日、オールユニオン 'サイエンティフィック 'センタ一'ォブ'アン チビォテイクス (Nagatinskaya Street 3_A, 117105 Moscow, Russia)に、受託番号 RIA 1867で寄託されている。この株は、また、 1987年 4月 7日、ルシアン 'ナショナル'コレク シヨン'ォブ 'インダストリアル 'マイクロオルガ二ズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号 B-3996で寄託されている。
[0030] E. coli VKPM B-5318 (EP 0593792B)も、 L_スレォニン生産菌又はそれを誘導す るための親株として使用できる。 B-5318株は、イソロイシン非要求性であり、プラスミド PVIC40中のスレオニンオペロンの制御領域力 温度感受性ラムダファージ C1リプレ ッサー及び PRプロモーターにより置換されている。 VKPM B-5318は、 1990年 5月 3日 、ルシアン'ナショナル 'コレクション'ォブ ·インダストリアル ·マイクロオルガ二ズムズ (V KPM)(1 Dorozhny proezd. , 1 Moscow 117545, Russia)に、受託番号 VKPM B-5318 で国際寄託されている。
[0031] Escherichia coliのァスパルトキナーゼホモセリンデヒドロゲナーゼ Iをコードする thrA 遺伝子は明らかにされている (ヌクレオチド番号 337〜2799, GenBank accession NC_0 00913.2, gi: 49175990)。 thrA遺伝子は、 E. coli K-12の染色体において、 thrL遺伝 子と thrB遺伝子との間に位置する。 Escherichia coliのホモセリンキナーゼをコードす る thrB遺伝子は明らかにされている (ヌクレオチド番号 2801〜3733, GenBank accessi on NC_000913.2, gi: 49175990)。 thrB遺伝子は、 E. coli K-12の染色体において、 thr A遺伝子と thrC遺伝子との間に位置する。 Escherichia coliのスレオニンシンターゼを コードする thrC遺伝子は明らかにされている (ヌクレオチド番号 3734〜5020, GenBank accession NC— 000913.2, gi: 49175990)。 thrC遺伝子は、 E. coli K-12の染色体にお いて、 thrB遺伝子と yaaXオープンリーディングフレームとの間に位置する。これら三 つの遺伝子は、全て、単一のスレオニンオペロンとして機能する。スレオニンオペロン の発現を増大させるには、転写に影響するァテニユエ一ター領域を、好ましくは、ォ ペロンから除去する (WO2005/049808, WO2003/097839)。
[0032] スレオニンによるフィードバック阻害に耐性のァスパルトキナーゼホモセリンデヒドロ ゲナーゼ Iをコードする変異 thrA遺伝子、ならびに、 thrB遺伝子及び thrC遺伝子は、 スレオニン生産株 E. coli VKPM B-3996に存在する周知のプラスミド pVIC40から一つ のオペロンとして取得できる。プラスミド pVIC40の詳細は、米国特許第 5,705,371号に 記載されている。
[0033] rhtA遺伝子は、グルタミン輸送系の要素をコードする glnHPQオペロンに近い Ε· col i染色体の 18分に存在する。 rhtA遺伝子は、 ORF1 (ybiF遺伝子,ヌクレオチド番号 76 4〜1651, GenBank accession number AAA218541, gi:440181)と同一であり、 pexB遺 伝子と ompX遺伝子との間に位置する。 ORF1によりコードされるタンパク質を発現す るユニットは、 rhtA遺伝子と呼ばれている (rht:ホモセリン及びスレオニンに耐性)。ま た、 rhtA23変異が、 ATG開始コドンに対して- 1位の G→A置換であることが判明して レヽる (ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemist ry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract N o. 457, EP 1013765 A)。
[0034] E. coliの asd遺伝子は既に明らかにされており (ヌクレオチド番号 3572511〜3571408 , GenBank accession NC_000913.1, gi: 16131307)、その遺伝子の塩基配列に基づい て作製されたプライマーを用いる PCRにより得ることができる (White, T.J. et al., Tren ds Genet., 5, 185 (1989)参照)。他の微生物の asd遺伝子も同様に得ることができる。
[0035] また、 E. coliの aspC遺伝子も既に明らかにされており (ヌクレオチド番号 983742〜98 4932, GenBank accession NC_000913.1, gi: 16128895)、 PCRにより得ることができる。 他の微生物の aspC遺伝子も同様に得ることができる。
[0036] L一リジン生産菌
ェシエリヒア属に属する L リジン生産菌の例としては、 L リジンアナログに耐性を 有する変異株が挙げられる。 L リジンアナログはェシエリヒア属に属する細菌の生 育を阻害するが、この阻害は、 L リジンが培地に共存するときには完全にまたは部 分的に解除される。 L リジンアナログの例としては、ォキサリジン、リジンヒドロキサメ ート、 S - (2—アミノエチル) L システィン (AEC)、 y—メチルリジン、 α—クロロカ プロラタタムなどが挙げられる力 S、これらに限定されなレ、。これらのリジンアナログに対 して耐性を有する変異株は、ェシエリヒア属に属する細菌を通常の人工変異処理に 付すことによって得ることができる。 L—リジンの生産に有用な細菌株の具体例として は、 Escherichia coli AJ11442 (FERM BP-1543, NRRL B-12185;米国特許第 4,346, 1 70号参照)及び Escherichia coli VL611が挙げられる。これらの微生物では、ァスパノレ トキナーゼの L—リジンによるフィードバック阻害が解除されている。
[0037] WC196株は、 Escherichia coliの L—リジン生産菌として使用できる。この菌株は、 Es cherichia coli K-12に由来する W3110株に AEC耐性を付与することにより育種された 。同株は、 Escherichia coli AJ13069と命名され、 1994年 12月 6日、工業技術院生命ェ 学工業技術研究所 (現独立行政法人産業技術総合研究所特許生物寄託センタ 一、 τ 305-8566 日本国茨城県つくば巿東 1丁目 1番地 1 中央第 6)に受託番号 FER M P-14690として寄託され、 1995年 9月 29日にブダペスト条約に基づく国際寄託に移 管され、受託番号 FERM BP-5252が付与されている (米国特許第 5,827,698号)。
[0038] L リジン生産菌又はそれを誘導するための親株の例としては、 L リジン生合成 系酵素の 1種又は 2種以上の活性が増強されている株も挙げられる。かかる酵素の 例としては、ジヒドロジピコリン酸シンターゼ (dapA)、ァスパルトキナーゼ (lysC)、ジヒド ロジピコリン酸レダクターゼ (dapB)、ジアミノピメリン酸デカルボキシラーゼ (lysA)、ジァ ミノピメリン酸デヒドロゲナーゼ (ddh) (米国特許第 6,040, 160号)、フォスフォエノールビ ルビン酸カルボキシラーゼ (ppc)、ァスパルテートセミアルデヒドデヒドロゲナーゼ遺伝 子、ジアミノピメリン酸ェピメラーゼ (dapF)、テトラヒドロジピコリン酸スクシ二ラーゼ (dap D)、スクシニルジアミノピメリン酸デアシラーゼ (dapE)及びァスパルターゼ (aspA) (EP 1 253195 A)が挙げられる力 これらに限定されなレ、。これらの酵素の中では、ジヒドロ ジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸 デヒドロゲナーゼ、フォスフォェノールピルビン酸カルボキシラーゼ、ァスパルテートァ ミノトランスフェラーゼ、ジアミノピメリン酸ェピメラーゼ、ァスパルテートセミアルデヒド デヒドロゲナーゼ、テトラヒドロジピコリン酸スクシ二ラーゼ、及び、スクシニルジアミノビ メリン酸デアシラーゼが特に好ましい。また、親株は、エネルギー効率に関与する遺 伝子 (cyo) (EP 1170376 A)、ニコチンアミドヌクレオチドトランスヒドロゲナーゼをコード する遺伝子 (pntAB) (米国特許第 5,830,716号)、 ybjE遺伝子 (WO2005/073390)、また は、これらの組み合わせの発現レベルが増大してレ、てもよレ、。
[0039] L リジン生産菌又はそれを誘導するための親株の例としては、 L リジンの生合 成経路から分岐して L リジン以外の化合物を生成する反応を触媒する酵素の活性 が低下または欠損している株も挙げられる。 L_リジンの生合成経路から分岐して L —リジン以外の化合物を生成する反応を触媒する酵素の例としては、ホモセリンデヒ ドロゲナーゼ、リジンデカルボキシラーゼ (米国特許第 5,827,698号)、及び、リンゴ酸 酵素 (WO2005/010175)が挙げられる。
[0040] 好ましい L—リジン生産菌として、ェシエリヒア'コリ WC196DcadADldc/pCABD2が挙 げられる(WO2006/078039)。この菌株は、リジンデカルボキシラーゼをコードする cad A及び ldcC遺伝子が破壊された WC196株に、米国特許第 6040160に記載されたプラ スミド pCABD2が導入することにより得られた株である。 PCABD2は、 L リジンによる フィードバック阻害が解除された変異を有するェシエリヒア'コリ由来のジヒドロジピコリ ン酸合成酵素(DDPS)をコードする変異型 dapA遺伝子と、 L リジンによるフィードバ ック阻害が解除された変異を有するェシエリヒア'コリ由来のァスバルトキナーゼ IIIをコ ードする変異型 lysC遺伝子と、ェシエリヒア'コリ由来のジヒドロジピコリン酸レダクタ一 ゼをコードする dapB遺伝子と、ブレビバタテリゥム 'ラタトフアーメンタム由来ジアミノビ メリン酸デヒドロゲナーゼをコードする ddh遺伝子を含んでいる。このプラスミドを持つ ェシエリヒア'コリ W3110(tyrA)/pCABD2は、 AJ12604と命名され、 1991年 1月 28日に独 立行政法人産業技術総合研究所特許生物寄託センター (住所 τ 305-8566 日本 国茨城県つくば巿東 1丁目 1番地 1中央第 6)に FERM P-11975の受託番号で寄託さ れ、 1991年 9月 26日にブダペスト条約に基づく国際寄託に移管されて、 FERM BP-35 79の受託番号で寄託されてレ、る。
[0041] L システィン生産菌
L—システィン生産菌又はそれを誘導するための親株の例としては、フィードバック 阻害耐性のセリンァセチルトランスフェラーゼをコードする異なる cysEアレルで形質転 換された E. coli JM15(米国特許第 6,218,168号、ロシア特許出願第 2003121601号)、 細胞に毒性の物質を排出するのに適したタンパク質をコードする過剰発現遺伝子を 有する E. coli W3110 (米国特許第 5,972,663号)、システィンデスルフォヒドラーゼ活 性が低下した E. coli株(JP11155571A2)、 cysB遺伝子によりコードされる正のシスティ ンレギュロンの転写制御因子の活性が上昇した E. coli W3110 (WO0127307A1)など のェシエリヒア属に属する株が挙げられる力 S、これらに限定されない。
[0042] L_ロイシン生産菌
L ロイシン生産菌又はそれを誘導するための親株の例としては、ロイシン耐性の E • coil株 (例えば、 57株 (VKPM B-7386,米国特許第 6,124,121号))または j3 _ 2—チ ェニルァラニン、 3—ヒドロキシロイシン、 4—ァザロイシン、 5, 5, 5-トリフルォロロイシン などのロイシンアナログ耐性の E.coli株 (特公昭 62-34397号及び特開平 8-70879号)、 WO96/06926に記載された遺伝子工学的方法で得られた E. coli株、 E. coli H-9068 ( 特開平 8-70879号)などのェシエリヒア属に属する株が挙げられるが、これらに限定さ れない。
[0043] 本発明に用いる細菌は、 L一口イシン生合成に関与する遺伝子の 1種以上の発現 が増大されることにより改良されていてもよい。このような遺伝子の例としては、好まし くは L—ロイシンによるフィードバック阻害が解除されたイソプロピルマレートシンター ゼをコードする変異 leuA遺伝子 (米国特許第 6,403,342号)に代表される、 leuABCDォ ペロンの遺伝子が挙げられる。さらに、本発明に用いる細菌は、細菌の細胞から L_ アミノ酸を排出するタンパク質をコードする遺伝子の 1種以上の発現が増大されること により改良されていてもよレ、。このような遺伝子の例としては、 b2682遺伝子及び b268 3遺伝子 (ygaZH遺伝子) (EP 1239041 A2)が挙げられる。
[0044] L_ヒスチジン生産菌
L—ヒスチジン生産菌又はそれを誘導するための親株の例としては、 E. coli 24株( VKPM B-5945, RU2003677), E. coli 80株 (VKPM B-7270, RU2119536)、 E. coli NR RL B- 12116 - B12121 (米国特許第 4,388,405号)、 E. coli H- 9342 (FERM BP- 6675) 及び H-9343 (FERM BP-6676) (米国特許第 6,344,347号)、 E. coli H-9341 (FERM B P-6674) (EP1085087)、 E. coli AI80/pFM201 (米国特許第 6, 258,554号)などのェシェ リヒア属に属する株が挙げられる力 S、これらに限定されない。
[0045] L ヒスチジン生産菌又はそれを誘導するための親株の例としては、 L ヒスチジン 生合成系酵素をコードする遺伝子の 1種以上の発現が増大した株も挙げられる。か 力る遺伝子の例としては、 ATPフォスフオリボシルトランスフェラーゼ遺伝子 (hisG)、フ ォスフオリボシル AMPサイクロヒドロラーゼ遺伝子 (hisl)、フォスフオリボシル -ATPピロフ ォスフォヒドロラーゼ遺伝子 (hisl)、フォスフオリボシルフオルミミノ- 5-ァミノイミダゾール カルボキサミドリボタイドイソメラーゼ遺伝子 (hisA)、アミドトランスフェラーゼ遺伝子 (his H)、ヒスチジノールフォスフェイトアミノトランスフェラーゼ遺伝子 (hisC)、ヒスチジノール フォスファターゼ遺伝子 (hisB)、ヒスチジノールデヒドロゲナーゼ遺伝子 (hisD)などが 挙げられる。
[0046] hisG及び hisBHAFIにコードされる L -ヒスチジン生合成系酵素は L -ヒスチジンに より阻害されることが知られており、従って、 L—ヒスチジン生産能は、 ATPフォスフオリ ボシルトランスフェラーゼ遺伝子 (hisG)にフィードバック阻害への耐性を付与する変異 を導入することにより効率的に増大させることができる (ロシア特許第 2003677号及び 第 2119536号)。
[0047] L ヒスチジン生産能を有する株の具体例としては、 L ヒスチジン生合成系酵素を コードする DNAを保持するベクターを導入した E. coli FERM-P 5038及び 5048 (特開 昭 56-005099号)、アミノ酸輸送の遺伝子を導入した E.coli株 (EP1016710A)、スルファ グァニジン、 DL-1, 2,4 -トリアゾール -3 -ァラニン及びストレプトマイシンに対する耐性 を付与した E. coli 80株 (VKPM B-7270,ロシア特許第 2119536号)などが挙げられる。
[0048] L一グルタミン酸生産菌
L—グノレタミン酸生産菌又はそれを誘導するための親株の例としては、 E. coli VL33 4thrC+ (EP 1172433)などのェシエリヒア属に属する株が挙げられる力 これらに限定 されなレ、。 E. coli VL334 (VKPM B-1641)は、 thrC遺伝子及び ilvA遺伝子に変異を 有する L—イソロイシン及び L—スレォニン要求性株である (米国特許第 4,278,765号) 。 thrC遺伝子の野生型アレルは、野生型 E. coli K12株(VKPM B_7)の細胞で増殖し たバタテリオファージ P1を用いる一般的形質導入法により導入された。この結果、 L イソロイシン要求性の L グルタミン酸生産菌 VL334thrC+ (VKPM B-8961)が得られ た。
[0049] Lーグノレタミン酸生産菌又はそれを誘導するための親株の例としては、 L ダルタミ ン酸生合成系酵素 1種又は 2種以上の活性が増強された株が挙げられる力 これら に限定されない。かかる遺伝子の例としては、グルタメートデヒドロゲナーゼ(gdhA)、 グルタミンシンテターゼ (glnA)、グルタメートシンテターゼ (gltAB)、イソシトレートデヒド ロゲナーゼ (icdA)、アコ二テートヒドラターゼ (acnA, acnB)、クェン酸シンターゼ (gltA)、 メチルクェン酸シンター (p卬 C)、フォスフォェノールピルべートカルボシラーゼ (ppc )、ピルべ一トデヒドロゲナーゼ (aceEF, lpdA)、ピルべートキナーゼ (pykA, pykF)、フォ スフォェノールピルべートシンターゼ (ppSA)、エノラーゼ (eno)、フォスフォグリセロムタ ーゼ (pgmA, pgml)、フォスフォグリセレートキナーゼ (pgk)、グリセルアルデヒド- 3-フォ スフエートデヒドロゲナーゼ (gapA)、トリオースフォスフェートイソメラーゼ (tpiA)、フルク トースビスフォスフェートアルドラーゼ (ftp)、フォスフォフルクトキナーゼ(pfkA, pikB)、 グルコースフォスフェートイソメラーゼ (pgi)などが挙げられる。これらの酵素の中では、 グルタメートデヒドロゲナーゼ、クェン酸シンターゼ、フォスフォェノールピルべートカ ルボキシラーゼ、及びメチルクェン酸シンターゼが好ましレ、。
[0050] シトレートシンテターゼ遺伝子、フォスフォェノールピルべ一トカルボキシラーゼ遺 伝子、及び/またはグノレタメートデヒドロゲナーゼ遺伝子の発現が増大するように改 変された株の例としては、 EP1078989A、 EP955368A及び EP952221Aに開示されたも のが挙げられる。
[0051] L—グノレタミン酸生産菌又はそれを誘導するための親株の例としては、 L—ダルタミ ン酸の生合成経路から分岐して L一グルタミン酸以外の化合物の合成を触媒する酵 素の活性が低下または欠損している株も挙げられる。このような酵素の例としては、ィ ソシトレートリアーゼ (aceA)、 ひ-ケトグルタレートデヒドロゲナーゼ (sucA)、フォスフォト ランスァセチラーゼ (pta)、アセテートキナーゼ (ack)、ァセトヒドロキシ酸シンターゼ (ilv G)、ァセトラクテートシンターゼ (ΠνΙ)、フオルメートァセチルトランスフェラーゼ (pfl)、ラタ テートデヒドロゲナーゼ (ldh)、グルタメートデカルボキシラーゼ (gadAB)などが挙げられ る。 α -ケトグルタレートデヒドロゲナーゼ活性が欠損した、または、 α -ケトグルタレ一 トデヒドロゲナーゼ活性が低下したェシエリヒア属に属する細菌、及び、それらの取得 方法は米国特許第 5,378,616号及び第 5,573,945号に記載されてレ、る。
[0052] 具体例としては下記のものが挙げられる。
E. coli W3110sucA::Kmr
E. coli AJ12624 (FERM BP- 3853)
E. coli AJ12628 (FERM BP- 3854)
E. coli AJ 12949 (FERM BP- 4881)
[0053] E. coli W3110sucA::Kmrは、 E. coli W3110のひ -ケトグルタレートデヒドロゲナーゼ 遺伝子(以下、「sucA遺伝子」ともいう)を破壊することにより得られた株である。この株 は、 α -ケトグノレタレートデヒドロゲナーゼを完全に欠損してレ、る。
[0054] L—グノレタミン酸生産菌の他の例としては、ェシエリヒア属に属し、ァスパラギン酸代 謝拮抗物質に耐性を有するものが挙げられる。これらの株は、 ひ-ケトグルタレートデ ヒドロゲナーゼを欠損していてもよぐ例えば、 E. coli AJ13199 (FERM BP-5807) (米 国特許第 5,908,768号)、さらに L—グノレタミン酸分解能が低下した FFRM P_12379(米 国特許第 5,393,671号); AJ13138 (FERM BP-5565) (米国特許第 6, 110,714号)などが 挙げられる。
[0055] パントァェ 'アナナティスの L—グルタミン酸生産菌の例としては、パントエア'ァナナ テイス AJ13355株が挙げられる。同株は、静岡県磐田巿の土壌から、低 pHで L—グノレ タミン酸及び炭素源を含む培地で増殖できる株として分離された株である。パントェ ァ-アナナティス AJ13355は、 1998年 2月 19日に、独立行政法人産業技術総合研究 所特許生物寄託センター(住所 T 305-8566 日本国茨城県つくば巿東 1丁目 1番 地 1 中央第 6)に、受託番号 FERM P-16644として寄託され、 1999年 1月 11日にブダ ペスト条約に基づく国際寄託に移管され、受託番号 FERM BP-6614が付与されてい る。尚、同株は、分離された当時はェンテロバクタ一'アグロメランス(Enterobacter ag glomerans)と同定され、ェンテロバクタ一'アグロメランス AJ13355として寄託されたが 、近年 16S rRNAの塩基配列解析などにより、パントエア'アナナティス(Pantoea anana tis)に再分類されている。
[0056] また、パントァェ 'アナナティスの Lーグノレタミン酸生産菌として、 α -ケトグノレタレート デヒドロゲナーゼ(a KGDH)活性が欠損した、または、 a KGDH活性が低下したパン トエア属に属する細菌が挙げられる。このような株としては、 AJ13355株の ct KGDH-E 1サブユニット遺伝子(SUCA)を欠損させた AJ13356(米国特許第 6,331,419号)、及び A J13355株から粘液質低生産変異株として選択された SC17株由来の sucA遺伝子欠損 株である SC17sucA (米国特許第 6,596,517号)がある。 AJ13356は、 1998年 2月 19日、 工業技術院生命工学工業技術研究所 (現独立行政法人産業技術総合研究所特 許生物寄託センター、 τ 305-8566 日本国茨城県つくば巿東 1丁目 1番地 1中央第 6)に受託番号 FERM P-16645として寄託され、 1999年 1月 11日にブダペスト条約に 基づく国際寄託に移管され、受託番号 FERM BP-6616が付与されている。 AJ13355 及び AJ13356は、上記寄託機関に Enterobacter agglomeransとして寄託されているが 、本明細書では、 Pantoea ananatisとして記載する。また、 SC17sucA株は、ブライべ一 トナンバー AJ417株が付与され、 2004年 2月 26日に産業技術総合研究所特許生物寄 託センターに受託番号 FERM BP-08646として寄託されてレ、る。
[0057] さらに、パントァェ.アナナティスの L—グルタミン酸生産菌として、 SC17sucA/RSFC PG+pSTVCB株、 AJ13601株、 NP106株、及び NA1株が挙げられる。 SC17sucA/RSFC PG+pSTVCB株は、 SC17sucA株に、ェシエリヒア'コリ由来のクェン酸シンターゼ遺伝 子(gltA)、ホスホェノールピルビン酸カルボキシラーゼ遺伝子(ppsA)、およびグルタ メートデヒドロゲナーゼ遺伝子(gdhA)を含むプラスミド RSFCPG、並びに、ブレビバタ テリゥム ·ラタトフアーメンタム由来のクェン酸シンターゼ遺伝子(gltA)を含むプラスミ ド pSTVCBを導入して得た株である。 AJ13601株は、この SC17sucA/RSFCPG+pSTVC B株から低 pH下で高濃度の L—グノレタミン酸に耐性を示す株として選択された株であ る。また、 NP106株は、実施例に記載したように、 AJ13601株からプラスミド RSFCPG+p STVCBを脱落させた株である。 AJ13601株は、 1999年 8月 18日に、独立行政法人産 業技術総合研究所特許生物寄託センター(T 305-8566 日本国茨城県つくば巿東 1 丁目 1番地 1 中央第 6)に受託番号 FERM P-17516として寄託され、 2000年 7月 6日に ブダペスト条約に基づく国際寄託に移管され、受託番号 FERM BP-7207が付与され ている。
L—フエ二ルァラニン生産菌
L—フエ二ルァラニン生産菌又はそれを誘導するための親株の例としては、コリスミ 酸ムターゼープレフェン酸デヒドロゲナーゼ及びチロシンリプレッサーを欠損した E.co li AJ12739 (tyrA::TnlO, tyrR) (VKPM B_8197)(WO03/044191)、フィードバック阻害 が解除されたコリスミ酸ムターゼープレフェン酸デヒドラターゼをコードする変異型 phe A34遺伝子を保持する E.coli HW1089 (ATCC 55371) (米国特許第 5, 354,672号)、 E. coli MWEC101-b (KR8903681), E.coli NRRL B-12141, NRRL B-12145, NRRL B_l 2146及び NRRL B-12147 (米国特許第 4,407,952号)などのェシエリヒア属に属する株 が挙げられるが、これらに限定されなレ、。また、親株として、フィードバック阻害が解除 されたコリスミ酸ムターゼ一プレフェン酸デヒドラターゼをコードする遺伝子を保持す る E. coli K-12 [W3110 (tyrA)/pPHAB] (FERM BP_3566)、 E. coli K- 12 [W3110 (tyr A)/pPHAD] (FERM BP_12659)、 E. coli K-12 [W3110 (tyrA)/pPHATerm] (FERM B P-12662)及び AJ 12604と命名された E. coli K-12 [W3110 (tyrA)/pBR-aroG4, pAC MAB] (FERM BP-3579)も使用できる (EP 488424 Bl)。さらに、 yedA遺伝子または ydd G遺伝子にコードされるタンパク質の活性が増大したェシエリヒア属に属する L—フエ 二ルァラニン生産菌も使用できる (米国特許出願公開 2003/0148473 A1及び 2003/01 57667 Al、 WO03/044192)。
[0059] L トリプトファン生産菌
L—トリブトファン生産菌又はそれを誘導するための親株の例としては、変異 t卬 S遺 伝子によりコードされるトリプトファニル -tRNAシンテターゼが欠損した E. coli JP4735/ PMU3028 (DSM10122)及び JP6015/pMU91 (DSM10123) (米国特許第 5, 756, 345号)、 セリンによるフィードバック阻害を受けないフォスフォグリセリレートデヒドロゲナーゼを コードする serAアレル及びトリプトファンによるフィードバック阻害を受けないアントラニ レートシンターゼをコードする tn^Eアレルを有する E. coli SV164 (pGH5) (米国特許第 6,180,373号)、トリプトフアナーゼが欠損した E. coli AGX17 (pGX44) (NRRL B-12263 )及び AGX6(pGX50)aroP (NRRL B- 12264) (米国特許第 4,371,614号)、フォスフォエノ ールピルビン酸生産能が増大した E. coli AGX17/pGX50,pACKG4-pps (WO970833 3,米国特許第 6,319,696号)などのェシエリヒア属に属する株が挙げられる力 S、これら に限定されなレ、。 yedA遺伝子または yddG遺伝子にコードされるタンパク質の活性が 増大したェシエリヒア属に属する L トリブトファン生産菌も使用できる (米国特許出願 公開 2003/0148473 A1及び 2003/0157667 Al)。
[0060] L—トリブトファン生産菌又はそれを誘導するための親株の例としては、アントラニレ ートシンターゼ (t卬 E)、フォスフォグリセレートデヒドロゲナーゼ (serA)、 3—デォキシー D ァラビノへプッロン酸 Ί リン酸シンターゼ (aroG)、 3 デヒドロキネートシンタ ーゼ (aroB)、シキミ酸デヒドロゲナーゼ (aroE)、シキミ酸キナーゼ (aroL)、 5—ェノール 酸ピルビルシキミ酸 3—リン酸シンターゼ (aroA)、コリスミ酸シンターゼ (aroC)、プレフエ ン酸デヒドラターゼ、コリスミ酸ムターゼ及び、トリプトファンシンターゼ (t卬 AB)から選 ばれる 1種又は 2種以上の酵素の活性が増強された株も挙げられる。プレフヱン酸デ ヒドラターゼ及びコリスミ酸ムターゼは、 2機能酵素(CM-PD)として pheA遺伝子によつ てコードされている。これらの酵素の中では、フォスフォグリセレートデヒドロゲナーゼ 、 3—デォキシ一D—ァラピノへプッロン酸一 7 _リン酸シンターゼ、 3 _デヒドロキネ ートシンターゼ、シキミ酸デヒドラターゼ、シキミ酸キナーゼ、 5—ェノール酸ピルビル シキミ酸 3 _リン酸シンターゼ、コリスミ酸シンターゼ、プレフヱン酸デヒドラターゼ、コリ スミン酸ムターゼープレフェン酸デヒドロゲナーゼが特に好ましい。アントラニレートシ ンターゼ及びフォスフォグリセレートデヒドロゲナーゼは共に L トリプトファン及び L —セリンによるフィードバック阻害を受けるので、フィードバック阻害を解除する変異を これらの酵素に導入してもよい。このような変異を有する株の具体例としては、脱感作 型アントラニレートシンターゼを保持する E. coli SV164、及び、フィードバック阻害が 解除されたフォスフォグリセレートデヒドロゲナーゼをコードする変異 serA遺伝子を含 むプラスミド pGH5 (WO 94/08031)を Ε· coli SV164に導入することにより得られた形質 転換株が挙げられる。
[0061] L_トリブトファン生産菌又はそれを誘導するための親株の例としては、阻害解除型 アントラニレートシンターゼをコードする遺伝子を含むトリプトファンオペロンが導入さ れた株 (特開昭 57-71397号,特開昭 62-244382号,米国特許第 4,371,614号)も挙げら れる。さらに、トリプトファンオペロン (t卬 BA)中のトリプトファンシンターゼをコードする 遺伝子の発現を増大させることにより L トリブトファン生産能を付与してもよい。トリプ トフアンシンターゼは、それぞれ t卬 A及び t卬 B遺伝子によりコードされる α及び βサ ブユニットからなる。さらに、イソシトレートリアーゼ-マレートシンターゼオペロンの発 現を増大させることにより L—トリプトファン生産能を改良してもよい (WO2005/103275)
[0062] L プロリン生産菌
L プロリン生産菌又はそれを誘導するための親株の例としては、 ilvA遺伝子が欠 損し、 L プロリンを生産できる Ε· coli 702ilvA (VKPM B-8012) (EP 1172433)などの ェシエリヒア属に属する株が挙げられる力 これらに限定されない。
[0063] 本発明に用いる細菌は、 L_プロリン生合成に関与する遺伝子の一種以上の発現 を増大することにより改良してもよい。 L—プロリン生産菌に好ましい遺伝子の例とし ては、 L—プロリンによるフィードバック阻害が解除されたグノレタメートキナーゼをコ一 ドする proB遺伝子 (ドイツ特許第 3127361号)が挙げられる。さらに、本発明に用いる細 菌は、細菌の細胞から L一アミノ酸を排出するタンパク質をコードする遺伝子の一種 以上の発現が増大することにより改良してもよレ、。このような遺伝子としては、 b2682 遺伝子及び b2683遺伝子 (ygaZH遺伝子) (EP1239041 A2)が挙げられる。 [0064] L—プロリン生産能を有するェシエリヒア属に属する細菌の例としては、 NRRL B-12 403及び NRRL B-12404 (英国特許第 2075056号)、 VKPM B-8012 (ロシア特許出願 2 000124295)、ドイツ特許第 3127361号に記載のプラスミド変異体、 Bloom F.R. et al (T he 15th Miami winter symposium, 1983, p.34)に記載のプラスミド変異体などの E. coli 株が挙げられる。
[0065] L_アルギニン生産菌
L—アルギニン生産菌又はそれを誘導するための親株の例としては、 E. coli 237株 (VKPM B-7925) (米国特許出願公開 2002/058315 Al)、及び、変異 N -ァセチルダノレ タメートシンターゼを保持するその誘導株 (ロシア特許出願第 2001112869号)、 E. coli 382株(VKPM B-7926) (EP1170358A1), N -ァセチルダルタメートシンテターゼをコ一 ドする argA遺伝子が導入されたアルギニン生産株 (EP1170361A1)などのェシヱリヒア 属に属する株が挙げられるが、これらに限定されない。
[0066] L—アルギニン生産菌又はそれを誘導するための親株の例としては、 L—アルギニ ン生合成系酵素をコードする遺伝子の 1種以上の発現が増大した株も挙げられる。 かかる遺伝子の例としては、 N-ァセチルグルタミルフォスフェートレダクターゼ遺伝子 (argC)、オル二チンァセチルトランスフェラーゼ遺伝子 (argj)、 N_ァセチルダルタメート キナーゼ遺伝子 (argB)、ァセチルオル二チントランスアミナーゼ遺伝子 (argD)、オル二 チン力ルバモイルトランスフェラーゼ遺伝子 (argF)、アルギノコハク酸シンテターゼ遺 伝子 (argG)、アルギノコハク酸リアーゼ遺伝子 (argH)、力ルバモイルフォスフェートシ ンテターゼ遺伝子 (carAB)が挙げられる。
[0067] Lーバリン生産菌
L—バリン生産菌又はそれを誘導するための親株の例としては、 ilvGMEDAオペ口 ンを過剰発現するように改変された株 (米国特許第 5,998,178号)が挙げられるが、こ れらに限定されなレ、。ァテニユエーシヨンに必要な ilvGMEDAオペロンの領域を除去 し、生産される L—パリンによりオペロンの発現が減衰しないようにすることが好ましい 。さらに、オペロンの ilvA遺伝子が破壊され、スレオニンデアミナーゼ活性が減少する ことが好ましい。
L—バリン生産菌又はそれを誘導するための親株の例としては、アミノアシル t_RNA シンテターゼの変異を有する変異株 (米国特許第 5,658,766号)も挙げられる。例えば 、イソロイシン tRNAシンテターゼをコードする ileS遺伝子に変異を有する E. coli VL19 70が使用できる。 E. coli VL1970は、 1988年 6月 24日、ルシアン 'ナショナル'コレクシ ヨン'ォブ 'インダストリアル 'マイクロオルガ二ズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号 VKPM B-4411で寄託されている。
さらに、生育にリポ酸を要求する、及び/または、 H+-ATPaseを欠失している変異株 (WO96/06926)を親株として用いることができる。
[0068] : L—イソロイシン生産菌
L—イソロイシン生産菌又はそれを誘導するための親株の例としては、 6 _ジメチノレ アミノブリンに耐性を有する変異株 (特開平 5-304969号)、チアイソロイシン、イソ口イシ ンヒドロキサメートなどのイソロイシンアナログに耐性を有する変異株、さらに DL -ェチ ォニン及び Zまたはアルギニンヒドロキサメートに耐性を有する変異株 (特開平 5-130 882号).が挙げられる力 S、これらに限定されなレ、。さらに、スレオニンデァミナーゼ、ァ セトヒドロキシ酸シンターゼなどの L—イソロイシン生合成に関与するタンパク質をコー ドする遺伝子で形質転換された組換え株もまた親株として使用できる (特開平 2-458 号, FR 0356739,及び米国特許第 5,998,178号)。
[0069] 遺伝子組換えにより、上記の L アミノ酸生産菌を育種する場合、使用する遺伝子 は、上述した遺伝子情報を持つ遺伝子や、公知の配列を有する遺伝子に限られず、 コードされるタンパク質の機能が損なわれない限り、その遺伝子のホモログや人為的 な改変体等、保存的変異を有する遺伝子も使用することができる。すなわち、公知の タンパク質のアミノ酸配列において、 1若しくは数個の位置での 1若しくは数個のアミ ノ酸の置換、欠失、揷入又は付加等を含む配列を有するタンパク質をコードする遺 伝子であってもよい。
[0070] ここで、「1若しくは数個」とは、アミノ酸残基のタンパク質の立体構造における位置 やアミノ酸残基の種類によっても異なるが、具体的には好ましくは 1〜20個、より好ま しくは 1〜10個、さらに好ましくは 1〜5個を意味する。また、保存的変異とは、置換部 位が芳香族アミノ酸である場合には、 Phe、 Trp、 Tyr間で、置換部位が疎水性アミノ酸 である場合には、 Leu、 Ile、 Val間で、極性アミノ酸である場合には、 Gln、 Asn間で、塩 基性アミノ酸である場合には、 Lys、 Arg、 His間で、酸性アミノ酸である場合には、 Asp 、 Glu間で、ヒドロキシル基を持つアミノ酸である場合には、 Ser、 Thr間でお互いに置 換する変異である。保存的変異の代表的なものは、保存的置換であり、保存的置換 とみなされる置換としては、具体的には、 Alaから Ser又は Thrへの置換、 Argから Gln、 His又は Lysへの置換、 Asnから Glu、 Gln、 Lys、 His又は Aspへの置換、 Asp力、ら Asn、 G lu又は Ginへの置換、 Cysから Ser又は Alaへの置換、 Ginから Asn、 Glu、 Lys、 His, Asp 又は Argへの置換、 Gluから Gly、 Asn、 Gln、 Lys又は Aspへの置換、 Glyから Proへの置 換、 Hisから Asn、 Lys, Gln、 Arg又は Tyrへの置換、 lie力、ら Leu、 Met, Val又は Pheへの 置換、 Leuから Ile、 Met, Val又は Pheへの置換、 Lysから Asn、 Glu、 Gln、 His又は Argへ の置換、 Metから Ile、 Leu、 Val又は Pheへの置換、 Pheから TYp、 Tyr、 Met, lie又は Leu への置換、 Serから Thr又は Alaへの置換、 Thrから Ser又は Alaへの置換、 TYpから Phe 又は Tyrへの置換、 Tyrから His、 Phe又は TYpへの置換、及び、 Val力、ら Met、 lie又は Le uへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付カロ、また は逆位等には、遺伝子が由来する微生物の個体差、種の違いに基づく場合などの 天然に生じる変異(mutant又は variant)によって生じるものも含まれる。このような遺 伝子は、例えば、部位特異的変異法によって、コードされるタンパク質の特定の部位 のアミノ酸残基が置換、欠失、挿入または付加を含むように公知の遺伝子の塩基配 歹 IJを改変することによって取得することができる。
[0071] さらに、上記のような保存的変異を有する遺伝子は、コードされるアミノ酸配列全体 に対して、 80%以上、好ましくは 90%以上、より好ましくは 95%以上、特に好ましくは 97% 以上の相同性を有し、かつ、野生型タンパク質と同等の機能を有するタンパク質をコ ードする遺伝子であってもよい。
また、遺伝子の配列におけるそれぞれのコドンは、遺伝子が導入される宿主で使用 しゃすレ、コドンに置換したものでもよレ、。
[0072] 保存的変異を有する遺伝子は、変異剤処理等、通常変異処理に用いられる方法 によって取得されたものであってもよい。
[0073] また、遺伝子は、公知の遺伝子配列の相補配列又はその相補配列から調製され得 るプローブとストリンジェントな条件下でハイブリダィズし、公知の遺伝子産物と同等 の機能を有するタンパク質をコードする DNAであってもよい。ここで、「ストリンジェント な条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが 形成されない条件をいう。一例を示せば、相同性が高い DNA同士、例えば 80%以上、 好ましくは 90%以上、より好ましくは 95%以上、特に好ましくは 97%以上の相同性を有す る DNA同士がハイブリダィズし、それより相同性が低い DNA同士がハイブリダィズしな い条件、あるいは通常のサザンハイブリダィゼーシヨンの洗いの条件である 60。C、 I X SSC、 0.1% SDS、好ましくは、 0.1 X SSC、 0.1% SDS、さらに好ましくは、 68。C、 0.1 X SSC 、 0.1% SDSに相当する塩濃度、温度で、 1回、より好ましくは 2〜3回洗浄する条件が 挙げられる。
[0074] プローブとしては、遺伝子の相補配列の一部を用いることもできる。そのようなプロ ーブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、 これらの塩基配列を含む DNA断片を铸型とする PCRによって作製することができる。 例えば、プローブとして、 300 bp程度の長さの DNA断片を用いる場合には、ハイブリ ダイゼーシヨンの洗いの条件は、 50°C、 2 X SSC、 0.1% SDSが挙げられる。
[0075] < 3 >L アミノ酸の製造法
本発明の L アミノ酸の製造法においては、グリセロールを炭素源として含む培地 で腸内細菌科に属し、 L アミノ酸生産能を有する細菌を培養して、培養物中に L アミノ酸を生産蓄積させ、該培養物から L アミノ酸を採取する。
[0076] 使用するグリセロールは、 L アミノ酸を製造するのに適した濃度であればどのよう な濃度で用いてもかまわない。培地中の単独の炭素源として用いる場合、好ましくは 0. lw/v%〜50w/v%程度、より好ましくは 0· 5w/v%〜40w/v%程度、特に 好ましくは lwZv%〜30w/v%程度培地に含有させる。グリセロールは、ダルコ一 ス、フラクトース、スクロース、廃糖蜜、澱粉加水分解物などの他の炭素源と組み合わ せて用いることも出来る。この場合、グリセロールと他の炭素源は任意の比率で混合 することが可能である力 S、炭素源中のグリセロールの比率は、 10重量%以上、より好 ましくは 50重量%以上、より好ましくは 70重量%であることが望ましい。他の炭素原と して好ましいのは、グルコース、フラクトース、スクロース、ラタトース、ガラクトース、廃 糖蜜、澱粉加水分解物やバイオマスの加水分解により得られた糖液などの糖類、ェ タノールなどのアルコール類、フマール酸、クェン酸、コハク酸等の有機酸類である。 これらの中ではグノレコースが好ましい。また、特に好ましいのは、粗グリセロールとグ ノレコースを 50: 50〜90: 10の重量比で含む混合物である。
培養開始時のグリセロールの好ましレ、初発濃度は上記のとおりであるが、培養中の グリセロールの消費に応じて、グリセロールを添加してもよい。
[0077] 本発明において好ましい培地は、粗グリセロールを添カ卩した培地である。粗グリセ口 ールを用いる場合は、グリセロールの純度に応じて、グリセロールの量として上記濃 度となるように粗グリセロールを培地に添加すればよい。
また、グリセロール及び粗グリセロールの両方を培地に添加してもよい。
[0078] 使用する培地は、微生物を用いた L_アミノ酸の発酵生産において従来より用いら れてきた培地を用いることができる。すなわち、炭素源に加えて、窒素源、無機イオン 及び必要に応じその他の有機成分を含有する通常の培地を用いることができる。ここ で、窒素源としては、硫酸アンモニゥム、塩化アンモニゥム、リン酸アンモニゥム等の 無機アンモニゥム塩、大豆加水分解物などの有機窒素、アンモニアガス、アンモニア 水等を用いることができる。有機微量栄養源としては、ビタミン B、 L—ホモセリンなど
1
の要求物質または酵母エキス等を適量含有させることが望ましい。これらの他に、必 要に応じて、リン酸カリウム、硫酸マグネシウム、鉄イオン、マンガンイオン等が少量添 加される。なお、本発明で用いる培地は、炭素源、窒素源、無機イオン及び必要に応 じてその他の有機微量成分を含む培地であれば、天然培地、合成培地のいずれで あよい。
[0079] 培養は好気的条件下で:!〜 7日間実施するのがよぐ培養温度は 24°C〜45°C、培 養中の pHは 5〜9がよレ、。尚、 pH調整には無機あるいは有機の酸性あるいはアル力 リ性物質、更にアンモニアガス等を使用することができる。培養液からの L—アミノ酸 の回収は通常イオン交換樹脂法、沈殿法その他の公知の方法を組み合わせることに より実施できる。なお、菌体内に L—アミノ酸が蓄積する場合には、例えば菌体を超 音波などにより破砕し、遠心分離によって菌体を除去して得られる上清からイオン交 換樹脂法などによって、 L—アミノ酸を回収することができる。
実施例 [0080] 以下、実施例にて、本発明を更に具体的に説明する。実施例には、試薬グリセロー ルとして試薬特級グレード (ナカライテスタ社製)、粗グリセロールとしてはバイオディー ゼル燃料製造過程で生じた粗グリセロール(GLYREX、 Nowit DCA_F、及び R Glycer in)を用いた。この粗グリセロールのグリセロール純度は、粗グリセロール GLYREXで は 86重量%、粗グリセロール Nowit DCA-Fでは 79重量%、粗グリセロール R Glyceri nでは 78重量%であった。
GLYREXはイタリア F〇X PETROLI社(FOX PETROLI S.P.A. Sede legale e uffici, vi a Senigallia 29, 61100 Pesaro)により製造され、イタリア SVG社(SVG ITALIA SrL Via A. Majani, 2, 40122 Bologna (BO))より動物飼料添加物として販売されている粗ダリ セローノレを入手した。 Nowit DCA—Fはドイツ Nordische Oelwerke Walther Carrouxy 社(Nordische Oelwerke Walther Carroux GmbH & Co KG, Postfach 930247 Industri estrasse 61-65, 21107 Hamburg)より販売されている。 R Glycerinはドイツ Inter-Harz 社(Inter- Harz GmbH Postfach 1411 Rostock- Koppel 17, 25314 Elmshom, 25365 Kl . Oifenseth-Sparrieshoop)より販売されてレ、る粗グリセロールである。
[0081] 〔実施例 1〕最小培地における野生株の生育
ェシエリヒア 'コリ MG1655株を LB寒天培地(トリプトン 10gん、酵母エキス 5g/L、 NaC 1 10g/L、寒天 15g/L)にて 37°Cで 16時間培養し、エーゼで細胞を搔き取り、 0.9% NaC 1に懸濁した。これを、炭素源として 0.4% (w/v)のグルコース、試薬グリセロール又は粗 グリセロールを含む 5mlの M9培地(Na HPO · 7Η Ο 12.8 g/L、 K HPO 0.6 gん、 NaCl
2 4 2 2 4
0.5 g/L、 NH CI lgん、 2mM MgSO 、 O. lmM CaCl )に植菌して、 37°Cで 24時間、試
4 4 2
験管にて培養を行った。
[0082] この培養液を希釈して、 LB寒天培地に撒き、 37°Cで 16時間培養した。生育度を正 確に測定するため、生育したコロニー数を生菌数として数えた。試験管二本ずつ行 つた培養の結果の平均値を表 1に示す。
[0083] [表 1]
—表 1
炭素源 生菌数 (mlあたり)
グルコース 1. 0 X 105
試薬グリセロール 1. 2 105
粗グリセロール GLYREX 6. 6 106 [0084] 試薬グリセロールではグノレコースと同等以上の生育を示し、粗グリセロールでは、グ ルコースの 50倍以上という予想外のよい生育を示した。
〔実施例 2〕 Lースレオニン生産培養
[0085] L—スレオニン生産菌であるェシエリヒア.コリ VKPM B-5318を、ストレプトマイシン 硫酸塩 20mg/Lを含有する LB寒天培地(トリプトン 10g/L、酵母エキス 5g/レ NaCl 10g /L、寒天 15g/L)にて 37°Cで 24時間培養した。寒天培地上の細胞を搔き取り、ストレ プトマイシン硫酸塩 20mg/Lを含有する L—スレオニン生産培地 20mLを入れた 500ml 容坂ロフラスコに植菌し、培養温度 40°Cにて、 24時間培養を行った。本培養は、炭 素源として、グルコース、試薬グリセロール、粗グリセロールをそれぞれ単独で用いた 培地と、グルコースと試薬グリセロールを 1 : 1、又はグルコースと粗グリセロールを 1: 1 で用いた培地で実施した。総炭素源量はレ、ずれも 40g/Lとした。
[0086] (Lースレオニン生産培地組成)
(A区)
炭素源 40g/L
MgSO · 7Η 0 lg/L
4 2
(Β区)
酵母エキス 2g/L
FeSO · 7Η 0 lOmg/L
4 2
MnSO ·4Η 0 lOmg/L
4 2
ΚΗ ΡΟ lg/L
2 4
(ΝΗ ) SO 16g/L
4 2 4
(C区)
炭酸カルシウム 30g/L
A区、 B区は 115°C 10分 オートクレーブ殺菌、 C区は 180°C 3時間 乾熱滅菌 室温に冷却後 3者を混合して使用。
培養終了後、添加した糖とグリセロールの消費を BF-5 (王子計測機器)にて確認し 、生育度を 600nmにおける濁度(OD)にて測定した。 L—スレォニン量は液体クロマト グラフィ一により測定を行った。フラスコ二本ずつ行った培養の結果の平均値を表 2 に示す。
本培養条件ではグルコースを炭素源としたときの Lースレオニン量は低くとどまった のに対し、試薬グリセロールを混合又は単独で添加すると著しい Lースレオニン量の 向上が認められた。さらに、粗グリセリンを単独で用いた場合、試薬グリセリンを単独 で用いた場合よりも大きな L—スレオニン量の増加が認められた。
[表 2] 表 2
素^ 0D Thr (g/l) グルコース 40g/l 9.6 3.8 グルコース 20g/l + 試薬グリセロール 20g/l 11.6 12.3 試薬グリセロール 40g/l 10.1 9.9 グルコース 20g/l + 粗グリセロール GLYREX 20g/l 11.2 12.5 粗グリセロール GLYREX 40g/l 10.4 12.0
[0089] 〔実施例 3〕L リジン生産培養
L リジン生産菌として国際公開第 2006/078039号パンフレット記載のェシエリヒア' コリ WC196DcadADldc/pCABD2 (本菌株を「WC196LC/pCABD2」と呼ぶ)を用いた。 ェシエリヒア'コリ WC196LC/pCABD2を、ストレプトマイシン硫酸塩 20mg/Lを含有する LB寒天培地(トリプトン 10g/L、酵母エキス 5g/L、 NaCl 10g/レ寒天 15g/L)にて 37°C で 24時間培養した。寒天培地上の細胞を搔き取り、ストレプトマイシン硫酸塩 20mg/L を含有する L—リジン生産培地 20mLを入れた 500ml容坂ロフラスコに植菌し、培養温 度 37°Cにて、 48時間培養を行った。本培養は、炭素源として、グルコース、試薬ダリ セロール、粗グリセロールをそれぞれ単独で用いた培地と、グルコースと試薬グリセ口 ールを 1: 1、又はグルコースと粗グリセロールを 1: 1で用いた培地で実施した。総炭 素源量はレ、ずれも 40g/Lとした。
[0090] (L リジン生産培地組成)
(A区)
炭素源 40g/L
(B区)
酵母エキス 2g/L
FeSO ·7Η O 10mg/L MnSO ·4Η O lOmg/L
KH PO lg/L
(NH ) SO 24g/L
(C区)
炭酸カルシウム 30g/L
A区、 B区は 115°C 10分 オートクレーブ殺菌、 C区は 180°C 3時間 乾熱滅菌 室温に冷却後 3者を混合して使用。
[0091] 培養終了後、添加した糖とグリセロールの消費を BF-5 (王子計測機器)にて確認し 、生育度を 600匪における濁度(OD)にて測定した。 L—リジン量はバイオテックアナ ライザ一 AS210 (サクラ精機)により測定した。フラスコ二本ずつ行った培養の結果の 平均値を表 3に示す。
グノレコースを炭素源としたときの L—リジン量に対し、試薬グリセロールを混合又は 単独で添加すると著しい L リジン量は低下した。しかし、粗グリセリンを混合又は単 独で用いた場合、試薬グリセリンを用いた場合よりも L リジン量の増加が認められ、 グノレコースを炭素源としたときの L リジン量に匹敵する量を得ることが出来た。
[0092] [表 3] 炭素源 OD Lys (g/ l ) グルコース 40g/ l 8. 6 14. 9 グルコース 20g/ l + 試薬グリセロール 20g/ l 10. 4 13. 3 試薬グリセロール 40g/ l 10. 0 13. 4 グルコース 20g/ l + 粗グリセロール GLYREX 20g/ l 10. 7 14. 3 粗グリセロール GLYREX 40g/ l 9. 9 14. 5
〔実施例 4〕各種粗グリセロールによる L リジン生産培養
L リジン生産菌であるェシエリヒア'コリ WC196LC/pCABD2を、ストレプトマイシン 硫酸塩 20mg/Lを含有する LB寒天培地(トリプトン 10g/L、酵母エキス 5g/L、 NaCl 10g /L、寒天 15g/L)にて 37°Cで 24時間培養した。寒天培地上の細胞を搔き取り、ストレ プトマイシン硫酸塩 20mg/Lを含有する L リジン生産培地 20mLを入れた 500ml容坂 口フラスコに植菌し、培養温度 37°Cにて、 48時間培養を行った。本培養は、炭素源と して、グルコース、試薬グリセロール、粗グリセロールとして GLYREX、 Nowit DCA_F、 あるいは R Glycerinを用いた。総炭素源量はいずれも 40g/Lとした。
[0094] 培養終了後、添加したグルコースとグリセロールの消費を BF-5 (王子計測機器)に て確認し、生育度を 600nmにおける濁度(OD)にて測定した。 L—リジン量はバイオテ ックアナライザー AS210 (サクラ精機)により測定した。フラスコ二本ずつ行った培養の 結果の平均値を表 4に示す。
試薬グリセロールを炭素源としたときの L—リジン量に対し、 GLYREX、 Nowit DCA-
F、あるいは R Glycerin,いずれの粗グリセロールを用いた場合も L—リジン量は増加 した。
[0095] [表 4]
表 4
炭素源 OD Lys (g/ l ) 試薬グリセロール 40g/ l 9. 7 14. 9 粗グリセロール GLYREX 40g/ l 9. 8 16. 6 粗グリセロール Now i t DCA-F 40g/ l 10. 0 15. 9 粗グリセロール R G l ycer i n 40g/ l 9. 9 16. 4
[0096] 〔実施例 5〕パントエア'アナナティスの L グルタミン酸生産菌の構築
ェシエリヒア 'コリ由来のクェン酸シンターゼ遺伝子(gltA)、ホスホェノールピルビン 酸カルボキシラーゼ遺伝子(ppc)、及びグルタミン酸デヒドロゲナーゼ遺伝子(gdhA) を搭載するプラスミド RSFCPG (欧州出願公開 1233068号明細書参照)の gltA遺伝子 を、ェシエリヒア'コリのメチルクェン酸シンターゼ遺伝子(p卬 C) (国際公開 2006/0516 60号パンフレット)で置きかえたプラスミド RSFPPGを構築した。
[0097] RSFCPGの gltA遺伝子の ORF以外の部分を増幅するプライマー 1 (配列番号 1)とプ ライマー 2 (配列番号 2)を設計した。このプライマーを用いて、 RSFCPGを錡型に PCR を行い、約 14.9kbの断片を取得した。一方、ェシエリヒア'コリ由来のメチルタエン酸シ ンターゼ遺伝子 (p卬 C)をプライマー 3 (配列番号 3)とプライマー 4 (配列番号 4)を用 レ、、ェシエリヒア'コリ W3110株の染色体 DNAを錡型として PCRを行レ、、約 1.2kbの断 片を取得した。両 PCR産物をそれぞれ BglII、 Kpnlで処理し、ライゲーシヨン後、ェシヱ リヒア 'コリ JM109株を形質転換した。出現したコロニーを全て集菌し、混合物としてプ ラスミドを抽出した。このプラスミド混合物でクェン酸シンターゼ (CS)欠損株であるェシ エリヒア 'コリ ΜΕ8330株を形質転換し、 50mg/Lゥラシル、 5mg/Lチアミン- HC1を含有 する M9最少培地(Na HPO · 7Η Ο 12.8 g/L、 Κ HPO 0.6 gん、 NaCl 0.5 g/L、 NH C
2 4 2 2 4 4
1 lg/L、 2mM MgSO、 O.lmM CaCl )に塗布した。出現した株よりプラスミドを抽出し、
4 2
これを RSFPPGとした。 L グルタミン酸生産菌であるパントエア.アナナティス NP106 株に前記プラスミド RSFPPGを導入し、 L—グルタミン酸生産菌 NP106/RSFPPG (本菌 株を「NA1株」と呼ぶ)を構築した。
[0098] NP106株は、以下のようにして得られた。先に例示したパントエア'アナナティス AJ1 3601株を、 LBGM9液体培地で 34°Cにて終夜振とう培養を行い、 1プレートにっき 100 〜200コロニーとなるよう希釈し、テトラサイクリン 12.5mg/Lを含む LBGM9プレートに塗 布した。出現したコロニーについて、テトラサイクリン 12.5mg/レ及びクロラムフエニコ ール 25mg/Lを含む LBGM9プレートにレプリカし、クロラムフエ二コール感受性となつ た株を選択し、 pSTVCBが脱落した菌株を取得し、 G106Sと命名した。さらに、 G106S 株を、 LBGM9液体培地で 34°Cにて終夜振とう培養を行い、 1プレートにっき 100〜20 0コロニーとなるよう希釈し、薬剤を含まない LBGM9プレートに塗布した。出現したコロ ニーについて、テトラサイクリン 12.5mg/Lを含む LBGM9プレート及び薬剤を含まない LBGM9プレートにレプリカし、テトラサイクリン感受性となった株を選択し、 RSFCPGが 脱落した菌株を取得し、 NP106と命名した。こうして得られた NP106株は AJ13601株が 保持する 2つのプラスミド RSFCPGと pSTVCBの両方を持たない株である。
[0099] 〔実施例 6〕 L グルタミン酸生産培養
L グノレタミン酸生産菌であるパントエア'アナナティス NA1株を、テトラサイクリン塩 酸塩 12.5mg/Lを含有する LBGM9寒天培地(トリプトン 10gん、酵母エキス 5g/L、 NaCl 10gん、 Na HPO · 7Η O 12.8 g/し、 K HPO 0.6 g/し、 NaCl 0.5 g/L、 NH CI lg/L、グ
2 4 2 2 4 4 ルコース 5g/l、寒天 15g/L)にて 34°Cで 24時間培養した。寒天培地上の細胞を搔き取 り、テトラサイクリン塩酸塩 12.5mg/Lを含有する L—グルタミン酸生産培地 5mLを注入 した試験管に植菌し、培養温度 34°Cにて、 24時間培養を行った。本培養では、炭素 源として、スクロース、グルコース、試薬グリセロール、粗グリセロール GLYREXをそれ ぞれ用いた。総炭素源量はいずれも 30g/Lとした。
[0100] (L一グルタミン酸生産培地組成)
(A区) 炭素源 30g/L
MgSO ·7Η O 0.5g/L
4 2
(B区)
(NH ) SO 20g/L
4 2 4
KH PO 2g/L
2 4
FeSO -7H O 20mg/L
4 2
MnSO -5H O 20mg/L
4 2
酵母エキス 2g/L
パントテン酸カルシウム 18mg/L
(C区)
炭酸カルシウム 20g/L
A区、 B区は 115°C 10分 オートクレーブ殺菌、 C区は 180°C 3時間 乾熱滅菌 室温に冷却後 3者を混合して使用。
[0101] 培養終了後、生育度を 600nmにおける濁度(OD)にて測定し、添カ卩したグルコース とグリセロールの消費を BF_5(王子計測機器)にて確認した。スクロースと L—ダルタミ ン酸量はバイオテックアナライザー AS210(サクラ精機)により測定した。試験管二本 ずつ行った培養の結果の平均値を表 5に示す。
グノレコースを炭素源としたときの L—グルタミン酸量に対し、試薬グリセロールを用 い場合、 L—グルタミン酸量を増加させることが出来た。さらに、粗グリセロール GLYR EXを用いた場合には、グルコースや試薬グリセロールを用いた場合よりも、著しく高 レ、 L—グルタミン酸量が認められ、スクロースを用いた場合よりも高い L—グルタミン酸 量を得ることが出来た。
[0102] [表 5] 表 5
炭素源 0D Glu (g/l) スクロース 40g/l 12.4 16.8 グルコース 40g/l 13.6 14.1 試薬グリセロール 40g/l 14.0 14.9 粗グリセロール GLYREX 40g/l 13.6 17.7 [0103] 〔実施例 7〕粗グリセロールの成分分析
GLYREX、 Nowit DCA_F、及び R Glycerinの各粗グリセロールの成分分析を実施し た。測定方法は、グリセロール、メタノールはガスクロマトグラフ法により測定した。全 窒素はケルダール法、エーテル可溶分はソックスレー抽出法により測定した。ギ酸、 酢酸は高速液体クロマトグラフ法、塩化物イオン、硫酸イオンはイオンクロマトグラフ 法により測定した。ナトリウム、カリウム、銅は原子吸光光度法、リン、鉄、カルシウム、 マグネシウム、マンガン、亜鉛は ICP (Inductively Coupled Plasma)発光分析法にて測 定を実施した。 100g当たりの含有量 (g)の測定結果を表 6に示した。
[0104] [表 6] 表 6
測定項目 GLYREX No i t DCA-F R G l cer i n グリセロール 85. 9 78. 5 78. 2 全窒 at く 0. 01 く 0. 01 く 0. 01 エーテル可溶分 0. 1 0. 3 <0. 1
Na 0. 16 2. 09 2. 1 1
K 2. 45 0. 0062 0. 144 ci- 2. 33 2. 62 3. 38
S04 2" <0. 05 0. 06 <0. 05 メタノール 0. 0054 0. 1 1 0. 0015 ギ酸 0. 02 0. 01 く 0. 01 酢酸 0. 03 0. 02 0. 03
P 0. 0085 0. 0787 0. 0219
Mg 0. 001 0. 0003 0. 0003
Fe 0. 0036 0. 00043 0. 00054
Ca 0. 0032 0. 001 1 く 0. 001
Mn 0. 00003 0. 00001 0. 00001
Cu 0. 00002 0. 00008 <0. 00001
Zn 0. 00077 <0. 00001 く 0. 00001
Na + K + Gに + SO/" * 4. 94 4. 7762 5. 63
Mg + Fe + Ca * 0. 0078 0. 00183 0. 00084
Mn + Cu + Zn * 0. 00082 0. 00009 0. 00001
* :測定限界以下のものを 0として計算
[0105] 〔配列表の説明〕
配列番号 1: gltA遺伝子の ORF以外の部分を増幅するためのプライマー
配列番号 2: gltA遺伝子の ORF以外の部分を増幅するためのプライマー
配列番号 3: prpC遺伝子増幅用プライマー 配列番号 4: prpC遺伝子増幅用プライマー
産業上の利用可能性
本発明によれば、新たな安価な炭素源を用いることにより、安価に L_アミノ酸を製 造すること力 Sできる。

Claims

請求の範囲
[I] 腸内細菌科に属し、 L_アミノ酸生産能を有する細菌をグリセロールを炭素源として 含む培地に培養し、培養物中に L一アミノ酸を生産蓄積させ、該培養物から L一アミ ノ酸を採取することを特徴とする L一アミノ酸の製造法。
[2] 培地中のグリセロールの初発濃度が l〜30w/v%である請求項 1記載の方法。
[3] 前記培地が粗グリセロールを添加した培地である請求項 1又は 2に記載の方法。
[4] 前記粗グリセロールがバイオディーゼル燃料生産にぉレ、て産生される粗グリセロー ルである請求項 3に記載の方法。
[5] 前記粗グリセロール力 炭素源として用いたときに試薬グリセロールと比較して、より 多くの L—アミノ酸を生産することが出来るグリセロールである、請求項 3または 4に記 載の方法。
[6] 前記細菌がェシエリヒア属に属する細菌である請求項 1〜5のいずれか一項に記載 の方法。
[7] 前記細菌がパントエア属に属する細菌である請求項 1〜5のいずれか一項に記載 の方法。
[8] 前記細菌がェシエリヒア'コリである請求項 6に記載の方法。
[9] 前記 L—アミノ酸が L—スレオニン、 L—グノレタミン酸、 L—リジンからなる群より選ば れる 1種以上の L_アミノ酸である、請求項 1〜8のいずれか一項に記載の方法。
[10] 前記 L—アミノ酸が L—スレオニンであり、前記細菌がァスパルテートセミアルデヒド デヒドロゲナーゼ、 thrオペロンにコードされるァスバルトキナーゼ I、ホモセリンキナー ゼ、ァスパルテートアミノトランスフェラーゼ、及び、スレオニンシンターゼからなる群よ り選択される 1種または 2種以上の酵素の活性が増強されている請求項 9に記載の方 法。
[II] 前記 L_アミノ酸が L_リジンであり、前記細菌がジヒドロジピコリン酸レダクターゼ、 ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、フォスフォ エノールビルベートカルボキシラーゼ、ァスパルテートアミノトランスフェラーゼ、ジアミ ノピメリン酸ェピメラーゼ、ァスパルテートセミアルデヒドデヒドロゲナーゼ、テトラヒドロ ジピコリン酸スクシ二ラーゼ、及び、スクシニルジアミノピメリン酸デアシラーゼからなる 群より選択される 1種または 2種以上の酵素の活性が増強されている、及び/または、 リジンデカルボキシラーゼの活性が弱化されている請求項 9に記載の方法。
[12] 前記 L アミノ酸が Lーグノレタミン酸であり、前記細菌がグルタメートデヒドロゲナー ゼ、クェン酸シンターゼ、ホスホェノールピルビン酸カルボキシラーゼ、メチルクェン 酸シンターゼからなる群より選択される 1種または 2種以上の酵素の活性が増強され ている、及び/または、 ひ一ケトグノレタル酸デヒドロゲナーゼの活性が弱化されている 請求項 9に記載の方法。
[13] 前記 L—アミノ酸が L—トリプトファンであり、前記細菌がフォスフォグリセレートデヒド ロゲナーゼ、 3—デォキシ一D—ァラピノへプッロン酸一 7_リン酸シンターゼ、 3_ デヒドロキネートシンターゼ、シキミ酸デヒドロゲナーゼ、シキミ酸キナーゼ、 5 _エノー ル酸ピルビルシキミ酸 3 _リン酸シンターゼ、コリスミ酸シンターゼ、プレフェン酸デヒド ラターゼ、コリスミ酸ムターゼからなる群より選択される 1種または 2種以上の酵素の活 性が増強されている請求項 9に記載の方法。
PCT/JP2007/053803 2006-03-03 2007-02-28 L-アミノ酸の製造法 WO2007100009A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07737522.8A EP2003209B1 (en) 2006-03-03 2007-02-28 Method for producing l-amino acid
US12/202,484 US20090093029A1 (en) 2006-03-03 2008-09-02 Method for producing l-amino acid
US14/027,365 US20140045228A1 (en) 2006-03-03 2013-09-16 Method for Producing L-Amino Acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006057528A JP2009118740A (ja) 2006-03-03 2006-03-03 L−アミノ酸の製造法
JP2006-057528 2006-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/202,484 Continuation US20090093029A1 (en) 2006-03-03 2008-09-02 Method for producing l-amino acid

Publications (1)

Publication Number Publication Date
WO2007100009A1 true WO2007100009A1 (ja) 2007-09-07

Family

ID=38459110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053803 WO2007100009A1 (ja) 2006-03-03 2007-02-28 L-アミノ酸の製造法

Country Status (4)

Country Link
US (2) US20090093029A1 (ja)
EP (1) EP2003209B1 (ja)
JP (1) JP2009118740A (ja)
WO (1) WO2007100009A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011354A1 (ja) * 2007-07-19 2009-01-22 Ajinomoto Co., Inc. L-アミノ酸の製造法
FR2922218A1 (fr) * 2007-09-27 2009-04-17 Ajinomoto Kk Bacterie de la famille des enterobacteriaceae produisant un l-aminoacide et procede de production de l-aminoacides l'utilisant
WO2009051262A1 (en) 2007-10-17 2009-04-23 Ajinomoto Co., Inc. A method for producing an l-amino acid
WO2009093703A1 (ja) * 2008-01-23 2009-07-30 Ajinomoto Co., Inc. L-アミノ酸の製造法
WO2010027022A1 (ja) * 2008-09-05 2010-03-11 味の素株式会社 L-アミノ酸生産菌及びl-アミノ酸の製造法
US7833761B2 (en) 2007-09-04 2010-11-16 Ajinomoto Co., Inc. Amino acid producing microorganism and a method for producing an amino acid
JP2010537660A (ja) * 2007-09-07 2010-12-09 アールト・ユニバーシティ・ファウンデイション アルコールからの脂肪の生産
US8679798B2 (en) 2007-12-21 2014-03-25 Ajinomoto Co., Inc. Method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885616B1 (ko) * 2006-06-26 2009-02-24 씨제이제일제당 (주) 글리세롤을 이용한 아미노산의 생산 방법
JP2010017081A (ja) * 2006-10-10 2010-01-28 Ajinomoto Co Inc L−アミノ酸の製造法
WO2008072761A2 (en) * 2006-12-11 2008-06-19 Ajinomoto Co., Inc. Method for producing an l-amino acid
RU2006145712A (ru) * 2006-12-22 2008-06-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) Способ получения l-аминокислот методом ферментации с использованием бактерий, обладающих повышенной способностью к утилизации глицерина
JP2010110217A (ja) * 2007-02-22 2010-05-20 Ajinomoto Co Inc L−アミノ酸生産菌及びl−アミノ酸の製造法
JP2010130899A (ja) 2007-03-14 2010-06-17 Ajinomoto Co Inc L−グルタミン酸系アミノ酸生産微生物及びアミノ酸の製造法
JPWO2008133131A1 (ja) * 2007-04-16 2010-07-22 味の素株式会社 有機酸の製造方法
WO2008133161A1 (ja) * 2007-04-17 2008-11-06 Ajinomoto Co., Inc. カルボキシル基を有する酸性物質の製造法
JP2011167071A (ja) * 2008-05-22 2011-09-01 Ajinomoto Co Inc L−アミノ酸の製造法
JP2010142200A (ja) 2008-12-22 2010-07-01 Ajinomoto Co Inc L−リジンの製造法
JPWO2011013707A1 (ja) 2009-07-29 2013-01-10 味の素株式会社 L−アミノ酸の製造法
JP2012223092A (ja) 2009-08-28 2012-11-15 Ajinomoto Co Inc L−アミノ酸の製造法
JP2013074795A (ja) 2010-02-08 2013-04-25 Ajinomoto Co Inc 変異型rpsA遺伝子及びL−アミノ酸の製造法
US8367829B2 (en) 2010-05-10 2013-02-05 Gilead Sciences, Inc. Bi-functional pyrazolopyridine compounds
EP2569285A1 (en) 2010-05-10 2013-03-20 Gilead Sciences, Inc. Bifunctional quinoline derivatives
JP2014036576A (ja) 2010-12-10 2014-02-27 Ajinomoto Co Inc L−アミノ酸の製造法
MX2015015336A (es) * 2013-05-17 2016-03-04 Xyleco Inc Procesamiento de biomasa.

Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR356739A (fr) 1904-09-20 1905-12-07 Charles Glauser Perrin Mécanisme de remontoir et de mise à l'heure
JPS565099A (en) 1979-06-25 1981-01-20 Ajinomoto Co Inc Production of l-histidine through fermentation process and microorganism used therefor
US4278765A (en) 1978-06-30 1981-07-14 Debabov Vladimir G Method for preparing strains which produce aminoacids
GB2075056A (en) 1980-04-14 1981-11-11 Ajinomoto Kk L-proline-producing Microorganisms
JPS5771397A (en) 1980-08-22 1982-05-04 Ajinomoto Co Inc Preparation of l-tryptophan by fermentation method
US4346170A (en) 1979-07-23 1982-08-24 Ajinomoto Company, Incorporated Method for producing L-lysine by fermentation
DE3127361A1 (de) 1981-07-08 1983-02-03 Schering Ag, 1000 Berlin Und 4619 Bergkamen Herstellung und anwendung von plasmiden mit genen fuer die biosynthese von l-prolin
US4407952A (en) 1979-06-15 1983-10-04 Ajinomoto Company Incorporated Method for producing L-phenylalanine by fermentation
JPS6234397B2 (ja) 1979-11-15 1987-07-27 Ajinomoto Kk
JPS62244382A (ja) 1986-04-16 1987-10-24 Ajinomoto Co Inc 新規プロモーター及び該プロモーターを用いた遺伝子発現方法
KR890003681B1 (ko) 1987-03-26 1989-09-30 주식회사 미원 미생물에 의한 l-페닐 알라닌의 제조방법
JPH02458A (ja) 1987-10-12 1990-01-05 Ajinomoto Co Inc 発酵法によるl―イソロイシンの製造法
WO1990004636A1 (en) 1988-10-25 1990-05-03 Vsesojuzny Nauchno-Issledovatelsky Institut Genetiki I Selektsii Promyshlennykh Mikroorganizmov (Vniigenetika) Strain of bacteria escherichia coli, producer of l-threonine
JPH05130882A (ja) 1991-11-11 1993-05-28 Kyowa Hakko Kogyo Co Ltd 発酵法によるl−イソロイシンの製造法
JPH05227977A (ja) 1991-09-20 1993-09-07 Ajinomoto Co Inc エシェリヒア・コリによる新規l−スレオニン生産菌の創成とそれによるl−スレオニンの生産方法
JPH05304969A (ja) 1992-02-25 1993-11-19 Kyowa Hakko Kogyo Co Ltd 発酵法によるアミノ酸の製造法
RU2003677C1 (ru) 1992-03-30 1993-11-30 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм бактерий ESCHERICHIA COLI - продуцент L-гистидина
WO1994008031A1 (de) 1992-09-28 1994-04-14 Consortium für elektrochemische Industrie GmbH Mikroorganismen für die produktion von tryptophan und verfahren zu ihrer herstellung
EP0593792A1 (en) 1992-10-14 1994-04-27 Ajinomoto Co., Inc. Novel L-threonine-producing microbacteria and a method for the production of L-threonine
US5354672A (en) 1992-11-24 1994-10-11 Ian Fotheringham Materials and methods for hypersecretion of amino acids
US5376538A (en) 1991-09-04 1994-12-27 Kyowa Hakko Kogyo Co., Ltd. Process for producing L-threonine with strains of E coli resistant to phenylalanine and leucine
US5378616A (en) 1991-08-07 1995-01-03 Ajinomoto Co., Inc. Mutant Escherichia coli capable of enhanced L-glutamic acid production by fermentation
WO1995006114A1 (fr) 1993-08-24 1995-03-02 Ajinomoto Co., Inc. Allele de phosphenolpyruvate carboxylase, gene de cet allele et procede de production de l'acide amine
WO1995034672A1 (fr) 1994-06-14 1995-12-21 Ajinomoto Co., Inc. GENE A DESHYDROGENASE α-CETOGLUTARIQUE
WO1996006926A1 (fr) 1994-08-30 1996-03-07 Ajinomoto Co., Inc. Procede pour produire de la l-valine et de la l-leucine
JPH0870879A (ja) 1994-06-30 1996-03-19 Kyowa Hakko Kogyo Co Ltd 発酵法によるl−ロイシンの製造法
US5573945A (en) 1994-01-10 1996-11-12 Ajinomoto Co., Inc. Mutant and method for producing L-glutamic acid by fermentation
EP0488424B1 (en) 1990-11-30 1997-03-05 Ajinomoto Co., Inc. Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation
WO1997008333A1 (fr) 1995-08-30 1997-03-06 Ajinomoto Co., Inc. Procede de production d'acides amines levogyres
US5658766A (en) 1991-05-30 1997-08-19 Ajinomoto Co., Inc. Strains of Escherichia coli which produce isoleucine or valine and a method for their production
US5705371A (en) 1990-06-12 1998-01-06 Ajinomoto Co., Inc. Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine
WO1998004715A1 (en) 1996-07-30 1998-02-05 Archer-Daniels-Midland Company Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
US5756345A (en) 1995-09-05 1998-05-26 Degussa Aktiengesellschaft Production of tryptophan by the bacterium Escherichia coli
JPH10165180A (ja) 1996-12-05 1998-06-23 Ajinomoto Co Inc L−リジンの製造法
RU2119536C1 (ru) 1997-01-21 1998-09-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм escherichia coli - продуцент l-гистидина
US5827698A (en) 1994-12-09 1998-10-27 Ajinomoto Co., Inc. Lysine decarboxylase gene and method of producing l-lysine
US5830716A (en) 1993-10-28 1998-11-03 Ajinomoto Co., Inc. Increased amounts of substances by modifying a microorganism to increase production of NADPH from NADH
WO1999018228A2 (de) 1997-10-04 1999-04-15 Forschungszentrum Jülich GmbH Verfahren zur mikrobiellen herstellung von aminosäuren der aspartat- und/oder glutamatfamilie und im verfahren einsetzbare mittel
US5908768A (en) 1996-04-23 1999-06-01 Ajinomoto Co., Inc. Process for producing L-glutamic acid by fermentation with E. coli resistant to aspartic acid antimetabolite
JPH11155571A (ja) 1997-11-25 1999-06-15 Ajinomoto Co Inc L−システインの製造法
JPH11192088A (ja) 1993-12-08 1999-07-21 Ajinomoto Co Inc 発酵法によるl−リジンの製造法
US5972663A (en) 1997-06-19 1999-10-26 Consortium Fur Elektrochemische Industrie Gmbh Microorganisms and processes for the fermentative preparation of L-cysteine, L-cystine, N-acetylserine or thiazolidine derivatives
EP0952221A2 (en) 1998-03-18 1999-10-27 Ajinomoto Co., Ltd. L-Glutamic acid-producing bacterium and method for producing L-glutamic acid
EP0955368A2 (en) 1998-03-18 1999-11-10 Ajinomoto Co., Ltd. L-glutamic acid-producing bacterium and method for producing l-glutamic acid
US5998178A (en) 1994-05-30 1999-12-07 Ajinomoto Co., Ltd. L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation
EP0994190A2 (en) 1998-10-13 2000-04-19 Ajinomoto Co., Inc. DNA conferring L-homoserine resistance to bacteria, and its use
EP1010755A1 (en) 1998-12-18 2000-06-21 Ajinomoto Co., Inc. Method for producing L-Glutamic acid by fermentation
EP1013765A1 (en) 1998-12-23 2000-06-28 Ajinomoto Co., Ltd. Gene and method for producing L-amino acids
EP1016710A2 (en) 1998-12-30 2000-07-05 Ajinomoto Co., Inc. Method for producing L-amino acids
US6110714A (en) 1995-08-23 2000-08-29 Ajinomoto Co., Inc. Process for producing L-glutamic acid by fermentation
JP2000253879A (ja) 1999-03-09 2000-09-19 Ajinomoto Co Inc L−リジンの製造法
US6124121A (en) 1997-10-29 2000-09-26 Ajinomoto Co., Inc. Method for producing L-leucine
EP1078989A2 (en) 1999-08-20 2001-02-28 Ajinomoto Co., Ltd. Method for producing L-glutamic acid by fermentation accompanied by precipitation
JP2001057896A (ja) 1999-06-15 2001-03-06 Ajinomoto Co Inc L−リジンの製造法
EP1085087A2 (en) 1999-09-20 2001-03-21 Kyowa Hakko Kogyo Co., Ltd. Method for producing amino acids by fermentation using aminoquinoline resistant bacterial strains
US6218168B1 (en) 1995-10-26 2001-04-17 CONSORTIUM FüR ELEKTROCHEMISCHE INUDSTRIE GMBH Process for preparing O-acetylserine, L-cysteine and L-cysteine-related products
EP1092776A1 (en) 1999-10-14 2001-04-18 Ajinomoto Co., Inc. Method for producing L-amino acid by fermentation
WO2001027307A1 (de) 1999-10-14 2001-04-19 Consortium für elektrochemische Industrie GmbH Verfahren zur fermentativen herstellung von l-cystein oder l-cystein-derivaten
US6258554B1 (en) 1998-07-03 2001-07-10 Kyowa Hakko Kogyo Co., Ltd. Method for producing metabolites biologically synthesized via phosphoribosyl pyrophosphate
EP1149911A2 (en) 2000-04-26 2001-10-31 Ajinomoto Co., Ltd. Amino acid producing strains belonging to the genus Escherichia and method for producing amino acid
EP1170358A1 (en) 2000-07-06 2002-01-09 Ajinomoto Co., Ltd. L-arginine producing Escherichia coli and method of producing L-arginine
EP1170376A1 (en) 2000-07-05 2002-01-09 Ajinomoto Co., Inc. Method for producing substances utilizing microorganisms
EP1170361A2 (en) 2000-06-28 2002-01-09 Ajinomoto Co., Inc. New mutant N-Acetylglutamate synthase and method for L-Arginine production
EP1172433A1 (en) 2000-07-06 2002-01-16 Ajinomoto Co., Inc. Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine
US6344347B1 (en) 1999-09-20 2002-02-05 Kyowa Hakko Kogyo Co., Ltd. Method for producing L-amino acids by fermentation
WO2002026993A1 (en) 2000-09-28 2002-04-04 Archer-Daniels-Midland Company Escherichia coli strains which over-produce l-threonine and processes for the production of l-threonine by fermentation
US20020058315A1 (en) 2000-09-26 2002-05-16 Ajinomoto Co., Inc. Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine
US6403342B1 (en) 1999-07-09 2002-06-11 Anjinomoto Co., Inc. DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine
US20020110876A1 (en) 2000-08-11 2002-08-15 Ajinomoto Co., Inc. Method for producing threonine and isoleucine
EP1233068A2 (en) 2001-02-20 2002-08-21 Ajinomoto Co., Inc. Method for producing L-glutamic acid
EP1239041A2 (en) 2001-02-13 2002-09-11 Ajinomoto Co., Inc. Method for producing L-amino acid using bacteria belonging to the genus Escherichia
EP1253195A1 (en) 2000-01-21 2002-10-30 Ajinomoto Co., Inc. Process for producing l-lysine
WO2003044191A1 (fr) 2001-11-23 2003-05-30 Ajinomoto Co.,Inc. Procede de production de l-aminoacides a l'aide d'escherichia
WO2003044192A1 (fr) 2001-11-23 2003-05-30 Ajinomoto Co.,Inc. Procede de production de l-aminoacides a l'aide d'escherichia
JP2003274988A (ja) * 2002-03-27 2003-09-30 Ajinomoto Co Inc L−アミノ酸の製造法
RU2215783C2 (ru) 2001-05-15 2003-11-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото - Генетика" МУТАНТНАЯ N-АЦЕТИЛГЛУТАМАТ СИНТАЗА (ВАРИАНТЫ), ФРАГМЕНТ ДНК, ШТАММ БАКТЕРИИ Escherichia coli - ПРОДУЦЕНТ АРГИНИНА (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА
WO2003097839A1 (en) 2002-05-15 2003-11-27 Cj Corporation Nucleotide sequence of threonine operon irrepressible by isoleucine and method for producing l-threonine using transformed host cell containing the same
WO2005010175A1 (en) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity
RU2003121601A (ru) 2003-07-16 2005-02-27 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") (RU) Мутантная серинацетилтрансфераза
JP2005073697A (ja) * 2003-08-29 2005-03-24 Ajinomoto Co Inc 腸内細菌科の細菌を用いたl−ヒスチジンの製造法
WO2005049808A1 (en) 2003-11-21 2005-06-02 Ajinomoto Co., Inc. Method for producing l-amino acid by fermentation
WO2005073390A2 (en) 2004-01-30 2005-08-11 Ajinomoto Co., Inc. L-amino acid-producing microorganism and method for producing l-amino acid
WO2005085419A1 (en) * 2004-03-04 2005-09-15 Ajinomoto Co., Inc. L-glutamic acid-producing microorganism and a method for producing l-glutamic acid
WO2005103275A1 (ja) 2004-04-26 2005-11-03 Ajinomoto Co., Ltd. 発酵法によるl-トリプトファンの製造法
WO2006051660A1 (ja) 2004-11-09 2006-05-18 Ajinomoto Co., Inc. L-アミノ酸の製造法
WO2006078039A1 (en) 2005-01-18 2006-07-27 Ajinomoto Co., Inc. L-amino acid producing microorganism and a method for producing l-amino acid
EP1715056A1 (de) 2005-04-23 2006-10-25 Degussa AG Verfahren zur Herstellung von L-Aminosäuren unter Verwendung verbesserter Stämme der Familie Enterobacteriaceae
EP1715055A2 (de) 2005-04-22 2006-10-25 Degussa GmbH Verfahren zur Herstellung von L-Aminosäuren unter Verwendung verbesserter Stämme der Familie Enterobacteriaceae

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1200353A (en) * 1966-08-04 1970-07-29 Ajinomoto Kk Method of producing l-lysine
US6132999A (en) * 1992-09-21 2000-10-17 Ajinomoto Co., Inc. L-threonine-producing microbacteria and a method for the production of L-threonine
WO1994011517A1 (en) * 1992-11-10 1994-05-26 Ajinomoto Co., Inc. Process for producing l-threonine by fermentation
JP4088982B2 (ja) * 1996-10-15 2008-05-21 味の素株式会社 発酵法によるl−アミノ酸の製造法
JP4362959B2 (ja) * 2000-08-24 2009-11-11 味の素株式会社 塩基性アミノ酸の製造方法
ATE330022T1 (de) * 2000-12-22 2006-07-15 Ajinomoto Kk Verfahren zur herstellung einer zielsubstanz durch fermentation
JP2003250544A (ja) * 2002-03-04 2003-09-09 National Institute Of Technology & Evaluation タンパク質の性質を改変する方法
US6911332B2 (en) * 2002-06-12 2005-06-28 Ajinomoto Co., Inc. Isolated polynucleotides encoding d-arabino-3-hexulose-6-phosphate synthases from Methylophilus methylotrophus
AU2003205041A1 (en) * 2002-07-12 2004-01-29 Ajinomoto Co., Inc. Method for producing target substance by fermentation
US7060475B2 (en) * 2003-02-28 2006-06-13 Ajinomoto Co., Inc. Polynucleotides encoding polypeptides involved in intermediates metabolism of central metabolic pathway in methylophilus methylotrophus
US7029893B2 (en) * 2003-02-28 2006-04-18 Ajinomoto Co., Inc. Polynucleotides encoding polypeptides involved in amino acid biosynthesis in methylophilus methylotrophus
US7026149B2 (en) * 2003-02-28 2006-04-11 Ajinomoto Co., Inc. Polynucleotides encoding polypeptides involved in the stress response to environmental changes in Methylophilus methylotrophus
US7468262B2 (en) * 2003-05-16 2008-12-23 Ajinomoto Co., Inc. Polynucleotides encoding useful polypeptides in corynebacterium glutamicum ssp. lactofermentum
RU2275424C2 (ru) * 2003-12-05 2006-04-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Способ получения l-треонина с использованием бактерий, принадлежащих к роду escherichia
US7915018B2 (en) * 2004-10-22 2011-03-29 Ajinomoto Co., Inc. Method for producing L-amino acids using bacteria of the Enterobacteriaceae family
US20070004014A1 (en) * 2005-06-29 2007-01-04 Yuichiro Tsuji Method for producing l-threonine

Patent Citations (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR356739A (fr) 1904-09-20 1905-12-07 Charles Glauser Perrin Mécanisme de remontoir et de mise à l'heure
US4278765A (en) 1978-06-30 1981-07-14 Debabov Vladimir G Method for preparing strains which produce aminoacids
US4407952A (en) 1979-06-15 1983-10-04 Ajinomoto Company Incorporated Method for producing L-phenylalanine by fermentation
JPS565099A (en) 1979-06-25 1981-01-20 Ajinomoto Co Inc Production of l-histidine through fermentation process and microorganism used therefor
US4388405A (en) 1979-06-25 1983-06-14 Ajinomoto Company Incorporated Method for producing L-histidine by fermentation
US4346170A (en) 1979-07-23 1982-08-24 Ajinomoto Company, Incorporated Method for producing L-lysine by fermentation
JPS6234397B2 (ja) 1979-11-15 1987-07-27 Ajinomoto Kk
GB2075056A (en) 1980-04-14 1981-11-11 Ajinomoto Kk L-proline-producing Microorganisms
JPS5771397A (en) 1980-08-22 1982-05-04 Ajinomoto Co Inc Preparation of l-tryptophan by fermentation method
US4371614A (en) 1980-08-22 1983-02-01 Ajinomoto Co., Inc. E.Coli bacteria carrying recombinant plasmids and their use in the fermentative production of L-tryptophan
DE3127361A1 (de) 1981-07-08 1983-02-03 Schering Ag, 1000 Berlin Und 4619 Bergkamen Herstellung und anwendung von plasmiden mit genen fuer die biosynthese von l-prolin
JPS62244382A (ja) 1986-04-16 1987-10-24 Ajinomoto Co Inc 新規プロモーター及び該プロモーターを用いた遺伝子発現方法
KR890003681B1 (ko) 1987-03-26 1989-09-30 주식회사 미원 미생물에 의한 l-페닐 알라닌의 제조방법
JPH02458A (ja) 1987-10-12 1990-01-05 Ajinomoto Co Inc 発酵法によるl―イソロイシンの製造法
WO1990004636A1 (en) 1988-10-25 1990-05-03 Vsesojuzny Nauchno-Issledovatelsky Institut Genetiki I Selektsii Promyshlennykh Mikroorganizmov (Vniigenetika) Strain of bacteria escherichia coli, producer of l-threonine
US5175107A (en) 1988-10-25 1992-12-29 Ajinomoto Co., Inc. Bacterial strain of escherichia coli bkiim b-3996 as the producer of l-threonine
US5631157A (en) 1988-10-25 1997-05-20 Ajinomoto Co., Inc. Bacterial strain of Escherichia coli VNII genetika 472T23 as the producer of L-threonine
US5705371A (en) 1990-06-12 1998-01-06 Ajinomoto Co., Inc. Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine
EP0488424B1 (en) 1990-11-30 1997-03-05 Ajinomoto Co., Inc. Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation
US5658766A (en) 1991-05-30 1997-08-19 Ajinomoto Co., Inc. Strains of Escherichia coli which produce isoleucine or valine and a method for their production
US5393671A (en) 1991-08-07 1995-02-28 Ajinomoto Co., Inc. Mutant Escherichia coli capable of enhanced L-glutamic acid production
US5378616A (en) 1991-08-07 1995-01-03 Ajinomoto Co., Inc. Mutant Escherichia coli capable of enhanced L-glutamic acid production by fermentation
US5376538A (en) 1991-09-04 1994-12-27 Kyowa Hakko Kogyo Co., Ltd. Process for producing L-threonine with strains of E coli resistant to phenylalanine and leucine
JPH05227977A (ja) 1991-09-20 1993-09-07 Ajinomoto Co Inc エシェリヒア・コリによる新規l−スレオニン生産菌の創成とそれによるl−スレオニンの生産方法
JPH05130882A (ja) 1991-11-11 1993-05-28 Kyowa Hakko Kogyo Co Ltd 発酵法によるl−イソロイシンの製造法
JPH05304969A (ja) 1992-02-25 1993-11-19 Kyowa Hakko Kogyo Co Ltd 発酵法によるアミノ酸の製造法
US5474918A (en) 1992-02-25 1995-12-12 Kyowa Kakko Kogyo Co., Ltd. Process for the production of L-threonine and L-isoleucine by fermentation of Escherichia coli
RU2003677C1 (ru) 1992-03-30 1993-11-30 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм бактерий ESCHERICHIA COLI - продуцент L-гистидина
WO1994008031A1 (de) 1992-09-28 1994-04-14 Consortium für elektrochemische Industrie GmbH Mikroorganismen für die produktion von tryptophan und verfahren zu ihrer herstellung
US6180373B1 (en) 1992-09-28 2001-01-30 Consortium f{umlaut over (u)}r elektrochemische Industrie GmbH Microorganisms for the production of tryptophan and process for the preparation thereof
EP0593792A1 (en) 1992-10-14 1994-04-27 Ajinomoto Co., Inc. Novel L-threonine-producing microbacteria and a method for the production of L-threonine
EP0593792B1 (en) 1992-10-14 1997-05-14 Ajinomoto Co., Inc. Novel L-threonine-producing microbacteria and a method for the production of L-threonine
US5354672A (en) 1992-11-24 1994-10-11 Ian Fotheringham Materials and methods for hypersecretion of amino acids
WO1995006114A1 (fr) 1993-08-24 1995-03-02 Ajinomoto Co., Inc. Allele de phosphenolpyruvate carboxylase, gene de cet allele et procede de production de l'acide amine
EP0733712B1 (en) 1993-10-28 2001-12-12 Ajinomoto Co., Inc. Process for producing substance
US5830716A (en) 1993-10-28 1998-11-03 Ajinomoto Co., Inc. Increased amounts of substances by modifying a microorganism to increase production of NADPH from NADH
US6040160A (en) 1993-12-08 2000-03-21 Ajinomoto Co., Inc. Method of producing L-lysine by fermentation
JPH11192088A (ja) 1993-12-08 1999-07-21 Ajinomoto Co Inc 発酵法によるl−リジンの製造法
US5573945A (en) 1994-01-10 1996-11-12 Ajinomoto Co., Inc. Mutant and method for producing L-glutamic acid by fermentation
US5998178A (en) 1994-05-30 1999-12-07 Ajinomoto Co., Ltd. L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation
WO1995034672A1 (fr) 1994-06-14 1995-12-21 Ajinomoto Co., Inc. GENE A DESHYDROGENASE α-CETOGLUTARIQUE
JPH0870879A (ja) 1994-06-30 1996-03-19 Kyowa Hakko Kogyo Co Ltd 発酵法によるl−ロイシンの製造法
WO1996006926A1 (fr) 1994-08-30 1996-03-07 Ajinomoto Co., Inc. Procede pour produire de la l-valine et de la l-leucine
US5827698A (en) 1994-12-09 1998-10-27 Ajinomoto Co., Inc. Lysine decarboxylase gene and method of producing l-lysine
US6110714A (en) 1995-08-23 2000-08-29 Ajinomoto Co., Inc. Process for producing L-glutamic acid by fermentation
WO1997008333A1 (fr) 1995-08-30 1997-03-06 Ajinomoto Co., Inc. Procede de production d'acides amines levogyres
US6319696B1 (en) 1995-08-30 2001-11-20 Ajinomoto Co., Inc. Process for producing L-amino acids
EP0877090B1 (en) 1995-08-30 2005-11-23 Ajinomoto Co., Inc. Process for producing l-amino acids
US5756345A (en) 1995-09-05 1998-05-26 Degussa Aktiengesellschaft Production of tryptophan by the bacterium Escherichia coli
US6218168B1 (en) 1995-10-26 2001-04-17 CONSORTIUM FüR ELEKTROCHEMISCHE INUDSTRIE GMBH Process for preparing O-acetylserine, L-cysteine and L-cysteine-related products
US5908768A (en) 1996-04-23 1999-06-01 Ajinomoto Co., Inc. Process for producing L-glutamic acid by fermentation with E. coli resistant to aspartic acid antimetabolite
US5939307A (en) 1996-07-30 1999-08-17 The Archer-Daniels-Midland Company Strains of Escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
WO1998004715A1 (en) 1996-07-30 1998-02-05 Archer-Daniels-Midland Company Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
JPH10165180A (ja) 1996-12-05 1998-06-23 Ajinomoto Co Inc L−リジンの製造法
RU2119536C1 (ru) 1997-01-21 1998-09-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм escherichia coli - продуцент l-гистидина
US5972663A (en) 1997-06-19 1999-10-26 Consortium Fur Elektrochemische Industrie Gmbh Microorganisms and processes for the fermentative preparation of L-cysteine, L-cystine, N-acetylserine or thiazolidine derivatives
WO1999018228A2 (de) 1997-10-04 1999-04-15 Forschungszentrum Jülich GmbH Verfahren zur mikrobiellen herstellung von aminosäuren der aspartat- und/oder glutamatfamilie und im verfahren einsetzbare mittel
US6124121A (en) 1997-10-29 2000-09-26 Ajinomoto Co., Inc. Method for producing L-leucine
JPH11155571A (ja) 1997-11-25 1999-06-15 Ajinomoto Co Inc L−システインの製造法
EP0952221A2 (en) 1998-03-18 1999-10-27 Ajinomoto Co., Ltd. L-Glutamic acid-producing bacterium and method for producing L-glutamic acid
US6331419B1 (en) 1998-03-18 2001-12-18 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
EP0955368A2 (en) 1998-03-18 1999-11-10 Ajinomoto Co., Ltd. L-glutamic acid-producing bacterium and method for producing l-glutamic acid
US6258554B1 (en) 1998-07-03 2001-07-10 Kyowa Hakko Kogyo Co., Ltd. Method for producing metabolites biologically synthesized via phosphoribosyl pyrophosphate
EP0994190A2 (en) 1998-10-13 2000-04-19 Ajinomoto Co., Inc. DNA conferring L-homoserine resistance to bacteria, and its use
EP1010755A1 (en) 1998-12-18 2000-06-21 Ajinomoto Co., Inc. Method for producing L-Glutamic acid by fermentation
EP1013765A1 (en) 1998-12-23 2000-06-28 Ajinomoto Co., Ltd. Gene and method for producing L-amino acids
EP1016710A2 (en) 1998-12-30 2000-07-05 Ajinomoto Co., Inc. Method for producing L-amino acids
JP2000253879A (ja) 1999-03-09 2000-09-19 Ajinomoto Co Inc L−リジンの製造法
JP2001057896A (ja) 1999-06-15 2001-03-06 Ajinomoto Co Inc L−リジンの製造法
US6403342B1 (en) 1999-07-09 2002-06-11 Anjinomoto Co., Inc. DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine
EP1078989A2 (en) 1999-08-20 2001-02-28 Ajinomoto Co., Ltd. Method for producing L-glutamic acid by fermentation accompanied by precipitation
US6344347B1 (en) 1999-09-20 2002-02-05 Kyowa Hakko Kogyo Co., Ltd. Method for producing L-amino acids by fermentation
EP1085087A2 (en) 1999-09-20 2001-03-21 Kyowa Hakko Kogyo Co., Ltd. Method for producing amino acids by fermentation using aminoquinoline resistant bacterial strains
WO2001027307A1 (de) 1999-10-14 2001-04-19 Consortium für elektrochemische Industrie GmbH Verfahren zur fermentativen herstellung von l-cystein oder l-cystein-derivaten
EP1092776A1 (en) 1999-10-14 2001-04-18 Ajinomoto Co., Inc. Method for producing L-amino acid by fermentation
EP1253195A1 (en) 2000-01-21 2002-10-30 Ajinomoto Co., Inc. Process for producing l-lysine
JP2001346578A (ja) 2000-04-26 2001-12-18 Ajinomoto Co Inc アミノ酸生産菌及びアミノ酸の製造法
EP1149911A2 (en) 2000-04-26 2001-10-31 Ajinomoto Co., Ltd. Amino acid producing strains belonging to the genus Escherichia and method for producing amino acid
EP1170361A2 (en) 2000-06-28 2002-01-09 Ajinomoto Co., Inc. New mutant N-Acetylglutamate synthase and method for L-Arginine production
EP1170376A1 (en) 2000-07-05 2002-01-09 Ajinomoto Co., Inc. Method for producing substances utilizing microorganisms
EP1170358A1 (en) 2000-07-06 2002-01-09 Ajinomoto Co., Ltd. L-arginine producing Escherichia coli and method of producing L-arginine
EP1172433A1 (en) 2000-07-06 2002-01-16 Ajinomoto Co., Inc. Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine
US20020110876A1 (en) 2000-08-11 2002-08-15 Ajinomoto Co., Inc. Method for producing threonine and isoleucine
US20020058315A1 (en) 2000-09-26 2002-05-16 Ajinomoto Co., Inc. Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine
RU2207371C2 (ru) 2000-09-26 2003-06-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Способ получения l-аминокислот семейства l-глутаминовой кислоты, штамм бактерии escherichia coli - продуцент l-аминокислоты (варианты)
WO2002026993A1 (en) 2000-09-28 2002-04-04 Archer-Daniels-Midland Company Escherichia coli strains which over-produce l-threonine and processes for the production of l-threonine by fermentation
EP1239041A2 (en) 2001-02-13 2002-09-11 Ajinomoto Co., Inc. Method for producing L-amino acid using bacteria belonging to the genus Escherichia
EP1233068A2 (en) 2001-02-20 2002-08-21 Ajinomoto Co., Inc. Method for producing L-glutamic acid
US6596517B2 (en) 2001-02-20 2003-07-22 Ajinomoto Co., Inc. Method for producing L-glutamic acid
RU2215783C2 (ru) 2001-05-15 2003-11-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото - Генетика" МУТАНТНАЯ N-АЦЕТИЛГЛУТАМАТ СИНТАЗА (ВАРИАНТЫ), ФРАГМЕНТ ДНК, ШТАММ БАКТЕРИИ Escherichia coli - ПРОДУЦЕНТ АРГИНИНА (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА
WO2003044191A1 (fr) 2001-11-23 2003-05-30 Ajinomoto Co.,Inc. Procede de production de l-aminoacides a l'aide d'escherichia
WO2003044192A1 (fr) 2001-11-23 2003-05-30 Ajinomoto Co.,Inc. Procede de production de l-aminoacides a l'aide d'escherichia
US20030148473A1 (en) 2001-11-23 2003-08-07 Ajinomoto Co., Inc. Method for producing L-amino acid using bacteria belonging to the genus escherichia
US20030157667A1 (en) 2001-11-23 2003-08-21 Ajinomoto Co., Inc. Method for producing L-amino acids using bacteria belonging to the genus escherichia
JP2003274988A (ja) * 2002-03-27 2003-09-30 Ajinomoto Co Inc L−アミノ酸の製造法
WO2003097839A1 (en) 2002-05-15 2003-11-27 Cj Corporation Nucleotide sequence of threonine operon irrepressible by isoleucine and method for producing l-threonine using transformed host cell containing the same
RU2003121601A (ru) 2003-07-16 2005-02-27 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") (RU) Мутантная серинацетилтрансфераза
WO2005010175A1 (en) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity
JP2005073697A (ja) * 2003-08-29 2005-03-24 Ajinomoto Co Inc 腸内細菌科の細菌を用いたl−ヒスチジンの製造法
WO2005049808A1 (en) 2003-11-21 2005-06-02 Ajinomoto Co., Inc. Method for producing l-amino acid by fermentation
WO2005073390A2 (en) 2004-01-30 2005-08-11 Ajinomoto Co., Inc. L-amino acid-producing microorganism and method for producing l-amino acid
WO2005085419A1 (en) * 2004-03-04 2005-09-15 Ajinomoto Co., Inc. L-glutamic acid-producing microorganism and a method for producing l-glutamic acid
WO2005103275A1 (ja) 2004-04-26 2005-11-03 Ajinomoto Co., Ltd. 発酵法によるl-トリプトファンの製造法
WO2006051660A1 (ja) 2004-11-09 2006-05-18 Ajinomoto Co., Inc. L-アミノ酸の製造法
WO2006078039A1 (en) 2005-01-18 2006-07-27 Ajinomoto Co., Inc. L-amino acid producing microorganism and a method for producing l-amino acid
EP1715055A2 (de) 2005-04-22 2006-10-25 Degussa GmbH Verfahren zur Herstellung von L-Aminosäuren unter Verwendung verbesserter Stämme der Familie Enterobacteriaceae
EP1715056A1 (de) 2005-04-23 2006-10-25 Degussa AG Verfahren zur Herstellung von L-Aminosäuren unter Verwendung verbesserter Stämme der Familie Enterobacteriaceae

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Amino Acid Fermentation", 30 May 1986, GAKKAI SHUPPAN CENTER (LTD., pages: 77 - 100
BLOOM F.R. ET AL., THE 15TH MIAMI WINTER SYMPOSIUM, 1983, pages 34
FUKUDA, H.; KONDO, A.; NODA, H., J. BIOSCI. BIOENG., vol. 92, 2001, pages 405 - 416
GONZALEZ-PAJUELO M. ET AL.: "Production of 1,3-propanediol by clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol", J. IND. MICROBIOL. BIOTECHNOL., vol. 31, no. 9, 2004, pages 442 - 446, XP003016874 *
GUSYATINER ET AL., GENETIKA (IN RUSSIAN, vol. 14, 1978, pages 947 - 956
INT. J. SYST. BACTERIOL., vol. 43, 1993, pages 162 - 173
LYNN, S.P. ET AL., J. MOL. BIOL., vol. 194, 1987, pages 59 - 69
NEIDHARDT ET AL.: "Escherichia coli and Salmonella: Cellular and Molecular Biology", 1996, AMERICAN SOCIETY FOR MICROBIOLOGY PRESS, pages: 2477 - 2483
RES. MICROBIOL., vol. 154, 2003, pages 123 - 135
WHITE, T.J. ET AL., TRENDS GENET, vol. 5, 1989, pages 185

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011354A1 (ja) * 2007-07-19 2009-01-22 Ajinomoto Co., Inc. L-アミノ酸の製造法
US7833761B2 (en) 2007-09-04 2010-11-16 Ajinomoto Co., Inc. Amino acid producing microorganism and a method for producing an amino acid
JP2010537660A (ja) * 2007-09-07 2010-12-09 アールト・ユニバーシティ・ファウンデイション アルコールからの脂肪の生産
FR2922218A1 (fr) * 2007-09-27 2009-04-17 Ajinomoto Kk Bacterie de la famille des enterobacteriaceae produisant un l-aminoacide et procede de production de l-aminoacides l'utilisant
US9708637B2 (en) 2007-09-27 2017-07-18 Ajinomoto Co., Inc. Method for producing lower alkyl ester
US9376695B2 (en) 2007-09-27 2016-06-28 Ajinomoto Co., Inc. L-amino acid producing bacterium
WO2009051262A1 (en) 2007-10-17 2009-04-23 Ajinomoto Co., Inc. A method for producing an l-amino acid
US8137938B2 (en) 2007-10-17 2012-03-20 Ajinomoto Co., Inc. Method for producing an L-amino acid
US8679798B2 (en) 2007-12-21 2014-03-25 Ajinomoto Co., Inc. Method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family
WO2009093703A1 (ja) * 2008-01-23 2009-07-30 Ajinomoto Co., Inc. L-アミノ酸の製造法
US8354254B2 (en) 2008-01-23 2013-01-15 Ajinomoto Co., Inc. Method for producing an L-amino acid
US8728772B2 (en) 2008-01-23 2014-05-20 Ajinomoto Co., Inc. Method for producing an L-amino acid
US8192963B2 (en) 2008-09-05 2012-06-05 Ajinomoto Co., Inc. Bacterium capable of producing L-amino acid and method for producing L-amino acid
WO2010027022A1 (ja) * 2008-09-05 2010-03-11 味の素株式会社 L-アミノ酸生産菌及びl-アミノ酸の製造法

Also Published As

Publication number Publication date
EP2003209A1 (en) 2008-12-17
US20140045228A1 (en) 2014-02-13
JP2009118740A (ja) 2009-06-04
EP2003209A4 (en) 2012-04-04
US20090093029A1 (en) 2009-04-09
EP2003209B1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
EP2003209B1 (en) Method for producing l-amino acid
US8728772B2 (en) Method for producing an L-amino acid
CN107893089B (zh) 用于生产l-氨基酸的方法
US8771981B2 (en) Method for producing an L-amino acid
EP2017332B1 (en) Microorganism capable of producing l-amino acid, and process for production of l-amino acid
US8137938B2 (en) Method for producing an L-amino acid
EP3385389A1 (en) Method for producing l-amino acid from fructose
JP2011167071A (ja) L−アミノ酸の製造法
JP5303918B2 (ja) L−アミノ酸の製造法
EP3686216A1 (en) Method for producing l-amino acid
US8975045B2 (en) Mutant RpsA gene and method for producing L-amino acid
WO2015064648A1 (ja) 脂肪酸を生成する緑藻類
US20140127761A1 (en) Method for Producing Fatty Acid
JP2010200645A (ja) L−アミノ酸の製造法
US20150211033A1 (en) Method for Producing L-Amino Acid
US20150218605A1 (en) Method for Producing L-Amino Acid
JP2008086305A (ja) L−アミノ酸生産菌及びl−アミノ酸の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007737522

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP