WO2020261821A1 - 接合構造体 - Google Patents

接合構造体 Download PDF

Info

Publication number
WO2020261821A1
WO2020261821A1 PCT/JP2020/019853 JP2020019853W WO2020261821A1 WO 2020261821 A1 WO2020261821 A1 WO 2020261821A1 JP 2020019853 W JP2020019853 W JP 2020019853W WO 2020261821 A1 WO2020261821 A1 WO 2020261821A1
Authority
WO
WIPO (PCT)
Prior art keywords
perforation
perforations
curable resin
structure according
joint
Prior art date
Application number
PCT/JP2020/019853
Other languages
English (en)
French (fr)
Inventor
佐藤 大輔
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to KR1020217035159A priority Critical patent/KR102603133B1/ko
Priority to US17/609,792 priority patent/US20220227094A1/en
Priority to CN202080033587.XA priority patent/CN113840682B/zh
Priority to EP20832345.1A priority patent/EP3992473A4/en
Publication of WO2020261821A1 publication Critical patent/WO2020261821A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0246Cutting or perforating, e.g. burning away by using a laser or using hot air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1282Stepped joint cross-sections comprising at least one overlap joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1284Stepped joint cross-sections comprising at least one butt joint-segment
    • B29C66/12841Stepped joint cross-sections comprising at least one butt joint-segment comprising at least two butt joint-segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/14Particular design of joint configurations particular design of the joint cross-sections the joint having the same thickness as the thickness of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B11/00Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B11/00Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
    • F16B11/006Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding by gluing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B21/00Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings
    • F16B21/10Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts
    • F16B21/16Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/08Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of welds or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2701/00Use of unspecified macromolecular compounds for preformed parts, e.g. for inserts
    • B29K2701/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a bonded structure and its use.
  • Patent Document 1 describes a step of continuously irradiating a joint surface of a metal molded body, which is a first molded body, with a laser beam at an irradiation rate of 200 mm / sec or more using a continuous wave laser, and a step of continuously irradiating a laser beam in a previous step. It has a step of forming an adhesive layer on the joint surface of the metal molded body irradiated with, and a step of adhering the second molded body to the joint surface of the metal molded body which is the first molded body coated with the adhesive in the previous step. , A method for producing a composite molded body is disclosed.
  • both the tensile strength when pulled in the direction parallel to the joint surface and the tensile strength when pulled in the direction perpendicular to the joint surface are excellent. It is said that a composite molded product can be provided.
  • the present invention on the one hand, has been made in view of such circumstances, and an object of the present invention is to provide a joint structure having excellent thermal shock resistance and exhibiting high joint strength.
  • the bonded structure according to one aspect of the present invention has a first member, which is a metal material having a plurality of perforations having an opening diameter of 30 to 100 ⁇ m formed on the surface, and an opening on the surface.
  • a third member and a surface on which the first member is perforated which is the same or different metal material or thermoplastic resin as the first member and has a plurality of independent perforations having a diameter of 30 to 100 ⁇ m.
  • FIG. 1 schematically illustrates an example of a cross section of the joined structure according to the embodiment.
  • FIG. 2 schematically illustrates an example of a cross section of the joined structure according to the embodiment.
  • FIG. 3 schematically illustrates an example of a cross section of the joined structure according to the embodiment.
  • FIG. 4 schematically illustrates an example of a cross section of the joined structure according to the embodiment.
  • FIG. 5 schematically illustrates an example of a cross section of the joined structure according to the embodiment.
  • FIG. 6 schematically illustrates an example of a cross section of the joined structure according to the embodiment.
  • FIG. 7 schematically illustrates an example of a cross section of the joined structure according to the embodiment.
  • FIG. 8 schematically illustrates an example of a cross section of the joined structure according to the embodiment.
  • FIG. 9 schematically illustrates an example of a cross section of the joined structure according to the embodiment.
  • FIG. 10 schematically illustrates an example of a cross section of the joined structure according to the embodiment.
  • FIG. 11 schematically shows the manufacturing process of the bonded structure in the first embodiment.
  • FIG. 12 schematically shows the manufacturing process of the bonded structure in Comparative Example 1.
  • FIG. 13 schematically shows the manufacturing process of the bonded structure in Example 5.
  • FIG. 14 schematically shows a cross section of the bonded structure in Comparative Example 1.
  • FIG. 15 schematically shows a cross section of the bonded structure in Comparative Example 2.
  • FIG. 1 schematically illustrates an example of a cross section of the joined structure according to the embodiment.
  • the first member 1 is a metal material having a plurality of perforations having an opening diameter of 30 to 100 ⁇ m formed on the surface, and a plurality of perforations having an opening diameter of 30 to 100 ⁇ m are formed on the surface.
  • An example is a bonded structure including a second member 2 which is a sex resin. In other words, the first member 1 and the third member 3 are joined via the second member 2.
  • FIG. 1 shows a cross section parallel to the depth direction of the perforation.
  • the second member 2 which is a curable resin is filled in the perforations formed in the first member 1 and the third member 3 and cured, a physically strong anchor effect can be obtained. As a result, it is possible to obtain a bonded structure having excellent thermal shock resistance and exhibiting high bonding strength. Further, by performing surface processing for forming perforations on the surfaces of the first member 1 and the third member 3, impurities on the surface can be removed and the adhesive strength can be improved. Further, since a plurality of perforations are formed on the surfaces of the first member 1 and the third member 3, the stress related to the joint portion is dispersed, and a joint structure in which stress concentration is avoided can be provided.
  • the first member is a metal material having a plurality of perforations having an opening diameter of 30 to 100 ⁇ m formed on the surface thereof.
  • the metal material include iron-based metal, stainless-based metal, copper-based metal, aluminum-based metal, magnesium-based metal, and alloys thereof.
  • the metal material may be a metal molded body, zinc die-cast, aluminum die-cast, powder metallurgy, or the like.
  • the third member is the same or different metal material or thermoplastic resin as the first member having a plurality of perforations having an opening diameter of 30 to 100 ⁇ m formed on the surface.
  • the metal material used as the third member the metal material exemplified in the metal material used in the first member can be mentioned.
  • the third member may be the same metal material as the first member, or may be a different metal material.
  • thermoplastic resin examples include PVC (polyvinyl chloride), PS (polypropylene), AS (acrylonitrile / styrene copolymer), ABS (acrylonitrile / butadiene / styrene copolymer), PMMA (polymethylmethacrylate), and the like.
  • PE polypropylene
  • PP polypropylene
  • PC polypropylene
  • m-PPE modified polyphenylene ether
  • PA6 polyetherketone 6
  • PA66 polyamide 66
  • POM polyacetal
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PSF polyetherketone
  • PAR polyetherlate
  • PEI polyetherimide
  • PPS polyphenylene sulfide
  • PES polyetherketone
  • PEEK polyetheretherketone
  • PAI polyetherimide
  • LCP liquid crystal polymer
  • PVDC polyvinylidene chloride
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • thermoplastic resin may be TPE (thermoplastic elastomer), and examples of TPE include TPO (olefin type), TPS (styrene type), TPEE (ester type), TPU (urethane type), and the like. Examples thereof include TPA (nylon type) and TPVC (vinyl chloride type).
  • the second member is a curable resin that joins the surface on which the perforations of the first member are formed and the surface on which the perforations of the third member are formed.
  • the curable resin may be a reactive curable resin.
  • the reactive curable resin include a thermosetting resin that forms a crosslinked structure and cures by heating, and a photocurable resin that forms a crosslinked structure and cures by irradiating light.
  • the reactive curable resin examples include epoxy (EP) resin, polyurethane (PUR) resin, urea formaldehyde (UF) resin, melamine formaldehyde (MF) resin, phenol formaldehyde (PF) resin, and unsaturated polyester (UP).
  • EP epoxy
  • PUR polyurethane
  • UF formaldehyde
  • MF melamine formaldehyde
  • PF phenol formaldehyde
  • unsaturated polyester examples thereof include resins, silicone (SI) resins, and acrylic resins.
  • the reactive curable resin may be a fiber reinforced plastic (FRP).
  • the curable resin may be an epoxy resin.
  • the reactive curable resin is preferably an epoxy resin from the viewpoint of achieving both oil resistance, chemical resistance and heat impact resistance in a well-balanced manner.
  • a filler may be further added to the second member.
  • the filler include inorganic fillers (glass fibers, inorganic salts, etc.), metal-based fillers, organic-based fillers, carbon fibers, and the like.
  • the viscosity of the curable resin before curing is preferably 10,000 to 300,000 mPa ⁇ s, more preferably 25,000 to 90,000 mPa ⁇ s, and even more preferably 50,000 to 75,000 mPa ⁇ s at 25 ° C. ⁇ S.
  • the viscosity (mPa ⁇ s) can be measured, for example, at 25 ° C. by using a rotational viscometer (Brookfield meter) (manufactured by Eiko Seiki Co., Ltd.).
  • the shore D hardness of the curable resin after curing is preferably 30 to 90, more preferably 50 to 90, and even more preferably 70 to 90.
  • the shore D hardness is measured according to JIS K6253.
  • the opening diameter of the perforation is preferably 30 to 100 ⁇ m.
  • the perforations are independent of each other. That is, when viewed from a direction perpendicular to the surface on which the perforations are formed, the openings of the perforations do not overlap, and the boundary line between the perforations is clear. Therefore, the perforation is different from a continuous groove. Since the perforations are independent of each other, the surface areas of the first member and the third member are increased. As a result, the area of contact between the first member and the third member and the second member is expanded, which has the effect of improving the physical joint strength.
  • the shape of the opening of the perforation is not particularly limited, and may be, for example, circular or polygonal. If the shape of the opening is circular, it is easy to form a perforation.
  • the diameter of the cross section perpendicular to the depth direction of the perforation may be constant from the opening toward the depth direction, and increases from the opening toward the depth direction and then decreases. It may also be smaller, or may be smaller in the depth direction from the opening.
  • the diameter of the cross section perpendicular to the depth direction of the perforation increases in the depth direction from the opening and then decreases.
  • the shape of the perforation preferably has a constriction in the depth direction. With this configuration, the effect of locking the second member is exhibited.
  • the change in the diameter of the cross section perpendicular to the depth direction of the perforation from the opening to the depth direction may be curved or linear.
  • the pitch of the perforations is not particularly limited, and can be appropriately changed according to the opening diameter of the perforations, the volumes of the first member and the third member, and the like.
  • the lower limit of the perforation pitch is a distance at which the perforations do not overlap.
  • the perforation pitch is preferably 50 to 200 ⁇ m, more preferably 50 to 150 ⁇ m, and even more preferably 50 to 80 ⁇ m.
  • the perforation pitch can be adjusted, for example, by controlling the irradiation interval of laser irradiation.
  • the depth of the perforation is not particularly limited, and can be appropriately changed according to the opening diameter of the perforation, the volumes of the first member and the third member, and the like.
  • the perforation depth is preferably 30-100 ⁇ m.
  • the shape of the perforations in the first member and the third member may be the same.
  • the first member is formed with a perforation having a circular opening and a shape in which the diameter of a cross section perpendicular to the depth direction is curvedly reduced in the depth direction.
  • the third member having a circular opening and a perforation having a shape in which the diameter of the cross section perpendicular to the depth direction is curvedly reduced in the depth direction, as in the case of the first member 1. 3 may be joined via the second member 2.
  • the perforation may have the shape shown in FIGS. 2 to 10.
  • FIGS. 2 to 10 schematically show an example of a cross section of the joint structure according to the embodiment parallel to the depth direction of the perforation.
  • the shape of the perforation is such that the opening is circular and the diameter of the cross section perpendicular to the depth direction is curvedly increased in the depth direction and then decreased. Often, it may have a conical shape as shown in FIG.
  • the shapes of the perforations in the first member and the third member may be different.
  • the first member 1 in which a conical perforation is formed and the opening have a circular opening, and the diameter of the cross section perpendicular to the depth direction is curved toward the depth direction.
  • a third member 3 in which a perforation having a shape that becomes larger and then becomes smaller may be joined via the second member 2.
  • the punching pitches of the first member and the third member may be the same or different from each other.
  • the first member The drilling pitch of the member 1 may be smaller than the drilling pitch of the third member 3.
  • the depth of perforation in the first member and the third member may be the same or different from each other.
  • the first member The depth of the perforation in the member 1 may be deeper than the depth of the perforation in the third member 3.
  • both the perforation pitch and the perforation depth in the first member and the third member may be different between the first member and the third member.
  • the drilling pitch of the first member 1 is smaller than the drilling pitch of the third member 3.
  • the depth of the perforation in the first member 1 may be deeper than the depth of the perforation in the third member 3.
  • the first member 1 and the third member 3 may be joined via the second member 2 on a surface other than the surface on which the perforation is formed.
  • another member 5 may be joined to the first member 1 via the second member 2.
  • the above-mentioned perforations may also be formed on the surface of the other member 7.
  • the other member 7 may be a metal material or a thermoplastic resin exemplified as the first member or the third member.
  • the third member 3 is joined to the other member 7 via another adhesive 8 on a surface different from the surface joined to the first member 1. May be good.
  • the above-mentioned perforation may be formed on a surface of the third member 3 other than the surface joined to the first member 1.
  • the other adhesive 8 may be the curable resin exemplified as the second member.
  • the joint structure is manufactured by, for example, a manufacturing method including a step of joining a surface on which a perforation of the first member is formed and a surface on which a perforation of the third member is formed via the second member. Can be done.
  • the perforation is preferably formed by laser irradiation.
  • the laser type for forming the perforation fiber laser, YAG laser, YVO 4 laser, a semiconductor laser, a carbon dioxide gas laser, it is possible to select an excimer laser or the like, in consideration of the wavelength of the laser, a fiber laser or the like preferable.
  • the second member is applied to the surface on which the perforation of the first member is formed, the surface on which the perforation of the third member is formed, or both, and then the surface on which the perforation of the first member is formed is first coated.
  • the three members are overlapped so that the surfaces on which the perforations are formed are in contact with each other.
  • the region where the first member and the third member are overlapped may be pressurized. After that, the bonded structure can be obtained by curing the second member.
  • the OH groups in the second member may be exposed by irradiation with ultraviolet rays or the like. Alternatively, heating or evacuation may be performed during and / or after the second member has been applied. By these treatments, the surface tension when the perforation is filled with the second member is reduced, and the perforation is easily filled with the second member.
  • the method of curing the second member is not particularly limited as long as the second member is sufficiently cured.
  • junction structure can be used, for example, in switches, photoelectric sensors and proximity sensors.
  • a photoelectric sensor has a structure in which internal parts such as a substrate are sealed by a metal housing.
  • internal parts such as a substrate are sealed by a metal housing.
  • it is welded or joined with an adhesive without processing the surface.
  • internal parts such as substrates may be damaged by heat.
  • the method of joining with an adhesive without processing the surface is easy to peel off, and there is room for improvement in joining strength.
  • switches, photoelectric sensors, and proximity sensors there are parts that require joining of metal and resin in addition to joining of metals, and conventionally, metal and resin have been directly joined. However, in such a method, the metal and the resin tend to be easily peeled off.
  • the switch, photoelectric sensor or proximity sensor provided with the bonding structure has high bonding strength and can reduce thermal damage to internal parts.
  • the bonded structure according to one aspect of the present invention is independent of the first member, which is a metal material having a plurality of perforations having an opening diameter of 30 to 100 ⁇ m on the surface, and an independent member having an opening diameter of 30 to 100 ⁇ m on the surface.
  • a third member which is the same or different metal material or thermoplastic resin as the first member in which a plurality of perforations are formed, a surface on which the perforations of the first member are formed, and a perforation of the third member are formed.
  • a second member, which is a curable resin for joining the surface, is provided.
  • the curable resin can be cured by a cross-linking reaction.
  • the curable resin is applied to the surfaces on which the perforations are formed and cured, so that the curable resin is filled in the perforations and a physically strong anchor effect can be obtained.
  • a bonded structure having excellent thermal shock resistance and exhibiting high bonding strength.
  • impurities on the surface of the member can be removed and the adhesive strength can be improved.
  • the stress related to the joint portion is dispersed, and it is possible to provide a joint structure in which stress concentration is avoided.
  • the opening diameter of the perforation can be measured as the maximum diameter of the perforation opening on the surface of the metal material.
  • the curable resin may be a reactive curable resin.
  • the reactive curable resin can be cured by forming a crosslinked structure by energy from the outside.
  • the reactive curable resin may be an epoxy resin. According to this configuration, in addition to heat and shock resistance, oil resistance and chemical resistance can be ensured.
  • the epoxy resin may contain at least one epoxy group.
  • the viscosity of the curable resin before curing may be 25,000 to 90,000 mPa ⁇ s at 25 ° C. According to this configuration, since the perforations are easily filled with the curable resin, the anchor effect is easily exhibited and the bonding strength is improved.
  • the shore D hardness of the curable resin after curing may be 30 to 90. According to this configuration, in addition to heat and shock resistance, oil resistance and chemical resistance can be ensured.
  • the diameter of the cross section perpendicular to the depth direction of the perforation may increase in the depth direction from the opening and then decrease, or may decrease in the depth direction from the opening. It may become smaller toward. According to this configuration, the anchor effect is easily exhibited, so that the stability of thermal shock resistance is ensured.
  • the perforation pitch may be 50 to 200 ⁇ m.
  • the lower limit of the drilling pitch is the distance at which the drilling does not overlap. According to this configuration, since the perforations are arranged regularly, the stress related to the joint is uniformly dispersed, and it is easy to avoid stress concentration.
  • the perforation pitch can be measured as the distance from the center of the perforation to the center of the perforation adjacent to the perforation.
  • the switch according to one aspect of the present invention includes the joint structure.
  • the photoelectric sensor according to one aspect of the present invention includes the joint structure.
  • the proximity sensor according to one aspect of the present invention includes the joint structure.
  • FIG. 11 is a diagram showing a manufacturing process of the bonded structure in the first embodiment.
  • Step 1001 of FIG. 11 shows a step of forming a perforation 4 on the surfaces of the first member 1 and the third member 3.
  • the first member 1 is SUS304 (50 mm ⁇ 25 mm, thickness 3 mm)
  • the third member 3 is SUS304 (50 mm ⁇ 25 mm, thickness 1 mm)
  • the second member 2 is a thermosetting epoxy adhesive (viscosity before curing 35,000 mPa, Shore D hardness 80) was used.
  • a plurality of perforations 4 were formed on the surface of each member so that the perforation pitch was 65 ⁇ m.
  • Step 1002 of FIG. 11 shows a step of joining the surface on which the perforation of the first member 1 is formed and the surface on which the perforation of the third member 3 is formed.
  • the second member 2 is applied to the surface of the first member 1 on which the perforation 4 is formed, and as shown in step 1002 of FIG. 11, the third member 3 is applied to the surface of the first member 1 on which the perforation 4 is formed.
  • the surfaces on which the perforations 4 were formed were overlapped and pressed so as to be in contact with each other.
  • the second member 2 was cured by heating in an oven at 70 ° C. for 90 minutes to prepare a bonded structure.
  • Table 1 shows the pulsed laser irradiation conditions for forming the perforation.
  • the joint structure of Example 1 was the structure shown in FIG.
  • Examples 2 to 4 Three bonded structures were produced by the same method as in Example 1 except that the pulsed laser irradiation conditions for forming the perforations were changed. Table 1 shows the pulsed laser irradiation conditions for forming the perforation.
  • the joint structures of Examples 2 to 4 had the structures shown in FIGS. 2 to 4, respectively.
  • FIG. 12 is a diagram showing a manufacturing process of the bonded structure in Comparative Example 1.
  • Step 1003 of FIG. 12 shows a step of forming a perforation on the surfaces of the first member 1 and the third member 3.
  • laser irradiation was performed using a YAG laser ML-2150A (manufactured by Miyachi Technos), and as shown in step 1003 of FIG. 12, the width of the recesses 5 was 0.4 mm, and the adjacent recesses 5 were formed.
  • An uneven shape was formed on the joint surface of the members by continuous wave processing so that the width of the convex portion 6 between them was 0.15 mm. That is, a groove shape was formed.
  • Step 1004 of FIG. 2 shows a step of joining the surface on which the uneven shape of the first member is formed and the surface on which the uneven shape of the third member is formed.
  • the second member 2 is applied to the surface on which the uneven shape of the first member 1 is formed, and as shown in step 1004 of FIG. 12, the third member 3 is applied to the surface on which the uneven shape of the first member 1 is formed.
  • the surfaces were overlapped and pressurized so that the surfaces on which the uneven shape was formed were in contact with each other.
  • the second member 2 was cured by heating in an oven at 70 ° C. for 90 minutes to prepare a bonded structure.
  • Table 2 shows the conditions for laser irradiation.
  • the joint structure of Comparative Example 1 had the structure shown in FIG. Note that FIG. 14 shows a cross section parallel to the depth direction of the recess and the longitudinal direction of the recess.
  • Comparative Example 2 A bonded structure was prepared by the same method as in Example 1 except that the surface was treated by sandblasting instead of forming the perforations in Example 1.
  • Table 2 shows the conditions for sandblasting.
  • sandblasting was performed under the condition that the center line average roughness (Ra) representing the surface roughness was 5 to 10 ⁇ m.
  • the joint structure of Comparative Example 2 had the structure shown in FIG. Note that FIG. 15 shows a cross section parallel to the depth direction of the recess.
  • FIG. 13 is a diagram showing a manufacturing process of the bonded structure in the fifth embodiment.
  • the first member 1 is SUS304 (50 mm ⁇ 25 mm, thickness 3 mm)
  • the third member 3 is a PBT plate (50 mm ⁇ 25 mm, thickness 3 mm) containing 30% by weight of glass filler
  • the second member 2 is a thermosetting epoxy adhesive ( The viscosity before curing was 35,000 mPa and the shore D hardness was 80).
  • the coefficient of linear expansion of the first member was half that of the second member and the third member.
  • a plurality of perforations 4 were formed on the surface of each member so that the perforation pitch of the first member was 65 ⁇ m and that of the third member was 130 ⁇ m.
  • Step 1006 of FIG. 13 shows a step of joining the surface on which the perforation of the first member is formed and the surface on which the perforation of the third member is formed.
  • the second member 2 is applied to the surface on which the perforation 4 of the first member 1 is formed, and the perforation 4 of the first member 1 is formed as shown in step 1006 of FIG.
  • the surface on which the perforation 4 of the third member 3 was formed was overlapped and pressurized so as to be in contact with the surface. Then, in an oven, it was heated at 70 ° C. for 90 minutes to cure the second member to prepare a bonded structure.
  • Table 3 shows the pulsed laser irradiation conditions for forming the perforation.
  • Example 6 A bonded structure was produced in the same manner as in Example 5 except that the conditions for pulsed laser irradiation were changed. Table 3 shows the pulsed laser irradiation conditions for forming the perforation.
  • the thermal shock test was carried out in one cycle of treating at ⁇ 40 ° C. for 30 minutes and then at 70 ° C. for 30 minutes, and the other conditions were carried out based on JIS C 60068-2-14.
  • the tensile test was performed using an electromechanical universal testing machine 5900 manufactured by Instron. Specifically, the test was performed at a tensile speed of 5 mm / min in the shearing direction, and when the second member was broken or when the second member was completely peeled off from the surface of the first member and / or the third member (joining). The test was terminated when the interface broke).
  • ⁇ and ⁇ represent the following states, respectively.
  • When the second member does not peel off from the surface of the first member and / or the third member, and the second member is destroyed.
  • X When the second member is peeled from the surface of the first member and / or the third member (the second member is peeled from the surface of the first member and / or the third member, and the second member is also destroyed. Including state).
  • One aspect of the present invention can be used for all products sealed in a metal housing using an adhesive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)
  • Laminated Bodies (AREA)
  • Connection Of Plates (AREA)
  • Standing Axle, Rod, Or Tube Structures Coupled By Welding, Adhesion, Or Deposition (AREA)

Abstract

耐熱衝撃性に優れた、高い接合強度を有する接合構造体を提供する。本発明の一実施形態に係る接合構造体は、表面に開口径が30~100μmである複数の穿孔が形成された金属材料である第1部材と、表面に開口径が30~100μmである独立した複数の穿孔が形成された、前記第1部材と同じもしくは異なる金属材料または熱可塑性樹脂である、第3部材と、前記第1部材の穿孔が形成された表面と前記第3部材の穿孔が形成された表面とを接合する硬化性樹脂である、第2部材と、を備える。

Description

接合構造体
 本発明は接合構造体およびその利用に関する。
 特許文献1には、第一成形体である金属成形体の接合面に対して、連続波レーザを使用して200mm/sec以上の照射速度でレーザ光を連続照射する工程、前工程においてレーザ光が照射された金属成形体の接合面に接着剤層を形成する工程、前工程において接着剤を塗布した第一成形体である金属成形体の接合面に第二成形体を接着する工程を有する、複合成形体の製造方法が開示されている。
日本国公開特許公報「特開2015-213961号公報」
 特許文献1に係る複合成形体の製造方法によると、接合面に対して平行方向に引っ張ったときの引張強度と、接合面に対して垂直方向に引っ張ったときの引張強度との両方が優れた複合成形体を提供することができるとされている。
 しかしながら、特許文献1に係る発明は、第二成形体には加工がされていないため、熱衝撃などによる膨張収縮力が加わった際に、第二成形体側の接合強度が十分得られない可能性がある。また、第一成形体の接合面を連続波レーザで粗面化していることで、第一成形体の接合面は不均一な形状である。それにより、熱衝撃などによる膨張収縮力が加わった際に、第一成形体は応力集中点を有するため、接合強度の向上には未だ改善の余地がある。
 したがって、本件発明者は、従来の方法では、耐油性および耐薬品性を有する接着剤を用いたとしても、耐熱衝撃性を有する接合強度の優れた複合成形体を得ることは、困難であることを見出した。
 本発明は、一側面では、このような実情を鑑みてなされたものであり、その目的は、耐熱衝撃性に優れた、高い接合強度を示す接合構造体を提供することである。
 上述した課題を解決するために、本発明の一側面に係る接合構造体は、表面に開口径が30~100μmである複数の穿孔が形成された金属材料である第1部材と、表面に開口径が30~100μmである独立した複数の穿孔が形成された、前記第1部材と同じもしくは異なる金属材料または熱可塑性樹脂である、第3部材と、前記第1部材の穿孔が形成された表面と前記第3部材の穿孔が形成された表面とを接合する硬化性樹脂である、第2部材と、を備える。
 本発明の一態様によれば、耐熱衝撃性に優れた、高い接合強度を有する接合構造体を提供することができる。
図1は、実施形態に係る接合構造体の断面の一例を模式的に例示する。 図2は、実施形態に係る接合構造体の断面の一例を模式的に例示する。 図3は、実施形態に係る接合構造体の断面の一例を模式的に例示する。 図4は、実施形態に係る接合構造体の断面の一例を模式的に例示する。 図5は、実施形態に係る接合構造体の断面の一例を模式的に例示する。 図6は、実施形態に係る接合構造体の断面の一例を模式的に例示する。 図7は、実施形態に係る接合構造体の断面の一例を模式的に例示する。 図8は、実施形態に係る接合構造体の断面の一例を模式的に例示する。 図9は、実施形態に係る接合構造体の断面の一例を模式的に例示する。 図10は、実施形態に係る接合構造体の断面の一例を模式的に例示する。 図11は、実施例1における接合構造体の製造工程を模式的に表す。 図12は、比較例1における接合構造体の製造工程を模式的に表す。 図13は、実施例5における接合構造体の製造工程を模式的に表す。 図14は、比較例1における接合構造体の断面を模式的に表す。 図15は、比較例2における接合構造体の断面を模式的に表す。
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。
 §1 適用例
 まず、図1を用いて、本発明の一態様に係る接合構造体の概要を説明する。図1は、実施形態に係る接合構造体の断面の一例を模式的に例示する。
 図1では、表面に開口径が30~100μmである複数の穿孔が形成された金属材料である第1部材1と、表面に開口径が30~100μmである複数の穿孔が形成された、前記第1部材と同じもしくは異なる金属材料または熱可塑性樹脂である、第3部材3と、前記第1部材の穿孔が形成された表面と前記第3部材の穿孔が形成された表面とを接合する硬化性樹脂である、第2部材2と、を備える接合構造体が例示されている。換言すれば、第1部材1と第3部材3とは、第2部材2を介して接合されている。なお、図1では、穿孔の深さ方向に平行な断面が示されている。
 第1部材1および第3部材3に形成された穿孔内に硬化性樹脂である第2部材2が充填され、硬化するため、物理的に強固なアンカー効果が得られる。これにより、耐熱衝撃性に優れた、高い接合強度を示す接合構造体を得ることができる。また、第1部材1および第3部材3の表面に穿孔を形成する表面加工を行うことにより、表面の不純物が除去され、接着強度を向上することができる。また、第1部材1および第3部材3の表面に複数の穿孔が形成されていることにより、接合部に係る応力が分散し、応力集中を回避した接合構造体を提供することができる。
 なお、硬化性樹脂としては、金属には接着しやすいが樹脂には接着しづらい接着剤も存在する。そのため、第1部材および第3部材が異なる材料である場合、化学的な結合のみによる接着では、接着剤の選定に制約が生じ得る。しかし、前記接合構造体では、前記アンカー効果による物理的な結合をさらに有することで、接着剤の選択肢が広がり、耐油性および耐薬品性を有する接着剤を選択することが可能となる。結果として、耐油性および耐薬品性を有し、かつ耐熱衝撃性に優れた、高い接合強度を示す接合構造体を得ることができる。
 §2構成例
 <第1部材>
 前記第1部材は、表面に開口径が30~100μmである複数の穿孔が形成された金属材料である。前記金属材料の一例としては、鉄系金属、ステンレス系金属、銅系金属、アルミ系金属、マグネシウム系金属、および、それらの合金が挙げられる。また、金属材料は、金属成形体であってもよく、亜鉛ダイカスト、アルミダイカスト、粉末冶金などであってもよい。
 <第3部材>
 前記第3部材は、表面に開口径が30~100μmである複数の穿孔が形成された前記第1部材と同じもしくは異なる金属材料または熱可塑性樹脂である。前記第3部材として用いられる金属材料の一例としては、第1部材で用いられる金属材料で例示した金属材料が挙げられる。第3部材は、第1部材と同じ金属材料であってもよいし、異なる金属材料であってもよい。
 前記熱可塑性樹脂の一例としては、PVC(ポリ塩化ビニル)、PS(ポリスチレン)、AS(アクリロニトリル・スチレン共重合体)、ABS(アクリロニトリル・ブタジエン・スチレン共重合体)、PMMA(ポリメチルメタクリレート)、PE(ポリエチレン)、PP(ポリプロピレン)、PC(ポリカーボネート)、m-PPE(変性ポリフェニレンエーテル)、PA6(ポリアミド6)、PA66(ポリアミド66)、POM(ポリアセタール)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PSF(ポリサルホン)、PAR(ポリアリレート)、PEI(ポリエーテルイミド)、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルホン)、PEEK(ポリエーテルエーテルケトン)、PAI(ポリアミドイミド)、LCP(液晶ポリマー)、PVDC(ポリ塩化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、PCTFE(ポリクロロトリフルオロエチレン)、および、PVDF(ポリフッ化ビニリデン)が挙げられる。また、前記熱可塑性樹脂は、TPE(熱可塑性エラストマ)であってもよく、TPEの一例としては、TPO(オレフィン系)、TPS(スチレン系)、TPEE(エステル系)、TPU(ウレタン系)、TPA(ナイロン系)、および、TPVC(塩化ビニル系)が挙げられる。
 <第2部材>
 前記第2部材は、前記第1部材の穿孔が形成された表面と前記第3部材の穿孔が形成された表面とを接合する硬化性樹脂である。
 前記硬化性樹脂は反応性硬化性樹脂であってもよい。前記反応性硬化性樹脂としては、例えば、加熱により架橋構造を形成して硬化する熱硬化性樹脂、および光を照射することにより架橋構造を形成して硬化する光硬化性樹脂等が挙げられる。
 前記反応性硬化性樹脂の一例としては、エポキシ(EP)樹脂、ポリウレタン(PUR)樹脂、ユリアホルムアルデヒド(UF)樹脂、メラミンホルムアルデヒド(MF)樹脂、フェノールホルムアルデヒド(PF)樹脂、不飽和ポリエステル(UP)樹脂、およびシリコーン(SI)樹脂、アクリル樹脂が挙げられる。また、反応性硬化性樹脂は、繊維強化プラスチック(FRP)であってもよい。
 また、前記硬化性樹脂は、エポキシ樹脂であってもよい。耐油性、耐薬品性および耐熱衝撃性をバランスよく両立させる観点から、前記反応性硬化性樹脂は、エポキシ樹脂が好ましい。
 前記第2部材には、充填剤がさらに添加されていてもよい。前記充填剤の一例としては、無機系充填剤(ガラス繊維、無機塩類など)、金属系充填剤、有機系充填剤、および、炭素繊維などが挙げられる。
 前記硬化性樹脂の硬化前の粘度は、25℃において、好ましくは10,000~300,000mPa・s、より好ましくは25,000~90,000mPa・s、さらに好ましくは50,000~75,000mPa・sである。硬化性樹脂の硬化前の粘度が上記範囲内である場合、穿孔に硬化性樹脂が充填されやすいため、アンカー効果が発揮されやすく、接合強度が向上するという効果を奏する。前記粘度(mPa・s)は、例えば、25℃で、回転粘度計(ブルックフィールド計)(英弘精機社製)を用いることにより測定可能である。
 前記硬化性樹脂の硬化後のショアD硬度は、好ましくは30~90、より好ましくは50~90、さらに好ましくは70~90である。硬化性樹脂の硬化後のショアD硬度が上記範囲である場合、耐熱衝撃性に加え、耐油性および耐薬品性までも確保することができる。なお、ショアD硬度は、JISK6253に準拠して測定される。
 <穿孔>
 前記穿孔の開口径は、好ましくは30~100μmである。
 前記穿孔は、互いに独立している。つまり、穿孔が形成された表面に垂直な方向から見た場合に、穿孔の開口部が重畳しておらず、穿孔同士の境界線が明確である。よって、前記穿孔は、連続する溝とは異なる。前記穿孔が互いに独立していることにより、第1部材および第3部材の表面積が拡大する。これにより、第1部材および第3部材と、第2部材との接する面積が拡大されるため、物理的な接合強度が向上するという効果を奏する。
 前記穿孔の開口部の形状は、特に限定されず、例えば、円形であってもよく、多角形であってもよい。開口部の形状が円形であれば、穿孔を形成しやすい。また、例えば、前記穿孔の深さ方向に垂直な断面の径が、開口部から深さ方向に向かって一定であってもよく、開口部から深さ方向に向かって大きくなり、次いで小さくなってもよく、または開口部から深さ方向に向かって小さくなってもよい。好ましくは、前記穿孔の深さ方向に垂直な断面の径が、開口部から深さ方向に向かって大きくなり、次いで小さくなっている。換言すれば、穿孔の形状は、深さ方向にくびれを有することが好ましい。この構成により、第2部材がロックされる効果が発現する。すなわち、穿孔の深さ方向に平行な力が働いた場合、穿孔内部で硬化した第2部材が穿孔外部に引き出されづらくなり、物理的な接合強度が向上するという効果を奏する。穿孔の深さ方向に垂直な断面の径の、開口部から深さ方向に向かう変化は、曲線的であってもよく、直線的であってもよい。
 前記穿孔のピッチは、特に限定されず、穿孔の開口径、第1部材および第3部材の体積等に応じて、適宜変更することができる。ただし、前記穿孔のピッチの下限値は、穿孔が重畳しない距離とする。例えば、穿孔のピッチは、好ましくは50~200μm、より好ましくは50~150μm、さらに好ましくは50~80μmである。前記穿孔のピッチは、例えば、レーザ照射の照射間隔を制御することによって、調整可能である。
 穿孔の深さは、特に限定されず、穿孔の開口径、第1部材および第3部材の体積等に応じて、適宜変更することができる。例えば、穿孔の深さは、好ましくは30~100μmである。
 第1部材と第3部材における穿孔の形状は、同じであってもよい。例えば、上述の図1に示すように、開口部が円形であり、深さ方向に垂直な断面の径が、深さ方向に向かって曲線的に小さくなる形状の穿孔が形成された第1部材1と、第1部材1と同様に、開口部が円形であり、深さ方向に垂直な断面の径が、深さ方向に向かって曲線的に小さくなる形状の穿孔が形成された第3部材3とを、第2部材2を介して接合させてもよい。
 穿孔は、図2~10に示す形状であってもよい。図2~10は、それぞれ、実施形態に係る接合構造体の、穿孔の深さ方向に平行な断面の一例を模式的に示す。
 穿孔の形状は、図2に示すように、開口部が円形であり、深さ方向に垂直な断面の径が、深さ方向に向かって曲線的に大きくなり、次いで小さくなる形状であってもよく、図3に示すように円錐形状であってもよい。
 あるいは、第1部材と第3部材における穿孔の形状は、異なっていてもよい。例えば、図4に示すように、円錐形状の穿孔が形成された第1部材1と、開口部が円形であり、深さ方向に垂直な断面の径が、深さ方向に向かって曲線的に大きくなり、次いで小さくなる形状の穿孔が形成された第3部材3とを、第2部材2を介して接合させてもよい。
 また、第1部材および第3部材における穿孔のピッチは、同じであってもよく、互いに異なっていてもよい。例えば、図5に示すように、第1部材1と第3部材3の線膨張係数が概ね同じであるが、第1部材1の体積が、第3部材3の体積よりも大きい場合、第1部材1における穿孔のピッチが、第3部材3における穿孔のピッチよりも小さくてもよい。線膨張係数が近い材料同士の接着であっても、それらの材料の体積が異なれば、熱衝撃による膨張収縮量の差が大きくなり得る。上記構成によれば、熱衝撃による膨張収縮量の差を小さくすることができ、さらに耐油性、耐薬品性および耐熱衝撃性を両立した、接合構造体を得ることができる。
 また、第1部材および第3部材における穿孔の深さは、同じであってもよく、互いに異なっていてもよい。例えば、図6に示すように、第1部材1と第3部材3の線膨張係数が概ね同じであるが、第1部材1の体積が、第3部材3の体積よりも大きい場合、第1部材1における穿孔の深さが、第3部材3における穿孔の深さよりも深くてもよい。上記構成により、熱衝撃による膨張収縮量の差を小さくすることができ、さらに耐油性、耐薬品性および耐熱衝撃性を両立した、接合構造体を得ることができる。
 さらに、第1部材および第3部材における穿孔のピッチおよび穿孔の深さの両方が、第1部材と第3部材とで異なっていてもよい。例えば、図7に示すように、第1部材1の体積が、第3部材3の体積よりも大きい場合、第1部材1における穿孔のピッチが、第3部材3における穿孔のピッチよりも小さく、第1部材1における穿孔の深さが、第3部材3における穿孔の深さよりも深くてもよい。
 あるいは、図8に示すように、穿孔が形成された表面以外の面でも第1部材1および第3部材3が、第2部材2を介して接合していてもよい。また、図9に示すように、第1部材1に、第3部材3に加えて他の部材5が、第2部材2を介して接合していてもよい。この他の部材7の表面にも上述の穿孔が形成され得る。また、他の部材7は、第1部材または第3部材として例示された金属材料または熱可塑性樹脂であってもよい。さらに、図10に示すように、第3部材3が、第1部材1と接合している面とは別の面で、他の接着剤8を介して、他の部材7と接合していてもよい。第3部材3の第1部材1と接合している面とは別の面にも上述の穿孔が形成され得る。他の接着剤8は、第2部材として例示された硬化性樹脂であってもよい。
 <接合構造体の製造方法>
 前記接合構造体は、例えば、前記第2部材を介して、前記第1部材の穿孔が形成された表面と前記第3部材の穿孔が形成された表面とを接合する工程を含む製造方法によって製造され得る。
 前記穿孔は、レーザ照射によって形成されることが好ましい。前記穿孔を形成するためのレーザの種類としては、ファイバレーザ、YAGレーザ、YVOレーザ、半導体レーザ、炭酸ガスレーザ、エキシマレーザ等を選択することができ、レーザの波長を考慮すると、ファイバレーザ等が好ましい。
 例えば、第1部材の穿孔が形成された表面、第3部材の穿孔が形成された表面、またはその両方に、第2部材を塗布し、次いで第1部材の穿孔が形成された表面に、第3部材の穿孔が形成された表面が接するように重ね合せる。ここで、第1部材と第3部材とを重ね合せた領域を加圧してもよい。その後、第2部材を硬化させることにより、接合構造体を得ることができる。
 また、第2部材を塗布する前に紫外線照射等により、第2部材中のOH基が露出するように処理してもよい。あるいは、第2部材を塗布中および/または塗布した後に、加熱または真空引きを行ってもよい。これらの処理により、穿孔に第2部材が充填される際の表面張力が低減され、穿孔に第2部材が充填されやすくなる。第2部材の硬化の方法は、第2部材が十分に硬化すれば、特に限定されない。
 <接合構造体の利用>
 前記接合構造体は、例えば、スイッチ、光電センサおよび近接センサに利用することができる。
 一般的に、光電センサは、基板等の内部部品が、金属筐体によって封止された構造である。従来、金属筐体によって封止する場合、溶接するか、または表面を加工せずに接着剤によって接合していた。しかし、溶接では、基板等の内部部品が熱によりダメージを受けるおそれがあった。また、表面を加工せずに接着剤によって接合する方法では、はがれやすく、接合強度に改善の余地があった。また、スイッチ、光電センサ、および近接センサにおいて、金属同士の接合の他に、金属と樹脂の接合を必要とする部分があり、従来、金属と樹脂を直接的に接合していた。しかし、このような方法では、金属と樹脂とがはがれやすい傾向にある。
 前記接合構造体を備えるスイッチ、光電センサまたは近接センサでは、高い接合強度を有し、さらに内部部品の受ける熱ダメージが軽減され得る。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 〔まとめ〕
 本発明の一側面に係る接合構造体は、表面に開口径が30~100μmである複数の穿孔が形成された金属材料である第1部材と、表面に開口径が30~100μmである独立した複数の穿孔が形成された、前記第1部材と同じもしくは異なる金属材料または熱可塑性樹脂である、第3部材と、前記第1部材の穿孔が形成された表面と前記第3部材の穿孔が形成された表面とを接合する硬化性樹脂である、第2部材と、を備える。
 硬化性樹脂は、架橋反応により硬化し得る。上記構成では、穿孔が形成された表面同士に硬化性樹脂を塗布、硬化することで、硬化性樹脂が穿孔内に充填され、物理的に強固なアンカー効果が得られる。これにより、耐熱衝撃性に優れた、高い接合強度を示す接合構造体を得ることができる。また、表面に穿孔を形成する表面加工を行うことにより、部材の表面の不純物が除去され、接着強度を向上することができる。また、複数の穿孔が形成されていることにより、接合部に係る応力が分散し、応力集中を回避した接合構造体を提供することができる。前記穿孔の開口径は、金属材料の表面における穿孔の開口部の最大の径として測定することができる。
 上記一側面に係る接合構造体において、前記硬化性樹脂は、反応性硬化性樹脂であってよい。反応性硬化性樹脂は、外部からのエネルギーにより架橋構造を形成し、硬化し得る。当該構成により、溶接よりも低い温度で第1部材と第3部材とを接合することができ、接合構造体に含まれる部材への熱ダメージを軽減することができる。
 上記一側面に係る接合構造体において、前記反応性硬化性樹脂は、エポキシ樹脂であってよい。当該構成によれば、耐熱衝撃性に加え、耐油性および耐薬品性までも確保することができる。エポキシ樹脂は、少なくとも一つのエポキシ基を含有し得る。
 上記一側面に係る接合構造体において、前記硬化性樹脂の硬化前の粘度は、25℃において、25,000~90,000mPa・sであってもよい。当該構成によれば、穿孔に硬化性樹脂が充填されやすいため、アンカー効果が発揮されやすく、接合強度が向上するという効果を奏する。
 上記一側面に係る接合構造体において、前記硬化性樹脂の硬化後のショアD硬度は、30~90であってよい。当該構成によれば、耐熱衝撃性に加え、耐油性および耐薬品性までも確保することができる。
 上記一側面に係る接合構造体において、前記穿孔の深さ方向に垂直な断面の径が、開口部から深さ方向に向かって大きくなり、次いで小さくなってもよく、または開口部から深さ方向に向かって小さくなってもよい。当該構成によれば、アンカー効果が発揮されやすいため、耐熱衝撃性の安定性が確保される。
 上記一側面に係る接合構造体において、前記穿孔のピッチは50~200μmであってよい。ただし、穿孔のピッチの下限は穿孔が重畳しない距離とする。当該構成によれば、穿孔が規則的に並ぶため、接合部に係る応力が均一に分散し、応力集中を回避しやすい。前記穿孔のピッチは、穿孔の中心から、その穿孔に隣り合う穿孔の中心までの距離として測定することができる。
 本発明の一側面に係るスイッチは、前記接合構造体を備える。
 本発明の一側面に係る光電センサは、前記接合構造体を備える。
 本発明の一側面に係る近接センサは、前記接合構造体を備える。
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 〔実施例1〕
 図11は、実施例1における接合構造体の製造工程を表す図である。図11の工程1001は、第1部材1および第3部材3の表面に穿孔4を形成する工程を示す。第1部材1としてSUS304(50mm×25mm、厚み3mm)、第3部材3としてSUS304(50mm×25mm、厚み1mm)、第2部材2として熱硬化性エポキシ接着剤(硬化前の粘度 35,000mPa、ショアD硬度 80)を用いた。第1部材1の長手方向の一端から2mm×21mmの範囲、および第3部材3の長手方向の一端から5mm×21mmの範囲に、ファイバレーザマーカ MX-Z2000H(オムロン株式会社製)を用いてパルスレーザ照射を行うことにより、各部材の表面に複数の穿孔4を、穿孔のピッチが65μmとなるように形成した。
 図11の工程1002は、第1部材1の穿孔が形成された表面と、第3部材3の穿孔が形成された表面を接合する工程を示す。第1部材1の穿孔4が形成された表面に、第2部材2を塗布し、図11の工程1002に示すように、第1部材1の穿孔4が形成された表面に、第3部材3の穿孔4が形成された表面が接するように重ね合せて加圧した。次いで、オーブン内で、70℃で90分間加熱し、第2部材2を硬化させることで、接合構造体を作製した。穿孔を形成する際のパルスレーザ照射条件を表1に示す。実施例1の接合構造体は図1に示す構造であった。
 〔実施例2~4〕
 穿孔を形成する際のパルスレーザ照射条件をそれぞれ変更したこと以外は、実施例1と同じ方法で3つの接合構造体を作製した。穿孔を形成する際のパルスレーザ照射条件を表1に示す。実施例2~4の接合構造体は、それぞれ図2~4に示す構造であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
 〔比較例1〕
 図12は、比較例1における接合構造体の製造工程を表す図である。図12の工程1003は、第1部材1および第3部材3の表面に穿孔を形成する工程を示す。実施例1の穿孔形成に代わり、YAGレーザML-2150A(ミヤチテクノス製)を用いてレーザ照射を行い、図12の工程1003に示すように凹部5の幅が0.4mm、隣り合う凹部5の間の凸部6の幅が0.15mmとなるように、連続波加工によって部材の接合表面に凹凸形状を形成した。すなわち、溝形状を形成した。
 図2の工程1004は、第1部材の凹凸形状が形成された表面と、第3部材の凹凸形状が形成された表面を接合する工程を示す。
 第1部材1の凹凸形状が形成された表面に、第2部材2を塗布し、図12の工程1004に示すように、第1部材1の凹凸形状が形成された表面に、第3部材3の凹凸形状が形成された表面が接するように重ね合せて加圧した。次いで、オーブン内で、70℃で90分間加熱し、第2部材2を硬化させることで、接合構造体を作製した。レーザ照射の条件を表2に示す。比較例1の接合構造体は図14に示す構造であった。なお、図14は、凹部の深さ方向および凹部の長手方向に平行な断面を示す。
 〔比較例2〕
 実施例1の穿孔形成に代わり、サンドブラストにより表面処理したこと以外は、実施例1と同じ方法で接合構造体を作製した。サンドブラストの条件を表2に示す。ここで、サンドブラストは、表面粗さを表す中心線平均粗さ(Ra)が5~10μmとなる条件にて行った。比較例2の接合構造体は図15に示す構造であった。なお、図15は、凹部の深さ方向に平行な断面を示す。
Figure JPOXMLDOC01-appb-T000003
 〔実施例5〕
 図13は、実施例5における接合構造体の製造工程を表す図である。第1部材1としてSUS304(50mm×25mm、厚み3mm)、第3部材3としてガラスフィラーを30重量%含むPBT板(50mm×25mm、厚み3mm)、第2部材2として熱硬化性エポキシ接着剤(硬化前の粘度 35,000mPa、ショアD硬度 80)を用いた。ここで、第1部材の線膨張係数は、第2部材および第3部材の2分の1であった。
 第1部材1の長手方向の一端から2mm×21mmの範囲、および第3部材3の長手方向の一端から5mm×21mmの範囲に、ファイバレーザマーカ MX-Z2000H(オムロン株式会社製)を用いてパルスレーザ照射を行うことにより、各部材の表面に、第1部材では穿孔のピッチが65μmとなるように、第3部材では穿孔のピッチが130μmとなるように、複数の穿孔4を形成した。
 図13の工程1006は、第1部材の穿孔が形成された表面と、第3部材の穿孔が形成された表面を接合する工程を示す。実施例1と同様にして、第1部材1の穿孔4が形成された表面に、第2部材2を塗布し、図13の工程1006に示すように、第1部材1の穿孔4が形成された表面に、第3部材3の穿孔4が形成された表面が接するように重ね合せて加圧した。次いで、オーブン内で、70℃で90分間加熱し、第2部材を硬化させることで、接合構造体を作製した。穿孔を形成する際のパルスレーザ照射条件を表3に示す。
 〔実施例6〕
 パルスレーザ照射の条件を変更した以外は、実施例5と同じ方法で接合構造体を作製した。穿孔を形成する際のパルスレーザ照射条件を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 〔接合性評価〕
 上述の実施例1~6の接合構造体および比較例1~2の接合構造体を用いて、接合性評価を以下の方法で行った。
 熱衝撃試験前と熱衝撃試験100サイクル後に、得られた接合構造体の引張試験を行い、それによる接合部の破壊状態を評価した。ここで、熱衝撃試験は、-40℃で30分処理した後、70℃で30分処理することを1サイクルとし、その他の条件はJIS C 60068-2-14に基づき実施した。また、引張試験は、インストロン社製の電気機械式万能試験機5900を用いて行った。具体的には、せん断方向に引張速度5mm/minで試験を行い、第2部材の破断した時点、または第1部材および/または第3部材の表面から第2部材が完全に剥離した時点(接合界面が破断した時点)で、試験を終了した。
 結果を、表4に示す。表中、○および×は、それぞれ以下の状態を表す。
○:第1部材および/または第3部材の表面から第2部材が剥離せず、第2部材の破壊が生じた場合。
×:第1部材および/または第3部材の表面から第2部材が剥離した場合(第1部材および/または第3部材の表面から第2部材が剥離し、さらに第2部材の破壊も生じた状態を含む)。
Figure JPOXMLDOC01-appb-T000005
 実施例1~6の接合構造体は、熱衝撃試験前の引張試験および熱衝撃試験100サイクル後の引張試験のいずれにおいても、接合界面剥離は観察されなかった。
 一方、比較例1の接合構造体は、熱衝撃試験前の引張試験および熱衝撃試験100サイクル後の引張試験の両方において、接合界面剥離が観察された。比較例2の接合構造体は、熱衝撃試験前の引張試験において、接合界面剥離は観察されなかったが、熱衝撃試験100サイクル後の引張試験において、接合界面剥離が観察された。
 本発明の一態様は、接着剤を用いて金属筐体に封止される製品全般に利用することができる。
 1 第1部材
 2 第2部材
 3 第3部材
 4 穿孔

Claims (10)

  1.  表面に開口径が30~100μmである複数の穿孔が形成された金属材料である第1部材と、
     表面に開口径が30~100μmである複数の穿孔が形成された、前記第1部材と同じもしくは異なる金属材料または熱可塑性樹脂である、第3部材と、
     前記第1部材の穿孔が形成された表面と前記第3部材の穿孔が形成された表面とを接合する硬化性樹脂である、第2部材と、を備えた接合構造体。
  2.  前記硬化性樹脂が反応性硬化性樹脂である、請求項1に記載の接合構造体。
  3.  前記反応性硬化性樹脂がエポキシ樹脂である、請求項1または2に記載の接合構造体。
  4.  前記硬化性樹脂の硬化前の粘度は、25℃において、25,000~90,000mPa・sである、請求項1から3のいずれか1項に記載の接合構造体。
  5.  前記硬化性樹脂の硬化後のショアD硬度は、30~90である、請求項1から4のいずれか1項に記載の接合構造体。
  6.  前記穿孔の深さ方向に垂直な断面の径が、開口部から深さ方向に向かって大きくなり、次いで小さくなる、または開口部から深さ方向に小さくなる、請求項1から5のいずれか1項に記載の接合構造体。
  7.  前記穿孔のピッチの下限は穿孔が重畳しない距離であり、上限は200μmである、請求項1から6のいずれか1項に記載の接合構造体。
  8.  請求項1から7のいずれか1項に記載の接合構造体を備える、スイッチ。
  9.  請求項1から7のいずれか1項に記載の接合構造体を備える、光電センサ。
  10.  請求項1から7のいずれか1項に記載の接合構造体を備える、近接センサ。
PCT/JP2020/019853 2019-06-25 2020-05-20 接合構造体 WO2020261821A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217035159A KR102603133B1 (ko) 2019-06-25 2020-05-20 접합 구조체, 및 그 접합 구조체를 구비하는 스위치, 광전 센서 및 근접 센서
US17/609,792 US20220227094A1 (en) 2019-06-25 2020-05-20 Joint structure
CN202080033587.XA CN113840682B (zh) 2019-06-25 2020-05-20 接合结构体以及包括其的开关、光电传感器及近接传感器
EP20832345.1A EP3992473A4 (en) 2019-06-25 2020-05-20 ASSEMBLY STRUCTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-117718 2019-06-25
JP2019117718A JP7268500B2 (ja) 2019-06-25 2019-06-25 接合構造体

Publications (1)

Publication Number Publication Date
WO2020261821A1 true WO2020261821A1 (ja) 2020-12-30

Family

ID=74061390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019853 WO2020261821A1 (ja) 2019-06-25 2020-05-20 接合構造体

Country Status (6)

Country Link
US (1) US20220227094A1 (ja)
EP (1) EP3992473A4 (ja)
JP (1) JP7268500B2 (ja)
KR (1) KR102603133B1 (ja)
CN (1) CN113840682B (ja)
WO (1) WO2020261821A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024111272A1 (ja) * 2022-11-22 2024-05-30 ウシオ電機株式会社 金属メッキ部材の接合方法及び金属メッキ加工部材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153018A (ja) * 2002-10-30 2004-05-27 Omron Corp 近接センサの封止方法
JP2008087409A (ja) * 2006-10-04 2008-04-17 Fore Shot Industrial Corp アルミ合金筐体構造及びその製造方法
JP2010113938A (ja) * 2008-11-06 2010-05-20 Yamatake Corp 光電センサの筐体組立方法および光電センサ
WO2011071061A1 (ja) * 2009-12-11 2011-06-16 日本軽金属株式会社 アルミ・樹脂・銅複合品及びその製造方法並びに密閉型電池向け蓋部材
WO2015008771A1 (ja) * 2013-07-18 2015-01-22 ダイセルポリマー株式会社 複合成形体
WO2016133079A1 (ja) * 2015-02-19 2016-08-25 オムロン株式会社 接合構造体の製造方法および接合構造体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340750A (ja) * 1993-05-28 1994-12-13 Olympus Optical Co Ltd フッ素樹脂の接着構造
JP3253919B2 (ja) * 1997-05-19 2002-02-04 横浜ゴム株式会社 接着剤組成物
JPH11329182A (ja) * 1998-05-07 1999-11-30 Keyence Corp 絶縁導体を固定したケース及び絶縁導体とケースの固 定方法
DE10105893A1 (de) * 2001-02-09 2002-08-22 Bosch Gmbh Robert Verbundkörper und Verfahren zu dessen Herstellung
US7115324B1 (en) * 2003-08-29 2006-10-03 Alcoa Inc. Method of combining welding and adhesive bonding for joining metal components
WO2009093668A1 (ja) * 2008-01-22 2009-07-30 Taisei Plas Co., Ltd. 金属合金と被着材の接合体とその製造方法
JP5372469B2 (ja) * 2008-11-04 2013-12-18 大成プラス株式会社 金属合金積層材
US20110059290A1 (en) * 2009-09-08 2011-03-10 Honeywell International Inc. Bonded assemblies and methods for improving bond strength of a joint
JP6321621B2 (ja) * 2013-02-28 2018-05-09 ニチアス株式会社 フッ素樹脂の接合部を含む物品及びその製造方法
US9049409B2 (en) * 2013-06-14 2015-06-02 Lg Electronics Inc. Mobile terminal
EP2962846B1 (de) * 2014-07-02 2019-08-28 Schmitz Cargobull AG Verfahren zum aktivieren einer oberfläche, verfahren zum herstellen einer klebverbindung und bauteilverbund
WO2016027775A1 (ja) * 2014-08-22 2016-02-25 オムロン株式会社 接合構造体および接合構造体の製造方法
JP6455021B2 (ja) * 2014-08-22 2019-01-23 オムロン株式会社 接合構造体の製造方法
US9764383B2 (en) * 2014-10-02 2017-09-19 Continental Automotive Systems, Inc. Laser trimming surface cleaning for adhesion to cast metals
JP6451370B2 (ja) * 2015-02-09 2019-01-16 オムロン株式会社 接合構造体の製造方法
KR102507947B1 (ko) * 2015-10-15 2023-03-09 삼성전자주식회사 케이스 및 이를 포함하는 전자 장치
US20200189210A1 (en) * 2018-12-14 2020-06-18 United Technologies Corporation Laser surface texture for adhesive bonding of metals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153018A (ja) * 2002-10-30 2004-05-27 Omron Corp 近接センサの封止方法
JP2008087409A (ja) * 2006-10-04 2008-04-17 Fore Shot Industrial Corp アルミ合金筐体構造及びその製造方法
JP2010113938A (ja) * 2008-11-06 2010-05-20 Yamatake Corp 光電センサの筐体組立方法および光電センサ
WO2011071061A1 (ja) * 2009-12-11 2011-06-16 日本軽金属株式会社 アルミ・樹脂・銅複合品及びその製造方法並びに密閉型電池向け蓋部材
WO2015008771A1 (ja) * 2013-07-18 2015-01-22 ダイセルポリマー株式会社 複合成形体
JP2015213961A (ja) 2013-07-18 2015-12-03 ダイセルポリマー株式会社 複合成形体の製造方法
WO2016133079A1 (ja) * 2015-02-19 2016-08-25 オムロン株式会社 接合構造体の製造方法および接合構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992473A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024111272A1 (ja) * 2022-11-22 2024-05-30 ウシオ電機株式会社 金属メッキ部材の接合方法及び金属メッキ加工部材

Also Published As

Publication number Publication date
US20220227094A1 (en) 2022-07-21
EP3992473A4 (en) 2023-07-26
EP3992473A1 (en) 2022-05-04
JP2021003819A (ja) 2021-01-14
KR20210143303A (ko) 2021-11-26
JP7268500B2 (ja) 2023-05-08
CN113840682A (zh) 2021-12-24
CN113840682B (zh) 2024-04-05
KR102603133B1 (ko) 2023-11-16

Similar Documents

Publication Publication Date Title
JP6451370B2 (ja) 接合構造体の製造方法
EP3078480B1 (en) Method for connecting a surface-structured workpiece and a plastic workpiece
TWI708650B (zh) 接合構造體以及接合構造體的製造方法
TWI659845B (zh) 接合構造體的製造方法以及接合構造體
JP6814165B2 (ja) 第1の物体に第2の物体を固定する方法
JP7060904B2 (ja) 熱可塑性樹脂と金属の接合方法
WO2016114174A1 (ja) 接合構造体の製造方法および接合構造体
WO2020261821A1 (ja) 接合構造体
WO2016133079A1 (ja) 接合構造体の製造方法および接合構造体
AU2016289742B2 (en) Bonding objects together
JP2009241569A (ja) 管状接合複合体
WO2020230198A1 (ja) 接合用金属部材及び接合体
CN110612195A (zh) 将物体结合在一起
EP3385551B1 (en) Adaptor for securing objects to each other
JP6492997B2 (ja) 接着構造体
CN113165275A (zh) 用于连接热塑性复合物质部件的方法
US20190240917A1 (en) Method of activating adhesives
WO2023063272A1 (ja) 金属部材及び金属樹脂接合体並びにそれらの製造方法
WO2023063271A1 (ja) 金属部材及び金属樹脂接合体並びにそれらの製造方法
WO2016140052A1 (ja) 金属部材のレーザ加工方法およびその方法を用いて製造される接合構造体
Caltagirone Improvements of fiber reinforced thermoplastic composite bonds: thick joint failure model, shape memory alloy reinforcements, and in-situ x-ray characterizations
TW202235193A (zh) 接合體的製造方法及接合體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217035159

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020832345

Country of ref document: EP

Effective date: 20220125