WO2012132639A1 - 金属と熱可塑性樹脂の複合体 - Google Patents

金属と熱可塑性樹脂の複合体 Download PDF

Info

Publication number
WO2012132639A1
WO2012132639A1 PCT/JP2012/054091 JP2012054091W WO2012132639A1 WO 2012132639 A1 WO2012132639 A1 WO 2012132639A1 JP 2012054091 W JP2012054091 W JP 2012054091W WO 2012132639 A1 WO2012132639 A1 WO 2012132639A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
metal
thermoplastic resin
polyamide
mass
Prior art date
Application number
PCT/JP2012/054091
Other languages
English (en)
French (fr)
Inventor
真一 平山
原田 秀樹
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to CN2012800143413A priority Critical patent/CN103429413A/zh
Priority to JP2013507261A priority patent/JPWO2012132639A1/ja
Priority to EP12763162.0A priority patent/EP2689910A4/en
Priority to US14/006,654 priority patent/US20140010980A1/en
Publication of WO2012132639A1 publication Critical patent/WO2012132639A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • B29C2045/14877Pretreatment of the insert, e.g. etching, cleaning preheating or precooling the insert for non-deforming purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3002Superstructures characterized by combining metal and plastics, i.e. hybrid parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • Y10T428/24331Composite web or sheet including nonapertured component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface
    • Y10T428/24545Containing metal or metal compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a composite of a metal and a thermoplastic resin.
  • Patent Document 1 describes a method of immersing a metal in one or more aqueous solutions selected from ammonia, hydrazine, and a water-soluble amine as a technique for forming fine irregularities on the metal surface.
  • Patent Document 2 discloses a method of forming fine irregularities on a metal surface by an anodic oxidation method.
  • Patent Document 3 discloses a method of fixing a specific compound to a metal surface, and a method of joining both by melting and contacting a resin with a metal to which the specific compound is bonded is proposed. Yes.
  • Patent Document 4 discloses a technique for improving the bonding strength by preparing an aluminum alloy having fine openings by an anodic oxidation method and bonding a polyphenylene sulfide containing an olefin resin thereto.
  • Patent Document 5 discloses a technique for bonding a polyamide resin to an aluminum alloy surface-treated with an erodible aqueous solution. In this case, the bonding state is obtained by blending an aromatic polyamide or an impact resistance improving material with the polyamide resin. It is disclosed that can be further improved.
  • Patent Documents 4 and 5 describe improved techniques based on the material composition as described above. In these techniques, the strength and rigidity at high temperatures and the chemical resistance are the original advantages of the respective thermoplastic resins. In addition, there is a possibility that the properties and the like may be impaired, and depending on the thermoplastic resin component, there may be a decrease in secondary processability such as moldability and welding and an increase in cost.
  • An object of the present invention is to provide a composite in which a thermoplastic resin and a metal are firmly joined without impairing the properties of the thermoplastic resin.
  • the present invention is a composite in which the thermoplastic resin composition (A) and the metal (B) are contact-bonded,
  • the thermoplastic resin composition (A) is a composition comprising a thermoplastic resin and an inorganic filler that raises the crystallization temperature of the thermoplastic resin by 3 ° C. or more.
  • the metal (B) provides a composite that is a surface-treated metal.
  • the thermoplastic resin is preferably a polyamide resin.
  • the inorganic filler is preferably at least one selected from the group consisting of talc, graphite, magnesium oxide, kaolin and calcium carbonate.
  • the inorganic filler is preferably at least one selected from the group consisting of talc, graphite and magnesium oxide. Moreover, it is preferable that the compounding quantity of the said inorganic filler is 0.01 to 50 mass% in the said thermoplastic resin composition (A).
  • the surface treatment of the metal (B) is preferably a treatment for forming fine irregularities on the surface or a treatment for fixing a chemical substance. Moreover, it is preferable that the composite of this invention is a thing by which the said thermoplastic resin composition (A) and the said metal (B) were contact-joined by injection molding.
  • the surface of the thermoplastic resin composition (A) facing the bonding surface between the thermoplastic resin composition (A) and the metal (B) is selected from ribs, protrusions, holes, and steps.
  • One type of shrinkage suppression structure may be provided.
  • the composite of the present invention may be a tube or rod as a whole, and a resin and metal may have a multilayer structure.
  • the composite of the present invention has a high structural reinforcing effect on the metal because the resin and the metal are sufficiently bonded without impairing the high temperature characteristics and chemical resistance of the thermoplastic resin. It can be suitably used for structural parts in all fields such as general industrial machines. Further, when a metal is introduced into the resin in order to partially improve the dimensional accuracy, heat resistance, etc., in the present invention, the fixing state between the metal and the resin can be remarkably improved, and the quality as a composite can be further improved. Similarly, in the case of sheets, tapes, pipes, tubes, etc. that are multilayered with resin and metal in order to enhance conductivity and gas permeation suppression function, the quality can be further enhanced by using the composite of the present invention. .
  • the composite of the present invention is effective for both a technique for injecting and solidifying a resin into fine irregularities on a metal surface and a technique for fixing a compound to a metal surface and joining the resin. Therefore, the present invention makes it possible to bond a thermoplastic resin to a metal having a compound fixed to the metal surface by injection molding, which has not been possible in the past, and the thermoplastic resin and the metal having the compound fixed to the metal surface are contact bonded. Composites can be produced.
  • the present invention provides a composite in which a thermoplastic resin composition (A) and a metal (B) are contact-bonded.
  • the thermoplastic resin composition (A), metal (B), and their contact bonding modes will be described below.
  • thermoplastic resin composition (A) used in the present invention is a composition comprising a thermoplastic resin and an inorganic filler that raises the crystallization temperature of the thermoplastic resin by 3 ° C. or more.
  • thermoplastic resin used in the thermoplastic resin composition (A) is not particularly limited, but high-density polyethylene (HDPE), medium-density polyethylene (MDPE), low-density polyethylene (LDPE), linear low density polyethylene (LLDPE), ultra high molecular weight polyethylene (UHMWPE), polypropylene (PP), ethylene / propylene copolymer (EPR), ethylene / butene copolymer (EBR), ethylene / vinyl acetate Copolymer (EVA), ethylene / acrylic acid copolymer (EAA), ethylene / methacrylic acid copolymer (EMAA), ethylene / methyl acrylate copolymer (EMA), ethylene / methyl methacrylate copolymer ( EMMA), polyolefin resins such as ethylene / ethyl acrylate copolymer (EEA), and the like And acrylic acid, methacrylic acid, maleic acid, fumaric acid, it
  • a carboxyl group such as 5-heptene-2,3-dicarboxylic acid and metal salts thereof (Na, Zn, K, Ca, Mg), maleic anhydride, itaconic anhydride, citraconic anhydride, endobicyclo- [2 2.1] -5-heptene-2,3-dicarboxylic anhydride and other acid anhydride groups, epoxy groups such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, glycidyl citraconic acid, etc.
  • the polyolefin resin modified with a compound containing a functional group polybutylene terephthalate (PBT) , Polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polyethylene isophthalate (PEI), PET / PEI copolymer, polyarylate (PAR), polybutylene naphthalate (PBN), polyethylene naphthalate (PEN), Polyester resins such as liquid crystal polyester (LCP), polylactic acid (PLA), polyglycolic acid (PGA), polyether resins such as polyacetal (POM) and polyphenylene oxide (PPO), polysulfone (PSF), polyethersulfone ( PES) and other polysulfone resins, polyphenylene sulfide resin (PPS), polythioether resins such as polythioether sulfone resin (PTES), polyether ether ketone (PEEK), polyallyl ether Polyketone resins such as ruketone (PA
  • Polyvinyl ester resins polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), polyvinyl chloride / vinylidene chloride copolymer, polyvinylidene chloride / methyl acrylate copolymer, etc., cellulose acetate, cellulose butyrate, etc.
  • Cellulosic resins polycarbonate resins such as polycarbonate (PC), polyimide resins such as thermoplastic polyimide (PI), polyamideimide (PAI), and polyetherimide, polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF) , Ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene / hexafluoropropylene copolymer (TFE / HFP, FEP), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer (TFE / HFP / VDF, THV), tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA), etc.
  • PC polycarbonate
  • thermoplastic polyurethane resins thermoplastic polyurethane resins, polyurethane elastomer, polyamide elastomer other than as defined in the present invention, a polyester elastomer.
  • thermoplastic resins having a relatively clear crystallization or solidification temperature other than polybutylene terephthalate (PBT) and polyphenylene sulfide resin (PPS), which have weak bonding strength with the surface-treated metal, are bonded to the metal.
  • PBT polybutylene terephthalate
  • PPS polyphenylene sulfide resin
  • a polyamide resin is more preferable from the viewpoint of ease of handling such as moldability, high heat resistance, and mechanical strength.
  • These can use 1 type (s) or 2 or more types.
  • polyamide resin examples include polycaprolactam (polyamide 6), polyundecane lactam (polyamide 11), polydodecane lactam (polyamide 12), polyethylene adipamide (polyamide 26), polytetramethylene adipamide (polyamide 46), Polyhexamethylene adipamide (Polyamide 66), Polyhexamethylene azelamide (Polyamide 69), Polyhexamethylene sebamide (Polyamide 610), Polyhexamethylene undecamide (Polyamide 611), Polyhexamethylene dodecamide (Polyamide) 612), polyhexamethylene terephthalamide (polyamide 6T), polyhexamethylene isophthalamide (polyamide 6I), polyhexamethylene hexahydroterephthalamide (polyamide 6T (H)), Polynonamethylene adipamide (polyamide 96), polynonamethylene azelamide (polyamide 99), polynonamethylene sebamide (polyamide
  • polyamide 6, polyamide 12, polyamide 66, polyamide 6/66 copolymer (copolymer of polyamide 6 and polyamide 66, hereinafter, Copolymer is described in the same manner)
  • polyamide 6/12 copolymer polyamide 6/66/12 copolymer
  • polyamide 6, polyamide 66, polyamide 6/66 copolymer, polyamide 6/12 copolymer From the viewpoints of moldability, mechanical properties, and durability, polyamide 6 and / or polyamide 66 are more preferable.
  • These can use 1 type (s) or 2 or more types.
  • monocarboxylic acids such as acetic acid and stearic acid
  • diamines such as metaxylylenediamine and isophoronediamine
  • monoamines, and dicarboxylic acids can be added in appropriate combination.
  • the relative viscosity of the obtained polyamide resin is preferably 1.0 or more and 5.0 or less, more preferably 1.5 or more and 4.5 or less, and 1.8 or more and 4.0 or less. Is more preferable.
  • the amount of water extracted from the polyamide resin measured according to the method for measuring the content of low molecular weight substances stipulated in JIS K-6920 is not particularly limited, but environmental problems such as gas generated during molding processing, Since there is a possibility of causing a decrease in productivity due to adhesion to the manufacturing facility and appearance failure due to adhesion to the composite, the content is preferably 5% by mass or less.
  • thermoplastic resin composition (A) As an inorganic filler that increases the crystallization temperature of the thermoplastic resin used in the thermoplastic resin composition (A) by 3 ° C or more, the crystallization temperature of the thermoplastic resin is increased by 3 ° C or more. Any inorganic filler may be used, and an inorganic filler that raises the crystallization temperature of the thermoplastic resin by 6 ° C. or more is preferable from the viewpoint of the bonding strength of the composite. As an inorganic filler that raises the crystallization temperature of a specific thermoplastic resin by 3 ° C.
  • At least one selected from the group consisting of talc, graphite, magnesium oxide, kaolin, and calcium carbonate is preferable, and talc, graphite, and oxidation are preferable. At least one selected from the group consisting of magnesium is more preferable.
  • the blending amount of the inorganic filler is preferably 0.01% by mass or more and 50% by mass or less in the thermoplastic resin composition (A), and 0.05% by mass or more and 20% by mass or less from the viewpoint of bonding strength. Preferably, 5 mass% or more and 20 mass% or less are more preferable. It should be noted that, depending on the type of thermoplastic resin, the type of metal, and the surface treatment method, a sufficient bonding state can be obtained even at 0.05% by mass, so that the amount is preferably selected depending on the use of the composite.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably 20 ⁇ m or less in view of the appearance and impact strength of the molded product, and preferably 3 to 15 ⁇ m from the viewpoint of bondability with metal.
  • the average particle size is determined by, for example, collecting inorganic fillers according to the Japanese Industrial Standards Flour Mixture-General Sampling Method (JIS M8100), and the Sample Preparation General Rules for Measuring Fine Ceramic Raw Material Particle Size Distribution (JIS R 1622). -1995), an inorganic filler can be prepared as a measurement sample, and the fine ceramic raw material can be measured according to a particle size distribution measurement method (JIS R 1629-1997) using a laser diffraction / scattering method.
  • a laser diffraction particle size distribution analyzer SALD-7000 manufactured by Shimadzu Corporation can be used.
  • the inorganic filler can be subjected to a coupling treatment that improves the adhesion to the resin in order to improve the mechanical properties and the molding appearance.
  • the coupling agent include a silane coupling agent and an epoxy silane coupling agent. The amount added may be 0.01 to 5 parts by mass with respect to 100 parts by mass of the inorganic filler.
  • thermoplastic resin composition (A) in addition to the above inorganic filler, various additives, modifiers, reinforcing materials, etc., which are usually blended within a range not impairing the properties of the composite of the present invention, for example, heat Stabilizer, antioxidant, ultraviolet absorber, weathering agent, filler, plasticizer, foaming agent, antiblocking agent, tackifier, sealing property improver, anti-clouding agent, mold release agent, crosslinking agent, foaming agent, A flame retardant, a coloring agent (a pigment, dye, etc.), a coupling agent, inorganic reinforcement materials, such as glass fiber, etc. can be contained.
  • heat Stabilizer antioxidant, ultraviolet absorber, weathering agent, filler, plasticizer, foaming agent, antiblocking agent, tackifier, sealing property improver, anti-clouding agent, mold release agent, crosslinking agent, foaming agent,
  • a flame retardant a coloring agent (a pigment, dye, etc.), a coupling agent, inorganic reinforcement materials, such as glass fiber
  • thermoplastic resin A method of blending these various additives into the thermoplastic resin is a dry blend method using a tumbler or a mixer, a kneading method in which a raw material is melt kneaded in advance using a uniaxial or biaxial extruder at a concentration used during molding, Alternatively, a general method such as a master batch method in which the raw material is kneaded in advance at a high concentration using a uniaxial or biaxial extruder and diluted at the time of molding is used, and there is no particular limitation.
  • the metal (B) of the present invention is not particularly limited as a metal material as long as it is a surface-treated metal.
  • a metal material for example, iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, Mention may be made of titanium, chromium, aluminum, magnesium, manganese and alloys thereof (stainless steel, brass, phosphor bronze, etc.).
  • thin metal and metal with a coating are also targeted.
  • Surface treatment refers to, for example, a method in which a metal surface is immersed in an erodible liquid, a state where fine irregularities are formed on the metal surface by anodization, or a state where a chemical substance is fixed on the metal surface.
  • the erodible liquid examples include water-soluble amine compounds, which are ammonia, hydrazine, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, ethanolamine, allylamine, ethanolamine, diethanolamine. , Triethanolamine, aniline, and other amines.
  • water-soluble amine compounds which are ammonia, hydrazine, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, ethanolamine, allylamine, ethanolamine, diethanolamine.
  • Triethanolamine, aniline, and other amines Triethanolamine, aniline, and other amines.
  • hydrazine is particularly preferable because it has a low odor and is effective at a low concentration.
  • An anodized film refers to an oxide film formed on a metal surface when a metal is used as an anode in an electrolyte solution.
  • electrolyte examples include the water-soluble amine compounds described above.
  • the state in which fine irregularities are formed on the metal surface is preferably such that the metal surface is covered with fine concave portions or hole openings having a number average inner diameter of 10 to 100 nm as measured by observation with an electron microscope.
  • the chemical substance to be fixed to the metal surface includes a triazine dithiol derivative, and the triazine dithiol derivative is preferably represented by the following general formula.
  • R is —OR1, —OOR1, —SmR1, —NR1 (R2);
  • R1 and R2 are H, hydroxyl group, carbonyl group, ether group, ester group, amide group, amino group, phenyl group, cycloalkyl.
  • triazine dithiol derivative of the above general formula examples include 1,3,5-triazine-2,4,6-trithiol, 1,3,5-triazine-2,4,6-trithiol monosodium, 3,5-triazine-2,4,6-trithiol-triethanolamine, 6-anilino-1,3,5-triazine-2,4-dithiol, 6-anilino-1,3,5-triazine-2, 4-dithiol monosodium, 6-dibutylamino-1,3,5-triazine-2,4-dithiol, 6-dibutylamino-1,3,5-triazine-2,4-dithiol monosodium, 6- Diallylamino-1,3,5-triazine-2,4-dithiol, 6-diallylamino-1,3,5-triazine-2,4-dithiol monosodium, , 3,5-triazine-2,4,6-
  • the surface-treated metal is preferably a metal whose surface is covered with a recess or hole opening having a number average inner diameter of 10 to 100 nm as measured with an electron microscope, or a metal to which a triazine thiol derivative is fixed.
  • the method for contacting and joining the thermoplastic resin composition (A) and the metal (B) is not particularly limited, but it is preferable to perform contact joining by injection molding.
  • the metal (B) is placed on one side of the mold, the mold is closed, the thermoplastic resin composition (A) is introduced into the injection molding machine from the hopper portion of the injection molding machine, and the molten resin is put into the mold. And a movable mold is opened and released to obtain a composite in which the thermoplastic resin composition (A) and the metal (B) are joined.
  • the conditions for injection molding vary depending on the type of thermoplastic resin and are not particularly limited, but the mold temperature is preferably 10 ° C or higher and 160 ° C or lower. In general, 40 ° C. or more and 120 ° C. or less is more preferable from the viewpoint of product quality such as strength and molding cycle, but 90 ° C. or more is more preferable for injection molding to be bonded to a metal.
  • thermoplastic resin composition (A) including a thermoplastic resin and an inorganic filler blended so as to increase the crystallization temperature of the thermoplastic resin is used.
  • the thermoplastic resin composition (A) including a thermoplastic resin and an inorganic filler blended so as to increase the crystallization temperature of the thermoplastic resin is used.
  • the thickness of the layer of the resin member 20 is preferably about 0.5 to 10 mm, and the height of the rib 21 is generally preferably 1.0 mm or more although it depends on the molding shrinkage of the resin material.
  • projections (bosses), holes, steps, and the like can be provided.
  • the method of contacting and joining the thermoplastic resin composition (A) and the metal (B) can be performed by extrusion molding according to a conventional method.
  • the entire shape is preferably a tube or rod having a uniform cross section such as a cylinder, and a resin and metal having a multilayer structure.
  • the composite of the present invention is sufficiently bonded with resin and metal, it can be applied to a wide range of applications such as automobile parts, electrical / electronic parts, general machine parts, sheets / tapes, pipes / tubes, It can be suitably used for applications requiring resistance, gas / liquid permeation suppression, dimensional / shape stability, electrical conductivity, thermal conductivity, and strength at the same time, for example, automobile fuel parts.
  • Thermoplastic resin composition (A)] ⁇ Polyamide resin composition (a-1) Polyamide having 40% by mass of talc (PKP-80 from Fuji Talc Kogyo Co., Ltd.) having an average particle diameter of 14 ⁇ m and surface-treated with 1% by mass aminosilane coupling agent, a relative viscosity of 2.47, and a water extract of 5% by mass or less A polyamide resin composition comprising 6 in an amount of 60% by mass. (Hereinafter referred to as (a-1).) ⁇ Polyamide resin composition (a-2) In (a-1), a polyamide resin composition (a-2) (hereinafter referred to as (a-2)) that is the same as (a-1) except that the amount of talc is 0.5% by mass.
  • Polyamide resin composition (a-3) Polyamide resin composition comprising 30% by mass of talc (Simgon M, Nippon Talc Co., Ltd.) having an average particle size of 8 ⁇ m, 70% by mass of polyamide 6 having a relative viscosity of 2.47 and a water extract of 5% by mass or less.
  • talc Simgon M, Nippon Talc Co., Ltd.
  • (A-3) (hereinafter referred to as (a-3)) ⁇ Polyamide resin composition (a-4) 40% by volume of graphite (SP-10, Nippon Graphite Industry Co., Ltd.) having an average particle size of 33 ⁇ m and a bulk density of 0.18 g / cm 3 , a polyamide 6 having a relative viscosity of 2.47 and a water extract of 5% by mass or less 60% by volume of a polyamide resin composition (a-4) (hereinafter referred to as (a-4)) ⁇ Polyamide resin composition (a-5) 40% by volume of magnesium oxide (RF-50-AC from Ube Materials Co., Ltd.) having an average particle size of 2.3 ⁇ m and a bulk density of 0.4 g / cm 3 , a relative viscosity of 2.47, and a water extract of 5% by mass Polyamide resin composition (a-5) comprising 60% by volume of the following polyamide 6 (hereinafter referred to as (a-5)) ⁇ Polyamide resin composition (a-6)
  • Polyamide resin composition (a-6) (hereinafter referred to as (a-6))
  • Polyamide resin composition (a-7) A polyamide resin composition (a-7) comprising 30% by mass of glass fiber (ECS03T249 of Nippon Electric Glass Co., Ltd.), 70% by mass of polyamide 6 having a relative viscosity of 2.64 and a water extract of 5% by mass or less. (Hereinafter referred to as (a-7).)
  • ⁇ Polyamide resin composition (a-8) Polyamide resin composition (a-8) comprising 45% by mass of glass fiber (ECS03T249 of Nippon Electric Glass Co., Ltd.), 55% by mass of polyamide 6 having a relative viscosity of 2.64 and a water extract of 5% by mass or less.
  • ⁇ Polyamide resin composition (a-9) A polyamide resin composition (a-9) comprising 45% by mass of glass fiber (ECS03T289 from Nippon Electric Glass Co., Ltd.), 55% by mass of polyamide 66 having a relative viscosity of 2.75 and a water extract of 5% by mass or less. (Hereinafter referred to as (a-9).) ⁇ Polyamide resin composition (a-10) Polyamide 66 having 35% by mass of glass fiber (ECS03T289 from Nippon Electric Glass Co., Ltd.), 5% by mass of polyamide 12, 13% by mass of aromatic polyamide, a relative viscosity of 2.75, and a water extract of 5% by mass or less.
  • polyamide resin composition (a-10) (hereinafter referred to as (a-10)).
  • a-10 polyamide resin composition
  • ⁇ Polyamide 6 resin (a-11) Polyamide 6 resin (a-11) (hereinafter referred to as (a-11)) having a relative viscosity of 2.47, a water extract of 5% by mass or less, and a crystallization temperature Tc of 179.8 ° C.
  • Method (B) A test piece of stainless steel, steel, and aluminum having an outer dimension of 12 mm ⁇ 12 mm, a thickness of 1.0 mm, and a length of 150 mm is prepared.
  • Stainless steel uses SUS304-HL, which is a stainless steel containing 18% Cr and 8% Ni.
  • the steel uses STKMR290, a standard for square steel pipes for machine structures, As aluminum, A5052 defined in JIS H4040: 2006 was used.
  • a surface treatment (hereinafter also referred to as “treatment 2”) using a triazine dithiol derivative described in Patent Document 3 was performed as an adhesive.
  • the metal after the surface treatment was placed in a multilayer bag of polyethylene and aluminum, sealed with a heat seal machine, and stored at room temperature until immediately before the joint molding with the resin.
  • a tool is required for peeling, and the resin part breaks without peeling at the interface between the metal and the resin.
  • B A tool is required for peeling, and a resin having a thickness of 0.2 mm or more remains on the metal side.
  • C Although it peels by hand after taking out, there exists a feeling of resistance and there exists discoloration in the peeling surface of a metal.
  • D It peels by hand after taking out and there is no change in an interface with the naked eye.
  • E Peel without touching when protruding or taking out.
  • a test piece having a width of 4 mm, a thickness of 4 mm, and a length of 10 mm is cut out from the sprue portion of FIG. 1 obtained when the composite is molded.
  • a load of 2 g was applied to the cut specimen, and a linear expansion coefficient in a temperature range of 50 to 150 ° C. was measured at a heating rate of 5 ° C./min. The average value was taken as the linear expansion coefficient of the thermoplastic resin.
  • Example 1 The aluminum test piece surface-treated in treatment 1 is preheated with a natural convection dryer SONW-450 set at 200 ° C and attached to the injection molding machine SE-100D of Sumitomo Heavy Industries, Ltd. 1 was placed in a mold capable of molding the composite of FIG. 1, and a polyamide resin composition in which 12.5% by mass of (a-1) and 87.5% by mass of (a-6) were mixed was injected at the same time. It was introduced into a molding machine, injected into a mold having a mold temperature of 150 ° C. at a resin temperature of 260 ° C., and a holding pressure of 40 MPa was applied for 40 seconds, followed by cooling in the mold for 45 seconds to obtain a composite having the shape shown in FIG. Obtained. The obtained composite was subjected to strength measurement and bondability evaluation. Moreover, the linear expansion coefficient was measured from the cut specimen. The results are shown in Table 1.
  • Example 2 A composite was obtained in the same manner as in Example 1 except that (a-1) was changed to 25% by mass and (a-6) was changed to 75% by mass in Example 1. The obtained composite was subjected to strength measurement and bondability evaluation. Moreover, the linear expansion coefficient was measured from the cut specimen. The results are shown in Table 1.
  • Example 3 A composite was obtained in the same manner as in Example 1 except that (a-1) was changed to 50% by mass and (a-6) was changed to 50% by mass. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 1.
  • Example 4 A composite was obtained in the same manner as in Example 1 except that (a-6) was not used and (a-1) was changed to 100% by mass. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 1.
  • Comparative Example 1 A composite was obtained in the same manner as in Example 1, except that (a-1) was not used and (a-6) was changed to 100% by mass. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 1.
  • Example 5 Pre-heated the steel specimen surface treated in treatment 1 with ASW natural convection dryer SONW-450 set at 200 ° C, and attach the specimen to the injection molding machine SE-100D of Sumitomo Heavy Industries, Ltd. 1 is placed in a mold capable of molding the composite of FIG. 1, and (a-2) 2% by mass, (a-7) 66.7% by mass, and (a-11) 31.3% by mass of polyamide
  • the resin composition was introduced into the same injection molding machine, injected into a mold having a resin temperature of 270 ° C. and a mold temperature of 150 ° C., a holding pressure of 50 MPa was applied for 45 seconds, and then cooled in the mold for 45 seconds. A composite of shape 1 was obtained. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 2.
  • Example 6 A composite was prepared in the same manner as in Example 5 except that (a-2) 20% by mass, (a-7) 66.7% by mass, and (a-11) 13.3% by mass were used. Obtained. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 2.
  • Example 7 In Example 5, a composite was made in the same manner as in Example 5 except that (a-1) 2.5% by mass, (a-7) 66.7% by mass and (a-11) 30.8% by mass were used. Got the body. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 2.
  • Example 8 A composite was prepared in the same manner as in Example 5 except that (a-1) 25% by mass, (a-7) 66.7% by mass, and (a-11) 8.3% by mass were used. Obtained. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 2.
  • Example 9 A composite was prepared in the same manner as in Example 5 except that (a-1) 50% by mass, (a-8) 44.4% by mass, and (a-11) 5.6% by mass were used. Obtained. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 2.
  • Comparative Example 2 A composite was obtained in the same manner as in Example 5 except that (a-7) 66.7% by mass and (a-11) 33.3% by mass were used. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 2.
  • Example 10 Pre-heated the stainless steel test piece surface-treated in treatment 1 with the natural convection dryer SONW-450 set at 200 ° C and attached to the injection molding machine SE-100D of Sumitomo Heavy Industries, Ltd. 1 is installed in a mold capable of molding the composite shown in FIG. 1, and (a-1) is introduced into the same injection molding machine and injected into a mold having a resin temperature of 270 ° C. and a mold temperature of 140 ° C. After applying 60 MPa for 15 seconds, the composite of the shape of FIG. 1 was obtained by cooling in the mold for 30 seconds. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 11 In Example 10, a composite was obtained in the same manner as in Example 10 except that the stainless steel test piece surface-treated in treatment 1 was changed to a steel test piece surface-treated in treatment 1. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 12 A composite was obtained in the same manner as in Example 10 except that the stainless steel test piece surface-treated in treatment 1 was changed to the aluminum test piece surface-treated in treatment 1. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 13 A composite was obtained in the same manner as in Example 10 except that the stainless steel test piece surface-treated in treatment 1 was changed to a stainless steel test piece surface-treated in treatment 2. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 14 In Example 13, a composite was obtained in the same manner as in Example 10 except that the stainless steel test piece surface-treated in treatment 2 was changed to a steel test piece surface-treated in treatment 2. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 15 A composite was obtained in the same manner as in Example 10 except that the stainless steel test piece surface-treated in the treatment 2 was changed to the aluminum test piece surface-treated in the treatment 2. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 16 Pre-heated the stainless steel test piece surface-treated in treatment 1 with the natural convection dryer SONW-450 set at 200 ° C and attached to the injection molding machine SE-100D of Sumitomo Heavy Industries, Ltd. 1 is installed in a mold capable of molding the composite shown in FIG. 1, and (a-3) is introduced into the same injection molding machine and injected into a mold having a resin temperature of 270 ° C. and a mold temperature of 140 ° C. After applying 60 MPa for 15 seconds, it was cooled in a mold for 30 seconds to obtain a composite having the shape of FIG. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 17 In Example 16, a composite was obtained in the same manner as in Example 16 except that the stainless steel test piece surface-treated in treatment 1 was changed to a steel test piece surface-treated in treatment 1. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 18 A composite was obtained in the same manner as in Example 16 except that the stainless steel test piece surface-treated in the treatment 1 was changed to the aluminum test piece surface-treated in the treatment 1. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 19 A composite was obtained in the same manner as in Example 16 except that the stainless steel test piece surface-treated in the treatment 1 was changed to the stainless steel test piece surface-treated in the treatment 2. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 20 In Example 19, a composite was obtained in the same manner as in Example 19 except that the stainless steel test piece surface-treated in treatment 2 was changed to a steel test piece surface-treated in treatment 2. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 21 A composite was obtained in the same manner as in Example 19 except that the stainless steel test piece surface-treated in the treatment 2 was changed to the aluminum test piece surface-treated in the treatment 2. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 22 A composite was obtained in the same manner as in Example 10 except that the resin composition was a mixture of (a-1) 50% by mass and (a-9) 50% by mass and the mold temperature was 120 ° C. . The obtained composite was subjected to strength measurement and bondability evaluation. Moreover, the linear expansion coefficient was measured from the cut specimen. The results are shown in Table 3.
  • Example 23 A composite was obtained in the same manner as in Example 22 except that the resin composition was (a-4) and the metal type was aluminum in Example 22, and the bondability was evaluated. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Example 24 A composite was obtained in the same manner as in Example 23 except that the resin composition graphite was changed from magnesium oxide to resin composition (a-5) in Example 23, and the bondability was evaluated. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 3 Pre-heated the stainless steel test piece surface-treated in treatment 1 with the natural convection dryer SONW-450 set at 180 ° C and attached the test piece to the injection molding machine SE-100D of Sumitomo Heavy Industries, Ltd. 1 is installed in a mold capable of molding the composite shown in FIG. 1, and (a-7) is introduced into the same injection molding machine and injected into a mold having a resin temperature of 290 ° C. and a mold temperature of 80 ° C. After applying 60 MPa for 15 seconds, it was cooled in a mold for 30 seconds to obtain a composite having the shape of FIG. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 4 In Comparative Example 3, a composite was obtained in the same manner as in Comparative Example 3, except that the stainless steel test piece surface-treated in Treatment 1 was changed to a steel test piece surface-treated in Treatment 1. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 5 In Comparative Example 3, a composite was obtained in the same manner as in Comparative Example 3, except that the stainless steel test piece surface-treated in Treatment 1 was replaced with the aluminum test piece surface-treated in Treatment 1. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 6 In Comparative Example 3, a composite was obtained in the same manner as in Comparative Example 3, except that the stainless steel test piece surface-treated in the treatment 1 was changed to a stainless steel test piece surface-treated in the treatment 2. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 7 In Comparative Example 6, a composite was obtained in the same manner as in Comparative Example 6 except that the stainless steel test piece surface-treated in the treatment 2 was changed to a steel test piece surface-treated in the treatment 2. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 8 In Comparative Example 6, a composite was obtained in the same manner as in Comparative Example 6 except that the stainless steel test piece surface-treated in the treatment 2 was changed to the aluminum test piece surface-treated in the treatment 2. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 9 In Comparative Example 3, a composite was obtained in the same manner as in Comparative Example 3, except that the test piece was preheated at 200 ° C and the mold temperature was 150 ° C. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 10 In Comparative Example 9, a composite was obtained in the same manner as in Comparative Example 9, except that the stainless steel test piece surface-treated in the treatment 1 was changed to a stainless steel test piece surface-treated in the treatment 2. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 11 A composite was obtained in the same manner as in Comparative Example 9 except that (a-7) was changed to (a-9) in Comparative Example 9. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 12 In Comparative Example 11, a composite was obtained in the same manner as in Comparative Example 11 except that the stainless steel test piece surface-treated in the treatment 1 was changed to a steel test piece surface-treated in the treatment 1. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 13 In Comparative Example 11, a composite was obtained in the same manner as in Comparative Example 11 except that the stainless steel test piece surface-treated in Treatment 1 was replaced with the aluminum test piece surface-treated in Treatment 1. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 14 A composite was obtained in the same manner as in Comparative Example 9 except that (a-9) was changed to (a-6) in Comparative Example 9. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 15 In Comparative Example 14, a composite was obtained in the same manner as in Comparative Example 11 except that the stainless steel test piece surface-treated in the treatment 1 was changed to a stainless steel test piece surface-treated in the treatment 2. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 16 Pre-heated the stainless steel test piece surface-treated in treatment 1 with the natural convection dryer SONW-450 set at 200 ° C and attached to the injection molding machine SE-100D of Sumitomo Heavy Industries, Ltd. 1 is installed in a mold capable of molding the composite shown in FIG. 1 and (a-10) is introduced into the same injection molding machine and injected into a mold having a resin temperature of 290 ° C. and a mold temperature of 80 ° C. After applying 60 MPa for 15 seconds, the composite of the shape of FIG. 1 was obtained by cooling in the mold for 30 seconds. The obtained composite was subjected to strength measurement and bondability evaluation. The results are shown in Table 3.
  • Comparative Example 17 In Comparative Example 16, a composite was obtained in the same manner as in Comparative Example 16 except that the stainless steel test piece surface-treated in the treatment 1 was changed to a stainless steel test piece surface-treated in the treatment 2. The obtained composite was subjected to strength measurement and bondability evaluation. The results are shown in Table 3.
  • Comparative Example 18 A composite was obtained in the same manner as in Comparative Example 16 except that (a-10) was changed to (a-8) in Comparative Example 16. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 19 In Comparative Example 18, a composite was obtained in the same manner as Comparative Example 18 except that the stainless steel test piece surface-treated in Treatment 1 was changed to a steel test piece surface-treated in Treatment 1. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.
  • Comparative Example 20 A composite was obtained in the same manner as in Comparative Example 18 except that the stainless steel test piece surface-treated in Treatment 1 was replaced with the aluminum test piece surface-treated in Treatment 1. The obtained composite was subjected to strength measurement and bondability evaluation. Further, the linear expansion coefficient and the crystallization temperature were measured from the cut specimen. The results are shown in Table 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の課題は、熱可塑性樹脂の特性を損なうことなく、熱可塑性樹脂と金属が強固に接合した複合体を提供することである。そのため、本発明は、熱可塑性樹脂組成物(A)と金属(B)とが接触接合した複合体であって、前記熱可塑性樹脂組成物(A)は、熱可塑性樹脂と該熱可塑性樹脂の結晶化温度を3℃以上上昇させる無機充填材とを含む組成物であり、前記金属(B)は、表面処理した金属である複合体を提供するものである。前記熱可塑性樹脂はポリアミド樹脂であることが好ましい。また、前記無機充填材は、タルク、グラファイト、酸化マグネシウム、カオリン及び炭酸カルシウムからなる群より選ばれる少なくとも一種であることが好ましい。

Description

金属と熱可塑性樹脂の複合体
 本発明は、金属と熱可塑性樹脂の複合体に関する。
 自動車や電気・電子などさまざまな分野でエンジニアリングプラスチックスは、それまで金属材料で構成していた部品の構成材料を樹脂材料に置き換え、部品の軽量化やコスト低減に寄与してきた。しかし、構成材料に樹脂材料単独で使用した部品は、高温での強度・剛性不足や特定の化学物質への耐性不足などの理由から、樹脂材料への置き換えは限界に迫りつつある。また金属材料単体で構成していた部品を樹脂材料と複合化や多層化することで表面質感や防錆機能などの向上を図ることがあるが、金属と樹脂との接合不良から部品全体としての強度不足を招いたり、液体との接触がある部品の場合、金属と樹脂の接合部への液体の浸透や滞留などに起因する部品の機能低下を招く場合があった。
 このような事情から、金属と樹脂を強固に接合する技術が求められ、いくつか提案されている。代表的な例としては金属表面に主に化学的処理を施すことで微細な凹凸を形成させ、そこに樹脂を流入、固化させることで金属と樹脂とを接合させるものである。特許文献1には、金属表面に微細な凹凸を形成する手法として金属をアンモニア、ヒドラジン、および水溶性アミンから選択される1種以上の水溶液に浸漬する方法が記載されている。また、特許文献2には、陽極酸化法により微細な凹凸を金属表面に形成させる方法が開示されている。一方、特許文献3には、金属表面に特定の化合物を固着させる方法が開示されており、この特定の化合物を結合させた金属に樹脂を溶融接触させることで両者を接合させる方法が提案されている。
 さらに金属と樹脂の接着性を改良する為に、特定の処理を施した金属に特定の樹脂を用いる技術が提案されている。たとえば、特許文献4には陽極酸化法により微細な開口を有するアルミニウム合金を調製し、これに、オレフィン系樹脂を配合したポリフェニレンサルファイドを接合させることにより接合強度を向上させる技術が開示されている。また特許文献5には侵食性水溶液で表面処理したアルミニウム合金にポリアミド樹脂を接合する技術が開示されているが、この場合、ポリアミド樹脂に芳香族ポリアミドや耐衝撃改良材を配合することで接合状態を更に改良できることが開示されている。
特許3967104号公報 特許4541153号公報 特公平5-51671号公報 特許4527196号公報 特開2007-182071号公報
 しかし、樹脂と金属とを接合させる技術において実用性の高いものがなく、例えば特許文献1に記載されている金属表面に微細凹凸を形成させ、そこに溶融樹脂を流入させて固化させる場合、ポリアミド6やポリアミド66のような一般的な熱可塑性樹脂を用いた場合では後述の比較例にあるように強固な接合状態が得られなかった。また、特許文献4および5には前述のような材料組成による改良技術が記載されているが、これらの技術ではそれぞれの熱可塑性樹脂の元来の長所である高温での強度・剛性、耐薬品性などが損なわれる可能性がある上に、熱可塑性樹脂成分によっては成形性や溶着などの二次加工性の低下やコスト上昇を招く可能性もある。
 本発明の課題は熱可塑性樹脂の特性を損なうことなく、熱可塑性樹脂と金属が強固に接合した複合体を提供することである。
 上記の課題は、以下に示す本発明によって解決される。
 即ち、本発明は、熱可塑性樹脂組成物(A)と金属(B)とが接触接合した複合体であって、
 前記熱可塑性樹脂組成物(A)は、熱可塑性樹脂と該熱可塑性樹脂の結晶化温度を3℃以上上昇させる無機充填材とを含む組成物であり、
 前記金属(B)は、表面処理した金属である複合体を提供するものである。
 本発明においては、前記熱可塑性樹脂は、ポリアミド樹脂であることが好ましい。
 また、前記無機充填材は、タルク、グラファイト、酸化マグネシウム、カオリン及び炭酸カルシウムからなる群より選ばれる少なくとも一種であることが好ましい。
 また、前記無機充填材は、タルク、グラファイト及び酸化マグネシウムからなる群より選ばれる少なくとも一種であることが好ましい。
 また、前記無機充填材の配合量は、前記熱可塑性樹脂組成物(A)中に、0.01質量%以上50質量%以下であることが好ましい。
 また、前記金属(B)の表面処理は、その表面に微細な凹凸を形成する処理又は化学物質を固着させる処理であることが好ましい。
 また、本発明の複合体は、前記熱可塑性樹脂組成物(A)と前記金属(B)とが射出成形により接触接合されたものであることが好ましい。
 更に、前記熱可塑性樹脂組成物(A)の、前記熱可塑性樹脂組成物(A)と前記金属(B)との接合面に対して対向する面には、リブ、突起、穴、段差から選ばれた1種からなる収縮抑制構造が設けられていてもよい。
 更に、本発明の複合体は、全体形状が管または棒状であり、樹脂と金属が多層構成をなしているものでもよい。
 本発明の複合体は、熱可塑性樹脂の高温時特性や耐薬品性などを損なうことなく樹脂と金属とが十分に接合することから金属の構造的補強効果が高く、自動車分野、電気・電子分野、一般産業機械などあらゆる分野の構造部品に好適に使用できる。また寸法精度や耐熱性などを部分的に高めるため、樹脂に金属を導入した場合、本発明においては金属と樹脂の固着状態を著しく改善でき、複合体としての品質をさらに改善できる。同様に導電性やガス透過抑制機能を高めるため樹脂と金属とで多層化されたシート、テープ、パイプ、チューブなどにおいても、本発明の複合体を用いることで、その品質をさらに高めることができる。
 また本発明の複合体は、金属表面の微細凹凸に樹脂を流入、固化させる技術と金属表面に化合物を固着させて樹脂と接合させる技術の両方に有効である。したがって、従来できなかった化合物が金属表面に固着した金属に熱可塑性樹脂を射出成形により接合させることが、本発明により可能になり、熱可塑性樹脂と化合物が金属表面に固着した金属とが接触接合した複合体が製造することができる。
本発明の複合体の一実施形態を示す斜視図である。 本発明の複合体の他の実施形態を示す斜視図である。
 本発明は、熱可塑性樹脂組成物(A)と金属(B)とが接触接合した複合体を提供するものである。以下に熱可塑性樹脂組成物(A)、金属(B)、及びそれらの接触接合の態様について説明する。
[熱可塑性樹脂組成物(A)]
 本発明で用いる熱可塑性樹脂組成物(A)は、熱可塑性樹脂と、該熱可塑性樹脂の結晶化温度を3℃以上上昇させる無機充填材とを含む組成物である。
(1)熱可塑性樹脂
 熱可塑性樹脂組成物(A)に使用される熱可塑性樹脂は、特に限定されるものではないが、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超高分子量ポリエチレン(UHMWPE)、ポリプロピレン(PP)、エチレン/プロピレン共重合体(EPR)、エチレン/ブテン共重合体(EBR)、エチレン/酢酸ビニル共重合体(EVA)、エチレン/アクリル酸共重合体(EAA)、エチレン/メタクリル酸共重合体(EMAA)、エチレン/アクリル酸メチル共重合体(EMA)、エチレン/メタクリル酸メチル共重合体(EMMA)、エチレン/アクリル酸エチル共重合体(EEA)等のポリオレフィン系樹脂及び、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メサコン酸、シトラコン酸、グルタコン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸等のカルボキシル基及びその金属塩(Na、Zn、K、Ca、Mg)、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸無水物等の酸無水物基、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジル等のエポキシ基等の官能基が含有された化合物により変性された、上記ポリオレフィン系樹脂、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンイソフタレート(PEI)、PET/PEI共重合体、ポリアリレート(PAR)、ポリブチレンナフタレート(PBN)、ポリエチレンナフタレート(PEN)、液晶ポリエステル(LCP)、ポリ乳酸(PLA)、ポリグリコール酸(PGA)等のポリエステル系樹脂、ポリアセタール(POM)、ポリフェニレンオキシド(PPO)等のポリエーテル系樹脂、ポリスルホン(PSF)、ポリエーテルスルホン(PES)等のポリスルホン系樹脂、ポリフェニレンサルファイド樹脂(PPS)、ポリチオエーテルスルホン樹脂(PTES)等のポリチオエーテル系樹脂、ポリエーテルエーテルケトン(PEEK)、ポリアリルエーテルケトン(PAEK)等のポリケトン系樹脂、ポリアクリロニトリル(PAN)、ポリメタクリロニトリル、アクリロニトリル/スチレン共重合体(AS)、メタクリロニトリル/スチレン共重合体、アクリロニトリル/ブタジエン/スチレン共重合体(ABS)、メタクリロニトリル/スチレン/ブタジエン共重合体(MBS)等のポリニトリル系樹脂、ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル(PEMA)等のポリメタクリレート系樹脂、ポリ酢酸ビニル(PVAc)等のポリビニルエステル系樹脂、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、塩化ビニル/塩化ビニリデン共重合体、塩化ビニリデン/メチルアクリレート共重合体等のポリビニル系樹脂、酢酸セルロース、酪酸セルロース等のセルロース系樹脂、ポリカーボネート(PC)等のポリカーボネート系樹脂、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド等のポリイミド系樹脂、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、エチレン/テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(TFE/HFP,FEP)、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体(TFE/HFP/VDF,THV)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(PFA)等のフッ素系樹脂、熱可塑性ポリウレタン系樹脂、ポリウレタンエラストマー、本発明において規定した以外のポリアミドエラストマー、ポリエステルエラストマー等が挙げられる。これらの中でも表面処理した金属との接合力の弱い、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド樹脂(PPS)以外の、比較的明瞭な結晶化または凝固温度を示す熱可塑性樹脂が、金属との接合効果改善の観点から好ましく、成形性等の取り扱いの容易さや高い耐熱性、機械強度からポリアミド樹脂がより好ましい。これらは1種又は2種以上を用いることができる。
 ポリアミド樹脂としては、例えば、ポリカプロラクタム(ポリアミド6)、ポリウンデカンラクタム(ポリアミド11)、ポリドデカンラクタム(ポリアミド12)、ポリエチレンアジパミド(ポリアミド26)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンアゼラミド(ポリアミド69)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンウンデカミド(ポリアミド611)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリヘキサメチレンヘキサヒドロテレフタラミド(ポリアミド6T(H))、ポリノナメチレンアジパミド(ポリアミド96)、ポリノナメチレンアゼラミド(ポリアミド99)、ポリノナメチレンセバカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリノナメチレンテレフタラミド(ポリアミド9T)、ポリトリメチルヘキサメチレンテレフタラミド(ポリアミドTMHT)、ポリノナメチレンヘキサヒドロテレフタラミド(ポリアミド9T(H))、ポリノナメチレンナフタラミド(ポリアミド9N)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンアゼラミド(ポリアミド109)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリデカメチレンテレフタラミド(ポリアミド10T)、ポリデカメチレンヘキサヒドロテレフタラミド(ポリアミド10T(H))、ポリデカメチレンナフタラミド(ポリアミド10N)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリドデカメチレンアゼラミド(ポリアミド129)、ポリドデカメチレンセバカミド(ポリアミド1210)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリドデカメチレンテレフタラミド(ポリアミド12T)、ポリドデカメチレンヘキサヒドロテレフタラミド(ポリアミド12T(H))、ポリドデカメチレンナフタラミド(ポリアミド12N)、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリメタキシリレンスベラミド(ポリアミドMXD8)、ポリメタキシリレンアゼラミド(ポリアミドMXD9)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリメタキシリレンドデカミド(ポリアミドMXD12)、ポリメタキシリレンテレフタラミド(ポリアミドMXDT)、ポリメタキシリレンイソフタラミド(ポリアミドMXDI)、ポリメタキシリレンナフタラミド(ポリアミドMXDN)、ポリビス(4-アミノシクロヘキシル)メタンドデカミド(ポリアミドPACM12)、ポリビス(4-アミノシクロヘキシル)メタンテレフタラミド(ポリアミドPACMT)、ポリビス(4-アミノシクロヘキシル)メタンイソフタラミド(ポリアミドPACMI)、ポリビス(3-メチル-4-アミノシクロヘキシル)メタンドデカミド(ポリアミドジメチルPACM12)、ポリイソホロンアジパミド(ポリアミドIPD6)、ポリイソホロンテレフタラミド(ポリアミドIPDT)やこれらのポリアミド共重合体が挙げられる。この中でも機械的特性および耐薬品性などの材料機能と価格のバランスの観点から、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド6/66共重合体(ポリアミド6とポリアミド66の共重合体、以下、共重合体は同様に記載)、ポリアミド6/12共重合体、ポリアミド6/66/12共重合体が好ましく、ポリアミド6、ポリアミド66、ポリアミド6/66共重合体、ポリアミド6/12共重合体がより好ましく、成形性、機械物性、耐久性の観点から、ポリアミド6および/またはポリアミド66がより好ましい。これらは1種又は2種以上を用いることができる。
 尚、ポリアミド樹脂の末端基の種類及びその濃度や分子量分布に特別の制約は無く、分子量調節や成形加工時の溶融安定化のため、分子量調節剤として、酢酸、ステアリン酸等のモノカルボン酸、メタキシリレンジアミン、イソホロンジアミン等のジアミン、モノアミン、ジカルボン酸のうちの1種あるいは2種以上を適宜組合せて添加することができる。
 ポリアミド樹脂は、粘度測定方法(JIS K-6920)に準じ、96質量%硫酸中、ポリマー濃度1質量%、温度25℃の条件下にて測定した場合、その相対粘度が、得られるポリアミド樹脂の機械的性質と成形性の観点から、1.0以上5.0以下であることが好ましく、1.5以上4.5以下であることがより好ましく、1.8以上4.0以下であることがさらに好ましい。
 また、JIS K-6920に規定する低分子量物の含有量の測定方法に準じて測定したポリアミド樹脂の水抽出量は、特に制限はないが、成形加工時に発生するガス等の環境上の問題、製造設備への付着による生産性の低下や複合体への付着による外観不良等を引き起こす可能性があるため、5質量%以下であることが好ましい。
(2)無機充填材
 熱可塑性樹脂組成物(A)に用いられる該熱可塑性樹脂の結晶化温度を3℃以上上昇させる無機充填材としては、該熱可塑性樹脂の結晶化温度を3℃以上上昇させる無機充填材であればよく、複合体の接合強度の観点から、該熱可塑性樹脂の結晶化温度を6℃以上上昇させる無機充填材が好ましい。
 具体的な熱可塑性樹脂の結晶化温度を3℃以上上昇させる無機充填材としては、タルク、グラファイト、酸化マグネシウム、カオリン及び炭酸カルシウムからなる群より選ばれる少なくとも1種が好ましく、タルク、グラファイト及び酸化マグネシウムからなる群より選ばれる少なくとも一種がより好ましい。
 上記無機充填材の配合量は、熱可塑性樹脂組成物(A)中に、0.01質量%以上50質量%以下が好ましく、接合強度の観点から、0.05質量%以上20質量%以下が好ましく、5質量%以上20質量%以下がより好ましい。尚、熱可塑性樹脂の種類と金属の種類およびその表面処理法により、0.05質量%でも十分な接合状態が得られるため、この配合量は複合体の用途によって選定することが望ましい。
 上記無機充填材の平均粒径は、特に制限はないが、成形品の外観や衝撃強度を考慮して20μm以下が好ましく、金属との接合性の観点から3~15μmが望ましい。その平均粒径は、例えば日本工業規格の粉塊混合物-サンプリング方法通則(JIS M8100)に準じて無機充填材を採取し、同ファインセラミック原料粒子径分布測定のための試料調整通則(JIS R 1622-1995)に準じて無機充填材を測定用試料として調整し、同ファインセラミック原料のレーザー回折・散乱法による粒子径分布測定方法(JIS R 1629-1997)に準じて測定できる。装置としては株式会社島津製作所製のレーザー回折式粒度分布測定装置SALD-7000等を用いることができる。
 また、上記無機充填材は、機械的物性や成形外観を改良するため樹脂との密着性を向上させるようなカップリング処理を施すことができる。カップリング剤としてはシラン系カップリング剤、エポキシシランカップリング剤などが挙げられる。その添加量としては、上記無機充填材100質量部に対し、0.01~5質量部で処理することができる。
 熱可塑性樹脂組成物(A)には、上記無機充填材以外に、本発明の複合体の特性を損なわない範囲内で通常配合される各種の添加剤、改質剤、強化材、例えば、熱安定剤、酸化防止剤、紫外線吸収剤、耐候剤、フィラー、可塑剤、発泡剤、ブロッキング防止剤、粘着性付与剤、シール性改良剤、防雲剤、離型剤、架橋剤、発泡剤、難燃剤、着色剤(顔料、染料等)、カップリング剤、ガラス繊維等の無機強化材等を含有することができる。これらの各種添加剤を熱可塑性樹脂に配合する方法は、タンブラーやミキサーを用いるドライブレンド法、成形時に使用する濃度で予め原料に一軸又は二軸の押出機を用いて溶融混練する練り込み法、あるいは予め高濃度で原料に一軸又は二軸の押出機を用いて練り込み、これを成形時に希釈して使用するマスターバッチ法等の一般的な方法が挙げられ特に限定はない。
[金属(B)]
 本発明の金属(B)は、表面処理した金属であれば、金属の材質として特に限定するものではなく、例えば、鉄,銅,ニッケル,金,銀,プラチナ,コバルト,亜鉛,鉛,スズ,チタン,クロム,アルミニウム,マグネシウム,マンガン及びこれらの合金(ステンレス,真鍮,リン青銅など)を挙げることができる。また薄膜の金属や被膜(金属メッキ,蒸着膜,塗膜等)がなされた金属も対象となる。
 表面処理とは、例えば金属表面を侵食性液体に浸漬処理する方法や陽極酸化で金属表面に微細な凹凸がなされた状態や金属表面に化学物質が固着された状態を指す。
 侵食性液体としては、水溶性アミン化合物が挙げられ、その水溶性アミン化合物は、アンモニア、ヒドラジン、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、エタノールアミン、アリルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、アニリン、その他のアミン類が挙げられる。これらの中でも、特にヒドラジンが、臭気が小さく、低濃度で有効なことから好ましい。
 陽極酸化被膜とは、金属を陽極として電解質溶液中で通電した際に、金属表面に生じる酸化皮膜のことをさし、電解質としては、例えば、前記の水溶性アミン化合物が挙げられる。
 金属表面に微細な凹凸がなされた状態としては、金属表面が、電子顕微鏡観察での測定で数平均内径10~100nmの微細凹部、又は孔開口部で覆われるようなものにすることが好ましい。
 金属表面に固着させる化学物質としては、トリアジンジチオール誘導体が挙げられ、トリアジンジチオール誘導体は、下記一般式で表わされるものが好ましい。
Figure JPOXMLDOC01-appb-C000001

(上式において、Rは-OR1,-OOR1,-SmR1,-NR1(R2);R1,R2はH,水酸基,カルボニル基,エーテル基,エステル基,アミド基,アミノ基,フェニル基,シクロアルキル基,アルキル基,あるいは、アルキン,アルケンの様な不飽和基を含む置換基であり、m は1から8までの整数を意味し、MはH,もしくは、Na,Li,K,Ba,Ca,アンモニウム塩などのアルカリ)が好ましい。
 上記一般式のトリアジンジチオール誘導体の具体例としては、1,3,5-トリアジン-2,4,6-トリチオール、1,3,5-トリアジン-2,4,6-トリチオール・モノナトリウム、1,3,5-トリアジン-2,4,6-トリチオール・トリエタノールアミン、6-アニリノ-1,3,5-トリアジン-2,4-ジチオール、6-アニリノ-1,3,5-トリアジン-2,4-ジチオール・モノナトリウム、6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオール・モノナトリウム、6-ジアリルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-ジアリルアミノ-1,3,5-トリアジン-2,4-ジチオール・モノナトリウム、1,3,5-トリアジン-2,4,6-トリチオール・ジテトラブチルアンモニウム塩、6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオール・テトラブチルアンモニウム塩、6-ジチオクチルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-ジチオクチルアミノ-1,3,5-トリアジン-2,4-ジチオール・モノナトリウム、6-ジラウリルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-ジラウリルアミノ-1,3,5-トリアジン-2,4-ジチオール・モノナトリウム、6-ステアリルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-ステアリルアミノ-1,3,5-トリアジン-2,4-ジチオール・モノカリウム、6-オレイルアミノ-1,3,5-トリアジン-2,4-ジチオール、6-オレイルアミノ-1,3,5-トリアジン-2,4-ジチオール・モノカリウムが挙げられる。
 金属表面に上記化学物質を固着させる方法としては、上記化学物質の水溶液、又はメチルアルコール、イソプロピルアルコール、エチルアルコール、アセトン、トルエン、エチルセルソルブ、ジメチルホルムアルデヒド、テトラヒドロフラン、メチルエチルケトン、ベンゼン、酢酸エチルエーテルなどの有機溶剤を溶媒とした溶液を用い、金属を陽極に、白金板チタン板またはカーボン板などを陰極とし、これに20V以下で、0.1mA/dm~10A/dmの電流を、0~80℃、0.1秒~10分間、通じて行なう方法が挙げられる。
 表面処理した金属としては、金属表面が、電子顕微鏡観察での測定で数平均内径10~100nmの凹部又は孔開口部で覆われた金属もしくはトリアジンチオール誘導体が固着した金属が好ましい。
[複合体]
 本発明において、熱可塑性樹脂組成物(A)と金属(B)とを接触接合する方法については、特に制限されるものではないが、射出成形により接触接合することが好ましい。例えば、金型の一方に金属(B)を設置し、金型を閉め、熱可塑性樹脂組成物(A)を射出成形機のホッパー部から射出成形機に導入し、溶融した樹脂を金型内に射出し、可動金型を開き離型することにより、熱可塑性樹脂組成物(A)と金属(B)とを接合した複合体を得ることができる。
 射出成形の条件は、熱可塑性樹脂の種類により異なり、特に制限はないが、金型温度は10℃以上160℃以下が好ましい。一般には強度など製品品質と成形サイクルの観点から40℃以上120℃以下がより好ましいが、金属と接合させる射出成形については90℃以上がさらに好ましい。
 また、上述したとおり、本発明によれば、熱可塑性樹脂とその熱可塑性樹脂の結晶化温度を上昇させるように配合された無機充填材とを含む、上記熱可塑性樹脂組成物(A)を用いて、金属との接合状態を改善することができるが、部品・製品の形状設計として成形収縮を抑制することが望ましいことは、勿論である。例えば図2に示すように、平板形状の金属10の片面に、所定厚さの層状の樹脂部材20を接合する場合、該樹脂部材20の接合面と反対側の面の周囲に、リブ21を形成することにより、そのリブ21が金型内で形成される間その形状に相当する金型部分で移動が抑制されるので、樹脂部材20を構造的にも収縮しにくくすることができる。この場合、樹脂部材20の層の厚さは、0.5~10mm程度が好ましく、リブ21の高さは、該樹脂材料の成形収縮率にもよるが一般に1.0mm以上が好ましい。尚、リブ21の代わりに、突起(ボス)、穴、段差等を設けることもできる。
 本発明において、熱可塑性樹脂組成物(A)と金属(B)とを接触接合する方法については、常法に準じた押出成形によっても行うことができる。この場合、全体形状が、例えば円筒などの一様断面をもつ管または棒状のもので、樹脂と金属が多層構成をなす形状のものに、好ましく適用し得る。
 本発明の複合体は樹脂と金属が十分に接合していることから、自動車部品、電機・電子部品、一般機械部品、シート・テープ、パイプ・チューブなど幅広い用途に適用でき、特に、耐熱性、耐性、気体・液体の透過抑制性、寸法・形状安定性、導電性、熱伝導性、強度を同時に要求される用途、たとえば、自動車の燃料部品に好適に使用できる。
 以下において例を掲げて本発明をさらに詳しく説明するが、本発明の要旨を越えない限り以下の例に限定されるものではない。使用した原材料と各種評価方法を次に示す。
[熱可塑性樹脂組成物(A)]
・ポリアミド樹脂組成物(a-1)
1質量%のアミノシランカップリング剤で表面処理した平均粒径14μmのタルク(富士タルク工業株式会社のPKP-80)を40質量%と、相対粘度2.47、水抽出分5質量%以下のポリアミド6を60質量%、とからなるポリアミド樹脂組成物。(以下、(a-1)と称する。)
・ポリアミド樹脂組成物(a-2)
(a-1)において、タルクの配合量を0.5質量%とした以外は(a-1)と同様であるポリアミド樹脂組成物(a-2)(以下、(a-2)と称する。)
・ポリアミド樹脂組成物(a-3)
平均粒径が8μmのタルク(日本タルク株式会社のシムゴンM)を30質量%と、相対粘度2.47、水抽出分5質量%以下のポリアミド6を70質量%、とからなるポリアミド樹脂組成物(a-3)(以下、(a-3)と称する。)
・ポリアミド樹脂組成物(a-4)
平均粒径が33μm、かさ密度0.18g/cmのグラファイト(日本黒鉛工業株式会社のSP-10)を40体積%と、相対粘度2.47、水抽出分5質量%以下のポリアミド6を60体積%、とからなるポリアミド樹脂組成物(a-4)(以下、(a-4)と称する。)
・ポリアミド樹脂組成物(a-5)
平均粒径が2.3μm、かさ密度0.4g/cmの酸化マグネシウム(宇部マテリアルズ株式会社のRF-50-AC)を40体積%と、相対粘度2.47、水抽出分5質量%以下のポリアミド6を60体積%、とからなるポリアミド樹脂組成物(a-5)(以下、(a-5)と称する。)
・ポリアミド樹脂組成物(a-6)
平均粒径が7~9μmのウォラストナイト(キンセイマテック株式会社のFPW-400S)を40質量%と、相対粘度2.47、水抽出分5質量%以下のポリアミド6を60質量%、とからなるポリアミド樹脂組成物(a-6)(以下、(a-6)と称する。)
・ポリアミド樹脂組成物(a-7)
ガラス繊維(日本電気硝子株式会社のECS03T249)を30質量%と、相対粘度2.64、水抽出分5質量%以下のポリアミド6を70質量%、とからなるポリアミド樹脂組成物(a-7)(以下、(a-7)と称する。)
・ポリアミド樹脂組成物(a-8)
ガラス繊維(日本電気硝子株式会社のECS03T249)を45質量%と、相対粘度2.64、水抽出分5質量%以下のポリアミド6を55質量%、とからなるポリアミド樹脂組成物(a-8)(以下、(a-8)と称する。)
・ポリアミド樹脂組成物(a-9)
ガラス繊維(日本電気硝子株式会社のECS03T289)を45質量%と、相対粘度2.75、水抽出分5質量%以下のポリアミド66を55質量%、とからなるポリアミド樹脂組成物(a-9)(以下、(a-9)と称する。)
・ポリアミド樹脂組成物(a-10)
ガラス繊維(日本電気硝子株式会社のECS03T289)を35質量%と、ポリアミド12を5質量%と、芳香族ポリアミドを13質量%と、相対粘度2.75、水抽出分5質量%以下のポリアミド66を47質量%、とからなるポリアミド樹脂組成物(a-10)(以下、(a-10)と称する。)
・ポリアミド6樹脂(a-11)
相対粘度2.47、水抽出分5質量%以下、結晶化温度Tcが179.8℃のポリアミド6樹脂(a-11)(以下、(a-11)と称する。)
[金属(B)]
 外寸が12mm×12mm、厚みが1.0mm、長さが150mmであるステンレス、鋼材及びアルミニウムの試験片を準備する。
 ステンレスは、18%のCrと8%のNiを含むステンレス鋼であるSUS304-HLを使用し、
 鋼材は、機械構造用角形鋼管の規格のSTKMR290を使用し、
 アルミニウムは、JIS H4040:2006に規定されるA5052を使用した。
 それぞれの試験片の表面に対して、微細凹凸を形成するものとして特許文献1に記載されている侵食性液体(ヒドラジン)を用いた表面処理(以下処理1ともいう。)、もしくは、金属表面に固着するものとして特許文献3に記載されているトリアジンジチオール誘導体を用いる表面処理(以下処理2ともいう。)を施した。
 表面処理後の金属はポリエチレンとアルミニウムの多層袋の中に入れ、ヒートシール機で密封し、樹脂との接合成形の直前まで室温で保管した。
(強度測定および接合性評価)
 図1の1に示す複合体の金属部材をERON社製万力N735に固定する。樹脂部の開口側に200mm×150mm×12mmのSUS304製板材を挿入し、曲げ荷重を挿入した板材の複合体の樹脂と金属の境界面である図1の斜線部分4から0.2m離れた部分にかけて複合体を破壊させた。破壊時の曲げモーメントを接合面全体の断面係数で割り、曲げ強度を求めた。具体的には、下記式より求めた。
曲げ強度(Pa)=0.2(m)×破壊時の荷重(N)/(0.15(m)×0.012(m)×0.012(m)/6)
 接合性とは、その破壊面の状態を下記のA~Eの5段階で評価したものである。
A:剥離させるのに工具を要し、金属と樹脂の境界面で剥離せず樹脂部が破壊する。
B:剥離させるのに工具を要し、金属側に0.2mm以上の厚さを持った樹脂が残る。
C:取り出し後、手で剥がれるが、抵抗感があり、金属の剥離面に変色がある。
D:取り出し後手で剥がれ、肉眼では界面に変化がない。
E:突き出し時、または取り出し時に手を触れることなく剥離する。
(線膨張係数の測定)
 複合体を成形する際に得られる図1の5のスプルー部分から、幅4mm、厚み4mm、長さ10mmの試験片を切り出す。セイコーインスツル株式会社のTMA装置SSC5000を用い、切り出した試験片に2gの荷重をかけ、5℃/分の昇温速度にて50~150℃の温度範囲の線膨張係数を測定し、その間の平均値を熱可塑性樹脂の線膨張係数とした。
(結晶化温度Tcの測定)
 線膨張係数と同様、スプルー部分から直径6mm、厚さ1mmの円板寸法からはみ出さない薄板状試験片を切り出す。装置はセイコーインスツル株式会社製示差走査熱量計EXSTAR6000 DSC6220を用いて窒素雰囲気中で測定した。試験片は室温から250℃まで10℃/分の速度で昇温し、250℃で10分保持した後、25℃まで10℃/分の速度で降温した。得られたDSCチャートで降温のピーク温度をTcとした。
実施例1
 処理1で表面処理したアルミニウムの試験片を200℃に設定したアズワン株式会社の自然対流乾燥器SONW-450で予熱し、その試験片を住友重機械工業株式会社の射出成形機SE-100Dに取り付けた図1の複合体が成形できる金型内に設置し、(a-1)を12.5質量%と(a-6)を87.5質量%とを混合したポリアミド樹脂組成物を同射出成形機に導入し、金型温度150℃の金型に樹脂温度260℃で射出し、保持圧力40MPaを40秒間かけた後、金型内で45秒冷却し、図1の形状の複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数の測定を行った。その結果を表1に示す。
実施例2
 実施例1において、(a-1)を25質量%、(a-6)を75質量%にした以外は、実施例1と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数の測定を行った。その結果を表1に示す。
実施例3
 実施例1において、(a-1)を50質量%、(a-6)を50質量%にした以外は、実施例1と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表1に示す。
実施例4
 実施例1において、(a-6)を使用せず、(a-1)を100質量%にした以外は、実施例1と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表1に示す。
比較例1
 実施例1において、(a-1)を使用せず、(a-6)を100質量%にした以外は、実施例1と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002

 実施例5
 処理1で表面処理した鋼材の試験片を200℃に設定したアズワン株式会社の自然対流乾燥器SONW-450で予熱し、その試験片を住友重機械工業株式会社の射出成形機SE-100Dに取り付けた図1の複合体が成形できる金型内に設置し、(a-2)2質量%、(a-7)66.7質量%及び(a-11)31.3質量%を混合したポリアミド樹脂組成物を同射出成形機に導入し、樹脂温度270℃で、金型温度150℃の金型に射出し、保持圧力50MPaを45秒間にかけた後、金型内で45秒冷却し、図1の形状の複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表2に示す。
実施例6
 実施例5において、(a-2)20質量%、(a-7)66.7質量%及び(a-11)13.3質量%にした以外は、実施例5と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表2に示す。
実施例7
 実施例5において、(a-1)2.5質量%、(a-7)66.7質量%及び(a-11)30.8質量%にした以外は、実施例5と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表2に示す。
実施例8
 実施例5において、(a-1)25質量%、(a-7)66.7質量%及び(a-11)8.3質量%にした以外は、実施例5と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表2に示す。
実施例9
 実施例5において、(a-1)50質量%、(a-8)44.4質量%及び(a-11)5.6質量%にした以外は、実施例5と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表2に示す。
比較例2
 実施例5において、(a-7)66.7質量%及び(a-11)33.3質量%にした以外は、実施例5と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003

実施例10
 処理1で表面処理したステンレスの試験片を200℃に設定したアズワン株式会社の自然対流乾燥器SONW-450で予熱し、その試験片を住友重機械工業株式会社の射出成形機SE-100Dに取り付けた図1の複合体が成形できる金型内に設置し、(a-1)を同射出成形機に導入し、樹脂温度270℃で、金型温度140℃の金型に射出し、保持圧力60MPaを15秒間かけた後、金型内で30秒冷却することにより図1の形状の複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例11
 実施例10において、処理1で表面処理したステンレスの試験片を処理1で表面処理した鋼材の試験片にした以外は、実施例10と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例12
 実施例10において、処理1で表面処理したステンレスの試験片を処理1で表面処理したアルミニウムの試験片にした以外は、実施例10と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例13
 実施例10において、処理1で表面処理したステンレスの試験片を処理2で表面処理したステンレスの試験片にした以外は、実施例10と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例14
 実施例13において、処理2で表面処理したステンレスの試験片を処理2で表面処理した鋼材の試験片にした以外は、実施例10と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例15
 実施例13において、処理2で表面処理したステンレスの試験片を処理2で表面処理したアルミニウムの試験片にした以外は、実施例10と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例16
 処理1で表面処理したステンレスの試験片を200℃に設定したアズワン株式会社の自然対流乾燥器SONW-450で予熱し、その試験片を住友重機械工業株式会社の射出成形機SE-100Dに取り付けた図1の複合体が成形できる金型内に設置し、(a-3)を同射出成形機に導入し、樹脂温度270℃で、金型温度140℃の金型に射出し、保持圧力60MPaを15秒間かけた後、金型内で30秒冷却し、図1の形状の複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例17
 実施例16において、処理1で表面処理したステンレスの試験片を処理1で表面処理した鋼材の試験片にした以外は、実施例16と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例18
 実施例16において、処理1で表面処理したステンレスの試験片を処理1で表面処理したアルミニウムの試験片にした以外は、実施例16と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例19
 実施例16において、処理1で表面処理したステンレスの試験片を処理2で表面処理したステンレスの試験片にした以外は、実施例16と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例20
 実施例19において、処理2で表面処理したステンレスの試験片を処理2で表面処理した鋼材の試験片にした以外は、実施例19と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例21
 実施例19において、処理2で表面処理したステンレスの試験片を処理2で表面処理したアルミニウムの試験片にした以外は、実施例19と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例22
 実施例10において樹脂組成物を(a-1)50質量%および(a-9)50質量%の混合物、金型温度を120℃とした以外は実施例10と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数の測定を行った。その結果を表3に示す。
実施例23
 実施例22において樹脂組成物を(a-4)、金属の種類をアルミニウムにした以外は実施例22と同様にして複合体を得、接合性の評価を行った。また切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
実施例24
 実施例23において樹脂組成物のグラファイトを酸化マグネシウムにして樹脂組成物(a-5)とした以外は実施例23と同様にして複合体を得、接合性の評価を行った。また切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例3
 処理1で表面処理したステンレスの試験片を180℃に設定したアズワン株式会社の自然対流乾燥器SONW-450で予熱し、その試験片を住友重機械工業株式会社の射出成形機SE-100Dに取り付けた図1の複合体が成形できる金型内に設置し、(a-7)を同射出成形機に導入し、樹脂温度290℃で、金型温度80℃の金型に射出し、保持圧力60MPaを15秒間かけた後、金型内で30秒冷却し、図1の形状の複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例4
 比較例3において、処理1で表面処理したステンレスの試験片を処理1で表面処理した鋼材の試験片にした以外は、比較例3と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例5
 比較例3において、処理1で表面処理したステンレスの試験片を処理1で表面処理したアルミニウムの試験片にした以外は、比較例3と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例6
 比較例3において、処理1で表面処理したステンレスの試験片を処理2で表面処理したステンレスの試験片にした以外は、比較例3と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例7
 比較例6において、処理2で表面処理したステンレスの試験片を処理2で表面処理した鋼材の試験片にした以外は、比較例6と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例8
 比較例6において、処理2で表面処理したステンレスの試験片を処理2で表面処理したアルミニウムの試験片にした以外は、比較例6と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例9
 比較例3において、試験片を200℃で予熱し、金型温度を150℃にした以外は、比較例3と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例10
 比較例9において、処理1で表面処理したステンレスの試験片を処理2で表面処理したステンレスの試験片にした以外は、比較例9と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例11
 比較例9において、(a-7)を(a-9)にした以外は、比較例9と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例12
 比較例11において、処理1で表面処理したステンレスの試験片を処理1で表面処理した鋼材の試験片にした以外は、比較例11と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例13
 比較例11において、処理1で表面処理したステンレスの試験片を処理1で表面処理したアルミニウムの試験片にした以外は、比較例11と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例14
 比較例9において、(a-9)を(a-6)にした以外は、比較例9と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例15
 比較例14において、処理1で表面処理したステンレスの試験片を処理2で表面処理したステンレスの試験片にした以外は、比較例11と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例16
 処理1で表面処理したステンレスの試験片を200℃に設定したアズワン株式会社の自然対流乾燥器SONW-450で予熱し、その試験片を住友重機械工業株式会社の射出成形機SE-100Dに取り付けた図1の複合体が成形できる金型内に設置し、(a-10)を同射出成形機に導入し、樹脂温度290℃で、金型温度80℃の金型に射出し、保持圧力60MPaを15秒間かけた後、金型内で30秒冷却することにより図1の形状の複合体を得た。得られた複合体の強度測定および接合性評価を行った。その結果を表3に示す。
比較例17
 比較例16において、処理1で表面処理したステンレスの試験片を処理2で表面処理したステンレスの試験片にした以外は、比較例16と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。その結果を表3に示す。
比較例18
 比較例16において、(a-10)を(a-8)にした以外は、比較例16と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例19
 比較例18において、処理1で表面処理したステンレスの試験片を処理1で表面処理した鋼材の試験片にした以外は、比較例18と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
比較例20
 比較例18において、処理1で表面処理したステンレスの試験片を処理1で表面処理したアルミニウムの試験片にした以外は、比較例18と同様にして複合体を得た。得られた複合体の強度測定および接合性評価を行った。また、切り出した試験片から線膨張係数と結晶化温度の測定を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004

Claims (9)

  1.  熱可塑性樹脂組成物(A)と金属(B)とが接触接合した複合体であって、
     前記熱可塑性樹脂組成物(A)は、熱可塑性樹脂と該熱可塑性樹脂の結晶化温度を3℃以上上昇させる無機充填材とを含む組成物であり、
     前記金属(B)は、表面処理した金属である複合体。
  2.  前記熱可塑性樹脂は、ポリアミド樹脂である請求項1に記載の複合体。
  3.  前記無機充填材は、タルク、グラファイト、酸化マグネシウム、カオリン及び炭酸カルシウムからなる群より選ばれる少なくとも一種である請求項1または2記載の複合体。
  4.  前記無機充填材は、タルク、グラファイト及び酸化マグネシウムからなる群より選ばれる少なくとも一種である請求項1または2記載の複合体。
  5.  前記無機充填材の配合量は、前記熱可塑性樹脂組成物(A)中に、0.01質量%以上50質量%以下である請求項1~4のいずれか1つに記載の複合体。
  6.  前記金属(B)の表面処理は、その表面に微細な凹凸を形成する処理又は化学物質を固着させる処理である請求項1~5のいずれか1つに記載の複合体。
  7.  前記熱可塑性樹脂組成物(A)と前記金属(B)とが射出成形により接触接合されたものである請求項1~6のいずれか1つに記載の複合体。
  8.  前記熱可塑性樹脂組成物(A)の、前記熱可塑性樹脂組成物(A)と前記金属(B)との接合面に対して対向する面には、リブ、突起、穴、段差から選ばれた1種からなる収縮抑制構造が設けられている請求項1~7のいずれか1つに記載の複合体。
  9.  全体形状が管または棒状であり、樹脂と金属が多層構成をなしている請求項1~8のいずれか1つに記載の複合体。
PCT/JP2012/054091 2011-03-25 2012-02-21 金属と熱可塑性樹脂の複合体 WO2012132639A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2012800143413A CN103429413A (zh) 2011-03-25 2012-02-21 金属与热塑性树脂的复合体
JP2013507261A JPWO2012132639A1 (ja) 2011-03-25 2012-02-21 金属と熱可塑性樹脂の複合体
EP12763162.0A EP2689910A4 (en) 2011-03-25 2012-02-21 COMPOSITE OF METAL AND THERMOPLASTIC RESIN
US14/006,654 US20140010980A1 (en) 2011-03-25 2012-02-21 Composite of metal and thermoplastic resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-068450 2011-03-25
JP2011068450 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012132639A1 true WO2012132639A1 (ja) 2012-10-04

Family

ID=46930400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054091 WO2012132639A1 (ja) 2011-03-25 2012-02-21 金属と熱可塑性樹脂の複合体

Country Status (5)

Country Link
US (1) US20140010980A1 (ja)
EP (1) EP2689910A4 (ja)
JP (2) JPWO2012132639A1 (ja)
CN (1) CN103429413A (ja)
WO (1) WO2012132639A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022955A1 (ja) 2013-08-12 2015-02-19 宇部興産株式会社 熱可塑性樹脂と金属との複合体
JP2015057466A (ja) * 2013-08-12 2015-03-26 宇部興産株式会社 ポリアミドエラストマー組成物、及びそれを用いた成形体
JP2018177867A (ja) * 2017-04-05 2018-11-15 三菱エンジニアリングプラスチックス株式会社 金属接合用ポリアミド樹脂組成物、金属樹脂複合体および金属樹脂複合体の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104552797B (zh) * 2014-12-24 2017-02-01 苏州工业园区协利塑胶有限公司 一种环形注塑件保内圆圆度的加工模具
CN104962972A (zh) * 2015-07-22 2015-10-07 苏州道蒙恩电子科技有限公司 一种铝合金与树脂结合体的制造方法
CN106894010B (zh) * 2015-12-17 2019-10-11 比亚迪股份有限公司 金属表面处理组合物、金属-树脂复合体及其制备方法
CN109715393B (zh) * 2017-07-28 2020-11-03 东丽先端材料研究开发(中国)有限公司 一种热塑性树脂组合物与金属的接合体及其制造方法
US11701864B2 (en) 2017-10-27 2023-07-18 Mitsui Chemicals, Inc. Metal/resin composite structure and manufacturing method of metal/resin composite structure
EP3587065A1 (en) * 2018-06-30 2020-01-01 SABIC Global Technologies B.V. Polyketone materials for nano-molding technology
CN110939650B (zh) * 2018-09-25 2023-06-23 精工电子有限公司 结构体
KR20200127486A (ko) * 2019-05-02 2020-11-11 현대자동차주식회사 이종소재 일체화 구조체 및 일체화 방법
EP3748046A1 (en) * 2019-06-07 2020-12-09 Arkema France Method for producing metal-polymer composites
CN117484773A (zh) * 2023-12-06 2024-02-02 沧州德安防爆特种工具制造有限公司 碳纤维基防爆双头呆扳手的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551671A (ja) 1991-08-21 1993-03-02 Nikko Kyodo Co Ltd 曲げ性及び応力緩和特性に優る電子機器用高力高導電性銅合金
JPH0551671B2 (ja) * 1989-02-02 1993-08-03 Kunio Mori
JP2003176403A (ja) * 2001-09-25 2003-06-24 Asahi Kasei Corp 熱可塑性樹脂複合成形体
JP2006315398A (ja) * 2005-04-14 2006-11-24 Taisei Plas Co Ltd アルミニウム合金と樹脂の複合体とその製造方法
JP2007182071A (ja) 2005-12-08 2007-07-19 Toray Ind Inc アルミニウム合金と樹脂の複合体及びその製造方法
JP3967104B2 (ja) 2001-07-25 2007-08-29 大成プラス株式会社 金属と樹脂の複合体とその製造方法
WO2010016485A1 (ja) * 2008-08-06 2010-02-11 大成プラス株式会社 金属合金とポリアミド樹脂組成物の複合体とその製造方法
JP4527196B2 (ja) 2009-12-24 2010-08-18 東ソー株式会社 複合体およびその製造方法
JP4541153B2 (ja) 2002-12-16 2010-09-08 コロナインターナショナル株式会社 アルミニウム材と合成樹脂成形体の複合品の製造法及びその複合品
JP2011156764A (ja) * 2010-02-01 2011-08-18 Taisei Plas Co Ltd 金属とポリアミド樹脂組成物の複合体及びその製造方法
JP2011213108A (ja) * 2010-03-16 2011-10-27 Ube Industries Ltd 複合構造体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2174766A (en) * 1932-12-12 1939-10-03 Terwilliger Ivan Melville Means for producing stereoscopic photographic effects
JP2763575B2 (ja) * 1989-03-31 1998-06-11 ポリプラスチックス株式会社 ポリアルキレンアリレート樹脂組成物
JP3231435B2 (ja) * 1992-11-09 2001-11-19 日本ジーイープラスチックス株式会社 樹脂組成物
US6313209B2 (en) * 2000-02-18 2001-11-06 Mitsubishi Engineering-Plastics Corporation Polyamide resin composition and film produced from the same
EP1740651A1 (en) * 2004-04-26 2007-01-10 Borealis Technology Oy Use
JP4515824B2 (ja) * 2004-05-27 2010-08-04 Ntn株式会社 高精度すべり軸受
JP2006182071A (ja) * 2004-12-27 2006-07-13 Nissan Motor Light Truck Co Ltd キャブチルト装置
WO2007066742A1 (ja) * 2005-12-08 2007-06-14 Taisei Plas Co., Ltd. アルミニウム合金と樹脂の複合体及びその製造方法
JP5549584B2 (ja) * 2008-03-27 2014-07-16 宇部興産株式会社 フィルム用ポリアミド樹脂組成物
JP5166978B2 (ja) * 2008-06-05 2013-03-21 大成プラス株式会社 金属合金と樹脂の複合体の製造方法
JP5554483B2 (ja) * 2008-09-11 2014-07-23 大成プラス株式会社 金属と樹脂の複合体及びその製造方法
WO2011025028A1 (ja) * 2009-08-31 2011-03-03 株式会社クレハ 積層体およびそれを用いた延伸積層体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551671B2 (ja) * 1989-02-02 1993-08-03 Kunio Mori
JPH0551671A (ja) 1991-08-21 1993-03-02 Nikko Kyodo Co Ltd 曲げ性及び応力緩和特性に優る電子機器用高力高導電性銅合金
JP3967104B2 (ja) 2001-07-25 2007-08-29 大成プラス株式会社 金属と樹脂の複合体とその製造方法
JP2003176403A (ja) * 2001-09-25 2003-06-24 Asahi Kasei Corp 熱可塑性樹脂複合成形体
JP4541153B2 (ja) 2002-12-16 2010-09-08 コロナインターナショナル株式会社 アルミニウム材と合成樹脂成形体の複合品の製造法及びその複合品
JP2006315398A (ja) * 2005-04-14 2006-11-24 Taisei Plas Co Ltd アルミニウム合金と樹脂の複合体とその製造方法
JP2007182071A (ja) 2005-12-08 2007-07-19 Toray Ind Inc アルミニウム合金と樹脂の複合体及びその製造方法
WO2010016485A1 (ja) * 2008-08-06 2010-02-11 大成プラス株式会社 金属合金とポリアミド樹脂組成物の複合体とその製造方法
JP4527196B2 (ja) 2009-12-24 2010-08-18 東ソー株式会社 複合体およびその製造方法
JP2011156764A (ja) * 2010-02-01 2011-08-18 Taisei Plas Co Ltd 金属とポリアミド樹脂組成物の複合体及びその製造方法
JP2011213108A (ja) * 2010-03-16 2011-10-27 Ube Industries Ltd 複合構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2689910A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022955A1 (ja) 2013-08-12 2015-02-19 宇部興産株式会社 熱可塑性樹脂と金属との複合体
JP2015057466A (ja) * 2013-08-12 2015-03-26 宇部興産株式会社 ポリアミドエラストマー組成物、及びそれを用いた成形体
JPWO2015022955A1 (ja) * 2013-08-12 2017-03-02 宇部興産株式会社 熱可塑性樹脂と金属との複合体
EP3034293A4 (en) * 2013-08-12 2017-04-26 UBE Industries, Ltd. Composite body of thermoplastic resin and metal
US9975317B2 (en) 2013-08-12 2018-05-22 Ube Industries, Ltd. Composite body of metal and thermoplastic resin
JP2018177867A (ja) * 2017-04-05 2018-11-15 三菱エンジニアリングプラスチックス株式会社 金属接合用ポリアミド樹脂組成物、金属樹脂複合体および金属樹脂複合体の製造方法
JP7011898B2 (ja) 2017-04-05 2022-01-27 三菱エンジニアリングプラスチックス株式会社 金属接合用ポリアミド樹脂組成物、金属樹脂複合体および金属樹脂複合体の製造方法

Also Published As

Publication number Publication date
JP5958615B2 (ja) 2016-08-02
JPWO2012132639A1 (ja) 2014-07-24
JP2015214159A (ja) 2015-12-03
EP2689910A1 (en) 2014-01-29
EP2689910A4 (en) 2015-03-11
US20140010980A1 (en) 2014-01-09
CN103429413A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5958615B2 (ja) 金属と熱可塑性樹脂の複合体
US10577478B2 (en) Polyamide moulding composition and multi-layered structure made therefrom
JP7180738B2 (ja) 含フッ素共重合体組成物、その製造方法、および成形体
US9850380B2 (en) Polyamide resin composition for molded article exposed to high-pressure hydrogen and molded article made of the same
WO2009151099A1 (ja) アルミ・樹脂射出一体成形品及びその製造方法
TWI733724B (zh) 用以於金屬表面作塑膠覆蓋成形(overmolding)之方法及塑膠-金屬混合部件
JP6521011B2 (ja) 熱可塑性樹脂と金属との複合体
TWI424008B (zh) 用於熔接二個聚醯胺部件之方法
JP6511262B2 (ja) 樹脂金属複合体及びその製造方法
KR20220140479A (ko) 유리섬유 강화 수지 조성물 및 유리섬유 강화 수지 성형품
JP2013244653A (ja) 熱可塑性樹脂組成物と金属の複合体
JP2009179675A5 (ja)
US11633892B2 (en) Metal-resin bonded member and method of manufacturing the same
KR102401427B1 (ko) 복합 적층체 및 그의 제조 방법
CA2953089A1 (en) Polyamide resin composition for molded article exposed to high-pressure hydrogen and molded article made of the same
KR102588980B1 (ko) 폴리아미드 조성물 및 그의 도금 용도
EP3951034A1 (en) Glass direct roving and glass filament-reinforced thermoplastic resin pellets
KR20210106411A (ko) 플루오르화 공중합체 조성물
JP7395923B2 (ja) プリプレグと接合するためのポリアミド樹脂フィルム、及び積層体
JP6310213B2 (ja) 金属と樹脂との複合体及びその製造方法
US20240026100A1 (en) Surface-modifying sheet, laminate, surface-modified member, coated article, method for producing surface-modified member, and method for producing coated article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507261

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14006654

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012763162

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012763162

Country of ref document: EP