WO2009151099A1 - アルミ・樹脂射出一体成形品及びその製造方法 - Google Patents

アルミ・樹脂射出一体成形品及びその製造方法 Download PDF

Info

Publication number
WO2009151099A1
WO2009151099A1 PCT/JP2009/060699 JP2009060699W WO2009151099A1 WO 2009151099 A1 WO2009151099 A1 WO 2009151099A1 JP 2009060699 W JP2009060699 W JP 2009060699W WO 2009151099 A1 WO2009151099 A1 WO 2009151099A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
resin
injection
shaped body
molded
Prior art date
Application number
PCT/JP2009/060699
Other languages
English (en)
French (fr)
Inventor
正憲 遠藤
大介 長澤
康満 宮本
Original Assignee
日本軽金属株式会社
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社, ポリプラスチックス株式会社 filed Critical 日本軽金属株式会社
Priority to US12/997,298 priority Critical patent/US20110111214A1/en
Priority to JP2010516882A priority patent/JPWO2009151099A1/ja
Priority to CN2009801225705A priority patent/CN102056724A/zh
Priority to EP09762529A priority patent/EP2298525A1/en
Publication of WO2009151099A1 publication Critical patent/WO2009151099A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to an aluminum / resin injection integrated molded article comprising an aluminum shaped body made of an aluminum alloy and a resin molded body integrally provided on the surface of the aluminum shaped body by injection molding of a thermoplastic resin, and a method for producing the same.
  • adhesion strength and airtightness that can be suitably used in a wide range of fields, including various sensor parts for automobiles, various switch parts for household electrical appliances, condenser parts for various industrial equipment, etc.
  • the present invention relates to an aluminum / resin injection molded product excellent in the manufacturing method and a manufacturing method thereof.
  • a method using an adhesive is known as a general technique.
  • a metal part is set in an injection mold, a molten resin is injected into the mold and filled, and the resin is fixed to the metal part. It is done.
  • a method of performing a predetermined surface treatment on the surface of the metal part to be bonded to the resin is also known in order to perform bonding between the metal part and the resin at a lower cost and further improve the adhesive force.
  • Patent Document 1 an aluminum alloy shaped article having a surface roughness of 5 ⁇ m to 50 ⁇ m and a fine concave or convex portion of 1 ⁇ m or less on the surface, and a concave or convex portion of the aluminum alloy shaped article are provided.
  • a composite comprising a predetermined thermoplastic resin composition that has entered and is fixed.
  • Patent Document 2 aluminum obtained by immersing in one or more aqueous solutions selected from ammonia, hydrazine, and a water-soluble amine compound and having ultrafine recesses with a number average inner diameter of 10 to 80 nm formed on the surface.
  • a metal resin composite comprising an alloy part and a thermoplastic synthetic resin composition part fixed to the surface thereof by injection molding.
  • Patent Document 3 a metal plate subjected to any base treatment selected from alumite treatment, unsealed alumite treatment, acid etching treatment, galvanized chromate treatment, and sandblast treatment, and insert injection molding method has proposed a molded body made of a thermoplastic material integrated without an adhesive.
  • Patent Document 4 proposes a method for producing a silicone resin-metal composite by providing a fine rough surface layer on an aluminum thin plate by chemical etching or electrolytic etching, and then injecting silicone resin. .
  • Patent Document 5 proposes a method of manufacturing a metal insert resin composite molded product by chemically etching the surface of a metal part and then injection molding using a thermoplastic resin material.
  • the present inventors paid attention to an aluminum alloy as a metal material, and an interface between the aluminum shaped body made of the aluminum alloy and a resin molded body integrally provided on the surface thereof by injection molding of a thermoplastic resin.
  • Aluminum / resin injection integrated molding that has extremely high adhesion strength and airtightness, maintains excellent adhesion strength and airtightness in harsh environments such as temperature, humidity, dust, etc., and can exhibit excellent durability and heat resistance
  • the aluminum shape body and the resin molded body The inventors have found that adhesion and airtightness are remarkably improved and completed the present invention.
  • the object of the present invention is extremely high adhesion strength and air tightness at the interface between the aluminum molded body made of aluminum alloy and the resin molded body integrally joined by injection molding, in temperature, humidity, dust, etc.
  • An object of the present invention is to provide an aluminum / resin injection-integrated molded product that maintains excellent adhesion strength and airtightness in a harsh environment and can exhibit excellent durability and heat resistance.
  • Another object of the present invention is that the adhesion strength and airtightness of the interface between the aluminum shaped body and the resin molded body are extremely high as described above, and the excellent adhesion strength and airtightness are maintained even in harsh environments.
  • Another object of the present invention is to provide a method for producing an aluminum / resin injection-integrated molded product capable of producing an aluminum / resin injection-integrated molded product that can exhibit excellent durability and heat resistance.
  • the present invention relates to an aluminum shape body made of an aluminum alloy having a concavo-convex portion on a part or the entire surface, and a resin molding in which a thermoplastic resin is injection-molded on one surface of the aluminum shape body and bonded in a butt state. And a plurality of concave portions due to the concavo-convex portions are formed on the surface of the aluminum-shaped body, and these concave portions are formed during injection molding of the thermoplastic resin.
  • a resin molded body into which a thermoplastic resin has entered and solidified is formed, and the aluminum shape body and the resin molded body are locked to each other by the concave portion and the insertion portion.
  • -It is a resin injection integrated molded product.
  • the present invention also includes an aluminum shape body made of an aluminum alloy having a concavo-convex portion on a part or the entire surface thereof, and a resin molded body integrally provided on the surface of the aluminum shape body by injection molding of a thermoplastic resin.
  • An injection-integrated molded product including the surface of the aluminum-shaped body, which is formed due to the concavo-convex portion, is orthogonal to the thickness direction in the cross-section in the thickness direction of the aluminum-shaped body, and is the highest of the concavo-convex portion.
  • the opening width measured by observation with a scanning electron microscope is not less than 0.1 ⁇ m and not more than 30 ⁇ m, and the depth is A plurality of concave portions having a size of 0.1 ⁇ m or more and 30 ⁇ m or less are formed, and a resin molded body in which the thermoplastic resin enters and solidifies during injection molding of the thermoplastic resin into the concave portions.
  • Join the club is formed, which is the concave portion and the fitting portion and the aluminum shape and the aluminum resin injection molded article and a resin molded body, characterized in that locked together.
  • this invention is a manufacturing method of the injection integral molded article containing the aluminum shape body made from an aluminum alloy, and the resin molding provided by the injection molding of the thermoplastic resin on the surface of this aluminum shape body, Aluminum alloy The material is etched to form an aluminum shape body having a plurality of concave portions due to the concavo-convex portions on a part of or the entire surface, and a thermoplastic resin is placed in each concave portion of the aluminum shape body during injection molding of the resin molded body.
  • the aluminum molded body is molded with a fitting portion of the resin molded body which has entered and solidified, and the concave portion of the aluminum shaped body and the fitting portion of the resin molded body are locked together, and the aluminum shaped body and the resin molded body are integrally bonded.
  • Al alloy material for forming the aluminum shaped body specifically, pure Al 1000 series, Al-Cu 2000 series, Al-Mn 3000 series, Al-Si series 4000 series, Al-Mg series 5000 series, ADC5 and ADC6, Al-Mg-Si series 6000 series, Al-Zn-Mg series 7000 series, Al-Fe series 8000 series, Al-Si-Mg
  • a processing material obtained by appropriately processing a material made of a material such as a system ADC3, an Al-Si-Cu system ADC10, an ADC10Z, an ADC12, an ADC12Z, an Al-Si-Cu-Mg system ADC14, Furthermore, the combination material etc. which are obtained by combining these processed materials suitably are mentioned.
  • the plurality of concave portions formed on the surface of the aluminum shape body due to the uneven portions on the surface of the aluminum shape body have a hole shape or an opening edge portion which is an endless peripheral portion. It may be a hole (a concave part having an endless opening edge), or a slit or groove having an opening edge having both ends (a concave part having an end opening edge) Further, a hole-like or hole-like one having these endless opening edges and a slit-like or groove-like one having endless opening edges may be mixed.
  • the protrusion part protruded in the shape of a snow flake toward the opening width direction center from a part or all part of the opening edge part of a recessed part preferably is formed.
  • the opening width of the concave portion is narrower than the width of the inside of the concave portion, and the insertion portions of the resin molded body that has entered into the concave portion and solidified are mutually connected with the concave portion.
  • a non-detachable locking structure is formed, and the aluminum shaped body and the resin molded body are not detached unless one or both of the concave portion of the aluminum shaped body or the fitting portion of the resin molded body are destroyed. The adhesion strength and airtightness between them are further improved.
  • the resin molded body is inserted into the concave portions.
  • the parts do not necessarily fit in close contact, for example, based on the difference in linear expansion coefficient between the aluminum shaped body and the resin molded body and the ambient temperature, between the aluminum shaped body and the resin molded body. Even if an inevitable extremely small gap is generated, excellent adhesion strength and airtightness are maintained between the aluminum shaped body and the resin molded body.
  • the opening width (d) measured by observation with a scanning electron microscope is 0.1 ⁇ m or more and 30 ⁇ m or less, preferably 0.5 ⁇ m or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less, and the depth is 0.
  • the size may be 1 ⁇ m or more and 30 ⁇ m or less, preferably 0.5 ⁇ m or more and 20 ⁇ m or less. If the opening width (d) of the concave portion is smaller than 0.1 ⁇ m, it is difficult for the molten resin to enter during injection molding, and a fine void is generated at the interface between the aluminum shaped body 1 and the resin molded body, resulting in excellent adhesion. On the other hand, if the strength and airtightness are difficult to obtain, and an attempt is made to make it wider than 30 ⁇ m, the dissolution reaction proceeds excessively during the surface treatment (etching treatment) of the aluminum shaped body 1 and the material surface is missing or the thickness of the material is reduced.
  • etching treatment etching treatment
  • the density of the plurality of concave portions formed due to the concave and convex portions on the surface of the aluminum-shaped body is in the range of an opening width of 0.5 ⁇ m to 20 ⁇ m and a depth of 0.5 ⁇ m to 20 ⁇ m per 0.1 mm square. It is preferable that one or two or more of them have a size of about 5 to 200.
  • the snow candy-like protrusion formed on the concave portion is preferably directed from the resin molded body side to the aluminum shape body side in the cross section in the thickness direction of the aluminum / resin integral molded product.
  • observation lines extending in the thickness direction
  • at least one laminated portion made of resin-aluminum-resin is formed on one observation line, and this lamination
  • the thickness of the aluminum-shaped body part of the part should be in the range of 0.1 ⁇ m or more and 30 ⁇ m or less, and in such an aluminum / resin integrated molded product, such a snow ridge-like protrusion is within the range of 1000 observation lines. There may be one or more.
  • the plurality of concave portions of the aluminum-shaped body may have a double concave portion structure in which at least one or more internal concave portions are formed on the inner wall surface in part or all of the concave portions, It may have an internal concavo-convex structure in which at least one or more internal protrusions are formed on the inner wall surface, and these double concave structure and internal concavo-convex structure may coexist.
  • the presence of such a double concave portion structure or internal concavo-convex structure allows the concave portion of the aluminum shape body and the insertion portion of the resin molded body to be more It bonds firmly and exhibits better adhesion strength and airtightness between the aluminum shaped body and the resin molded body.
  • an aluminum shape body having a plurality of desired concave portions described above is formed on the surface.
  • an aluminum alloy material is subjected to an etching treatment to form a concavo-convex portion on a part or the entire surface, and an aluminum shape body having a plurality of concave portions due to the concavo-convex portion is exemplified.
  • Etching solutions used for etching the aluminum alloy material include, for example, hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, oxalic acid, ascorbic acid, benzoic acid, butyric acid, citric acid, formic acid, lactic acid, isobutyric acid, apple
  • An etching solution composed of an acid aqueous solution such as acid, propionic acid, and tartaric acid can be mentioned, but a plurality of concave portions having a desired opening width and depth, or a part of the concave portion or In order to control the concave part formed on the surface to the desired shape and size, such as forming a snow squirrel-shaped protrusion projecting toward the center of the opening width direction on all opening edges, it is compared with an acid aqueous solution.
  • An etching solution containing the above halogen ions in a predetermined concentration range is preferably used. Then, using such an aqueous acid solution containing a relatively weak oxidizing power containing halogen ions, and immersing the aluminum alloy material in this etching solution, the halogen ions in the etching solution first dissolve the oxide film on the surface of the aluminum alloy material. After that, the inner aluminum alloy is melted and further eroded into the aluminum alloy material.
  • the inner aluminum alloy is more easily eroded (dissolved) than the surface oxide film. Then, by setting the composition of the etching solution, the conditions for the etching process, etc., the opening width, depth, etc. of the concave portions due to the concave and convex portions formed on the surface can be controlled to a desired size, A snow candy-like protruding portion that protrudes toward the center in the opening width direction can be formed on a part or all of the opening edge.
  • an aqueous hydrochloric acid solution having an acid concentration of 0.1 to 80% by weight, preferably 0.5 to 50% by weight, phosphoric acid
  • halides added for introducing halogen ions include chlorides such as sodium chloride, potassium chloride, magnesium chloride, and aluminum chloride, fluorides such as calcium fluoride, and bromides such as potassium bromide.
  • the halogen ion concentration in the etching solution is usually 0.5 g / liter (g / L) to 300 g / L, preferably 1 g / L to 200 g / L, preferably 0.5 g. If it is less than / L, the effect of halogen ions is small, so that there is a problem that a concave portion having a snow ridge-like protrusion is not formed at the opening edge, and if it exceeds 300 g / L, the surface of the aluminum-shaped body Since the dissolution reaction proceeds rapidly during processing (etching processing), there arises a problem that it becomes difficult to control the concave portion.
  • an etching solution for forming a desired concave portion on the surface of the aluminum-shaped body may be an aqueous solution or water of a relatively strong oxidizing power such as nitric acid or concentrated sulfuric acid having a concentration exceeding 80% by weight.
  • aqueous solution of an alkali such as sodium oxide or potassium hydroxide is not suitable.
  • An acid aqueous solution having a relatively strong oxidizing power has a film forming ability with respect to an aluminum alloy. On the contrary, a strong oxide film is formed on the surface of the aluminum shaped body, and it becomes difficult to dissolve the oxide film by halogen ions.
  • the dissolution mechanism of an aqueous alkali solution such as sodium hydroxide or potassium hydroxide is the entire surface dissolution type, and the tendency does not change even when halogen ions are added, and the desired shape and size are obtained. It becomes difficult to form the concave portion.
  • the processing conditions for etching the surface of the aluminum alloy material using the above etching solution are required for the type of etching solution used, the acid concentration, the halogen ion concentration, etc., and the aluminum shape.
  • the bath temperature is usually 20 to 80 ° C. for a hydrochloric acid aqueous solution and the immersion time is 1 to 30 minutes, and the bath temperature is 30 to 80 ° C. for a phosphoric acid aqueous solution.
  • the bath temperature is preferably 50 to 80 ° C. and the immersion time is 1 to 3 minutes. The higher the acid concentration and bath temperature of the etching solution to be used, the more effective the etching process becomes and the shorter the processing time is possible.
  • the dissolution reaction proceeds rapidly, making it difficult to control the opening width and depth of the concave portion.
  • the immersion time if the opening time is less than 1 minute, it is difficult to control the opening width and depth of the concave portion, and conversely, if the immersion time exceeds 30 minutes, the productivity is lowered.
  • the aluminum alloy material having a concave portion is formed by etching the aluminum alloy material as described above, if necessary, the surface of the aluminum alloy material before the etching treatment is degreased, surface-adjusted, surface
  • a pretreatment consisting of an acid treatment with an acid aqueous solution and / or an alkali treatment with an alkali solution may be performed.
  • examples of the acid aqueous solution used for this pretreatment include those prepared with commercially available acid degreasing agents, mineral acids such as sulfuric acid, nitric acid, hydrofluoric acid, and phosphoric acid, organic acids such as acetic acid and citric acid, and the like.
  • acid reagents such as a mixed acid obtained by mixing acid
  • alkaline aqueous solution for example, what was prepared with a commercially available alkaline degreasing agent, caustic soda, etc.
  • alkali reagent, or what was prepared by mixing these things etc. can be used.
  • the operation method and treatment conditions of the pretreatment conventionally performed using this type of acid aqueous solution or alkali aqueous solution and For example, it can be performed by a method such as an immersion method or a spray method.
  • the aluminum alloy material that has been subjected to pretreatment and etching treatment is subjected to drying treatment as necessary.
  • This drying treatment may be natural drying that is allowed to stand at room temperature, or may be air blow, dryer, oven, etc. Forced drying may be used.
  • the surface of the aluminum shaped body obtained by the above etching treatment or by the pretreatment and the etching treatment has uneven portions formed by the etching treatment, and the surface has a 60 degree surface glossiness (handy gloss meter manufactured by Suga Test Instruments Co., Ltd.). Is preferably 60 or less.
  • the surface glossiness exceeds 60, the resin melted at the time of injection molding of the thermoplastic resin does not sufficiently enter the concave portion of the aluminum shape body, and is sufficient between the aluminum shape body and the resin molding body. A sufficient bonding strength cannot be obtained.
  • the surface of the aluminum shaped body obtained by the above etching treatment or by the pretreatment and the etching treatment is observed with a SEM or an optical microscope at a magnification of 1000 times, and the obtained cross-sectional observation photograph is preferably an aluminum shape.
  • the surface area of the body is preferably 1.2 times or more and 10 times or less the surface area of the aluminum alloy material before forming the irregularities by etching treatment.
  • the surface area increase rate is less than 1.2 times or more than 10 times, the resin melted during the injection molding of the thermoplastic resin does not sufficiently enter the concave portion of the aluminum shape body, and the aluminum shape body and A sufficient bonding strength between the resin molded body cannot be obtained.
  • the aluminum shaped body obtained as described above is set in an injection mold, and a predetermined heat melted in the mold is obtained.
  • a particularly preferable injection-integrated molded article is an injection-integrated molded article that includes a resin molded body in which a thermoplastic resin is injection-molded on a part of the surface of an aluminum-shaped body and bonded in a butt state.
  • thermoplastic resin for producing the aluminum / resin injection integrated molded product of the present invention various thermoplastic resins can be used alone, but the aluminum / resin injection integrated molded product of the present invention is required.
  • the thermoplastic resin is preferably, for example, polypropylene resin, polyethylene resin, acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate resin, polyamide resin, polyphenylene sulfide (PPS).
  • polyarylene sulfide resins polyacetal resins, liquid crystalline resins, polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), polyoxymethylene resins, polyimide resins, syndiotactic polystyrene resins, etc.
  • Thermoplastic Examples include a mixture of two or more resins, and adhesion between an aluminum shaped body and a resin molded body, mechanical strength, heat resistance, dimensional stability (deformation resistance, warpage, etc.), electrical properties, etc. In order to further improve the performance, it is more preferable to add fillers such as fibers, powders, and plates and various elastomer components to these thermoplastic resins.
  • Fillers added to thermoplastic resins include inorganic fiber fillers such as glass fibers, carbon fibers, metal fibers, asbestos fibers and boron fibers, and high melting point organic fibers such as polyamides, fluororesins and acrylic resins. And powder fillers such as silica powder, glass beads, glass powder, inorganic powders such as calcium carbonate, and plate fillers such as glass flakes, silicates such as talc and mica, etc. In addition, it is added in an amount of 250 parts by weight or less, preferably 20 parts by weight or more and 220 parts by weight or less, more preferably 30 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • inorganic fiber fillers such as glass fibers, carbon fibers, metal fibers, asbestos fibers and boron fibers
  • high melting point organic fibers such as polyamides, fluororesins and acrylic resins.
  • powder fillers such as silica powder, glass beads, glass powder, inorganic powders
  • the elastomer component added to the thermoplastic resin examples include urethane type, core shell type, olefin type, polyester type, amide type, and styrene type elastomers.
  • the melting temperature of the thermoplastic resin at the time of injection molding, etc. it is selected in consideration of 30 parts by weight or less, preferably 3 to 25 parts by weight based on 100 parts by weight of the thermoplastic resin.
  • the added amount of the elastomer component exceeds 30 parts by weight, a further effect of improving the adhesion strength is not seen, and problems such as a decrease in mechanical properties occur.
  • This blending effect of the elastomer component is particularly prominent when a polyester resin is used as the thermoplastic resin.
  • thermoplastic resin for producing the aluminum / resin injection-integrated molded article of the present invention includes known additives generally added to the thermoplastic resin, that is, flame retardants, colorants such as dyes and pigments, and antioxidants.
  • a stabilizer such as an agent and an ultraviolet absorber, a plasticizer, a lubricant, a lubricant, a mold release agent, a crystallization accelerator, a crystal nucleating agent, and the like can be appropriately added according to required performance.
  • thermoplastic resin performed by setting the aluminum shape body in the injection mold
  • normal molding conditions required for the thermoplastic resin to be used can be adopted. It is important that the thermoplastic resin melted at the time of molding surely enters and solidifies into the concave part of the aluminum shaped body, and the mold temperature and cylinder temperature are within the range permitted by the type and physical properties of the thermoplastic resin, as well as the molding cycle. It is preferable that the lower limit temperature be 90 ° C. or higher, preferably 130 ° C. or higher, but the upper limit depends on the type of thermoplastic resin used. In the range from 100 ° C. to a temperature about 20 ° C.
  • the lower limit mold temperature is preferably set so as not to be lowered by 140 ° C. or more from the melting point of the thermoplastic resin.
  • the aluminum / resin injection molded product of the present invention has extremely high adhesion strength and airtightness at the interface (aluminum / resin interface) between the aluminum shaped body and the resin molded body, and even when exposed to harsh environments. Excellent adhesion strength and airtightness can be maintained, and high reliability can be maintained over a long period of time. Therefore, the aluminum / resin injection-integrated molded product of the present invention is a metal-resin integrated molded component in a wide range of fields including, for example, various sensor parts for automobiles, various switch parts for home appliances, condenser parts for various industrial equipment, etc. In particular, it is preferably used for a metal-resin integral molded part that requires a high bonding strength because the resin molded body protrudes in a butted state from a part of the surface of the aluminum shaped body.
  • the adhesion strength of the obtained product can be predicted by measuring the surface gloss or surface roughness of the aluminum shaped body at the time of production. In addition to facilitating quality control during manufacturing, it is possible to manufacture highly reliable products with little variation in adhesion strength between products.
  • FIG. 1 is a cross-sectional schematic view for illustrating a concave portion by copying a cross section in the thickness direction of an aluminum shape according to the first embodiment.
  • FIG. 2 is a cross-sectional explanatory view showing a typical example of the shape of the concave portion conceived from FIG.
  • FIG. 3 is a front view and a side view of an aluminum / resin test piece (aluminum / resin injection-integrated product) prepared for a shear fracture load measurement test using an aluminum test piece A (aluminum shape).
  • FIG. 4 is a perspective explanatory view showing a state in which an aluminum / resin test piece is fixed to a test piece fixing jig during a shear fracture load measurement test.
  • FIG. 5 is a plan view and a side view of an aluminum / resin test piece (aluminum / resin injection integrated molded product) prepared for an airtightness evaluation test using an aluminum test piece B (aluminum shaped body).
  • FIG. 6 is a cross-sectional explanatory view showing a state in which an aluminum / resin test piece is set in a test piece set portion of an airtightness evaluation test apparatus in an airtightness evaluation test.
  • FIG. 7 is a cross-sectional schematic view of a cross section in the thickness direction of the aluminum body according to Comparative Examples 1, 4, and 5.
  • FIG. 8 is a cross-sectional copy view of a cross section in the thickness direction of the aluminum shape according to Comparative Example 2.
  • FIG. 9 is a cross-sectional copy view of a cross-section in the thickness direction of the aluminum shape according to Comparative Example 3.
  • FIG. 10 is a cross-sectional copy view of a cross section in the thickness direction of the aluminum shape according to the first embodiment.
  • FIG. 11 is a plan view and a side view of an aluminum / resin test piece (aluminum / resin injection-integrated molded product) prepared for a shear fracture load measurement test using an aluminum test piece C (aluminum shaped body).
  • FIG. 12 is a side view showing a state in which an aluminum / resin test piece is fixed to a test piece fixing jig during a shear fracture load measurement test.
  • Example 1 [Preparation of aluminum shape] Cut aluminum pieces A (aluminum alloy material) 50 mm x 50 mm in size and aluminum pieces B (aluminum alloy material) 2 mm x 35 mm from a 1 mm-thick aluminum alloy (JISA 1050-H24) plate.
  • the pieces A and B were first immersed in a 30 wt% nitric acid aqueous solution at room temperature for 5 minutes, then thoroughly washed with ion-exchanged water, then immersed in a 5 wt% sodium hydroxide solution at 50 ° C. for 1 minute, and then washed with water.
  • a pretreatment was performed by immersing in a nitric acid aqueous solution at room temperature for 3 minutes and then washing with water.
  • an etching solution prepared by adding 54 g / L of aluminum chloride hexahydrate (AlCl 3 .6H 2 O) to a 2.5 wt% hydrochloric acid aqueous solution. (Ion concentration: 48 g / L) Etched in water at 66 ° C for 4 minutes and then washed with water, further immersed in 30 wt% nitric acid aqueous solution for 3 minutes at room temperature, washed with water, and dried with hot air at 120 ° C for 5 minutes. Then, aluminum test pieces A and B (aluminum shaped bodies) for preparing evaluation samples for a shear fracture load measurement test and an airtightness evaluation test were prepared.
  • FIG. 1 The cross section of the region where the aluminum test pieces A and B are observed is, for example, as shown in the cross-sectional copy diagram of FIG. 1, and a typical example of the shape of the concave portion conceived from FIG. 1 is shown in FIG.
  • a concave part shape a: see Fig. 2 (a)
  • shape b see FIG.
  • the size (opening width and depth) of the concave portion observed in the cross section of the region where the aluminum test pieces A and B were measured and the ratio thereof were 0.1 ⁇ m to 1 ⁇ m opening width per 0.1 mm square. 10 to 100 concave parts, 1 to 10 concave parts with an opening width of 1 ⁇ m to 10 ⁇ m, 1 to 3 concave parts with an opening width of 11 ⁇ m to 30 ⁇ m, and a depth of 0.1 ⁇ m to 30 ⁇ m It was within the range.
  • the concave shape having an opening width of 0.1 ⁇ m to 1 ⁇ m per 0.1 mm square is substantially the same as described above. 10 to 50 parts, 1 to 50 concave parts with an opening width of 1 ⁇ m to 10 ⁇ m, 1 to 2 concave parts with an opening width of 11 ⁇ m to 30 ⁇ m, and a depth range of 0.1 ⁇ m to 20 ⁇ m It was in. The size of the concave portion was hardly changed even when the observation place was changed.
  • the case where the opening width is within a range of 0.1 to 30 ⁇ m and the depth is within a range of 0.1 to 30 ⁇ m is good ( ⁇ ), and the case where the opening is not so is bad ( X).
  • the size of the concave portion observed in the following Examples 2 to 17 and Comparative Examples 1 to 7 was also evaluated based on the same criteria.
  • the obtained aluminum test piece A (aluminum shaped body) is set in a mold of an injection molding machine (TR40VR manufactured by Sodick Plastic Co., Ltd.), and a polyphenylene sulfide resin (resin A) containing an inorganic filler and an elastomer component as a thermoplastic resin.
  • a flange-like joint (2a) having a size of diameter 15 mm ⁇ ⁇ inner diameter 5 mm ⁇ ⁇ thickness 2 mm and fixed to the surface of the aluminum test piece A (1A) and an outer diameter protruding from the flange-like joint (2a) 10
  • Aluminum / resin test piece for shear fracture load measurement test integrated with resin molded body (2) having a cylindrical portion (2b) of mm ⁇ ⁇ 18 mm in length (aluminum / resin injection integrated molded product) ) was produced.
  • Component a Polyphenylene sulfide (PPS) resin (Fortron KPS manufactured by Kureha Corporation; melting point 280 ° C., resin temperature 310 ° C., melt viscosity 30 Pa ⁇ s at a shear rate of 1200 sec ⁇ 1 )
  • PPS Polyphenylene sulfide
  • Component b Elastomer b-1: A copolymer obtained by grafting 30 parts by weight of a methyl methacrylate / butyl acrylate copolymer onto 70 parts by weight of an ethylene / glycidyl methacrylate copolymer (MODIPA A4300 manufactured by NOF Corporation) b-2: Ethylene / octene copolymer (engage 8440 manufactured by DuPont Dow Elastomers LLC)
  • Component c Mold release agent (Nissan Co., Ltd. Unistar H-476)
  • Inorganic filler d-1 Glass fiber [10 ⁇ m ⁇ chopped strand (CS03JA-FT636 manufactured by Fiberglass Japan)]
  • d-2 Glass flake (E glass manufactured by Nippon Sheet Glass Co., Ltd., average particle size 600 ⁇ m ⁇ )
  • d-3 Calcium carbonate (Toyo Fine Chemical Co., Ltd. Whiten P30, average particle size 4 ⁇ m)
  • the two obtained aluminum test pieces B (aluminum shape) were set in the mold of an injection molding machine (SG-50 manufactured by Sumitomo Heavy Industries), and the injection time (including pressure holding time) was 15 seconds. Except for injection molding under the molding conditions of speed 17 mm / sec, holding pressure 70 MPa, molding temperature 320 ° C., and mold temperature 159 ° C., the above-mentioned aluminum / resin test piece for shear fracture load measurement test (aluminum / resin injection integral molding) As shown in Fig. 5, two aluminum test pieces B (1B) and these two aluminum test pieces B (1B) are formed in a resin-embedded part (4) with a length of 17 mm. An aluminum / resin test piece (aluminum / resin injection integrated molded product) for airtightness evaluation test comprising a resin molded body (2) penetrating therethrough was produced.
  • an SUS airtightness evaluation test apparatus comprising a cylindrical body having an opening at one end, having a test piece set part (5) at the opening edge and having a pressurized air inlet (6) in the vicinity of the bottom part.
  • Compressed air is introduced and the internal air pressure is increased to 0.6 MPa while holding for 1 minute every pressurization of 0.1 MPa.
  • the aluminum test piece B (1B in the resin embedded part (4) of the aluminum / resin test piece is used.
  • the resin molded body (2) were measured for air leakage.
  • an aluminum / resin test piece prepared for a shear fracture load measurement test was cut in the thickness direction, and the cross section in the thickness direction was observed with a SEM or an optical microscope at a magnification of 1000 times.
  • one observation line (OL) has at least one laminated portion made of resin-aluminum-resin, and the thickness of the aluminum-shaped body portion of the laminated portion is in the range of 0.1 ⁇ m to 30 ⁇ m, and 1000
  • the case where there is at least one ratio within the range of the observation line (OL) is determined as good ( ⁇ ), and there is no such laminated portion within the range of 1000 observation lines (OL).
  • the result It was also the case of any good ( ⁇ ).
  • Example 2 Aluminum test pieces A and B (aluminum shaped bodies) were prepared in the same manner as in Example 1 except that JIS A1100-H14 was used as the aluminum alloy plate for cutting out the aluminum pieces A and B, and then the resin A was used.
  • Aluminum / resin test pieces (aluminum / resin injection-integrated molded product) for shear fracture load measurement test and airtightness evaluation test are prepared respectively, and observation of concave portions on the surface of the above aluminum test pieces A and B, glossiness Measurement and surface area increase rate measurement were carried out.
  • a shear fracture load measurement test and an airtightness evaluation test of the aluminum / resin test pieces were performed and evaluated. The results are shown in Table 5 together with the results of Example 1.
  • Example 3 Aluminum test pieces A and B (aluminum shaped bodies) were prepared in the same manner as in Example 1 except that JIS A5052-H34 was used as the aluminum alloy plate for cutting out aluminum pieces A and B, and then resin A was used.
  • Aluminum / resin test pieces (aluminum / resin injection-integrated molded product) for shear fracture load measurement test and airtightness evaluation test are prepared respectively, and observation of concave portions on the surface of the above aluminum test pieces A and B, glossiness Measurement and surface area increase rate measurement were carried out.
  • a shear fracture load measurement test and an airtightness evaluation test of the aluminum / resin test pieces were performed and evaluated. The results are shown in Table 5 together with the results of Example 1.
  • Example 4 The aluminum test was conducted in the same manner as in Example 1 except that an etching solution (chlorine ion concentration: 30 g / L) prepared by adding 50 g / L sodium chloride in a 50 wt% phosphoric acid aqueous solution was used for the etching treatment. Fabricate pieces A and B (aluminum shaped body), and then use resin A to produce aluminum / resin test pieces (aluminum / resin injection molding) for shear fracture load measurement test and airtightness evaluation test. Then, observation of concave portions on the surfaces of the aluminum test pieces A and B, glossiness measurement, and surface area increase rate measurement were performed. In addition, a shear fracture load measurement test and an airtightness evaluation test of the aluminum / resin test pieces were performed and evaluated. The results are shown in Table 5 together with the results of Example 1.
  • Example 5 An aluminum test piece was prepared in the same manner as in Example 1 except that an etching solution (chlorine ion concentration: 30 g / L) prepared by adding 50 g / L sodium chloride in a 10 wt% sulfuric acid aqueous solution was used for the etching treatment.
  • a and B (aluminum shaped body) were prepared, and then using resin A, aluminum / resin test pieces (aluminum / resin injection integrated molded product) for shear fracture load measurement test and airtightness evaluation test were prepared respectively.
  • the surface of the aluminum test pieces A and B was observed for concave portions, measured for glossiness, and measured for surface area increase rate.
  • a shear fracture load measurement test and an airtightness evaluation test of the aluminum / resin test pieces were performed and evaluated. The results are shown in Table 5 together with the results of Example 1.
  • Example 6 An aluminum test was conducted in the same manner as in Example 1 except that an etching solution (chlorine ion concentration: 30 g / L) prepared by adding 50 g / L sodium chloride in a 30 wt% oxalic acid aqueous solution was used for the etching treatment. Fabricate pieces A and B (aluminum shaped body), and then use resin A to produce aluminum / resin test pieces (aluminum / resin injection molding) for shear fracture load measurement test and airtightness evaluation test. Then, observation of concave portions on the surfaces of the aluminum test pieces A and B, glossiness measurement, and surface area increase rate measurement were performed. In addition, a shear fracture load measurement test and an airtightness evaluation test of the aluminum / resin test pieces were performed and evaluated. The results are shown in Table 5 together with the results of Example 1.
  • Example 7 Polybutylene terephthalate resin (resin D) containing inorganic filler as thermoplastic resin, polybutylene terephthalate resin (resin E) containing inorganic filler and elastomer component, polybutylene containing inorganic filler, amorphous resin and elastomer component Using a terephthalate resin (resin F) and adopting the molding temperature and mold temperature shown in Table 5 as molding conditions, the aluminum / resin test piece for the shear fracture load measurement test ( (Aluminum / resin injection-integrated molded product) was produced, and the concave portion of the surface of the aluminum test piece A was observed, the glossiness was measured, and the surface area increase rate was measured. In addition, a shear fracture load measurement test of the aluminum / resin test piece was performed and evaluated. The results are shown in Table 5 together with the results of Example 1.
  • Component a Polybutylene terephthalate (PBT) resin a-1: Polybutylene terephthalate resin (manufactured by Wintech, melting point 225 ° C., intrinsic viscosity 0.7 dl / g) a-2: 12.5 mol% isophthalic acid modified polybutylene terephthalate copolymer (Wintech, melting point 205 ° C, intrinsic viscosity 0.74dl / g)
  • PBT Polybutylene terephthalate
  • a-1 Polybutylene terephthalate resin (manufactured by Wintech, melting point 225 ° C., intrinsic viscosity 0.7 dl / g)
  • a-2 12.5 mol% isophthalic acid modified polybutylene terephthalate copolymer (Wintech, melting point 205 ° C, intrinsic viscosity 0.74dl / g)
  • Component b Elastomer b-1: A copolymer obtained by grafting 30 parts by weight of a methyl methacrylate / butyl acrylate copolymer to 70 parts by weight of an ethylene / ethyl acrylate copolymer (MODIPA A5300 manufactured by NOF Corporation)
  • b-2 Polyester elastomer (Perprene P90BD manufactured by Toyobo Co., Ltd.)
  • Component c Amorphous resin [(Polycarbonate resin (Panlite 1225WX manufactured by Teijin Chemicals Ltd.)]
  • Component d Inorganic filler [glass fiber (13 ⁇ m ⁇ chopped strand (ECS03T187 manufactured by Nippon Electric Glass Co., Ltd.))
  • Example 8 Except for using a polyacetal resin (resin G) containing an inorganic filler as a thermoplastic resin and a polyacetal resin (resin H) containing an elastomer component, and adopting the molding temperature and mold temperature shown in Table 5 as molding conditions.
  • a polyacetal resin (resin G) containing an inorganic filler as a thermoplastic resin
  • a polyacetal resin (resin H) containing an elastomer component containing an elastomer component
  • components a to c Details of components a to c are as follows.
  • Component a Polyacetal resin a-1: Polyacetal resin [manufactured by Polyplastics Co., Ltd., melting point 160 ° C., melt index (190 ° C.): 45 g / 10 min. ]
  • a-2 Polyacetal resin [manufactured by Polyplastics Co., Ltd., melting point 160 ° C., melt index (190 ° C.): 27 g / 10 min. ]
  • Component b Elastomer [Thermoplastic polyurethane resin (Milactolan P480RNAT manufactured by Nippon Milastlan Co., Ltd.)]
  • Component c Inorganic filler [Glass fiber ⁇ 10 ⁇ m ⁇ chopped strand (CS03FT-102 manufactured by Fiberglass Japan) ⁇ ]
  • Example 9 In the same manner as in Example 1, except that liquid crystalline resins (resins I to K) containing an inorganic filler were used as the thermoplastic resin and the molding temperature and mold temperature shown in Table 6 were adopted as molding conditions, shearing was performed. An aluminum / resin test piece (aluminum / resin injection molded product) for a fracture load measurement test was prepared, and the surface of the aluminum test piece A was observed for concave portions, measured for glossiness, and measured for the surface area increase rate. In addition, a shear fracture load measurement test of the aluminum / resin test piece was performed and evaluated. The results are shown in Table 6 together with the results of Example 1.
  • components a to c Details of components a to c are as follows.
  • Component a Liquid crystalline resin a-1: Liquid crystalline resin E950i (manufactured by Polyplastics Co., Ltd., melting point 335 ° C.)
  • a-2 Liquid crystalline resin A950 (manufactured by Polyplastics Co., Ltd., melting point 280 ° C.)
  • Component b Release agent (manufactured by NOF Corporation, Unistar H-476)
  • Component c Inorganic filler c-1: Glass fiber [chopped strand of 10 ⁇ m ⁇ (ECS03T-786H manufactured by Nippon Electric Glass Co., Ltd.)] c-2: Talc (Matsumura Sangyo Co., Ltd. Crown Talc PP, average particle size 10 ⁇ m) c-3: Synthetic silica (SC2000-ZD manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m)
  • Example 10 As a thermoplastic resin, a polyamide resin containing 30% by weight of glass fiber (resin L: Amilan 3001G30 manufactured by Toray Industries, Inc.) and a polyamide resin containing 50% by weight of glass fiber (resin M: Reny 1025 manufactured by Mitsubishi Engineering Plastics Co., Ltd.) ), And adopting the molding temperature and mold temperature shown in Table 6 as molding conditions, in the same manner as in Example 1 above, an aluminum / resin test piece (aluminum / resin injection integrated) for a shear fracture load measurement test Molded article), and the concave portion of the surface of the aluminum test piece A was observed, the glossiness was measured, and the surface area increase rate was measured. In addition, a shear fracture load measurement test of the aluminum / resin test piece was performed and evaluated. The results are shown in Table 6 together with the results of Example 1.
  • Example 11 Except for using an etching solution (chlorine ion concentration: 54 g / L) prepared by adding 50 g / L sodium chloride (NaCl) in a 2.5 wt% hydrochloric acid aqueous solution, the same as in Example 1 above.
  • Aluminum specimens A and B (aluminum shaped body) are manufactured, and then resin / A is used for aluminum / resin specimens (for aluminum / resin injection molding) for shear fracture load measurement test and airtightness evaluation test. ), And observation of the concave portions on the surfaces of the aluminum test pieces A and B, glossiness measurement, and surface area increase rate measurement were performed.
  • a shear fracture load measurement test and an airtightness evaluation test of the aluminum / resin test pieces were performed and evaluated. The results are shown in Table 6 together with the results of Example 1.
  • Example 12 An aluminum test piece was prepared in the same manner as in Example 1 except that a 2.5 wt% hydrochloric acid aqueous solution (chlorine ion concentration: 24 g / L) was used as an etching solution and the substrate was immersed in water at 76 ° C. for 10 minutes and then washed with water.
  • a and B (aluminum shaped body) were prepared, and then using resin A, aluminum / resin test pieces (aluminum / resin injection integrated molded product) for shear fracture load measurement test and airtightness evaluation test were prepared respectively.
  • the surface of the aluminum test pieces A and B was observed for concave portions, measured for glossiness, and measured for surface area increase rate.
  • a shear fracture load measurement test and an airtightness evaluation test of the aluminum / resin test pieces were performed and evaluated. The results are shown in Table 6 together with the results of Example 1.
  • Example 13 A 50 mm ⁇ 25 mm aluminum piece C was cut from a 2 mm thick aluminum alloy (JISA 1050-H24) plate, and 268 g / L aluminum chloride hexahydrate ( Example 1 except that the etching solution (chlorine ion concentration: 173 g / L) prepared by adding (AlCl 3 ⁇ 6H 2 O) was used, and the etching treatment was performed by immersing at 30 ° C. for 10 minutes and then washing with water.
  • an aluminum test piece C (aluminum shape) was prepared, and then an aluminum / resin test piece (aluminum / resin injection integrated molded product) for shear fracture load measurement test using resin A was used in the same manner as in Example 1.
  • the surface of the aluminum test piece C was observed on the concave portion, the glossiness was measured, and the surface area increase rate was measured. The results are shown in Table 6 together with the results of Example 1.
  • the obtained aluminum test piece C (aluminum shaped body) was set in a mold of an injection molding machine (TR40VR manufactured by Sodick Plastic Co.), and polyphenylene containing an inorganic filler and an elastomer component as a thermoplastic resin in the same manner as in Example 1.
  • injection molding was carried out under molding conditions of injection time (including pressure holding time) of 7 seconds, injection speed of 80 mm / second, pressure holding pressure of 100 MPa, molding temperature of 320 ° C., and mold temperature of 159 ° C. As shown in FIG.
  • the surface of the aluminum test piece C (1C) having a size of 50 mm ⁇ 25 mm ⁇ 2 mm is fixed to the surface of the aluminum test piece C (1C) having a size of 5 mm ⁇ 10 mm.
  • An aluminum / resin test piece (aluminum / resin injection integrated molded product) for a shear fracture load measurement test in which the resin molded body (2) was integrated was produced.
  • Example 14 A 50 mm ⁇ 25 mm aluminum piece C was cut from a 2 mm thick aluminum alloy (JISA 1050-H24) plate, and 268 g / L aluminum chloride hexahydrate ( Example 1 except that the etching solution (chlorine ion concentration: 173 g / L) prepared by adding (AlCl 3 .6H 2 O) was used, and the etching treatment was performed by immersing at 30 ° C. for 20 minutes and then washing with water.
  • an aluminum test piece C (aluminum shape) was prepared, and then an aluminum / resin test piece (aluminum / resin injection integrated molded product) for shear fracture load measurement test using resin A was used in the same manner as in Example 1.
  • Example 13 The surface of the aluminum test piece C was observed, and the concave portion was observed, the glossiness was measured, and the surface area increase rate was measured. Further, as in Example 13, a shear fracture load measurement test of aluminum / resin test pieces was performed and evaluated. The results are shown in Table 6 together with the results of Example 1.
  • Example 15 A 50 mm ⁇ 25 mm aluminum piece C was cut from a 2 mm thick aluminum alloy (JISA 5052-H34) plate, and this aluminum piece C was used to 268 g / L aluminum chloride hexahydrate ( Example 1 except that the etching solution (chlorine ion concentration: 173 g / L) prepared by adding (AlCl 3 .6H 2 O) was used, and the etching treatment was performed by immersing at 30 ° C. for 20 minutes and then washing with water.
  • the etching solution chlorine ion concentration: 173 g / L
  • AlCl 3 .6H 2 O etching solution
  • Example 13 an aluminum test piece C (aluminum shape) was prepared, and then an aluminum / resin test piece (aluminum / resin injection integrated molded product) for shear fracture load measurement test using resin A was used in the same manner as in Example 1. The surface of the aluminum test piece C was observed, and the concave portion was observed, the glossiness was measured, and the surface area increase rate was measured. Further, as in Example 13, a shear fracture load measurement test of aluminum / resin test pieces was performed and evaluated. The results are shown in Table 6 together with the results of Example 1.
  • Example 16 A 50 mm ⁇ 25 mm piece of aluminum C is cut from a 2 mm thick aluminum alloy (JISA 3003-H24) plate, and 268 g / L of aluminum chloride hexahydrate (6 g) in 6 wt% hydrochloric acid solution is used.
  • Example 1 except that the etching solution (chlorine ion concentration: 173 g / L) prepared by adding (AlCl 3 ⁇ 6H 2 O) was used, and the etching treatment was performed by immersing in water at 30 ° C. for 18 minutes and then washing with water.
  • Example 13 an aluminum test piece C (aluminum shape) was prepared, and then an aluminum / resin test piece (aluminum / resin injection integrated molded product) for shear fracture load measurement test using resin A was used in the same manner as in Example 1. The surface of the aluminum test piece C was observed, and the concave portion was observed, the glossiness was measured, and the surface area increase rate was measured. Further, as in Example 13, a shear fracture load measurement test of aluminum / resin test pieces was performed and evaluated. The results are shown in Table 6 together with the results of Example 1.
  • Example 17 An aluminum test piece C (as in Example 1 above) except that an aluminum piece C having a size of 50 mm ⁇ 25 mm was cut from a 2 mm thick aluminum alloy (JISA 1050-H24) plate and this aluminum piece C was used. Aluminum shaped body), and then using resin A, an aluminum / resin test piece (aluminum / resin injection integrated molded product) for shear fracture load measurement test was produced under the same molding conditions as in Example 1. Observation of the concave portion on the surface of the test piece C and measurement of glossiness and surface area increase rate were performed. Further, as in Example 13, a shear fracture load measurement test of aluminum / resin test pieces was performed and evaluated. The results are shown in Table 6 together with the results of Example 1.
  • Example 1 Aluminum test pieces A and B (aluminum shaped bodies of comparative examples) were prepared without performing etching treatment only by performing the pretreatment of Example 1, and shearing was performed using Resin A in the same manner as in Example 1.
  • Aluminum / resin test pieces (aluminum / resin injection integrated molded product) for fracture load measurement test and airtightness evaluation test are prepared, respectively, observation of concave portions on the surface of the aluminum test pieces A and B, gloss measurement, And the surface area increase rate measurement was carried out.
  • a shear fracture load measurement test and an airtightness evaluation test of the aluminum / resin test pieces were performed and evaluated.
  • FIG. 7 shows a cross-sectional copy of a region where the aluminum test pieces A and B are observed, and Table 7 shows the evaluation results.
  • Example 2 After the pretreatment of Example 1, it was immersed in a 2.5 wt% hydrochloric acid aqueous solution at 66 ° C. for 4 minutes, washed with water, immersed in a 5 wt% sodium hydroxide solution at 50 ° C. for 5 minutes, washed with water, and further washed with 30 wt.
  • Aluminum test pieces A and B (aluminum shaped bodies of comparative examples) were prepared by immersing in% nitric acid at room temperature for 3 minutes and washing with water, followed by drying with hot air at 120 ° C. for 5 minutes.
  • Example 1 aluminum / resin test pieces (aluminum / resin injection integrated molded product) for the shear fracture load measurement test and the airtightness evaluation test were prepared using the resin A, respectively. Observation of concave portions on the surfaces of the aluminum test pieces A and B, glossiness measurement, and surface area increase rate measurement were performed. In addition, a shear fracture load measurement test and an airtightness evaluation test of the aluminum / resin test pieces were performed and evaluated. None of the concave portions having the shapes a to d observed in Example 1 were observed, and many concave portions having an opening width exceeding 30 ⁇ m were observed.
  • FIG. 8 shows a cross-sectional copy of a region where the aluminum test pieces A and B are observed, and Table 7 shows the evaluation results.
  • Example 3 After the pretreatment of Example 1, it was immersed in a 50 wt% aqueous phosphoric acid solution at 66 ° C. for 4 minutes and washed with water, and then dried with hot air at 120 ° C. for 5 minutes to obtain aluminum test pieces A and B (aluminum of Comparative Example). Shape) was prepared. Thereafter, in the same manner as in Example 1, aluminum / resin test pieces (aluminum / resin injection integrated molded product) for the shear fracture load measurement test and the airtightness evaluation test were prepared using the resin A, respectively. Observation of concave portions on the surfaces of the aluminum test pieces A and B, glossiness measurement, and surface area increase rate measurement were performed.
  • FIG. 9 shows a cross-sectional copy of a region where the aluminum test pieces A and B are observed, and Table 7 shows the evaluation results.
  • Example 4 After the pretreatment of Example 1, it was immersed in a 10 wt% sulfuric acid aqueous solution at 66 ° C. for 4 minutes, washed with water, and then dried with hot air at 120 ° C. for 5 minutes to obtain aluminum test pieces A and B (the aluminum shape of the comparative example) Body) was prepared. Thereafter, in the same manner as in Example 1, aluminum / resin test pieces (aluminum / resin injection integrated molded product) for the shear fracture load measurement test and the airtightness evaluation test were prepared using the resin A, respectively. Observation of concave portions on the surfaces of the aluminum test pieces A and B, glossiness measurement, and surface area increase rate measurement were performed.
  • FIG. 7 shows a cross-sectional copy of a region where the aluminum test pieces A and B are observed, and Table 7 shows the evaluation results.
  • Example 5 After the pretreatment of Example 1, it was immersed in an aqueous 30 wt% oxalic acid solution at 66 ° C. for 4 minutes and washed with water, and then dried with hot air at 120 ° C. for 5 minutes to obtain aluminum test pieces A and B (aluminum of Comparative Example). Shape) was prepared. Thereafter, in the same manner as in Example 1, aluminum / resin test pieces (aluminum / resin injection integrated molded product) for the shear fracture load measurement test and the airtightness evaluation test were prepared using the resin A, respectively. Observation of concave portions on the surfaces of the aluminum test pieces A and B, glossiness measurement, and surface area increase rate measurement were performed.
  • FIG. 7 shows a cross-sectional copy of a region where the aluminum test pieces A and B are observed, and Table 7 shows the evaluation results.
  • Example 6 The same aluminum pieces A and B as in Example 1 were first immersed in an etching solution (aqueous solution) containing 26 g / L of hydrogen peroxide and 90 g / L of sulfuric acid for 1 minute at 20 ° C. to remove the rust preventive film, and then peroxidized. Ions are immersed in an etching solution (aqueous solution; chlorine ion concentration: 0.1 g / L) containing 80 g / L of hydrogen, 90 g / L of sulfuric acid, 5 g / L of benzotriazole and 0.2 g / L of sodium chloride at 25 ° C. for 5 minutes. The sample was washed with exchanged water and then dried with hot air at 120 ° C.
  • etching solution aqueous solution
  • aqueous solution aqueous solution
  • chlorine ion concentration 0.1 g / L
  • Example 7 shows the evaluation results.
  • Example 7 After the pretreatment of Example 1, the aluminum test pieces A and B (comparative) were immersed in an etching solution composed of a 30 wt% nitric acid aqueous solution at 66 ° C. for 4 minutes and washed with water, and then dried with 120 ° C. hot air for 5 minutes. Example aluminum shapes) were prepared. Thereafter, in the same manner as in Example 1, aluminum / resin test pieces (aluminum / resin injection integrated molded product) for the shear fracture load measurement test and the airtightness evaluation test were prepared using the resin A, respectively. Observation of concave portions on the surfaces of the aluminum test pieces A and B, glossiness measurement, and surface area increase rate measurement were performed.
  • Example 1 In addition, a shear fracture load measurement test and an airtightness evaluation test of the aluminum / resin test pieces were performed and evaluated. None of the concave portions of the shapes a to d observed in Example 1 were observed, and the size of the concave portion was an opening width of 0.001 ⁇ m or more and less than 0.1 ⁇ m. The above evaluation results are shown in Table 7 together with the results of Example 1.

Abstract

 射出成形により一体的に接合されたアルミニウム合金製のアルミ形状体と樹脂成形体との間の界面の密着強度及び気密性が極めて高く、温度や湿度、粉塵等において過酷な環境下で優れた密着強度及び気密性を保持し、優れた耐久性や耐熱性を発揮し得るアルミ・樹脂射出一体成形品及びその製造方法を提供する。  表面に形成された凹凸部に起因する複数の凹状部を有するアルミニウム合金製のアルミ形状体と、このアルミ形状体の表面に熱可塑性樹脂の射出成形により一体的に設けられ、射出成形時に熱可塑性樹脂が前記凹状部内に進入して固化した樹脂成形体の嵌入部が形成された樹脂成形体とを有し、前記凹状部と嵌入部とによりアルミ形状体と樹脂成形体とが互いに係止されているアルミ・樹脂射出一体成形品であり、また、その製造方法である。

Description

アルミ・樹脂射出一体成形品及びその製造方法
 この発明は、アルミニウム合金製のアルミ形状体とこのアルミ形状体の表面に熱可塑性樹脂の射出成形により一体的に設けられた樹脂成形体とを含むアルミ・樹脂射出一体成形品及びその製造方法に係り、特に限定するものではないが、自動車用の各種センサー部品、家電機器用の各種スイッチ部品、各種産業機器用のコンデンサー部品等を始めとして、幅広い分野において好適に使用し得る密着強度及び気密性に優れたアルミ・樹脂射出一体成形品及びその製造方法に関する。
 自動車用の各種センサー部品、家電機器用の各種スイッチ部品、各種産業機器用のコンデンサー部品等の分野、特に自動車用部品等の分野においては、温度や湿度、粉塵等において過酷な環境下で使用される場合が多々あり、これらセンサー部品、スイッチ部品、コンデンサー部品等については、このような過酷な環境下での耐久性や耐熱性の向上、気密性の向上等が重要な課題となっている。
 従来から、金属と樹脂との接合技術としては、接着剤を使用する方法が一般的な技術として知られているが、作業効率、部品点数の削減、製品形状の簡素化、耐久性等の観点から工業的により好適な接合方法として、金属部品を射出成形用金型にセットし、この金型内に溶融樹脂を射出して充填し、樹脂を金属部品に固着させるインサート成形の方法等が挙げられる。そして、これら金属部品と樹脂との間の接合をより安価に行い、接着力をより向上させるために、樹脂と接合する金属部品の表面に所定の表面処理を行う方法も知られている。
 例えば、特許文献1においては、表面粗さが5μmないし50μmであり、かつこの表面に1μm以下の微細な凹部又は凸部を有するアルミニウム合金形状物と、このアルミニウム合金形状物の凹部又は凸部に侵入して固着された所定の熱可塑性樹脂組成物とからなる複合体が提案されている。
 また、特許文献2においては、アンモニア、ヒドラジン、及び水溶性アミン化合物から選択される1種以上の水溶液に浸漬して得られ、表面に数平均内径10~80nmの極微細凹部が形成されたアルミニウム合金部品と、その表面に射出成形で固着された熱可塑性合成樹脂組成物部品とからなる金属樹脂複合体が提案されている。
 更に、特許文献3においては、アルマイト処理、未封孔アルマイト処理、酸エッチング処理、亜鉛メッキクロメート処理、及びサンドブラスト処理から選ばれた何れかの下地処理が施された金属板と、インサート射出成形法により接着剤無しで一体化された熱可塑性材料とからなる成型体が提案されている。
 また、特許文献4においては、アルミニウム薄板に化学的エッチング法又は電解エッチング法により微細な粗面層を設け、次いでシリコーン樹脂を射出してシリコーン樹脂-金属複合体の製造する方法が提案されている。
 更にまた、特許文献5においては、金属部品表面をケミカルエッチングし、次いで熱可塑性樹脂材料を用いて射出成形することにより金属インサート樹脂複合成形品を製造する方法が提案されている。
 しかしながら、これらいずれの場合においても、過酷な環境下に曝された際における金属-樹脂の界面での密着強度及び気密性が必ずしも充分ではなく、より優れた密着強度及び気密性を持つ金属-樹脂複合体の開発が要請されていた。
WO2004/041,533号公報 特開2007-182,071号公報 特開2000-127,199号公報 特開2000-176,962号公報 特許第3,467,471号公報
 そこで、本発明者らは、金属材料としてアルミニウム合金に着目し、このアルミニウム合金製のアルミ形状体とその表面に熱可塑性樹脂の射出成形により一体的に設けられた樹脂成形体との間の界面の密着強度及び気密性が極めて高く、温度や湿度、粉塵等において過酷な環境下で優れた密着強度及び気密性を保持し、優れた耐久性や耐熱性を発揮し得るアルミ・樹脂射出一体成形品を製造し提供することについて鋭意検討を進めた結果、エッチング処理によってアルミ形状体の表面に凹状部を有するある特定の表面形状を形成することにより、アルミ形状体と樹脂成形体との間の密着性や気密性が顕著に向上することを見出し、本発明を完成した。
 従って、本発明の目的は、射出成形により一体的に接合されたアルミニウム合金製のアルミ形状体と樹脂成形体との間の界面の密着強度及び気密性が極めて高く、温度や湿度、粉塵等において過酷な環境下で優れた密着強度及び気密性を保持し、優れた耐久性や耐熱性を発揮し得るアルミ・樹脂射出一体成形品を提供することにある。
 また、本発明の他の目的は、このようにアルミ形状体と樹脂成形体との間の界面の密着強度及び気密性が極めて高く、過酷な環境下でも優れた密着強度及び気密性を保持し、優れた耐久性や耐熱性を発揮し得るアルミ・樹脂射出一体成形品を製造することができるアルミ・樹脂射出一体成形品の製造方法を提供することにある。
 すなわち、本発明は、表面の一部又は全面に凹凸部を有するアルミニウム合金製のアルミ形状体と、このアルミ形状体の一表面に熱可塑性樹脂を射出成形して突合せ状態に結合された樹脂成形体とを含む射出一体成形品であり、前記アルミ形状体の表面には前記凹凸部に起因した複数の凹状部が形成されていると共に、これらの凹状部内には前記熱可塑性樹脂の射出成形時に熱可塑性樹脂が進入して固化した樹脂成形体の嵌入部が形成されており、前記凹状部と嵌入部とによりアルミ形状体と樹脂成形体とが互いに係止されていることを特徴とするアルミ・樹脂射出一体成形品である。
 また、本発明は、表面の一部又は全面に凹凸部を有するアルミニウム合金製のアルミ形状体と、このアルミ形状体の表面に熱可塑性樹脂の射出成形により一体的に設けられた樹脂成形体とを含む射出一体成形品であり、前記アルミ形状体の表面には前記凹凸部に起因して形成され、アルミ形状体の厚さ方向断面においてこの厚さ方向に直交し、かつ、凹凸部の最高部を通過するトップラインと最深部を通過するボトムラインとの間のハーフラインにおいて、走査型電子顕微鏡観察により測定される開口幅が0.1μm以上30μm以下の大きさであって、深さが0.1μm以上30μm以下の大きさである複数の凹状部が形成されていると共に、これらの凹状部内には前記熱可塑性樹脂の射出成形時に熱可塑性樹脂が進入して固化した樹脂成形体の嵌入部が形成されており、前記凹状部と嵌入部とによりアルミ形状体と樹脂成形体とが互いに係止されていることを特徴とするアルミ・樹脂射出一体成形品である。
 そして、本発明は、アルミニウム合金製のアルミ形状体と、このアルミ形状体の表面に熱可塑性樹脂の射出成形により設けられた樹脂成形体とを含む射出一体成形品の製造方法であり、アルミニウム合金材をエッチング処理して表面の一部又は全面に凹凸部に起因する複数の凹状部を有するアルミ形状体を形成し、樹脂成形体の射出成形時にはアルミ形状体の各凹状部内に熱可塑性樹脂が進入して固化した樹脂成形体の嵌入部を成形し、アルミ形状体の凹状部と樹脂成形体の嵌入部とが互いに係止してアルミ形状体と樹脂成形体とが一体的に結合したアルミ・樹脂射出一体成形品を製造することを特徴とするアルミ・樹脂射出一体成形品の製造方法である。
[アルミ・樹脂射出一体成形品について]
 本発明において、アルミ形状体を形成するためのアルミニウム合金材としては、具体的には、純Al系の1000系、Al-Cu系の2000系、Al-Mn系の3000系、Al-Si系の4000系、Al-Mg系の5000系、ADC5、及びADC6、Al-Mg-Si系の6000系、Al-Zn-Mg系の7000系、Al-Fe系の8000系、Al-Si-Mg系のADC3、Al-Si-Cu系のADC10、ADC10Z、ADC12、及びADC12Z、Al-Si-Cu-Mg系のADC14等の材質からなる材料を所望の形状に適宜加工して得られる加工材、更にはこれらの加工材を適宜組み合わせて得られる組合せ材等が挙げられる。
 また、本発明において、アルミ形状体の表面の凹凸部に起因してこのアルミ形状体の表面に形成される複数の凹状部は、その開口縁部が無端の周縁部であるような穴状又は孔状のもの(無端開口縁部を有する凹状部)であってもよく、また、開口縁部が両端部を有するようなスリット状又は溝状のもの(有端開口縁部を有する凹状部)であってもよく、更には、これら無端開口縁部を有する穴状又は孔状のものと有端開口縁部を有するスリット状又は溝状のものとが混在していてもよい。
 そして、アルミ形状体の複数の凹状部については、好ましくはその一部又は全部において、凹状部の開口縁部の一部分又は全体から開口幅方向中心に向けて雪庇状に突き出した突出部が形成されているのがよく、これによって、凹状部はその開口幅がその内部の幅寸法より狭くなり、このような凹状部内に進入して固化した樹脂成形体の嵌入部は凹状部との間で互いに脱離不能な係止構造を形成し、アルミ形状体の凹状部か樹脂成形体の嵌入部のいずれか一方又は双方が破壊されない限り脱離することがなく、アルミ形状体と樹脂成形体との間の密着強度や気密性がより向上する。
 更に、このようにアルミ形状体の複数の凹状部においてその一部又は全部の開口縁部に上記の如き雪庇状の突出部が形成されていると、これらの凹状部内には樹脂成形体の嵌入部が必ずしも密着状態で嵌合している必要はなく、例えばアルミ形状体と樹脂成形体との間の線膨張係数の差と環境温度に基づいて、これらアルミ形状体と樹脂成形体との間に不可避的な極微小な隙間が発生したとしても、これらアルミ形状体と樹脂成形体との間には優れた密着強度や気密性が維持される。
 本発明において、アルミ形状体の表面の凹凸部に起因して形成される複数の凹状部は、このアルミ形状体の断面を模式的に示す図1を参照して説明すると、アルミ形状体1の厚さ方向断面においてこの厚さ方向に直交し、かつ、凹凸部の最高部を通過するトップライン(TL)と最深部を通過するボトムライン(BL)との間のハーフライン(HL)において、走査型電子顕微鏡観察により測定される開口幅(d)が0.1μm以上30μm以下、好ましくは0.5μm以上20μm以下、より好ましくは1μm以上10μm以下の大きさであって、深さが0.1μm以上30μm以下、好ましくは0.5μm以上20μm以下の大きさであるのがよい。この凹状部の開口幅(d)が0.1μmより狭いと、射出成形時に溶融樹脂が進入し難くなってアルミ形状体1と樹脂成形体との界面に微小な空隙が発生して優れた密着強度や気密性が得られ難くなり、反対に、30μmより広くしようとすると、アルミ形状体1の表面処理(エッチング処理)時に溶解反応が過剰に進行し、材料表面の欠落あるいは材料の板厚減少量の増大という問題が生じ、材料強度不足の製品が発生して生産性低下の原因になる。また、深さについても、0.1μmより浅いと、十分な樹脂成形体の嵌入部が得られ難くなり、反対に、30μmより深くしようとすると、アルミ形状体1の表面処理(エッチング処理)時に溶解反応が過剰に進行し、材料表面の欠落あるいは材料の板厚減少量の増大という問題が生じる。
 本発明において、アルミ形状体の表面の凹凸部に起因して形成される複数の凹状部の密度については、0.1mm四方当り開口幅0.5μm~20μm及び深さ0.5μm~20μmの範囲内の1種又は2種以上の大きさのものが5~200個程度の範囲で存在するのがよい。
 また、本発明のアルミ形状体において、その凹状部に形成される雪庇状の突出部は、好ましくは、アルミ・樹脂一体成形品の厚さ方向断面において、その樹脂成形体側からアルミ形状体側に向けて厚さ方向に延びる多数の観察ラインを互いに0.1μmの間隔で引いた際に、1観察ライン上に樹脂-アルミ-樹脂からなる少なくとも1つ以上の積層部を形成し、かつ、この積層部のアルミ形状体部分の厚さが0.1μm以上30μm以下の範囲であるのがよく、アルミ・樹脂一体成形品にはこのような雪庇状の突出部が1000本の観察ラインの範囲内に1つ以上存在するのがよい。
 また、アルミ形状体の複数の凹状部は、その一部又は全部において、内部の壁面に少なくとも1つ以上の内部凹状部が形成された二重凹状部構造を有していてもよく、また、内部の壁面に少なくとも1つ以上の内部突起部が形成された内部凹凸構造を有していてもよく、更に、これら二重凹状部構造や内部凹凸構造が並存していてもよい。アルミ形状体の複数の凹状部の一部又は全部において、このような二重凹状部構造や内部凹凸構造が存在することにより、アルミ形状体の凹状部と樹脂成形体の嵌入部とは互いにより強固に結合し、アルミ形状体と樹脂成形体との間のより優れた密着強度や気密性が発揮される。
[アルミ・樹脂射出一体成形品の製造方法について]
 本発明において、このようなアルミ・樹脂射出一体成形品を製造する際には、先ず、表面に上述した複数の所望の凹状部を有するアルミ形状体を形成するが、その方法としては、例えば、アルミニウム合金材にエッチング処理を施して表面の一部又は全面に凹凸部を形成し、この凹凸部に起因して複数の凹状部を有するアルミ形状体を形成する方法が挙げられる。
 そして、このアルミニウム合金材のエッチング処理に用いるエッチング液としては、例えば、塩酸、リン酸、硫酸、酢酸、シュウ酸、アスコルビン酸、安息香酸、酪酸、クエン酸、ぎ酸、乳酸、イソブチル酸、リンゴ酸、プロビオン酸、酒石酸等の酸水溶液からなるエッチング液を挙げることができるが、開口幅及び深さが所望の大きさを有する複数の凹状部を形成したり、あるいは、凹状部の一部又は全部の開口縁部に開口幅方向中心に向けて突出する雪庇状の突出部を形成する等、表面に形成される凹状部を所望の形状及び大きさに制御するためには、酸水溶液として比較的酸化力の弱い酸水溶液を用い、また、このような比較的酸化力の弱い酸水溶液中に、アルミニウム合金材の表面に形成されている酸化皮膜を溶解するために、ハロゲンイオンを所定の濃度で含むエッチング液を用いることが必要である。
 すなわち、エッチング液としては、比較的酸化力の弱い酸水溶液中に、塩素イオン(Cl-)、フッ素イオン(F-)、及びヨウ素イオン(I-)から選ばれたいずれか1種又は2種以上のハロゲンイオンを所定の濃度範囲で含むエッチング液を用いるのがよい。そして、このようなハロゲンイオン含む比較的酸化力の弱い酸水溶液を用い、このエッチング液中にアルミニウム合金材を浸漬すると、先ずエッチング液中のハロゲンイオンがアルミニウム合金材の表面の酸化皮膜を溶解し、その後に内部のアルミニウム合金を溶解して更にアルミニウム合金材内部に浸食していくが、その際に、表面の酸化皮膜よりも内部のアルミニウム合金の方がより浸食され易い(溶解し易い)ので、エッチング液の組成やエッチング処理の条件等を設定することにより、表面に形成される凹凸部に起因する凹状部について、その開口幅や深さ等を所望の大きさに制御したり、その一部又は全部の開口縁部に開口幅方向中心に向けて突出する雪庇状の突出部を形成することができる。
 この目的で用いられるエッチング液としては、具体的には、酸水溶液として、酸濃度0.1重量%以上80重量%以下、好ましくは0.5重量%以上50重量%以下の塩酸水溶液、リン酸水溶液、希硫酸水溶液、酢酸水溶液等や、酸濃度5重量%以上30重量%以下、好ましくは10重量%以上20重量%以下のシュウ酸水溶液等を挙げることができ、また、これらの酸水溶液中にハロゲンイオン導入のために添加されるハロゲン化物としては、例えば塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化アルミニウム等の塩化物や、フッ化カルシウム等のフッ化物や、臭化カリウム等の臭化物等を挙げることができ、好ましくは安全性等を考慮して塩化物である。そして、このエッチング液中におけるハロゲンイオン濃度については、通常0.5グラム/リットル(g/L)以上300g/L以下、好ましくは1g/L以上200g/L以下であるのがよく、0.5g/L未満だとハロゲンイオンの効果が小さいため、開口縁部に雪庇状の突出部を有する凹状部が形成されないという問題が生じ、また、300g/Lを超えるような場合はアルミ形状体の表面処理(エッチング処理)時に溶解反応が急激に進行するため,凹状部の制御が困難になるという問題が生じる。
 なお、本発明において、アルミ形状体の表面に所望の凹状部を形成するためのエッチング液としては、硝酸や80重量%を超える濃度の濃硫酸等の比較的酸化力の強い酸の水溶液や水酸化ナトリウムや水酸化カリウム等のアルカリの水溶液は適当でない。比較的酸化力の強い酸水溶液は、アルミニウム合金に対して皮膜生成能力を有し、かえってアルミ形状体の表面に強固な酸化皮膜を形成し、ハロゲンイオンによる酸化皮膜の溶解が困難になる。また、水酸化ナトリウムや水酸化カリウム等のアルカリ水溶液のアルミニウム合金に対する溶解機構は、全面溶解型であって、ハロゲンイオンを添加した場合においてもその傾向は変わらず、所望の形状や大きさを有する凹状部を形成することが困難になる。
 本発明において、上記のエッチング液を用いてアルミニウム合金材の表面をエッチング処理する際の処理条件については、使用するエッチング液の種類、酸濃度、ハロゲンイオン濃度等や、アルミ形状体に要求される複数の凹状部の数や大きさ等によっても異なるが、通常、塩酸水溶液の場合には浴温20~80℃で浸漬時間1~30分間、リン酸水溶液の場合は浴温30~80℃で浸漬時間1~5分間、硫酸水溶液の場合には浴温40~80℃で浸漬時間2~8分間、シュウ酸水溶液の場合には浴温50~80℃で浸漬時間1~3分間、酢酸水溶液の場合には浴温50~80℃で浸漬時間1~3分間の範囲であるのがよい。使用するエッチング液の酸濃度や浴温が高いほどエッチング処理の効果が顕著になり、短時間処理が可能になるが、浴温については、20℃未満では溶解速度が遅くて十分な大きさ(開口幅及び深さ)を有する凹状部の生成に長時間を要し、また、80℃を超える浴温では溶解反応が急激に進行して凹状部の開口幅及び深さの制御が困難になり、浸漬時間については、1分未満では凹状部の開口幅及び深さの制御が難しく、逆に30分を超える浸漬時間では生産性低下の原因となる。
 本発明において、上記の如くアルミニウム合金材にエッチング処理を施して凹状部を有するアルミ形状体を形成する際に、必要により、このエッチング処理前のアルミニウム合金材の表面に、脱脂や表面調整、表面付着物・汚染物等の除去を目的として、酸水溶液による酸処理、及び/又は、アルカリ溶液によるアルカリ処理からなる前処理を施してもよい。
 ここで、この前処理に用いる酸水溶液としては、例えば、市販の酸性脱脂剤で調製したもの、硫酸、硝酸、フッ酸、リン酸等の鉱酸や酢酸、クエン酸等の有機酸や、これらの酸を混合して得られた混合酸等の酸試薬を用いて調製したもの等を用いることができ、また、アルカリ水溶液としては、例えば、市販のアルカリ性脱脂剤により調製したもの、苛性ソーダ等のアルカリ試薬により調製したもの、又はこれらのものを混合して調製したもの等を用いることができる。
 上記の酸水溶液及び/又はアルカリ水溶液を用いて行なう前処理の操作方法及び処理条件については、従来、この種の酸水溶液又はアルカリ水溶液を用いて行なわれている前処理の操作方法及び処理条件と同様でよく、例えば、浸漬法、スプレー法等の方法により行うことができる。
 そして、アルミニウム合金材の表面に上記の前処理を施した後や、凹状部を形成するためのエッチング処理を施した後に、必要により水洗処理をしてもよく、この水洗処理には工業用水、地下水、水道水、イオン交換水等を用いることができ、製造されるアルミ形状体に応じて適宜選択される。更に、前処理やエッチング処理が施されたアルミニウム合金材については、必要により乾燥処理が行われるが、この乾燥処理についても、室温で放置する自然乾燥でよいほか、エアーブロー、ドライヤー、オーブン等を用いて行う強制乾燥でもよい。
 上記のエッチング処理により、又は前処理及びエッチング処理により得られたアルミ形状体の表面には、エッチング処理により凹凸部が形成され、その表面の60度表面光沢度(スガ試験機社製ハンディ光沢計での測定)は好ましくは60以下である。この表面光沢度が60を超えている場合は、熱可塑性樹脂の射出成形の際に溶融した樹脂がアルミ形状体の凹状部内に十分に入り込まず、アルミ形状体と樹脂成形体との間の十分な接合強度が得られない。
 また、上記のエッチング処理により、又は前処理及びエッチング処理により得られたアルミ形状体の表面をSEMあるいは光学顕微鏡により倍率1000倍で断面観察を行い、得られた断面観察写真について、好ましくはアルミ形状体の表面積が、エッチング処理により凹凸部を形成する前のアルミニウム合金材の表面積の1.2倍以上10倍以下であるのがよい。この表面積増加率が1.2倍未満、又は10倍を超えている場合は、熱可塑性樹脂の射出成形の際に溶融した樹脂がアルミ形状体の凹状部内に十分に入り込まず、アルミ形状体と樹脂成形体との間の十分な接合強度が得られない。
 次に、本発明のアルミ・樹脂射出一体成形品を得るには、以上のようにして得られたアルミ形状体を射出成形用金型内にセットし、この金型内に溶融した所定の熱可塑性樹脂を射出して固化させる、いわゆるアルミ形状体を用いた熱可塑性樹脂の一体成形により、目的のアルミ形状体と樹脂成形体との射出一体成形品を製造する。本発明において、特に好ましい射出一体成形品は、アルミ形状体の一部の表面に熱可塑性樹脂を射出成形して突合せ状態に結合された樹脂成形体とを含む射出一体成形品である。
 ここで、本発明のアルミ・樹脂射出一体成形品を製造するための熱可塑性樹脂については、各種の熱可塑性樹脂を単独で用いることができるが、本発明のアルミ・樹脂射出一体成形品に求められる物性、用途、使用環境等を考慮すると、熱可塑性樹脂としては、好ましくは、例えばポリプロピレン樹脂、ポリエチレン樹脂、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンスルフィド(PPS)等のポリアリーレンサルファイド樹脂、ポリアセタール樹脂、液晶性樹脂、ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)等のポリエステル系樹脂、ポリオキシメチレン樹脂、ポリイミド樹脂、シンジオタクティックポリスチレン樹脂等やこれらの熱可塑性樹脂の2種以上の混合物が挙げられ、また、アルミ形状体と樹脂成形体との間の密着性、機械的強度、耐熱性、寸法安定性(耐変形、反り等)、電気的性質等の性能をより改善するために、より好ましくは、これらの熱可塑性樹脂に繊維状、粉粒状、板状等の充填剤や、各種のエラストマー成分を添加するのがよい。
 また、熱可塑性樹脂に添加される充填剤としては、ガラス繊維、カーボン繊維、金属繊維、アスベスト繊維、硼素繊維等の無機質繊維充填剤や、ポリアミド、フッ素樹脂、アクリル樹脂等の高融点有機質繊維充填剤や、石英粉末、ガラスビーズ、ガラス粉、炭酸カルシウムを始めとする無機粉体類等の粉状充填剤や、ガラスフレーク、タルクやマイカ等の珪酸塩類等の板状充填剤等が例示され、熱可塑性樹脂100重量部に対して250重量部以下、好ましくは20重量部以上220重量部以下、より好ましくは30重量部以上100重量部以下の範囲で添加される。この充填剤の添加量が250重量部を超えると、流動性が低下しアルミ形状体の凹部へ進入し難くなり良好な密着強度を得られなかったり、機械的特性の低下を招くという問題が生じる。
 また、熱可塑性樹脂に添加されるエラストマー成分としては、ウレタン系、コアシェル型、オレフィン系、ポリエステル系、アミド系、スチレン系等のエラストマーが例示され、射出成形時の熱可塑性樹脂の溶融温度等を考慮して選択され、また、熱可塑性樹脂100重量部に対して30重量部以下、好ましくは3~25重量部の範囲で使用される。このエラストマー成分の添加量が30重量部を超えると、更なる密着強度向上効果が見られず機械的特性の低下等の問題が生じる。このエラストマー成分の配合効果は、熱可塑性樹脂としてポリエステル系樹脂を用いた場合に特に顕著に現れる。
 更に、本発明のアルミ・樹脂射出一体成形品を製造するための熱可塑性樹脂には、一般に熱可塑性樹脂に添加される公知の添加剤、すなわち難燃剤、染料や顔料等の着色剤、酸化防止剤や紫外線吸収剤等の安定剤、可塑剤、潤滑剤、滑剤、離型剤、結晶化促進剤、結晶核剤等を、要求される性能に応じて適宜添加することができる。
 本発明において、アルミ形状体を射出成形用金型内にセットして行う熱可塑性樹脂の射出成形については、用いられる熱可塑性樹脂に求められる通常の成形条件を採用し得るものであるが、射出成形時に溶融した熱可塑性樹脂がアルミ形状体の凹状部内に確実に進入して固化することが重要であり、金型温度やシリンダー温度を熱可塑性樹脂の種類や物性、更には成形サイクルの許す範囲で比較的高めに設定するのが好ましく、特に金型温度については、下限温度を90℃以上、好ましくは130℃以上にする必要があるが、上限は、使用する熱可塑性樹脂の種類に応じて、100℃から当該熱可塑性樹脂の融点又は軟化点(エラストマー成分が添加される場合にはどちらか高い方の融点又は軟化点)より20℃程度低い温度までの範囲であるのがよい。また、下限金型温度は、熱可塑性樹脂の融点から140℃以上低くならないように設定するのが好ましい。
 本発明のアルミ・樹脂射出一体成形品は、アルミ形状体と樹脂成形体との間の界面(アルミ/樹脂界面)の密着強度や気密性が極めて高く、かつ過酷な環境に曝されてもその優れた密着強度及び気密性を保持することができ、長期に亘って高い信頼性を維持し得るものである。従って、本発明のアルミ・樹脂射出一体成形品は、例えば、自動車用の各種センサー部品、家電機器用各種スイッチ部品、各種産業機器用コンデンサー部品等を始めとして、幅広い分野における金属-樹脂一体成形部品に好適に使用することができ、特にアルミ形状体の一部の表面から樹脂成形体が突合せ状態に突出して高い結合強度が要求される金属-樹脂一体成形部品に好適に使用される。
 また、本発明のアルミ・樹脂射出一体成形品の製造方法によれば、製造時にアルミ形状体の表面光沢度あるいは表面粗さを測定することにより、得られた製品の密着強度を予想することができ、その製造時の品質管理が容易になるほか、製品毎に密着強度のバラツキがほとんどない信頼性の高い製品を製造することが可能になる。
図1は、実施例1に係るアルミ形状体の厚さ方向断面を模写し、凹状部を説明するための断面模写図である。
図2は、図1から観念される凹状部の形状の典型例を示す断面説明図である。
図3は、アルミ試験片A(アルミ形状体)を用いてせん断破壊荷重測定試験用に調製したアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)正面図及び側面図である。
図4は、せん断破壊荷重測定試験の際にアルミ・樹脂試験片を試験片固定用治具に固定した状態を示す斜視説明図である。
図5は、アルミ試験片B(アルミ形状体)を用いて耐気密性評価試験用に調製したアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)平面図及び側面図である。
図6は、耐気密性評価試験の際にアルミ・樹脂試験片を耐気密性評価試験装置の試験片セット部にセットした状態を示す断面説明図である。
図7は、比較例1、4、5に係るアルミ形状体の厚さ方向断面を模写した断面模写図である。
図8は、比較例2に係るアルミ形状体の厚さ方向断面を模写した断面模写図である。
図9は、比較例3に係るアルミ形状体の厚さ方向断面を模写した断面模写図である。
図10は、実施例1に係るアルミ形状体の厚さ方向断面を模写した断面模写図である。
図11は、アルミ試験片C(アルミ形状体)を用いてせん断破壊荷重測定試験用に調製したアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)平面図及び側面図である。
図12は、せん断破壊荷重測定試験の際にアルミ・樹脂試験片を試験片固定用治具に固定した状態を示す側面図である。
 1…アルミ形状体、1A…アルミ試験片A、1B  アルミ試験片B、1C…アルミ試験片C、TL…トップライン、BL…ボトムライン、HL…ハーフライン、d…開口幅、OL…観察ライン、2…樹脂成形体、2a…フランジ状接合部、2b…筒状部、3…試験片固定用治具、4…樹脂埋設部、5…試験片セット部、6…加圧空気導入口、7…O-リング、8…試験片固定用治具、9…押し冶具、10…接合部。
 以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。尚、本発明は以下に記載の例に限定されるものではない。
〔実施例1〕
[アルミ形状体の調製]
 厚さ1mmのアルミニウム合金(JISA 1050-H24)板から大きさ50mm×50mmのアルミ片A(アルミニウム合金材)と大きさ2mm×35mmのアルミ片B(アルミニウム合金材)とを切り出し、これらのアルミ片A及びBについて、先ず30wt%硝酸水溶液に常温で5分間浸漬した後にイオン交換水で十分に水洗し、次いで5wt%水酸化ナトリウム溶液に50℃で1分間浸漬した後に水洗し、更に、30wt%硝酸水溶液に常温で3分間浸漬した後に水洗する前処理を施した。
 次に、上記前処理後のアルミ片A及びBについて、2.5wt%塩酸水溶液中に54g/Lの塩化アルミニウム六水和物(AlCl3・6H2O)を添加して調製したエッチング液(塩素イオン濃度:48g/L)中に66℃で4分間浸漬した後に水洗するエッチング処理を施し、更に、30wt%硝酸水溶液に常温で3分間浸漬した後に水洗し、120℃の熱風で5分間乾燥させ、せん断破壊荷重測定試験用及び耐気密性評価試験用の評価サンプルを作成するためのアルミ試験片A及びB(アルミ形状体)を作成した。
[アルミ試験片A及びB(アルミ形状体)の表面の凹状部観察]
 得られたアルミ試験片A及びBについて、その厚さ方向断面のうちのある領域の断面を走査型電子顕微鏡(日立製FE-SEM、S-4500形)を用いて観察し、先ず、アルミ形状体の厚さ方向断面においてこの厚さ方向に直交し、かつ、凹凸部の最高部を通過するトップライン(TL)を決め、次に上記と概ね同様に、アルミ形状体の厚さ方向に直交し、かつ、凹凸部の最深部を通過するボトムラインを決定し、更に、トップライン(TL)からボトムライン(BL)に対して垂直方向に線分を引き、この線分の中間部を通過し、かつ、トップライン(TL)〔あるいはボトムライン(BL)〕と平行に引かれたハーフライン(HL)上のアルミ形状体とアルミ形状体との間に存在する空隙間の距離を凹状部の開口幅(d)とし、アルミ試験片A及びBの表面の凹凸部に起因して形成された凹状部の形状と大きさ(開口幅及び深さ)を観察し、また、測定した。
 観察されたアルミ試験片A及びBのある領域の断面には、例えば図1の断面模写図に示す通りであり、また、この図1から観念される凹状部の形状の典型例は、図2に示すように、開口縁部の一部分から開口幅方向中心に向けて雪庇状に突き出した突出部を有する凹状部(形状a:図2(a)参照)、開口縁部の全体から開口幅方向中心に向けて雪庇状に突き出した突出部を有する凹状部(形状b:図2(b)参照)、内部に更に凹状部が形成された二重凹状部構造を有する凹状部(形状c:図2(c)参照)、及び内部の壁面に内部突起部が形成された内部凹凸構造を有する凹状部(形状d:図2(d)参照)であり、この実施例1においては全ての形状a~dの凹状部が観察された。また、このような凹状部の形状については、観察場所を変えても同様であった。
 ここで、観察された凹状部の形状の評価については、上記形状a~dのいずれか1つ又は2つ以上を有する場合を良好(○)とし、また、形状a~dのいずれも存在しない場合を不良(×)とした。なお、以下の実施例2~17及び比較例1~7において観察された凹状部の形状についても同様の基準で評価した。
 また、測定されたアルミ試験片A及びBのある領域の断面において観察された凹状部の大きさ(開口幅及び深さ)並びにその割合は、0.1mm四方当たり開口幅0.1μm~1μmの凹状部が10個~100個,開口幅が1μm~10μmの凹状部が1~10個,開口幅が11μm~30μmの凹状部が1~3個であり,深さは0.1μm~30μmの範囲内であった。また、二重凹状部構造を形成する内部の凹状部の大きさ(開口幅及び深さ)並びにその割合についても、上記と概ね同様に、0.1mm四方当たり開口幅0.1μm~1μmの凹状部が10個~50個,開口幅が1μm~10μmの凹状部が1~50個,開口幅が11μm~30μmの凹状部が1~2個であり,深さは0.1μm~20μmの範囲内であった。この凹状部の大きさについても、観察場所を変えてもほとんど変わりがなかった。
 ここで、観察された凹状部の大きさの評価については、開口幅0.1~30μm及び深さ0.1~30μmの範囲内である場合を良好(○)とし、そうでない場合を不良(×)とした。なお、以下の実施例2~17及び比較例1~7において観察された凹状部の大きさについても同様の基準で評価した。
[アルミ試験片A及びB(アルミ形状体)の表面光沢度の評価]
 得られたアルミ試験片A及びBについて、ハンディ光沢計(スガ試験機社製)を用いて表面の60度光沢度を測定した。60度光沢度の値が60以下である場合を良好(○)とし、また、60を超える場合を不良(×)として評価したところ、結果は良好(○)であった。
[アルミ試験片A及びB(アルミ形状体)の表面積増加率による評価]
 得られたアルミ試験片A及びBについて、SEMあるいは光学顕微鏡により倍率1000倍で断面観察を行い、得られた断面観察写真について画像処理ソフト(ImageJ)を用いアルミ形状体の表面の表面積を測定した。未処理のアルミニウム合金材に対し得られたアルミ試験片表面の表面積が増加した割合を表面積増加率と定義した。なお、以下のアルミ試験片Cを用いる実施例13~17及び比較例1~7において観察された凹状部の表面積増加率についても同様の基準で測定した。
[せん断破壊荷重測定試験]
 得られたアルミ試験片A(アルミ形状体)を射出成形機(ソディックプラスチック社製TR40VR)の金型内にセットし、熱可塑性樹脂として、無機充填剤及びエラストマー成分を含むポリフェニレンスルフィド樹脂(樹脂A)、無機充填剤を含むポリフェニレンスルフィド樹脂(樹脂B)、又は無機充填剤を含むポリフェニレンスルフィド樹脂(樹脂C)を用い、射出時間(保圧時間を含む)7秒、射出速度80mm/秒、保圧力100MPa、成形温度320℃、及び金型温度159℃の成形条件で射出成形し、図3に示すように、50mm×50mm×1mmの大きさのアルミ試験片A(1A)の表面に、外径15mmφ×内径5mmφ×厚さ2mmの大きさを有して上記アルミ試験片A(1A)の表面に固着するフランジ状接合部(2a)とこのフランジ状接合部(2a)から突出する外径10mmφ×長さ18mmの大きさの筒状部(2b)とを有する樹脂成形体(2)とが一体化されたせん断破壊加重測定試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を作製した。
[樹脂A~Cの調製方法]
 下記の表1に示すように、下記の成分a~cをヘンシェルミキサーで5分間混合し、次いで得られた混合物をシリンダー温度320℃の二軸押出機に投入後、成分dは押出機のサイドフィード部より別添加し、溶融混練を行い、ペレット状に調製した。
Figure JPOXMLDOC01-appb-T000001
 成分a~dの詳細は、以下の通りである。
 成分a:ポリフェニレンサルファイド(PPS)樹脂(株式会社クレハ製フォートロンKPS;融点280℃、樹脂温度310℃、せん断速度1200sec-1における溶融粘度30Pa・s)
 成分b:エラストマー
   b-1:エチレン/グリシジルメタクリレート共重合体70重量部にメチルメタクリレート/ブチルアクリレート共重合体を30重量部グラフトさせた共重合体(日油株式会社製モディパーA4300)
   b-2:エチレン/オクテン共重合体(DuPont Dow Elastomers L.L.C.製エンゲージ8440)
 成分c:離型剤(日油株式会社製ユニスターH-476)
 成分d:無機充填剤
   d-1:ガラス繊維〔10μmφのチョップドストランド(ファイバーグラスジャパン社製CS03JA-FT636)〕
   d-2:ガラスフレーク(日本板ガラス株式会社製Eガラス、平均粒径600μmφ)
   d-3:炭酸カルシウム(東洋ファインケミカル株式会社製ホワイトンP30、平均粒径4μm)
 せん断破壊加重測定試験機(オリエンテック社製:テンシロンUTA-50KN-RTC)を用い、図4に示すように、その試験片固定用治具(3)に上記のせん断破壊加重測定試験用アルミ・樹脂試験片を固定し、フランジ状接合部(2a)から4mm離れた位置で筒状部(2b)に荷重を加え、アルミ試験片A(1A)と樹脂成形体(2)との間の接合部の剥離状態を調べた。観察された剥離形態について、樹脂がアルミ試験片側に残る凝集破壊である場合を良好(○)とし、また、樹脂がアルミ試験片側に残らない接合界面で発生した場合を不良(×)として評価したところ、結果はいずれの場合も良好(○)であった。
[耐気密性評価試験]
 また、得られたアルミ試験片B(アルミ形状体)2本を射出成形機(住友重機社製SG-50)の金型内にセットし、射出時間(保圧時間を含む)15秒、射出速度17mm/秒、保圧力70MPa、成形温度320℃、及び金型温度159℃の成形条件で射出成形した以外は、上記のせん断破壊加重測定試験用アルミ・樹脂試験片(アルミ・樹脂射出一体成形品)の場合と同様にして、図5に示すように、2本のアルミ試験片B(1B)とこれら2本のアルミ試験片B(1B)が長さ17mmの樹脂埋設部(4)で貫通する樹脂成形体(2)とからなる耐気密性評価試験用アルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を作製した。
 図6に示すように、一端開口筒体からなり、開口縁部に試験片セット部(5)を有すると共に底部近傍に加圧空気導入口(6)を有するSUS製耐気密性評価試験装置を用い、その試験片セット部(5)にO-リング(7)を介して上記の耐気密性評価試験用アルミ・樹脂試験片をセットし、加圧空気導入口(6)からレギュレーターを用いながら圧縮空気を導入し、0.1MPaの加圧毎に1分間保持しながら内部空気圧を0.6MPaまで上昇させ、この間にアルミ・樹脂試験片の樹脂埋設部(4)におけるアルミ試験片B(1B)と樹脂成形体(2)との界面から空気漏れが発生したか否かを測定した。内部空気圧が0.6MPaに達しても空気漏れが測定されなかった場合を良好(○)とし、内部空気圧が0.6MPaに達する前に空気漏れが測定された場合を不良(×)として評価したところ、結果はいずれの場合も良好(○)であった。
 また、図10に示すように、せん断破壊加重測定試験用に作製したアルミ・樹脂試験片を厚さ方向に切断し、この厚さ方向断面をSEMあるいは光学顕微鏡により倍率1000倍で観察し、得られた断面観察写真について、樹脂成形体2側からアルミ形状体1側に向けて厚さ方向に延びる多数の観察ライン(OL)を互いに0.1μmの間隔で引いた際に、1観察ライン(OL)上に樹脂-アルミ-樹脂からなる少なくとも1つ以上の積層部が存在し、かつ、この積層部のアルミ形状体部分の厚さが0.1μm以上30μm以下の範囲であって、1000本の観察ライン(OL)の範囲内に1つ以上の割合で存在する場合を良好(○)とし、このような積層部が1000本の観察ライン(OL)の範囲内に1つも存在しないものを不良(×)として評価したところ、結果はいずれの場合も良好(○)であった。なお、以下の実施例2~17及び比較例1~7についても同様の基準で評価した。
〔実施例2〕
 アルミ片A及びBを切り出すアルミニウム合金板としてJIS A1100-H14を用いた以外は、上記実施例1と同様にして、アルミ試験片A及びB(アルミ形状体)を作製し、次いで樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験を実施し、それぞれ評価した。
 結果を、実施例1の結果と共に、表5に示す。
〔実施例3〕
 アルミ片A及びBを切り出すアルミニウム合金板としてJIS A5052-H34を用いた以外は、上記実施例1と同様にして、アルミ試験片A及びB(アルミ形状体)を作製し、次いで樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験とを実施し、それぞれ評価した。
 結果を、実施例1の結果と共に、表5に示す。
〔実施例4〕
 エッチング処理に50wt%リン酸水溶液中に50g/Lの塩化ナトリウムを添加して調製したエッチング液(塩素イオン濃度:30g/L)を用いた以外は、上記実施例1と同様にして、アルミ試験片A及びB(アルミ形状体)を作製し、次いで樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験とを実施し、それぞれ評価した。
 結果を、実施例1の結果と共に、表5に示す。
〔実施例5〕
 エッチング処理に10wt%硫酸水溶液中に50g/Lの塩化ナトリウムを添加して調製したエッチング液(塩素イオン濃度:30g/L)を用いた以外は、上記実施例1と同様にして、アルミ試験片A及びB(アルミ形状体)を作製し、次いで樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験とを実施し、それぞれ評価した。
 結果を、実施例1の結果と共に、表5に示す。
〔実施例6〕
 エッチング処理に30wt%シュウ酸水溶液中に50g/Lの塩化ナトリウムを添加して調製したエッチング液(塩素イオン濃度:30g/L)を用いた以外は、上記実施例1と同様にして、アルミ試験片A及びB(アルミ形状体)を作製し、次いで樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験とを実施し、それぞれ評価した。
 結果を、実施例1の結果と共に、表5に示す。
〔実施例7〕
 熱可塑性樹脂として無機充填剤を含むポリブチレンテレフタレート樹脂(樹脂D)、無機充填剤及びエラストマー成分を含むポリブチレンテレフタレート樹脂(樹脂E)、無機充填剤、非晶質樹脂及びエラストマー成分を含むポリブチレンテレフタレート樹脂(樹脂F)を用い、成形条件として表5に示す成形温度及び金型温度を採用した以外は、上記実施例1と同様にして、せん断破壊加重測定試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を作製し、上記アルミ試験片Aの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験を実施し、評価した。
 結果を、実施例1の結果と共に、表5に示す。
[樹脂D~Fの調製方法]
 下記の表2に示すように、成分a~cをヘンシェルミキサーで5分間混合し、次いで得られた混合物をシリンダー温度260℃の二軸押出機に投入後、成分dは押出機のサイドフィード部より別添加し、溶融混練を行い、ペレット状に調製した。
Figure JPOXMLDOC01-appb-T000002
 成分a~dの詳細は、以下の通りである。
 成分a:ポリブチレンテレフタレート(PBT)樹脂
   a-1:ポリブチレンテレフタレート樹脂(ウィンテック社製、融点225℃、固有粘度0.7dl/g)
   a-2:12.5モル%イソフタル酸変性ポリブチレンテレフタレート共重合体(ウィンテック社製、融点205℃、固有粘度0.74dl/g)
 成分b:エラストマー
   b-1:エチレン/エチルアクリレート共重合体70重量部にメチルメタクリレート/ブチルアクリレート共重合体を30重量部グラフトさせた共重合体(日油株式会社製モディパーA5300)
   b-2:ポリエステルエラストマー(東洋紡績社製ペルプレンP90BD)
 成分c:非晶質樹脂〔(ポリカーボネート樹脂(帝人化成社製パンライト1225WX)〕
 成分d:無機充填剤〔ガラス繊維(13μmφのチョップドストランド(日本電気硝子社製ECS03T187)〕
〔実施例8〕
 熱可塑性樹脂として無機充填剤を含むポリアセタール樹脂(樹脂G)、及びエラストマー成分を含むポリアセタール樹脂(樹脂H)を用い、成形条件として表5に示す成形温度及び金型温度を採用した以外は、上記実施例1と同様にして、せん断破壊加重測定試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を作製し、上記アルミ試験片Aの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験を実施し、評価した。
 結果を、実施例1の結果と共に、表5に示す。
[樹脂G~Hの調製方法]
 下記の表3に示すように、成分a及びbをヘンシェルミキサーで5分間混合し、次いで得られた混合物をシリンダー温度210℃の二軸押出機に投入後、成分cは押出機のサイドフィード部より別添加し、溶融混練を行い、ペレット状に調製した。
Figure JPOXMLDOC01-appb-T000003
 成分a~cの詳細は、以下の通りである。
 成分a:ポリアセタール樹脂
   a-1:ポリアセタール樹脂〔ポリプラスチックス株式会社製、融点160℃、メルトインデックス(190℃):45g/10min.〕
   a-2:ポリアセタール樹脂〔ポリプラスチックス株式会社製、融点160℃、メルトインデックス(190℃):27g/10min.〕
 成分b:エラストマー〔熱可塑性ポリウレタン樹脂(日本ミラストラン株式会社製ミラクトランP480RNAT)〕
 成分c:無機充填剤〔ガラス繊維{10μmφのチョップドストランド(ファイバーグラスジャパン社製CS03FT-102)}〕
〔実施例9〕
 熱可塑性樹脂として無機充填剤を含む液晶性樹脂(樹脂I~K)を用い、成形条件として表6に示す成形温度及び金型温度を採用した以外は、上記実施例1と同様にして、せん断破壊加重測定試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を作製し、上記アルミ試験片Aの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験を実施し、評価した。
 結果を、実施例1の結果と共に、表6に示す。
[樹脂I~Kの調製方法]
 下記の表4に示すように、成分a及びbをヘンシェルミキサーで5分間混合し、次いで得られた混合物を二軸押出機に投入後、成分cは押出機のサイドフィード部より別添加し、溶融混練を行い、ペレット状に調製した。なお、二軸押出機のシリンダー温度は、樹脂I及びJを調整する場合は340℃に、また、樹脂Kを調整する場合は290℃に設定した。
Figure JPOXMLDOC01-appb-T000004
 成分a~cの詳細は、以下の通りである。
 成分a:液晶性樹脂
   a-1:液晶性樹脂E950i(ポリプラスチックス株式会社製、融点335℃)
   a-2:液晶性樹脂A950(ポリプラスチックス株式会社製、融点280℃)
 成分b:離型剤(日油株式会社製、ユニスターH-476)
 成分c:無機充填剤
   c-1:ガラス繊維〔10μmφのチョップドストランド(日本電気硝子社製ECS03T-786H)〕
   c-2:タルク(松村産業株式会社製クラウンタルクPP、平均粒子径10μm)
   c-3:合成シリカ(アドマテックス株式会社製SC2000-ZD、平均粒径0.5μm)
〔実施例10〕
 熱可塑性樹脂として、ガラス繊維30重量%を含有するポリアミド樹脂(樹脂L:東レ株式会社製アミラン3001G30)、ガラス繊維50重量%を含有するポリアミド樹脂(樹脂M:三菱エンジニアリングプラスチックス株式会社製レニー1025)を用い、成形条件として表6に示す成形温度及び金型温度を採用した以外は、上記実施例1と同様にして、せん断破壊加重測定試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を作製し、上記アルミ試験片Aの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験を実施し、評価した。
 結果を、実施例1の結果と共に、表6に示す。
〔実施例11〕
 エッチング液として、2.5wt%塩酸水溶液中に50g/Lの塩化ナトリウム(NaCl)を添加して調製したエッチング液(塩素イオン濃度:54g/L)を用いた以外は、上記実施例1と同様にして、アルミ試験片A及びB(アルミ形状体)を作製し、次いで樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験とを実施し、それぞれ評価した。
 結果を、実施例1の結果と共に、表6に示す。
〔実施例12〕
 エッチング液として、2.5wt%塩酸水溶液(塩素イオン濃度:24g/L)を用い、76℃で10分間浸漬した後に水洗するエッチング処理をした以外は、上記実施例1と同様にして、アルミ試験片A及びB(アルミ形状体)を作製し、次いで樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験を実施し、それぞれ評価した。
 結果を、実施例1の結果と共に、表6に示す。
〔実施例13〕
 厚さ2mmのアルミニウム合金(JISA 1050-H24)板から大きさ50mm×25mmのアルミ片Cを切り出し、このアルミ片Cを使い、6wt%塩酸溶液中に268g/Lの塩化アルミニウム六水和物(AlCl3・6H2O)を添加して調製したエッチング液(塩素イオン濃度:173g/L)を用い、30℃で10分間浸漬した後に水洗するエッチング処理を施した以外は、上記実施例1と同様にして、アルミ試験片C(アルミ形状体)を作製し、次いで樹脂Aを用いてせん断破壊加重測定試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を実施例1と同様の成形条件で作製し、上記アルミ試験片Cの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施し、それぞれ評価した。
 結果を、実施例1の結果と共に、表6に示す。
[せん断破壊荷重測定試験]
 得られたアルミ試験片C(アルミ形状体)を射出成形機(ソディックプラスチック社製TR40VR)の金型内にセットし、熱可塑性樹脂として実施例1と同様に無機充填剤及びエラストマー成分を含むポリフェニレンスルフィド樹脂(樹脂A)を用い、射出時間(保圧時間を含む)7秒、射出速度80mm/秒、保圧力100MPa、成形温度320℃、及び金型温度159℃の成形条件で射出成形し、図11に示すように、50mm×25mm×2mmの大きさのアルミ試験片C(1C)の表面に、5mm×10mmの大きさを有して上記アルミ試験片C(1C)の表面に固着する樹脂成形体(2)とが一体化されたせん断破壊加重測定試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を作製した。
 せん断破壊加重測定試験機(オリエンテック社製:テンシロンUTA-50KN-RTC)を用い、図12に示すように、その試験片固定用治具(8)に上記のせん断破壊加重測定試験用アルミ・樹脂試験片を固定し、接合部(10)を御し冶具(9)で押すことで、アルミ試験片C(1C)と樹脂成形体(2)との間の接合部の剥離状態を調べた。観察された剥離形態について、樹脂がアルミ試験片側に残る凝集破壊である場合を良好(○)とし、また、樹脂がアルミ試験片側に残らない接合界面で発生した場合を不良(×)として評価したところ、結果はいずれの場合も良好(○)であった。
 結果を、実施例1の結果と共に、表6に示す。
〔実施例14〕
 厚さ2mmのアルミニウム合金(JISA 1050-H24)板から大きさ50mm×25mmのアルミ片Cを切り出し、このアルミ片Cを使い、6wt%塩酸溶液中に268g/Lの塩化アルミニウム六水和物(AlCl3・6H2O)を添加して調製したエッチング液(塩素イオン濃度:173g/L)を用い、30℃で20分間浸漬した後に水洗するエッチング処理を施した以外は、上記実施例1と同様にして、アルミ試験片C(アルミ形状体)を作製し、次いで樹脂Aを用いてせん断破壊加重測定試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を実施例1と同様の成形条件で作製し、上記アルミ試験片Cの表面の凹状部観察及び光沢度測定と表面積増加率測定を実施した。また実施例13と同様にアルミ・樹脂試験片のせん断破壊加重測定試験を実施し、それぞれ評価した。
 結果を、実施例1の結果と共に、表6に示す。
〔実施例15〕
 厚さ2mmのアルミニウム合金(JISA 5052-H34)板から大きさ50mm×25mmのアルミ片Cを切り出し、このアルミ片Cを使い、6wt%塩酸溶液中に268g/Lの塩化アルミニウム六水和物(AlCl3・6H2O)を添加して調製したエッチング液(塩素イオン濃度:173g/L)を用い、30℃で20分間浸漬した後に水洗するエッチング処理を施した以外は、上記実施例1と同様にして、アルミ試験片C(アルミ形状体)を作製し、次いで樹脂Aを用いてせん断破壊加重測定試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を実施例1と同様の成形条件で作製し、上記アルミ試験片Cの表面の凹状部観察及び光沢度測定と表面積増加率測定を実施した。また実施例13と同様にアルミ・樹脂試験片のせん断破壊加重測定試験を実施し、それぞれ評価した。
 結果を、実施例1の結果と共に、表6に示す。
〔実施例16〕
 厚さ2mmのアルミニウム合金(JISA 3003-H24)板から大きさ50mm×25mmのアルミ片Cを切り出し、このアルミ片Cを使い、6wt%塩酸溶液中に268g/Lの塩化アルミニウム六水和物(AlCl3・6H2O)を添加して調製したエッチング液(塩素イオン濃度:173g/L)を用い、30℃で18分間浸漬した後に水洗するエッチング処理を施した以外は、上記実施例1と同様にして、アルミ試験片C(アルミ形状体)を作製し、次いで樹脂Aを用いてせん断破壊加重測定試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を実施例1と同様の成形条件で作製し、上記アルミ試験片Cの表面の凹状部観察及び光沢度測定と表面積増加率測定を実施した。また実施例13と同様にアルミ・樹脂試験片のせん断破壊加重測定試験を実施し、それぞれ評価した。
 結果を、実施例1の結果と共に、表6に示す。
〔実施例17〕
 厚さ2mmのアルミニウム合金(JISA 1050-H24)板から大きさ50mm×25mmのアルミ片Cを切り出し、このアルミ片Cを使用した以外は、上記実施例1と同様にして、アルミ試験片C(アルミ形状体)を作製し、次いで樹脂Aを用いてせん断破壊加重測定試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を実施例1と同様の成形条件で作製し、上記アルミ試験片Cの表面の凹状部観察及び光沢度測定と表面積増加率測定を実施した。また実施例13と同様にアルミ・樹脂試験片のせん断破壊加重測定試験を実施し、それぞれ評価した。
 結果を、実施例1の結果と共に、表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
〔比較例1〕
 実施例1の前処理をしたのみでエッチング処理を行うことなくアルミ試験片A及びB(比較例のアルミ形状体)を調製し、実施例1の場合と同様にして、樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験とを実施し、それぞれ評価した。
 凹状部の形状については、実施例1で示した形状a~dのいずれも観察されず、また、凹状部の大きさについても、その開口幅が0.001μm以上0.1μm未満であった。
 図7に観察されたアルミ試験片A及びBのある領域の断面模写図を示し、また、評価結果を表7に示す。
〔比較例2〕
 実施例1の前処理をした後に、2.5wt%塩酸水溶液に66℃で4分間浸漬して水洗し、また、5wt%水酸化ナトリウム溶液に50℃で5分間浸漬して水洗し、更に、30wt%硝酸に常温で3分間浸漬して水洗し、その後に120℃の熱風で5分間乾燥してアルミ試験片A及びB(比較例のアルミ形状体)を調製した。その後、実施例1の場合と同様にして、樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験とを実施し、それぞれ評価した。
 実施例1で観察された形状a~dの凹状部はいずれも認められず、また、凹状部の大きさは開口幅30μmを超えるものが多数観察された。
 図8に観察されたアルミ試験片A及びBのある領域の断面模写図を示し、また、評価結果を表7に示す。
〔比較例3〕
 実施例1の前処理をした後に、50wt%リン酸水溶液に66℃で4分間浸漬して水洗し、その後に120℃の熱風で5分間乾燥してアルミ試験片A及びB(比較例のアルミ形状体)を調製した。その後、実施例1の場合と同様にして、樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験とを実施し、それぞれ評価した。
 実施例1で観察された形状a~dの凹状部はいずれも認められず、また、凹状部の大きさはその開口幅が10μmを超えていた。
 図9に観察されたアルミ試験片A及びBのある領域の断面模写図を示し、また、評価結果を表7に示す。
〔比較例4〕
 実施例1の前処理をした後に、10wt%硫酸水溶液に66℃で4分間浸漬して水洗し、その後に120℃の熱風で5分間乾燥してアルミ試験片A及びB(比較例のアルミ形状体)を調製した。その後、実施例1の場合と同様にして、樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験とを実施し、それぞれ評価した。
 実施例1で観察された形状a~dの凹状部はいずれも認められず、また、凹状部の大きさはその開口幅が0.001μm以上0.1μm未満であった。
 図7に観察されたアルミ試験片A及びBのある領域の断面模写図を示し、また、評価結果を表7に示す。
〔比較例5〕
 実施例1の前処理をした後に、30wt%シュウ酸水溶液に66℃で4分間浸漬して水洗し、その後に120℃の熱風で5分間乾燥してアルミ試験片A及びB(比較例のアルミ形状体)を調製した。その後、実施例1の場合と同様にして、樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験とを実施し、それぞれ評価した。
 実施例1で観察された形状a~dの凹状部はいずれも認められず、また、凹状部の大きさはその開口幅が0.001μm以上0.1μm未満であった。
 図7に観察されたアルミ試験片A及びBのある領域の断面模写図を示し、また、評価結果を表7に示す。
〔比較例6〕
 実施例1と同じアルミ片A及びBについて、先ず過酸化水素26g/L及び硫酸90g/Lを含むエッチング液(水溶液)に20℃で1分間浸漬して防錆皮膜除去を行い、次いで過酸化水素80g/L、硫酸90g/L、ベンゾトリアゾール5g/L、及び塩化ナトリウム0.2g/Lを含むエッチング液(水溶液;塩素イオン濃度:0.1g/L)に25℃で5分間浸漬してイオン交換水で水洗し、その後に120℃の熱風で5分間乾燥してアルミ試験片A(比較例のアルミ形状体)を調製した。その後、実施例1の場合と同様にして、樹脂Aを用いてせん断破壊加重測定試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)を作製し、上記アルミ試験片Aの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験を実施し、それぞれ評価した。
 実施例1で観察された形状a~dの凹状部はいずれも認められず、また、凹状部の大きさはその開口幅が0.001μm以上0.1μm未満の範囲内であった。
 評価結果を表7に示す。
〔比較例7〕
 実施例1の前処理をした後に、30wt%硝酸水溶液からなるエッチング液に66℃で4分間浸漬して水洗し、その後に120℃の熱風で5分間乾燥してアルミ試験片A及びB(比較例のアルミ形状体)を調製した。その後、実施例1の場合と同様にして、樹脂Aを用いてせん断破壊加重測定試験用及び耐気密性評価試験用のアルミ・樹脂試験片(アルミ・樹脂射出一体成形品)をそれぞれ作製し、上記アルミ試験片A及びBの表面の凹状部観察、光沢度測定、及び表面積増加率測定を実施した。また、上記アルミ・樹脂試験片のせん断破壊加重測定試験及び耐気密性評価試験とを実施し、それぞれ評価した。
 実施例1で観察された形状a~dの凹状部はいずれも認められず、また、凹状部の大きさはその開口幅が0.001μm以上0.1μm未満であった。また、上記の評価結果を、実施例1の結果と共に、表7に示す。
Figure JPOXMLDOC01-appb-T000007

Claims (16)

  1.  表面の一部又は全面に凹凸部を有するアルミニウム合金製のアルミ形状体と、このアルミ形状体の一表面に熱可塑性樹脂を射出成形して突合せ状態に結合された樹脂成形体とを含む射出一体成形品であり、前記アルミ形状体の表面には前記凹凸部に起因した複数の凹状部が形成されていると共に、これらの凹状部内には前記熱可塑性樹脂の射出成形時に熱可塑性樹脂が進入して固化した樹脂成形体の嵌入部が形成されており、前記凹状部と嵌入部とによりアルミ形状体と樹脂成形体とが互いに係止されていることを特徴とするアルミ・樹脂射出一体成形品。
  2.  表面の一部又は全面に凹凸部を有するアルミニウム合金製のアルミ形状体と、このアルミ形状体の表面に熱可塑性樹脂の射出成形により一体的に設けられた樹脂成形体とを含む射出一体成形品であり、前記アルミ形状体の表面には前記凹凸部に起因して形成され、アルミ形状体の厚さ方向断面においてこの厚さ方向に直交し、かつ、凹凸部の最高部を通過するトップラインと最深部を通過するボトムラインとの間のハーフラインにおいて、走査型電子顕微鏡観察により測定される開口幅が0.1μm以上30μm以下の大きさであって、深さが0.1μm以上30μm以下の大きさである複数の凹状部が形成されていると共に、これらの凹状部内には前記熱可塑性樹脂の射出成形時に熱可塑性樹脂が進入して固化した樹脂成形体の嵌入部が形成されており、前記凹状部と嵌入部とによりアルミ形状体と樹脂成形体とが互いに係止されていることを特徴とするアルミ・樹脂射出一体成形品。
  3.  アルミ形状体には、その複数の凹状部のうちの一部又は全部において、凹状部の開口縁部の一部分又は全体から開口幅方向中心に向けて雪庇状に突き出した突出部が形成されており、この突出部によりアルミ形状体の凹状部と樹脂成形体の嵌入部とが互いに脱離不能な係止構造を形成している請求項1又は2に記載のアルミ・樹脂射出一体成形品。
  4.  アルミ・樹脂一体成形品の厚さ方向断面において、その樹脂成形体側からアルミ形状体側に向けて厚さ方向に延びる多数の観察ラインを互いに0.1μmの間隔で引いた際に、雪庇状の突出部は、1観察ライン上に樹脂-アルミ-樹脂からなる少なくとも1つ以上の積層部を形成し、かつ、この積層部のアルミ形状体部分の厚さが0.1μm以上30μm以下の範囲であって、この雪庇状の突出部が1000本の観察ラインの範囲内に1つ以上存在することを特徴とする請求項3に記載のアルミ・樹脂射出一体成形品。
  5.  アルミ形状体の複数の凹状部は、その一部又は全部において、内部の壁面に少なくとも1つ以上の内部凹状部が形成された二重凹状部構造を有している請求項1~4のいずれかに記載のアルミ・樹脂射出一体成形品。
  6.  アルミ形状体の複数の凹状部は、その一部又は全部において、内部の壁面に少なくとも1つ以上の内部突起部が形成された内部凹凸構造を有している請求項1~4のいずれかに記載のアルミ・樹脂射出一体成形品。
  7.  アルミ形状体の60度鏡面光沢度が60以下である請求項1~6いずれかに記載のアルミ・樹脂射出一体成形品。
  8.  アルミ形状体の表面積が、凹凸部を形成する前のアルミニウム合金材の表面積の1.2倍以上10倍以下である請求項1~7いずれかに記載のアルミ・樹脂射出一体成形品。
  9.  アルミニウム合金製のアルミ形状体と、このアルミ形状体の表面に熱可塑性樹脂の射出成形により設けられた樹脂成形体とを含む射出一体成形品の製造方法であり、
     アルミニウム合金材をエッチング処理して表面の一部又は全面に凹凸部に起因する複数の凹状部を有するアルミ形状体を形成し、樹脂成形体の射出成形時にはアルミ形状体の各凹状部内に熱可塑性樹脂が進入して固化した樹脂成形体の嵌入部を成形し、
     アルミ形状体の凹状部と樹脂成形体の嵌入部とが互いに係止してアルミ形状体と樹脂成形体とが一体的に結合したアルミ・樹脂射出一体成形品を製造することを特徴とするアルミ・樹脂射出一体成形品の製造方法。
  10.  アルミニウム合金材のエッチング処理は、エッチング液として、ハロゲンイオン濃度を0.5g/L以上300g/L以下の範囲内で含む酸濃度0.1重量%以上80重量%以下の酸水溶液を用いて行われる請求項9に記載のアルミ・樹脂射出一体成形品の製造方法。
  11.  エッチング液は、酸水溶液中に水溶性無機ハロゲン化合物を添加して調製される請求項10に記載のアルミ・樹脂射出一体成形品の製造方法。
  12.  アルミ形状体には、その複数の凹状部のうちの一部又は全部において、凹状部の開口縁部の一部分又は全体から開口幅方向中心に向けて雪庇状に突き出した突出部が形成されており、この突出部によりアルミ形状体の凹状部と樹脂成形体の嵌入部とが互いに脱離不能な係止構造を形成している請求項9~11のいずれかに記載のアルミ・樹脂射出一体成形品の製造方法。
  13.  アルミ・樹脂一体成形品の厚さ方向断面において、その樹脂成形体側からアルミ形状体側に向けて厚さ方向に延びる多数の観察ラインを互いに0.1μmの間隔で引いた際に、雪庇状の突出部は、1観察ライン上に樹脂-アルミ-樹脂からなる少なくとも1つ以上の積層部を形成し、かつ、この積層部のアルミ形状体部分の厚さが0.1μm以上30μm以下の範囲であって、この雪庇状の突出部が1000本の観察ラインの範囲内に1つ以上存在することを特徴とする請求項12に記載のアルミ・樹脂射出一体成形品の製造方法。
  14.  アルミ形状体の表面に凹凸部に起因して形成される複数の凹状部は、アルミ形状体の厚さ方向断面においてこの厚さ方向に直交し、かつ、凹凸部の最高部を通過するトップラインと最深部を通過するボトムラインとの間のハーフラインにおいて、走査型電子顕微鏡観察により測定される開口幅が0.1μm以上30μm以下で深さが0.1μm以上30μm以下の大きさである請求項9~13のいずれかに記載のアルミ・樹脂射出一体成形品の製造方法。
  15.  アルミ形状体の60度鏡面光沢度が60以下である請求項9~14のいずれかに記載のアルミ・樹脂射出一体成形品の製造方法。
  16.  アルミ形状体の表面積が、凹凸部を形成する前のアルミニウム合金材の表面積の1.2倍以上10倍以下である請求項9~15のいずれかに記載のアルミ・樹脂射出一体成形品の製造方法。
PCT/JP2009/060699 2008-06-12 2009-06-11 アルミ・樹脂射出一体成形品及びその製造方法 WO2009151099A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/997,298 US20110111214A1 (en) 2008-06-12 2009-06-11 Integrally injection-molded aluminum/resin article and process for producing the same
JP2010516882A JPWO2009151099A1 (ja) 2008-06-12 2009-06-11 アルミ・樹脂射出一体成形品及びその製造方法
CN2009801225705A CN102056724A (zh) 2008-06-12 2009-06-11 铝-树脂注塑一体成形品及其制造方法
EP09762529A EP2298525A1 (en) 2008-06-12 2009-06-11 Integrally injection-molded aluminum/resin article and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008153805 2008-06-12
JP2008153806 2008-06-12
JP2008-153805 2008-06-12
JP2008-153806 2008-06-12

Publications (1)

Publication Number Publication Date
WO2009151099A1 true WO2009151099A1 (ja) 2009-12-17

Family

ID=41416803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060699 WO2009151099A1 (ja) 2008-06-12 2009-06-11 アルミ・樹脂射出一体成形品及びその製造方法

Country Status (7)

Country Link
US (1) US20110111214A1 (ja)
EP (1) EP2298525A1 (ja)
JP (2) JPWO2009151099A1 (ja)
KR (1) KR20110043530A (ja)
CN (1) CN102056724A (ja)
TW (1) TW201008750A (ja)
WO (1) WO2009151099A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223774A (zh) * 2010-04-19 2011-10-19 苏州滕艺科技有限公司 制造具有金属表面的模内成形薄膜的方法
JP2011213091A (ja) * 2010-04-01 2011-10-27 Sunteng New Technology Co Ltd 金属表面を具えたインモールド成形薄膜の製造方法
WO2011152679A2 (ko) * 2010-06-04 2011-12-08 (주)일광폴리머 이종 재질의 일체형 금속 수지 복합 구조물과 그 제조방법
CN102529224A (zh) * 2010-12-01 2012-07-04 株式会社日立制作所 金属树脂复合结构体及其制造方法、以及母线、模块壳体及树脂制连接器零件
CN102712136A (zh) * 2010-01-12 2012-10-03 日本轻金属株式会社 铝合金部件和树脂部件的激光接合方法
WO2012161183A1 (ja) * 2011-05-26 2012-11-29 日本軽金属株式会社 アルミ・樹脂射出一体成形品製造用のアルミ形状体及びこれを用いたアルミ・樹脂射出一体成形品並びにそれらの製造方法
WO2013047365A1 (ja) 2011-09-26 2013-04-04 日本軽金属株式会社 アルミ樹脂接合体及びその製造方法
JP2013072374A (ja) * 2011-09-28 2013-04-22 Toyoda Gosei Co Ltd 金属−樹脂複合容器
JP2013071312A (ja) * 2011-09-28 2013-04-22 Hitachi Automotive Systems Ltd 金属部材と成形樹脂部材との複合成形体および金属部材の表面加工方法
CN103056525A (zh) * 2012-12-28 2013-04-24 江苏大学 一种新型激光透射焊接连接方法
JP2013159834A (ja) * 2012-02-06 2013-08-19 Nippon Light Metal Co Ltd 樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用アルミ鋳造合金部材
JP2013199681A (ja) * 2012-03-26 2013-10-03 Totoku Electric Co Ltd アクチュエータアーム及びその製造方法並びに表面処理方法
KR101355424B1 (ko) 2011-10-06 2014-01-24 (주)일광폴리머 홈부와 돌출부 언더컷을 갖는 알루미늄 합금의 제조방법.
JP2014139003A (ja) * 2012-12-21 2014-07-31 Polyplastics Co 複合成形体の製造方法及び放熱性を向上させる方法
WO2015008771A1 (ja) * 2013-07-18 2015-01-22 ダイセルポリマー株式会社 複合成形体
JP2015183101A (ja) * 2014-03-25 2015-10-22 ダイセルポリマー株式会社 繊維強化熱可塑性樹脂組成物、それを使用した複合成形体とその製造方法
JP5816763B1 (ja) * 2015-01-19 2015-11-18 ヤマセ電気株式会社 異種材料と金属材料との界面が気密性を有する異種材料接合金属材料、異種材料同士との界面が気密性を有する異種材料接合材料
KR20150134384A (ko) 2013-03-26 2015-12-01 니폰게이긴조쿠가부시키가이샤 금속 수지 접합체 및 그 제조 방법
JP2016027189A (ja) * 2013-07-18 2016-02-18 三井化学株式会社 金属/樹脂複合構造体および金属部材
KR101606567B1 (ko) * 2015-06-22 2016-03-25 주식회사 태성포리테크 알루미늄-고분자 수지 접합체의 제조방법 및 이에 의하여 제조된 알루미늄-고분자 수지 접합체
JP2016056443A (ja) * 2014-09-04 2016-04-21 イルクワンポリマー シーオー., エルティーディー.Ilkwangpolymer Co., Ltd. アルミニウム‐樹脂複合体の製造方法
JP2016215491A (ja) * 2015-05-20 2016-12-22 株式会社Uacj アルミニウム材/熱可塑性樹脂の複合材
WO2017195444A1 (ja) * 2016-05-09 2017-11-16 ポリプラスチックス株式会社 インサート成形体、及び燃料ポンプ用電気接続コネクタ
JP2019049051A (ja) * 2017-09-08 2019-03-28 アップル インコーポレイテッドApple Inc. ポリマー材料を陽極酸化金属に接合するエッチング
EP3498416A4 (en) * 2016-09-30 2019-09-18 LG Chem, Ltd. ASSOCIATED STRUCTURE OF HETEROGENIC MATERIALS AND METHOD FOR THE PRODUCTION THEREOF
WO2020230198A1 (ja) * 2019-05-10 2020-11-19 昭和電工マテリアルズ株式会社 接合用金属部材及び接合体
WO2020230199A1 (ja) * 2019-05-10 2020-11-19 昭和電工マテリアルズ株式会社 接合用金属部材及び接合体
US11178781B2 (en) 2017-09-08 2021-11-16 Apple Inc. Etching for bonding polymer material to a metal surface
EP3720679B1 (en) * 2017-12-06 2022-01-19 S.I.P.A. Società Industrializzazione Progettazione e Automazione S.p.A. Injection-compression molding device
WO2022196190A1 (ja) 2021-03-17 2022-09-22 東ソー株式会社 金属部材-ポリアリーレンスルフィド樹脂部材複合体及びその製造方法
WO2023017762A1 (ja) 2021-08-11 2023-02-16 東ソー株式会社 金属部材-ポリアリーレンスルフィド部材複合体及びその製造方法
WO2023068186A1 (ja) 2021-10-19 2023-04-27 東ソー株式会社 ポリアリーレンスルフィド組成物及びその製造方法
EP4344814A1 (en) * 2022-09-05 2024-04-03 ISKRA ISD d.o.o. Process for surface structuring of a metal workpiece and process for producing a hybrid product from a metal workpiece and a polymer material

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242150B2 (ja) * 2007-12-21 2013-07-24 ウィンテックポリマー株式会社 複合成形体
BR112013013102B1 (pt) * 2010-11-26 2020-10-20 Taisei Plas Co., Ltd método para manufaturar um compósito de resina-metal, compósito de resina-metal e tampa de bateria de íons de lítio
JP2013111881A (ja) * 2011-11-29 2013-06-10 Polyplastics Co 金属部品の製造方法、及び複合成形体
CN103297565B (zh) 2012-02-24 2015-07-22 比亚迪股份有限公司 一种手机壳体及其制备方法
CN103286996B (zh) 2012-02-24 2015-03-25 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及其制备的铝合金树脂复合体
CN103286910B (zh) 2012-02-24 2015-09-30 比亚迪股份有限公司 一种金属树脂一体化成型方法和一种金属树脂复合体
CN103286995B (zh) 2012-02-24 2015-06-24 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及其制备的铝合金树脂复合体
CN103287009B (zh) 2012-02-24 2015-03-25 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及其制备的铝合金树脂复合体
CN103286909B (zh) 2012-02-24 2015-09-30 比亚迪股份有限公司 一种金属树脂一体化成型方法和一种金属树脂复合体
CN103286908B (zh) 2012-02-24 2015-09-30 比亚迪股份有限公司 一种金属树脂一体化成型方法和一种金属树脂复合体
EP2855740A4 (en) 2012-05-28 2016-03-09 Byd Co Ltd METAL COMPOSITE AND METHOD FOR THE PRODUCTION THEREOF, METAL RESIN COMPOSITE AND METHOD FOR THE PRODUCTION THEREOF
US10300687B2 (en) 2012-08-07 2019-05-28 Nippon Light Metal Company, Ltd. Aluminum resin bonded body and method for producing same
JP5798535B2 (ja) * 2012-09-07 2015-10-21 ダイセルポリマー株式会社 複合成形体の製造方法
JP5874840B2 (ja) * 2012-10-17 2016-03-02 住友ベークライト株式会社 金属樹脂複合体および金属樹脂複合体の製造方法
DE102012222685A1 (de) * 2012-12-11 2014-06-12 Robert Bosch Gmbh Bauteilverbund und dessen Verwendung
CN103862619A (zh) * 2012-12-14 2014-06-18 宝理塑料株式会社 金属树脂复合成型体用嵌件金属构件和金属树脂复合成型体
JP5843750B2 (ja) * 2012-12-14 2016-01-13 ポリプラスチックス株式会社 金属部品の製造方法、及び複合成形体
DE102013000890B4 (de) * 2013-01-18 2018-08-09 Dcb Holding Gmbh Verbindungsanordnung eines Silikonteils und Verfahren zum Verbinden eines Silikonteils
KR101380916B1 (ko) * 2013-07-16 2014-04-02 (주)일광폴리머 금속 합금과 세라믹 수지 복합체 및 그 제조방법
CN104746066B (zh) 2013-12-31 2017-07-04 比亚迪股份有限公司 一种金属与塑料的结合材料及其制备方法及制备的结合材料
JP6264905B2 (ja) * 2014-01-31 2018-01-24 住友電気工業株式会社 複合部材、及び複合部材の製造方法
CN103952703A (zh) * 2014-04-30 2014-07-30 东莞劲胜精密组件股份有限公司 一种金属处理液和复合体材料及其制备方法
CN104018160B (zh) * 2014-06-04 2016-09-28 东莞劲胜精密组件股份有限公司 一种液态金属处理剂和复合体材料的制备方法
CN104060268B (zh) * 2014-06-04 2017-03-08 东莞劲胜精密组件股份有限公司 一种液态金属处理剂和复合体材料的制备方法
JP2016010811A (ja) * 2014-06-30 2016-01-21 ミネベア株式会社 金属材料の表面処理方法及びこの方法を用いたフォースセンサ
CN104087939B (zh) * 2014-07-01 2016-09-28 东莞劲胜精密组件股份有限公司 一种液态金属处理液及复合体材料的制备方法
CN104152904B (zh) * 2014-08-01 2016-09-07 东莞劲胜精密组件股份有限公司 一种多孔金属处理液及复合体材料的制备方法
JP6302072B2 (ja) * 2014-09-30 2018-03-28 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂組成物の成形に用いる離型性向上剤、及び離型性向上方法
KR101469899B1 (ko) * 2014-11-04 2014-12-08 (주)일광폴리머 금속-수지 복합체의 제조 방법
CN105530783B (zh) * 2014-12-26 2016-10-12 比亚迪股份有限公司 一种通讯设备金属外壳及其制备方法
KR20160093899A (ko) 2015-01-30 2016-08-09 현대자동차주식회사 금속과 플라스틱 복합체 제조방법
DE102016102379B3 (de) * 2016-02-11 2016-11-03 Christian-Albrechts-Universität Zu Kiel Verfahren zur Ätzung der Oberfläche von Aluminium-Kleinkörpern, Aluminium-Kleinkörper mit geätzter Oberfläche und solche Kleinkörper enthaltende Materialverbunde
JP6902950B2 (ja) * 2017-07-20 2021-07-14 ポリプラスチックス株式会社 金属樹脂複合成形品およびその製造方法
DE102017118940A1 (de) * 2017-08-18 2019-02-21 Christian-Albrechts-Universität Zu Kiel Kunststofffaserverbundwerkstoff-Aluminium-Laminat sowie Verwendung
JP6967953B2 (ja) 2017-11-30 2021-11-17 日本パーカライジング株式会社 少なくとも表面の全部又は一部がアルミニウム又はアルミニウム合金からなる基材の表面を粗面化するためのエッチング剤、粗面化基材の製造方法、粗面化基材、基材−樹脂硬化物の接合体の製造方法、及び基材−樹脂硬化物の接合体
KR102342125B1 (ko) * 2018-04-10 2021-12-22 디아이씨 가부시끼가이샤 복합 구조체 및 그 제조 방법
CN110549542A (zh) * 2018-05-31 2019-12-10 富智康精密电子(廊坊)有限公司 复合体及其制作方法
CN110549543A (zh) * 2018-05-31 2019-12-10 富智康精密电子(廊坊)有限公司 复合体及其制作方法
JP7421457B2 (ja) * 2020-09-23 2024-01-24 東海興業株式会社 射出成形品及びその検査方法
JP7421456B2 (ja) 2020-09-23 2024-01-24 東海興業株式会社 インサート射出成形品の製造方法、インサート射出成形品の中間体、及びインサート射出成形品
DE102021111149A1 (de) * 2021-04-29 2022-11-03 Christian-Albrechts-Universität zu Kiel, Körperschaft des öffentlichen Rechts Polymer-kompositstruktur aufweisend eine aluminium-polymer verankerungsschicht sowie ätzverfahren

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127199A (ja) 1998-10-30 2000-05-09 Bridgestone Corp 成型体
JP2000176962A (ja) 1998-12-17 2000-06-27 Mitsubishi Plastics Ind Ltd シリコーン樹脂−金属複合体の製造方法
JP3467471B2 (ja) 1999-12-08 2003-11-17 ポリプラスチックス株式会社 金属インサート樹脂複合成形品の製造方法
WO2004041533A1 (ja) 2002-11-08 2004-05-21 Taisei Plas Co., Ltd. アルミニウム合金と樹脂組成物の複合体とその製造方法
JP2005342895A (ja) * 2004-05-31 2005-12-15 Taisei Plas Co Ltd 金属と樹脂の複合体とその製造方法
JP2006001216A (ja) * 2004-06-21 2006-01-05 Taisei Plas Co Ltd アルマイト化アルミニウム合金と樹脂の複合体とその製造方法
JP2006027018A (ja) * 2004-07-14 2006-02-02 Taisei Plas Co Ltd 金属と樹脂の複合体およびその製造方法
JP2007182071A (ja) 2005-12-08 2007-07-19 Toray Ind Inc アルミニウム合金と樹脂の複合体及びその製造方法
JP2007301972A (ja) * 2005-10-04 2007-11-22 Taisei Plas Co Ltd 金属と樹脂の複合体及びその製造方法
JP2008087409A (ja) * 2006-10-04 2008-04-17 Fore Shot Industrial Corp アルミ合金筐体構造及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983431A (en) * 1974-12-23 1976-09-28 General Motors Corporation Low voltage aluminum commutators
JPS531145A (en) * 1976-06-25 1978-01-07 Sumitomo Chemical Co Method of laminating fluororesin films on aluminum or aluminum alloy
JPS6019528A (ja) * 1983-07-13 1985-01-31 三菱化学株式会社 アルミニウム−合成樹脂積層体の製造法
JPS6019529A (ja) * 1983-07-13 1985-01-31 三菱化学株式会社 アルミニウム−合成樹脂積層体の製造法
JP3916203B2 (ja) * 2000-06-06 2007-05-16 メック株式会社 アルミニウムまたはアルミニウム合金の表面粗化剤およびそれを用いる表面粗化法
JP4629930B2 (ja) * 2000-08-24 2011-02-09 株式会社Adeka アルミニウム箔用エッチング液およびアルミニウム箔のエッチング方法
WO2004041532A1 (ja) * 2002-11-08 2004-05-21 Taisei Plas Co., Ltd. アルミニウム合金と樹脂の複合体とその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127199A (ja) 1998-10-30 2000-05-09 Bridgestone Corp 成型体
JP2000176962A (ja) 1998-12-17 2000-06-27 Mitsubishi Plastics Ind Ltd シリコーン樹脂−金属複合体の製造方法
JP3467471B2 (ja) 1999-12-08 2003-11-17 ポリプラスチックス株式会社 金属インサート樹脂複合成形品の製造方法
WO2004041533A1 (ja) 2002-11-08 2004-05-21 Taisei Plas Co., Ltd. アルミニウム合金と樹脂組成物の複合体とその製造方法
JP2005342895A (ja) * 2004-05-31 2005-12-15 Taisei Plas Co Ltd 金属と樹脂の複合体とその製造方法
JP2006001216A (ja) * 2004-06-21 2006-01-05 Taisei Plas Co Ltd アルマイト化アルミニウム合金と樹脂の複合体とその製造方法
JP2006027018A (ja) * 2004-07-14 2006-02-02 Taisei Plas Co Ltd 金属と樹脂の複合体およびその製造方法
JP2007301972A (ja) * 2005-10-04 2007-11-22 Taisei Plas Co Ltd 金属と樹脂の複合体及びその製造方法
JP2007182071A (ja) 2005-12-08 2007-07-19 Toray Ind Inc アルミニウム合金と樹脂の複合体及びその製造方法
JP2008087409A (ja) * 2006-10-04 2008-04-17 Fore Shot Industrial Corp アルミ合金筐体構造及びその製造方法

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102712136A (zh) * 2010-01-12 2012-10-03 日本轻金属株式会社 铝合金部件和树脂部件的激光接合方法
JP2011213091A (ja) * 2010-04-01 2011-10-27 Sunteng New Technology Co Ltd 金属表面を具えたインモールド成形薄膜の製造方法
CN102223774A (zh) * 2010-04-19 2011-10-19 苏州滕艺科技有限公司 制造具有金属表面的模内成形薄膜的方法
WO2011152679A2 (ko) * 2010-06-04 2011-12-08 (주)일광폴리머 이종 재질의 일체형 금속 수지 복합 구조물과 그 제조방법
WO2011152679A3 (ko) * 2010-06-04 2012-06-28 (주)일광폴리머 이종 재질의 일체형 금속 수지 복합 구조물과 그 제조방법
US20160010213A1 (en) * 2010-12-01 2016-01-14 Hitachi, Ltd. Metal-resin composite, method for producing the same, busbar, module case, and resinous connector part
CN102529224A (zh) * 2010-12-01 2012-07-04 株式会社日立制作所 金属树脂复合结构体及其制造方法、以及母线、模块壳体及树脂制连接器零件
US9209044B2 (en) 2010-12-01 2015-12-08 Hitachi, Ltd. Metal-resin composite, method for producing the same, busbar, module case, and resinous connector part
WO2012161183A1 (ja) * 2011-05-26 2012-11-29 日本軽金属株式会社 アルミ・樹脂射出一体成形品製造用のアルミ形状体及びこれを用いたアルミ・樹脂射出一体成形品並びにそれらの製造方法
JP5673814B2 (ja) * 2011-05-26 2015-02-18 日本軽金属株式会社 アルミ・樹脂射出一体成形品製造用のアルミ形状体及びこれを用いたアルミ・樹脂射出一体成形品並びにそれらの製造方法
WO2013047365A1 (ja) 2011-09-26 2013-04-04 日本軽金属株式会社 アルミ樹脂接合体及びその製造方法
KR20140071444A (ko) 2011-09-26 2014-06-11 니폰게이긴조쿠가부시키가이샤 알루미늄 수지 접합체 및 그 제조 방법
JP2013071312A (ja) * 2011-09-28 2013-04-22 Hitachi Automotive Systems Ltd 金属部材と成形樹脂部材との複合成形体および金属部材の表面加工方法
JP2013072374A (ja) * 2011-09-28 2013-04-22 Toyoda Gosei Co Ltd 金属−樹脂複合容器
KR101355424B1 (ko) 2011-10-06 2014-01-24 (주)일광폴리머 홈부와 돌출부 언더컷을 갖는 알루미늄 합금의 제조방법.
JP2013159834A (ja) * 2012-02-06 2013-08-19 Nippon Light Metal Co Ltd 樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用アルミ鋳造合金部材
JP2013199681A (ja) * 2012-03-26 2013-10-03 Totoku Electric Co Ltd アクチュエータアーム及びその製造方法並びに表面処理方法
JP2014139003A (ja) * 2012-12-21 2014-07-31 Polyplastics Co 複合成形体の製造方法及び放熱性を向上させる方法
CN103056525A (zh) * 2012-12-28 2013-04-24 江苏大学 一种新型激光透射焊接连接方法
KR20150134384A (ko) 2013-03-26 2015-12-01 니폰게이긴조쿠가부시키가이샤 금속 수지 접합체 및 그 제조 방법
JPWO2015008771A1 (ja) * 2013-07-18 2017-03-02 ダイセルポリマー株式会社 複合成形体
US10434741B2 (en) 2013-07-18 2019-10-08 Daicel Polymer Ltd. Composite molded article
JP5860190B2 (ja) * 2013-07-18 2016-02-16 ダイセルポリマー株式会社 複合成形体
JP2016027189A (ja) * 2013-07-18 2016-02-18 三井化学株式会社 金属/樹脂複合構造体および金属部材
WO2015008771A1 (ja) * 2013-07-18 2015-01-22 ダイセルポリマー株式会社 複合成形体
TWI594880B (zh) * 2013-07-18 2017-08-11 戴西爾聚合物股份有限公司 Compound forming body
JP2015183101A (ja) * 2014-03-25 2015-10-22 ダイセルポリマー株式会社 繊維強化熱可塑性樹脂組成物、それを使用した複合成形体とその製造方法
JP2016056443A (ja) * 2014-09-04 2016-04-21 イルクワンポリマー シーオー., エルティーディー.Ilkwangpolymer Co., Ltd. アルミニウム‐樹脂複合体の製造方法
JP5816763B1 (ja) * 2015-01-19 2015-11-18 ヤマセ電気株式会社 異種材料と金属材料との界面が気密性を有する異種材料接合金属材料、異種材料同士との界面が気密性を有する異種材料接合材料
JP2016215491A (ja) * 2015-05-20 2016-12-22 株式会社Uacj アルミニウム材/熱可塑性樹脂の複合材
KR101606567B1 (ko) * 2015-06-22 2016-03-25 주식회사 태성포리테크 알루미늄-고분자 수지 접합체의 제조방법 및 이에 의하여 제조된 알루미늄-고분자 수지 접합체
WO2017195444A1 (ja) * 2016-05-09 2017-11-16 ポリプラスチックス株式会社 インサート成形体、及び燃料ポンプ用電気接続コネクタ
JP2017202573A (ja) * 2016-05-09 2017-11-16 ポリプラスチックス株式会社 インサート成形体、及び燃料ポンプ用電気接続コネクタ
EP3456501A4 (en) * 2016-05-09 2019-10-30 Polyplastics Co., Ltd. Insert mold body and electrical connector for a fuel pump
US11529790B2 (en) 2016-09-30 2022-12-20 Lg Chem, Ltd. Joint body of different materials and method for manufacturing the same
EP3498416A4 (en) * 2016-09-30 2019-09-18 LG Chem, Ltd. ASSOCIATED STRUCTURE OF HETEROGENIC MATERIALS AND METHOD FOR THE PRODUCTION THEREOF
US11178781B2 (en) 2017-09-08 2021-11-16 Apple Inc. Etching for bonding polymer material to a metal surface
JP2019049051A (ja) * 2017-09-08 2019-03-28 アップル インコーポレイテッドApple Inc. ポリマー材料を陽極酸化金属に接合するエッチング
US11547005B2 (en) 2017-09-08 2023-01-03 Apple Inc. Etching for bonding polymer material to anodized metal
EP3720679B1 (en) * 2017-12-06 2022-01-19 S.I.P.A. Società Industrializzazione Progettazione e Automazione S.p.A. Injection-compression molding device
WO2020230198A1 (ja) * 2019-05-10 2020-11-19 昭和電工マテリアルズ株式会社 接合用金属部材及び接合体
WO2020230199A1 (ja) * 2019-05-10 2020-11-19 昭和電工マテリアルズ株式会社 接合用金属部材及び接合体
WO2022196190A1 (ja) 2021-03-17 2022-09-22 東ソー株式会社 金属部材-ポリアリーレンスルフィド樹脂部材複合体及びその製造方法
WO2023017762A1 (ja) 2021-08-11 2023-02-16 東ソー株式会社 金属部材-ポリアリーレンスルフィド部材複合体及びその製造方法
WO2023068186A1 (ja) 2021-10-19 2023-04-27 東ソー株式会社 ポリアリーレンスルフィド組成物及びその製造方法
EP4344814A1 (en) * 2022-09-05 2024-04-03 ISKRA ISD d.o.o. Process for surface structuring of a metal workpiece and process for producing a hybrid product from a metal workpiece and a polymer material

Also Published As

Publication number Publication date
CN102056724A (zh) 2011-05-11
EP2298525A1 (en) 2011-03-23
US20110111214A1 (en) 2011-05-12
JP2013177004A (ja) 2013-09-09
KR20110043530A (ko) 2011-04-27
TW201008750A (en) 2010-03-01
JPWO2009151099A1 (ja) 2011-11-17

Similar Documents

Publication Publication Date Title
WO2009151099A1 (ja) アルミ・樹脂射出一体成形品及びその製造方法
JP5581680B2 (ja) 耐候性に優れたアルミ・樹脂複合品及びその製造方法
JP4527196B2 (ja) 複合体およびその製造方法
KR100827916B1 (ko) 알루미늄 합금과 수지조성물의 복합체 및 그 제조방법
JP5108891B2 (ja) 金属樹脂複合体の製造方法
JP5055288B2 (ja) 金属と樹脂の複合体とその製造方法
WO2011071061A1 (ja) アルミ・樹脂・銅複合品及びその製造方法並びに密閉型電池向け蓋部材
JP5058593B2 (ja) 金属と樹脂の複合体の製造方法
JP5673814B2 (ja) アルミ・樹脂射出一体成形品製造用のアルミ形状体及びこれを用いたアルミ・樹脂射出一体成形品並びにそれらの製造方法
JP4965649B2 (ja) 銅合金複合体とその製造方法
KR20140125422A (ko) 알루미늄 합금 수지 복합체 및 그것을 제조하는 방법
JP2007050630A (ja) 複合体およびその製造方法
KR20090085663A (ko) 고내식성 복합체의 제조 방법
WO2012132639A1 (ja) 金属と熱可塑性樹脂の複合体
WO2011071062A1 (ja) アルミニウム接着複合材及びその製造方法
JP6421906B1 (ja) 接合用アルミニウム塗装材及びアルミ樹脂複合材
KR20170092210A (ko) 알루미늄ㆍ수지 사출 일체 성형품 및 그 제조 방법
WO2014170946A1 (ja) 樹脂接合用Al-Mg-Si系アルミ合金部材の製造方法及びこの方法で得られた樹脂接合用Al-Mg-Si系アルミ合金部材
JP7088655B2 (ja) 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法
JP2013022761A (ja) 銅−樹脂複合体の製造方法
WO2019142552A1 (ja) 一体成形物とその製造方法、およびプライマー組成物
WO2011071105A1 (ja) アルミニウム塗装材及びその製造方法
JP2020059203A (ja) 金属樹脂複合体
JP6040628B2 (ja) 金属部材−ポリエチレン部材複合体及びその製造方法
JP5994290B2 (ja) 樹脂接合用Al−Mg−Si系アルミ合金部材の製造方法及びこの方法で得られた樹脂接合用Al−Mg−Si系アルミ合金部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122570.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516882

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107027785

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12997298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009762529

Country of ref document: EP