WO2023063272A1 - 金属部材及び金属樹脂接合体並びにそれらの製造方法 - Google Patents

金属部材及び金属樹脂接合体並びにそれらの製造方法 Download PDF

Info

Publication number
WO2023063272A1
WO2023063272A1 PCT/JP2022/037711 JP2022037711W WO2023063272A1 WO 2023063272 A1 WO2023063272 A1 WO 2023063272A1 JP 2022037711 W JP2022037711 W JP 2022037711W WO 2023063272 A1 WO2023063272 A1 WO 2023063272A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
resin
groove
metal member
inner diameter
Prior art date
Application number
PCT/JP2022/037711
Other languages
English (en)
French (fr)
Inventor
大樹 池田
正憲 遠藤
祐介 錦織
優太 遠藤
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Publication of WO2023063272A1 publication Critical patent/WO2023063272A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • C23F4/02Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00 by evaporation

Definitions

  • the present invention relates to a metal member having a specific joint surface, a joined body of the metal member and a resin molded body, and methods for manufacturing them.
  • a metal-resin bonded body is widely used in which a metal material such as an aluminum base material made of aluminum or an aluminum alloy, which is lighter than other metals, and a resin molding that has high insulation performance, is lightweight, and is inexpensive, are integrally bonded. and its use is expanding.
  • Patent Documents 1 to 3 For example, according to the present inventors, by performing a specific treatment on the surface of a metal substrate, an oxygen-containing film containing oxygen is formed on the surface of the metal substrate, and through this formed oxygen-containing film, Accordingly, techniques for joining resin molded bodies have been proposed (for example, Patent Documents 1 to 3). These techniques are less likely to cause corrosion of metal parts and equipment, which has been a problem with surface treatment techniques proposed before, or pollute the surrounding environment. Airtightness was obtained. However, in the case of wet treatment for forming a hydrated oxide film or a zinc-containing film to form an oxygen-containing film, the bonding strength of the resin bonded body is insufficient because the macro unevenness is not formed. There was room for further improvement in processing methods.
  • Patent Document 5 when manufacturing a composite molded body composed of a metal molded body and a resin molded body, a marking consisting of a straight line and/or a curved line is formed in one direction or a different direction on the joint surface of the metal molded body.
  • a marking consisting of a straight line and/or a curved line is formed in one direction or a different direction on the joint surface of the metal molded body.
  • Patent Document 7 discloses a method for increasing the bond strength. Furthermore, in Patent Document 7, a step of laser scanning a metal surface in one scanning direction and a step of laser scanning in a crossing scanning direction are performed to form a joint portion for joining a resin to a metal surface. Laser processing conditions for forming the are disclosed. As a result, while the joint portion has an uneven shape, a part thereof is preferably formed as a "bridge shape" in which the convex portions are connected to form an arch and a hole is formed at the bottom, or It is said that the anchoring effect between the different materials at the junction can be enhanced by forming the protrusions in the shape of a mushroom or a cedar tree by "overhanging" the protrusions.
  • Patent Document 4 there is a non-laser-irradiated portion sandwiched between projections made of burrs that constitute a projection group.
  • the presence of such non-laser-irradiated portions may cause a decrease in bonding strength, and at the same time, may make it impossible to ensure airtightness.
  • Patent Document 5 is a method for increasing the bonding strength in a desired direction as described above, but does not consider securing airtightness.
  • laser scanning is performed multiple times for the same marking for the purpose of further increasing the bonding strength.
  • Patent Document 6 uses a laser scanning method that can obtain a high bonding strength with respect to the bonding surface, but does not consider securing airtightness. Furthermore, in Patent Document 7, since it is necessary to perform laser scanning in two crossing directions, there is room for improvement in that the processing time is too long. Voids may develop between the metal buildup that accompanies irradiation, and these voids may reduce hermeticity.
  • An object of the present invention is to provide a metal-resin bonded body that has a high bonding strength and ensures sufficient airtightness, a metal member for obtaining the metal-resin bonded body, and a method for manufacturing such a metal-resin bonded body and metal member. That is.
  • the gist of the present invention is as follows.
  • the inner diameter (D 0 ) of the opening of the groove is 20 ⁇ m to 200 ⁇ m
  • the groove depth (L) is 20 ⁇ m to 200 ⁇ m
  • the aspect ratio (L/D 0 ) of the depth (L) to the inner diameter (D 0 ) of the opening of the groove is 0.1 to 5
  • a metal member wherein a diameter (D b ) of a perfect circle inscribed in the bottom portion of the groove and an inner diameter (D 0 ) of the opening satisfy a relationship of D 0 /10 ⁇ D b .
  • the resin molding contains a thermoplastic resin or a thermosetting resin.
  • a laser irradiation step of forming grooves on the surface of the metal substrate by irradiating the surface of the metal substrate with a laser beam A metal member manufacturing method for manufacturing a metal member in which the groove is formed on the surface of the metal base material,
  • the inner diameter (D 0 ) of the opening of the groove is 20 ⁇ m to 200 ⁇ m
  • the depth (L) of the groove is 20 ⁇ m to 200 ⁇ m
  • the aspect ratio (L/D 0 ) of the depth (L) to the inner diameter (D 0 ) of the opening of the groove is 0.1 to 5,
  • a method for manufacturing a metal member wherein the diameter (D b ) of the perfect circle inscribed in the bottom surface of the groove and the inner diameter (D 0 ) of the opening satisfy a relationship of D 0 /10 ⁇ D b . . [7]
  • the description of [6] characterized in that the entire surface of the surface of the metal member sandwiched between the grooves adjacent to each other is covered with a sputtered material derived from the metal base material due to the irradiation of the laser beam.
  • [8] The method for producing a metal member according to [6] or [7], wherein the metal is aluminum, copper, iron, or an alloy containing these metals.
  • the method for producing a metal-resin bonded body according to [9] wherein in the resin molding step, molding is performed on the metal member using a resin composition containing a thermoplastic resin or a thermosetting resin. .
  • the metal member and the metal-resin bonded body of the present invention can improve the bonding strength and airtightness between the metal member and the resin molding.
  • FIG. 1 is for explaining the procedure such as how to obtain the reference line L1 in specifying the shape of the groove. Also a picture to show.
  • FIG. 2 is a partially enlarged photograph of FIG. 1 for explaining a method of obtaining the inner diameter (D 0 ) of the opening and the depth (L) of the groove.
  • FIG. 3 is a partially enlarged photograph of FIG. 1 for explaining a method of determining the diameter (D b ) of the perfect circle inscribed in the bottom surface of the groove.
  • FIG. 4 is another photograph for explaining the method of obtaining the diameter (D b ) of the perfect circle inscribed in the bottom surface of the groove.
  • FIG. 5 is a schematic diagram showing the relationship between the beam diameter of laser light and the irradiation interval.
  • FIG. 6 is an explanatory diagram schematically showing the relationship between the scanning speed V of the laser light, the frequency K of the laser light, and the beam diameter d of the laser light when forming grooves.
  • FIG. 7 is a diagram for explaining an outline of bonding strength evaluation (1) (shear test).
  • FIG. 8 is a diagram for explaining an outline of bonding strength evaluation (2) (shear test).
  • FIG. 9 is a diagram for explaining an overview of airtightness evaluation of a metal-resin joined body.
  • FIG. 10 is a diagram for explaining an overview of airtightness evaluation of a metal-resin-metal bonded body.
  • FIG. 11 is a diagram showing an outline of a metal-resin bonded body for bonding strength evaluation.
  • FIG. 12 is a diagram showing an outline of a metal-resin joined body for evaluation of airtightness.
  • FIG. 13 is also a photograph showing the observation result of the SEM cross section of the metal-resin joined body obtained in Example 2.
  • FIG. 14 is also a photograph showing the observation result of the SEM cross section of the metal-resin joined body obtained in Example 3.
  • FIG. 15 is also a photograph showing the observation result of the SEM cross section of the metal-resin joined body obtained in Example 4.
  • FIG. FIG. 16 is also a photograph showing the observation result of the SEM cross section of the metal-resin joined body obtained in Example 5.
  • FIG. 17 is a diagram for showing an outline of a metal-resin-metal joined body for joint strength evaluation according to Example 6.
  • FIG. 18 is a diagram for showing an outline of a metal-resin-metal bonded body for airtightness evaluation according to Example 6.
  • FIG. 19 is also a photograph showing the observation result of the SEM cross section of the metal-resin joined body obtained in Example 6.
  • FIG. 20 is also a photograph showing the observation result of the SEM cross section of the metal-resin joined body obtained in Example 7.
  • FIG. FIG. 21 is also a photograph showing the observation result of the SEM cross section of the metal-resin joined body obtained in Example 8.
  • FIG. 22 is also a photograph showing the observation result of the SEM cross section of the metal-resin joined body obtained in Comparative Example 1.
  • FIG. 23 is a partially enlarged photograph of FIG. 24 is also a photograph showing the observation result of the SEM cross section of the metal-resin joined body obtained in Comparative Example 2.
  • FIG. 25 is also a photograph showing the observation result of the SEM cross section of the metal-resin joined body obtained in Comparative Example 3.
  • the metal member and the metal-resin bonded body of the present invention will be described in detail below together with the manufacturing method thereof. Some or all of the constituent elements of the present invention described below can be combined as appropriate.
  • the metal member of the present invention includes a metal substrate made of metal and grooves formed on the surface of the metal substrate, and this metal member can be used by bonding an object to be bonded to its surface.
  • a metal-resin joined body of the present invention includes a metal member and a resin molding on the surface of the metal member.
  • a copper base material made of copper or a copper alloy an iron base material made of iron or an iron alloy, and an aluminum base material made of aluminum or an aluminum alloy.
  • the material is not limited, and can be determined based on the application of the metal-resin bonded body formed using the same and various physical properties such as strength, corrosion resistance, workability, etc. required for the application.
  • processed materials obtained by appropriately processing into a desired shape, combined materials obtained by appropriately combining these processed materials, and the like are also included. Also, although it depends on the intended use, the thickness is usually about 0.3 mm to 10 mm.
  • an oxide film is formed on the surface of a metal substrate.
  • the oxide film may be a natural oxide film that is naturally formed in the atmosphere, or an anodized film that is formed by anodization. Alternatively, it may be a rolled oxide film formed by hot rolling.
  • the object to be joined with the metal member is not particularly limited as long as it is a material that can be joined with the metal member.
  • the object to be joined is preferably made of a material that can be joined at a temperature lower than the melting point of the metal base material forming the metal member.
  • Such an object to be joined is preferably a resin molding made of a resin material. The resin molding will be described later.
  • a metal member has a bonding surface for bonding an object to be bonded to the metal member.
  • this joint surface only a part of one surface of the metal base material, all of one surface, or a part or all of both surfaces may be used. It is sufficient that a joint surface is formed. Also, the shape, size, arrangement, etc. of the joint surfaces are not particularly limited. The same is true in the case of combined materials and the like.
  • the term “bonding surface” refers to a region where bonding between a metal base material and a resin is planned. shall refer to the area On the other hand, the area where the metal base material and the resin are bonded together is called a "bonded portion" for distinction.
  • a groove is formed in the joint surface of the metal member.
  • the groove may be formed partially or entirely on the joint surface, but is preferably formed on the entire joint surface in order to ensure sufficient joint strength and airtightness with the object to be joined.
  • the "whole surface of the joint surface” is not necessarily limited to only 100% of the surface area of the joint surface, and does not exclude the case where the surface where grooves are not formed exists like a very small spot. do not have.
  • 90% or more, more preferably 95% or more of the joint surfaces are grooved.
  • the grooves can be formed by subjecting the surface of the metal substrate to laser processing, which will be described later.
  • This groove has an uneven shape of ⁇ m order size, and the opening of the groove, the depth of the groove, the inner diameter at an arbitrary position of the groove, and the shape of the groove each meet predetermined conditions. make it fulfill Such groove shape conditions can be determined by the procedure shown in FIGS.
  • the inner diameter (D 0 ) of the opening of the groove and the depth (L) of the groove is calculated from the plurality of uneven portions included in this cross-sectional photograph.
  • FIGS. 1 and 2 it is determined by providing the following lines in the cross-sectional photographs.
  • FIG. 1 in the cross-sectional photograph described above, for 10 arbitrarily selected continuous recesses (grooves), the deepest point among the deepest points in each of the recesses.
  • a reference line L1 is drawn that passes through the position or through a position lower than the deepest of the deepest points and through the position where the sum of the distances from the positions of the respective deepest points of the recesses is the smallest.
  • FIG. 1 in the cross-sectional photograph described above, for 10 arbitrarily selected continuous recesses (grooves), the deepest point among the deepest points in each of the recesses.
  • a reference line L1 is drawn that passes through the position or through a position lower than the deepest of the deepest points and through the position where the sum of the distances from the positions of the respective deepest points of the recesses is the smallest.
  • a reference line L2 is drawn toward the projection so as to be horizontal with the previous reference line L1.
  • the position where the reference line L2 first intersects the surface of the higher projection is defined as the intersection point Pc1
  • the distance between this Pc1 and the previous Pt1 is defined as the inner diameter D0 of the opening of the groove.
  • a reference line L3 is drawn in a direction perpendicular to the reference line L2 from the reference line L2 toward the deepest point Pb1, which is the deepest position in the recess, and the reference line L3 and the previous reference line L2 are drawn.
  • a point at which the reference line L3 intersects is defined as an intersection point Pc2.
  • the distance between the deepest point Pb1 and the intersection point Pc2 is defined as the depth L of the groove.
  • the inner diameter at a first position at an arbitrary depth is D1
  • the inner diameter at an arbitrary second position deeper than the first position is D2 .
  • the recesses (grooves) described in FIG. 2 have the deepest point among 10 arbitrarily selected continuous recesses (grooves), and the reference line L1 passes through the deepest point. It is an enlarged view of the concave portion (groove) of ⁇ 8> shown in FIG.
  • FIG. 3 is an enlarged view of the concave portion ⁇ 8> shown in FIG. 1, as in FIG.
  • a reference line L4 passing through the deepest point Pb1 determined by the method described above and parallel to the reference line L1 is drawn. Note that in the concave portion ⁇ 8> described with reference to FIG. 3, the reference line L1 and the reference line L4 overlap.
  • a perfect circle whose lower end is in contact with the reference line L4, whose left and right ends are in contact with adjacent convex portions (in contact with the wall surface of the groove), and whose diameter is 1 ⁇ m or more, is the smallest perfect circle. set. The diameter of this perfect circle is defined as Db .
  • a reference line L4 passing through the deepest point Pb1 obtained by the above method and parallel to the reference line L1 is drawn.
  • a perfect circle is set and its diameter is Db .
  • the diameter of the perfect circle D b is the diameter D 0 of the opening of the groove.
  • the bottom portion refers to a portion of the recess (groove) where the reference line L4 passing through the deepest point Pb1 exists. The bottom portion does not necessarily require a flat surface at the bottom of the recess (groove).
  • the inner diameter (D 0 ) of the opening of the groove thus determined is 20 ⁇ m to 200 ⁇ m, preferably 40 ⁇ m to 180 ⁇ m, more preferably 60 ⁇ m to 150 ⁇ m, still more preferably 80 ⁇ m to 120 ⁇ m.
  • the inner diameter (D 0 ) of the opening is equal to or greater than the above lower limit, the groove corresponding to the recess is widened, so that the resin to be bonded easily enters the recess, and the aspect ratio described later is easily satisfied.
  • the inner diameter (D 0 ) of the opening is equal to or less than the above upper limit, the fitting effect due to the entry of the resin is likely to be exhibited, and the aspect ratio described later is likely to be satisfied.
  • the depth (L) is 20 ⁇ m to 200 ⁇ m, preferably 40 ⁇ m to 180 ⁇ m, more preferably 60 ⁇ m to 150 ⁇ m, still more preferably 80 ⁇ m to 120 ⁇ m.
  • the depth (L) is equal to or greater than the above lower limit, the depth is sufficient, so that the fitting effect due to penetration of the resin is likely to be exhibited, and the aspect ratio, which will be described later, is likely to be satisfied.
  • the depth (L) value and the opening diameter (D) are both increased, which prevents the formation of a coarse uneven structure, thereby improving the resin. It becomes easy to exhibit the fitting effect by entrapment, and it becomes easy to satisfy the below-mentioned aspect ratio.
  • the aspect ratio (L/D 0 ), which indicates the ratio of the depth (L) of the groove to the inner diameter (D 0 ) of the opening of the groove, is 0.1 to 5, preferably 0. 0.5 to 4, more preferably 0.7 to 3, more preferably 1 to 2.
  • L/D 0 exceeds the above lower limit, the size of the groove is such that the depth is not too small relative to the inner diameter of the opening of the groove, and the groove has an appropriate depth.
  • the metal member and the resin are in a shape that facilitates interaction due to mechanical bonding (anchor effect). is easier to improve.
  • L/D 0 exceeds the above lower limit, the surface area per unit area of the hydroxyl group-containing film that interacts with the resin as described later increases, and the amount of hydroxyl groups that interact with the resin molded body increases. This makes it easier to improve the airtightness.
  • the aspect ratio is less than the above upper limit, the depth is not too large relative to the inner diameter of the opening of the groove, and the width of the groove extends from the opening to the bottom surface. It tends to become a substantially triangular shape that gradually narrows.
  • the resin flows into the deep part of the groove, suppressing the occurrence of air gaps between the groove and the resin, and by maintaining chemical bonding with the resin even in the deep part of the groove, it is easy to improve airtightness.
  • the aspect ratio is less than the above upper limit, the protrusions of the grooves are extremely tapered to prevent the mechanical strength from being easily broken, thereby improving the bonding strength.
  • the first inner diameter (D 1 ) at a first position with an arbitrary depth from the opening to the bottom of the groove, and the second inner diameter at an arbitrary second position deeper than this first position (D 2 ) satisfies the relationship of D 2 /D 1 ⁇ 2.5, preferably D 2 /D 1 ⁇ 2, more preferably D 2 /D 1 ⁇ 1.7, still more preferably D 2 /D 1 ⁇ 1.5.
  • the lower limit of D 2 /D 1 is not particularly limited, it is preferable to satisfy the relationship D 2 /D 1 ⁇ 0.5.
  • the relationship between D 1 and D 2 is obtained when the first inner diameter (D 1 ) and the second inner diameter (D 2 ) at two arbitrary points with different groove depths in the same groove are taken. , means that the ratio of D 2 /D 1 that takes the maximum value satisfies the above relationship. In other words, it means that the first inner diameter (D 1 ) at the shallow position is not too small relative to the second inner diameter (D 2 ) at the deep position.
  • D 2 /D 1 exceeds the above upper limit, there are places where the width is locally excessively narrowed from the opening of the groove toward the bottom, resulting in The inflow of the resin is stopped, the groove is closed, and the resin becomes difficult to flow into the vicinity of the bottom surface.
  • D 2 /D 1 is less than the above upper limit, it becomes easier for the resin to flow deep into the groove. Therefore, it is possible to suppress the formation of a gap between the metal base material and the resin in the middle of the groove, and to maintain the chemical bonding with the resin even in the deep part of the groove, thereby easily improving airtightness.
  • the inflow of the resin does not stop in the middle of the groove, and interaction between the metal base material and the resin occurs throughout the groove from the opening to the bottom surface, thereby making it easier to increase the bonding strength.
  • the diameter (D b ) of the perfect circle inscribed in the bottom surface of the groove and the inner diameter (D 0 ) of the opening of the groove are D 0 /10 ⁇ D b (the parenthetically modified formula is , it satisfies the relationship D 0 /D b ⁇ 10 (same below).
  • the relationship between the diameter (D b ) of the perfect circle inscribed in the bottom surface of the groove and the inner diameter (D 0 ) of the opening of the groove is preferably D 0 /8 ⁇ D b (D 0 /D b ⁇ 8).
  • D 0 /D b is not particularly limited, it is preferable to satisfy the relationship of D 0 /D b ⁇ 1. This relationship indicates that the width near the bottom portion located at the deepest portion of the groove is not too small relative to the opening.
  • the width of the groove near the bottom surface is excessively narrowed, so that the resin that has flowed in from the opening is less likely to flow to the bottom surface.
  • D 0 /D b is less than the above upper limit, it becomes easier for the resin to flow from the opening to the bottom of the groove.
  • airtightness is improved by suppressing the formation of gaps between the metal base material and the resin near the bottom surface, and by maintaining chemical bonding between the metal base material and the resin even at the deepest part of the groove. easier to do.
  • an interaction between the metal base material and the resin also occurs near the bottom surface, which facilitates increasing the bonding strength.
  • the inner diameter (D 0 ) of the opening of the groove and the depth (L) of the groove each show a predetermined value, and the aspect ratio (L/D 0 ) of these shows a predetermined value, and A first inner diameter (D 1 ) at a first position at an arbitrary depth of the groove and a second inner diameter (D 2 ) at an arbitrary second position deeper than this have a relationship of D 2 /D 1 ⁇ 2.5.
  • the diameter (D b ) of the perfect circle inscribed in the bottom surface of the groove and the inner diameter (D 0 ) of the opening of the groove must satisfy the relationship D 0 /10 ⁇ D b .
  • each of these conditions was determined by observing the joint cross section of the metal member or the metal-resin bonded body using an SEM, and observing at least 10 grooves (concave portions) and 11 convex portions alternately.
  • the surface roughness Rz (maximum height) of the joint surface is preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, and even more preferably 90 ⁇ m or less. Also, the surface roughness Rz (maximum height) of the joint surface is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and still more preferably 30 ⁇ m or more.
  • the surface roughness Rz of the bonding surface is equal to or less than the above upper limit, the resin flows into the deep part of the groove, suppressing the formation of gaps between the groove and the resin, and chemically interacting with the resin even in the deep part of the groove. By maintaining the bonding, the airtightness can be easily improved.
  • the metal member and the resin when the surface roughness Rz of the joint surface is equal to or less than the above lower limit value, the metal member and the resin have a shape that facilitates the interaction due to mechanical bonding between the metal member and the resin when the resin flows. and the resin are prevented from peeling off at the interface, and the bonding strength is likely to be improved.
  • the surface roughness Rz represents the maximum height conforming to JIS B 0601-2001.
  • the surface roughness Rz can be measured by the method described in Examples.
  • a hydroxyl group-containing film containing hydroxyl groups is formed on the bonding surface. Moreover, it is more preferable that a hydroxyl group-containing film is formed over the entire bonding surface.
  • the joint surface is formed with the above-described uneven portion having the predetermined grooves, and it is preferable that the entire surface of the uneven portion is formed with a hydroxyl group-containing film formed by laser processing. Macroscopically, this uneven portion has a “macro uneven portion” in which concave portions and convex portions are alternately and continuously formed, and a “fine uneven portion” formed on the surface of the macro uneven portion. are doing.
  • the hydroxyl group-containing film can be confirmed by detecting the hydroxyl groups present near the surface layer of the metal member by glow discharge optical emission spectrometry (GD-OES). Specifically, first, using GD-OES, the luminescence intensity (V) derived from the main metal and hydroxyl groups constituting the metal substrate is measured in the thickness direction of the joint surface of the metal member. Subsequently, the detected amount of the main metal constituting the metal substrate is calculated from the integrated value (area) of the emission intensity derived from the main metal. Further, the detected amount of hydroxyl groups is measured from the integrated value of the luminescence intensity derived from hydroxyl groups.
  • V glow discharge optical emission spectrometry
  • the ratio of the detected amount of hydroxyl groups to the total amount of the detected amount of the main metal and the detected amount of hydroxyl groups is calculated as the hydroxyl group abundance ratio. Peaks appearing at 281 nm and 309 nm in the emission spectrum obtained by GD-OES are defined as peaks derived from hydroxyl groups. Measurement of the emission intensity near the surface layer of the metal member by GD-OES may be performed from the surface to a depth of 200 nm. Specifically, the range from the detection of the emission intensity derived from the element of the main metal and the hydroxyl group constituting the metal substrate to the elapse of the time required for sputtering of 200 nm corresponding to the element of the main metal is measured. .
  • the range (time) of this measurement can be grasped by previously measuring the sputtering rate ( ⁇ m/min) of a standard sample containing the main metal element to be measured with high purity.
  • GD-OES sputtering rate
  • the hydroxyl group abundance is preferably 4% or more, more preferably 5% or more, even more preferably 6% or more, and particularly preferably 7% or more.
  • the hydroxyl group existence rate is equal to or higher than the above lower limit, the number of hydroxyl groups present near the surface of the metal member increases, and the interaction with the functional groups contained in the resin molding is strengthened, thereby improving the airtightness of the metal-resin bonded body.
  • the joint strength of the metal-resin joined body also tends to improve.
  • the upper limit of the hydroxyl group abundance is not particularly limited, it is preferably 70% or less, more preferably 50% or less, still more preferably 40% or less, and particularly preferably 30% or less.
  • the hydroxyl group abundance varies depending on the formation method of the hydroxyl group. For example, compared to the case where the metal substrate is subjected to laser processing, the case where the metal substrate is subjected to wet treatment such as hydrated oxide treatment with warm water or hot water; chemical conversion treatment; zincate treatment; tend to be higher.
  • the hydroxyl group abundance is preferably 30% or less, more preferably 20% or less, still more preferably 15% or less, and particularly preferably 10% or less.
  • the hydroxyl group-containing coating is, for example, aluminum hydroxide (Al(OH) 3 ), aluminum hydroxide oxide (AlO(OH)), copper hydroxide (Cu(OH) 2 ), depending on the metal constituting the metal substrate. , iron (II) hydroxide (Fe(OH) 2 ), iron hydroxide (III) oxide (FeO(OH)), and the like (metal hydroxides), or It contains a metal oxide hydroxide (metal oxide hydroxide) that constitutes the metal substrate.
  • the hydroxyl group-containing coating is, for example, aluminum oxide (Al 2 O 3 ), copper (I) oxide (Cu 2 O), copper (II) oxide (CuO), oxide Metal oxides ( metal oxides ) may be included.
  • a deposit of metal oxide formed due to laser irradiation is deposited around the irradiated area in the form of a film.
  • a molten metal layer consisting of such deposits contains oxygen as a metal oxide as described above.
  • the molten metal layer has a hydroxyl group-containing film having hydroxyl groups as the outermost layer.
  • the entire joint surface is covered with a hydroxyl group-containing film having macro-concave and convex portions and fine-concave and convex portions.
  • the entire surface of the joint surface is not necessarily limited to only 100% of the surface area of the joint surface, and the surface not covered with the hydroxyl group-containing film by the unirradiated portion is extremely small. It does not exclude the case where it exists as a spot. Preferably 90% or more, more preferably 95% or more of the joint surface is covered with a hydroxyl group-containing film.
  • the macro unevenness is a structure having unevenness on the order of ⁇ m, and is formed on the surface of the hydroxyl group-containing film.
  • the macro-concavo-convex portion has a structure consisting of concave portions formed by perforating a metal base material upon irradiation with a laser beam, and convex portions made of metal oxide deposits produced by the irradiation of the laser beam. there is A repeated structure of recesses and protrusions is obtained by irradiating laser light a plurality of times adjacent to each other.
  • the concave portion is a groove in the metal member of the present invention described above and has a predetermined shape.
  • the convex portion is formed between adjacent grooves, and particularly in the present invention, the entire surface of the region (convex portion) sandwiched between the adjacent grooves (concave portion) is derived from the metal base due to laser irradiation. becomes covered with deposits (sputtered matter). As described above, such macro unevenness can be confirmed by observing the surface or cross section of the metal member using, for example, a scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • the fine unevenness is a structure having unevenness on the order of nm, and is formed on the macroscopic unevenness on the surface of the hydroxyl group-containing film.
  • the fine irregularities are formed on the surface of the hydroxyl-containing film when the molten metal layer having the hydroxyl-containing film is formed by laser irradiation.
  • the fine unevenness can be confirmed by observing the surface or cross section of the metal member using, for example, a scanning electron microscope.
  • the fine irregularities have nano-sized fine openings of 10 nm to 50 nm and have a fine structure with a film thickness of 10 nm to 1000 nm. When observed by SEM, the fine unevenness is observed as a spongy structure having fine openings of the above size.
  • the fine irregularities contain a metal hydroxide or a metal oxide hydroxide, similar to the hydroxyl group-containing film. Further, the fine irregularities may contain a metal oxide, similar to the hydroxyl group-containing coating.
  • a resin molding that is suitably used as an object to be joined to a metal member having a predetermined joint surface will be described.
  • a resin molding can be formed by molding a resin composition on the surface of a metal member.
  • the resin molding contains thermoplastic resin or thermosetting resin.
  • the thermoplastic resin can be appropriately selected from known ones depending on the application. Examples include polyamide resins (aliphatic polyamides such as PA6 and PA66, aromatic polyamides), polystyrene, ABS resins, AS resins, and the like. copolymers containing styrene units, polyethylene, copolymers containing ethylene units, polypropylene, copolymers containing propylene units, other polyolefins, polyvinyl chloride, polyvinylidene chloride, polycarbonate resins, acrylic resins, methacrylic resins, polyester resins, polyacetal resins, and polyphenylene sulfide resins, and these can be used singly or in combination of two or more. Among these, it is preferable to use polyamide-based resins and polyphenylene sulfide-based resins because of their high fluidity during resin molding and easy entry into concave portions.
  • polyamide resins aliphatic polyamides such as PA6 and PA66, aromatic poly
  • thermosetting resin can be appropriately selected from known ones depending on the application. These can be used singly or in combination of two or more. Among these, epoxy resin-based, acrylic resin-based, and urethane resin-based adhesives are recommended because reaction-curing adhesives have good compatibility with hydroxyl group-containing films, and high bonding strength can be obtained as the reaction area increases. is preferred.
  • an adhesive can be used as the resin molding.
  • the adhesive a compound exhibiting adhesive properties including the thermoplastic resin or thermosetting resin described above, or other elastomers or rubbers can be used.
  • the adhesive can be appropriately selected from known ones depending on the application. Polymeric resin-based solvent type, rubber-based solvent type and the like can be mentioned, and examples of reactive curing adhesives include epoxy resin-based, urethane resin-based and modified silicone resin-based adhesives. More than one species can be used. Among these, epoxy resin-based, acrylic resin-based, and urethane resin-based adhesives are recommended because reaction-curing adhesives have good compatibility with hydroxyl group-containing films, and high bonding strength can be obtained as the reaction area increases. is preferred.
  • thermoplastic elastomers can be used, for example, styrene-based elastomers, vinyl chloride-based elastomers, olefin-based elastomers, urethane-based elastomers, polyester-based elastomers, nitrile-based elastomers, and polyamide-based elastomers.
  • a species or two or more species can be used.
  • additives that may be generally added to the resin (resin composition) include flame retardants, colorants such as dyes and pigments, stabilizers such as antioxidants and ultraviolet absorbers, and plasticizers.
  • flame retardants colorants such as dyes and pigments
  • stabilizers such as antioxidants and ultraviolet absorbers
  • plasticizers plasticizers.
  • lubricants, lubricating agents, release agents, crystallization accelerators, crystal nucleating agents, etc. can be added as appropriate within a range that does not interfere with the required performance or the object of the present invention.
  • a metal-resin bonded body is molded in a state in which the resin enters the joint surface (macro-concave and fine-concave portions) of the surface of the metal member, and the metal member and the resin molded body are integrally joined via the joint surface.
  • One metal member and one resin molded body may be used for bonding, or a plurality of either or both of them may be used for bonding, and further, a plurality of sets thereof may be arbitrarily laminated. It may be in such a manner that it is made to have a shape, and it can be determined as appropriate according to the application.
  • the metal-resin bonded body may be a metal-resin bonded body in which a metal member and a resin molded body are bonded in a laminated or continuously arranged state.
  • the metal-resin bonded body may be a metal-resin-metal bonded body in which a metal member, a resin molded body, and a metal member are laminated or continuously arranged in this order.
  • the metal-resin bonded body may be a resin-metal-resin bonded body in which a resin molded body, a metal member, and a resin molded body are laminated or continuously arranged in this order and bonded together. .
  • the metal-resin bonded body is a metal-resin-metal bonded body that joins two or more metal members via a resin molded body
  • the thermoplastic resin or thermosetting resin is sandwiched between the metal members. It may be provided with a molded resin molding.
  • an adhesive containing a thermoplastic resin, a thermosetting resin, or the like may be used as the resin molding, and the metal member may be bonded via the adhesive.
  • the method for producing a metal member of the present invention is a method for producing a metal member having a surface to be joined with an object to be joined, wherein the surface of the metal base material is irradiated with a laser beam to form a metal base material. It has a laser irradiation process for forming grooves on the surface of the substrate.
  • a method for manufacturing a metal-resin bonded body of the present invention includes a resin molding step of bonding a resin molded body to a surface of a metal member.
  • pretreatment such as degreasing treatment, etching treatment, desmutting treatment, chemical polishing treatment, and electropolishing treatment is performed as pretreatment of the surface of the metal base material.
  • a preparation step may be provided.
  • a treatment of irradiating a laser beam onto the surface of a metal substrate (hereinafter simply referred to as "laser treatment") is performed.
  • the metal member according to the present invention is obtained by forming a joint surface with an object to be joined by laser processing.
  • the laser a known laser can be used, but it is preferable to use a pulse oscillation laser because it is convenient for spot processing of the metal substrate as in the present invention.
  • YAG laser, YVO4 laser, semiconductor laser, and fiber laser are preferably used.
  • the principle of forming a joint surface having predetermined grooves on a metal substrate by this laser treatment is generally as follows.
  • the metal substrate melts and evaporates due to the energy of the laser irradiation, but the space becomes the base of the recessed portion due to the perforation caused by the evaporation, and the portions on both sides (both sides) of the recessed portion that are not irradiated with the laser become the base of the convex portion. becomes.
  • part or all of the melted metal portion is oxidized to form a metal oxide, which deposits around the irradiated portion to form a concave portion, thereby forming a convex portion.
  • a deposit of metal oxide is formed in the form of a film covering the recesses and protrusions.
  • the metal oxide deposit formed on the surface of the metal substrate forms a molten metal layer that forms the uneven shape of the macro unevenness.
  • metal oxides have at least some partial ionic character, with metal ions (Al 3+ ) and oxide ions (O 2 ⁇ ) present on the new surface of the metal oxide. Due to its electrostatic neutralization, it reacts with moisture in the air to cause hydroxylation of the metal oxide existing on the surface of the molten metal layer, and the surface of the molten metal layer is covered with hydroxyl groups.
  • the macro-concavo-convex portion is formed on the metal substrate, and a hydroxyl group-containing film containing hydroxyl groups is formed on the outermost layer of the molten metal layer.
  • a hydroxyl group-containing film containing hydroxyl groups is formed on the outermost layer of the molten metal layer.
  • the non-laser-irradiated portion when there is a non-laser-irradiated portion on the metal member that is not irradiated with the laser, the non-laser-irradiated portion does not have a molten metal layer and does not have a hydroxyl group-containing film. Usually, an oxide film is formed on the laser non-irradiated portion. Since the non-laser-irradiated portion does not have a hydroxyl group-containing film, there is no improvement in airtightness due to chemical bonding caused by hydroxyl groups. Further, when the non-laser-irradiated portion is flat, no improvement in bonding strength due to mechanical bonding due to the macro unevenness (groove) is observed.
  • Laser processing is affected by the irradiation energy of laser light per unit area (hereinafter also referred to as “energy density”).
  • the energy density represents the laser power received per unit area and per unit time by a laser-irradiated portion of an object (work) to be laser-processed.
  • the energy density (J/mm 2 ) is defined by the laser light output W (W), the number of laser light scans N (times), the laser light irradiation interval C (mm), and the laser light scanning speed V (mm/s).
  • the energy density is preferably 0.2 J/mm 2 or higher, more preferably 0.5 J/mm 2 or higher.
  • the energy density increases, grooves are formed on the surface of the metal substrate that has undergone the laser treatment, and fine irregularities having hydroxyl groups are likely to be formed. In addition, a hydroxyl group-containing film having a predetermined hydroxyl group abundance is easily formed.
  • the energy density increases, the recesses of the macro unevenness formed on the surface of the metal substrate tend to be deepened, and the surface roughness of the metal member after laser processing tends to increase. It should be noted that the higher the melting point of the metal constituting the metal substrate and the greater the thermal diffusion, the less likely the metal substrate will be affected by the laser beam. Considering the circumstances described above, it is desirable to change the energy density according to the metal to be laser treated.
  • the energy density is preferably 0.2 J/mm 2 or more, more preferably 0.5 J/mm 2 or more, and even more preferably 1 J/mm 2 or more. mm 2 or more, particularly preferably 1.5 J/mm 2 or more.
  • the energy density is preferably 5 J/mm 2 or less, more preferably 4 J/mm 2 or less, and even more preferably 3 J/mm 2 . It is below.
  • the energy density is preferably 0.5 J/mm 2 or more, more preferably 1 J/mm 2 or more, and even more preferably 2 J/mm 2 . above, and particularly preferably above 3 J/mm 2 .
  • the energy density is preferably 10 J/mm 2 or less, more preferably 8 J/mm 2 or less, and even more preferably 6 J/mm 2 . It is below.
  • the energy density is preferably 0.5 J/mm 2 or more, more preferably 2 J/mm 2 or more, and even more preferably 4 J/mm 2 . above, and particularly preferably above 6 J/mm 2 .
  • the energy density is preferably 20 J/mm 2 or less, more preferably 15 J/mm 2 or less, and even more preferably 10 J/mm 2 . It is below.
  • the energy density is equal to or higher than the above lower limit
  • grooves are formed on the surface of the metal member that has undergone laser processing, making it easier to form fine irregularities having hydroxyl groups.
  • a hydroxyl group-containing film having a predetermined hydroxyl group abundance is easily formed. Therefore, the fine irregularities having hydroxyl groups and the hydroxyl group-containing film facilitate improvement in the airtightness and bonding strength of the metal-resin bonded body.
  • the depth (L) of the concave portion of the macro-concavo-convex portion formed on the surface of the metal substrate tends to increase, and the aspect ratio (L/D) tends to increase. be.
  • the resin molding when the resin molding enters into the macro unevenness portion, mechanical bonding (anchor effect) between the macro unevenness portion and the resin molding is exhibited, and the bonding strength is likely to be improved.
  • the energy density is equal to or less than the above upper limit, the depth (L) of the macroscopic unevenness formed on the surface of the metal substrate becomes excessively large, and the aspect ratio (L/D) becomes excessively large. becomes easier to prevent. Therefore, the resin molded body can enter deep into the recesses of the macro unevenness, and chemical bonding between the hydroxyl groups of the metal member and the functional groups of the resin molded body is exhibited in the entire macro unevenness. It becomes easier to improve airtightness.
  • the laser conditions (laser processing conditions) in laser processing should be set appropriately so as to achieve the above-mentioned energy density.
  • the parameters of the laser processing conditions include laser light output (W), laser light frequency (kHz), laser light beam diameter ( ⁇ m), laser light irradiation interval ( ⁇ m), laser light scanning speed (mm/ s), and the number of scans (times) of laser light. Note that the number of scans means the number of times the laser beam is repeatedly irradiated along the same irradiation trajectory.
  • the laser beam irradiation interval is the interval between the locus 6 of one laser beam irradiated on the object and the locus 6' of another laser beam irradiated adjacent to the laser. More specifically, the irradiation interval of the laser light is the end of the one laser light locus 6 in the direction perpendicular to the scanning direction 3 and the other laser light locus 6′ of the other laser light locus 6′. The distance between one laser beam and the edge on the same side. In the case of irradiation with a pulsed laser, the trajectory of the laser light is represented as a continuous trajectory of pores formed by individual laser pulses.
  • the irradiation interval 5 of the laser light corresponds to the sum of the width of the region sandwiched between the trajectories of the laser light formed by continuous pores and the size of the beam diameter 4 .
  • Table 1 shows examples of laser treatment conditions when the main metals of the metal substrate to be laser treated are aluminum (Al), copper (Cu), and stainless steel (SUS).
  • the scanning speed V of the laser beam is d ⁇ K or less, the individual spots formed by the beams constituting the pulsed laser are irradiated so as to be in contact with each other. It is possible to prevent non-irradiated portions from existing in the trajectory.
  • the upper limit speed of the scanning speed V of the laser beam is d ⁇ K. Therefore, by satisfying the relationship of V ⁇ d ⁇ K as shown in FIG. 6A, it is possible to facilitate the formation of grooves capable of improving airtightness and bonding strength.
  • the groove depth tends to increase, and the surface roughness of the bonding surface tends to increase.
  • the value of the term (N/V) is constant.
  • the number of light scans N and the scanning speed V of the laser light may be adjusted.
  • the width of the groove is larger when both the number of scans N and the scan speed V are large than when both the number of scans N and the scan speed V are small. , there is a tendency to easily form a groove having a shape that facilitates the flow of resin.
  • the energy density can be performed under the condition that the values of are the same.
  • the width of the groove can be increased. This makes it easier to form a groove having a shape into which the resin can easily flow.
  • the pulse width per pulse of the pulse laser tends to increase as the frequency decreases.
  • the pulse width is large, the heat history given to the metal base material becomes large. This makes it easier for the melted region formed on the metal substrate by the laser treatment to spread from the laser-irradiated position to the region outside the surface of the metal substrate.
  • the smaller the frequency and the larger the pulse width the higher the peak power of the laser beam, which tends to increase the amount of sputtered matter.
  • the smaller the frequency the easier it is to form an inverted triangular groove with a wider opening.
  • the higher the frequency the smaller the pulse width tends to be.
  • the thermal history given to the metal substrate becomes small.
  • the melted region formed on the metal substrate by the laser treatment is less likely to spread to the region outside the surface of the metal substrate, and tends to remain in a narrow range.
  • the higher the frequency and the smaller the pulse width the smaller the peak power of the laser beam and the less the sputtered matter.
  • the higher the frequency the narrower the opening and the easier it is to form a rectangular elongated groove.
  • the laser processing conditions for forming grooves with a shape that facilitates the flow of resin first, laser processing is performed on the metal substrate while changing the energy density, so that the purpose according to the metal substrate is determined. determines the predetermined energy density capable of forming a trench of depth . Next, while maintaining this predetermined energy density and keeping constant the value of the term (N/V) obtained by dividing the number of times of scanning N by the scanning speed V, the value of the number of times of scanning N and the value of the scanning speed V are changed.
  • N/V the value of the number of times of scanning N and the value of the scanning speed V are changed.
  • the number of scans (number of irradiations) in a relatively large range as the laser processing conditions in order to form grooves having a shape that facilitates the flow of resin.
  • the number of times of scanning under such laser processing conditions is preferably 1 or more, more preferably 2 or more, still more preferably 3 or more, preferably 20 or less, more preferably 15 or less, still more preferably 10. times or less.
  • the scanning speed under such laser processing conditions is preferably 200 mm/s or more, more preferably 300 mm/s or more, still more preferably 400 mm/s or more, and preferably 20000 mm/s or less, more preferably 1500 mm/s or less. , and more preferably 1000 mm/s or less.
  • the frequency of such laser treatment conditions is preferably 30 kHz or higher, more preferably 40 kHz or higher, still more preferably 50 kHz or higher, and preferably 200 kHz or lower, more preferably 100 kHz or lower, and still more preferably 80 kHz or lower.
  • a metal-resin bonded body is manufactured by forming a resin molding on the surface of a metal member using a resin composition as a raw material.
  • a suitable molding method can be adopted according to the resin to be used.
  • a thermoplastic resin a composition containing a thermoplastic resin is injection-molded onto a metal member to integrally bond the resin molded body to obtain a metal-resin bonded body, or an injection molding is performed.
  • the obtained resin molded body is laser welded, vibration welded, ultrasonic welded, hot press welded, hot plate welded, non-contact hot plate welded or high frequency welded to the surface of the metal member.
  • a method of integrally joining by thermocompression bonding using means such as, but not limited to, these methods.
  • thermosetting resin when used, a metal-resin bonded body can be obtained by integrally bonding the resin molded body by injection molding a composition containing the thermosetting resin onto a metal member.
  • a compression molding method in which a composition adjusted to a predetermined viscosity is applied on a metal member and then integrally heated and pressurized.
  • an adhesive When an adhesive is used, it can be applied to the metal member and dried to cure. If necessary, heating or other operations may be performed, and molding conditions suitable for the adhesive to be used may be used. can be adopted.
  • the first inner diameter (D 1 ) at the first position of arbitrary depth and the second inner diameter (D 2 ) was measured to obtain D 2 /D 1 .
  • the diameter (D b ) of the perfect circle inscribed in the bottom surface of the groove was measured, and D 0 /10 ⁇ D b representing the relationship with the inner diameter (D 0 ) of the opening was evaluated.
  • the bonding strength of the metal-resin bonded body was evaluated by measuring the shear strength according to ISO19095. Specifically, as shown in FIG. 7, a metal-resin bonded body 9 obtained by bonding a metal member 8 and a resin molded body 7 is fixed to a dedicated jig 10, and is moved parallel to the bonding surface at a speed of 10 mm/min. A test was conducted in which a load was applied so that a shearing force was applied in the direction of the metal member and the resin molding to destroy the joint. The breaking force when the metal-resin joined body was broken was determined as the tensile shear strength (MPa).
  • MPa tensile shear strength
  • the bonding strength of the metal-resin-metal joined body was evaluated by measuring the shear strength with reference to JIS K 6850. Specifically, as shown in FIG. 8, a metal-resin-metal bonded body 11 in which two metal members 8 and 8' are bonded together using a thermosetting adhesive, which will be described later, is fixed to a dedicated jig 10, A load was applied at a speed of 5 mm/min so as to apply a shear force in a direction parallel to the joint surface, and a test was conducted in which the joined portion of the joint between the metal members via the adhesive was destroyed. The breaking force when the metal-resin-metal joined body was broken was determined as the tensile shear strength (MPa).
  • MPa tensile shear strength
  • air was applied up to a maximum positive pressure of 0.5 MPa, and was held for 1 minute. After that, the presence or absence of air leakage was visually confirmed.
  • the dedicated airtight jig 15 described above the metal-resin bonded body 9 or the metal-resin-metal bonded body 11 is fixed by being sandwiched between fixing jigs from above and below with the O-ring 13 interposed therebetween.
  • Water 12 exists in the upper open portion of the dedicated airtight jig 15 with the metal-resin bonded body 9 or the metal-resin-metal bonded body 11 interposed therebetween, and the sealed portion on the lower side of the dedicated airtight jig 15 There is air in By applying air to the sealed portion through the ventilation pipe 14, the air leaks to the open portion side through the metal-resin bonded body 9 or the metal-resin-metal bonded body 11, depending on whether air bubbles are generated from the bonding interface. You can check whether The case where there was no air leak within the evaluation time was evaluated as "acceptable (good)", and the case where air leak was observed was evaluated as "failed (poor)".
  • the maximum height Rz was measured using a one-shot 3D shape measuring machine VR-3200 manufactured by Keyence Corporation. In the measurement range of 3600 ⁇ 2800 ⁇ m, the average value of 41 points was taken as the measured value under the conditions of 80 magnifications, no cutoff ⁇ s, no cutoff ⁇ c, and a standard length of 1. Measurement was performed in such a manner that the striped trajectory of the laser light and the striped light emitted from the projection lens of the measuring instrument intersect at right angles.
  • Example 1 ⁇ Production of metal member> A rectangular copper plate material having a thickness of 1.5 mm, a width of 18 mm, and a length of 45 mm was prepared from a rolled material of oxygen-free copper (C1020) specified in JIS H3100. Also, a hole was made in this rolled material to prepare an annular copper disc having a thickness of 2 mm, an outer diameter of ⁇ 55 mm, and an inner diameter of ⁇ 20 mm. And each was prepared as a metal base material.
  • C1020 oxygen-free copper
  • the surfaces to be processed of the copper plate material and the copper disk were subjected to laser treatment for laser irradiation under the following conditions to form bonding surfaces with the resin molding.
  • a rectangular region of 10 mm in the longitudinal direction and 18 mm in the lateral direction was irradiated with the laser in a striped pattern at the end in the longitudinal direction of one main surface.
  • laser irradiation was performed from the inner side to a concentric annular region having a width of 2.0 mm.
  • the laser treatment conditions are summarized in Table 13 below (Examples 1-8, Comparative Examples 1-3).
  • the resin molded body has a rectangular shape with a thickness of 3 mm, a width of 10 mm, and a length of 45 mm.
  • a bonded body (metal-resin bonded body 9, FIG. 11) of (metal member) 8 and resin molding 7 was produced.
  • the copper disk ( A joined body (metal-resin joined body 9, FIG. 12) of the metal member) 8 and the resin molding 7 was produced.
  • FIG. 1 shows the result of observation of the cross section by SEM (100 times). Specifically, first, as shown in FIG. 1, 10 continuous grooves (recesses) of ⁇ 1> to ⁇ 10> are arbitrarily selected, and as described above, among the deepest points of these grooves , the deepest point of the deepest groove ⁇ 8> and the position where the sum of the distances from the deepest points of the grooves ⁇ 1> to ⁇ 10> is the smallest. .
  • FIG. 2 is an enlarged view of the groove ⁇ 8> shown in FIG.
  • a reference line L2 was drawn from the highest point Pt1 (apex of the lower convex portion) toward the higher convex portion so as to be horizontal to the previous reference line L1.
  • the position where the reference line L2 and the surface of the higher projection first intersect was defined as the intersection point Pc1
  • the distance between this Pc1 and the previous Pt1 was defined as the inner diameter D0 of the opening of the groove.
  • a reference line L3 is drawn in a direction perpendicular to the reference line L2 from the reference line L2 toward the deepest point Pb1, which is the deepest position in the recess, and the reference line L3 and the previous reference line L2 are drawn.
  • a point at which the reference line L3 intersects is defined as an intersection point Pc2.
  • the distance between the deepest point Pb1 and the intersection point Pc2 is defined as the groove depth L of ⁇ 8>.
  • the inner diameter at the first position at an arbitrary depth is D1
  • the inner diameter at an arbitrary second position deeper than the first position is D2 . .
  • FIG. 3 like FIG. 2, shows an enlarged view of the groove ⁇ 8> shown in FIG.
  • the smallest perfect circle among those whose left end and right end are in contact with the adjacent projections (in contact with the wall surface of the groove) and whose diameter is 1 ⁇ m or more was obtained.
  • the diameter of this perfect circle was defined as Db .
  • the circle diameter (D b ) was measured.
  • the diameter (D b ) of the perfect circle is the opening of the groove. is the diameter (D 0 ) of
  • Table 2 The measurement results are shown in Table 2, and the 10 grooves ⁇ 1> to ⁇ 10> arbitrarily selected from the observation results of the cross section by SEM all satisfied the conditions of the present invention. Moreover, according to the cross-sectional observation by this SEM, it was confirmed that all of the protrusions sandwiched between the adjacent grooves were covered with deposits (sputtered matter) derived from the metal base due to laser irradiation.
  • the bonding portion between the copper plate material (metal member) 8 and the resin molded body 7 was determined by the bonding strength evaluation (1) described above. was performed, and the breaking force when the metal-resin joined body was broken was determined as the tensile shear strength (MPa). Moreover, the rupture form after the tensile shear test was visually observed. Furthermore, with respect to the metal-resin bonded body for airtightness evaluation, the presence or absence of air leak was confirmed by the airtightness evaluation described above. The results are shown in Table 14. In addition, the surface roughness of the joint surface was evaluated for the laser-treated plate material for joint strength evaluation.
  • Table 14 also shows the results of evaluation of the state of the protrusions confirmed by cross-sectional observation by SEM, together with the surface roughness of the joint surfaces of the obtained metal members. At that time, when all of the protrusions sandwiched between the grooves are covered with deposits (sputtered matter) derived from the metal base material, ⁇ means that even some of the protrusions are not covered with deposits, leaving unirradiated areas with the laser. The case was evaluated as ⁇ .
  • Example 2 Except that the laser processing conditions were changed to an output of 42.5 W, a frequency of 60 kHz, a beam diameter of 60 ⁇ m, an irradiation interval (groove interval) of 50 ⁇ m, a scanning speed of 500 mm/s, the number of scanning times of 4, and an energy density of 6.8 J/mm 2 .
  • metal members copper plate material, copper disk
  • each metal-resin bonded body for evaluation was produced.
  • the joint cross section was evaluated in the same manner as in Example 1.
  • the observation result of the cross section by SEM (100 times) is as shown in FIG.
  • the sum of the distances passing through the deepest point of the deepest groove ⁇ 7> and from the position of the deepest point of each of the grooves ⁇ 1> to ⁇ 10> is the smallest A reference line L1 was drawn through the position.
  • Example 2 the inner diameter (D 0 ) of the opening of each groove , the depth of the groove (L), a first inner diameter (D 1 ) at a first position at any depth of the groove and a second inner diameter (D 2 ) at a second position at any deeper depth, and A diameter (D b ) of a perfect circle inscribed in the bottom portion was measured.
  • Table 3 shows the measurement results.
  • the bonding portion between the copper plate material (metal member) 8 and the resin molded body 7 was determined by the bonding strength evaluation (1) described above. was performed, and the breaking force when the metal-resin joined body was broken was determined as the tensile shear strength (MPa). Moreover, the rupture form after the tensile shear test was visually observed. Furthermore, with respect to the metal-resin bonded body for airtightness evaluation, the presence or absence of air leak was confirmed by the airtightness evaluation described above. In addition, the surface roughness of the joint surface was evaluated for the laser-treated plate material for joint strength evaluation. Table 14 summarizes the evaluation results of this example including these.
  • Example 3 Except that the laser processing conditions were changed to an output of 42.5 W, a frequency of 60 kHz, a beam diameter of 60 ⁇ m, an irradiation interval (groove interval) of 70 ⁇ m, a scanning speed of 500 mm/s, the number of scanning times of 5, and an energy density of 6.07 J/mm 2 .
  • metal members copper plate material, copper disk
  • each metal-resin bonded body for evaluation was produced.
  • the joint cross section was evaluated in the same manner as in Example 1.
  • the observation result of the cross section by SEM (100 times) is as shown in FIG.
  • the sum of the distances from the deepest points of the deepest grooves ⁇ 4> and from the deepest points of the grooves ⁇ 1> to ⁇ 10> is the smallest.
  • a reference line L1 was drawn through the position.
  • the bonding portion between the copper plate material (metal member) 8 and the resin molded body 7 was determined by the bonding strength evaluation (1) described above. was performed, and the breaking force when the metal-resin joined body was broken was determined as the tensile shear strength (MPa). Moreover, the rupture form after the tensile shear test was visually observed. Furthermore, with respect to the metal-resin bonded body for airtightness evaluation, the presence or absence of air leak was confirmed by the airtightness evaluation described above. In addition, the surface roughness of the joint surface was evaluated for the laser-treated plate material for joint strength evaluation. Table 14 summarizes the evaluation results of this example including these.
  • Example 4 As the metal, A5052 aluminum alloy (A5052-H34) treated with the tempering symbol H34 shown in JIS H0001 is used, and the laser processing conditions are output 42.5 W, frequency 60 kHz, beam diameter 60 ⁇ m, irradiation interval (groove interval).
  • a metal member (aluminum plate, aluminum disk) was produced in the same manner as in Example 1, except that the scanning speed was 100 ⁇ m, the scanning speed was 340 mm/s, the number of scanning was 1, and the energy density was 1.25 J/mm 2 . .
  • aromatic nylon manufactured by Mitsubishi Engineering-Plastics Co., Ltd., product name: Reny (registered trademark), grade: XL1002U
  • the injection conditions are resin temperature of 250 ° C., mold temperature of 140 ° C., injection speed of 30 mm / s, and holding pressure of 80 MPa. 2
  • the aluminum plate material A joined body (metal-resin joined body 9) of the metal member) 8 and the resin molding 7 was produced.
  • the resin molding is in the form of a disk with a thickness of 2 mm ⁇ ⁇ 24 mm, and the joint width of the annular joint with the inner diameter side surface of the aluminum disk is 2.0 mm, and the joint area is 138.2 mm .
  • a joined body (metal-resin joined body 9) of the (metal member) 8 and the resin molding 7 was produced.
  • the joint cross section was evaluated in the same manner as in Example 1.
  • the observation result of the cross section by SEM (100 times) is as shown in FIG.
  • the sum of the distances passing through the deepest point of the deepest groove ⁇ 8> and from the position of the deepest point of each of the grooves ⁇ 1> to ⁇ 10> is the smallest A reference line L1 was drawn through the position.
  • the bonding portion between the aluminum plate material (metal member) 8 and the resin molded body 7 was determined by the bonding strength evaluation (1) described above. was performed, and the breaking force when the metal-resin joined body was broken was determined as the tensile shear strength (MPa). Moreover, the rupture form after the tensile shear test was visually observed. Furthermore, with respect to the metal-resin bonded body for airtightness evaluation, the presence or absence of air leak was confirmed by the airtightness evaluation described above. In addition, the surface roughness of the joint surface was evaluated for the laser-treated plate material for joint strength evaluation. Table 14 summarizes the evaluation results of this example including these.
  • Example 5 As a metal, using a hollow extruded material of A6063 aluminum alloy (A6063-T5) that conforms to ISO19095 and has been treated with temper symbol T5 shown in JIS H0001, laser processing conditions are output 42.5 W, frequency 60 kHz, beam In the same manner as in Example 1, a metal member ( Aluminum plate material, aluminum disc) were produced, and each metal-resin bonded body for evaluation was produced.
  • A6063-T5 A6063 aluminum alloy
  • T5 temper symbol shown in JIS H0001
  • the joint cross section was evaluated in the same manner as in Example 1.
  • the observation result of the cross section by SEM (100 times) is as shown in FIG.
  • the sum of the distances passing through the deepest point of the deepest groove ⁇ 2> and from the position of the deepest point of each of the grooves ⁇ 1> to ⁇ 10> is the smallest A reference line L1 was drawn through the position.
  • the bonding portion between the aluminum plate material (metal member) 8 and the resin molded body 7 was determined by the bonding strength evaluation (1) described above. was performed, and the breaking force when the metal-resin joined body was broken was determined as the tensile shear strength (MPa). Moreover, the rupture form after the tensile shear test was visually observed. Furthermore, with respect to the metal-resin bonded body for airtightness evaluation, the presence or absence of air leak was confirmed by the airtightness evaluation described above. In addition, the surface roughness of the joint surface was evaluated for the laser-treated plate material for joint strength evaluation. Table 14 summarizes the evaluation results of this example including these.
  • Example 6 Two rectangular aluminum plates with a thickness of 5 mm ⁇ width of 25 mm ⁇ length of 50 mm from a hollow extruded material of A6063 aluminum alloy (A6063-T5) treated with temper symbol T5 shown in JIS H0001, and a thickness of 2 mm An annular aluminum disk with an outer diameter of ⁇ 55 mm ⁇ an inner diameter of ⁇ 20 mm and a circular aluminum disk with a thickness of 2 mm and an outer diameter of ⁇ 24 mm were cut out as metal substrates.
  • the laser processing conditions were set to output 42.5 W, frequency 60 kHz, beam diameter 60 ⁇ m, irradiation interval (groove interval) 70 ⁇ m, scanning speed 1000 mm/s, scanning once, and energy density 0.6 J/mm 2 .
  • a bonding surface was formed by laser irradiation in the same manner as in Example 1, except for the change.
  • a rectangular region of 6 mm ⁇ 25 mm was irradiated with the laser in a striped pattern at the end in the longitudinal direction of one of the main surfaces.
  • the laser was irradiated concentrically from the inside to the annular region with a width of 2.0 mm.
  • a laser was irradiated to a concentrically circular region with a width of 2.0 mm from the outer peripheral side.
  • thermosetting adhesive one-liquid heat-curing epoxy adhesive (3M Japan Co., Ltd.) is used as a resin for each metal member (aluminum plate and aluminum disk after laser processing) on which the bonding surface is formed as described above.
  • Scotch Weld registered trademark
  • SW2214 manufactured by the company
  • the adhesive was adjusted with a SUS wire to a thickness of 0.2 mm and applied to the joint surfaces. After applying the adhesive, the two aluminum plate materials were pasted together, a pressure of 0.01 MPa was applied, and after the test piece temperature reached 150 ° C., the two aluminum plate materials were heated for 30 minutes.
  • a jointed body of aluminum plate materials (metal members) 8 and 8' (a jointed body of an aluminum plate material, a resin molded body and an aluminum plate material) (metal resin metal A conjugate 11, FIG. 17) was produced.
  • the annular aluminum disk and the circular aluminum disk are bonded together, and under the same bonding conditions, the annular joint between the annular aluminum disk and the circular aluminum disk is bonded.
  • a joined body annular A joined body of an aluminum disk, a resin molding and a circular aluminum disk
  • metal-resin-metal joined body 11, FIG. 18 was produced.
  • the joint cross section was evaluated in the same manner as in Example 1.
  • the observation result of the cross section by SEM (100 times) is as shown in FIG.
  • the sum of the distances passing through the deepest point of the deepest groove ⁇ 8> and from the position of the deepest point of each of the grooves ⁇ 1> to ⁇ 10> is the smallest A reference line L1 was drawn through the position.
  • the bonding portion between the aluminum plate material (metal member) 8 and the resin molded body 7 was determined by the bonding strength evaluation (2) described above. was performed, and the breaking force when the metal-resin joined body was broken was determined as the tensile shear strength (MPa). Moreover, the rupture form after the tensile shear test was visually observed. Furthermore, with respect to the metal-resin bonded body for airtightness evaluation, the presence or absence of air leak was confirmed by the airtightness evaluation described above. In addition, the surface roughness of the joint surface was evaluated for the laser-treated plate material for joint strength evaluation. Table 14 summarizes the evaluation results of this example including these.
  • Example 7 Two rectangular aluminum plates with a thickness of 5 mm, a width of 25 mm, and a length of 50 mm were prepared from an aluminum alloy die-cast (ADC12) plate-shaped member shown in JIS H5302, and a circle with a thickness of 2 mm, an outer diameter of ⁇ 55 mm, and an inner diameter of ⁇ 20 mm. An annular aluminum disk and a circular aluminum disk having a thickness of 2 mm and an outer diameter of 24 mm were cut out as metal substrates and prepared.
  • ADC12 aluminum alloy die-cast
  • the laser processing conditions were set to an output of 42.5 W, a frequency of 60 kHz, a beam diameter of 60 ⁇ m, an irradiation interval (groove interval) of 70 ⁇ m, a scanning speed of 1000 mm/s, a scanning frequency of 1, and an energy density of 0.6 J/mm 2 . Except for these, in the same manner as in Example 6, metal members (aluminum plate material, aluminum disk) were produced, and each metal-resin bonded body for evaluation was produced.
  • the joint cross section was evaluated in the same manner as in Example 1.
  • the observation result of the cross section by SEM (100 times) is as shown in FIG.
  • the sum of the distances passing through the deepest point of the deepest groove ⁇ 8> and from the position of the deepest point of each of the grooves ⁇ 1> to ⁇ 10> is the smallest A reference line L1 was drawn through the position.
  • the bonding portion between the aluminum plate material (metal member) 8 and the resin molding 7 was determined by the bonding strength evaluation (2) described above. was performed, and the breaking force when the metal-resin joined body was broken was determined as the tensile shear strength (MPa). Moreover, the rupture form after the tensile shear test was visually observed. Furthermore, with respect to the metal-resin bonded body for airtightness evaluation, the presence or absence of air leak was confirmed by the airtightness evaluation described above. In addition, the surface roughness of the joint surface was evaluated for the laser-treated plate material for joint strength evaluation. Table 14 summarizes the evaluation results of this example including these.
  • Example 8 A stainless steel plate (SUS304) was used as the metal, and the laser processing conditions were an output of 42.5 W, a frequency of 60 kHz, a beam diameter of 60 ⁇ m, an irradiation interval (groove interval) of 90 ⁇ m, a scanning speed of 340 mm/s, the number of scanning times of 2, and energy.
  • a metal member (stainless steel plate, stainless disk) was produced in the same manner as in Example 1, except that the density was changed to 2.78 J/mm 2 , and metal-resin bonded bodies for evaluation were produced.
  • the joint cross section was evaluated in the same manner as in Example 1.
  • the observation result of the cross section by SEM (100 times) is as shown in FIG.
  • the sum of the distances passing through the deepest point of the deepest groove ⁇ 2> and from the position of the deepest point of each of the grooves ⁇ 1> to ⁇ 10> is the smallest A reference line L1 was drawn through the position.
  • the bonding portion between the stainless plate material (metal member) 8 and the resin molding 7 was determined by the bonding strength evaluation (1) described above. was performed, and the breaking force when the metal-resin joined body was broken was determined as the tensile shear strength (MPa). Moreover, the rupture form after the tensile shear test was visually observed. Furthermore, with respect to the metal-resin bonded body for airtightness evaluation, the presence or absence of air leak was confirmed by the airtightness evaluation described above. In addition, the surface roughness of the joint surface was evaluated for the laser-treated plate material for joint strength evaluation. Table 14 summarizes the evaluation results of this example including these.
  • the joint cross section was evaluated in the same manner as in Example 1.
  • the observation result of the cross section by SEM (100 times) is as shown in FIG.
  • the sum of the distances passing through the deepest point of the deepest groove ⁇ 1> and from the position of the deepest point of each of the grooves ⁇ 1> to ⁇ 10> is the smallest A reference line L1 was drawn through the position.
  • Example 10 the inner diameter (D 0 ) of the opening of each groove , the depth of the groove (L), a first inner diameter (D 1 ) at a first position at any depth of the groove and a second inner diameter (D 2 ) at a second position at any deeper depth, and A diameter (D b ) of a perfect circle inscribed in the bottom portion was measured.
  • Table 10 shows the measurement results.
  • the bonding portion between the copper plate material (metal member) 8 and the resin molded body 7 was determined by the bonding strength evaluation (1) described above. was performed, and the breaking force when the metal-resin joined body was broken was determined as the tensile shear strength (MPa). Moreover, the rupture form after the tensile shear test was visually observed. Furthermore, with respect to the metal-resin bonded body for airtightness evaluation, the presence or absence of air leak was confirmed by the airtightness evaluation described above. In addition, the surface roughness of the joint surface was evaluated for the laser-treated plate material for joint strength evaluation. Table 14 summarizes the evaluation results of this comparative example including these.
  • the joint cross section was evaluated in the same manner as in Example 1.
  • the observation result of the cross section by SEM (100 times) is as shown in FIG.
  • the sum of the distances passing through the deepest point of the deepest groove ⁇ 2> and from the position of the deepest point of each of the grooves ⁇ 1> to ⁇ 10> is the smallest A reference line L1 was drawn through the position.
  • Example 11 the inner diameter (D 0 ) of the opening of each groove , the depth of the groove (L), a first inner diameter (D 1 ) at a first position at any depth of the groove and a second inner diameter (D 2 ) at a second position at any deeper depth, and A diameter (D b ) of a perfect circle inscribed in the bottom portion was measured. Table 11 shows the measurement results.
  • the bonding portion between the copper plate material (metal member) 8 and the resin molded body 7 was evaluated by the bonding strength evaluation (1) described above. was performed, and the breaking force when the metal-resin joined body was broken was determined as the tensile shear strength (MPa). Moreover, the rupture form after the tensile shear test was visually observed. Furthermore, with respect to the metal-resin bonded body for airtightness evaluation, the presence or absence of air leak was confirmed by the airtightness evaluation described above. In addition, the surface roughness of the joint surface was evaluated for the laser-treated plate material for joint strength evaluation. Table 14 summarizes the evaluation results of this comparative example including these.
  • A5052 aluminum alloy (A5052-H34) treated with the tempering symbol H34 shown in JIS H0001 was used, and the laser processing conditions were an output of 45 W, a frequency of 120 kHz, a beam diameter of 60 ⁇ m, an irradiation interval (groove interval) of 100 ⁇ m,
  • a metal member (aluminum plate, aluminum disc) was produced in the same manner as in Example 1, except that the scanning speed was changed to 360 mm/s, the number of times of scanning was changed to 1, and the energy density was changed to 1.25 J/mm 2 .
  • aromatic nylon manufactured by Mitsubishi Engineering-Plastics Co., Ltd., product name: Reny (registered trademark), grade: XL1002U
  • the injection conditions are resin temperature of 250 ° C., mold temperature of 140 ° C., injection speed of 30 mm / s, and holding pressure of 80 MPa. 2
  • the aluminum plate material A joined body (metal-resin joined body 9) of the metal member) 8 and the resin molding 7 was produced.
  • the resin molding is in the form of a disk with a thickness of 2 mm ⁇ ⁇ 24 mm, and the joint width of the annular joint with the inner diameter side surface of the aluminum disk is 2.0 mm, and the joint area is 138.2 mm .
  • a joined body (metal-resin joined body 9) of the (metal member) 8 and the resin molding 7 was produced.
  • the joint cross section was evaluated in the same manner as in Example 1.
  • the observation result of the cross section by SEM (100 times) is as shown in FIG.
  • the sum of the distances passing through the deepest point of the deepest groove ⁇ 3> and from the position of the deepest point of each of the grooves ⁇ 1> to ⁇ 10> is the smallest A reference line L1 was drawn through the position.
  • the bonding portion between the aluminum plate material (metal member) 8 and the resin molded body 7 was evaluated by the bonding strength evaluation (1) described above. was performed, and the breaking force when the metal-resin joined body was broken was determined as the tensile shear strength (MPa). Moreover, the rupture form after the tensile shear test was visually observed. Furthermore, with respect to the metal-resin bonded body for airtightness evaluation, the presence or absence of air leak was confirmed by the airtightness evaluation described above. In addition, the surface roughness of the joint surface was evaluated for the laser-treated plate material for joint strength evaluation. Table 14 summarizes the evaluation results of this comparative example including these.
  • Comparative Example 1 the conditions of the groove in the present invention cannot be satisfied, and among others, the diameter (D b ) were small, and the relationship D 0 / 10 ⁇ D b could not be satisfied .
  • the penetration (flowing) of the resin into the joint became insufficient, weakening the mechanical joint with the resin, causing interfacial breakage at the joint, and sufficient airtightness could not be ensured.
  • Comparative Example 2 there are many grooves that cannot satisfy the relationship D 0 /10 ⁇ D b , and the resin does not enter the grooves sufficiently, resulting in interfacial destruction and airtightness at the joint.
  • Comparative Example 2 there are many grooves that cannot satisfy the relationship D 0 /10 ⁇ D b , and the resin does not enter the grooves sufficiently, resulting in interfacial destruction and airtightness at the joint.
  • Comparative Example 3 the inner diameter (D 0 ) of the opening of the groove was too small and L/D 0 was too large, or the relationship D 2 /D 1 ⁇ 2.5 could not be satisfied. As expected, the penetration of the resin into the grooves was not sufficient, and interfacial destruction and airtightness at the joint could not be ensured. In particular, in Comparative Examples 2 and 3, part of the projections were not covered with the sputtered deposits and remained unirradiated with the laser, so the chemical bonding with the resin was not sufficiently achieved. It is considered to be a thing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

高い接合強度を有して、かつ十分な気密性を備えた金属樹脂接合体及びそれを得るための金属部材を提供する。 金属製の金属基材と、前記金属基材の表面に形成された溝とを備え、溝の開口部の内径(D0)は、20μm~200μmであり、溝の深さ(L)は、20μm~200μmであり、溝の前記開口部の内径(D0)に対する前記深さ(L)のアスペクト比(L/D0)は、0.1~5であり、前記溝の前記開口部から底面部において、任意の深さの第一位置における第一内径(D1)と、前記第一位置よりも深い任意の第二位置における第二内径(D2)とがD2/D1≦2.5の関係を満たし、前記溝の前記底面部に内接する真円の直径(Db)と前記開口部の内径(D0)とは、D0/10≦Dbの関係を満たす金属部材であり、この金属部材の表面に成形された樹脂成形体とを備えた金属樹脂接合体である。

Description

金属部材及び金属樹脂接合体並びにそれらの製造方法
 この発明は、特定の接合面を備えた金属部材、及び当該金属部材と樹脂成形体との接合体、並びにそれらの製造方法に関する。
 近年、自動車の各種センサー部品、家庭電化製品部品、産業機器部品等の分野では、放熱性や導電性が非常に高い銅又は銅合金からなる銅基材や、放熱性が高く、かつ、他金属と比較して軽量なアルミニウム又はアルミニウム合金からなるアルミ基材などの金属製材料と、絶縁性能が高く、軽量でしかも安価である樹脂成形体とを一体に接合した金属樹脂接合体が幅広く用いられるようになり、また、その用途が拡大している。
 そして、従来においては、このような異種材質である金属製材料と樹脂成形体とを互いに一体的に接合した金属樹脂接合体を製造するための工業的に好適な方法として、金属製材料を射出成形用金型内にインサートし、このインサートされた金属製材料の表面に向けて溶融した熱可塑性樹脂を射出し、熱可塑性樹脂の射出成形により樹脂成形体を成形する際に同時に金属製材料と樹脂成形体との間を接合する方法が開発され、より安価に、また、接合強度をより向上させるための幾つかの方法が提案されている。
 例えば、本発明者らによれば、金属基材の表面に特定の処理を行うことにより、金属基材の表面に酸素を含有する酸素含有皮膜を形成し、この形成された酸素含有皮膜を介して、樹脂成形体を接合される技術を提案してきた(例えば、特許文献1~3)。これらの技術は、それ以前において提案されていた表面処理技術で問題となっていた金属部品や装置の腐食や、或いは、周辺の環境の汚染のおそれが少ない方法であって、一定の接合強度や気密性を得られるものであった。しかしながら、酸素含有皮膜を形成するために水和酸化物皮膜や亜鉛含有皮膜を形成する湿式処理する場合は、マクロ凹凸部が形成されないために樹脂接合体の接合強度が不十分であることから、処理方法の更なる改善の余地があった。
 一方で、前述のとおり、金属樹脂接合体を形成する方法として、金属製材料の表面をレーザー光で処理する技術がいくつか提案されている。
 例えば、特許文献4では、金属成形体の接合面に対してレーザー光を照射して、多数の細孔群又は溝群を形成する際に、これら細孔群又は溝群の開口部の両側辺の面上にバリからなる「突起群」を形成し、特にこの「突起群」が、接合される樹脂成形体に埋設されることで接合強度を高めることが開示されている。また、特許文献5では、金属成形体と樹脂成形体からなる複合成形体を製造するに際して、金属成形体の接合面に対して、一方向又は異なる方向に直線及び/又は曲線からなるマーキングを形成するようにレーザースキャンをする工程を有し、各直線及び/又は各曲線からなるマーキングが互いに交差しないようにして、このマーキングが形成された接合面に対して樹脂成形体をインサート成形することで、所望の方向への接合強度を高めることができるとしている。更に、特許文献6では、金属成形体の接合面に対してレーザー光を照射して、くびれ部を有する細孔を形成し、この細孔に樹脂が入り込んだ状態で金属成形体と接合することで接合強度を高める方法が開示されている。更にまた、特許文献7では、金属表面に対して、一つの走査方向にレーザースキャニングする工程と、それにクロスする走査方向にレーザースキャニングする工程により、金属表面に対して樹脂と接合するための接合部を形成するためのレーザー加工条件が開示されている。これにより、当該接合部を凹凸形状としつつも、好適には、その一部を、凸部同士がつながってアーチ状になり下部に孔があいている「ブリッジ形状」として形成したり、或いは、凸部が「オーバーハング」してきのこ状・杉の木状に形成したりすることにより、接合部において異種材料とのアンカー効果を高めることができるとしている。
特許第6004046号公報 特許第6017675号公報 特許第6387301号公報 特許第5889775号公報 特許第6055529号公報 特許第6317064号公報 特許第4020957号公報
 特許文献4では、突起群を構成するバリからなる突起に挟まれたレーザー未照射部が存在している。このようなレーザー未照射部が存在することにより、接合強度の低下を引き起こすと同時に気密性が担保できなくなるおそれがある。また、特許文献5は、前述のとおり所望の方向への接合強度を高める方法ではあるが、気密性の担保に関しては考慮されていない。しかも、この特許文献5の方法では、接合強度をより高めるとする目的のために場合によっては同じマーキングに対する複数回のレーザースキャンを行っており、過度な穿孔により凹凸部の破断や、凹部に隣接する凸部の破壊等によって拡散される金属溶融物が過剰に堆積して、堆積物の間に空隙が生じやすくなって、気密性が担保され難くなる。更に、特許文献6では、接合面に対して、高い接合強度を得られるレーザースキャン方法であるが、気密性担保に関しては考慮されていない。更にまた、特許文献7では、必ずクロスする2つの方向に対してレーザースキャンする必要があるため、加工時間が長く掛かりすぎるという点で改善の余地があり、また、レーザーがクロスすることで、レーザー照射に伴って生じる金属の集積物の間に空隙が発生して、この空隙によって気密性が低下する場合がある。
 本発明の目的は、高い接合強度を有し十分な気密性を担保できるような金属樹脂接合体及びそれを得るための金属部材並びにそのような金属樹脂接合体及び金属部材の製造方法を提供することである。
 すなわち、本発明の要旨は以下のとおりである。
[1]金属製の金属基材と、前記金属基材の表面に形成された溝とを備え、
 溝の開口部の内径(D0)は、20μm~200μmであり、
 溝の深さ(L)は、20μm~200μmであり、
 溝の前記開口部の内径(D0)に対する前記深さ(L)のアスペクト比(L/D0)は、0.1~5であり、
 前記溝の前記開口部から底面部において、任意の深さの第一位置における第一内径(D1)と、前記第一位置よりも深い任意の第二位置における第二内径(D2)とがD2/D1≦2.5の関係を満たし、
 前記溝の前記底面部に内接する真円の直径(Db)と前記開口部の内径(D0)とは、D0/10≦Dbの関係を満たす
ことを特徴とする金属部材。
[2]前記金属部材の表面において、互いに隣接する前記溝に挟まれる領域の全面が前記金属基材由来のスパッタ物で覆われていることを特徴とする[1]に記載の金属部材。
[3]金属は、アルミニウム、銅、鉄又はこれらの各金属を含む合金であることを特徴とする[1]又は[2]に記載の金属部材。
[4][1]~[3]のいずれかに記載の金属部材と、前記金属部材の表面に成形された樹脂成形体とを備え、
 前記金属部材と前記樹脂成形体とは、前記溝に樹脂が入り込んだ状態で接合されていることを特徴とする金属樹脂接合体。
[5]前記樹脂成形体は、熱可塑性樹脂又は熱硬化性樹脂を含むものであることを特徴とする[4]に記載の金属樹脂接合体。
[6]金属製の金属基材の表面へのレーザー光の照射によって、前記金属基材の表面に溝を形成するレーザー照射工程を備え、
 前記金属基材の表面に前記溝が形成された金属部材を製造する金属部材の製造方法であって、
 前記溝の開口部の内径(D0)は、20μm~200μmであり、
 前記溝の深さ(L)は、20μm~200μmであり、
 前記溝の前記開口部の内径(D0)に対する前記深さ(L)のアスペクト比(L/D0)は、0.1~5であり、
 前記溝の前記開口部から底面部において、任意の深さの第一位置における第一内径(D1)と、前記第一位置よりも深い任意の第二位置における第二内径(D2)とがD2/D1≦2.5の関係を満たし、
 前記溝の底面部に内接する真円の直径(Db)と前記開口部の内径(D0)とは、D0/10≦Dbの関係を満たす
ことを特徴とする金属部材の製造方法。
[7]前記金属部材の表面において、互いに隣接する前記溝に挟まれる領域の全面が前記レーザー光の照射による金属基材由来のスパッタ物で覆われていることを特徴とする[6]に記載の金属部材の製造方法。
[8]金属は、アルミニウム、銅、鉄又はこれらの各金属を含む合金であることを特徴とする[6]又は[7]に記載の金属部材の製造方法。
[9][6]~[8]のいずれかに記載の製造方法によって得られた金属部材の表面に、樹脂成形体を形成する樹脂成形工程を備え、
 前記金属部材と前記樹脂成形体とが接合された金属樹脂接合体を製造する金属樹脂接合体の製造方法であって、
 前記樹脂成形工程では、前記金属部材と前記樹脂成形体とを、前記溝に樹脂が入り込んだ状態で接合させることを特徴とする金属樹脂接合体の製造方法。
[10]前記樹脂成形工程において、前記金属部材上に熱可塑性樹脂又は熱硬化性樹脂を含む樹脂組成物を用いて成形することを特徴とする[9]に記載の金属樹脂接合体の製造方法。
 本発明の金属部材および金属樹脂接合体は、金属部材と樹脂成形体との接合強度および気密性を向上させることができる。
図1は、溝の形状を特定するにあたり、基準線L1の求め方などの手順を説明するためのものであり、また、実施例1で得られた金属樹脂接合体のSEM断面の観察結果を示す写真でもある。 図2は、図1の一部拡大写真であり、開口部の内径(D0)や溝の深さ(L)を求める方法を説明するためのものである。 図3は、図1の一部拡大写真であり、溝の底面部に内接する真円の直径(Db)を求める方法を説明するためのものである。 図4は、溝の底面部に内接する真円の直径(Db)を求める方法を説明するための別の写真である。 図5は、レーザー光のビーム径と照射間隔との関係を示す模式図である。 図6は、溝を形成する際のレーザー光の走査速度V、レーザー光の周波数K、及びレーザー光のビーム径dの関係を模式的に示した説明図である。 図7は、接合強度評価(1)(せん断試験)の概要を説明するための図である。 図8は、接合強度評価(2)(せん断試験)の概要を説明するための図である。 図9は、金属樹脂接合体の気密性の評価の概要を説明するための図である。 図10は、金属樹脂金属接合体の気密性の評価の概要を説明するための図である。 図11は、接合強度評価の金属樹脂接合体の概要を示すための図である。 図12は、気密性の評価の金属樹脂接合体の概要を示すための図である。 図13は、実施例2で得られた金属樹脂接合体のSEM断面の観察結果を示す写真でもある。 図14は、実施例3で得られた金属樹脂接合体のSEM断面の観察結果を示す写真でもある。 図15は、実施例4で得られた金属樹脂接合体のSEM断面の観察結果を示す写真でもある。 図16は、実施例5で得られた金属樹脂接合体のSEM断面の観察結果を示す写真でもある。 図17は、実施例6に係る、接合強度評価の金属樹脂金属接合体の概要を示すための図である。 図18は、実施例6に係る、気密性の評価の金属樹脂金属接合体の概要を示すための図である。 図19は、実施例6で得られた金属樹脂接合体のSEM断面の観察結果を示す写真でもある。 図20は、実施例7で得られた金属樹脂接合体のSEM断面の観察結果を示す写真でもある。 図21は、実施例8で得られた金属樹脂接合体のSEM断面の観察結果を示す写真でもある。 図22は、比較例1で得られた金属樹脂接合体のSEM断面の観察結果を示す写真でもある。 図23は、図22の一部拡大写真である。 図24は、比較例2で得られた金属樹脂接合体のSEM断面の観察結果を示す写真でもある。 図25は、比較例3で得られた金属樹脂接合体のSEM断面の観察結果を示す写真でもある。
 以下、本発明の金属部材、金属樹脂接合体について、その製造方法と共に詳しく説明する。本発明の以下に説明する構成要素は、一部又は全部を適宜組み合わせることができる。
[1.金属部材および金属樹脂接合体]
 本発明の金属部材は、金属製の金属基材と、金属基材の表面に形成された溝とを備えており、この金属部材は、その表面に接合対象物を接合させて用いることができる。また、本発明の金属樹脂接合体は、金属部材と、金属部材の表面に樹脂成形体とを備えている。
[1-1.金属部材]
<金属基材>
 先ず、本発明の金属部材に使用する金属製の金属基材については、銅又は銅合金からなる銅基材や、鉄又は鉄合金からなる鉄基材や、アルミニウム又はアルミニウム合金からなるアルミ基材等、素材は制限されるものではなく、これを用いて形成される金属樹脂接合体の用途やその用途に要求される強度、耐食性、加工性等の種々の物性に基づいて決めることができる。また、所望の形状に適宜加工して得られる加工材、更にはこれらの加工材を適宜組み合わせて得られる組合せ材等が挙げられる。また、使用する用途にもよるが、通常はその厚みが0.3mm~10mm程度のものを用いる。通常、金属基材の表面には、酸化皮膜が形成されている。酸化皮膜は、大気中で自然に形成される自然酸化皮膜であってもよく、陽極酸化によって形成される陽極酸化皮膜であってもよい。また、熱間圧延によって形成される圧延酸化皮膜であってもよい。
<接合対象物>
 金属部材との接合対象物としては、金属部材と接合可能な材料であれば特に限定されない。接合対象物は、金属部材を形成する金属基材の融点よりも低い温度で接合可能な材料を用いること好ましい。このような接合対象物は、好適には、樹脂材料からなる樹脂成形体である。樹脂成形体については後述する。
<接合面>
 金属部材に接合対象物を接合させるために、金属部材は接合面を有する。この接合面を形成するにあたって、金属基材の一面の一部だけでもよいし、一面の全部や、或いは、両面の一部又は全部などでもよく、使用する用途などに応じて、必要な部分に接合面が形成されればよい。また、接合面の形状、大きさ、配置等についても特に限定されない。組合せ材などの場合においても同様である。なお、本開示において、「接合面」とは、金属基材と樹脂との接合が予定されている領域であって、樹脂との接合のために金属基材の表面に所定の処理が施された領域を称呼するものとする。これに対して、金属基材と樹脂とが接合した領域を「接合部」と称呼して区別する。
<溝>
 金属部材の接合面には、溝が形成されている。この溝は、前記接合面における一部又は全面に形成され得るが、接合対象物との接合強度及び気密性を十分なものとするために接合面の全面に形成されることが好ましい。「接合面の全面」とは、必ずしも接合面の表面積の100%のみに限定されるわけでなく、溝が形成されていない面がごく微小のスポット的に存在している場合を排除するものではない。接合面には、好ましくは90%以上、より好ましくは95%以上で溝が形成されているのがよい。この溝は、金属基材の表面に、後述するレーザー処理を施すことで形成することができる。
 この溝は、μmオーダーサイズの凹凸形状を有するものであり、溝の開口部と溝の深さであったり、溝の任意の位置における内径や、更には、溝の形状がそれぞれ所定の条件を満たすようにする。このような溝の形状に関する条件は、図1~図4に示されるとおりの手順で求めることができる。
 ここで、溝の開口部の内径(D0)や溝の深さ(L)を算出するためには、走査電子顕微鏡(Scanning Electron Microscopy:SEM)を用いて金属部材又は金属樹脂接合体の接合断面の観察を行い、少なくとも10個の凹部(溝)と11個の凸部とが交互に連続して配置されている、レーザー照射で形成された複数の凹凸部を含む断面写真を撮影する。そして、この断面写真に含まれる複数の凹凸部から、溝の開口部の内径(D0)と溝の深さ(L)を算出する。
 具体的には、図1及び図2に示すように、断面写真に以下のような線を設けることにより求める。
 先ず、図1に示したように、上述した断面写真において、任意に選択した連続した凹部(溝)10個について、各凹部のそれぞれの中で最も深い位置となる最深点のうちで最も深いものの位置を通るか、または最深点のうちで最も深いものよりも低い位置を通り、且つ各凹部のそれぞれの最深点の位置からの距離の和が最も小さくなる位置を通る基準線L1を引く。
 次に、図2に示したように、隣接する一組の凸部の中で、低い方の凸部において最も高い位置となる最高点Pt1(低い方の凸部の頂点)から、高い方の凸部に向けて、先の基準線L1と水平になるように基準線L2を引く。その際、基準線L2と高い方の凸部の表面とが初めに交わる位置を交点Pc1として、このPc1と先のPt1との間隔を溝の開口部の内径Dとする。また、基準線L2からこの凹部の中で最も深い位置となる最深点Pb1に向けて、基準線L2に対して垂直な方向に基準線L3を引き、この基準線L3と先の基準線L2と基準線L3とが交わる点を交点Pc2とする。そして、最深点Pb1と交点Pc2との間隔を溝の深さLとする。更に、この凹部(溝)の開口部から底面部において、任意の深さの第一位置における内径をD1とし、この第一位置よりも深い任意の第二位置における内径をD2とする。なお、図2で説明している凹部(溝)は、任意に選択した連続する10個の凹部(溝)の中で最深点が一番深く、その最深点を基準線L1が通過するものであって、図1で示した<8>の凹部(溝)を拡大したものである。
 また、図3は、図2と同じく、図1で示した<8>の凹部を拡大したものである。この凹部において、前述の方法で定めた最深点Pb1を通り、かつ基準線L1と平行な基準線L4を引く。なお、図3を参照して説明する<8>の凹部では、基準線L1と基準線L4とが重なっている。さらに、基準線L4に下端が接する真円であって、その左端及び右端が隣り合う凸部と接し(溝の壁面と接し)、かつ、その直径が1μm以上であるものの中で最も小さい真円を設定する。そして、この真円の直径をDとする。また、他の各凹部についても、前述の方法で求めた最深点Pb1を通り、かつ基準線L1と平行な基準線L4を引き、この基準線L4をもとに、それぞれの凹部において同様にして真円を設定して、その直径をDとする。なお、上記のようにして真円を求めるにあたり、図4に示したように、左端及び右端が隣り合う凸部と接しない(溝の壁面と接しない)場合には、真円の直径Dの値は当該溝の開口部の直径D0であるとする。なお、本明細書において底面部とは、凹部(溝)において、最深点Pb1を通過する基準線L4が存在する部分をいうものとする。底面部は、凹部(溝)の底部に平坦な面が存在することを必須とするものではない。
 本発明においては、このようにして定まる溝の開口部の内径(D0)は20μm~200μmであり、好ましくは40μm~180μm、より好ましくは60μm~150μm、さらに好ましくは80μm~120μmである。当該開口部の内径(D0)が上記下限値以上となる場合、凹部に相当する溝が広くなることから、接合させる樹脂が凹部へ入り込みやすくなり、また、後述のアスペクト比を満足しやすくなる。一方で、開口部の内径(D0)が上記上限値以下となる場合、樹脂の入り込みによる嵌合効果が発揮されやすくなり、また、後述のアスペクト比を満足しやすくなる。
 本発明においては、深さ(L)が、20μm~200μm、好ましくは40μm~180μm、より好ましくは60μm~150μm、さらに好ましくは80μm~120μmである。当該深さ(L)が上記下限値以上となる場合、十分な深さを有することから樹脂の入り込みによる嵌合効果が発揮されやすくなり、また、後述のアスペクト比を満足しやすくなる。一方で、深さ(L)が上記上限値以下となる場合、深さ(L)値及び開口径(D)がともに大きくなることによる粗大な凹凸構造が形成されることを防いで、樹脂の入り込みによる嵌合効果が発揮されやすくなり、また、後述のアスペクト比を満足しやすくなる。
 そして、本発明においては、溝の開口部の内径(D0)に対する溝の深さ(L)の割合を示すアスペクト比(L/D0)は、0.1~5であり、好ましくは0.5~4、より好ましくは0.7~3、さらに好ましくは1~2である。L/D0が上記下限値を上回ることで、溝の開口部の内径に対して深さが相対的に小さすぎない程度のサイズとなって、溝が適度な深さを有する形状となる。これにより、樹脂が流入した際に金属部材と樹脂との機械的接合(アンカー効果)による相互作用が発揮されやすくなる形状となることによって、金属部材と樹脂との界面剥離を防いで、接合強度が向上しやすくなる。また、L/D0が上記下限値を上回ることで、後述するような樹脂と作用する水酸基含有皮膜の単位面積当たりの表面積が増加して、樹脂成形体と相互作用する水酸基の量が増加することにより、気密性が向上しやすくなる。また、アスペクト比が上記上限値を下回ることで、溝の開口部の内径に対して深さが相対的に大きすぎない程度のサイズとなって、溝の幅が開口部から底面部へ向けて次第に狭まる略三角形状の形状となりやすくなる。これにより、溝の深部まで樹脂が流入することで溝と樹脂との間に生じる空隙の発生を抑え、溝の深部でも樹脂との化学的接合が保たれることで、気密性が向上しやすくなる。また、アスペクト比が上記上限値を下回ることで、溝の凸部が極度に先細りとなることで折れやすくなることによる機械的強度の低下を防ぎ、接合強度が向上しやすくなる。
 また、本発明においては、溝の開口部から底面部において、任意の深さの第一位置における第一内径(D1)と、この第一位置よりも深い任意の第二位置における第二内径(D2)とがD2/D1≦2.5の関係を満たし、好ましくはD2/D1≦2、より好ましくはD2/D1≦1.7、さらに好ましくはD2/D1≦1.5である。D2/D1の下限値は特に限定されないが、D2/D1≧0.5の関係を満たすことが好ましい。D1とD2との関係は、同じ溝の中で、溝の深さの異なる任意の2点の位置の第一内径(D1)と第二内径(D2)とを取った場合に、これらの比であるD2/D1のうちで最大値を取るものが上記関係を満たすことを意味している。言い換えれば、浅い位置における第一内径(D1)が、深い位置における第二内径(D2)に比べて相対的に小さすぎない関係にあることを意味している。ここで、D2/D1が上記上限値を上回る場合には、溝の開口部から底面部に向かうにつれて、局所的に幅が過度に狭くなっている箇所が生じることで、溝の途中で樹脂の流入が止まって溝が閉塞して、底面部付近まで樹脂が流入しにくくなる。これに対して、D2/D1が上記上限値を下回ることにより、溝の深部まで樹脂を流入させやすくなる。したがって、溝の途中から金属基材と樹脂との間に空隙が発生することを抑え、溝の深部でも樹脂との化学的接合が保たれることで、気密性が向上しやすくなる。また、樹脂の流入が溝の途中で止まることなく、開口部から底面部までの全体で金属基材と樹脂との相互作用が生じることで、接合強度を高めやすくなる。
 更に、本発明においては、溝の底面部に内接する真円の直径(Db)と溝の開口部の内径(D0)とがD0/10≦Db(括弧書きで変形した式を示すと、D0/Db≦10の関係を満たす。以下同様。)の関係を満たす。溝の底面部に内接する真円の直径(Db)と溝の開口部の内径(D0)との関係は、好ましくはD0/8≦Db(D0/Db≦8)であり、より好ましくはD0/6≦Db(D0/Db≦6)であり、さらに好ましくはD0/5≦Db(D0/Db≦5)である。D0/Dbの下限値は特に限定されないが、D0/Db≧1の関係を満たすことが好ましい。この関係は、溝の最深部に位置する底面部付近の幅が、開口部に対して相対的に小さすぎない関係にあることを示している。ここで、D0/Dbの上記上限値を上回る場合には、溝の底面部付近の幅が過度に狭まっていることで、開口部から流入した樹脂が底面部まで流入しにくくなる。これに対して、D0/Dbが上記上限値を下回ることで、溝の開口部から底面部に至るまで樹脂を流入させやすくなっている。これにより、底面部付近において金属基材と樹脂との間に空隙が発生することを抑え、溝の最深部でも金属基材と樹脂との化学的接合が保たれることで、気密性が向上しやすくなる。また、底面部付近でも金属基材と樹脂との相互作用が生じることで、接合強度を高めやすくなる。
 本発明では、溝の開口部の内径(D0)と溝の深さ(L)がそれぞれ所定の値を示すと共に、これらのアスペクト比(L/D0)が所定の値を示し、また、溝の任意の深さの第一位置における第一内径(D1)とこれよりも深い任意の第二位置における第二内径(D2)とがD2/D1≦2.5の関係を満たし、更には、溝の底面部に内接する真円の直径(Db)と溝の開口部の内径(D0)とがD0/10≦Dbの関係を満たす必要がある。そして、これらの各条件は、上述したように、SEMを用いて金属部材又は金属樹脂接合体の接合断面の観察を行い、少なくとも10個の溝(凹部)と11個の凸部とが交互に連続して配置されている、レーザー照射で形成された複数の凹凸部を含む断面写真を撮影して、これら任意に選んだ10個の溝の中で6個以上の溝が上記の条件を満たすものであればよい。より好ましくは7個以上の溝が上記の条件を満たすものであればよく、さらに好ましくは8個以上の溝が上記の条件を満たすものであればよく、特に好ましくは9個以上の溝が上記の条件を満たすものであればよく、最も好ましくは任意に選んだ10個の溝の全てが上記の条件を満たすものであるのがよい。
 本発明では、接合面の表面粗さRz(最大高さ)は、好ましくは150μm以下であり、より好ましくは120μm以下であり、さらに好ましくは90μm以下である。また、接合面の表面粗さRz(最大高さ)は、好ましくは10μm以上、より好ましくは20μm以上、さらに好ましくは30μm以上である。接合面の表面粗さRzが上記上限値以下であることにより、溝の深部まで樹脂が流入することで溝と樹脂との間に生じる空隙の発生を抑え、溝の深部でも樹脂との化学的接合が保たれることで、気密性が向上しやすくなる。また、接合面の表面粗さRzが上記下限値以下であることにより、樹脂が流入した際に金属部材と樹脂との機械的接合による相互作用が発揮されやすくなる形状となることによって、金属部材と樹脂との界面剥離を防いで、接合強度が向上しやすくなる。なお、この表面粗さRzはJIS B 0601-2001に準拠する最大高さを表す。表面粗さRzは実施例で説明する方法で測定することができる。
<水酸基含有皮膜>
 接合面には、水酸基を含有する水酸基含有皮膜が形成されていることが好ましい。また、接合面には、水酸基含有皮膜が全面にわたって形成されていることがより好ましい。接合面は上述した所定の溝を有する凹凸部が形成されているが、この凹凸部にはレーザー処理によって形成された水酸基含有皮膜が全面にわたって形成されていることが好ましい。そして、この凹凸部については、巨視的には凹部と凸部が交互に連続して形成された「マクロ凹凸部」と、そのマクロ凹凸部の表面に形成された「微細凹凸部」とを有している。
 水酸基含有皮膜は、グロー放電発光分析法(Glow discharge optical emission spectrometry:GD-OES)によって、金属部材の表層付近に存在する水酸基を検出することで確認することができる。具体的には、まず、GD-OESを用いて、金属部材の接合面における厚さ方向に対して、金属基材を構成する主金属および水酸基に由来する発光強度(V)を測定する。続いて、主金属に由来する発光強度の積算値(面積)から、金属基材を構成する主金属の検出量を算出する。また、水酸基に由来する発光強度の積算値から、水酸基の検出量を測定する。さらに、主金属の検出量と水酸基の検出量との合計量に対する、水酸基の検出量の割合を、水酸基存在率として算出する。GD-OESによって得られる発光スペクトルのうち、281nmおよび309nmに現れるピークを、水酸基に由来するピークとする。GD-OESによる金属部材の表層付近の発光強度の測定は、表面から200nmの深さまでの測定を行えばよい。具体的には、金属基材を構成する主金属の元素および水酸基に由来する発光強度が検出されてから、主金属の元素に対応する200nmのスパッタリングに要する時間が経過するまでの範囲を測定する。この測定の範囲(時間)は、測定対象となる主金属元素を高純度で含む標準試料のスパッタリングレート(μm/min)を予め測定することにより把握することができる。GD-OESを利用して発光強度を測定することで、金属部材の最表層に存在する成分だけではなく、樹脂との接合に寄与しうる、ある程度の深さまで存在する成分を検出して評価を行うことができる。
 水酸基存在率は、好ましくは4%以上、より好ましくは5%以上、さらに好ましくは6%以上、特に好ましくは7%以上である。水酸基存在率が上記下限値以上であることにより、金属部材の表面付近に存在する水酸基が増加し、樹脂成形体に含まれる官能基との作用が強まることで、金属樹脂接合体の気密性が向上する傾向にある、また、このとき、金属樹脂接合体の接合強度も向上する傾向にある。水酸基存在率の上限は特に限定されないが、好ましくは70%以下、より好ましくは50%以下、さらに好ましくは40%以下、特に好ましくは30%以下である。水酸基存在率は、水酸基の形成方法によって変化する。例えば、金属基材がレーザー処理を受けた場合に比して、金属基材が、温水もしくは熱水による水和酸化物処理;化成処理;ジンケート処理;等の湿式処理を受けた場合の方が高くなる傾向にある。レーザー処理により水酸基含有皮膜が形成される場合には、水酸基存在率は、好ましくは30%以下、より好ましくは20%以下、さらに好ましくは15%以下、特に好ましくは10%以下である。
 水酸基含有皮膜は、金属基材を構成する金属に応じて、例えば、水酸化アルミニウム(Al(OH)3)、酸化水酸化アルミニウム(AlO(OH))、水酸化銅(Cu(OH)2)、水酸化鉄(II)(Fe(OH)2)、酸化水酸化鉄(III)(FeO(OH))、等の金属基材を構成する金属の水酸化物(金属水酸化物)、または金属基材を構成する金属の酸化水酸化物(金属酸化水酸化物)を含んでいる。また、水酸基含有皮膜は、金属基材を構成する金属に応じて、例えば、酸化アルミニウム(Al23)、酸化銅(I)(Cu2O)、酸化銅(II)(CuO)、酸化鉄(II)(FeO)、酸化鉄(II,III)(Fe34)、酸化鉄(III)(Fe23)、等の金属基材を構成する金属の酸化物(金属酸化物)を含んでいてもよい。
 金属基材の表面には、レーザー照射に起因して形成される金属酸化物が照射部の周辺に堆積した堆積物が皮膜状に形成されている。このような堆積物からなる金属溶融層は、前記のとおりの金属酸化物として酸素を含有している。金属溶融層は、最表層に水酸基を有する水酸基含有皮膜を有している。本発明においては前記のとおり、接合面の全面が、マクロ凹凸部及び微細凹凸を有する水酸基含有皮膜で覆われている。
 なお、本明細書において、「接合面の全面」とは、必ずしも接合面の表面積の100%のみに限定されるわけでなく、未照射部によって水酸基含有皮膜に覆われていない面がごく微小のスポット的に存在している場合を排除するものではない。接合面は、好ましくは90%以上、より好ましくは95%以上が水酸基含有皮膜に覆われていることがよい。
<マクロ凹凸部>
 マクロ凹凸部は、μmオーダーサイズの凹凸形状を有する構造体であって、水酸基含有皮膜の表面に形成されている。マクロ凹凸部は、レーザー光の照射を受けて金属基材が穿孔されることで生じる凹部と、レーザー光の照射によって生じた金属酸化物の堆積物からなる凸部とからなる構造を有している。そして、複数回のレーザー光の照射が互いに隣接して行われることで、凹部と凸部とからなる繰り返し構造を有している。このうちの凹部については、上述した本発明の金属部材における溝であり、所定の形状を備えたものである。また、凸部は隣接する溝の間に形成されるものであり、特に本発明においては、互いに隣接する溝(凹部)に挟まれる領域(凸部)の全面がレーザー照射に伴う金属基材由来の堆積物(スパッタ物)で覆われるようになる。なお、このようなマクロ凹凸部は、先に述べた通り、金属部材の表面または断面を、例えば、走査電子顕微鏡(Scanning Electron Microscopy:SEM)を用いて観察することで確認することができる。
<微細凹凸部>
 微細凹凸部は、nmオーダーサイズの凹凸形状を有する構造体であって、水酸基含有皮膜の表面のマクロ凹凸部上に形成されている。微細凹凸部は、レーザー照射によって水酸基含有皮膜を有する金属溶融層が形成された際に、水酸基含有皮膜の表面に形成される。微細凹凸部は、金属部材の表面または断面を、例えば、走査電子顕微鏡を用いて観察することで確認することができる。
 微細凹凸部は、10nm~50nmのナノサイズの微細な開口部が形成されているとともに、その膜厚が10nm~1000nmの微細な構造を持つ。SEMによる観察を行った場合、微細凹凸部は、上記サイズの微細な開口部を有する海綿状の構造体として観察される。微細凹凸部は、水酸基含有皮膜と同様に、金属水酸化物または金属酸化水酸化物を含んでいる。また、微細凹凸部は、水酸基含有皮膜と同様に、金属酸化物を含んでいてもよい。
[1-2.樹脂成形体]
 次いで、所定の接合面を有する金属部材に対して、接合対象物として好適に用いられる樹脂成形体について説明する。樹脂成形体は樹脂組成物を金属部材表面に成形させることにより形成することができる。樹脂成形体は、熱可塑性樹脂または熱硬化性樹脂を含んでいる。
 熱可塑性樹脂としては、用途に応じて適宜公知のものから選択することができるが、例えば、ポリアミド系樹脂(PA6、PA66等の脂肪族ポリアミド、芳香族ポリアミド)、ポリスチレン、ABS樹脂、AS樹脂等のスチレン単位を含む共重合体、ポリエチレン、エチレン単位を含む共重合体、ポリプロピレン、プロピレン単位を含む共重合体、その他のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンスルフィド系樹脂を挙げることができ、これらを1種又は2種以上で使用することができる。この中でも、樹脂成形時の流動性が高く凹部に入り込みやすいなどの理由から、ポリアミド系樹脂、ポリフェニレンスルフィド系樹脂を用いることが好ましい。
 熱硬化性樹脂としては、用途に応じて適宜公知のものから選択することができるが、例えば、尿素樹脂、メラミン樹脂、フェノール樹脂、レソルシノール樹脂、エポキシ樹脂、ポリウレタン、ビニルウレタンを挙げることができ、これらを1種又は2種以上で使用することができる。この中でも、反応硬化型接着剤は水酸基含有皮膜との相性がよく、反応面積が大きくなるに伴い高い接合強度が得られるなどの理由から、エポキシ樹脂系、アクリル樹脂系、ウレタン樹脂系を用いることが好ましい。
 また、樹脂成形体として、例えば、接着剤を用いることもできる。接着剤としては、上述した熱可塑性樹脂もしくは熱硬化性樹脂、またはその他のエラストマーまたはゴムを含み、接着性を示す化合物を用いることができる。接着剤としては、用途に応じて適宜公知のものから選択することができるが、例えば、乾燥固化型接着剤として、アクリル樹脂系エマルジョン形、ゴム系ラテックス形、酢酸ビニル樹脂系溶剤形、ビニル共重合樹脂系溶剤形、ゴム系溶剤形などが挙げられ、また、反応硬化型接着剤として、エポキシ樹脂系、ウレタン樹脂系、変性シリコーン樹脂系ものなどを挙げることができ、これらを1種又は2種以上で使用することができる。この中でも、反応硬化型接着剤は水酸基含有皮膜との相性がよく、反応面積が大きくなるに伴い高い接合強度が得られるなどの理由から、エポキシ樹脂系、アクリル樹脂系、ウレタン樹脂系を用いることが好ましい。
 さらに、熱可塑性エラストマーを用いることができ、例えば、スチレン系エラストマー、塩化ビニル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、ポリアミド系エラストマーを挙げることができ、これらを1種又は2種以上で使用することができる。
 また、上記のそれぞれの樹脂(樹脂組成物)においては、金属部材との間の密着性、機械的強度、耐熱性、寸法安定性(耐変形、反り等)、電気的性質等の性能をより改善するために、繊維状、粉粒状、板状等の充填剤や、各種のエラストマー成分を添加することができる。
 更に、樹脂(樹脂組成物)には、一般的に添加されてもよい公知の添加剤、すなわち難燃剤、染料や顔料等の着色剤、酸化防止剤や紫外線吸収剤等の安定剤、可塑剤、潤滑剤、滑剤、離型剤、結晶化促進剤、結晶核剤等を、要求される性能や本発明の目的を阻害しない範囲において、適宜添加することができる。
[1-3.金属樹脂接合体]
 金属樹脂接合体は、樹脂が金属部材表面の接合面(マクロ凹凸部、微細凹凸部)に入り込んだ状態で成形され、接合面を介して金属部材と樹脂成形体とが一体的に接合されている。金属部材及び樹脂成形体をそれぞれ1つずつ用いて接合させてもよいし、或いは、それらのいずれか又は両方を複数用いて接合させてもよく、さらには、それらの複数のセットを任意に積層させたような態様であってもよく、用途に応じて適宜決定することができる。
 例えば、金属樹脂接合体は、金属部材と樹脂成形体とが、積層または連続して配置された状態で接合している金属-樹脂接合体であってもよい。または、金属樹脂接合体は、金属部材と樹脂成形体と金属部材とが、この順で積層または連続して配置された状態で接合している金属-樹脂-金属接合体であってもよい。または、金属樹脂接合体は、樹脂成形体と金属部材と樹脂成形体とが、この順で積層または連続して配置された状態で接合している樹脂-金属-樹脂接合体であってもよい。
 金属樹脂接合体が、樹脂成形体を介して2以上の金属部材を接合する金属-樹脂-金属接合体である場合には、金属部材に挟まれた状態で熱可塑性樹脂または熱硬化性樹脂を成形した樹脂成形体を備えるものであってもよい。または、熱可塑性樹脂もしくは熱硬化性樹脂等を含む接着剤を樹脂成形体として用いて、金属部材が接着剤を介して接合されたものであってもよい。
[2.金属部材および金属樹脂接合体の製造方法]
 本発明の金属部材の製造方法は、表面に接合対象物との接合面を備えた金属部材の製造方法であって、金属製の金属基材の表面へのレーザー光の照射によって、金属基材の表面に溝を形成するレーザー照射工程を備えている。本発明の金属樹脂接合体の製造方法は、金属部材の表面に樹脂成形体を接合させる樹脂成形工程を備えている。
[2-1.金属部材の製造方法]
<準備工程>
 本発明の金属部材の製造方法では、レーザー照射工程に先駆けて、金属基材の表面の前処理として、脱脂処理、エッチング処理、デスマット処理、化学研磨処理、及び電解研磨処理等の前処理を施す準備工程を備えていてもよい。
<レーザー照射工程>
 本発明は、金属製の金属基材の表面にレーザー光を照射する処理(以下、単に「レーザー処理」などという。)を施す。レーザー処理によって、接合対象物との接合面を形成させて、本発明に係る金属部材を得る。ここで、レーザーとしては、公知のレーザーを使用することができるが、本発明のようにスポット的に金属基材を加工することに好都合であることから、パルス発振レーザーを用いることが好ましく、例えば、YAGレーザー、YVO4レーザー、半導体レーザー、ファイバーレーザーを用いることがよい。
 このレーザー処理によって金属基材に所定の溝を有した接合面を形成する原理は概ね次のとおりである。すなわち、レーザー照射によるエネルギーによって金属基材が溶融・蒸発するが、蒸発によって穿孔されることでその空間が凹部の基となり、その凹部の両側(両隣)のレーザーが照射されない部分が凸部の基となる。それと同時に、溶融した金属部分は一部又は全部が酸化されて金属酸化物となり、これが凹部となる照射部の周辺に堆積することにより、凸部が形成される。金属酸化物からなる堆積物は、凹部と凸部を覆って皮膜状に形成される。このように、金属基材の表面に形成された金属酸化物からなる堆積物によって、マクロ凹凸部の凹凸形状を形作る金属溶融層が形成される。さらに、金属酸化物は少なくとも多少の部分的イオン性を持っており、金属酸化物の新性表面には金属イオン(Al3+)と酸化物イオン(O2-)が存在している。静電的中和性から、空気中の水分と反応することで、金属溶融層の表面に存在する金属酸化物の水酸基化が起こり、金属溶融層の表面が水酸基で覆われることになる。このようにして金属基材にマクロ凹凸部が形成されると共に、その金属溶融層の最表層には水酸基を含有する水酸基含有皮膜が形成される。なお、この水酸基含有皮膜に着目すれば、巨視的に凹部と凸部が交互に連続して形成されたマクロ凹凸部と、そのマクロ凹凸部の表面に形成された微細凹凸部とを有している。
 なお、金属部材にレーザー照射を受けないレーザー未照射部が存在している場合には、レーザー未照射部には金属溶融層が存在しておらず、水酸基含有皮膜も存在してない。通常、レーザー未照射部には、酸化皮膜が形成されている。レーザー未照射部は、水酸基含有皮膜を有さないため、水酸基に起因する化学的接合による気密性の向上が生じない。また、レーザー未照射部が平坦な場合には、マクロ凹凸部(溝)に起因する機械的接合による接合強度の向上が見られない。したがって、接合面にレーザー未照射部が残存しており、接合面の全体に水酸基含有皮膜が形成されていない場合には、金属樹脂接合体の気密性および接合強度が低下する。
<レーザー処理条件>
 本発明は、上述したような所定の溝を有する金属部材を得るために、次のような点を考慮したレーザー処理条件に設定することが好ましい。
 レーザー処理は、単位面積当たりのレーザー光の照射エネルギー(以降、「エネルギー密度」とも称する。)の影響を受ける。エネルギー密度は、レーザー処理の対象となる対象物(ワーク)において、レーザー光が照射されるレーザー被照射部が、単位面積と単位時間当たりに受けるレーザー出力を表す。エネルギー密度(J/mm2)は、レーザー光の出力W(W)、レーザー光の走査回数N(回)、レーザー光の照射間隔C(mm)、レーザー光の走査速度V(mm/s)、レーザー被照射部におけるレーザー光の照射方向と直行する長さLength、レーザー被照射部におけるレーザー光の照射方向と平行な幅Width、から、下記式(A1)によって表される。
 エネルギー密度=(((Length/C)×Width×N)/V)×W)/(Length×Width)   ・・・式(A1)
 式(A1)を変形すると以下の式(A2)が得られる。エネルギー密度は、式(A2)によって算出することができる。
 エネルギー密度=(W×N)/(C×V)   ・・・式(A2)
 エネルギー密度は、好ましくは0.2J/mm2以上、より好ましくは0.5J/mm2以上である。エネルギー密度が増加すると、レーザー処理を受けた金属基材の表面に溝ができて、水酸基を有する微細凹凸部が形成されやすくなる。また、所定の水酸基存在率を有する水酸基含有皮膜が形成されやすくなる。さらに、エネルギー密度が増加すると、金属基材の表面に形成されるマクロ凹凸部の凹部が深く形成されて、レーザー処理後の金属部材の表面粗さが大きくなる傾向にある。なお、金属基材を構成する金属の融点が高く、熱拡散が大きいほど、金属基材がレーザー光による作用を受けにくくなる傾向にある。上述した事情を考慮して、エネルギー密度は、レーザー処理の対象となる金属にあわせて変更することが望ましい。
 アルミニウムを主金属とする金属基材に対してレーザー処理を行う場合には、エネルギー密度は、好ましくは0.2J/mm2以上、より好ましくは0.5J/mm2以上、さらに好ましくは1J/mm2以上、特に好ましくは1.5J/mm2以上である。また、アルミニウムを主金属とする金属基材に対してレーザー処理を行う場合には、エネルギー密度は、好ましくは5J/mm2以下、より好ましくは4J/mm2以下、さらに好ましくは3J/mm2以下である。
 鉄を主金属とする金属基材に対してレーザー処理を行う場合には、エネルギー密度は、好ましくは0.5J/mm2以上、より好ましくは1J/mm2以上、さらに好ましくは2J/mm2以上、特に好ましくは3J/mm2以上である。また、鉄を主金属とする金属基材に対してレーザー処理を行う場合には、エネルギー密度は、好ましくは10J/mm2以下、より好ましくは8J/mm2以下、さらに好ましくは6J/mm2以下である。
 銅を主金属とする金属基材に対してレーザー処理を行う場合には、エネルギー密度は、好ましくは0.5J/mm2以上、より好ましくは2J/mm2以上、さらに好ましくは4J/mm2以上、特に好ましくは6J/mm2以上である。また、銅を主金属とする金属基材に対してレーザー処理を行う場合には、エネルギー密度は、好ましくは20J/mm2以下、より好ましくは15J/mm2以下、さらに好ましくは10J/mm2以下である。
 エネルギー密度が上記下限値以上であることにより、レーザー処理を受けた金属部材の表面に溝ができて、水酸基を有する微細凹凸部が形成されやすくなる。また、所定の水酸基存在率を有する水酸基含有皮膜が形成されやすくなる。したがって、水酸基を有する微細凹凸部及び水酸基含有皮膜によって、金属樹脂接合体の気密性及び接合強度が向上しやすくなる。また、エネルギー密度が上記下限値以上であることにより、金属基材の表面に形成されるマクロ凹凸部の凹部の深さ(L)が大きくなり、アスペクト比(L/D)が大きくなる傾向にある。したがって、マクロ凹凸部に樹脂成形体が入り込むことで、マクロ凹凸部と樹脂成形体との機械的接合(アンカー効果)が発揮されることにより、接合強度が向上しやすくなる。エネルギー密度が上記上限値以下であることにより、金属基材の表面に形成されるマクロ凹凸部の凹部深さ(L)が過度に大きくなり、アスペクト比(L/D)が過度に大きくなることを防ぎやすくなる。したがって、マクロ凹凸部の凹部の深部にまで樹脂成形体が入り込むことができ、マクロ凹凸部の全体で金属部材の水酸基と樹脂成形体との官能基との化学的接合が発揮されることにより、気密性が向上しやすくなる。また、マクロ凹凸部の凸部の構造が細長く尖った形状となることを防いで、凸部が折れるなどによる機械的強度の低下を抑えることができる。また、金属樹脂接合体が破断する際に金属部材での破壊が生じることを防ぐことができる。
 レーザー処理におけるレーザー条件(レーザー処理条件)は、上述したエネルギー密度を達成するように適宜設定すればよい。レーザー処理条件のパラメータとしては、レーザー光の出力(W)、レーザー光の周波数(kHz)、レーザー光のビーム径(μm)、レーザー光の照射間隔(μm)、レーザー光の走査速度(mm/s)、レーザー光の走査回数(回)が挙げられる。なお、走査回数とは、同一の照射軌跡に沿ってレーザー光を繰り返し照射する回数をいう。
 ここで、レーザー光のビーム径と照射間隔との関係について、図5を参照して説明する。レーザー光の照射間隔とは、対象物に照射される一のレーザー光の軌跡6と、当該レーザーと隣接して照射される他のレーザー光の軌跡6’との間の間隔をいう。より具体的には、レーザー光の照射間隔は、当該一のレーザー光の軌跡6における走査方向3と直行する方向のいずれか一方側の端部と、当該他のレーザー光の軌跡6’における当該一のレーザー光と同じ側の端部との間の距離をいう。パルスレーザ―を照射した場合には、レーザー光の軌跡は、個々のレーザーパルスによって形成される細孔が連続した軌跡として表される。この場合、レーザー光の照射間隔5は、連続する細孔によって形成されるレーザー光の軌跡に挟まれた領域の幅と、ビーム径4の大きさとを足し合わせた長さに相当する。
 レーザー処理の対象となる金属基材の主金属がアルミニウム(Al)、銅(Cu)、ステンレス(SUS)である場合について、レーザー処理条件の例を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明におけるレーザー処理において、レーザー照射後の金属部材に溝を形成するためには、レーザー光の走査速度V(mm/s)、レーザー光の周波数K(kHz)、及びレーザー光のビーム径d(μm)としたときに、好ましくは、V≦d×Kの関係を満たすようにするのがよい。ここで、図6(b)は、レーザー光がV=d×Kの状態で照射された場合を図示したものである。図6(a)に示すように、レーザー光の走査速度Vがd×K以下となる場合、パルスレーザーを構成するビームによって形成される個々のスポットが互いに接するように照射されて、レーザーの照射軌跡に未照射部が存在しないようにすることができる。このため、溝の形成を考慮すれば、レーザー光の走査速度Vの上限速度はd×Kとなる。そのため、図6(a)のようにV≦d×Kの関係を満たすようすることで、気密性および接合強度を向上させることのできる溝の形成を行いやすくすることができる。ちなみに、ビーム径d=60(μm)、レーザー光の周波数K=60(kHz)であるとすれば、溝形成のための上限の走査速度はV=3600(mm/s)となる。
 上述の通り、エネルギー密度が増加することで、溝の深さが大きくなる傾向にあり、また、接合面の表面粗さが大きくなる傾向にある。ここで、エネルギー密度が同じ値となるようにレーザー処理を行うには、式(A2)で表されるエネルギー密度の式において、(N/V)の項の値が一定となるように、レーザー光の走査回数Nとレーザー光の走査速度Vとを調整すればよい。この場合には、走査回数Nと走査速度Vとの両方とも小さい値を取る場合よりも、走査回数Nと走査速度Vとの両方とも大きい値を取る場合の方が、溝の幅が大きくなり、樹脂が流れ込みやすい形状を有する溝を形成しやすい傾向にある。
 言い換えれば、レーザー光の出力Wとレーザー光の照射間隔Cとを一定に保つとともに、走査回数Nを走査速度Vで除算した(N/V)の項の値を一定に保つことで、エネルギー密度が同じ値となる条件でレーザー処理を行うことができる。このとき、(N/V)の項の値を一定に保ちながら、走査回数Nと走査速度Vとを増加させることで、溝の深さ(接合面の表面粗さ)が同程度でありながら、溝の幅を大きくすることができる。これにより、樹脂が流れ込みやすい形状を有する溝を形成しやすくなる。
 これは、走査回数Nが少なく且つ走査速度Vが低い条件でレーザー処理を行った場合には、金属基材がレーザー光による一度の走査を受ける際に多くのエネルギーを受け取ることで、溝底部から生じた溶融金属からなるスパッタ物が金属表面に飛散しにくいことが影響していると考えられる。これに対して、走査回数Nが多く且つ走査速度Vが速い条件でレーザー処理を行った場合には、金属基材がレーザー光による複数回の走査を受けて、複数回にわたってのエネルギーを受け取ることで、溝底部から生じた溶融金属からなるスパッタ物が金属表面に飛散しやすくなることが影響していると考えられる。
 ここで、パルスレーザーを用いる場合、一般的なレーザー装置では、周波数が小さいほどパルスレーザーの1パルスあたりのパルス幅が大きくなる傾向にある。また、パルス幅が大きいと、金属基材に与える熱履歴が大きくなる。これにより、レーザー処理によって金属基材上に形成される溶融領域が、レーザーの照射された位置から、金属基材表面の外側の領域に広がりやすくなる。また、周波数が小さくパルス幅が大きいほど、レーザー光のピークパワーが大きくなり、スパッタ物が多くなる傾向にある。結果として、周波数が小さいほど、開口部が広い、逆三角形状の溝が形成されやすくなる。一方で、周波数が大きいほど、パルス幅が小さくなる傾向にある。また、パルス幅が小さいと、金属基材に与える熱履歴が小さくなる。これにより、レーザー処理によって金属基材上に形成される溶融領域が、金属基材表面の外側の領域に広がりにくくなり、狭い範囲に留まりやすくなる。また、周波数が大きくパルス幅が小さいほど、レーザー光のピークパワーが小さくなり、スパッタ物が少なくなる。結果として、周波数が大きいほど、開口部が狭く、長方形状の細長い溝が形成されやすくなる。
 樹脂が流れ込みやすい形状を有する溝を形成するためのレーザー処理条件を決定するためには、まずは金属基材に対してエネルギー密度を変化させながらレーザー処理を行うことで、金属基材に応じた目的の深さの溝を形成することのできる所定のエネルギー密度を決定する。次に、この所定のエネルギー密度を保つとともに、走査回数Nを走査速度Vで除算した(N/V)の項の値を一定に保ちながら、走査回数Nの値と走査速度Vの値とを増加させていくことで、溝の幅が広がって樹脂が流れ込みやすい形状となるようなレーザー処理条件を設定することができる。またこのとき、周波数を小さくすることで、開口部が広く、樹脂が流れ込みやすい形状となるようなレーザー処理条件を設定することができる。
 上述した理由から、樹脂が流れ込みやすい形状を有する溝を形成するためには、レーザー処理条件として、比較的に多い範囲の走査回数(照射回数)を設定することが望ましい。このようなレーザー処理条件の走査回数は、好ましくは1回以上、より好ましくは2回以上、さらに好ましくは3回以上であり、好ましくは20回以下、より好ましくは15回以下、さらに好ましくは10回以下である。
 また、上述した理由から、樹脂が流れ込みやすい形状を有する溝を形成するためには、レーザー処理条件として、比較的に速い範囲の走査速度を設定することが望ましい。このようなレーザー処理条件の走査速度は、好ましくは200mm/s以上、より好ましくは300mm/s以上、さらに好ましくは400mm/s以上であり、好ましくは20000mm/s以下、より好ましくは1500mm/s以下、さらに好ましくは1000mm/s以下である。
 また、上述した理由から、樹脂が流れ込みやすい形状を有する溝を形成するためには、レーザー処理条件として、比較的に小さい範囲の周波数を設定することが望ましい。このようなレーザー処理条件の周波数は、好ましくは30kHz以上、より好ましくは40kHz以上、さらに好ましくは50kHz以上であり、好ましくは200kHz以下、より好ましくは100kHz以下、さらに好ましくは80kHz以下である。
[2-2.金属樹脂接合体の製造方法]
 金属樹脂接合体は、樹脂組成物を原料として、金属部材表面に樹脂成形体を成形させることによって製造する。
 ここで、樹脂組成物の成形(樹脂成形体の形成)方法としては、使用される樹脂に合わせて適宜好ましい成形方法を採用することができる。例えば、熱可塑性樹脂を用いる場合には、金属部材上に熱可塑性樹脂を含む組成物を射出成形することにより樹脂成形体を一体的に接合させて金属樹脂接合体として得ることや、或いは、射出成形で予め樹脂成形体として得たうえで、得られた樹脂成形体を金属部材表面にレーザー溶着、振動溶着、超音波溶着、ホットプレス溶着、熱板溶着、非接触熱板溶着又は高周波用着などの手段を用いた熱圧着により一体的に接合させる方法などを挙げることができるが、これらに限定されない。
 また、例えば、熱硬化性樹脂を用いる場合には、金属部材上に熱硬化性樹脂を含む組成物の射出成形することにより樹脂成形体を一体的に接合させて金属樹脂接合体として得ることや、或いは、所定の粘度に調整した組成物を金属部材上に塗布するなどしてから一体的に加熱・加圧する圧縮成形する方法などを挙げることができるが、これらに限定されない。
 また、接着剤を用いる場合には、金属部材上に塗布し、乾燥させて硬化させることができるが、必要により加温などの操作を行っても構わず、使用する接着剤に合った成形条件を採用することができる。
[3.作用効果]
 従来より、金属樹脂接合体の接合強度を高めるために、金属製材料をレーザー光で処理した際に所定の開口径及び深さを有するマクロ凹凸部を形成することにより、樹脂が入り込むことで機械的な相互作用を起こしやすい構造を形成することが有効であるとされている。また、該レーザー処理により生じる金属基材の溶融部が酸素を含有する酸素含有皮膜であり、この酸素含有皮膜が接合強度の発現に寄与することが知られていた。本発明者らが詳細に検討した結果、レーザー処理により形成される凹凸部の中でも、凹部に相当する溝を所定の形状に制御することが効果的であるという知見を得た。すなわち、溝の開口部の内径(D0)や溝の深さ(L)と共にこれらのアスペクト比(L/D0)、また、溝の任意の深さにおける第一内径(D1)とそれよりも深い任意の位置での第二内径(D2)との関係、更には、溝の底面部に内接する真円の直径(Db)と溝の開口部の内径(D0)との関係を特定することで、樹脂が入り込みやすい構造になって、樹脂成形体と接合した場合に、実際に高い接合強度が得られ、また十分な気密性を担保できる金属樹脂接合体が得られるようになる。
 以下、実施例、比較例及び試験例に基づいて、本発明の好適な実施の形態を具体的に説明するが、本発明がこれにより限定されて解釈されるものでもない。
[評価方法]
<接合断面の評価>
 樹脂成形体を接合する前の金属部材、又は金属樹脂接合体を厚さ方向に切断して、エポキシ樹脂に埋め込んだ後、湿式研磨を行い、接合断面評価用のサンプルを作製した。接合断面評価用のサンプルに対して、厚さ方向断面を走査型電子顕微鏡(日本電子製、JSM-7200F)により倍率100~500倍で観察した。観察断面から、先述した方法により、溝の開口部の内径(D0)、溝の深さ(L)を測定するとともに、アスペクト比(L/D0)を算出した。また、同様に、溝の開口部から底面部において、任意の深さの第一位置における第一内径(D1)と、この第一位置よりも深い任意の第二位置における第二内径(D2)を測定して、D2/D1を求めた。更には、同じく、溝の底面部に内接する真円の直径(Db)を測定して、開口部の内径(D0)との関係を表すD0/10≦Dbについて評価した。
<接合強度の評価(1)(せん断試験)>
 金属樹脂接合体の接合強度の評価を、ISO19095に準じたせん断強度の測定によって行った。具体的には図7に示すように、金属部材8と樹脂成形体7とを接合した金属樹脂接合体9を専用治具10に固定し、10mm/minの速度で、接合面に対して平行な方向にせん断力が加わるように荷重を印加し、金属部材と樹脂成形体との間の接合部を破壊する試験を実施した。金属樹脂接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。
 さらに、せん断試験を行った後の金属部材側の破断面を目視で観察し、破断形態を確認した。樹脂成形体で母材破壊が生じた場合を樹脂破壊(良)と判断した。金属部材と樹脂成形体との界面破壊が生じた場合は界面破壊(不良)と判断した。
<接合強度の評価(2)(せん断試験)>
 金属樹脂金属接合体の接合強度の評価を、JIS K 6850を参考にしたせん断強度の測定によって行った。具体的には図8に示すように、2枚の金属部材8及び8’を、後述の熱硬化性接着剤を用いて貼り合わせた金属樹脂金属接合体11を専用治具10に固定し、5mm/minの速度で、接合面に対して平行な方向にせん断力が加わるように荷重を印加し、接着剤を介した金属部材どうしの接合体の接合部を破壊する試験を実施した。金属樹脂金属接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。
 さらに、せん断強度の評価後の破断面を目視で観察し、破断形態を確認した。接着剤で凝集破壊が生じ、接合部全体に接着剤が残っていた場合は「樹脂破壊」(良)と判断した。金属部材と接着剤との界面破壊が生じた場合は「界面破壊」(不良)と判断した。
<気密性の評価>
 金属樹脂接合体、又は金属樹脂金属接合体の気密性の評価を、エアーリーク試験によって行った。具体的には図9に示すように、金属部材8と樹脂成形体7とを接合した金属樹脂接合体9を専用気密性冶具15にクランプして固定した状態で、エアーを最大で正圧0.5MPaまで印加し、1分間保持した。その後,エアー漏れの有無を目視で確認した。または、図10に示すように、2枚の金属部材8及び8’を、後述の熱硬化性接着剤を用いて貼り合わせた金属樹脂金属接合体11を専用気密性冶具15にクランプして固定した状態で、エアーを最大で正圧0.5MPaまで印加し、1分間保持した。その後、エアー漏れの有無を目視で確認した。上述した専用気密性治具15では、金属樹脂接合体9、又は金属樹脂金属接合体11を、O-リング13を介装した状態で上下から固定治具で挟みこんで固定している。金属樹脂接合体9、又は金属樹脂金属接合体11を挟んで、専用気密性治具15の上側の開放部には水12が存在しており、専用気密性治具15の下側の密閉部には空気が存在している。通気管14を通じて密閉部にエアーを印加することで、接合界面から気泡が発生するかどうかを機序として、金属樹脂接合体9、又は金属樹脂金属接合体11を通じて、開放部側にエアーが漏れるかどうかを確認することができる。評価時間内においてエアーリークがない場合を「合格(良)」、エアーリークが観察された場合を「不合格(不良)」として評価した。
<接合面の表面粗さの評価>
 得られた金属部材の接合面の表面粗さとして、キーエンス社製ワンショット3D形状測定機VR-3200を用いて、最大高さRzを測定した。測定は、3600×2800μmの測定範囲において、倍率80倍、カットオフλsなし、カットオフλcなしとして、基準長数1の条件で41箇所の平均値を測定値とした。レーザー光の縞模様状の軌跡と、測定器の投光レンズから照射される縞状の光とが、直角に交差する位置関係となるようにして測定を行った。
[実施例1]
<金属部材の作製>
 JIS H3100に示された無酸素銅(C1020)の圧延材から厚さ1.5mm×幅18mm×長さ45mmの長方形状の銅板材を用意した。また、この圧延材に穴を開けて、厚さ2mm×外径Φ55mm×内径Φ20mmの円環状の銅円盤を用意した。そして、それぞれ金属基材として準備した。
 次に、これら銅板材及び銅円盤のそれぞれの被加工面に対して、以下の条件でレーザー照射するレーザー処理を行い、樹脂成形体との接合面を形成した。なお、銅板材では、一方の主面側の長手方向の端部において、長手方向に10mm×短手方向に18mmの長方形状の領域にレーザーを縞模様に照射した。また、銅円盤では、内側から同心円状に幅2.0mmの円環状の領域にレーザー照射した。レーザー処理条件は、以下の表13にまとめて示した(実施例1~8、比較例1~3)。
<レーザー処理条件>
 ・装置:キーエンス社製、3Axis Fiberレーザマーカ(型式:MDF-5200)
 ・レーザー光波長:1090nm
 ・発信方式:パルス
 ・出力:42.5W
 ・周波数:60kHz
 ・ビーム径:60μm
 ・照射間隔(溝間隔):70μm
 ・走査速度:400mm/s
 ・走査回数(照射回数):4回
 ・エネルギー密度:6.07J/mm2
<樹脂成形体の接合、金属樹脂接合体の作製>
 上記のようにして接合面が形成された各金属部材(レーザー処理後の銅板材及び銅円盤)を、射出成形機(日精樹脂工業製、FNX1103-18A)を用いて、ISO19095に準拠して作製した金型内にそれぞれインサート後、これらに対して、熱可塑性樹脂としてポリフェニレンスルフィド(PPS)(ポリプラスチック社製、商品名:ジュラファイド、グレード:1150MF1)を使用して、これを樹脂温度300℃、金型温度150℃、射出速度20mm/s、保圧80MPaで射出成形した。それにより、樹脂成形体の厚さが3mm×幅10mm×長さ45mmの長方形状であって、銅板材と樹脂成形体との長方形状の接合部の接合面積が5mm×10mmである、銅板材(金属部材)8と樹脂成形体7との接合体(金属樹脂接合体9、図11)を作製した。また、樹脂成形体が厚さ2mm×Φ24mmの円盤状であって、銅円盤の内径側面との円環状の接合部の接合幅が2.0mm、接合面積が138.2mm2である、銅円盤(金属部材)8と樹脂成形体7との接合体(金属樹脂接合体9、図12)を作製した。
<評価>
 金属樹脂接合体に対して、接合断面の評価を行った。SEMによる断面の観察結果(100倍)を図1に示す。具体的には、先ず、図1で示したように、連続した<1>~<10>の溝(凹部)10個を任意に選択し、先述したとおり、これらの溝の最深点の中で、一番深い<8>の溝の最深点を通り、且つ<1>~<10>の溝のそれぞれの最深点の位置からの距離の和が最も小さくなる位置を通る基準線L1を引いた。
 次に、図2は、この図1で示した<8>の溝を拡大したものであり、この溝の両端にある隣接する一組の凸部について、低い方の凸部での最も高い位置となる最高点Pt1(低い方の凸部の頂点)から、高い方の凸部に向けて、先の基準線L1と水平になるように基準線L2を引いた。その際、基準線L2と高い方の凸部の表面とが初めに交わる位置を交点Pc1として、このPc1と先のPt1との間隔を溝の開口部の内径Dとした。また、基準線L2からこの凹部の中で最も深い位置となる最深点Pb1に向けて、基準線L2に対して垂直な方向に基準線L3を引き、この基準線L3と先の基準線L2と基準線L3とが交わる点を交点Pc2とした。そして、最深点Pb1と交点Pc2との間隔を<8>の溝の深さLとした。また、この<8>の溝の開口部から底面部において、任意の深さの第一位置における内径をD1とし、この第一位置よりも深い任意の第二位置における内径をD2とした。
 次いで、図3には、図2と同じく、図1で示した<8>の溝を拡大したものが示されており、この溝において、基準線L1に下端が接する真円であって、その左端及び右端が隣り合う凸部と接して(溝の壁面と接して)、尚且つ、その直径が1μm以上であるものの中で最も小さい真円を求めた。そして、この真円の直径をDとした。
 これらの手順に従い、本実施例1に係る金属樹脂接合体の接合断面で選択した<1>~<10>の溝について、それぞれ、溝の開口部の内径(D0)、溝の深さ(L)、溝の任意の深さの第一位置における第一内径(D1)とそれよりも深い任意の第二位置における第二内径(D2)、及び、溝の底面部に内接する真円の直径(Db)を計測した。その際、溝の底面部に内接する真円の直径(Db)を求めるにあたっては、各溝における最深点Pb1を通り、かつ基準線L1と平行な基準線L4を引いて、その基準線L4をもとにそれぞれの溝について真円を設定した。また、このようにして真円を求めるにあたり、左端及び右端が隣り合う凸部と接しない(溝の壁面と接しない)場合には、真円の直径(Db)は、当該溝の開口部の直径(D0)であるとした。測定結果は表2に示したとおりであり、SEMによる断面の観察結果から任意に選んだ<1>~<10>の10個の溝は、いずれも本発明の条件を満たすものであった。また、このSEMによる断面観察によれば、隣接する溝に挟まれた凸部の全てはレーザー照射に伴う金属基材由来の堆積物(スパッタ物)で覆われていることが確認された。
Figure JPOXMLDOC01-appb-T000002
 上記で得られた実施例1に係る接合強度評価用の金属樹脂接合体について、前述の接合強度の評価(1)により、銅板材(金属部材)8と樹脂成形体7との間の接合部を破壊する試験を実施し、金属樹脂接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。また、引張せん断試験後の破断形態を目視で観察した。更に、気密性評価用の金属樹脂接合体については、前述の気密性の評価により、エアーリークの有無を確認した。結果を表14に示す。また、レーザー処理を行った接合強度評価用の板材に対して、接合面の表面粗さの評価を行った。表14には、得られた金属部材の接合面の表面粗さと共に、SEMによる断面観察で確認された凸部の様子を評価した結果を併せて示している。その際、溝に挟まれた凸部の全てが金属基材由来の堆積物(スパッタ物)で覆われている場合を〇、一部でも堆積物で覆われずにレーザーの未照射部が残っている場合を×として評価した。
[実施例2]
 レーザー処理条件を出力42.5W、周波数60kHz、ビーム径60μm、照射間隔(溝間隔)50μm、走査速度を500mm/s、走査回数4回、及びエネルギー密度を6.8J/mm2に変更した以外は、実施例1と同様にして、金属部材(銅板材、銅円盤)を作製するとともに、評価用の各金属樹脂接合体を作製した。
 得られた金属樹脂接合体について、実施例1と同様にして接合断面の評価を行った。SEMによる断面の観察結果(100倍)は図13に示したとおりであり、この中から、連続した<1>~<10>の溝(凹部)10個を任意に選択した。これらの溝の最深点の中で、一番深い<7>の溝の最深点を通り、且つ<1>~<10>の溝のそれぞれの最深点の位置からの距離の和が最も小さくなる位置を通る基準線L1を引いた。そして、実施例1で示した手順に従い、本実施例2に係る金属樹脂接合体の接合断面で選択した<1>~<10>の溝について、それぞれ、溝の開口部の内径(D0)、溝の深さ(L)、溝の任意の深さの第一位置における第一内径(D1)とそれよりも深い任意の第二位置における第二内径(D2)、及び、溝の底面部に内接する真円の直径(Db)を計測した。測定結果を表3に示す。表3に示したとおり、SEMによる断面の観察結果より任意に選んだ<1>~<10>の10個の溝は、いずれも本発明の条件を満たすものであった。
Figure JPOXMLDOC01-appb-T000003
 上記で得られた実施例2に係る接合強度評価用の金属樹脂接合体について、前述の接合強度の評価(1)により、銅板材(金属部材)8と樹脂成形体7との間の接合部を破壊する試験を実施し、金属樹脂接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。また、引張せん断試験後の破断形態を目視で観察した。更に、気密性評価用の金属樹脂接合体については、前述の気密性の評価により、エアーリークの有無を確認した。また、レーザー処理を行った接合強度評価用の板材に対して、接合面の表面粗さの評価を行った。これらを含めて本実施例の評価結果を表14にまとめて示す。
[実施例3]
 レーザー処理条件を出力42.5W、周波数60kHz、ビーム径60μm、照射間隔(溝間隔)70μm、走査速度を500mm/s、走査回数5回、及びエネルギー密度を6.07J/mm2に変更した以外は、実施例1と同様にして、金属部材(銅板材、銅円盤)を作製するとともに、評価用の各金属樹脂接合体を作製した。
 得られた金属樹脂接合体について、実施例1と同様にして接合断面の評価を行った。SEMによる断面の観察結果(100倍)は図14に示したとおりであり、この中から、連続した<1>~<10>の溝(凹部)10個を任意に選択した。これらの溝の最深点の中で、一番深い<4>の溝の最深点を通り、且つ<1>~<10>の溝のそれぞれの最深点の位置からの距離の和が最も小さくなる位置を通る基準線L1を引いた。そして、実施例1で示した手順に従い、本実施例3に係る金属樹脂接合体の接合断面で選択した<1>~<10>の溝について、それぞれ、溝の開口部の内径(D0)、溝の深さ(L)、溝の任意の深さの第一位置における第一内径(D1)とそれよりも深い任意の第二位置における第二内径(D2)、及び、溝の底面部に内接する真円の直径(Db)を計測した。測定結果を表4に示す。表4に示したとおり、SEMによる断面の観察結果より任意に選んだ<1>~<10>の10個の溝は、いずれも本発明の条件を満たすものであった。
Figure JPOXMLDOC01-appb-T000004
 上記で得られた実施例3に係る接合強度評価用の金属樹脂接合体について、前述の接合強度の評価(1)により、銅板材(金属部材)8と樹脂成形体7との間の接合部を破壊する試験を実施し、金属樹脂接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。また、引張せん断試験後の破断形態を目視で観察した。更に、気密性評価用の金属樹脂接合体については、前述の気密性の評価により、エアーリークの有無を確認した。また、レーザー処理を行った接合強度評価用の板材に対して、接合面の表面粗さの評価を行った。これらを含めて本実施例の評価結果を表14にまとめて示す。
[実施例4]
 金属として、JIS H0001に示された調質記号H34で処理したA5052アルミニウム合金(A5052-H34)を用いて、レーザー処理条件を出力42.5W、周波数60kHz、ビーム径60μm、照射間隔(溝間隔)100μm、走査速度を340mm/s、走査回数1回、及びエネルギー密度を1.25J/mm2に変更した以外は、実施例1と同様にして、金属部材(アルミ板材、アルミ円盤)を作製した。
 上記のようにして接合面が形成された各金属部材(レーザー処理後のアルミ板材及びアルミ円盤)について、熱可塑性樹脂としてポリアミドMXD10をベースレジンとする芳香族ナイロン(三菱エンジニアリングプラスチックス社製、商品名:Reny(登録商標)、グレード:XL1002U)を使用し、射出条件を樹脂温度250℃、金型温度140℃、射出速度30mm/s、保圧80MPaで射出成形して、実施例1と同様に、樹脂成形体の厚さが3mm×幅10mm×長さ45mmの長方形状であって、アルミ板材と樹脂成形体との長方形状の接合部の接合面積が5mm×10mmである、アルミ板材(金属部材)8と樹脂成形体7との接合体(金属樹脂接合体9)を作製した。また、樹脂成形体が厚さ2mm×Φ24mmの円盤状であって、アルミ円盤の内径側面との円環状の接合部の接合幅が2.0mm、接合面積が138.2mmである、アルミ円盤(金属部材)8と樹脂成形体7との接合体(金属樹脂接合体9)を作製した。
 得られた金属樹脂接合体について、実施例1と同様にして接合断面の評価を行った。SEMによる断面の観察結果(100倍)は図15に示したとおりであり、この中から、連続した<1>~<10>の溝(凹部)10個を任意に選択した。これらの溝の最深点の中で、一番深い<8>の溝の最深点を通り、且つ<1>~<10>の溝のそれぞれの最深点の位置からの距離の和が最も小さくなる位置を通る基準線L1を引いた。そして、実施例1で示した手順に従い、本実施例3に係る金属樹脂接合体の接合断面で選択した<1>~<10>の溝について、それぞれ、溝の開口部の内径(D0)、溝の深さ(L)、溝の任意の深さの第一位置における第一内径(D1)とそれよりも深い任意の第二位置における第二内径(D2)、及び、溝の底面部に内接する真円の直径(Db)を計測した。測定結果を表5に示す。表5に示したとおり、SEMによる断面の観察結果より任意に選んだ<1>~<10>の10個の溝は、いずれも本発明の条件を満たすものであった。
Figure JPOXMLDOC01-appb-T000005
 上記で得られた実施例4に係る接合強度評価用の金属樹脂接合体について、前述の接合強度の評価(1)により、アルミ板材(金属部材)8と樹脂成形体7との間の接合部を破壊する試験を実施し、金属樹脂接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。また、引張せん断試験後の破断形態を目視で観察した。更に、気密性評価用の金属樹脂接合体については、前述の気密性の評価により、エアーリークの有無を確認した。また、レーザー処理を行った接合強度評価用の板材に対して、接合面の表面粗さの評価を行った。これらを含めて本実施例の評価結果を表14にまとめて示す。
[実施例5]
 金属として、ISO19095に準拠し、JIS H0001に示された調質記号T5で処理したA6063アルミニウム合金(A6063-T5)の中空押出し材を用いて、レーザー処理条件を出力42.5W、周波数60kHz、ビーム径60μm、照射間隔(溝間隔)90μm、走査速度を400mm/s、走査回数1回、及びエネルギー密度を1.18J/mm2に変更した以外は、実施例1と同様にして、金属部材(アルミ板材、アルミ円盤)を作製するとともに、評価用の各金属樹脂接合体を作製した。
 得られた金属樹脂接合体について、実施例1と同様にして接合断面の評価を行った。SEMによる断面の観察結果(100倍)は図16に示したとおりであり、この中から、連続した<1>~<10>の溝(凹部)10個を任意に選択した。これらの溝の最深点の中で、一番深い<2>の溝の最深点を通り、且つ<1>~<10>の溝のそれぞれの最深点の位置からの距離の和が最も小さくなる位置を通る基準線L1を引いた。そして、実施例1で示した手順に従い、本実施例3に係る金属樹脂接合体の接合断面で選択した<1>~<10>の溝について、それぞれ、溝の開口部の内径(D0)、溝の深さ(L)、溝の任意の深さの第一位置における第一内径(D1)とそれよりも深い任意の第二位置における第二内径(D2)、及び、溝の底面部に内接する真円の直径(Db)を計測した。測定結果を表4に示す。表4に示したとおり、SEMによる断面の観察結果より任意に選んだ<1>~<10>の10個の溝は、いずれも本発明の条件を満たすものであった。
Figure JPOXMLDOC01-appb-T000006
 上記で得られた実施例5に係る接合強度評価用の金属樹脂接合体について、前述の接合強度の評価(1)により、アルミ板材(金属部材)8と樹脂成形体7との間の接合部を破壊する試験を実施し、金属樹脂接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。また、引張せん断試験後の破断形態を目視で観察した。更に、気密性評価用の金属樹脂接合体については、前述の気密性の評価により、エアーリークの有無を確認した。また、レーザー処理を行った接合強度評価用の板材に対して、接合面の表面粗さの評価を行った。これらを含めて本実施例の評価結果を表14にまとめて示す。
[実施例6]
 JIS H0001に示された調質記号T5で処理したA6063アルミニウム合金(A6063-T5)の中空押出し材から厚さ5mm×幅25mm×長さ50mmの長方形状のアルミ板材を2枚と、厚さ2mm×外径Φ55mm×内径Φ20mmの円環状のアルミ円盤と、厚さ2mm×外径Φ24mmの円形状のアルミ円盤を、それぞれ金属基材として切り出して準備した。
 次に、レーザー処理条件を出力42.5W、周波数60kHz、ビーム径60μm、照射間隔(溝間隔)70μm、走査速度を1000mm/s、走査回数1回、及びエネルギー密度を0.6J/mm2に変更した以外は、実施例1と同様にレーザー照射して、接合面を形成した。なお、2枚のアルミ板材では、一方の主面側の長手方向の端部において、6mm×25mmの長方形状の領域にそれぞれレーザーを縞模様に照射した。また、円環状のアルミ円盤では、内側から同心円状に幅2.0mmの円環状の領域にレーザー照射した。また、円形状のアルミ円盤では、外周側から同心円状に幅2.0mmの領域にレーザー照射した。
 上記のようにして接合面が形成された各金属部材(レーザー処理後のアルミ板材及びアルミ円盤)に対して、樹脂として熱硬化性接着剤(一液加熱硬化型エポキシ接着剤)(スリーエムジャパン株式会社社製、商品名:スコッチ・ウェルド(登録商標)SW2214)を使用して、接着剤の厚さが0.2mmとなるようにSUSワイヤーで調整して接合面に塗布した。接着剤の塗布後、2枚のアルミ板材どうしを貼り合わせ、0.01MPaの圧力をかけて、試験片温度が150℃到達した後に30分加熱した接着条件で、2枚のアルミ板材の長方形状の接合部の接合面積が6mm×25mmである、接着剤を介したアルミ板材(金属部材)8及び8'の接合体(アルミ板材と樹脂成形体とアルミ板材との接合体)(金属樹脂金属接合体11、図17)を作製した。また、接着剤の塗布後、円環状のアルミ円盤と円形状のアルミ円盤とを貼り合わせ、同様の接着条件で、円環状のアルミ円盤と円形状のアルミ円盤との円環状の接合部の接合幅が2.0mm、接合面積が138.2mm2である、接着剤を介した円環状のアルミ円盤(金属部材)8と円形状のアルミ円盤(金属部材)8'との接合体(円環状のアルミ円盤と樹脂成形体と円形状のアルミ円盤との接合体)(金属樹脂金属接合体11、図18)を作製した。
 得られた金属樹脂接合体について、実施例1と同様にして接合断面の評価を行った。SEMによる断面の観察結果(100倍)は図19に示したとおりであり、この中から、連続した<1>~<10>の溝(凹部)10個を任意に選択した。これらの溝の最深点の中で、一番深い<8>の溝の最深点を通り、且つ<1>~<10>の溝のそれぞれの最深点の位置からの距離の和が最も小さくなる位置を通る基準線L1を引いた。そして、実施例1で示した手順に従い、本実施例3に係る金属樹脂接合体の接合断面で選択した<1>~<10>の溝について、それぞれ、溝の開口部の内径(D0)、溝の深さ(L)、溝の任意の深さの第一位置における第一内径(D1)とそれよりも深い任意の第二位置における第二内径(D2)、及び、溝の底面部に内接する真円の直径(Db)を計測した。測定結果を表7に示す。表7に示したとおり、SEMによる断面の観察結果より任意に選んだ<1>~<10>の10個の溝は、いずれも本発明の条件を満たすものであった。
Figure JPOXMLDOC01-appb-T000007
 上記で得られた実施例6に係る接合強度評価用の金属樹脂接合体について、前述の接合強度の評価(2)により、アルミ板材(金属部材)8と樹脂成形体7との間の接合部を破壊する試験を実施し、金属樹脂接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。また、引張せん断試験後の破断形態を目視で観察した。更に、気密性評価用の金属樹脂接合体については、前述の気密性の評価により、エアーリークの有無を確認した。また、レーザー処理を行った接合強度評価用の板材に対して、接合面の表面粗さの評価を行った。これらを含めて本実施例の評価結果を表14にまとめて示す。
[実施例7]
 JIS H5302に示されたアルミニウム合金ダイカスト(ADC12)の板状部材から厚さ5mm×幅25mm×長さ50mmの長方形状のアルミ板材を2枚と、厚さ2mm×外径Φ55mm×内径Φ20mmの円環状のアルミ円盤と、厚さ2mm×外径Φ24mmの円形状のアルミ円盤を、それぞれ金属基材として切り出して準備した。また、レーザー処理条件を出力42.5W、周波数60kHz、ビーム径60μm、照射間隔(溝間隔)70μm、走査速度を1000mm/s、走査回数1回、及びエネルギー密度を0.6J/mm2にして、これら以外は実施例6と同様にして、金属部材(アルミ板材、アルミ円盤)を作製するとともに、評価用の各金属樹脂接合体を作製した。
 得られた金属樹脂接合体について、実施例1と同様にして接合断面の評価を行った。SEMによる断面の観察結果(100倍)は図20に示したとおりであり、この中から、連続した<1>~<10>の溝(凹部)10個を任意に選択した。これらの溝の最深点の中で、一番深い<8>の溝の最深点を通り、且つ<1>~<10>の溝のそれぞれの最深点の位置からの距離の和が最も小さくなる位置を通る基準線L1を引いた。そして、実施例1で示した手順に従い、本実施例3に係る金属樹脂接合体の接合断面で選択した<1>~<10>の溝について、それぞれ、溝の開口部の内径(D0)、溝の深さ(L)、溝の任意の深さの第一位置における第一内径(D1)とそれよりも深い任意の第二位置における第二内径(D2)、及び、溝の底面部に内接する真円の直径(Db)を計測した。測定結果を表8に示す。表8に示したとおり、SEMによる断面の観察結果より任意に選んだ<1>~<10>の10個の溝は、いずれも本発明の条件を満たすものであった。
Figure JPOXMLDOC01-appb-T000008
 上記で得られた実施例7に係る接合強度評価用の金属樹脂接合体について、前述の接合強度の評価(2)により、アルミ板材(金属部材)8と樹脂成形体7との間の接合部を破壊する試験を実施し、金属樹脂接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。また、引張せん断試験後の破断形態を目視で観察した。更に、気密性評価用の金属樹脂接合体については、前述の気密性の評価により、エアーリークの有無を確認した。また、レーザー処理を行った接合強度評価用の板材に対して、接合面の表面粗さの評価を行った。これらを含めて本実施例の評価結果を表14にまとめて示す。
[実施例8]
 金属として、ステンレス板材(SUS304)を用いて、レーザー処理条件を出力42.5W、周波数60kHz、ビーム径60μm、照射間隔(溝間隔)90μm、走査速度を340mm/s、走査回数2回、及びエネルギー密度を2.78J/mm2に変更した以外は、実施例1と同様にして、金属部材(ステンレス板材、ステンレス円盤)を作製するとともに、評価用の各金属樹脂接合体を作製した。
 得られた金属樹脂接合体について、実施例1と同様にして接合断面の評価を行った。SEMによる断面の観察結果(100倍)は図21に示したとおりであり、この中から、連続した<1>~<10>の溝(凹部)10個を任意に選択した。これらの溝の最深点の中で、一番深い<2>の溝の最深点を通り、且つ<1>~<10>の溝のそれぞれの最深点の位置からの距離の和が最も小さくなる位置を通る基準線L1を引いた。そして、実施例1で示した手順に従い、本実施例3に係る金属樹脂接合体の接合断面で選択した<1>~<10>の溝について、それぞれ、溝の開口部の内径(D0)、溝の深さ(L)、溝の任意の深さの第一位置における第一内径(D1)とそれよりも深い任意の第二位置における第二内径(D2)、及び、溝の底面部に内接する真円の直径(Db)を計測した。測定結果を表9に示す。表9に示したとおり、SEMによる断面の観察結果より任意に選んだ<1>~<10>の10個の溝は、いずれも本発明の条件を満たすものであった。
Figure JPOXMLDOC01-appb-T000009
 上記で得られた実施例8に係る接合強度評価用の金属樹脂接合体について、前述の接合強度の評価(1)により、ステンレス板材(金属部材)8と樹脂成形体7との間の接合部を破壊する試験を実施し、金属樹脂接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。また、引張せん断試験後の破断形態を目視で観察した。更に、気密性評価用の金属樹脂接合体については、前述の気密性の評価により、エアーリークの有無を確認した。また、レーザー処理を行った接合強度評価用の板材に対して、接合面の表面粗さの評価を行った。これらを含めて本実施例の評価結果を表14にまとめて示す。
[比較例1]
 レーザー処理条件を出力42.5W、周波数60kHz、ビーム径60μm、照射間隔(溝間隔)50μm、走査速度を300mm/s、走査回数5回、及びエネルギー密度を14.2J/mm2に変更した以外は、実施例1と同様にして、金属部材(銅板材、銅円盤)を作製するとともに、評価用の各金属樹脂接合体を作製した。
 得られた金属樹脂接合体について、実施例1と同様にして接合断面の評価を行った。SEMによる断面の観察結果(100倍)は図22に示したとおりであり、この中から、連続した<1>~<10>の溝(凹部)10個を任意に選択した。これらの溝の最深点の中で、一番深い<1>の溝の最深点を通り、且つ<1>~<10>の溝のそれぞれの最深点の位置からの距離の和が最も小さくなる位置を通る基準線L1を引いた。そして、実施例1で示した手順に従い、本実施例2に係る金属樹脂接合体の接合断面で選択した<1>~<10>の溝について、それぞれ、溝の開口部の内径(D0)、溝の深さ(L)、溝の任意の深さの第一位置における第一内径(D1)とそれよりも深い任意の第二位置における第二内径(D2)、及び、溝の底面部に内接する真円の直径(Db)を計測した。測定結果を表10に示す。表10に示したとおり、SEMによる断面の観察結果より任意に選んだ<1>~<10>の10個の溝のうち、<1>~<5>、<9>及び<10>は本発明の条件を満たすものではなかった。特に、図23に示したように、溝の開口部の内径(D0)に比べてその底面部に内接する真円の直径(Db)が小さいものが多く、D0/10≦Dbの関係を満たすことができず、また、D2/D1≦2.5の関係についても満たすことができない溝が多くみられた。
Figure JPOXMLDOC01-appb-T000010
 上記で得られた比較例1に係る接合強度評価用の金属樹脂接合体について、前述の接合強度の評価(1)により、銅板材(金属部材)8と樹脂成形体7との間の接合部を破壊する試験を実施し、金属樹脂接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。また、引張せん断試験後の破断形態を目視で観察した。更に、気密性評価用の金属樹脂接合体については、前述の気密性の評価により、エアーリークの有無を確認した。また、レーザー処理を行った接合強度評価用の板材に対して、接合面の表面粗さの評価を行った。これらを含めて本比較例の評価結果を表14にまとめて示す。
[比較例2]
 レーザー処理条件を出力42.5W、周波数60kHz、ビーム径60μm、照射間隔(溝間隔)90μm、走査速度を300mm/s、走査回数5回、及びエネルギー密度を7.87J/mm2に変更した以外は、実施例1と同様にして、金属部材(銅板材、銅円盤)を作製するとともに、評価用の各金属樹脂接合体を作製した。
 得られた金属樹脂接合体について、実施例1と同様にして接合断面の評価を行った。SEMによる断面の観察結果(100倍)は図24に示したとおりであり、この中から、連続した<1>~<10>の溝(凹部)10個を任意に選択した。これらの溝の最深点の中で、一番深い<2>の溝の最深点を通り、且つ<1>~<10>の溝のそれぞれの最深点の位置からの距離の和が最も小さくなる位置を通る基準線L1を引いた。そして、実施例1で示した手順に従い、本実施例2に係る金属樹脂接合体の接合断面で選択した<1>~<10>の溝について、それぞれ、溝の開口部の内径(D0)、溝の深さ(L)、溝の任意の深さの第一位置における第一内径(D1)とそれよりも深い任意の第二位置における第二内径(D2)、及び、溝の底面部に内接する真円の直径(Db)を計測した。測定結果を表11に示す。表11に示したとおり、SEMによる断面の観察結果より任意に選んだ<1>~<10>の10個の溝のうち、<2>~<6>及び<10>は本発明の条件を満たすものではなかった。これらはいずれも溝の開口部の内径(D0)に比べてその底面部に内接する真円の直径(Db)が小さく、D0/10≦Dbの関係を満たすことができなかった。
Figure JPOXMLDOC01-appb-T000011
 上記で得られた比較例2に係る接合強度評価用の金属樹脂接合体について、前述の接合強度の評価(1)により、銅板材(金属部材)8と樹脂成形体7との間の接合部を破壊する試験を実施し、金属樹脂接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。また、引張せん断試験後の破断形態を目視で観察した。更に、気密性評価用の金属樹脂接合体については、前述の気密性の評価により、エアーリークの有無を確認した。また、レーザー処理を行った接合強度評価用の板材に対して、接合面の表面粗さの評価を行った。これらを含めて本比較例の評価結果を表14にまとめて示す。
[比較例3]
 金属として、JIS H0001に示された調質記号H34で処理したA5052アルミニウム合金(A5052-H34)を用いて、レーザー処理条件を出力45W、周波数120kHz、ビーム径60μm、照射間隔(溝間隔)100μm、走査速度を360mm/s、走査回数1回、及びエネルギー密度を1.25J/mm2に変更した以外は、実施例1と同様にして、金属部材(アルミ板材、アルミ円盤)を作製した。
 上記のようにして接合面が形成された各金属部材(レーザー処理後のアルミ板材及びアルミ円盤)について、熱可塑性樹脂としてポリアミドMXD10をベースレジンとする芳香族ナイロン(三菱エンジニアリングプラスチックス社製、商品名:Reny(登録商標)、グレード:XL1002U)を使用し、射出条件を樹脂温度250℃、金型温度140℃、射出速度30mm/s、保圧80MPaで射出成形して、実施例1と同様に、樹脂成形体の厚さが3mm×幅10mm×長さ45mmの長方形状であって、アルミ板材と樹脂成形体との長方形状の接合部の接合面積が5mm×10mmである、アルミ板材(金属部材)8と樹脂成形体7との接合体(金属樹脂接合体9)を作製した。また、樹脂成形体が厚さ2mm×Φ24mmの円盤状であって、アルミ円盤の内径側面との円環状の接合部の接合幅が2.0mm、接合面積が138.2mmである、アルミ円盤(金属部材)8と樹脂成形体7との接合体(金属樹脂接合体9)を作製した。
 得られた金属樹脂接合体について、実施例1と同様にして接合断面の評価を行った。SEMによる断面の観察結果(100倍)は図25に示したとおりであり、この中から、連続した<1>~<10>の溝(凹部)10個を任意に選択した。これらの溝の最深点の中で、一番深い<3>の溝の最深点を通り、且つ<1>~<10>の溝のそれぞれの最深点の位置からの距離の和が最も小さくなる位置を通る基準線L1を引いた。そして、実施例1で示した手順に従い、本実施例3に係る金属樹脂接合体の接合断面で選択した<1>~<10>の溝について、それぞれ、溝の開口部の内径(D0)、溝の深さ(L)、溝の任意の深さの第一位置における第一内径(D1)とそれよりも深い任意の第二位置における第二内径(D2)、及び、溝の底面部に内接する真円の直径(Db)を計測した。測定結果を表12に示す。表12に示したとおり、SEMによる断面の観察結果より任意に選んだ<1>~<10>の10個のうち、<1>及び<4>~<10>は本発明の条件を満たすものではなかった。中でも、そのいくつかは溝の開口部の内径(D0)が小さくてL/D0が大きくなり過ぎたり、溝の任意の深さにおける第一内径(D1)と第二内径(D2)とがD2/D1≦2.5の関係を満たすことができなかった。
Figure JPOXMLDOC01-appb-T000012
 上記で得られた比較例3に係る接合強度評価用の金属樹脂接合体について、前述の接合強度の評価(1)により、アルミ板材(金属部材)8と樹脂成形体7との間の接合部を破壊する試験を実施し、金属樹脂接合体が破断したときの破断力を引張せん断強度(MPa)として求めた。また、引張せん断試験後の破断形態を目視で観察した。更に、気密性評価用の金属樹脂接合体については、前述の気密性の評価により、エアーリークの有無を確認した。また、レーザー処理を行った接合強度評価用の板材に対して、接合面の表面粗さの評価を行った。これらを含めて本比較例の評価結果を表14にまとめて示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
[検討]
 実施例1~8の金属樹脂接合体又は金属部材に対するSEMによる断面観察から、任意に選んだ10個の溝を評価した結果、本発明に係る条件を満たすことが確認された。すなわち、これらの実施例では、いずれも9個以上の溝において、溝の開口部の内径(D0)と溝の深さ(L)がそれぞれ所定の値を示すと共に、これらのアスペクト比(L/D0)が所定の値を示し、また、溝の任意の深さの第一位置における第一内径(D1)とこれよりも深い任意の第二位置における第二内径(D2)とがD2/D1≦2.5の関係を満たし、更には、溝の底面部に内接する真円の直径(Db)と溝の開口部の内径(D0)とがD0/10≦Dbの関係を満たしていた。その結果、これらの実施例における金属樹脂接合体は、接合強度および気密性が良好であった。
 それに対して、比較例1では、本発明における溝の条件を満足できるものではなく、中でも、溝の開口部の内径(D0)に比べてその底面部に内接する真円の直径(Db)が小さいものが多く、D0/10≦Dbの関係を満たすことができず、また、D2/D1≦2.5の関係についても満足できないものが含まれていたことから、溝に対する樹脂の入り込み(流れ込み)が不十分となって、樹脂との機械的接合が弱まり、接合部での界面破壊が生じ、また、気密性についても十分に担保することができなかった。同じく比較例2においても、D0/10≦Dbの関係を満たすことができない溝が多く含まれており、溝に対する樹脂の入り込みが不十分となり、接合部での界面破壊や気密性を担保することができなかった。更に、比較例3については、溝の開口部の内径(D0)が小さくてL/D0が大きくなり過ぎたり、D2/D1≦2.5の関係を満たすことができずに、やはり溝への樹脂の入り込みが十分なされずに、接合部での界面破壊や気密性を担保することができなかった。特に、比較例2及び3では、凸部の一部がスパッタ堆積物で覆われずにレーザー未照射部が残っていたことから、樹脂との化学的接合が十分になされなかったことも影響するものと考えられる。
3…走査方向、4…ビーム径、5…照射間隔、6(6’)…レーザー光の軌跡、7…樹脂成形体、8(8’)…金属部材、9…金属樹脂接合体、10…せん断試験用の専用治具、11…金属樹脂金属接合体、12…水、13…O-リング、14…エアー吹込み用の管、15…専用気密性治具。

Claims (10)

  1.  金属製の金属基材と、前記金属基材の表面に形成された溝とを備え、
     溝の開口部の内径(D0)は、20μm~200μmであり、
     溝の深さ(L)は、20μm~200μmであり、
     溝の前記開口部の内径(D0)に対する前記深さ(L)のアスペクト比(L/D0)は、0.1~5であり、
     前記溝の前記開口部から底面部において、任意の深さの第一位置における第一内径(D1)と、前記第一位置よりも深い任意の第二位置における第二内径(D2)とがD2/D1≦2.5の関係を満たし、
     前記溝の前記底面部に内接する真円の直径(Db)と前記開口部の内径(D0)とは、D0/10≦Dbの関係を満たす
    ことを特徴とする金属部材。
  2.  前記金属部材の表面において、互いに隣接する前記溝に挟まれる領域の全面が前記金属基材由来のスパッタ物で覆われていることを特徴とする請求項1に記載の金属部材。
  3.  金属は、アルミニウム、銅、鉄又はこれらの各金属を含む合金であることを特徴とする請求項1又は2に記載の金属部材。
  4.  請求項1~3のいずれかに記載の金属部材と、前記金属部材の表面に成形された樹脂成形体とを備え、
     前記金属部材と前記樹脂成形体とは、前記溝に樹脂が入り込んだ状態で接合されていることを特徴とする金属樹脂接合体。
  5.  前記樹脂成形体は、熱可塑性樹脂又は熱硬化性樹脂を含むものであることを特徴とする請求項4に記載の金属樹脂接合体。
  6.  金属製の金属基材の表面へのレーザー光の照射によって、前記金属基材の表面に溝を形成するレーザー照射工程を備え、
     前記金属基材の表面に前記溝が形成された金属部材を製造する金属部材の製造方法であって、
     前記溝の開口部の内径(D0)は、20μm~200μmであり、
     前記溝の深さ(L)は、20μm~200μmであり、
     前記溝の前記開口部の内径(D0)に対する前記深さ(L)のアスペクト比(L/D0)は、0.1~5であり、
     前記溝の前記開口部から底面部において、任意の深さの第一位置における第一内径(D1)と、前記第一位置よりも深い任意の第二位置における第二内径(D2)とがD2/D1≦2.5の関係を満たし、
     前記溝の底面部に内接する真円の直径(Db)と前記開口部の内径(D0)とは、D0/10≦Dbの関係を満たす
    ことを特徴とする金属部材の製造方法。
  7.  前記金属部材の表面において、互いに隣接する前記溝に挟まれる領域の全面が前記レーザー光の照射による金属基材由来のスパッタ物で覆われていることを特徴とする請求項6に記載の金属部材の製造方法。
  8.  金属は、アルミニウム、銅、鉄又はこれらの各金属を含む合金であることを特徴とする請求項6又は7に記載の金属部材の製造方法。
  9.  請求項6~8のいずれかに記載の製造方法によって得られた金属部材の表面に、樹脂成形体を形成する樹脂成形工程を備え、
     前記金属部材と前記樹脂成形体とが接合された金属樹脂接合体を製造する金属樹脂接合体の製造方法であって、
     前記樹脂成形工程では、前記金属部材と前記樹脂成形体とを、前記溝に樹脂が入り込んだ状態で接合させることを特徴とする金属樹脂接合体の製造方法。
  10.  前記樹脂成形工程において、前記金属部材上に熱可塑性樹脂又は熱硬化性樹脂を含む樹脂組成物を用いて成形することを特徴とする請求項9に記載の金属樹脂接合体の製造方法。
     
PCT/JP2022/037711 2021-10-15 2022-10-07 金属部材及び金属樹脂接合体並びにそれらの製造方法 WO2023063272A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-169731 2021-10-15
JP2021169731A JP2023059624A (ja) 2021-10-15 2021-10-15 金属部材及び金属樹脂接合体並びにそれらの製造方法

Publications (1)

Publication Number Publication Date
WO2023063272A1 true WO2023063272A1 (ja) 2023-04-20

Family

ID=85987739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037711 WO2023063272A1 (ja) 2021-10-15 2022-10-07 金属部材及び金属樹脂接合体並びにそれらの製造方法

Country Status (2)

Country Link
JP (1) JP2023059624A (ja)
WO (1) WO2023063272A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071312A (ja) * 2011-09-28 2013-04-22 Hitachi Automotive Systems Ltd 金属部材と成形樹脂部材との複合成形体および金属部材の表面加工方法
JP2013107273A (ja) * 2011-11-21 2013-06-06 Daicel Corp 複合成形体の製造方法
JP2014065288A (ja) * 2012-09-04 2014-04-17 Daicel Polymer Ltd 複合成形体とその製造方法
JP2014166693A (ja) * 2013-02-28 2014-09-11 Daicel Polymer Ltd 複合成形体とその製造方法
JP2018508645A (ja) * 2014-12-24 2018-03-29 ポスコPosco 方向性電磁鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071312A (ja) * 2011-09-28 2013-04-22 Hitachi Automotive Systems Ltd 金属部材と成形樹脂部材との複合成形体および金属部材の表面加工方法
JP2013107273A (ja) * 2011-11-21 2013-06-06 Daicel Corp 複合成形体の製造方法
JP2014065288A (ja) * 2012-09-04 2014-04-17 Daicel Polymer Ltd 複合成形体とその製造方法
JP2014166693A (ja) * 2013-02-28 2014-09-11 Daicel Polymer Ltd 複合成形体とその製造方法
JP2018508645A (ja) * 2014-12-24 2018-03-29 ポスコPosco 方向性電磁鋼板およびその製造方法

Also Published As

Publication number Publication date
JP2023059624A (ja) 2023-04-27

Similar Documents

Publication Publication Date Title
CN109789516B (zh) 不同材料的接合体及其制造方法
TWI594880B (zh) Compound forming body
JP6017675B2 (ja) 金属樹脂接合体及びその製造方法
JP7060904B2 (ja) 熱可塑性樹脂と金属の接合方法
JP2012223889A (ja) レーザ接合方法
JP6489908B2 (ja) 複合成形体とその製造方法
WO2016047454A1 (ja) 熱交換器
WO2023063272A1 (ja) 金属部材及び金属樹脂接合体並びにそれらの製造方法
JP2023059621A (ja) 金属部材の製造方法及び金属樹脂接合体の製造方法
WO2023063271A1 (ja) 金属部材及び金属樹脂接合体並びにそれらの製造方法
WO2023063270A1 (ja) 金属部材及び金属樹脂接合体並びにそれらの製造方法
JP7188571B2 (ja) 接合用金属部材及び接合体
JP2023059623A (ja) 金属部材の製造方法及び金属樹脂接合体の製造方法
JP2023059625A (ja) 金属部材の製造方法及び金属樹脂接合体の製造方法
JP2023059620A (ja) 金属部材及び金属樹脂接合体並びにそれらの製造方法
WO2019216439A1 (ja) 複合体および複合体の製造方法
JP7093607B2 (ja) 表面処理アルミニウム材及びその製造方法、ならびに、当該表面処理アルミニウム材と樹脂等の被接合部材とからなる表面処理アルミニウム材/被接合部材の接合体及びその製造方法
JP7365245B2 (ja) 複合成形品およびその成形品に使用する部材
JP2021003819A (ja) 接合構造体
EP4129552A1 (en) Method for manufacturing composite member, and composite member
US20230118556A1 (en) Method for manufacturing composite member, and composite member
Amne Elahi PROCESS INNOVATION FOR SENSORS IN MOBILE APPLICATIONS BASED ON LASER ASSISTED METAL-POLYMER JOINING
Lizzul et al. Surface Treatment to Promote Joining of Glass Fiber Reinforced Plastic and AZ31 Magnesium Alloy for Fiber Metal Laminates via Hot Metal Pressing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE