WO2011071061A1 - アルミ・樹脂・銅複合品及びその製造方法並びに密閉型電池向け蓋部材 - Google Patents

アルミ・樹脂・銅複合品及びその製造方法並びに密閉型電池向け蓋部材 Download PDF

Info

Publication number
WO2011071061A1
WO2011071061A1 PCT/JP2010/071972 JP2010071972W WO2011071061A1 WO 2011071061 A1 WO2011071061 A1 WO 2011071061A1 JP 2010071972 W JP2010071972 W JP 2010071972W WO 2011071061 A1 WO2011071061 A1 WO 2011071061A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
copper
resin
shaped body
shape
Prior art date
Application number
PCT/JP2010/071972
Other languages
English (en)
French (fr)
Inventor
正憲 遠藤
誠己 飯野
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Publication of WO2011071061A1 publication Critical patent/WO2011071061A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aluminum / resin / copper composite product in which an aluminum shape body made of an aluminum alloy and a copper shape body made of a copper alloy are integrally joined via a resin shape body, and a manufacturing method thereof, and mainly sealed
  • the present invention relates to an aluminum / resin / copper composite product excellent in adhesion strength and airtightness that can be suitably used in a lid member for a type battery, and a method for producing the same.
  • the positive electrode terminal and the negative electrode terminal provided by penetrating the lid member are insulated from the lid member, respectively, and leakage of the electrolyte generated inside the container or the gas generated from the inside of the container, It is an important issue to prevent moisture and the like from entering the inside of the container from the outside, and to improve durability, heat resistance, and airtightness in a harsh environment.
  • the resin is made of an aluminum alloy lid and a metal electrode terminal.
  • an insert molding method for fixing to the substrate may be used.
  • a method of performing a predetermined surface treatment on the surface of the metal part to be bonded to the resin is also known in order to perform bonding between the metal part and the resin at a lower cost and further improve the adhesive force.
  • Patent Document 1 proposes a sealed battery lid body that is insert-molded between a lid body and an electrode, and has an insulating sealing member that insulates and integrally fixes the lid body and the electrode. Yes.
  • patent document 2 it is the shape extended in the longitudinal direction, the metal terminal by which the surface treatment was given to the surface of the outer peripheral part, a flat plate part, and 1 or more standingly arranged in this flat plate part, The said terminal And a metal base having a surface treated on the surface of the inner peripheral portion, and the metal terminal. And the metal base are inserted into a mold for injection molding, and then injected into a cavity formed between the outer peripheral portion of the metal terminal and the inner peripheral portion of the metal base.
  • a structure of an electric / electronic component including a terminal made of the metal terminal and a thermoplastic resin composition for joining and integrating with the metal base has been proposed.
  • At least one electrode terminal made of a metal surface-treated with a triazine dithiol compound or a silane coupling agent and a lid made of the surface-treated metal have an elastic modulus of 55 MPa.
  • a battery container sealing plate characterized in that it is integrated with an insulating sealing material made of a polyphenylene sulfide composition containing the following elastomer resin has been proposed.
  • Patent Document 4 the opening of a bottomed cylindrical container that houses an electrode element impregnated with an electrolyte solution in a positive electrode and a negative electrode arranged to face each other via a separator is shielded and closed.
  • An electric double layer capacitor lid having a pair of electrode terminals connected to electrodes has been proposed.
  • the present inventors first focused on an aluminum alloy as the metal material, and the adhesion strength at the interface between the aluminum shape body made of this aluminum alloy and the resin shape body integrally provided on the surface, and We have studied aluminum / resin composites that have extremely high airtightness and can exhibit excellent adhesion strength and airtightness even in harsh environments, as well as excellent durability and heat resistance. It was found that the formation of a concavo-convex portion having a concave portion with a specific surface shape significantly improves the adhesion and airtightness between the aluminum shape body and the resin shape body. No. 2008-153,805 and Japanese Patent Application No. 2008-153,806 were filed.
  • the present inventor further relates to an aluminum / resin / copper composite product in which an aluminum shape made of aluminum alloy and a copper shape made of copper alloy are integrally joined via a resin shape.
  • an aluminum / resin / copper composite product in which an aluminum shape made of aluminum alloy and a copper shape made of copper alloy are integrally joined via a resin shape.
  • the object of the present invention is to provide extremely high adhesion strength and airtightness at the interface between the aluminum shape body made of aluminum alloy and the resin shape body and between the copper shape body made of copper alloy and the resin shape body, and the temperature.
  • Aluminum / resin that retains excellent adhesion strength and airtightness in harsh environments in high humidity, dust, etc., and that can exhibit excellent durability and heat resistance even in environments with high vibrations and large thermal shocks ⁇
  • Another object of the present invention is that the adhesion strength and airtightness of the interface between the aluminum shape body and the resin shape body and between the copper shape body and the resin shape body are extremely high in such a severe environment. However, it maintains excellent adhesion strength and airtightness of aluminum / resin / copper joints, and can exhibit excellent performance in corrosion resistance, durability, and heat resistance even in an environment with a lot of vibration and a large thermal shock.
  • An object of the present invention is to provide a method for producing an aluminum / resin / copper composite product capable of producing an aluminum / resin / copper composite product.
  • the present invention relates to an aluminum shape body made of an aluminum alloy having a concavo-convex portion on the surface or a part of the surface by the surface concavo-convex etching treatment and a copper alloy having a concavo-convex portion on the surface or a part of the surface by the surface concavo-convex etching treatment.
  • An aluminum / resin / copper composite product characterized in that a copper shape body made of metal is integrally joined with a resin shape body without contacting each other.
  • the present invention provides an aluminum shape body made of an aluminum alloy having a concavo-convex portion on the surface or a part of the surface by the surface concavo-convex etching treatment, and a copper having a concavo-convex portion on the surface or a part of the surface by the surface concavo-convex etching treatment.
  • An alloy copper-shaped body is an aluminum / resin / copper composite product that is integrally joined in a state of not contacting each other through a resin molded body, A plurality of concave portions are formed on the surfaces of the aluminum shape body and the copper shape body having the uneven portions due to the uneven portions, The concave portions are orthogonal to the thickness direction in the cross sections in the thickness direction of the aluminum shape body and the copper shape body, respectively, and a top line passing through the highest portion of the uneven portion and a bottom line passing through the deepest portion.
  • the opening width measured by scanning electron microscope observation is 0.1 ⁇ m or more and 30 ⁇ m or less, and the depth is 0.1 ⁇ m or more and 30 ⁇ m or less,
  • a resin molded body fitting portion into which the resin has entered and solidified is formed,
  • An aluminum / copper / resin composite characterized in that the concave portion and the fitting portion are engaged with each other between the aluminum shape body and the resin molded body and between the copper shape body and the resin molded body. It is a product.
  • the present invention also relates to an aluminum / resin / copper composite product in which an aluminum shaped body made of aluminum alloy and a copper shaped body made of copper alloy are integrally joined through a resin shaped body without contacting each other.
  • the aluminum shaped body and the copper shaped body are each formed by etching an aluminum alloy material and a copper alloy material to form a plurality of concave portions due to uneven portions on a part or the entire surface of the resin.
  • the molded body is molded with a resin-shaped body fitting portion in which the resin has entered and solidified into the concave portions of the aluminum-shaped body and the copper-shaped body at the time of molding, and the concave-shaped portion and the resin shape of the aluminum-shaped body and the copper-shaped body are molded.
  • An aluminum / copper / resin injection composite product characterized in that an aluminum-shaped body and a copper-shaped body are integrally bonded to each other without being in contact with each other via a resin-shaped body by engaging the body fitting portions with each other. Manufacturing
  • the aluminum alloy material for forming the aluminum shaped body specifically, pure Al 1000 series, Al-Cu 2000 series, Al-Mn 3000 series, Al-Si series 4000 series, Al-Mg series 5000 series, ADC5 and ADC6, Al-Mg-Si series 6000 series, Al-Zn-Mg series 7000 series, Al-Fe series 8000 series, Al-Si-Mg
  • a processing material obtained by appropriately processing a material made of a material such as a system ADC3, an Al-Si-Cu system ADC10, an ADC10Z, an ADC12, an ADC12Z, an Al-Si-Cu-Mg system ADC14, Furthermore, the combination material etc. which are obtained by combining these processed materials suitably are mentioned.
  • a copper alloy material for forming a copper shaped body specifically, And C1100, C1020, C1220, C2700, C2801, C3604, C4641, C5191, C5210, C6782 and the like.
  • the plurality of concave portions formed on the surfaces of the aluminum shape body and the copper shape body due to the uneven portions on the surfaces of the aluminum shape body and the copper shape body have peripheral edges whose opening edges are endless. It may be a hole-like or hole-like one (a concave part having an endless opening edge), or a slit-like or groove-like one (both ends) having an opening edge. A concave portion having an opening edge), and further, a hole or hole having an endless opening edge and a slit or groove having an end opening edge are mixed. It may be.
  • the protrusion which protruded in the shape of a snow flake toward the center of an opening width direction from the part or whole of the opening edge part of a recessed part preferably in the part or all It is preferable that the concave portion has an opening width narrower than the internal width dimension thereof, and the insertion portion of the resin shaped body that has entered and solidified into such a concave portion is a concave portion.
  • a locking structure that cannot be detached from each other is formed between the aluminum-shaped body and the concave portion of the copper-shaped body or the insertion portion of the resin-shaped body, or both of them are not detached and aluminum is not detached. The adhesion strength and airtightness between the shaped body and the copper shaped body and the resin shaped body are further improved.
  • the plurality of concave portions formed due to the uneven portions on the surfaces of the aluminum shape body and the copper shape body are shown in FIG. 1 schematically showing the cross section of the aluminum shape body and the copper shape body.
  • the aperture width measured by observation with a scanning electron microscope is 0.1 ⁇ m or more and 30 ⁇ m or less, preferably 0.5 ⁇ m or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less, and the depth is 0.1 ⁇ m.
  • the size is not less than 30 ⁇ m, preferably not less than 0.5 ⁇ m and not more than 20 ⁇ m.
  • the opening width of this concave portion is smaller than 0.1 ⁇ m, it is difficult for the resin to enter, and a minute gap is generated at the interface between the aluminum shape body and the copper shape body and the resin shape body, and excellent adhesion strength and airtightness.
  • the dissolution reaction proceeds excessively during the surface treatment (etching treatment) of the aluminum shaped body and the copper shaped body, and the material surface is missing or the thickness of the material is reduced. As a result, a product with insufficient material strength is generated, causing a decrease in productivity.
  • the depth is shallower than 0.1 ⁇ m, it is difficult to obtain a sufficient insertion portion of the resin-shaped body. Conversely, if the depth is more than 30 ⁇ m, the surface treatment (etching) of the aluminum-shaped body and the copper-shaped body is performed. During the treatment, the dissolution reaction proceeds excessively, resulting in a problem that the material surface is missing or the thickness of the material is increased.
  • the density of the plurality of concave portions formed due to the concavo-convex portions on the surfaces of the aluminum shape body and the copper shape body is set such that the opening width is 0.5 ⁇ m to 20 ⁇ m and the depth is 0.5 ⁇ m per 0.1 mm square.
  • One or two or more kinds having a size in the range of ⁇ 20 ⁇ m are preferably present in a range of about 5 to 200.
  • the snow candy-like protrusion formed in the concave portion is preferably an aluminum / resin / copper / resin integral molding portion of an aluminum / resin / copper composite product.
  • the resin- At least one laminated portion made of aluminum-resin or resin-copper-resin is formed, and the thickness of the aluminum-shaped body portion and the copper-shaped body of the laminated portion is in the range of 0.1 ⁇ m to 30 ⁇ m.
  • the plurality of concave portions of the aluminum shape body and the copper shape body may have a double concave portion structure in which at least one or more internal concave portions are formed on the inner wall surface in part or in whole.
  • it may have an internal concavo-convex structure in which at least one or more internal protrusions are formed on the internal wall surface, and these double concavo-convex structure and internal concavo-convex structure may coexist.
  • the presence of such a double concave portion structure or internal concavo-convex structure makes it possible to form the concave portion and the resin shape of the aluminum shape body and the copper shape body.
  • the body fitting portions are more firmly bonded to each other, and better adhesion strength and airtightness between the aluminum shape body and the resin shape body and between the copper shape body and the resin shape body are exhibited.
  • an aluminum shape body and a copper shape body having a plurality of desired concave portions described above are formed on the surface.
  • an aluminum alloy body and a copper alloy body are formed by etching an aluminum alloy material and a copper alloy material to form a concavo-convex portion on a part or the entire surface, and having a plurality of concave portions due to the concavo-convex portion.
  • the method of forming is mentioned.
  • Etching solutions used for etching the aluminum alloy material include, for example, hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, oxalic acid, ascorbic acid, benzoic acid, butyric acid, citric acid, formic acid, lactic acid, isobutyric acid, apple
  • An etching solution composed of an acid aqueous solution such as acid, propionic acid, and tartaric acid can be mentioned, but a plurality of concave portions having a desired opening width and depth, or a part of the concave portion or In order to control the concave part formed on the surface to the desired shape and size, such as forming a snow squirrel-shaped protrusion projecting toward the center of the opening width direction on all opening edges, it is compared with an acid aqueous solution.
  • An etching solution containing the above halogen ions in a predetermined concentration range is preferably used. Then, using such an aqueous acid solution containing a relatively weak oxidizing power containing halogen ions, and immersing the aluminum alloy material in this etching solution, the halogen ions in the etching solution first dissolve the oxide film on the surface of the aluminum alloy material. After that, the inner aluminum alloy is melted and further eroded into the aluminum alloy material.
  • the inner aluminum alloy is more easily eroded (dissolved) than the surface oxide film. Then, by setting the composition of the etching solution, the conditions for the etching process, etc., the opening width, depth, etc. of the concave portions due to the concave and convex portions formed on the surface can be controlled to a desired size, A snow candy-like protruding portion that protrudes toward the center in the opening width direction can be formed on a part or all of the opening edge.
  • Etching solutions used for this purpose include acid aqueous solutions such as hydrochloric acid solutions, phosphoric acid solutions, dilute sulfuric acid solutions, acetic acid solutions having an acid concentration of 5 wt% to 80 wt%, preferably 10 wt% to 50 wt%. And an oxalic acid solution having an acid concentration of 5% by weight to 30% by weight, preferably 10% by weight to 20% by weight, and the like, and is added to the aqueous acid solution for introducing halogen ions.
  • the halide include chlorides such as sodium chloride, potassium chloride, magnesium chloride, and aluminum chloride, fluorides such as calcium fluoride, and bromides such as potassium bromide, and preferably safety.
  • the halogen ion in the etching solution is preferably 0.5 g / liter (g / L) to 300 g / L. 1 g / L or more and 100 g / L or less, and if it is less than 0.5 g / L, the effect of halogen ions is small, so that there is a problem that a concave portion having a snow ridge-like protrusion is not formed at the opening edge, When it exceeds 300 g / L, the dissolution reaction proceeds rapidly during the surface treatment (etching treatment) of the aluminum-shaped body, which causes a problem that it becomes difficult to control the concave portion.
  • an acid aqueous solution having strong oxidizing power such as nitric acid or concentrated sulfuric acid having a concentration exceeding 80% by weight, sodium hydroxide, Alkaline solutions such as potassium hydroxide are not suitable.
  • Acid aqueous solutions with relatively strong oxidizing power such as nitric acid and concentrated sulfuric acid, have the ability to form a film against aluminum alloys. Instead, they form a strong oxide film on the surface of the aluminum shape and dissolve the oxide film with halogen ions. becomes difficult.
  • the dissolution mechanism of an alkali solution such as sodium hydroxide or potassium hydroxide with respect to an aluminum alloy is the entire surface dissolution type, and the tendency does not change even when halogen ions are added, and a desired concave portion is formed. Is difficult.
  • the processing conditions for etching the surface of the aluminum-shaped body using the above-described etching solution should be formed on the aluminum-shaped body, such as the type of etching solution used, acid concentration, halogen ion concentration, etc.
  • the bath temperature is usually 20 to 80 ° C. for a hydrochloric acid solution and the immersion time is 3 to 10 minutes, and the bath temperature is 30 to 80 ° C. for a phosphoric acid solution.
  • the bath temperature is preferably 50 to 80 ° C. and the immersion time is 1 to 3 minutes.
  • the immersion time if the time is less than 1 minute, it is difficult to control the opening width and depth of the concave portion, and conversely, if the immersion time exceeds 10 minutes, the productivity decreases.
  • the acid concentration of an acid selected from sulfuric acid and oxalic acid is 0.1 wt% or more and 60 wt% or less, preferably 0.5 And containing halogen ions in a range of 0.01 g / L or more and 1.0 g / L or less, preferably 0.05 g / L or more and 0.5 g / L or less.
  • an acid aqueous solution containing nitric acid in a range of 0.1 g / L to 300 g / L, preferably 10 g / L to 100 g / L can be given.
  • the dissolution reaction becomes extremely slow and there is a problem that etching is hardly performed.
  • the acid concentration exceeds 60% by weight, the dissolution reaction becomes extremely fast and cannot be controlled. Arise.
  • the concentration of hydrogen peroxide or nitric acid is less than 0.1 g / L, the effect of promoting the dissolution reaction of copper by adding these hydrogen peroxide or nitric acid is poor. There arises a problem that the dissolution reaction becomes extremely fast and cannot be controlled.
  • the halogen ion concentration is less than 0.01 g / L, there arises a problem that the dissolution rate cannot be controlled (stabilized), and when it exceeds 1.0 g / L, the dissolution reaction is remarkably lowered.
  • the halogen ions form a highly protective cuprous oxide film on the copper chloride layer.
  • the cuprous oxide film is not dense and has a defect part in some places, a part of the copper surface is dissolved to form an uneven part.
  • the finally formed concave portion has a special structure in which the opening width is narrower than the internal width dimension. Therefore, if the halogen ion is contained in a larger amount than the above-mentioned predetermined amount, a highly protective oxide film covers the copper surface, which causes an extreme decrease in the etching rate. High film is not formed and uniform dissolution occurs, so that uneven portions are hardly formed on the surface.
  • the halogen ion added to the acid aqueous solution used as the etching solution is any one or more selected from chlorine ion (Cl ⁇ ), fluorine ion (F ⁇ ), and iodine ion (I ⁇ ).
  • the etching solution preferably contains these halogen ions in a predetermined concentration range.
  • Examples of the halide added to introduce halogen ions into the acid aqueous solution include chlorides such as sodium chloride, potassium chloride, magnesium chloride, and aluminum chloride, fluorides such as calcium fluoride, and potassium bromide. And bromide such as, etc., and chloride is preferred in consideration of safety.
  • the acid aqueous solution used as an etching solution for the copper alloy material is intended to dissolve oxidized copper
  • 0.01 g of one or more organic acids is optionally added. / L or more and 100 g / L or less, preferably 0.1 to 80 g / L or less.
  • the organic acid added to the etching solution for this purpose include glycolic acid, formic acid, acetic acid, propionic acid, oxalic acid, and malonic acid. Of these, glycolic acid is particularly preferred.
  • one or more azole compounds are 0.01 g / L or more and 100 g / L or less, preferably for the purpose of preventing oxidation of the copper surface after roughening. It can be added in the range of 0.1 g / L or more and 80 g / L or less.
  • the azole compound added to the etching solution for this purpose include benzotriazole and tolyltriazole. Of these, benzotriazole is particularly preferred.
  • the etching solution of the copper alloy material when the amount of the organic acid added is less than 0.01 g / L, the solubility of oxidized copper is lowered and the copper oxide residue remains, and the resin bondability On the other hand, if it exceeds 100 g / L, the dissolution stability of copper is lowered, and there is a problem that reoxidation occurs on the copper surface. Moreover, when the addition amount of the azole compound is less than 0.01 g / L, oxidation of the copper surface after roughening cannot be suppressed, and discoloration may occur. On the other hand, in the case of 100 g / L or more, There arises a problem that the dissolution reaction of copper is remarkably suppressed and the dissolution reaction does not proceed.
  • the processing conditions for etching the surface of the copper shaped body using the above-mentioned etching solution are preferably in the range of a bath temperature of 20 to 80 ° C. and an immersion time of 0.5 to 30 minutes.
  • the immersion time if it is less than 0.5 minutes, it is difficult to control the opening width and depth of the concave portion, and conversely, if the immersion time exceeds 30 minutes, it causes a decrease in productivity.
  • examples of the acid aqueous solution used for this pretreatment include those prepared with commercially available acid degreasing agents, mineral acids such as sulfuric acid, nitric acid, hydrofluoric acid, and phosphoric acid, organic acids such as acetic acid and citric acid, and the like.
  • acid reagents such as a mixed acid obtained by mixing acid
  • alkaline aqueous solution for example, what was prepared with a commercially available alkaline degreasing agent, caustic soda, etc.
  • alkali reagent, or what was prepared by mixing these things etc. can be used.
  • the operation method and treatment conditions of the pretreatment conventionally performed using this type of acid aqueous solution or alkali aqueous solution and For example, it can be performed by a method such as an immersion method or a spray method.
  • the water washing treatment may be performed if necessary.
  • Industrial water, ground water, tap water, ion-exchanged water or the like can be used for the treatment, and it is appropriately selected according to the copper shape to be produced.
  • the copper alloy material that has been subjected to the pretreatment or etching treatment is subjected to a drying treatment as necessary.
  • This drying treatment may be natural drying that is allowed to stand at room temperature, as well as air blow, dryer, oven, etc. Forced drying may be used.
  • the surface of the aluminum shaped body and the copper shaped body obtained by the above etching treatment or by the pretreatment and the etching treatment has uneven portions formed by the etching treatment, and the surface glossiness of 60 degrees (manufactured by Suga Test Instruments Co., Ltd.) (Measured with a handy gloss meter) is preferably 60 or less, or with a surface roughness measuring device (measured with Surfcom 590A-DTP manufactured by Tokyo Seimitsu Co., Ltd.) or a laser microscope (measured with 1LM21W manufactured by Lasertec) In measurement, the surface roughness (Rz) is preferably 1 ⁇ m or more.
  • the resin does not sufficiently enter the concave portions of the aluminum shape body and the copper shape body, and the aluminum shape body and the copper A sufficient bonding strength between the shaped body and the resin shaped body cannot be obtained.
  • the surface of the aluminum body and the copper body obtained by the above etching treatment or by the pretreatment and the etching treatment is subjected to cross-sectional observation at a magnification of 1000 times by SEM or an optical microscope, and the obtained cross-sectional observation photograph is
  • the surface areas of the aluminum-shaped body and the copper-shaped body are 1.2 times to 10 times the surface area of the aluminum alloy material and the copper-shaped body before the concavo-convex portion is formed by the etching process.
  • the surface area increase rate is less than 1.2 times or more than 10 times, the resin does not sufficiently enter the concave portions of the aluminum shape body and the copper shape body, and the aluminum shape body, the copper shape body, and the resin shape body. Adequate joint strength between the two cannot be obtained.
  • an adhesive is applied to the surface of the aluminum body and copper body obtained as described above, and then a metal or resin is joined, or A resin is interposed between the obtained aluminum shape and copper shape and metal, and these are joined by applying heat and pressure with a hot press machine, or the obtained aluminum shape and copper shape are injection molded.
  • the target aluminum shape body and the target aluminum shape body can be obtained by combining a resin using a so-called aluminum shape body and a copper shape body, which is set in a metal mold, and a predetermined thermoplastic resin melted in the mold is injected and solidified. Manufactures composite products of copper shape and resin.
  • thermoplastic resin for producing the aluminum / copper / resin composite product of the present invention various thermoplastic resins can be used alone, but the aluminum / resin / copper composite product of the present invention is required.
  • the thermoplastic resin is preferably, for example, polypropylene resin, polyethylene resin, acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate resin, polyamide resin, polyphenylene sulfide (PPS).
  • thermoplastic resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), polyoxymethylene resins, polyimide resins, syndiotactic polystyrene resins, etc.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • polyoxymethylene resins polyimide resins
  • syndiotactic polystyrene resins etc.
  • thermoplastic resin Mixtures of more than seeds can be mentioned.
  • fillers such as fibers, powders, and plates and various elastomer components to these thermoplastic resins.
  • Fillers added to thermoplastic resins include inorganic fiber fillers such as glass fibers, carbon fibers, metal fibers, asbestos fibers and boron fibers, and high melting point organic fibers such as polyamides, fluororesins and acrylic resins. And powder fillers such as silica powder, glass beads, glass powder, inorganic powders such as calcium carbonate, and plate fillers such as glass flakes, silicates such as talc and mica, etc. In addition, it is added in an amount of 250 parts by weight or less, preferably 0 parts by weight or more and 200 parts by weight or less, more preferably 0 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
  • the elastomer component added to the thermoplastic resin examples include urethane type, core shell type, olefin type, polyester type, amide type, and styrene type elastomers.
  • the melting temperature of the thermoplastic resin at the time of injection molding, etc. it is selected in consideration of 30 parts by weight or less, preferably 3 to 25 parts by weight based on 100 parts by weight of the thermoplastic resin.
  • the added amount of the elastomer component exceeds 30 parts by weight, a further effect of improving the adhesion strength is not seen, and problems such as a decrease in mechanical properties occur.
  • This blending effect of the elastomer component is particularly prominent when a polyester resin is used as the thermoplastic resin.
  • thermoplastic resin for producing the aluminum / resin / copper composite product of the present invention includes known additives generally added to thermoplastic resins, that is, flame retardants, colorants such as dyes and pigments, and antioxidants.
  • a stabilizer such as an agent and an ultraviolet absorber, a plasticizer, a lubricant, a lubricant, a mold release agent, a crystallization accelerator, a crystal nucleating agent, and the like can be appropriately added according to required performance.
  • the molding conditions required for the thermoplastic resin to be used can be adopted. It is important that the thermoplastic resin melted at the time of injection molding surely enters and hardens into the concave parts of the aluminum shape and copper shape, and the mold temperature and cylinder temperature are adjusted to the type and physical properties of the thermoplastic resin, Is preferably set relatively high within the range permitted by the molding cycle.
  • the lower limit temperature needs to be 90 ° C or higher, preferably 130 ° C or higher, but the upper limit is the thermoplasticity used. Depending on the type of resin, it is about 20 ° C.
  • the lower limit mold temperature is preferably set so as not to be lowered by 140 ° C. or more from the melting point of the thermoplastic resin.
  • thermosetting resin examples include an epoxy resin
  • room temperature curable resin examples include a polyester resin
  • adhesives examples include nitrile rubber, synthetic rubber, epoxy, cyanoacryl, vinyl chloride, plastic, and hot melt.
  • the resin shape is integrated between the aluminum shape made of aluminum alloy and the copper shape made of copper alloy.
  • Any product may be used as long as it has a bonded structure, but the interface between the aluminum shape and the resin shape (aluminum / resin interface) and between the copper shape and the resin shape.
  • a lid member for a sealed battery is preferably used because of its extremely high adhesion strength and airtightness at the interface (copper / resin interface).
  • a lid member for a sealed battery for example, an aluminum sealing lid member made of an aluminum alloy having a pair of through holes positioned at a predetermined interval from each other, and each of the aluminum sealing lid member An aluminum alloy aluminum alloy terminal and a copper alloy copper alloy terminal that penetrate through the inside of the through hole while maintaining a predetermined gap from the peripheral edge, and each through hole peripheral edge and each terminal of the aluminum sealing lid member
  • a lid member for a sealed battery comprising a sealing insulating resin that seals and insulates a gap between the aluminum sealing lid member and the aluminum alloy terminal by surface roughening etching treatment,
  • the copper alloy terminal has a plurality of concave portions due to the concave and convex portions formed on the entire surface, and the copper alloy terminal has a plurality of concave portions and convex portions formed on part of the surface or the entire surface by the surface roughening etching process.
  • the sealing insulating resin enters a plurality of concave portions of the aluminum sealing lid member (aluminum-shaped body) and the aluminum alloy terminal (aluminum-shaped body) and is solidified.
  • One resin-shaped body that has a fitting portion and integrally couples between the aluminum sealing lid member and the aluminum alloy terminal, the aluminum sealing lid member (aluminum-shaped body), and the copper alloy terminal (copper shape) And the other resin-shaped body integrally connecting the aluminum sealing lid member and the copper alloy terminal.
  • the thing which consists of aluminum, resin, and copper composite goods can be illustrated.
  • the aluminum / resin / copper composite product of the present invention has an interface between an aluminum shaped body and a resin shaped body (aluminum / resin interface) and an interface between a copper shaped body and a resin shaped body (copper / resin interface).
  • the adhesion strength and airtightness are extremely high, and the excellent adhesion strength and airtightness can be maintained even when exposed to a harsh environment, and high reliability can be maintained over a long period of time. Therefore, the aluminum / resin / copper composite product of the present invention can be suitably used mainly for a lid member for a sealed battery.
  • the resin shape body is abutted from a part of the aluminum shape body and the surface of the copper shape body. It is suitably used for a metal-resin composite part that protrudes into a state and requires high bond strength.
  • the product obtained by measuring the surface gloss of the aluminum shaped body or the surface roughness of the aluminum shaped body and the copper shaped body at the time of production It is possible to predict the adhesion strength of the product, and it is easy to control the quality at the time of manufacture, and it is possible to manufacture a highly reliable product with little variation in adhesion strength for each product.
  • FIG. 1 is a cross-sectional schematic view for illustrating a concave portion by copying a cross section in the thickness direction of an aluminum shape according to the first embodiment.
  • FIG. 2 is a cross-sectional explanatory view showing a typical example of the shape of the concave portion conceived from FIG.
  • FIG. 3 is a front view and a side view of an aluminum / adhesive / copper test piece (evaluation test body) prepared for a posiTEST test using an aluminum test piece (aluminum shape body) and a copper test piece (copper shape body). is there.
  • FIG. 4 is a front view and a side view of an aluminum / resin / copper test piece (evaluation specimen) prepared for a posiTEST test using an aluminum test piece (aluminum shaped body) and a copper test piece (copper shaped body). .
  • FIG. 5 is a front view and a side view of a copper / resin test piece (evaluation test body) prepared for a posiTEST test using a copper test piece (copper shaped body).
  • FIG. 6 is a cross-sectional explanatory view showing a state in which the test specimen for evaluation is set in the actuator portion of the posiTEST test apparatus during the posiTEST test.
  • FIG. 7 is an explanatory cross-sectional view for explaining a method of observation and evaluation of a resin / aluminum / resin laminate in an evaluation test body.
  • FIG. 8 is an explanatory view of a lid member for a sealed battery, which is a main product of the present invention.
  • Example 1 [Preparation of aluminum shape] Two aluminum posiTEST test dollies (Defersco; size: 20mm ⁇ , JISA 1100) were first immersed in a 30wt% nitric acid solution at room temperature for 5 minutes, then washed thoroughly with ion-exchanged water, and then 5wt% hydroxylated. The sample was immersed in a sodium solution at 50 ° C. for 1 minute and then washed with water. Further, the sample was immersed in a 30 wt% nitric acid solution at room temperature for 3 minutes and then washed with water.
  • the dolly after the above pretreatment is etched by immersing it in an etching solution prepared by adding 54 g / L of aluminum chloride hexahydrate in a 2.5 wt% hydrochloric acid solution at 66 ° C. for 4 minutes and then washing with water.
  • an etching solution prepared by adding 54 g / L of aluminum chloride hexahydrate in a 2.5 wt% hydrochloric acid solution at 66 ° C. for 4 minutes and then washing with water.
  • a 30 wt% nitric acid solution at room temperature for 3 minutes
  • washing with water and drying with hot air 120 ° C. for 5 minutes
  • two aluminum test pieces for preparing an evaluation sample for a tensile load measurement test ( Aluminum shape body) was produced.
  • the pretreated copper piece was immersed in Alphaprep PC-7030 solution (Meltec) at 40 ° C for 1 minute, washed with water, dried with hot air at 120 ° C for 5 minutes, and a tensile load measurement test.
  • Two copper test pieces (copper-shaped bodies) for preparing a sample for evaluation were prepared.
  • FIG. 1 The cross section of the observed region of the aluminum test piece and the copper test piece is, for example, as shown in the cross-sectional view of FIG. 1, and a typical example of the shape of the concave portion conceived from FIG. 1 is shown in FIG.
  • a concave portion shape a: refer to Fig. 2 (a)
  • a concave portion having a projecting portion protruding in the shape of a snow flake toward the center of the direction shape a snow flake toward the center of the direction
  • the size (opening width and depth) of the concave portion observed in the cross section of the region where the aluminum test piece and the copper test piece were measured, and the ratio thereof, the opening width was 0.1 ⁇ m to 1 ⁇ m per 0.1 mm square. 10 to 100 concave portions, 1 to 10 concave portions with an opening width of 1 ⁇ m to 10 ⁇ m, 1 to 3 concave portions with an opening width of 11 ⁇ m to 30 ⁇ m, and a depth of 0.1 ⁇ m to 30 ⁇ m. It was in the range.
  • the size (opening width and depth) of the internal concave portion forming the double concave portion structure and the ratio thereof are substantially the same as described above, and the concave shape having an opening width of 0.1 ⁇ m to 1 ⁇ m per 0.1 mm square. 10 to 50 parts, 1 to 50 concave parts with an opening width of 1 ⁇ m to 10 ⁇ m, 1 to 2 concave parts with an opening width of 11 ⁇ m to 30 ⁇ m, and a depth range of 0.1 ⁇ m to 20 ⁇ m It was in. The size of the concave portion was hardly changed even when the observation place was changed.
  • the excess adhesive 4 protruding from the joint surface between the copper test piece 1 and the aluminum test piece dolly 5 is separated from the joint surface using a cutter after the adhesive is solidified, and the joint surface is 3.14 cm.
  • the aluminum test piece, adhesive, and copper test piece (test specimen for evaluation) were prepared.
  • the pellet (resin) 6 of polyphenylene sulfide resin (manufactured by Polyplastics Co.) is 0.04 g / cm 2 on the copper test piece (copper-shaped body) 1 obtained above.
  • the aluminum test piece dolly 5 is set thereon, and is hot-pressed at a pressing pressure of 0.1 MPa and a plate temperature of 300 ° C. using a hot press machine (AH-2003 manufactured by ASONE), and the resin is 3.14 cm 2 .
  • An aluminum test piece, a resin, and a copper test piece (evaluation specimen) that are fixed in the bonding area were prepared.
  • the peel load of the test specimen for evaluation was 5.5 MPa in the case of an aluminum test piece / adhesive / copper test piece, and 6.7 MPa in the case of an aluminum test piece / resin / copper test piece.
  • the case where the adhesive or resin remains over the entire surface of the joint surface of the aluminum test piece or copper test piece is evaluated as good ( ⁇ ), and the same state is observed on the aluminum test piece or copper test piece side.
  • the case where only a part remained, a part was good ( ⁇ ), and the case where it did not remain on the aluminum test piece side (interfacial peeling) was evaluated as defective (x), and both were good ( ⁇ ).
  • Example 2 An aluminum test piece (aluminum shaped body) and a copper test piece (copper shaped body) were prepared in the same manner as in Example 1 except that a mold prep LF solution (manufactured by Atotech) was used for the copper etching process. Next, an aluminum test piece, a resin (adhesive), and a copper test piece were prepared using the same adhesive and resin as in Example 1, and the aluminum test piece and the copper test piece were the same as in Example 1 above. Observation of the concave portion of the surface and measurement of glossiness, posiTEST test, and observation and evaluation of the laminated portion of aluminum, resin, and copper were performed. The results are shown in Table 1 together with the results of Example 1.
  • Example 3 An aluminum test piece (aluminum shaped body) and a copper test piece (copper shaped body) were prepared in the same manner as in Example 1 except that C1020 was used as the copper alloy plate for cutting out the copper piece.
  • Example 4 Etching solution (chlorine) prepared by adding 150 g / L of nitric acid solution, 0.2 g / L of sodium chloride, 10 g / L of benzotriazole, 10 g / L of 5-aminotetrazole to 400 g / L sulfuric acid solution for copper etching treatment (Ion concentration: 0.08 g / L)
  • the etching treatment was performed by immersing at 60 ° C. for 1 minute and then washing with water, an aluminum test piece (aluminum shaped body) and a copper test piece (copper) Shape), and then, using the same adhesive and resin as in Example 1, aluminum test pieces, resin (adhesive), and copper test pieces were prepared, respectively. Observation of concave portions on the surfaces of aluminum test pieces and copper test pieces and measurement of gloss, posiTEST test, and observation and evaluation of laminated parts of aluminum, resin, and copper were performed. The results are shown in Table 1 together with the results of Example 1.
  • Example 5 An aluminum piece (aluminum alloy material) having a size of 50 mm ⁇ 50 mm is cut out from an aluminum alloy (JIS A1050) plate having a thickness of 1 mm, and this aluminum piece is 54 g / L aluminum chloride in 2.5 wt% hydrochloric acid solution. Etching was performed by immersing in an etching solution prepared by adding hexahydrate at 66 ° C. for 4 minutes and then washing with water, followed by immersion in a 30 wt% nitric acid solution at room temperature for 3 minutes, followed by washing with water and hot air at 120 ° C. And dried for 5 minutes to prepare an aluminum test piece (aluminum shape). Moreover, the copper test piece (copper shape body) which carried out the etching process similarly to Example 1 was produced.
  • the obtained aluminum test piece (aluminum shaped body) 13 and copper test piece (copper shaped body) 1 are placed in the mold of an injection molding machine (ST10R2V manufactured by NISSEI) not shown.
  • ST10R2V injection molding machine
  • a polyphenylene sulfide resin manufactured by Polyplastics Co., Ltd.
  • a holding pressure of 100 MPa a molding temperature of 320 ° C.
  • a mold temperature of 160 ° C 160 ° C.
  • the resin dolly 7 is integrally formed on the upper surfaces of the aluminum test piece 13 and the copper test piece 1 by injection molding, and the bonding area of the resin dolly 7 to the upper surfaces of the aluminum test piece 13 and the copper test piece 1 is 3.14 cm 2 .
  • An aluminum / resin test piece and a copper / resin test piece (evaluation specimen) were prepared.
  • Example 2 In the same manner as in Example 1, the surface of the aluminum test piece and the copper test piece was observed on the concave portions and the glossiness was measured, the posiTEST test, and the observation / evaluation of the resin / copper laminate were performed. The results are shown in Table 1 together with the results of Example 1.
  • Example 1 The aluminum test piece dolly and the copper test piece were prepared without performing the etching treatment only by performing the pretreatment of Example 1, and using the resin and the adhesive as in Example 1, the aluminum test piece / resin was prepared.
  • Adhesive • Copper test pieces were prepared, and the aluminum test pieces and copper test were performed in the same manner as in the case of the concave portion observation and gloss measurement on the surfaces of the aluminum test pieces and copper test pieces. Observation of the concave portion on the surface of the piece and measurement of glossiness, a posiTEST test, and observation and evaluation of the laminated portion of aluminum, resin, and copper were performed.
  • Example 2 The copper etching process was changed to an etching process that was immersed in an etching solution prepared by adding 150 g / L of a nitric acid solution to a 40 wt% sulfuric acid solution at 60 ° C. for 1 minute and then washed with water. Then, an aluminum test piece (aluminum shaped body) and a copper test piece (copper shaped body) were prepared, and then an aluminum test piece, a resin (adhesive), and a copper test piece were used using the same adhesive and resin as in Example 1. In the same manner as in Example 1, the surface of the aluminum test piece and the copper test piece was observed and the gloss was measured, the posiTEST test, and the observation evaluation of the laminated part of aluminum, resin, and copper. Carried out.
  • an etching solution prepared by adding 150 g / L of a nitric acid solution to a 40 wt% sulfuric acid solution at 60 ° C. for 1 minute and then washed with water. Then, an
  • Example 1 except that, instead of performing copper etching, the sample was immersed in a silane coupling agent treatment solution (Shin-Etsu Silicone Co., Ltd .: KBM303) with a concentration of 1 wt% for 30 seconds and then dried with hot air at 120 ° C. for 5 minutes. Similarly, an aluminum test piece (aluminum shaped body) and a copper test piece (copper shaped body) were prepared, and then the aluminum test piece, resin (adhesive), and copper were used using the same adhesive and resin as in Example 1.
  • silane coupling agent treatment solution Shin-Etsu Silicone Co., Ltd .: KBM303
  • Test specimens were respectively prepared, and in the same manner as in Example 1, observation of concave portions and glossiness measurement on the surfaces of the aluminum test pieces and copper test pieces, posiTEST test, and aluminum / resin / copper laminated parts were performed. Observational evaluation was carried out. The results are shown in Table 1 together with the results of Comparative Example 1.
  • SYMBOLS 1 Copper shape body (copper test piece), TL ... Top line, BL ... Bottom line, HL ... Half line, d ... Opening width, OL ... Observation line, 2 ... Resin shape body, 3 ... Concave part, 4 ... Adhesion Agent, 5 ... Aluminum shape (aluminum test piece dolly), 6 ... Resin, 7 ... Resin dolly, 8 ... Actuator, 9 ... Dolly fixing jig, 10 ... Aluminum shape or copper shape, 11 ... Aluminum alloy lid , 12 ... Aluminum alloy container body, 13 ... Aluminum shape body (aluminum test piece).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • ing And Chemical Polishing (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)

Abstract

 アルミニウム合金製のアルミ形状体と樹脂成形体との間及び銅合金製の銅形状体と樹脂成形体との間の界面の密着強度及び気密性が極めて高く、温度や湿度、粉塵等において過酷な環境下で優れた密着強度及び気密性を保持し、特に振動が多く、かつ冷熱衝撃の大きい環境下においても優れた耐久性や耐熱性を発揮し得るアルミ・樹脂・銅複合品を提供する。 表面凹凸化エッチング処理により表面の一部又は全面に凹凸部を有するアルミニウム合金製のアルミ形状体と表面凹凸化エッチング処理により表面の一部又は全面に凹凸部を有する銅合金製の銅形状体とが、樹脂成形体を介して、互いに接触しない状態で一体的に接合されていることを特徴とするアルミ・樹脂・銅複合品及びその製造方法である。

Description

アルミ・樹脂・銅複合品及びその製造方法並びに密閉型電池向け蓋部材
 この発明は、アルミニウム合金製のアルミ形状体と銅合金製の銅形状体とが樹脂形状体を介して一体的に接合されたアルミ・樹脂・銅複合品及びその製造方法に係り、主に密閉型電池向け蓋部材において好適に使用し得る密着強度及び気密性に優れたアルミ・樹脂・銅複合品及びその製造方法に関する。
 リチウム電池等の電池容器においては、その蓋部材を貫通させて設けられる正極端子と負極端子がそれぞれ蓋部材から絶縁されると共に、容器内部の電解液又は容器内部から発生する気体等の漏洩や、容器の外部から内部への水分等の浸入を防止し、過酷な環境下での耐久性や耐熱性の向上、気密性の向上等を図ることが重要な課題となっている。
 従来からアルミ・樹脂・銅複合品に係る密閉型電池向け蓋部材としては、蓋体と電極端子の間の気密性を確保する方法として、樹脂をアルミ合金製の蓋体と金属製の電極端子に固着させるインサート成形の方法等が挙げられる。そして、これら金属部品と樹脂との間の接合をより安価に行い、接着力をより向上させるために、樹脂と接合する金属部品の表面に所定の表面処理を行う方法も知られている。
 例えば、特許文献1においては、蓋体と電極との間にインサート成形され、これら蓋体と電極とを絶縁すると共に一体的に固定する絶縁密閉部材を有する密閉型電池用蓋体が提案されている。
 また、特許文献2においては、長手方向に延びた形状をし、外周部の面に表面処理が施された金属製の端子と、平板部と、この平板部に1以上立設され、前記端子が所定の間隔を有して貫通可能な内周部が形成されている凸状部とからなり、前記内周部の面に表面処理が施された金属製の基体と、前記金属製の端子と前記金属製の基体が射出成形用の金型にインサートされた後、前記金属製の端子の前記外周部と前記金属製の基体の前記内周部との間に形成されたキャビティ内に射出され、前記金属製の端子及び前記金属製の基体と接合して一体化させるための熱可塑性樹脂組成物とからなる端子を備えた電気・電子部品の構成体が提案されている。
 更に、特許文献3においては、トリアジンジチオール化合物又はシランカップリング剤により表面処理を行った金属よりなる少なくともひとつの電極端子と、該表面処理を行った金属よりなる蓋体とを、弾性率が55MPa以下のエラストマー樹脂を含有したポリフェニレンスルフィド組成物からなる絶縁密封材料で一体化したことを特徴とする電池容器用封口板が提案されている。
 更に、特許文献4においては、セパレータを介して対向配置された正極及び負極に電解液が含浸せしめられた電極素子を収容する有底筒状容器の開口部を遮蔽して閉蓋すると共に、各電極に接続された1対の電極端子を備える電気二重層キャパシタの蓋体が提案されている。
 しかしながら、これらいずれの場合においても、過酷な環境下に曝された際における金属-樹脂の界面での密着強度及び気密性が必ずしも充分ではなく、より優れた密着強度及び気密性を持つ金属-樹脂複合体の開発が要請されていた。
 そこで、本発明者らは、先に、金属材料としてアルミニウム合金に着目し、このアルミニウム合金製のアルミ形状体とその表面に一体的に設けられた樹脂形状体との間の界面における密着強度及び気密性が極めて高く、過酷な環境下でも優れた密着強度及び気密性、更には優れた耐久性や耐熱性を発揮し得るアルミ・樹脂複合品について検討し、その結果として、アルミ形状体の表面にある特定の表面形状を備えた凹状部を有する凹凸部を形成することにより、アルミ形状体と樹脂形状体との間の密着性や気密性が顕著に向上することを見出し、得られた成果について特願2008-153,805号及び特願2008-153,806号として出願した。
特開2007-179,793号公報 特開2008-131,005号公報 特開2008-027,823号公報 特許第3,967,551号公報
 本発明者は、上述の成果に加えて、更にアルミニウム合金製のアルミ形状体と銅合金製の銅形状体とが樹脂形状体を介して一体的に接合されたアルミ・樹脂・銅複合品について、特に振動が多く、かつ冷熱衝撃の大きい環境下においても優れたアルミ・樹脂・銅接合面の密着強度及び気密性を保持し得るアルミ・樹脂・銅複合品を製造し提供することについて鋭意検討を進めた結果、特異なエッチング処理によってアルミ形状体及び銅形状体の表面にある特定の表面形状を備えた凹状部を有する凹凸部を形成することによりアルミ形状体と樹脂形状体との間及び銅形状体と樹脂形状体との間における密着性や気密性及び耐久性や耐熱性が顕著に向上することを見出し、本発明を完成した。
 従って、本発明の目的は、アルミニウム合金製のアルミ形状体と樹脂形状体との間及び銅合金製の銅形状体と樹脂形状体との間の界面の密着強度及び気密性が極めて高く、温度や湿度、粉塵等において過酷な環境下で優れた密着強度及び気密性を保持し、特に振動が多く、かつ冷熱衝撃の大きい環境下においても優れた耐久性や耐熱性を発揮し得るアルミ・樹脂・銅複合品を提供することにある。
 また、本発明の他の目的は、このようにアルミ形状体と樹脂形状体との間及び銅形状体と樹脂形状体との間の界面の密着強度及び気密性が極めて高く、過酷な環境下でも優れたアルミ・樹脂・銅接合面の密着強度及び気密性を保持し、特に振動が多く、かつ冷熱衝撃の大きい環境下においても、耐食性、耐久性、耐熱性に優れた性能を発揮し得るアルミ・樹脂・銅複合品を製造することができるアルミ・樹脂・銅複合品の製造方法を提供することにある。
 すなわち、本発明は、表面凹凸化エッチング処理により表面の一部又は全面に凹凸部を有するアルミニウム合金製のアルミ形状体と表面凹凸化エッチング処理により表面の一部又は全面に凹凸部を有する銅合金製の銅形状体とが、樹脂形状体を介して、互いに接触しない状態で一体的に接合されていることを特徴とするアルミ・樹脂・銅複合品である。
 また、本発明は、表面凹凸化エッチング処理により表面の一部又は全面に凹凸部を有するアルミニウム合金製のアルミ形状体と表面凹凸化エッチング処理により表面の一部又は全面に凹凸部を有する銅合金製の銅形状体とが、樹脂成形体を介して、互いに接触しない状態で一体的に接合されているアルミ・樹脂・銅複合品であり、
 前記凹凸部を有する前記アルミ形状体及び銅形状体の表面には、前記凹凸部に起因して複数の凹状部が形成されており、
 前記各凹状部は、前記アルミ形状体及び銅形状体のそれぞれの厚さ方向断面においてこの厚さ方向に直交し、かつ、凹凸部の最高部を通過するトップラインと最深部を通過するボトムラインとの間のハーフラインにおいて、走査型電子顕微鏡観察により測定される開口幅が0.1μm以上30μm以下の大きさであって、その深さが0.1μm以上30μm以下の大きさであり、
 これらの凹状部内には前記樹脂が進入して固化した樹脂成形体の嵌入部が形成されており、
 前記凹状部と嵌入部とにより、前記アルミ形状体と樹脂成形体との間、及び銅形状体と樹脂成形体との間が互いに係止されていることを特徴とするアルミ・銅・樹脂複合品である。
 そして、本発明は、アルミニウム合金製のアルミ形状体と銅合金製の銅形状体とが、樹脂形状体を介して、互いに接触しない状態で一体的に接合されているアルミ・樹脂・銅複合品の製造方法であり、前記アルミ形状体及び銅形状体にはそれぞれアルミニウム合金材及び銅合金材をエッチング処理して表面の一部又は全面に凹凸部に起因する複数の凹状部を形成し、樹脂形状体にはその成形時に前記アルミ形状体及び銅形状体の各凹状部内に樹脂が進入して固化した樹脂形状体の嵌入部を成形し、アルミ形状体及び銅形状体の凹状部と樹脂形状体の嵌入部とを互いに係止させることによりアルミ形状体と銅形状体とを樹脂形状体を介して互いに接触しない状態で一体的に結合させることを特徴とするアルミ・銅・樹脂射出複合品の製造方法である。
 本発明において、アルミ形状体を形成するためのアルミニウム合金材としては、具体的には、純Al系の1000系、Al-Cu系の2000系、Al-Mn系の3000系、Al-Si系の4000系、Al-Mg系の5000系、ADC5、及びADC6、Al-Mg-Si系の6000系、Al-Zn-Mg系の7000系、Al-Fe系の8000系、Al-Si-Mg系のADC3、Al-Si-Cu系のADC10、ADC10Z、ADC12、及びADC12Z、Al-Si-Cu-Mg系のADC14等の材質からなる材料を所望の形状に適宜加工して得られる加工材、更にはこれらの加工材を適宜組み合わせて得られる組合せ材等が挙げられる。
 本発明において、銅形状体を形成するための銅合金材としては、具体的には、
C1100、C1020、C1220、C2700、C2801、C3604、C4641、C5191、C5210、C6782等が挙げられる。
 また、本発明において、アルミ形状体及び銅形状体の表面の凹凸部に起因してこのアルミ形状体及び銅形状体の表面に形成される複数の凹状部は、その開口縁部が無端の周縁部であるような穴状又は孔状のもの(無端開口縁部を有する凹状部)であってもよく、また、開口縁部が両端部を有するようなスリット状又は溝状のもの(有端開口縁部を有する凹状部)であってもよく、更には、これら無端開口縁部を有する穴状又は孔状のものと有端開口縁部を有するスリット状又は溝状のものとが混在していてもよい。
 そして、アルミ形状体及び銅形状体の複数の凹状部については、好ましくはその一部又は全部において、凹状部の開口縁部の一部分又は全体から開口幅方向中心に向けて雪庇状に突き出した突出部が形成されているのがよく、これによって、凹状部はその開口幅がその内部の幅寸法より狭くなり、このような凹状部内に進入して固化した樹脂形状体の嵌入部は凹状部との間で互いに脱離不能な係止構造を形成し、アルミ形状体及び銅形状体の凹状部か樹脂形状体の嵌入部のいずれか一方又は双方が破壊されない限り脱離することがなく、アルミ形状体及び銅形状体と樹脂形状体との間の密着強度や気密性がより向上する。
 更に、このようにアルミ形状体及び銅形状体の複数の凹状部においてその一部又は全部の開口縁部に上記の如き雪庇状の突出部が形成されていると、これらの凹状部内には樹脂形状体の嵌入部が必ずしも密着状態で嵌合している必要はなく、例えばアルミ形状体及び銅形状体と樹脂形状体との間の線膨張係数の差と環境温度に基づいて、これらアルミ形状体及び銅形状体と樹脂形状体との間に不可避的な極微小な隙間が発生したとしても、これらアルミ形状体及び銅形状体と樹脂形状体との間には優れた密着強度や気密性が維持される。
 本発明において、アルミ形状体及び銅形状体の表面の凹凸部に起因して形成される複数の凹状部は、このアルミ形状体及び銅形状体の断面を模式的に示す図1を参照して説明すると、アルミ形状体及び銅形状体の厚さ方向断面においてこの厚さ方向に直交し、かつ、凹凸部の最高部を通過するトップラインと最深部を通過するボトムラインとの間のハーフラインにおいて、走査型電子顕微鏡観察により測定される開口幅が0.1μm以上30μm以下、好ましくは0.5μm以上20μm以下、より好ましくは1μm以上10μm以下の大きさであって、深さが0.1μm以上30μm以下、好ましくは0.5μm以上20μm以下の大きさであるのがよい。この凹状部の開口幅が0.1μmより狭いと、樹脂が進入し難くなってアルミ形状体及び銅形状体と樹脂形状体との界面に微小な空隙が発生して優れた密着強度や気密性が得られ難くなり、反対に、30μmより広くしようとすると、アルミ形状体及び銅形状体の表面処理(エッチング処理)時に溶解反応が過剰に進行し、材料表面の欠落あるいは材料の板厚減少量の増大という問題が生じ、材料強度不足の製品が発生して生産性低下の原因になる。また、深さについても、0.1μmより浅いと、十分な樹脂形状体の嵌入部が得られ難くなり、反対に、30μmより深くしようとすると、アルミ形状体及び銅形状体の表面処理(エッチング処理)時に溶解反応が過剰に進行し、材料表面の欠落あるいは材料の板厚減少量の増大という問題が生じる。
 本発明において、アルミ形状体及び銅形状体の表面の凹凸部に起因して形成される複数の凹状部の密度については、0.1mm四方当り開口幅0.5μm~20μm及び深さ0.5μm~20μmの範囲内の1種又は2種以上の大きさのものが5~200個程度の範囲で存在するのがよい。
 また、本発明のアルミ形状体及び銅形状体において、その凹状部に形成される雪庇状の突出部は、好ましくは、アルミ・樹脂・銅複合品のアルミ・樹脂及び銅・樹脂一体成形部分の厚さ方向断面において、その樹脂形状体側からアルミ形状体側又は銅形状体に向けて厚さ方向に延びる多数の観察ラインを互いに0.1μmの間隔で引いた際に、1観察ライン上に樹脂-アルミ-樹脂又は樹脂-銅-樹脂からなる少なくとも1つ以上の積層部を形成し、かつ、この積層部のアルミ形状体部分及び銅形状体の厚さが0.1μm以上30μm以下の範囲であるのがよく、アルミ・樹脂・銅複合品にはこのような雪庇状の突出部が1000本の観察ラインの範囲内に1つ以上存在するのがよい。
 また、アルミ形状体及び銅形状体の複数の凹状部は、その一部又は全部において、内部の壁面に少なくとも1つ以上の内部凹状部が形成された二重凹状部構造を有していてもよく、また、内部の壁面に少なくとも1つ以上の内部突起部が形成された内部凹凸構造を有していてもよく、更に、これら二重凹状部構造や内部凹凸構造が並存していてもよい。アルミ形状体及び銅形状体の複数の凹状部の一部又は全部において、このような二重凹状部構造や内部凹凸構造が存在することにより、アルミ形状体及び銅形状体の凹状部と樹脂形状体の嵌入部とは互いにより強固に結合し、アルミ形状体と樹脂形状体及び銅形状体と樹脂形状体との間のより優れた密着強度や気密性が発揮される。
[アルミ・樹脂・銅複合品の製造方法について]
 本発明において、このようなアルミ・樹脂・銅複合品を製造する際には、先ず、表面に上述した複数の所望の凹状部を有するアルミ形状体及び銅形状体を形成するが、その方法としては、例えば、アルミニウム合金材及び銅合金材にエッチング処理を施して表面の一部又は全面に凹凸部を形成し、この凹凸部に起因して複数の凹状部を有するアルミ形状体及び銅形状体を形成する方法が挙げられる。
 そして、このアルミニウム合金材のエッチング処理に用いるエッチング液としては、例えば、塩酸、リン酸、硫酸、酢酸、シュウ酸、アスコルビン酸、安息香酸、酪酸、クエン酸、ぎ酸、乳酸、イソブチル酸、リンゴ酸、プロビオン酸、酒石酸等の酸水溶液からなるエッチング液を挙げることができるが、開口幅及び深さが所望の大きさを有する複数の凹状部を形成したり、あるいは、凹状部の一部又は全部の開口縁部に開口幅方向中心に向けて突出する雪庇状の突出部を形成する等、表面に形成される凹状部を所望の形状及び大きさに制御するためには、酸水溶液として比較的酸化力の弱い酸水溶液を用い、また、このような比較的酸化力の弱い酸水溶液中に、アルミニウム合金材の表面に形成されている酸化皮膜を溶解するために、ハロゲンイオンを所定の濃度で含むエッチング液を用いることが必要である。
 すなわち、エッチング液としては、比較的酸化力の弱い酸水溶液中に、塩素イオン(Cl-)、フッ素イオン(F-)、及びヨウ素イオン(I-)から選ばれたいずれか1種又は2種以上のハロゲンイオンを所定の濃度範囲で含むエッチング液を用いるのがよい。そして、このようなハロゲンイオン含む比較的酸化力の弱い酸水溶液を用い、このエッチング液中にアルミニウム合金材を浸漬すると、先ずエッチング液中のハロゲンイオンがアルミニウム合金材の表面の酸化皮膜を溶解し、その後に内部のアルミニウム合金を溶解して更にアルミニウム合金材内部に浸食していくが、その際に、表面の酸化皮膜よりも内部のアルミニウム合金の方がより浸食され易い(溶解し易い)ので、エッチング液の組成やエッチング処理の条件等を設定することにより、表面に形成される凹凸部に起因する凹状部について、その開口幅や深さ等を所望の大きさに制御したり、その一部又は全部の開口縁部に開口幅方向中心に向けて突出する雪庇状の突出部を形成することができる。
 この目的で用いられるエッチング液としては、酸水溶液として、酸濃度5重量%以上80重量%以下、好ましくは10重量%以上50重量%以下の塩酸溶液、リン酸溶液、希硫酸溶液、酢酸溶液等や、酸濃度5重量%以上30重量%以下、好ましくは10重量%以上20重量%以下のシュウ酸溶液等を挙げることができ、また、これらの酸水溶液中にハロゲンイオン導入のために添加されるハロゲン化物としては、例えば塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化アルミニウム等の塩化物や、フッ化カルシウム等のフッ化物や、臭化カリウム等の臭化物等を挙げることができ、好ましくは安全性等を考慮して塩化物であり、更に、エッチング液中におけるハロゲンイオンは、通常0.5グラム/リットル(g/L)以上300g/L以下、好ましくは1g/L以上100g/L以下であり、0.5g/L未満だとハロゲンイオンの効果が小さいため、開口縁部に雪庇状の突出部を有する凹状部が形成されないという問題が生じ、300g/Lを超えるような場合はアルミ形状体の表面処理(エッチング処理)時に溶解反応が急激に進行するため、凹状部の制御が困難になるという問題が生じる。
 なお、本発明においては、アルミ形状体の表面に所望の凹状部を形成するためのエッチング液として、硝酸や80重量%を超える濃度の濃硫酸等の酸化力の強い酸水溶液や水酸化ナトリウムや水酸化カリウム等のアルカリ溶液は適当でない。硝酸や濃硫酸等の比較的酸化力の強い酸水溶液は、アルミニウム合金に対して皮膜生成能力を有し、かえってアルミ形状体の表面に強固な酸化皮膜を形成し、ハロゲンイオンによる酸化皮膜の溶解が困難になる。また、水酸化ナトリウムや水酸化カリウム等のアルカリ溶液のアルミニウム合金に対する溶解機構は、全面溶解型であって、ハロゲンイオンを添加した場合においてもその傾向は変わらず、所望の凹状部を形成することが困難である。
 本発明において、上記のエッチング液を用いてアルミ形状体の表面をエッチング処理する際の処理条件については、使用するエッチング液の種類、酸濃度、ハロゲンイオン濃度等や、アルミ形状体に形成すべき複数の凹状部の数や大きさ等によっても異なるが、通常、塩酸溶液の場合には浴温20~80℃で浸漬時間3~10分間、リン酸溶液の場合は浴温30~80℃で浸漬時間1~5分間、硫酸溶液の場合には浴温40~80℃で浸漬時間2~8分間、シュウ酸溶液の場合には浴温50~80℃で浸漬時間1~3分間、酢酸溶液の場合には浴温50~80℃で浸漬時間1~3分間の範囲であるのがよい。使用するエッチング液の酸濃度や浴温が高いほどエッチング処理の効果が顕著になり、短時間処理が可能になるが、浴温については、20℃未満では溶解速度が遅くて十分な大きさ(開口幅及び深さ)を有する凹状部の生成に長時間を要し、また、80℃を超える浴温では溶解反応が急激に進行して凹状部の開口幅及び深さの制御が困難になり、浸漬時間については、1分未満では凹状部の開口幅及び深さの制御が難しく、逆に10分を超える浸漬時間では生産性低下の原因となる。
 また、銅合金材のエッチング処理に用いるエッチング液としては、硫酸、及びシュウ酸から選ばれたいずれか一種からなる酸の酸濃度が0.1重量%以上60重量%以下、好ましくは0.5重量%以上50重量%以下であり、かつ、ハロゲンイオンを0.01g/L以上1.0g/L以下、好ましくは0.05g/L以上0.5g/L以下の範囲で含み、過酸化水素又は硝酸を0.1g/L以上300g/L以下、好ましくは10g/L以上、100g/L以下の範囲内で含む酸水溶液を挙げることができる。
 ここで、酸濃度が0.1重量%未満の場合は、溶解反応が極端に遅くなり、ほとんどエッチングされないという問題が生じ、60重量%を超えると溶解反応が著しく早くなり制御できなくなるという問題が生じる。また、過酸化水素又は硝酸の濃度が0.1g/L未満の場合は、これら過酸化水素又は硝酸を添加して銅の溶解反応を促進する効果が乏しく、反対に、300g/Lを超えると溶解反応が著しく早くなり制御できなくなると言う問題が生じる。更に、ハロゲンイオン濃度が0.01g/L未満の場合は溶解速度を制御(一定化)できないという問題が生じ、1.0g/Lを超えると溶解反応が著しく低下するという問題が生じる。
 なお、ハロゲンイオンは、銅表面に保護性の低い塩化銅層を生成させた後、その上に保護性の高い酸化第一銅皮膜を形成させる。一方、酸化第一銅皮膜は、緻密ではなく、ところどころ欠陥部を有するため、銅表面の一部は溶解し、凹凸部が形成される。更に、形成された凹部内においても同様の反応が生じるため、最終的に形成される凹部はその開口幅がその内部の幅寸法より狭くなるという特殊な構造を有する。従って、ハロゲンイオンが上記の所定量より多く含まれると、保護性の高い酸化皮膜が銅表面を覆うため、エッチング速度の極端な低下を引き起こし、一方、所定量より少ない場合は、逆に保護性の高い皮膜が形成されず、均一的な溶解となるため、表面に凹凸部が形成され難くなる。
 エッチング液として使用される酸水溶液に添加されるハロゲンイオンとしては、塩素イオン(Cl-)、フッ素イオン(F-)、及びヨウ素イオン(I-)から選ばれたいずれか1種又は2種以上を挙げることができ、エッチング液はこれらのハロゲンイオンを所定の濃度範囲で含むものであるのがよい。この酸水溶液中にハロゲンイオンを導入のために添加されるハロゲン化物としては、例えば塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化アルミニウム等の塩化物や、フッ化カルシウム等のフッ化物や、臭化カリウム等の臭化物等を挙げることができ、好ましくは安全性等を考慮して塩化物である。
 また、上記銅合金材のエッチング液として使用される酸水溶液は、酸化された銅を溶解させることが目的であることから、必要に応じて、有機酸の1種又は2種以上を0.01g/L以上100g/L以下、好ましくは0.1g/L以上80g/L以下の範囲内で添加することができる。この目的でエッチング液に添加される有機酸としては、例えばグリコール酸、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸が挙げられる。この中ではグリコール酸が特に好ましい。
 更に、銅合金材のエッチング液には、粗面化後の銅表面の酸化を防止する目的で、アゾール系化合物の1種又は2種以上を0.01g/L以上100g/L以下、好ましくは0.1g/L以上80g/L以下の範囲で添加することができる。この目的でエッチング液に添加されるアゾール系化合物としては、例えば、ベンゾトリアゾール、トリルトリアゾール等を挙げることができる。この中ではベンゾトリアゾールが特に好ましい。
 ここで、銅合金材のエッチング液において、上記有機酸の添加量が0.01g/L未満の場合は、酸化された銅の溶解性が低下して酸化銅の残存物が残り、樹脂接合性を低下させて好ましくなく、一方100g/L超の場合では、銅の溶解安定性が低下し、銅表面に再酸化が発生する問題が生じる。また、上記アゾール系化合物の添加量が0.01g/L未満の場合は、粗化後の銅表面の酸化を抑制できず、変色が発生する場合があり、一方100g/L以上の場合では、銅の溶解反応が著しく抑制され、溶解反応が進まなくなるという問題が生じる。
 本発明において、上記のエッチング液を用いて銅形状体の表面をエッチング処理する際の処理条件については、浴温20~80℃で浸漬時間0.5~30分間の範囲であるのがよい。使用するエッチング液の酸濃度や浴温が高いほどエッチング処理の効果が顕著になり、短時間処理が可能になるが、浴温については、20℃未満では溶解速度が遅くて十分な大きさ(開口幅及び深さ)を有する凹状部の生成に長時間を要し、また、80℃を超える浴温では溶解反応が急激に進行して凹状部の開口幅及び深さの制御が困難になり、浸漬時間については、0.5分未満では凹状部の開口幅及び深さの制御が難しく、逆に30分を超える浸漬時間では生産性低下の原因となる。
 本発明において、上記の如くアルミニウム合金材及び銅合金材にエッチング処理を施して凹状部を有するアルミニウム合金材及び銅形状体を形成する際に、必要により、このエッチング処理前のアルミニウム合金材及び/又は銅合金材の表面に、脱脂や表面調整、表面付着物・汚染物等の除去を目的として、酸水溶液による酸処理、及び/又は、アルカリ溶液によるアルカリ処理からなる前処理を施してもよい。
 ここで、この前処理に用いる酸水溶液としては、例えば、市販の酸性脱脂剤で調製したもの、硫酸、硝酸、フッ酸、リン酸等の鉱酸や酢酸、クエン酸等の有機酸や、これらの酸を混合して得られた混合酸等の酸試薬を用いて調製したもの等を用いることができ、また、アルカリ水溶液としては、例えば、市販のアルカリ性脱脂剤により調製したもの、苛性ソーダ等のアルカリ試薬により調製したもの、又はこれらのものを混合して調製したもの等を用いることができる。
 上記の酸水溶液及び/又はアルカリ水溶液を用いて行なう前処理の操作方法及び処理条件については、従来、この種の酸水溶液又はアルカリ水溶液を用いて行なわれている前処理の操作方法及び処理条件と同様でよく、例えば、浸漬法、スプレー法等の方法により行うことができる。
 そして、アルミニウム合金材及び/又は銅合金材の表面に上記の前処理を施した後や、凹状部を形成するためのエッチング処理を施した後に、必要により水洗処理をしてもよく、この水洗処理には工業用水、地下水、水道水、イオン交換水等を用いることができ、製造される銅形状体に応じて適宜選択される。更に、前処理やエッチング処理が施された銅合金材については、必要により乾燥処理が行われるが、この乾燥処理についても、室温で放置する自然乾燥でよいほか、エアーブロー、ドライヤー、オーブン等を用いて行う強制乾燥でもよい。
 上記のエッチング処理により、又は前処理及びエッチング処理により得られたアルミ形状体及び銅形状体の表面は、エッチング処理により凹凸部が形成され、その表面の60度表面光沢度(スガ試験機社製ハンディ光沢計での測定)による測定で好ましくは60以下であり、又は、表面粗さ測定器(東京精密社製サーフコム590A-DTPでの測定)あるいはレーザー顕微鏡(レーザーテック社製1LM21Wでの測定)による測定で好ましくは表面粗さ(Rz)が1μm以上である。表面光沢度が60を超えている場合、又は、表面粗さ(Rz)が1μm以下である場合は、樹脂がアルミ形状体及び銅形状体の凹状部内に十分に入り込まず、アルミ形状体及び銅形状体と樹脂形状体との間の十分な接合強度が得られない。
 また、上記のエッチング処理により、又は前処理及びエッチング処理により得られたアルミ形状体及び銅形状体の表面をSEMあるいは光学顕微鏡により倍率1000倍で断面観察を行い、得られた断面観察写真について、好ましくはアルミ形状体及び銅形状体の表面積が、エッチング処理により凹凸部を形成する前のアルミニウム合金材及び銅形状体の表面積の1.2倍以上10倍以下であるのがよい。この表面積増加率が1.2倍未満、又は10倍を超えている場合は、樹脂がアルミ形状体及び銅形状体の凹状部内に十分に入り込まず、アルミ形状体及び銅形状体と樹脂形状体との間の十分な接合強度が得られない。
 次に、本発明のアルミ・樹脂・銅複合品を得るには、以上のようにして得られたアルミ形状体及び銅形状体の表面に接着剤を塗布後、金属あるいは樹脂を接合させる、あるいは得られたアルミ形状体及び銅形状体と金属の間に樹脂を介在させ、これらをホットプレス機により熱と圧力を加えることで接合させる、あるいは得られたアルミ形状体及び銅形状体を射出成形用金型内にセットし、この金型内に溶融した所定の熱可塑性樹脂を射出して固化させる、いわゆるアルミ形状体及び銅形状体を用いた樹脂の複合化により、目的のアルミ形状体及び銅形状体と樹脂との複合品を製造する。
 ここで、本発明のアルミ・銅・樹脂複合品を製造するための熱可塑性樹脂については、各種の熱可塑性樹脂を単独で用いることができるが、本発明のアルミ・樹脂・銅複合品に求められる物性、用途、使用環境等を考慮すると、熱可塑性樹脂としては、好ましくは、例えばポリプロピレン樹脂、ポリエチレン樹脂、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンスルフィド(PPS)等のポリアリーレンサルファイド樹脂、ポリアセタール樹脂、液晶性樹脂、ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)等のポリエステル系樹脂、ポリオキシメチレン樹脂、ポリイミド樹脂、シンジオタクティックポリスチレン樹脂等やこれらの熱可塑性樹脂の2種以上の混合物が挙げられ、また、アルミ形状体及び銅形状体と樹脂形状体との間の密着性、機械的強度、耐熱性、寸法安定性(耐変形、反り等)、電気的性質等の性能をより改善するために、より好ましくは、これらの熱可塑性樹脂に繊維状、粉粒状、板状等の充填剤や、各種のエラストマー成分を添加するのがよい。
 また、熱可塑性樹脂に添加される充填剤としては、ガラス繊維、カーボン繊維、金属繊維、アスベスト繊維、硼素繊維等の無機質繊維充填剤や、ポリアミド、フッ素樹脂、アクリル樹脂等の高融点有機質繊維充填剤や、石英粉末、ガラスビーズ、ガラス粉、炭酸カルシウムを始めとする無機粉体類等の粉状充填剤や、ガラスフレーク、タルクやマイカ等の珪酸塩類等の板状充填剤等が例示され、熱可塑性樹脂100重量部に対して250重量部以下、好ましくは0重量部以上200重量部以下、より好ましくは0重量部以上100重量部以下の範囲で添加される。この充填剤の添加量が250重量部を超えると、流動性が低下しアルミ形状体及び銅形状体の凹部へ進入し難くなり良好な密着強度を得られず、機械的特性の低下を招くという問題が生じる。
 また、熱可塑性樹脂に添加されるエラストマー成分としては、ウレタン系、コアシェル型、オレフィン系、ポリエステル系、アミド系、スチレン系等のエラストマーが例示され、射出成形時の熱可塑性樹脂の溶融温度等を考慮して選択され、また、熱可塑性樹脂100重量部に対して30重量部以下、好ましくは3~25重量部の範囲で使用される。このエラストマー成分の添加量が30重量部を超えると、更なる密着強度向上効果が見られず機械的特性の低下等の問題が生じる。このエラストマー成分の配合効果は、熱可塑性樹脂としてポリエステル系樹脂を用いた場合に特に顕著に現れる。
 更に、本発明のアルミ・樹脂・銅複合品を製造するための熱可塑性樹脂には、一般に熱可塑性樹脂に添加される公知の添加剤、すなわち難燃剤、染料や顔料等の着色剤、酸化防止剤や紫外線吸収剤等の安定剤、可塑剤、潤滑剤、滑剤、離型剤、結晶化促進剤、結晶核剤等を、要求される性能に応じて適宜添加することができる。
 本発明において、アルミ形状体及び銅形状体を射出成形用金型内にセットして行う熱可塑性樹脂の射出成形については、用いられる熱可塑性樹脂に求められる成形条件を採用し得るものであるが、射出成形時に溶融した熱可塑性樹脂がアルミ形状体及び銅形状体の凹状部内に確実に進入して固化することが重要であり、金型温度やシリンダー温度を熱可塑性樹脂の種類や物性、更には成形サイクルの許す範囲で比較的高めに設定するのが好ましく、特に金型温度については、下限温度を90℃以上、好ましくは130℃以上にする必要があるが、上限は、使用する熱可塑性樹脂の種類に応じて、100℃から当該熱可塑性樹脂の融点又は軟化点(エラストマー成分が添加される場合にはどちらか高い方の融点又は軟化点)より20℃程度低い温度までの範囲であるのがよい。また、下限金型温度は、熱可塑性樹脂の融点から140℃以上低くならないように設定するのが好ましい。
 更に、本発明のアルミ・樹脂・銅複合品を製造するための樹脂については、上記の熱可塑性樹脂以外に、熱硬化性樹脂、常温硬化性樹脂、各種接着剤等を用いてもよい。熱硬化性樹脂としてはエポキシ系樹脂等が挙げられ、また、常温硬化性樹脂としてはポリエステル系樹脂等が挙げられる。更に、接着剤としてはニトリルゴム系、合成ゴム系、エポキシ系、シアノアクリル系、塩化ビニール系、プラスチック系、ホットメルト系等が挙げられる。
 ここで、本発明の方法で製造されるアルミ・樹脂・銅複合品からなる製品については、それがアルミニウム合金製のアルミ形状体と銅合金製の銅形状体との間が樹脂形状体で一体的に接合された構造を有するものであれば、どのような製品でもよいが、アルミ形状体と樹脂形状体との間の界面(アルミ/樹脂界面)及び銅形状体と樹脂形状体との間の界面(銅/樹脂界面)における密着強度や気密性が極めて高いという特性から、好適には密閉型電池向け蓋部材である。
 そして、このような密閉型電池向け蓋部材としては、例えば、互いに所定の間隔をおいて位置する一対の貫通孔を有するアルミニウム合金製のアルミ封孔蓋部材と、このアルミ封孔蓋部材の各貫通孔内をその周縁部から所定の隙間を維持して貫通するアルミニウム合金製のアルミ合金端子及び銅合金製の銅合金端子と、前記アルミ封孔蓋部材の各貫通孔周縁部と各端子との間の隙間を密封すると共に絶縁する封孔絶縁樹脂とからなる密閉型電池向け蓋部材であって、前記アルミ封孔蓋部材及びアルミ合金端子がそれぞれ表面凹凸化エッチング処理により表面の一部又は全面に形成された凹凸部に起因する複数の凹状部を有すると共に、前記銅合金端子が表面凹凸化エッチング処理により表面の一部又は全面に形成された凹凸部に起因する複数の凹状部を有しており、また、前記封孔絶縁樹脂が、前記アルミ封孔蓋部材(アルミ形状体)及びアルミ合金端子(アルミ形状体)の各凹状部内に進入して固化した複数の嵌入部を有してこれらアルミ封孔蓋部材とアルミ合金端子との間を一体的に結合する一方の樹脂形状体と、前記アルミ封孔蓋部材(アルミ形状体)及び銅合金端子(銅形状体)の各凹状部内に進入して固化した複数の嵌入部を有してこれらアルミ封孔蓋部材と銅合金端子との間を一体的に結合する他方の樹脂形状体とで構成されているアルミ・樹脂・銅複合品からなるものを例示することができる。
 本発明のアルミ・樹脂・銅複合品は、アルミ形状体と樹脂形状体との間の界面(アルミ/樹脂界面)及び銅形状体と樹脂形状体との間の界面(銅/樹脂界面)の密着強度や気密性が極めて高く、かつ過酷な環境に曝されてもその優れた密着強度及び気密性を保持することができ、長期に亘って高い信頼性を維持し得るものである。従って、本発明のアルミ・樹脂・銅複合品は、主に密閉型電池向け蓋部材において好適に使用することができ、特にアルミ形状体の一部及び銅形状体の表面から樹脂形状体が突合せ状態に突出して高い結合強度が要求される金属-樹脂複合部品に好適に使用される。
 また、本発明のアルミ・樹脂・銅複合品の製造方法によれば、製造時にアルミ形状体の表面光沢度あるいはアルミ形状体及び銅形状体の表面粗さを測定することにより、得られた製品の密着強度を予想することができ、その製造時の品質管理が容易になるほか、製品毎に密着強度のバラツキがほとんどない信頼性の高い製品を製造することが可能になる。
図1は、実施例1に係るアルミ形状体の厚さ方向断面を模写し、凹状部を説明するための断面模写図である。
図2は、図1から観念される凹状部の形状の典型例を示す断面説明図である。
図3は、アルミ試験片(アルミ形状体)及び銅試験片(銅形状体)を用いてposiTEST試験用に調製したアルミ・接着剤・銅試験片(評価用試験体)正面図及び側面図である。
図4は、アルミ試験片(アルミ形状体)及び銅試験片(銅形状体)を用いてposiTEST試験用に調製したアルミ・樹脂・銅試験片(評価用試験体)正面図及び側面図である。
図5は、銅試験片(銅形状体)を用いてposiTEST試験用に調製した銅・樹脂試験片(評価用試験体)正面図及び側面図である。
図6は、posiTEST試験の際に評価用試験体をposiTEST試験装置のアクチュエーター部にセットした状態を示す断面説明図である。
図7は、評価用試験体における樹脂・アルミ・樹脂の積層部の観察評価の方法を説明するための断面説明図である。
図8は、本発明の主な製品である密閉型電池向け蓋部材の説明図である。
 以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。なお、本発明は以下に記載の例に限定されるものではない。
〔実施例1〕
[アルミ形状体の調製]
 アルミニウム製のposiTEST試験用ドリー(デフェルスコ社製;サイズ:20mmφ,JISA 1100)2個について、先ず30wt%硝酸溶液に常温で5分間浸漬した後にイオン交換水で十分に水洗し、次いで5wt%水酸化ナトリウム溶液に50℃で1分間浸漬した後に水洗し、更に、30wt%硝酸溶液に常温で3分間浸漬した後に水洗する前処理を施した。
 次に、上記前処理後のドリーについて、2.5wt%塩酸溶液中に54g/Lの塩化アルミニウム六水和物を添加して調製したエッチング液中に66℃で4分間浸漬した後に水洗するエッチング処理を施し、更に、30wt%硝酸溶液に常温で3分間浸漬した後に水洗し、120℃の熱風で5分間乾燥させ、引張荷重測定試験用の評価サンプルを作成するための2個のアルミ試験片(アルミ形状体)を作製した。
[銅形状体の調製]
 厚さ1mmの銅合金(C1100)板から大きさ50mm×50mmの大きさを有する2個の銅片(銅合金材)を切り出し、この銅片について、先ず10wt%塩酸溶液中に1分間浸漬した後にイオン交換水で十分に水洗し、次いで5wt%水酸化ナトリウム溶液に50℃で1分間浸漬した後に水洗する前処理を施した。
 次に、上記前処理後の銅片について、アルファプレップPC-7030溶液(メルテック社製)中に40℃で1分間浸漬した後に水洗し、120℃の熱風で5分間乾燥させ、引張荷重測定試験用の評価サンプルを作成するための2個の銅試験片(銅形状体)を作製した。
[アルミ試験片(アルミ形状体)と銅試験片(銅形状体)の表面の凹状部観察]
 得られたアルミ試験片と銅試験片について、その厚さ方向断面のうちのある領域の断面を走査型電子顕微鏡(日立製FE-SEM、S-4500形)で観察し、アルミ形状体あるいは銅形状体の厚さ方向断面においてこの厚さ方向に直交し、かつ、凹凸部の最高部を通過するトップラインを決め、次に上記と概ね同様に、アルミ形状体あるいは銅形状体の厚さ方向に直交し、かつ、凹凸部の最深部を通過するボトムラインを決定し、更に、トップラインからボトムラインに対して垂直方向に線分を引き、この線分の中間部を通過し、かつ、トップライン(あるいはボトムライン)と平行に引かれたハーフライン上のアルミ形状体とアルミ形状体あるいは銅形状体と銅形状体との間に存在する空隙間の距離を凹状部の開口幅とし、アルミ試験片及び銅片の表面の凹凸部に起因して形成された凹状部の形状と大きさ(開口幅及び深さ)を観察し、また、測定した。
 観察されたアルミ試験片及び銅試験片のある領域の断面には、例えば図1の断面模写図に示す通りであり、また、この図1から観念される凹状部の形状の典型例は、図2に示すように、開口縁部の一部分から開口幅方向中心に向けて雪庇状に突き出した突出部を有する凹状部(形状a:図2(a)参照)、開口縁部の全体から開口幅方向中心に向けて雪庇状に突き出した突出部を有する凹状部(形状b:図2(b)参照)、内部に更に凹状部が形成された二重凹状部構造を有する凹状部(形状c:図2(c)参照)、及び内部の壁面に内部突起部が形成された内部凹凸構造を有する凹状部(形状d:図2(d)参照)であり、この実施例1においては全ての形状a~dの凹状部が観察された。また、このような凹状部の形状については、観察場所を変えても同様であった。
 なお、実施例1~5及び比較例1~3における凹状部の形状の評価については、上記形状a~dのいずれか1つ又は2つ以上を有する場合を良好(○)とし、また、形状a~dのいずれも存在しない場合を不良(×)として評価した。
 また、測定されたアルミ試験片及び銅試験片のある領域の断面において観察された凹状部の大きさ(開口幅及び深さ)並びにその割合は、0.1mm四方当たり開口幅0.1μm~1μmの凹状部が10個~100個、開口幅が1μm~10μmの凹状部が1~10個、開口幅が11μm~30μmの凹状部が1~3個であり、深さは0.1μm~30μmの範囲内であった。また、二重凹状部構造を形成する内部の凹状部の大きさ(開口幅及び深さ)ならびにその割合についても、上記と概ね同様に、0.1mm四方当たり開口幅0.1μm~1μmの凹状部が10個~50個、開口幅が1μm~10μmの凹状部が1~50個、開口幅が11μm~30μmの凹状部が1~2個であり、深さは0.1μm~20μmの範囲内であった。この凹状部の大きさについても、観察場所を変えてもほとんど変わりがなかった。
 なお、実施例1~5及び比較例1~3における凹状部の大きさの評価については、開口幅0.1~30μm及び深さ0.1~30μmの範囲内である場合を良好(○)とし、そうでない場合を不良(×)として評価した。
[アルミ試験片及び銅試験片の表面光沢度の評価]
 得られたそれぞれ2個のアルミ試験片及び銅片について、ハンディ光沢計(スガ試験機社製)を用いて表面の60度光沢度を測定し、2つの値の平均値を算出して、アルミ試験片と銅試験片の60度光沢度とした。アルミ試験片は30、銅試験片は10であった。
[アルミ試験片(アルミ形状体)及び銅試験片(銅形状体)の表面積増加率による評価]
 得られた2個のアルミ試験片と3個の銅試験片について、それぞれSEMあるいは光学顕微鏡により倍率1000倍で断面観察を行い、得られた断面観察写真について画像処理ソフト(ImageJ)を用いアルミ形状体及び銅試験片の表面の表面積を測定した。未処理のアルミニウム合金材に対して得られた各アルミ試験片表面の表面積が増加した割合及び未処理の銅合金材に対して得られた各銅試験片表面の表面積が増加した割合をそれぞれ求め、得られた2つ値の平均値を算出して表面積増加率と定義した。結果は、アルミ試験片は3.3倍、銅試験片は1.9倍であった。
[評価用試験体〔接着剤による樹脂(接着剤)の接合〕の調製]
 図3に示すように、上で得られた銅試験片(銅形状体)1とアルミ試験片(アルミ形状体)ドリー5とを二液混合型のエポキシ系急速硬化接着剤(ハンツマン・アドバンテスト・マテリアルズ社製商品名:アラルダイトラピッド)4を介して接合した後、ホットプレス機(アズワン製AH-2003)を用いて押し圧力0.1MPaで常温加圧し、そのまま24時間保持して圧着させ、次いで、銅試験片1とアルミ試験片ドリー5との間の接合面よりはみ出した余分な接着剤4を、接着剤が固化後、カッターを用いて接合面より分離し、接合面が3.14cm2になるように調整し、アルミ試験片・接着剤・銅試験片(評価用試験体)を作製した。
[評価用試験体(加熱圧着による樹脂の接合)の調製]
 図4に示すように、上で得られた銅試験片(銅形状体)1上にポリフェニレンスルファイド樹脂(ポリプラスチックス社製)のペレット(樹脂)6を0.04g/cm2となるように載せ、その上にアルミ試験片ドリー5をセットし、ホットプレス機(アズワン製AH-2003)を用いて押し圧力0.1MPa、プレート温度300℃で熱圧着させ、樹脂が3.14cm2の接合面積で固着するアルミ試験片・樹脂・銅試験片(評価用試験体)を作製した。
[posiTEST試験機による接合面の引張強度評価]
 上記各々の評価用試験体についてposiTEST試験機(デフェルスコ社製)を用い、ASTM D4541 (ISO 4624)試験法に準拠してアルミ・樹脂接合面の引張強度(ドリーサイズ:20mmφ、分解能:±0.01MPa、精度:±1%、及び測定範囲:0~20 MPa)を測定した。このposiTEST試験においては、図6に示すように、posiTEST試験機のアクチュエーター8に、アルミ試験片ドリー固定用冶具9を介して、評価用試験体のアルミ試験片ドリー5(又は7)部分を連結させた後、ポンプで圧力をかけてドリー5(又は7)部分が銅試験片(銅形状体)1から引き剥れるまでの荷重(剥離荷重)を測定し、また、引き剥れ後のアルミ試験片ドリー5と銅試験片1との接合部の剥離状態を調べた。
 評価用試験体の剥離荷重は、アルミ試験片・接着剤・銅試験片の場合に5.5MPaであり、アルミ試験片・樹脂・銅試験片の場合に6.7MPaであった。また、観察された剥離状態について、アルミ試験片あるいは銅試験片の接合面に接着剤あるいは樹脂が全面に渡って残存する場合を良好(○)とし、また、アルミ試験片あるいは銅試験片側に一部だけ残る場合を一部良好(△)、アルミ試験片側に残存しない場合(界面剥離)の場合を不良(×)として評価したところいずれも良好(○)であった。
[アルミ・樹脂・銅の積層部の観察評価]
 また、図7に示すように、上で調製した2種の評価用試験体、アルミ試験片・接着剤・銅試験片、アルミ試験片・樹脂・銅試験片について、それぞれそのアルミ試験片からその上に積層された樹脂(接着剤)に向けて厚さ方向に切断し、この厚さ方向断面をSEMあるいは光学顕微鏡により倍率1000倍で観察し、得られた断面観察写真について、樹脂形状体2側からアルミ形状体1側に向けて厚さ方向に延びる多数の観察ライン(OL)を互いに0.1μmの間隔で引いた際に、1観察ライン(OL)上に樹脂(接着剤)-アルミ-樹脂(接着剤)からなる少なくとも1つ以上の積層部が存在し、かつ、この積層部のアルミ形状体部分の厚さが0.1μm以上30μm以下の範囲であって、1000本の観察ライン(OL)の範囲内に1つ以上の割合で存在する場合を良好(○)とし、このような積層部が1000本の観察ライン(OL)の範囲内に1つも存在しないものを不良(×)として評価したところ、結果はいずれの場合も良好(○)であった。また、銅試験片側についても同様の手法で測定したところ、結果はいずれの場合も良好(○)であった。なお、以下の実施例1~5及び比較例1~3についても同様の基準で評価した。
〔実施例2〕
 銅のエッチング処理にモールドプレップLF溶液(アトテック社製)を用いた以外は、上記実施例1と同様にして、アルミ試験片(アルミ形状体)及び銅試験片(銅形状体)を作製し、次いで実施例1と同様の接着剤及び樹脂を用いてアルミ試験片・樹脂(接着剤)・銅試験片をそれぞれ作製し、上記実施例1の場合と同様に、上記アルミ試験片及び銅試験片の表面の凹状部観察及び光沢度測定と、posiTEST試験、及びアルミ・樹脂・銅の積層部の観察評価を実施した。
 結果を、実施例1の結果と共に、表1に示す。
〔実施例3〕
 銅片を切り出す銅合金板としてC1020を用いた以外は、上記実施例1と同様にして、アルミ試験片(アルミ形状体)及び銅試験片(銅形状体)を作製し、次いで実施例1と同様の接着剤及び樹脂を用いてアルミ試験片・樹脂(接着剤)・銅試験片をそれぞれ作製し、上記実施例1の場合と同様に、上記アルミ試験片及び銅試験片の表面の凹状部観察及び光沢度測定と、posiTEST試験、及びアルミ・樹脂・銅の積層部の観察評価を実施した。
 結果を、実施例1の結果と共に、表1に示す。
〔実施例4〕
 銅のエッチング処理を400g/L硫酸溶液中に硝酸溶液150g/L、塩化ナトリウムを0.2g/L、ベンゾトリアゾールを10g/L、5-アミノテトラゾールを10g/L添加して調製したエッチング液(塩素イオン濃度:0.08g/L)中に60℃で1分間浸漬後に水洗するエッチング処理に変更した以外は、上記実施例1と同様にして、アルミ試験片(アルミ形状体)及び銅試験片(銅形状体)を作製し、次いで実施例1と同様の接着剤及び樹脂を用いてアルミ試験片・樹脂(接着剤)・銅試験片をそれぞれ作製し、上記実施例1の場合と同様に、上記アルミ試験片及び銅試験片の表面の凹状部観察及び光沢度測定と、posiTEST試験、及びアルミ・樹脂・銅の積層部の観察評価を実施した。
 結果を、実施例1の結果と共に、表1に示す。
〔実施例5〕
 厚さ1mmのアルミニウム合金(JIS A1050)板から大きさ50mm×50mmの大きさを有するアルミ片(アルミニウム合金材)を切り出し、このアルミ片について、2.5wt%塩酸溶液中に54g/Lの塩化アルミニウム六水和物を添加して調製したエッチング液中に66℃で4分間浸漬した後に水洗するエッチング処理を施し、更に、30wt%硝酸溶液に常温で3分間浸漬した後に水洗し、120℃の熱風で5分間乾燥させ、アルミ試験片(アルミ形状体)を作製した。
 また、実施例1と同様にエッチング処理した銅試験片(銅形状体)を作製した。
 次に、図5に示すように、得られたアルミ試験片(アルミ形状体)13及び銅試験片(銅形状体)1を図示外の射出成形機(NISSEI社製ST10R2V)の金型内にセットし、熱可塑性樹脂としてポリフェニレンスルフィド樹脂(ポリプラスチックス社製)を用い、射出時間5秒、射出速度80mm/秒、保圧力100MPa、成形温度320℃、及び金型温度160℃の成形条件で射出成形し、アルミ試験片13及び銅試験片1の上面に樹脂製ドリー7を一体成形し、アルミ試験片13及び銅試験片1の上面に対する樹脂製ドリー7の接合面積が3.14cm2であるアルミ・樹脂試験片及び銅・樹脂試験片(評価用試験体)を作製した。
 上記実施例1の場合と同様に、上記アルミ試験片及び銅試験片の表面の凹状部観察及び光沢度測定と、posiTEST試験、及び樹脂・銅の積層部の観察評価を実施した。
 結果を、実施例1の結果と共に、表1に示す。
〔比較例1〕
 実施例1の前処理をしたのみでエッチング処理を行うことなくアルミ試験片ドリーと銅試験片を調製し、実施例1の場合と同様にして、樹脂及び接着剤を用いてアルミ試験片・樹脂(接着剤)・銅試験片をそれぞれ作製し、上記アルミ試験片及び銅試験片の表面の凹状部観察及び光沢度測定と、上記実施例1の場合と同様に、上記アルミ試験片及び銅試験片の表面の凹状部観察及び光沢度測定と、posiTEST試験、及びアルミ・樹脂・銅の積層部の観察評価を実施した。
 アルミ試験片及び銅試験片表面の凹状部の形状については、実施例1で示した形状a~dのいずれも観察されず、また、凹状部の大きさについても、その開口幅が0.001μm以上0.1μm未満であった。
 結果を、上記実施例1~5の結果と併せて、表1に示す。
〔比較例2〕
 銅のエッチング処理を40wt%硫酸溶液中に硝酸溶液150g/Lを添加して調製したエッチング液中に60℃で1分間浸漬後に水洗するエッチング処理に変更した以外は、上記実施例1と同様にして、アルミ試験片(アルミ形状体)及び銅試験片(銅形状体)を作製し、次いで実施例1と同様の接着剤及び樹脂を用いてアルミ試験片・樹脂(接着剤)・銅試験片をそれぞれ作製し、上記実施例1の場合と同様に、上記アルミ試験片及び銅試験片の表面の凹状部観察及び光沢度測定と、posiTEST試験、及びアルミ・樹脂・銅の積層部の観察評価を実施した。
 銅試験片表面の凹状部の形状については、実施例1で示した形状a~dのいずれも観察されず、また、凹状部の大きさについても、その開口幅が0.001μm以上0.1μm未満であった。
 結果を、比較例1の結果と共に、表1に示す。
〔比較例3〕
 銅のエッチング処理を行う代わりに濃度1wt%のシランカップリング剤処理液(信越シリコーン社製:KBM303)に30秒浸漬後、120℃の熱風で5分間乾燥させた以外は、上記実施例1と同様にして、アルミ試験片(アルミ形状体)及び銅試験片(銅形状体)を作製し、次いで実施例1と同様の接着剤及び樹脂を用いてアルミ試験片・樹脂(接着剤)・銅試験片をそれぞれ作製し、上記実施例1の場合と同様に、上記アルミ試験片及び銅試験片の表面の凹状部観察及び光沢度測定と、posiTEST試験、及びアルミ・樹脂・銅の積層部の観察評価を実施した。
 結果を、比較例1の結果と共に、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 1…銅形状体(銅試験片)、TL…トップライン、BL…ボトムライン、HL…ハーフライン、d…開口幅、OL…観察ライン、2…樹脂形状体、3…凹状部、4…接着剤、5…アルミ形状体(アルミ試験片ドリー)、6…樹脂、7…樹脂ドリー、8…アクチュエーター、9…ドリー固定用冶具、10…アルミ形状体又は銅形状体、11…アルミニウム合金蓋体、12…アルミニウム合金製容器本体、13…アルミ形状体(アルミ試験片)。

Claims (19)

  1.  表面凹凸化エッチング処理により表面の一部又は全面に凹凸部を有するアルミニウム合金製のアルミ形状体と表面凹凸化エッチング処理により表面の一部又は全面に凹凸部を有する銅合金製の銅形状体とが、樹脂成形体を介して、互いに接触しない状態で一体的に接合されていることを特徴とするアルミ・樹脂・銅複合品。
  2.  表面凹凸化エッチング処理により表面の一部又は全面に凹凸部を有するアルミニウム合金製のアルミ形状体と、表面凹凸化エッチング処理により表面の一部又は全面に凹凸部を有する銅合金製の銅形状体とが、樹脂成形体を介して、互いに接触しない状態で一体的に接合されているアルミ・樹脂・銅複合品であり、
     前記凹凸部を有する前記アルミ形状体及び銅形状体の表面には、前記凹凸部に起因して複数の凹状部が形成されており、
     前記各凹状部は、前記アルミ形状体及び銅形状体のそれぞれの厚さ方向断面においてこの厚さ方向に直交し、かつ、凹凸部の最高部を通過するトップラインと最深部を通過するボトムラインとの間のハーフラインにおいて、走査型電子顕微鏡観察により測定される開口幅が0.1μm以上30μm以下の大きさであって、その深さが0.1μm以上30μm以下の大きさであり、
     これらの凹状部内には前記樹脂が進入して固化した樹脂成形体の嵌入部が形成されており、
     前記凹状部と嵌入部とにより、前記アルミ形状体と樹脂成形体との間、及び銅形状体と樹脂成形体との間が互いに係止されていることを特徴とするアルミ・銅・樹脂複合品。
  3.  アルミ形状体及び銅形状体には、その複数の凹状部のうちの一部又は全部において、凹状部の開口縁部の一部分又は全体から開口幅方向中心に向けて雪庇状に突き出した突出部が形成されており、この突出部によりアルミ成形体及び銅形状体の凹状部と樹脂成形体の嵌入部とが互いに脱離不能な係止構造を形成している請求項1又は2に記載のアルミ・銅・樹脂複合品。
  4.  アルミ・樹脂・銅複合品の厚さ方向断面において、その樹脂成形体側からアルミ形状体側あるいは銅形状体側に向けて厚さ方向に延びる多数の観察ラインを互いに0.1μmの間隔で引いた際に、雪庇状の突出部は、1観察ライン上に樹脂-アルミ-樹脂あるいは樹脂-銅-樹脂からなる少なくとも1つ以上の積層部を形成し、かつ、この積層部のアルミ形状体あるいは銅形状体部分の厚さが0.1μm以上30μm以下の範囲であって、この雪庇状の突出部が1000本の観察ラインの範囲内に1つ以上存在することを特徴とする請求項3に記載のアルミ・銅・樹脂複合品。
  5.  アルミ形状体及び銅形状体の複数の凹状部は、その一部又は全部において、内部の壁面に少なくとも1つ以上の内部凹状部が形成された二重凹状部構造を有している請求項1~4のいずれかに記載のアルミ・銅・樹脂複合品。
  6.  アルミ形状体及び銅形状体の複数の凹状部は、その一部又は全部において、内部の壁面に少なくとも1つ以上の内部突起部が形成された内部凹凸構造を有している請求項1~4のいずれかに記載のアルミ・銅・樹脂複合品。
  7.  アルミ形状体及び銅形状体の60度鏡面光沢度が60以下である請求項1~6いずれかに記載のアルミ・銅・樹脂複合品。
  8.  アルミ形状体及び銅形状体の表面積が、凹凸部を形成する前のアルミニウム合金材及び銅合金材の表面積の1.2倍以上10倍以下である請求項1~7いずれかに記載のアルミ・銅・樹脂複合品。
  9.  アルミニウム合金製のアルミ形状体と銅合金製の銅形状体とが、樹脂成形体を介して、互いに接触しない状態で一体的に接合されているアルミ・樹脂・銅複合品の製造方法であり、前記アルミ形状体及び銅形状体にはそれぞれアルミニウム合金材及び銅合金材をエッチング処理して表面の一部又は全面に凹凸部に起因する複数の凹状部を形成し、樹脂成形体にはその成形時に前記アルミ形状体及び銅形状体の各凹状部内に樹脂が進入して固化した樹脂成形体の嵌入部を成形し、アルミ形状体及び銅形状体の凹状部と樹脂成形体の嵌入部とを互いに係止させることによりアルミ形状体と銅形状体とを樹脂成形体を介して互いに接触しない状態で一体的に結合させることを特徴とするアルミ・銅・樹脂射出複合品の製造方法。
  10.  アルミニウム合金材へのエッチング処理は、エッチング液として、ハロゲンイオンを濃度0.5g/L以上300g/L以下の範囲で含む酸濃度0.1重量%以上80重量%以下の酸水溶液を用いて行われることを特徴とする請求項9に記載のアルミ・銅・樹脂複合品の製造方法。
  11.  アルミニウム合金材へのエッチング液は、酸水溶液中に水溶性無機ハロゲン化合物を添加して調製される請求項10に記載のアルミ・銅・樹脂複合品の製造方法。
  12.  アルミ形状体及び銅形状体には、その複数の凹状部のうちの一部又は全部において、凹状部の開口縁部の一部分又は全体から開口幅方向中心に向けて雪庇状に突き出した突出部が形成されており、この突出部によりアルミ成形体及び銅形状体の凹状部と樹脂成形体の嵌入部とが互いに脱離不能な係止構造を形成している請求項9~11のいずれかに記載のアルミ・銅・樹脂複合品の製造方法。
  13.  アルミ・樹脂・銅複合品の厚さ方向断面において、その樹脂成形体側からアルミ形状体側あるいは銅形状体側に向けて厚さ方向に延びる多数の観察ラインを互いに0.1μmの間隔で引いた際に、雪庇状の突出部は、1観察ライン上に樹脂-アルミ-樹脂あるいは樹脂-銅-樹脂からなる少なくとも1つ以上の積層部を形成し、かつ、この積層部のアルミ形状体あるいは銅形状体部分の厚さが0.1μm以上30μm以下の範囲であって、この雪庇状の突出部が1000本の観察ラインの範囲内に1つ以上存在することを特徴とする請求項12に記載のアルミ・樹脂複合品の製造方法。
  14.  アルミ形状体及び銅形状体の表面に凹凸部に起因して形成される複数の凹状部は、アルミ形状体及び銅形状体の厚さ方向断面においてこの厚さ方向に直交し、かつ、凹凸部の最高部を通過するトップラインと最深部を通過するボトムラインとの間のハーフラインにおいて、走査型電子顕微鏡観察により測定される開口幅が0.1μm以上30μm以下であって、その深さが0.1μm以上30μm以下の大きさである請求項9~13のいずれかに記載のアルミ・銅・樹脂複合品の製造方法。
  15.  アルミ形状体及び銅形状体の60度鏡面光沢度が60以下である請求項9~14のいずれかに記載のアルミ・銅・樹脂複合品の製造方法。
  16.  アルミ形状体及び銅形状体の表面積が、凹凸部を形成する前のアルミニウム合金材及び銅合金材の表面積の1.2倍以上10倍以下である請求項9~15のいずれかに記載のアルミ・銅・樹脂複合品の製造方法。
  17.  銅合金材のエッチング処理は、エッチング液として、硫酸、及びシュウ酸から選ばれたいずれか1種の酸を酸濃度0.1重量%以上60重量%以下の範囲内で含むと共に、ハロゲンイオンを0.01g/L以上1.0g/L以下の範囲内で含み、かつ、過酸化水素あるいは硝酸を0.1g/L以上300g/L以下の範囲内で含む酸水溶液を用いて行われる請求項9~16のいずれかに記載のアルミ・銅・樹脂複合品の製造方法。
  18.  エッチング液としての酸水溶液が、必要に応じて有機酸を少なくとも1種以上0.01g/L以上100g/L以下の範囲内で添加される、又はアゾール系化合物を少なくとも1種以上0.01g/L以上100g/L以下の範囲で添加される請求項17に記載のアルミ・銅・樹脂複合品の製造方法。
  19.  互いに所定の間隔をおいて位置する一対の貫通孔を有するアルミニウム合金製のアルミ封孔蓋部材と、このアルミ封孔蓋部材の各貫通孔内をその周縁部から所定の隙間を維持して貫通するアルミニウム合金製のアルミ合金端子及び銅合金製の銅合金端子と、前記アルミ封孔蓋部材の各貫通孔周縁部と各端子との間の隙間を密封すると共に絶縁する封孔絶縁樹脂とからなる密閉型電池向け蓋部材であって、
     前記アルミ封孔蓋部材及びアルミ合金端子がそれぞれ表面凹凸化エッチング処理により表面の一部又は全面に形成された凹凸部に起因する複数の凹状部を有すると共に、前記銅合金端子が表面凹凸化エッチング処理により表面の一部又は全面に形成された凹凸部に起因する複数の凹状部を有しており、また、前記封孔絶縁樹脂が、前記アルミ封孔蓋部材及びアルミ合金端子の各凹状部内に進入して固化した複数の嵌入部を有してこれらアルミ封孔蓋部材とアルミ合金端子との間を一体的に結合する一方の樹脂成形体と、前記アルミ封孔蓋部材及び銅合金端子の各凹状部内に進入して固化した複数の嵌入部を有してこれらアルミ封孔蓋部材と銅合金端子との間を一体的に結合する他方の樹脂成形体とで構成されているアルミ・樹脂・銅複合品からなることを特徴とする密閉型電池向け蓋部材。
PCT/JP2010/071972 2009-12-11 2010-12-08 アルミ・樹脂・銅複合品及びその製造方法並びに密閉型電池向け蓋部材 WO2011071061A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-281848 2009-12-11
JP2009281848A JP2011124142A (ja) 2009-12-11 2009-12-11 アルミ・樹脂・銅複合品及びその製造方法並びに密閉型電池向け蓋部材

Publications (1)

Publication Number Publication Date
WO2011071061A1 true WO2011071061A1 (ja) 2011-06-16

Family

ID=44145605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071972 WO2011071061A1 (ja) 2009-12-11 2010-12-08 アルミ・樹脂・銅複合品及びその製造方法並びに密閉型電池向け蓋部材

Country Status (3)

Country Link
JP (1) JP2011124142A (ja)
TW (1) TW201144075A (ja)
WO (1) WO2011071061A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008771A1 (ja) * 2013-07-18 2015-01-22 ダイセルポリマー株式会社 複合成形体
JP2016036884A (ja) * 2014-08-08 2016-03-22 ダイセルポリマー株式会社 研磨材
EP3456501A4 (en) * 2016-05-09 2019-10-30 Polyplastics Co., Ltd. Insert mold body and electrical connector for a fuel pump
WO2020261821A1 (ja) * 2019-06-25 2020-12-30 オムロン株式会社 接合構造体
EP3720679B1 (en) * 2017-12-06 2022-01-19 S.I.P.A. Società Industrializzazione Progettazione e Automazione S.p.A. Injection-compression molding device
CN114953629A (zh) * 2022-04-20 2022-08-30 江西鑫远基电子科技有限公司 一种高散热铝基覆铜板及其生产工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101548108B1 (ko) 2013-07-18 2015-08-27 미쯔이가가꾸가부시끼가이샤 금속/수지 복합 구조체 및 금속 부재
JP2015204729A (ja) * 2014-04-16 2015-11-16 住友ベークライト株式会社 電力変換装置の筐体、熱硬化性樹脂組成物および電力変換装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275036A (ja) * 1988-04-27 1989-11-02 Mitsubishi Alum Co Ltd アルミニウム芯金属箔張積層板及びその製造方法
JPH10251900A (ja) * 1997-03-12 1998-09-22 Fuji Photo Film Co Ltd アルミニウム板の粗面化方法
JP2000219978A (ja) * 1999-01-28 2000-08-08 Okuno Chem Ind Co Ltd アルミニウム箔に微小貫通孔を形成させる方法、該方法のための腐食用液及び微小貫通孔を有するアルミニウム箔
WO2004041533A1 (ja) * 2002-11-08 2004-05-21 Taisei Plas Co., Ltd. アルミニウム合金と樹脂組成物の複合体とその製造方法
WO2004055248A1 (ja) * 2002-12-16 2004-07-01 Corona International Corporation アルミニウム材と合成樹脂成形体の複合品及びその製造法
JP2005002371A (ja) * 2003-06-09 2005-01-06 Toyo Aluminium Kk アルミニウム箔とその製造方法、集電体、二次電池および電気二重層コンデンサ
JP2005336563A (ja) * 2004-05-27 2005-12-08 Sumitomo Electric Ind Ltd エッチング処理方法
JP2008162115A (ja) * 2006-12-28 2008-07-17 Ykk Corp 金属と樹脂の複合体の製造方法
JP2009191357A (ja) * 2008-01-16 2009-08-27 Mec Kk エッチング液
JP2009255429A (ja) * 2008-04-18 2009-11-05 Taisei Plas Co Ltd 金属合金と炭素繊維強化プラスチックの接合体及びその電食防止方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3467471B2 (ja) * 1999-12-08 2003-11-17 ポリプラスチックス株式会社 金属インサート樹脂複合成形品の製造方法
JP2008131005A (ja) * 2006-11-24 2008-06-05 Taisei Plas Co Ltd 端子を備えた電気・電子部品の構成体とその構成体の製造方法
JP5593508B2 (ja) * 2007-09-21 2014-09-24 エリーパワー株式会社 電極端子取付構造及び非水電解質二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275036A (ja) * 1988-04-27 1989-11-02 Mitsubishi Alum Co Ltd アルミニウム芯金属箔張積層板及びその製造方法
JPH10251900A (ja) * 1997-03-12 1998-09-22 Fuji Photo Film Co Ltd アルミニウム板の粗面化方法
JP2000219978A (ja) * 1999-01-28 2000-08-08 Okuno Chem Ind Co Ltd アルミニウム箔に微小貫通孔を形成させる方法、該方法のための腐食用液及び微小貫通孔を有するアルミニウム箔
WO2004041533A1 (ja) * 2002-11-08 2004-05-21 Taisei Plas Co., Ltd. アルミニウム合金と樹脂組成物の複合体とその製造方法
WO2004055248A1 (ja) * 2002-12-16 2004-07-01 Corona International Corporation アルミニウム材と合成樹脂成形体の複合品及びその製造法
JP2005002371A (ja) * 2003-06-09 2005-01-06 Toyo Aluminium Kk アルミニウム箔とその製造方法、集電体、二次電池および電気二重層コンデンサ
JP2005336563A (ja) * 2004-05-27 2005-12-08 Sumitomo Electric Ind Ltd エッチング処理方法
JP2008162115A (ja) * 2006-12-28 2008-07-17 Ykk Corp 金属と樹脂の複合体の製造方法
JP2009191357A (ja) * 2008-01-16 2009-08-27 Mec Kk エッチング液
JP2009255429A (ja) * 2008-04-18 2009-11-05 Taisei Plas Co Ltd 金属合金と炭素繊維強化プラスチックの接合体及びその電食防止方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008771A1 (ja) * 2013-07-18 2015-01-22 ダイセルポリマー株式会社 複合成形体
JP5860190B2 (ja) * 2013-07-18 2016-02-16 ダイセルポリマー株式会社 複合成形体
CN105377548A (zh) * 2013-07-18 2016-03-02 大赛璐塑料株式会社 复合成型体
JPWO2015008771A1 (ja) * 2013-07-18 2017-03-02 ダイセルポリマー株式会社 複合成形体
US10434741B2 (en) 2013-07-18 2019-10-08 Daicel Polymer Ltd. Composite molded article
JP2016036884A (ja) * 2014-08-08 2016-03-22 ダイセルポリマー株式会社 研磨材
EP3456501A4 (en) * 2016-05-09 2019-10-30 Polyplastics Co., Ltd. Insert mold body and electrical connector for a fuel pump
EP3720679B1 (en) * 2017-12-06 2022-01-19 S.I.P.A. Società Industrializzazione Progettazione e Automazione S.p.A. Injection-compression molding device
JP2021003819A (ja) * 2019-06-25 2021-01-14 オムロン株式会社 接合構造体
KR20210143303A (ko) * 2019-06-25 2021-11-26 오므론 가부시키가이샤 접합 구조체, 및 그 접합 구조체를 구비하는 스위치, 광전 센서 및 근접 센서
CN113840682A (zh) * 2019-06-25 2021-12-24 欧姆龙株式会社 接合结构体
WO2020261821A1 (ja) * 2019-06-25 2020-12-30 オムロン株式会社 接合構造体
JP7268500B2 (ja) 2019-06-25 2023-05-08 オムロン株式会社 接合構造体
EP3992473A4 (en) * 2019-06-25 2023-07-26 OMRON Corporation ASSEMBLY STRUCTURE
KR102603133B1 (ko) * 2019-06-25 2023-11-16 오므론 가부시키가이샤 접합 구조체, 및 그 접합 구조체를 구비하는 스위치, 광전 센서 및 근접 센서
CN113840682B (zh) * 2019-06-25 2024-04-05 欧姆龙株式会社 接合结构体以及包括其的开关、光电传感器及近接传感器
CN114953629A (zh) * 2022-04-20 2022-08-30 江西鑫远基电子科技有限公司 一种高散热铝基覆铜板及其生产工艺

Also Published As

Publication number Publication date
JP2011124142A (ja) 2011-06-23
TW201144075A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
JP5581680B2 (ja) 耐候性に優れたアルミ・樹脂複合品及びその製造方法
WO2011071061A1 (ja) アルミ・樹脂・銅複合品及びその製造方法並びに密閉型電池向け蓋部材
WO2009151099A1 (ja) アルミ・樹脂射出一体成形品及びその製造方法
JP5058593B2 (ja) 金属と樹脂の複合体の製造方法
EP1559542B1 (en) Composite of aluminum alloy and resin composition and process for producing the same
JP5673814B2 (ja) アルミ・樹脂射出一体成形品製造用のアルミ形状体及びこれを用いたアルミ・樹脂射出一体成形品並びにそれらの製造方法
JP4927864B2 (ja) 高耐食性複合体の製造方法
KR101512888B1 (ko) 알루미늄 합금 부재와 수지 부재의 레이저 접합 방법
JP5055288B2 (ja) 金属と樹脂の複合体とその製造方法
WO2014024877A1 (ja) アルミ樹脂接合体及びその製造方法
WO2013011769A1 (ja) アルミニウム-樹脂複合体の製造方法
WO2011027854A1 (ja) アルミニウム合金物品、アルミニウム合金部材およびその製造方法
JP2009298144A (ja) 複数金属形状物の接合複合体とその製造方法
WO2011071062A1 (ja) アルミニウム接着複合材及びその製造方法
JP2006001216A (ja) アルマイト化アルミニウム合金と樹脂の複合体とその製造方法
WO2018207685A1 (ja) 接合用アルミニウム塗装材及びアルミ樹脂複合材
JP7040988B2 (ja) アルミニウム合金と樹脂の複合体及びその製造方法
WO2014170946A1 (ja) 樹脂接合用Al-Mg-Si系アルミ合金部材の製造方法及びこの方法で得られた樹脂接合用Al-Mg-Si系アルミ合金部材
KR20170092210A (ko) 알루미늄ㆍ수지 사출 일체 성형품 및 그 제조 방법
WO2014170945A1 (ja) 樹脂接合用アルミ鋳造合金部材の製造方法及びこの方法で得られた樹脂接合用アルミ鋳造合金部材
JP5994290B2 (ja) 樹脂接合用Al−Mg−Si系アルミ合金部材の製造方法及びこの方法で得られた樹脂接合用Al−Mg−Si系アルミ合金部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835981

Country of ref document: EP

Kind code of ref document: A1