WO2005103141A1 - α-オレフィン系重合体組成物、該組成物からなる成形体、新規重合体 - Google Patents

α-オレフィン系重合体組成物、該組成物からなる成形体、新規重合体 Download PDF

Info

Publication number
WO2005103141A1
WO2005103141A1 PCT/JP2005/006938 JP2005006938W WO2005103141A1 WO 2005103141 A1 WO2005103141 A1 WO 2005103141A1 JP 2005006938 W JP2005006938 W JP 2005006938W WO 2005103141 A1 WO2005103141 A1 WO 2005103141A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
derived
copolymer
mole
ethylene
Prior art date
Application number
PCT/JP2005/006938
Other languages
English (en)
French (fr)
Inventor
Ryoji Mori
Takashi Nakagawa
Shigenobu Ikenaga
Hiromasa Marubayashi
Masahiko Okamoto
Yasushi Tohi
Kouji Nagahashi
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to US11/578,972 priority Critical patent/US7847040B2/en
Priority to CN2005800117743A priority patent/CN1942516B/zh
Priority to EP20050728526 priority patent/EP1741747B1/en
Priority to JP2006512500A priority patent/JP4949019B2/ja
Publication of WO2005103141A1 publication Critical patent/WO2005103141A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
    • C08L2666/06Homopolymers or copolymers of unsaturated hydrocarbons; Derivatives thereof

Definitions

  • the present invention relates to a resin composition containing an oc-one-year-old olefin copolymer, a molded article composed of the composition, and a novel copolymer.
  • Thermoplastic resins are inexpensive and have excellent rigidity, moisture resistance, and heat resistance, and are therefore used in a wide range of applications such as automotive materials and home electric appliances.
  • Patent Document 12 does not disclose a material having excellent elasticity, flexibility, and rubber elasticity, in which a propylene'ethylene / 1-butene copolymer is described.
  • polypropylene has been widely used as a thermoplastic molding material having excellent rigidity, heat resistance, transparency, and the like. Since this polypropylene is inferior in flexibility and impact resistance, usually a soft rubber component is blended with polypropylene.
  • crystalline polypropylene has mechanical properties such as tensile strength, rigidity, surface hardness, and impact strength; optical properties such as glossiness and transparency; and food hygiene properties such as non-toxicity and odorlessness. It is widely used especially in the field of food packaging.
  • This crystalline polypropylene film shrinks when heated to the heat sealing temperature, and it is difficult to heat seal with a single layer of this film. For this reason, a crystalline polypropylene film is usually provided with a heat seal layer, and this heat seal layer is generally formed of a polymer such as low-density polyethylene or propylene-ethylene random copolymer.
  • polymers forming such a heat seal layer include (1) heat sealability at a considerably lower temperature than that of a base material (crystalline polypropylene film), and (2) excellent heat seal strength. (3) Excellent adhesion to the substrate, (4) Equivalent to the substrate! /, Is more excellent in transparency (5) No blocking occurs during storage; (6) No sticking to bag-making equipment and filling / packaging jigs; (7) Excellent scratch resistance Is required.
  • the conventional heat-sealing material satisfies all of these properties, it is!
  • the above-mentioned low-density polyethylene has a problem that it can be heat-sealed at a low temperature. Heat seal strength, adhesion to a substrate, and transparency are poor, and it tends to stick to packaging jigs. There is.
  • the propylene ethylene random copolymer satisfies the above performances (2) to (7) but does not satisfy (1), and the propylene ethylene random copolymer is used as a heat seal layer.
  • the heat-sealing temperature range of the polypropylene composite film is narrow. Therefore, when the composite film is heat-sealed by an automatic packaging machine or an automatic bag making machine, there is a problem that the heat-sealing temperature must be strictly controlled.
  • a propylene '1-butene random copolymer having a propylene content of 55 to 85% by weight and a heat of crystal fusion measured by a differential scanning calorimeter of 20 to 80 jZg is: It has been found that it has excellent transparency and good low-temperature heat sealability, and is useful as a heat seal material. And this propylene ⁇ 1-butene random co-weight Becomes united with ⁇ isotactic polypropylene and forces, propylene-1-butene random copolymer polymer compositions containing 50 wt 0/0 above amounts were suggested to be used as a heat seal layer of polypropylene film (Patent Document 13).
  • the heat-sealing layer formed from this composition has excellent low-temperature heat-sealing properties and blocking resistance compared to the heat-sealing layer formed by the aforementioned propylene-ethylene random copolymer. Slightly inferior in blocking resistance and scratch resistance.
  • a composition comprising a propylene / 1-butene copolymer and a crystalline propylene′- ⁇ -olefin random copolymer, wherein the propylene / 1-butene copolymer is contained in an amount of 10 to 40% by weight.
  • a composite film using the product as a heat-seal layer of isotactic polypropylene has also been proposed by the present applicant as a composite film having excellent heat sealability (Patent Document 14).
  • polypropylene films are desired to have properties that can be applied to high-speed packaging, and are required to have improved low-temperature heat sealability and excellent slip properties and blocking resistance.
  • Japanese Patent Application Laid-Open No. 08-238733 discloses a composite comprising a propylene / 1-butene copolymer synthesized with a meta-mouth catalyst and a crystalline propylene'a-olefin random copolymer as a heat seal layer.
  • the melting point of the propylene / 1-butene copolymer is set to around 70 ° C., the crystallization rate is reduced, and the productivity is lowered.
  • the content of the propylene / 1-butene copolymer is large, there is a problem that the moldability is lowered and the appearance of the film is easily deteriorated (Patent Document 15).
  • Crosslinked olefin thermoplastic elastomers are widely used as energy-saving and resource-saving elastomers, particularly as substitutes for natural rubber in automobile parts, industrial machinery parts, electronic and electrical equipment parts, and building materials. ing.
  • thermoplastic elastomers are widely known as described by AY Coran et al. (Rubber Chemistry and Technology, 53 (1980), p. 141). (Non-Patent Document 1).
  • non-crosslinked or partially crosslinked olefin thermoplastic elastomers are described in, for example, Patent Documents 1 to 9 described above.
  • the non-crosslinked or partially crosslinked thermoplastic elastomer While pressing, is excellent in rubber-like properties (permanent elongation, compression set, etc.) and heat resistance, but is inferior in abrasion resistance and scratch resistance. Soft
  • Patent Document 1 Japanese Patent Publication No. 53-21021
  • Patent Document 2 Japanese Patent Publication No. 55-18448
  • Patent Document 3 Japanese Patent Publication No. 56-15741
  • Patent Document 4 Japanese Patent Publication No. 56-15742
  • Patent Document 5 Japanese Patent Publication No. 58-46138
  • Patent Document 6 Japanese Patent Publication No. 58-56575
  • Patent Document 7 Japanese Patent Publication No. 59-30376
  • Patent Document 8 Japanese Patent Publication No. 62-938
  • Patent Document 9 Japanese Patent Publication No. 62-59139
  • Patent Document 10 Japanese Patent Application Laid-Open No. 7-149999
  • Patent Document 11 JP-A-8-27353
  • Patent Document 12 JP-A-3-200813
  • Patent Document 13 JP-A-54-114887
  • Patent Document 14 Japanese Patent Publication No. 61-42626
  • Patent Document 15 Japanese Patent Application Laid-Open No. 08-238733
  • Non-patent Document l Rubber Chemistry and Technology, 53 (1980), 141 ⁇ 1 ⁇
  • the first problem to be solved by the present invention is a thermoplastic resin composition having improved physical properties selected from among such properties as transparency, flexibility, rubber elasticity, heat resistance, and abrasion resistance; And a molded article comprising the composition. Further, the present invention can provide a thermoplastic resin composition having excellent transparency, flexibility, rubber elasticity, heat resistance, abrasion resistance and the like (X-year-old olefin copolymer Providing is also an issue.
  • a second problem to be solved by the present invention is to provide a polypropylene resin composition which is excellent in rigidity and impact resistance, and excellent in whitening resistance, abrasion resistance and heat sealing properties. It is in.
  • a third problem to be solved by the present invention is that a propylene-based polymer which retains the performance of a conventional non-crosslinked or partially crosslinked thermoplastic elastomer, and is excellent in abrasion resistance and flexibility. It is to provide a composition.
  • the present invention relates to a thermoplastic resin having improved physical properties based on improving the physical properties of the thermoplastic resin by blending (X one-year-old olefin-based copolymer (S) with the thermoplastic resin.
  • S one-year-old olefin-based copolymer
  • the present invention proposes a resin composition and a molded article obtained therefrom, and further provides such an ⁇ -olefin-based copolymer.
  • the present invention structural units from 1 to 30 mole 0/0 derived from ethylene, from 30 to 79 mole a constitutional unit derived from propylene 0/0, 10 a constitutional unit derived from ⁇ - Orefuin having 4 to 20 carbon atoms in an amount of 50 mol% (provided that the total amount of the ethylene-derived constituent units and the number of 4 to 20 carbon atoms in the (X Orefuin derived constituent unit of is 70 mole 0/0 to 21), and ⁇ - dichloro In 13 C-NMR measured with a benzene solution in the mouth, among the signals derived from CH (methine), a structural unit derived from ⁇ -olefin having 4 to 20 carbon atoms, the peak present at the highest magnetic field was 34.4 ppm.
  • the absorption intensity A of about 22.0 to 20.9 ppm and the absorption intensity B of about 19.0 to 20.6 ppm are equivalent to the absorption of about 19.0 to 22 .
  • the strength C an ⁇ -year-old olefin copolymer (I) satisfying the following relational expressions (i) and (ii):
  • thermoplastic resin composition containing another thermoplastic resin (II), and a molded article obtained therefrom.
  • ethylene, propylene, and an oc one-year-old olefin having 4 to 20 carbon atoms are reacted with a catalyst containing a transition metal compound represented by the following general formula (1).
  • II thermoplastic resin
  • represents Ti, Zr, Hf, Rn, Nd, Sm or Ru
  • Cp 1 and Cp 2 represent a cyclopentagel group or an indul group bonded to M by ⁇ .
  • a fluorenyl group, or a derivative group thereof, Cp 1 and Cp 2 are different groups
  • X 1 and X 2 are an aionic ligand or a neutral Lewis base ligand
  • Z is C, O, B, S, Ge, S are Sn atoms or a group containing these atoms. ].
  • the present invention provides an ex-olefin copolymer (I) and a one-year-old olefin copolymer ( ⁇ ) having the above-mentioned characteristics as novel ex-one-year-old olefin-based copolymers. [0029] Further, the present invention provides a propylene-based polymer (A) in an amount of 50 to 99.8% by weight.
  • the present invention provides a non-crosslinked force or partially crosslinked olefin thermoplastic elastomer (X) in an amount of 30 to 80 parts by weight, a propylene polymer (Y) in an amount of 0 to 40 parts by weight, 30 to 80 mole 0/0 a constitutional unit, 0 to 30 mole a constitutional unit derived from ethylene 0/0, 10 to 50 mole a constitutional unit derived from a Orefuin component having 4 to 20 carbon atoms 0/0 (where Structural units derived from propylene, structural units derived from ethylene, ⁇ -olefins having 4 to 20 carbon atoms The total amount of the structural units comprises an amount of 100 mole 0/0), and o- in dichloroethane port benzene solution at the measured 13 C-NMR, of structural units derived from ⁇ - Orefuin having 4 to 20 carbon atoms CH (methine ) of the signal derived from the most the peak present at
  • the absorption intensity B of 6 ppm is attributed to propylene methyl. About 19.0-22.
  • the absorption intensity C of Oppm is a propylene-a-olefin copolymer satisfying the following relational expressions (i) and (ii). (Z) 5-60 parts by weight (where (X), (Y) and (Z) add up to 100 parts by weight)
  • a propylene-based copolymer composition containing: and a molded article obtained therefrom.
  • thermoplastic resin composition and a molded article obtained therefrom.
  • thermoplastic resin composition excellent in transparency, flexibility, heat resistance, and abrasion resistance.
  • System Polymers are also provided.
  • the present invention provides a polypropylene resin composition having excellent rigidity and impact resistance, and having an excellent balance of whitening resistance, abrasion resistance and heat sealability.
  • a propylene-based copolymer composition which is excellent in rubber-like properties (e.g., permanent elongation, compression set), heat resistance and the like, and also excellent in abrasion resistance and scratch resistance.
  • the present invention is based on the fact that the physical properties of a thermoplastic resin are improved by blending (X one-year-old olefin copolymer (S) with the thermoplastic resin.
  • An object of the present invention is to provide a thermoplastic resin composition and a molded product obtained therefrom, and further provide such an a-olefin copolymer.
  • thermoplastic resin composition having improved physical properties obtained by blending the thermoplastic resin provided by the present invention with an ⁇ -olefin olefin copolymer (S), the followings are given.
  • a fat composition can be used.
  • the absorption intensity A of about 22.0 to 20.9 ppm and the absorption intensity B of about 19.0 to 20.6 ppm are attributed to propylene methyl.
  • thermoplastic resin composition containing another thermoplastic resin (II) can be mentioned.
  • ethylene, propylene, and ⁇ -olefin having 4 to 20 carbon atoms are used. Fin is polymerized in the presence of a catalyst containing a transition metal compound represented by the following general formula (1),
  • thermoplastic resin composition characterized by containing another thermoplastic resin (II);
  • is Ti, Zr, Hf, Rn, Nd, Sm or Ru
  • Cp 1 and Cp 2 are cyclopentagel, indul, and fluorenyl groups that are ⁇ -bonded to M. Or a derivative group thereof, Cp 1 and Cp 2 are different groups, X 1 and X 2 are an aionic ligand or a neutral Lewis base ligand, and Z is C, O, B, S, Ge, S are Sn atoms or groups containing these atoms. ].
  • thermoplastic resin composition The components constituting such a thermoplastic resin composition will be described below.
  • the signal intensity measured by 13 CNMR satisfies the following relationship. That is,
  • this structure is measured as follows.
  • the chemical shift criterion was set to the most of the signals derived from CH (methine), a structural unit derived from ⁇ -olefin having 4 to 20 carbon atoms.
  • 13 C-NMR measurement is performed at 120 ° C with the peak of the high magnetic field at 34.4 ppm.
  • the number of integrations should be 10,000 or more.
  • the copolymer contains structural units derived from 1-butene
  • the highest magnetic field peak of the signal derived from CH (methine) of the structural unit derived from 1-butene shall be 34.4 ppm.
  • the a-olefin copolymer (I) is in such a range, it tends to have excellent syndiotacticity and excellent transparency, flexibility and abrasion resistance.
  • the ⁇ -olefin having 4 to 20 carbon atoms in the a-olefin polymer (I) is preferably 1-butene.
  • ⁇ - Orefuin based copolymer (I) is 1 to the constituent units derived from ethylene 30 mole 0/0, 30 to 79 mole a constitutional unit derived from propylene 0/0, having 4 to 20 carbon atoms ⁇ —Olefin
  • the ⁇ - one-year-old olefin-based copolymer (I) containing the structural unit derived from ethylene, the structural unit derived from propylene, and the structural unit derived from (X-olefin having 4 to 20 carbon atoms) is a thermoplastic resin.
  • the compatibility with the resin is improved, and the resulting a-one-year-old olefin copolymer tends to exhibit sufficient transparency, flexibility, rubber elasticity, and abrasion resistance.
  • a constitutional unit derived from propylene 0/0 includes the structural unit (a) 20 to 40 mole 0/0 from a- Orefuin 4 to 20 carbon atoms, Ru (wherein the copolymer (ia) constituent units derived from ethylene in the propylene-derived constituent units, the sum of the constitutional unit derived from (X- Orefuin from 4 to 20 carbon atoms is 100 mol 0/0, ethylene-derived constituent units of and the total amount of the constitutional unit derived from ⁇ - Orefuin having 4 to 20 carbon atoms is 35 to 60 mole 0/0).
  • the compatibility with the thermoplastic resin becomes particularly good, and the resulting a-one-year-old olefin copolymer (Ia) has sufficient transparency, flexibility, and rubber elasticity. , And tends to exhibit wear resistance.
  • the above-mentioned one-year-old olefin copolymer (Ia) is included in the ⁇ -olefin copolymer (I).
  • the a-olefin used for preparing such an ⁇ -olefin copolymer (I) is not particularly limited as long as it has a carbon number of up to 20, preferably 4 to 12, and is not particularly limited. It may have a chain shape or may have a branch.
  • a-olefins specifically, for example, 1-butene, 2-butene, 1-pentene, 1-hexene, 1-heptane, 1-otaten, 1-nonene, 1-decene, 1 — Pendene, 1-dodecene, 3-methyl 1-butene, 3-methyl 1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4 dimethyl-1-hexene, 4, 4-Dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene and the like, with preference being given to 1-butene, 1-hexene, 1-otaten, 1-decene and 4-methyl-1-pentene.
  • 1-butene, 1-hexene, 1-otaten, and 1-decene are preferred, and 1-butene is particularly preferred.
  • These ⁇ -olefins can be used alone or in combination of two or more.
  • ⁇ -olefin copolymer (I) constituent units derived from the above ⁇ -olefin are included.
  • a structural unit derived from an aromatic vinyl conjugate such as styrene a structural unit derived from the above-mentioned polyunsaturated compound having two or more double bonds (polyene), alcohol, carboxylic acid, amine and Structural units or the like which also have these derivatives may be included.
  • V is an embodiment which includes a structural unit other than ethylene, propylene, and a-olefin having 4 to 20 carbon atoms.
  • the a-olefin copolymer (I) has an intrinsic viscosity [r?] Measured in decalin at 135 ° C. of usually 0.01 to LOdlZg, preferably 0.05 to LOdl / g. Is desirable.
  • intrinsic viscosity [r?] Of the one-year-old olefin copolymer (I) is within the above range, properties such as weather resistance, ozone resistance, heat aging resistance, low-temperature properties, and dynamic fatigue resistance are reduced. It is an excellent one-year-old refin copolymer.
  • the a-olefin copolymer (I) has a single glass transition temperature, and the glass transition temperature Tg measured by a differential scanning calorimeter (DSC) is usually ⁇ 5 ° C or less, It is preferably in the range of 10 ° C or less, particularly preferably 15 ° C or less.
  • DSC differential scanning calorimeter
  • the molecular weight distribution (MwZMn, in terms of polystyrene, Mw: weight average molecular weight, Mn: number average molecular weight) measured by GPC is 4.0 or less, preferably 1.5 to 3.0. . When it is in this range, transparency, scratch resistance and impact resistance are improved, which is preferable. It is also desirable that the melting peak measured by differential scanning calorimetry (DSC) does not exist. In this case, flexibility, scratch resistance, transparency, and whitening resistance are excellent.
  • Such an ⁇ -olefin copolymer (I) can be obtained by copolymerizing propylene, ethylene and ⁇ - olefin in the presence of the following meta-acene catalyst.
  • meta-mouthed catalyst examples include:
  • At least one catalyst system comprising at least one compound selected from the group consisting of:
  • M is Ti, Zr, Hf, Rn, Nd, Sm or Ru
  • Cp 1 and Cp 2 are a cyclopentagel group or an indul group bonded to M by ⁇ .
  • X 1 and X 2 are an aionic ligand or a neutral Lewis base ligand
  • is C, ⁇ , ⁇ , S, Ge, Si Or a Sn atom or a group containing these atoms.
  • transition metal compounds represented by the general formula (1) a transition metal compound in which Cp 1 and Cp 2 are different groups may be mentioned, and more preferably any one of Cp 1 and Cp 2
  • ! / Of Cp 1 and Cp 2 must be either a cyclopentagel group or a derivative group thereof, and the other group must be a fluorenyl group or a derivative group thereof. Is preferred.
  • the above-mentioned meta-mouth catalyst is preferably used as a catalyst for producing the oc-olefin copolymer (I).
  • a conventionally known titanium catalyst comprising a solid titanium catalyst component and an organic aluminum compound, or a vanadium catalyst comprising a soluble vanadium compound and an organic aluminum compound can also be used.
  • ethylene, propylene and Hi-Iseki Refin are usually copolymerized in a liquid phase, preferably in the presence of the above-described meta-acene catalyst.
  • the hydrocarbon solvent is generally Power used Propylene may be used as the solvent. Copolymerization can also be carried out by a batch method or a continuous method, which is a shift method.
  • the amount of the transition metal compound (a) in the polymerization system is usually from 0.0005 to 1 mmol per liter of polymerization volume, Preferably, it is used in an amount such that it becomes 0.0001 to 0.5 mm.
  • the ionized ionic compound (b-1) has a molar ratio of the ionized ionic compound to the transition metal compound (a) of (0) -1) 7 (&)) of 0.5 to 20, preferably 1 to 20. It is used in such an amount that it becomes ⁇ 10.
  • the organoaluminum oxydile compound (b-2) is a transition metal atom in the transition metal compound (a).
  • the organic aluminum compound (b) is used in an amount such that the molar ratio (A1ZM) of the aluminum atom (A1) to (M) is 1 to: LOOOO, preferably 10 to 5000.
  • the organic aluminum compound (b) is used in an amount such that the molar ratio (A1ZM) of the aluminum atom (A1) to (M) is 1 to: LOOOO, preferably 10 to 5000.
  • -3) is used in an amount such that it is usually about 0-5 mmol, preferably about 0-2 mmol, per liter of polymerization volume.
  • the temperature is usually in the range of -20 to 150 ° C, preferably 0 to 120 ° C, more preferably 0 to 100 ° C, and the pressure exceeds 0 to 80 kg / cm 2. , it is preferably carried out under conditions in the range beyond 0 ⁇ 50 kgZcm 2.
  • the reaction time (average residence time when the polymerization is carried out by a continuous method) varies depending on conditions such as the catalyst concentration and the polymerization temperature, but is usually 5 minutes to 3 hours, preferably 10 minutes to 1 hour. 5 hours.
  • Ethylene, propylene and a -olefin are each supplied to the polymerization system in such an amount as to obtain the a-olefin copolymer (I) having the specific composition as described above.
  • a molecular weight regulator such as hydrogen can be used.
  • the a-olefin copolymer (I) is usually obtained as a polymerization solution containing this. This polymerization solution is treated by a conventional method to obtain an a-olefin copolymer (I).
  • Ethylene, propylene and a-olefin having 4 to 20 carbon atoms are represented by the following general formula (1). Polymerized in the presence of a catalyst containing a transition metal compound to be obtained,
  • M is Ti, Zr, Hf, Rn, Nd, Sm or Ru
  • Cp 1 and Cp 2 are a cyclopentagel group or an indul group bonded to M by ⁇ .
  • a fluorenyl group, or a derivative group thereof, Cp 1 and Cp 2 are different groups, and X 1 and X 2 are an aionic ligand or a neutral Lewis base ligand; Is a C, O, B, S, Ge, S or Sn atom or a group containing these atoms. ].
  • a Orefuin polymer of the present invention (gamma -a) is, (gamma) in are those included, E Ji Ren constitutional unit derived from 1 to 30 mole 0/0, the constitutional unit derived from propylene the 30-69 mole 0/0, configuration from ethylene in the constitutional unit derived from ⁇ - Orefin having 4 to 20 carbon atoms with (a) 10 to 50 mole 0/0 (where the copolymer (-a) units, propylene-derived constituent units, the total of constituent units derived from 20 ⁇ - Orefuin a carbon number of 4 to 100 mol 0/0, the constitutional unit derived from a Orefuin constituent units and 4 to 20 carbon atoms derived from ethylene Is in the range of 31 to 70 mol%).
  • the preferred ratio of each component unit is not described to avoid duplication, but is the same as that of the above-mentioned copolymer ( ⁇ -a).
  • the ⁇ -olefin copolymer (I) or ( ⁇ ) according to the present invention has a JISA hardness of 90 or less, It is preferably 80 or less, the tensile elastic modulus is 100 MPa or less, preferably 70 MPa or less, and the daross change rate ⁇ gloss is 60% or less, preferably 50% or less.
  • the physical properties are measured by preparing a press sheet.
  • the molding conditions were as follows: after preheating at 190 ° C, molding under pressure (100 kgZcm 2 ) for 2 minutes. Pressurize (100 kgZcm 2 ) with C for 5 minutes to produce a sheet with a thickness corresponding to the measurement items.
  • the test conditions are as described in Examples below.
  • thermoplastic resins other than the (X-year-old olefin-based copolymer (I) or the ⁇ -year-old olefin-based copolymer ()) according to the present invention have a melting point of 50 ° C. or more, preferably 80 ° C. Above, or when there is no melting point, any thermoplastic resin having a glass transition point of 40 ° C. or higher, preferably 80 ° C. or higher can be used without any particular limitation.
  • the resin has a high modulus of elasticity, and a resin (thermoplastic resin (Ila)) and a low resin (thermoplastic resin (lib)) can be used as appropriate.
  • thermoplastic resin having an elastic modulus of 800 MPa or more, preferably 1000 MPa or more is used.
  • crystalline thermoplastic resins such as polyolefin, polyamide, polyester and polyacetal
  • Non-thermoplastic resins such as polystyrene, acrylonitrile butadiene styrene copolymer (ABS), polycarbonate, and polyphenylene oxide are used.
  • ABS acrylonitrile butadiene styrene copolymer
  • polyphenylene oxide polyphenylene oxide
  • the molding conditions are as follows: after preheating at an appropriate temperature between 200 and 300 ° C, which is higher than the melting point or the higher of the glass transition temperature measured by DSC, and after pressing (100 kgZcm 2 ) for 3 minutes, forming This is performed by pressurizing (100 kgZcm 2 ) at 20 ° C for 5 minutes to produce a lmm-thick sheet.
  • an appropriate temperature between 200 and 300 ° C, which is higher than the melting point or the higher of the glass transition temperature measured by DSC
  • pressing 100 kgZcm 2
  • pressurizing 100 kgZcm 2
  • polyolefins examples include homoolefins such as polyethylene, polypropylene, polybutene, polymethinolepentene, and polymethylbutene, and copolymers such as propylene and ethylene random copolymer. , Poly 1-butene and polymethylpentene are preferred.
  • polyesters include aromatic polyesters such as polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate, polyproprolatatone, and polyhydroxybutyrate.
  • aromatic polyesters such as polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate, polyproprolatatone, and polyhydroxybutyrate.
  • Polyethylene terephthalate is particularly preferred!
  • polystyrene resin examples include aliphatic polyamides such as nylon 6, nylon 66, nylon 10, nylon 12, and nylon 46, and aromatic polyamides produced from aromatic dicarboxylic acids and aliphatic diamines.
  • nylon-6 is particularly preferred.
  • polyacetal examples include polyformaldehyde (polyoxymethylene), polyacetate.
  • Aldehyde, polypropionaldehyde, polybutyraldehyde and the like can be mentioned, and polyformaldehyde is particularly preferred.
  • the polystyrene may be a homopolymer of styrene or a binary copolymer of styrene with acrylonitrile, methyl methacrylate, or a-methylstyrene.
  • ABS have containing a structural unit derived acrylonitrile force in an amount of 20 to 35 mole 0/0, the structural unit derived from butadiene in amounts of 20 to 30 mole 0/0, Styrene containing a structural unit which induces styrene power in an amount of 40 to 60 mol% is preferably used.
  • Polycarbonates include bis (4-hydroxyphenyl) methane, 1,1-bis (4hydroxyphenyl) ethane, 2,2 bis (4hydroxyphenyl) propane, and 2,2bis (4 —Hydroxyphenyl) butane and the like, and a polycarbonate capable of obtaining 2,2 bis (4-hydroxyphenyl) propane power is particularly preferable.
  • polyphenylene oxide poly (2,6 dimethyl-1,4 phenylene oxide) is preferably used.
  • thermoplastic resins a polymer mainly composed of polypropylene or polybutene or polymethylpentene, which is preferred by polyolefin, is more preferred, especially melt flow rate at 230 ° C and a load of 2.16 kg. Most preferred are polypropylenes with a power of 0.1 to 200 g / 10 min.
  • polypropylene any of isotactic polypropylene and syndiotactic polypropylene can be used. Isotactic polypropylene is preferable because of its excellent heat resistance. Iso As the tactic polypropylene, homopolypropylene, random polypropylene and block polypropylene are preferably used.
  • thermoplastic resins may be used alone or in combination of two or more. Further, a thermoplastic resin other than the above may be used together with the above-mentioned thermoplastic resin.
  • thermoplastic resin As the thermoplastic resin according to the present invention, a thermoplastic resin having an elastic modulus of less than 800 MPa, preferably less than 700 MPa is used, for example, polyolefin, soft PVC, polyamide elastomer, polyester elastomer, polyurethane elastomer. Used.
  • examples of the polyolefin that polyolefin is most preferable include homoolefins such as polyethylene, polypropylene, and polybutene, and copolymers such as propylene and ethylene random copolymer.
  • syndiotactic polypropylene which is preferably polypropylene or propylene-ethylene random copolymer, is most preferable.
  • the elastic modulus can be determined by press-molding a thermoplastic resin and then performing a tensile test by the method described in Examples below.
  • the molding conditions were higher than the melting point or glass transition temperature measured by DSC, whichever was higher.
  • After preheating at a temperature of 200 to 300 ° C. molding was performed under pressure (100 kgZcm 2 ) for 3 minutes, followed by 20. This is performed by producing a lmm thick sheet by cooling under pressure (100 kgZcm 2 ) with C.
  • pressurization is performed for 3 minutes, and cooling is performed for 5 minutes.
  • thermoplastic resins may be used alone or in combination of two or more. Further, a thermoplastic resin other than the above may be used together with the above-mentioned thermoplastic resin.
  • thermoplastic resin composition according to the present invention will be described.
  • the thermoplastic resin composition according to the present invention comprises the ex-one-year-old olefin copolymer (I): 1 to 99 parts by weight, preferably 5 to 90 parts by weight, more preferably 10 to 80 parts by weight.
  • thermoplastic resin composition of the present invention contains the oc as long as the object of the present invention is not impaired.
  • An additive may be added to the olefin copolymer as required. Further, other synthetic resins can be blended in a small amount without departing from the spirit of the present invention.
  • thermoplastic resin composition of the present invention can be produced by any known method.
  • the thermoplastic resin composition according to the present invention has a bow I tension elastic modulus of preferably 5 MPa or more, more preferably lOMPa or more.
  • the heat resistance (TMA) is preferably at least 90 ° C, more preferably at least 100 ° C, more preferably at least 120 ° C.
  • the daross change rate ⁇ Gloss is preferably 60% or less, more preferably 50% or less.
  • the residual strain is preferably 30% or less, more preferably 30% or less, and further preferably 20% or less.
  • the JIS A hardness is preferably 95 or less, more preferably 93 or less.
  • the haze is preferably at most 40%, more preferably at most 30%.
  • thermoplastic resin composition having a TMA of 120 ° C. or more, a residual strain of 20% or less, and an AGloss of 50% or less can be given.
  • a press sheet having a thickness of lmm or 2mm is prepared according to the measurement items and provided for measurement.
  • the molding conditions were higher than the higher of the melting point or glass transition temperature measured by DSC, and after preheating at a temperature of 200 to 300 ° C, pressing (100 kgZcm 2 ), molding for 3 minutes, A sheet with a predetermined thickness can be produced by cooling at 20 ° C for 5 minutes (100 kgZcm 2 ).
  • pressurizing 100 kgZcm 2
  • pressurizing 100 kgZcm 2
  • the thermoplastic resin composition contains, for example, polypropylene or a propylene copolymer (including a propylene / ethylene random copolymer)
  • thermoplastic resin composition according to the present invention as described above is widely used for conventionally known polyolefins.
  • polyolefin yarns can be used by forming them into, for example, sheets, undrawn or stretched films, filaments, and other molded articles of various shapes.
  • the molded article include extrusion molding, injection molding, inflation molding, blow molding, extrusion blow molding, injection blow molding, press molding, vacuum molding, calendar molding, and foam molding.
  • the obtained molded article is exemplified.
  • the molded body is described in several examples below.
  • the molded product according to the present invention is, for example, an extruded product
  • its shape and product type are not particularly limited, and examples thereof include a sheet, a film (unstretched), a pipe, a hose, a wire covering, and a tube.
  • a sheet (skin material), a film, a tube, a medical tube, a monofilament (nonwoven fabric) and the like are preferable.
  • thermoplastic composition according to the present invention When the thermoplastic composition according to the present invention is extruded, a conventionally known extruder and molding conditions can be adopted, for example, a single screw extruder, a kneading extruder, a ram extruder. By using a gear extruder or the like, the molten thermoplastic composition can be extruded from a specific die or the like to be formed into a desired shape.
  • the stretched film can be obtained by subjecting the above-mentioned extruded sheet or extruded film (unstretched) to a known stretching method such as a tenter method (longitudinal and transverse stretching, transverse and longitudinal stretching), a simultaneous biaxial stretching method and a uniaxial stretching method. And can be obtained by stretching.
  • a known stretching method such as a tenter method (longitudinal and transverse stretching, transverse and longitudinal stretching), a simultaneous biaxial stretching method and a uniaxial stretching method. And can be obtained by stretching.
  • the stretching ratio at the time of stretching a sheet or an unstretched film is not limited in the case of biaxial stretching. It is usually about 20 to 70 times, and in the case of uniaxial stretching, usually about 2 to 10 times. It is desirable to obtain a stretched film having a thickness of about 5 to 200 ⁇ m by stretching.
  • an inflation film can be produced as a film-shaped molded product. Drawdown hardly occurs during inflation molding.
  • Sheets and film molded articles made of the thermoplastic composition according to the present invention as described above have a rigidity such as a tensile elastic modulus that is easily charged, heat resistance, impact resistance, aging resistance, transparency, and transparency. It has excellent visibility, gloss, rigidity, moisture-proofing properties and gas-nodding properties, and can be widely used as packaging films. Particularly excellent in moisture-proof properties, it is suitably used for press-through packs used for packaging tablets and capsules of chemicals.
  • the filament molded body can be produced, for example, by extruding a molten thermoplastic composition through a spinneret. Specifically, a spun bond method and a melt blown method are preferably used. The filament thus obtained may be further drawn. This stretching is preferably performed at a magnification of about 5 to 10 times as long as the filament is oriented so that at least one axis of the filament is molecularly oriented.
  • the filament made of the thermoplastic composition according to the present invention is hard to be charged and has excellent transparency, rigidity, heat resistance, impact resistance, and stretchability.
  • the injection molded article can be produced by injection molding the thermoplastic composition into various shapes using a conventionally known injection molding apparatus under known conditions.
  • the injection-molded article made of the thermoplastic composition according to the present invention has low transparency, rigidity, heat resistance, impact resistance, surface gloss, and chemical resistance.
  • It has excellent abrasion resistance and can be widely used for trim materials for automobile interiors, exterior materials for automobiles, housings for home electric appliances, containers and the like.
  • a blow molded article can be produced by blow molding a propylene polymer composition using a conventionally known blow molding apparatus under known conditions.
  • the propylene polymer composition is extruded from a die in a molten state at a resin temperature of 100 to 300 ° C to form a tubular parison, and then the parison is placed in a mold having a desired shape. After holding, air is blown into the mold at a resin temperature of 130 to 300 ° C, whereby a hollow molded body can be manufactured.
  • the stretching (blow) magnification is preferably about 1.5 to 5 times in the horizontal direction.
  • thermoplastic composition is injected into a Parison mold at a resin temperature of 100 ° C to 300 ° C to form a Norrison, and then the parison is placed in a mold having a desired shape. Then, air is blown into the mold and the resin is mounted on a mold at a resin temperature of 120 ° C to 300 ° C to produce a hollow molded body.
  • the stretching (blow) magnification is preferably 1.1 to 1.8 times in the vertical direction and 1.3 to 2.5 times in the horizontal direction.
  • the blow-molded article made of the thermoplastic composition according to the present invention is excellent in transparency, flexibility, heat resistance and impact resistance, and also excellent in moisture resistance.
  • Examples of the press molded body include a mold stamping molded body.
  • a base material and a skin material are simultaneously press-molded to form a composite integrated molding (mold stamping molding). It can be formed with the propylene composition according to the invention.
  • thermoplastic composition according to the present invention is excellent in flexibility, heat resistance, transparency, impact resistance, aging resistance, surface gloss, chemical resistance, abrasion resistance, etc. I have.
  • thermoplastic resin composition having improved physical properties obtained by blending the ⁇ -olefin olefin copolymer (S) with the thermoplastic resin provided by the present invention, the following is given.
  • a fat composition can be used.
  • the peak at the highest magnetic field among the signals derived from the unit CH (methine) was determined to be 34.4 ppm, and the absorption intensity A of about 22.0 to 29.9 ppm and the absorption intensity of about 19.0 to 20 ppm 6 ppm absorption intensity B force Approximately 19.0 to 22 attributed to propylene methyl.
  • Propylene 'a-olefin copolymer which satisfies the following relational expressions (i) and (ii)
  • Examples thereof include polypropylene resin compositions containing 0.2 to 50% by weight.
  • the propylene based polymer (A) 50 ⁇ 99. 8 weight 0/0, and propylene, 2 carbon atoms
  • Propylene-based polymer (A) which includes a polypropylene resin composition containing 0.2 to 50% by weight
  • the propylene polymer used in the present invention preferably has a tensile modulus of 400 MPa or more, and more preferably at least one selected from isotactic polypropylene and syndiotactic polypropylene.
  • the elastic modulus can be determined by press-molding a propylene-based polymer and then performing a tensile test by the method described in Examples below.
  • the molding conditions were as follows: After preheating at a temperature of 200 ° C, pressurizing (100kgZcm 2 ) for 3 minutes, then pressurizing (20kgC) for 5 minutes (100kgZcm 2 ) and cooling to produce a lmm thick sheet. Do it by doing.
  • isotactic polypropylene will be described below.
  • the isotactic polypropylene is a polypropylene having an isotactic pentad fraction of 0.9 or more, preferably 0.95 or more, as measured by NMR.
  • the isotactic pentad fraction (mmmm) is the fraction measured using 13 C-NMR.
  • the percentage of isotactic chains present in pentad units in the child chain is the fraction of propylene monomer units at the center of a chain in which five consecutive propylene monomer units are meso-bonded. Specifically, it is a value calculated as the fraction of the mmmm peak in the total absorption peak of the methyl carbon region observed in the 13 C-NMR ⁇ vector.
  • the isotactic pentad fraction (mmmm) is measured as follows.
  • mmmm fraction (absorption intensity derived from methyl groups of the third unit in the site where propylene units 5 units of consecutively bound ⁇ isotactic) Pmmmm in 13 C-NMR spectrum and P (propylene Absorption strength of unit derived from all methyl groups)
  • the degree can be obtained from the following equation (2).
  • the NMR measurement is performed, for example, as follows. That is, 0.35 g of the sample is dissolved by heating in 2.Oml of hexaclobutadiene. After filtering this solution through a glass filter (G2), 0.5 ml of deuterated benzene is collected and charged into an NMR tube having an inner diameter of 10 mm. Then, 13 C-NMR measurement is performed at 120 ° C. using a JEOL GX-500 type NMR measuring apparatus. The number of integrations should be 10,000 or more.
  • Examples of the isotactic polypropylene (A) include a propylene homopolymer or a copolymer of propylene and a-olefin having 2 to 20 carbon atoms other than propylene.
  • ⁇ -olefins having 2 to 20 carbon atoms other than propylene include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl 1-pentene, 1-otaten, 1-decene, Examples thereof include 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1 eicosene, and ethylene or ⁇ -olefin having 4 to 10 carbon atoms is preferable.
  • These ⁇ -olefins may form a random copolymer or a block copolymer with propylene.
  • These a- Orefuinka constituent units also derived from 40 mole 0/0 or less in polyps propylene, preferably comprise a proportion of 20 mole 0/0 or less, even.
  • the isotactic polypropylene (A) has a load of 230 ° C according to ASTM D 1238
  • Melt flow rate (MFR) measured at 16kg is 0.01 ⁇ : LOOOgZlO content, preferably Is preferably in the range of 0.05 to 500 g / 10 minutes.
  • Such isotactic polypropylene (A) includes, for example, (a) a solid catalyst component containing magnesium, titanium, halogen and an electron donor as essential components, (b) an organic aluminum compound, and (c) It can be produced by polymerizing using a Ziegler catalyst system having an electron donor power. Further, it can be similarly obtained by using a meta-mouth catalyst.
  • Shinji O tactic polypropylene a small amount for example, 10 mole 0/0 or less, preferably in an amount of 5 molar% or less of ethylene, having 4 or more Orefuin like carbon but it may also be copolymerized.
  • examples of the catalyst include a meta-opened catalyst described in JP-A-10-300084.
  • the syndiotactic pentad fraction (rrrr, pentad syndiotacticity) is 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more, and particularly preferably 0.80. Those with 0.5 or more are preferred because they have excellent heat resistance and moldability, and have good properties as crystalline polypropylene.
  • the syndiotactic pentad fraction (rrrr) is measured as follows.
  • the rrrr fraction is determined by the Prrrr (absorption intensity derived from the methyl group of the third unit at the site where five consecutive propylene units are syndiotactically bonded) and PW (total of propylene units) in the 13 C-NMR ⁇ vector. It can be obtained from the absorption intensity of the absorption intensity derived from the methyl group) by the following formula (3).
  • the NMR measurement is performed, for example, as follows. That is, 0.35 g of the sample is dissolved by heating in 2. Oml of hexachlorobutadiene. After the solution is filtered through a glass filter (G2), 0.5 ml of deuterated benzene is added, and the solution is charged into an NMR tube having an inner diameter of 10 mm. Then, 13 C-NMR measurement is performed at 120 ° C. using a JX-GX-500 type NMR measurement device. The number of integrations should be 10,000 or more.
  • the melt flow rate (MFR, 190 ° C, 2.16 kg load) of the syndiotactic polypropylene is 0.001 to 1000 g / 10 min, preferably 0.01 to 500 g / 10 min. Force S desirable. When the MFRI is within such a range, good flowability is exhibited, and the syndiotactic polypropylene is easily blended with other components.A molded article having excellent mechanical strength tends to be obtained from the obtained composition. is there.
  • the signal intensity measured by 13 CNMR satisfies the following relationship. That is,
  • the number of integrations should be 10,000 or more.
  • the copolymer contains structural units derived from 1-butene
  • the highest magnetic field peak of the signal derived from CH (methine) of the structural unit derived from 1-butene should be 34.4 ppm.
  • the propylene a -olefin copolymer (B) is in such a range, syndiotacticity It tends to have excellent lockability and excellent transparency, rigidity and abrasion resistance.
  • the ⁇ -olefin preferably contains at least 4 to 20 carbon atoms, and preferably contains 4 to 20 carbon atoms. Butene is more preferred as the a-olefin.
  • Propylene '(X- Orefuin copolymer according to the present invention (B) is 90-40 mol configuration units in which the majorIncr guided propylene force 0/0, preferably from 85 to 45 mole 0/0, more preferably is 80 to 50 in an amount of molar%, having 2 to 20 carbon atoms a- Orefuinka also led Ru constituent units 10 to 60 mole 0/0 except propylene, preferably from 15 to 55 mole 0/0 And more preferably in an amount of 20 to 50 mol% (excluding a propylene / ethylene binary copolymer).
  • the a-olefin used for preparing such a propylene-a-olefin-based copolymer (B) has a carbon number excluding propylene of 2 to 20, preferably 2 to 12 It is not particularly limited, and may have a linear, branched or cyclic structure.
  • ⁇ -olefins include, for example, ethylene, 1-butene, 2-butene, 1-pentene, 1-hexene, 1-heptane, 1-otaten, 1-nonene, and 1 —Decene, 1-Pendecene, 1-Dodecene, 3-Methyl-1-butene, 3-Methyl-1-pentene, 4-Methyl-1 pentene, 4-Methyl-1-hexene, 4,4-Dimethyl-11-hexene , 4,4 dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, cyclobutene, cyclopentene, cyclohexene, 3,4-dimethynolecyclopentene, 3-methylcyclohexene, 2- (2-Methylbutyl) 1-cyclohexene, cyclooctane, and 3a, 5,
  • 1-decene 4-methyl 1-pentene is preferred 1-butene, 1-hexene, 1 —Otatene and 1-decene are preferred, and 1-butene is particularly preferred.
  • ⁇ -olefins can be used alone or in combination of two or more.
  • a small amount of a structural unit derived from an aromatic vinyl conjugate such as styrene, and two or more A structural unit derived from the polyene-based unsaturated compound (polyene) having a double bond, a structural unit composed of an alcohol, a carboxylic acid, an amine, a derivative thereof, and the like may be included.
  • a structural unit other than the structural unit derived from propylene and the structural unit derived from ⁇ -olefin is not contained is also one preferred embodiment.
  • the propylene 'a-olefin copolymer (B) has an intrinsic viscosity [r?] Measured in decalin at 135 ° C of usually 0.01 to LOdl, preferably 0.05 to LOdl. Preferably, it is in the range of 0.1 to 5 dlZg.
  • the limiting viscosity [r?] Of the ⁇ -olefin copolymer (B) is within the above range, properties such as weather resistance, ozone resistance, heat aging resistance, low-temperature properties, and dynamic fatigue resistance are reduced. It becomes an excellent a-olefin copolymer.
  • the propylene.a-olefin copolymer (B) has a single glass transition temperature, and the glass transition temperature Tg measured by a differential scanning calorimeter (DSC) is usually 0 ° C or less, It is preferably in the range of 3 ° C. or less, particularly preferably 5 ° C. or less.
  • DSC differential scanning calorimeter
  • the molecular weight distribution (MwZMn, in terms of polystyrene, Mw: weight average molecular weight, Mn: number average molecular weight) measured by GPC is preferably 4.0 or less. Within this range, transparency, scratch resistance and impact resistance are improved, which is preferable.
  • Such a propylene-ex-olefin copolymer (B) can be obtained by copolymerizing propylene and (X-olefin) in the presence of the following meta-acene catalyst.
  • meta-aqueous catalyst examples include:
  • At least one catalyst system comprising at least one compound selected from the group consisting of:
  • M is Ti, Zr, Hf, Rn, Nd, Sm or Ru
  • Cp 1 and Cp 2 are a cyclopentagel group or an indul group bonded to M by ⁇ .
  • X 1 and X 2 are an aionic ligand or a neutral Lewis base ligand
  • is C, ⁇ , ⁇ , S, Ge, Si Or a Sn atom or a group containing these atoms.
  • transition metal compound represented by the general formula (1) the transition metal compound Cp and Cp 2 are different groups and the like, more preferably the other hand one of the Cp 1 and Cp 2 And the other group is a fluorenyl group or a derivative thereof, and the other is a transition metal compound.
  • the transition metal compound Cp and Cp 2 are different groups and the like, more preferably the other hand one of the Cp 1 and Cp 2 And the other group is a fluorenyl group or a derivative thereof, and the other is a transition metal compound.
  • ! / Of Cp 1 and Cp 2 must be either a cyclopentagel group or a derivative group thereof, and the other group must be a fluorenyl group or a derivative group thereof. Is preferred.
  • the above-mentioned meta-acene catalyst is preferably used as the catalyst for producing the propylene-a-one-year-old olefin copolymer (B).
  • a conventionally known titanium catalyst comprising a solid titanium catalyst component and an organoaluminum compound, or a vanadium catalyst comprising a soluble vanadium compound and an organoaluminum compound, other than the meta-acene catalyst, can also be used.
  • BB a-olefin polymer
  • the ex-olefin polymer (BB) of the present invention is a compound having the ex-olefin polymer (BB) of the present invention.
  • M is Ti, Zr, Hf, Rn, Nd, Sm or Ru
  • Cp 1 and Cp 2 are cyclopentagel groups and indul groups bonded to M by ⁇ .
  • a fluorenyl group, or a derivative group thereof, Cp 1 and Cp 2 are different groups
  • X 1 and X 2 are an aionic ligand or a neutral Lewis base ligand
  • Z is C, O, B, S, Ge, S are Sn atoms or a group containing these atoms.
  • Ethylene a-olefin random copolymer (C) As the ethylene'a-olefin random copolymer (C) according to the present invention, a random copolymer of ethylene and an a-olefin having 3 to 20, preferably 3 to 10 carbon atoms is desirable. Specific examples of such ⁇ -olefins include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl 1-pentene, 1-otaten, 1-decene, and 1-dodecene. No. These can be used alone or in combination of two or more. Of these, propylene, 1-butene, 1-hexene and 1-otaten are preferred.
  • ethylene'a-olefin random copolymer (C) In the preparation of the ethylene'a-olefin random copolymer (C), if necessary, other comonomers, for example, 1,6-hexadiene, 1,8-octadiene and the like may be used. In addition, a small amount of the dienes or cyclic olefins such as cyclopentene can be used.
  • Ethylene 'a over O reflex in random copolymer (C) (ethylene' a Orefuin 'including Poryen copolymer.)
  • the structural unit content derived ethylene force in (hereinafter, referred to as Echire emissions content .) is usually 85 to 99. 9 moles 0/0, Ru preferably 90 to 99. 5 mol 0/0 der.
  • the composition of the ethylene- a -olefin random copolymer (C) is usually about 200 mg of ethylene' ⁇ -olefin copolymer homogeneously dissolved in 1 ml of hexachlorobutadiene in a 10 mm diameter sample tube.
  • the 13 C-NMR ⁇ vector of the sample is determined by measuring at a measurement frequency of 25.05 MHz, a spectral width of 1500 Hz, a pulse repetition time of 4.2 sec., And a pulse width of 6 sec.
  • Ethylene 'a- O reflex in random copolymer (C) has a density of 0. 850 ⁇ 0. 960g / cm 3, preferably 0. 850 ⁇ 0. 930g / cm 3, more preferably 0. 850-0. is a 900g / cm 3. The density was measured using a density gradient tube according to ASTM D1505. Also, ethylene a -. O reflex in random copolymer (C),
  • melt float (hereinafter abbreviated as MFR (190 ° C)) measured at 190 ° C and 2.16kg load is 0.1 to 70gZlO, preferably 1
  • the molecular structure of the ethylene- ⁇ -olefin random copolymer (C) may be linear or branched having long or short side chains.
  • the method for producing the ethylene'a-olefin random copolymer (C) is not particularly limited, but may be a homopolymerization of ethylene using a radical polymerization catalyst, a Phillips catalyst, a Ziegler's Natta catalyst, or a metallocene catalyst. Alternatively, it can be produced by copolymerizing ethylene and ⁇ -olefin.
  • Examples of the inorganic filler (D) according to the present invention include silicates such as fine powder talc, kaolinite, calcined clay, neurophilite, sericite, wollastonite; precipitated calcium carbonate, heavy calcium carbonate, magnesium carbonate, etc.
  • Carbonates such as aluminum hydroxide and magnesium hydroxide; oxides such as titanium oxide, zinc oxide, zinc oxide, magnesium oxide, aluminum oxide; calcium sulfate, sulfuric acid Sulfates such as barium and magnesium sulfate; silicates or silicates such as hydrated calcium silicate, hydrated aluminum silicate, hydrated silicic acid, and silicic anhydride; powdered fillers such as finely divided silica and carbon black; mica and glass flakes Flaky filler, basic magnesium sulfate whiskers, calcium titanate whiskers, aluminum borate Examples include fibrous fillers such as nickel whiskers, sepiolite, PMF (Processed Mineral Fiber), zonotolite, potassium titanate, elestadite, glass fiber, and carbon fiber, and balun-like fillers such as glass balun and fly ash noren.
  • oxides such as titanium oxide, zinc oxide, zinc oxide, magnesium oxide, aluminum oxide
  • calcium sulfate, sulfuric acid Sulfates such as barium and magnesium sul
  • a weather-resistant stabilizer In the polypropylene resin composition according to the present invention, a weather-resistant stabilizer, a heat-resistant stabilizer, an antistatic agent, an anti-slip agent, an anti-blocking agent, a foaming agent, an anti-fog agent, as long as the object of the present invention is not impaired.
  • Additives such as lubricants, pigments, dyes, plasticizers, antioxidants, hydrochloric acid absorbents, antioxidants and the like can be added. Also, a small amount of an acrylic resin or the like for emulsifying the mixture may be used.
  • ⁇ composition according to the present invention is the propylene polymer (A) 50 to 99. 8% by weight and the pro-pyrene.
  • a Orefuin copolymer (B) 0. containing 2 to 50 weight 0/0 (where (The total amount of (A) and (B) is 100% by weight.) More preferably the propylene polymer (A) 55 to 90 wt% of propylene 'a Orefuin copolymer (B) 10 to 45 weight 0/0, and particularly preferably propylene System polymer (A) 60 to 85 weight 0/0 and propylene. At Orefuin copolymer (B) 15 to 40 by weight%, a total amount of 100 wt% of the containing (here (A) (B) is there).
  • the polypropylene resin composition according to the present invention contains the propylene-based polymer (A) and the propylene'a-olefin copolymer (B) or propylene' ⁇ -olefin copolymer ((), If necessary, the composition contains at least one component of the ethylene- ⁇ -olefin random copolymer (C), the inorganic filler (D), and the additive.
  • the propylene-based polymer (A) contains the entire composition ((A) + (B), 30 to 99.8% by weight, preferably 30 to 95% by weight, more preferably 40 to 80% by weight, based on (C) and Z or (D) when the composition contains (C) and Z or (D)). It is contained in the amount of.
  • the propylene-a-olefin copolymer (B) is contained in an amount of 0.2 to 70% by weight, preferably 1 to 60% by weight, more preferably 5 to 50% by weight based on the whole composition. Have been.
  • the propylene-a-olefin copolymer (BB) is contained in an amount of 0.2 to 70% by weight, preferably 1 to 60% by weight, more preferably 5 to 50% by weight, based on the whole composition. .
  • Proportion of propylene-based polymer (A) and propylene- ⁇ -olefin copolymer ( ⁇ ) or proportion of propylene-based polymer ( ⁇ ) and propylene.a-olefin copolymer (BB) Is within the above range, the resulting polypropylene resin composition has rigidity, impact resistance, It tends to be excellent in balance between whitening resistance and abrasion resistance.
  • the ethylene / ⁇ -olefin random copolymer (C) optionally used is contained in an amount of usually 1 to 40% by weight, preferably 5 to 35% by weight based on the whole composition. It may be. . Ethylene alpha - when O reflex in random copolymer (C) in an amount as described above, surface hardness, impact resistance, the composition can be obtained especially prepared moldings excellent in low-temperature impact strength.
  • the inorganic filler (D) optionally used may be contained in an amount of usually 1 to 30% by weight, preferably 5 to 20% by weight, based on the whole composition.
  • the inorganic filler (E) is contained in the above amount, a composition that can prepare a molded article having excellent rigidity, surface hardness and impact resistance can be obtained.
  • the polypropylene resin composition of the present invention can be produced by any known method, for example, (A) a propylene-based polymer, (B) a propylene ' ⁇ -olefin copolymer or (A). ⁇ ) A propylene-a-olefin copolymer, if necessary, (C) an ethylene- ⁇ -olefin random copolymer, (D) an inorganic filler, and if necessary, It is obtained by mixing with a mixer such as a mixer, V-type blender, ribbon blender, etc., and then melt-kneading using an extruder, a kneader, etc.
  • a mixer such as a mixer, V-type blender, ribbon blender, etc.
  • the tensile modulus of the polypropylene resin composition of the present invention is 400 MPa or more, preferably 500 MPa to 2500 MPa.
  • the abrasion resistance ( ⁇ Gloss (%)) of the polypropylene resin composition of the present invention is 30% or less, preferably 1 to 25%.
  • the elastic modulus and abrasion resistance can be determined by press-molding the resin composition and then performing a tensile test by the method of Examples described later.
  • the molding conditions are as follows: after preheating at a temperature of 200 ° C, pressurizing (100 kgZcm 2 ) for 3 minutes, then pressurizing at 20 ° C for 5 minutes (100 kgZcm 2 ) and cooling to a thickness corresponding to the measurement item. This is performed by preparing a sheet.
  • the Izod impact strength (0 ° C, j / m) of the polypropylene resin composition of the present invention is 30 jZm or more, preferably 35 to LOOOjZm (non-destructive).
  • the injection molding conditions are (using IS55EPN manufactured by Toshiba Machine Co., cylinder temperature 200 ° C, mold temperature 40 ° C, cooling time 30 seconds). Molded product comprising polypropylene spreading composition
  • the polypropylene resin composition according to the present invention is, for example, an extrusion molding, an injection molding, an inflation molding, a blow molding, an extrusion blow molding, or a force molding that can be widely used in conventionally known polyolefin applications.
  • examples include molded articles obtained by a known thermoforming method such as injection blow molding, press molding, vacuum molding, calender molding, and foam molding.
  • the polypropylene resin composition according to the present invention has a power that can be widely used for conventionally known polyolefin applications, and particularly a polyolefin yarn composition, for example, a sheet, an unstretched or stretched film, a filament, and various other shapes. It can be used after being molded into a molded article.
  • a specific embodiment described above for the molded article made of the thermoplastic resin thread which is the first specific example of the present invention described above. Can be directly applied to a polypropylene resin composition. These specific examples are not described in order to avoid repetition, but based on the above description of the molded article made of the thermoplastic resin composition, it is preferable to appropriately form the molded article. Can be formed.
  • thermoplastic resin composition having improved physical properties obtained by blending the ⁇ -olefin olefin copolymer (S) with the thermoplastic resin provided by the present invention, the following is mentioned.
  • a fat composition can be used.
  • a propylene copolymer composition containing 5 to 60 parts by weight (here, the total of (X), (Y) and ( ⁇ ) is 100 parts by weight) can be mentioned.
  • M is Ti, Zr, Hf, Rn, Nd, Sm or Ru
  • Cp 1 and Cp 2 are a cyclopentagel group or an indul group bonded to M by ⁇ .
  • X 1 and X 2 are an aionic ligand or a neutral Lewis base ligand
  • is C, ⁇ , ⁇ , S, Ge, Si Or a Sn atom or a group containing these atoms.
  • Non-crosslinked or partially crosslinked olefin-based thermoplastic elastomer (X) The non-crosslinked or partially crosslinked olefin-based thermoplastic elastomer used in the present invention is composed of polypropylene and non-conjugated It is preferable to contain an ethylene- ⁇ -olefin random copolymer containing styrene, but it is not limited thereto.
  • a non-crosslinked polymer containing polypropylene and ethylene- ⁇ -olefin random copolymer may be used.
  • the olefin or butene may be propylene or butene.
  • the non-crosslinked force or partially crosslinked olefinic thermoplastic elastomer used in the present invention preferably has an MFR of 0.001 to 100 as measured at 230 ° C and a load of 10 kg. More preferably, it is 0.01 to 80.
  • the melting point (Tm) of the non-crosslinked force or partially crosslinked olefin-based thermoplastic elastomer used in the present invention is preferably 120 to 165 ° C.
  • the temperature is more preferably in the range of 130 to 160 ° C.
  • the thermoplastic thermoplastic elastomer composition according to the present invention is a non-crosslinked thermoplastic elastomer composition or a partially crosslinked thermoplastic elastomer composition, and comprises a specific crystalline polyolefin resin (X). — 1) and a specific ⁇ -olefin copolymer rubber (X-2).
  • the crystalline polyolefin resin (X-1) used in the present invention is obtained from a crystalline high molecular weight solid product obtained by polymerizing one or more monoolefins by either a high-pressure method or a low-pressure method. Become.
  • Such resins include, for example, isotactic and syndiotactic monoolefin polymer resins, and representative resins thereof are commercially available.
  • suitable raw materials for the above-mentioned crystalline polyolefin resin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 2-methyl 1-propene, and 3-methyl-olefin.
  • isotactic polypropylene having a propylene content of 70 mol% or more, preferably 80 mol% or more, is suitably used.
  • the crystalline polyolefin resin used in the present invention has an MFR (A-1STM A-4 1238-65T, 230.C) power of usually 0.01 to: LOOg / 10 minutes, particularly 0.05 to 50 gZlO. Is preferred.
  • the crystalline polyolefin (X-1) used in the thermoplastic elastomer (X) of the present invention preferably has a melting point (Tm) of 120 to 165 ° C obtained from an endothermic curve of DSC, More preferably, it is in the range of 130 ° C to 160 ° C.
  • the crystalline polyolefin (X) is a crystalline polyolefin other than those listed as (Y) below.
  • the crystalline polyolefin resin (X-1) has a role of improving the fluidity and heat resistance of the composition.
  • the crystalline polyolefin resin (X-1) is contained in a total of 100 parts by weight of the crystalline polyolefin resin (X-1) and the a-olefin copolymer rubber (X-2). 10 to 60 parts by weight, preferably 20 to 55 parts by weight.
  • the a-olefin copolymer rubber (X-2) used in the present invention comprises an oc-refined olefin having 2 to 20 carbon atoms, preferably 2 to 12 carbon atoms, and a non-conjugated polyene such as a non-conjugated gen. Is a rubber obtained by copolymerizing
  • ⁇ -olefin examples include ethylene, propylene, 1-butene, 1-hexene, 4-methyl 1-pentene, 1-heptene, 1-otaten, 1-nonene, and 1-decene.
  • the above-mentioned ⁇ -olefin may be used alone or as a mixture of two or more.
  • the molar ratio of 4-methyl-1 pentene to other a-olefin is 10 ⁇ 90 to 95 ⁇ 5. It is preferably within the range.
  • ethylene, propylene and 1-butene are particularly preferably used.
  • non-conjugated polyene specifically, dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylene norbornene, ethylidene norbornene 4-methyl-1,4-hexadiene, 5-methyl- 1,4-hexadiene, 4-ethyl-1,4-hexadiene, 5-methyl-1,4-butadiene, 5-ethyl-1,4-butadiene, 5-methyl-1,5-butadiene, 6-methyl 1,5-butadiene, 5-ethyl-1,5-butadiene, 4-methyl-1,4-octadiene, 5-methyl-1,4-octadiene, 4-ethyl-1,4-octadiene, 5-ethyl-1,4-octadiene, 5-methyl-1, , 5-octadiene, 6-methyl-1,5-octadiene, 5 ethyl-1,5 otata
  • 5-ethylidene-2 norbornene 5-bi-2norbornene, dicyclopentagen, 4,8-dimethyl-1,4,8-decatriene (DMDT), and 4-ethylidene-8methyl-1,7-nonagen (EMND) are preferable.
  • DMDT 4,8-dimethyl-1,4,8-decatriene
  • EMND 4-ethylidene-8methyl-1,7-nonagen
  • non-conjugated polyene for example, non-conjugated diene may be used alone or as a mixture of two or more. Further, in addition to the non-conjugated polyene as described above, other copolymerizable monomers may be used as long as the object of the present invention is not impaired.
  • a non-conjugated diene-containing Yuryou ⁇ constituting the a one year old Refuin copolymer rubber used in the present invention or, from 0.01 to 30 Monore 0/0, preferably ⁇ or 0.1 to 20 Monore 0 / 0, particularly in preferred ⁇ or in the range of 0.1 to 10 mole 0/0.
  • the a-olefin copolymer rubber used in the present invention is, for example, an ethylene 'a-olefin having 3 or more carbon atoms' non-conjugated polyene copolymer, which is a copolymer of ethylene and an a-olefin having 3 or more carbon atoms.
  • the ratio is a ratio of a-olefin (mol ratio) of ethylene Z having 3 or more carbon atoms is 40Z60-95Z5.
  • the intrinsic viscosity [ ⁇ ?] Of the a-olefin copolymer rubber used in the present invention measured in a decalin solvent at 135 ° C is 1.0 to 0.1 OdlZg, preferably 1.5 to 7 dlZg. In range. Further, the one-year-old olefin copolymer rubber used in the present invention is not particularly limited, but preferably has no melting point (Tm) determined from an endothermic curve of DSC or exists at less than 120 ° C. .
  • the a-olefin copolymer rubber (X-2) is the total amount of the crystalline polyolefin resin (X-1) and the a-olefin copolymer rubber (X-2). 90 to 40 parts by weight, preferably 80 to 45 parts by weight, is used.
  • the a-olefin copolymer rubber (X-2) as described above can be produced by the following method.
  • the (X-olefin copolymer rubber (X-2) used in the present invention is obtained by reacting a one-year-old olefin having 2 to 20 carbon atoms with a non-conjugated gen in the presence of an olefin polymerization catalyst. Obtained by copolymerization.
  • the olefinic thermoplastic elastomer composition according to the present invention may be softened as an optional component.
  • a softening agent usually used for rubber can be used, and specifically, process oil, lubricating oil, paraffin, liquid paraffin, stone Petroleum-based substances such as oil asphalt and petrolatum; coal tars such as coal tar and coal tar pitch; fatty oils such as castor oil, linseed oil, rapeseed oil, soybean oil, coconut oil; tall oil, beeswax, carnaupa wax, Waxes such as lanolin; fatty acids such as ricinoleic acid, palmitic acid, stearic acid, barium stearate, and calcium stearate or metal salts thereof; synthetic high-molecular substances such as petroleum grease, coumarone indene grease, and atactic polypropylene Ester plasticizers such as octyl phthalate, octyl adipate and octyl sebacate; and other microcrystalline waxes.
  • the softener (X-3) is added to 100 parts by weight of the total amount of the crystalline polyolefin resin (X-1) and the ex-olefin copolymer rubber (X-2). On the other hand, it is usually used in a proportion of 200 parts by weight or less, preferably 2 to LOO parts by weight. In the present invention, if the amount of the softener (X-3) exceeds 200 parts by weight, the resulting thermoplastic elastomer composition tends to have reduced heat resistance and heat aging resistance.
  • inorganic filler (X-4) used in the present invention include calcium carbonate, calcium silicate, clay, carion, talc, silica, diatomaceous earth, mica powder, asbestos, alumina, and sulfuric acid.
  • examples include barium, aluminum sulfate, calcium sulfate, basic magnesium carbonate, molybdenum disulfide, graphite, glass fiber, glass spheres, and silas nolane.
  • the inorganic filler (X-4) is 100 parts by weight in total of the crystalline polyolefin resin (X-1) and the ⁇ -olefin copolymer rubber (X-2). To 100 parts by weight or less, preferably 2 to 50 parts by weight. In the present invention, when the amount of the inorganic filler (X-4) used exceeds 100 parts by weight, one set of the obtained thermoplastic elastomer is obtained. Rubber elasticity and moldability of the product tend to decrease.
  • the partially crosslinked olefin-based thermoplastic elastomer composition according to the present invention comprises the crystalline polyolefin resin (X-1) described above and an a-olefin-based copolymer rubber (X2) And a softening agent (X-3) and Z or an inorganic filler (X-4), if necessary, and the above-mentioned ethylene a-olefin copolymer rubber and ethylene a-olefin non-conjugated It can be obtained by dynamically heat-treating a mixture with a copolymer rubber or the like in the presence of the following organic peroxide to partially crosslink.
  • organic peroxide examples include dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, and 2,5-dimethyl-2,5-di- (Tert-butylperoxy) hexine-3,1,3 bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, n-butyl- 4,4 bis (tert-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxyisopropyl carbon
  • Cetyl peroxide, lauroyl peroxide, tert-butyl tamyl peroxide and the like can be mentioned.
  • Such an organic peroxidation product is treated with the entirety of the object to be treated, that is, the crystalline polyolefin resin (X).
  • thermoplastic elastomer composition 1) and ⁇ -olefin copolymer rubber (X-2) are used in an amount of 0.02 to 3 parts by weight, preferably 0.05 to 1 part by weight based on 100 parts by weight. . If the amount is less than the above range, the resulting thermoplastic elastomer composition has a low degree of cross-linking, so that heat resistance, tensile properties, elastic recovery, rebound resilience, and the like are not sufficient. If the amount is more than the above range, the obtained thermoplastic elastomer composition may have an excessively high degree of cross-linking, resulting in a decrease in moldability.
  • sulfur, ⁇ -quinonodixime, ⁇ , ⁇ , dibenzoinolequinone dioxime, ⁇ -methinole ⁇ ⁇ , N, 1 m-phenyl -Peroxy crosslinking aids such as rangemaleimide, or dibutylbenzene, triallyl Multifunctional metathalylate monomer such as cyanurate, ethylene glycol dimetharate, polyethylene glycol dimethacrylate, trimethylolpropane trimetatalate, acrylic methacrylate, polyfunctional vulture such as butyl butyrate or vinyl stearate You may mix monomers.
  • a crosslinking aid As described above, a uniform and mild crosslinking reaction can be expected.
  • a crosslinking aid, or a compound such as a polyfunctional bubble monomer is usually not more than 2 parts by weight, more preferably 0.3 to 1 part by weight, based on 100 parts by weight of the whole to-be-processed object. Used in quantity.
  • tertiary amines such as triethylamine, triptylamine, 2,4,6-tri (dimethylamino) phenol, aluminum, connol, nonadium, copper, calcium, zirconium
  • Decomposition accelerators such as naphthenates of manganese, magnesium, lead and mercury may be used.
  • the dynamic heat treatment in the present invention is preferably performed in a non-open type apparatus, and is preferably performed in an atmosphere of an inert gas such as nitrogen or carbon dioxide.
  • the temperature ranges from the melting point of the crystalline polyolefin resin (X-1) to 300 ° C, usually 150 to 250 ° C, preferably 170 to 225 ° C.
  • the kneading time is usually 1 to 20 minutes, preferably 1 to 10 minutes.
  • the applied shearing force is a shear rate of 10 to: LOO, Preferred ⁇ is 100 to 50, OOOsec- 1 .
  • a mixing roll As a kneading apparatus, a mixing roll, an intensive mixer (eg, Banbury mixer, kneader), a single-screw or twin-screw extruder, or the like can be used, but a non-open type apparatus is preferred.
  • an intensive mixer eg, Banbury mixer, kneader
  • a single-screw or twin-screw extruder or the like
  • a non-open type apparatus is preferred.
  • a non-crosslinked or partially non-crosslinked or partially composed of a crystalline polyolefin resin (X-1) and an ⁇ -olefin copolymer rubber (X-2) is obtained by the dynamic heat treatment described above.
  • a crosslinked thermoplastic elastomer composition is obtained.
  • the fact that the thermoplastic elastomer yarn is partially crosslinked means that the gel content measured by the following method is 20% or more, preferably 20 to 99.5%, particularly preferably. Or within the range of 45 to 98%.
  • Determination of gel content A sample of the thermoplastic elastomer composition was weighed in lOOmg and cut into 0.5mm X O. 5mm X O. 5mm strips. The sample is immersed in 30 ml of cyclohexane at 23 ° C for 48 hours in a closed container, then the sample is taken out on a filter paper and dried at room temperature for at least 72 hours until the weight becomes constant.
  • the ⁇ -olefin copolymer (X-2) in the sample is referred to as “corrected initial weight [ ⁇ ]”.
  • the gel content is determined by the following equation.
  • the same polymer as the propylene-based polymer ( ⁇ ) described for the polypropylene resin composition can be used.
  • the propylene-based polymer ( ⁇ ) used in the present invention has a tensile modulus of 400 MPa or more, and preferably has a tensile force of 400 MPa to 2500 MPa, more preferably 500 MPa to 20 OOMpa. More preferably, at least one selected from tactic polypropylene and syndiotactic polypropylene is used.
  • the elastic modulus can be determined by press-molding a propylene-based polymer and then conducting a tensile test by the method described in Examples below.
  • the molding conditions are as follows: After preheating at a temperature of 200 ° C, press (100kgZcm 2 ) for 3 minutes, then press at 20 ° C for 5 minutes (100kgZcm 2 ) and cool to produce a lmm thick sheet. Do with.
  • isotactic polypropylene will be described below.
  • the isotactic polypropylene is a polypropylene having an isotactic pentad fraction of 0.9 or more, preferably 0.95 or more, as measured by NMR.
  • the isotactic pentad fraction was measured using the propylene polymer (A) described in the second specific example. This is performed by the method described above.
  • Examples of the isotactic polypropylene include a propylene homopolymer and a copolymer of propylene and ⁇ -olefin having 2 to 20 carbon atoms other than propylene. It can.
  • a-olefins having 2 to 20 carbon atoms other than propylene include ethylene, 1-butene, 1 pentene, 1-hexene, 4-methyl 1-pentene, 1-otaten, and 1-decene , 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1 eicosene and the like, and ethylene or a-olefin having from 10 to 10 carbon atoms is preferable.
  • These ⁇ -olefins may form a random copolymer with propylene, or may form a block copolymer.
  • These ⁇ Orefuinka configuration units derived from 40 mole 0/0 or less in the polypropylene may preferably be free Ndei in a proportion of 20 mole 0/0 or less.
  • Isotactic polypropylene is 230 ° C, load 2.according to ASTM D 1238.
  • melt flow rate (MFR) measured at 16 kg is in the range of 0.01 to: LOOOgZlO content, preferably 0.05 to 500 g / 10 minutes.
  • Such isotactic polypropylene includes, for example, (a) a solid catalyst component containing magnesium, titanium, a halogen and an electron donor as essential components, (b) an organic aluminum compound, and (c) It can be produced by polymerizing using a Ziegler catalyst system having an electron donor power. Further, it can be similarly obtained by using a meta-mouth catalyst.
  • isotactic polypropylene among the Ziegler-catalyzed polypropylene copolymers, propylene'ethylene random copolymer and propylene / ethylene block, which have an excellent balance between whitening resistance and impact resistance, are used. Copolymers are preferred.
  • Syndiotactic polypropylene may be copolymerized with ethylene, 0 L-olefin having 4 or more carbon atoms, or the like in a small amount, for example, 10 mol% or less, preferably 5 mol% or less.
  • JP-A No In the production of such syndiotactic polypropylene, as a catalyst, JP-A No. Examples of the meta-open-chain catalyst described in 10-300084 can be given.
  • the syndiotactic pentad fraction (rrrr, pentad syndiotacticity) is 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more, and particularly preferably 0.80. Those with 0.5 or more are preferred because they have excellent heat resistance and moldability, and have good properties as crystalline polypropylene.
  • the melt flow rate (MFR, 190 ° C, 2.16 kg load) of the syndiotactic polypropylene is 0.001 to 1000 g / 10 min, preferably 0.01 to 500 g / 10 min.
  • Force S desirable. Within the range of the MFR force, good fluidity is exhibited, the syndiotactic polypropylene is easily blended with other components, and a molded article having excellent mechanical strength tends to be obtained from the obtained composition. is there.
  • Such a propylene-based polymer (Y) is contained in the resin composition in an amount of 0 to 40 parts by weight, preferably 0 to 35 parts by weight, and more preferably 5 to 35 parts by weight.
  • the syndiotactic polypropylene (Y) is in this range, the ⁇ -olefin copolymer composition has an excellent balance of heat resistance, rubber elasticity, and abrasion resistance.
  • Propylene 'alpha-Orefuin copolymer used in the present invention includes an amount of propylene configuration 30 to 80 mole units 0/0 from 0 to 20 mole a constitutional unit derived from ethylene 0/0, carbon preferably comprises an amount of a constitutional unit derived from the number of 4 to 20 ⁇ - Orefuin 20-50 mole 0/0, as the ⁇ - Orefin butene, it is desirable to Otatenka also selected. Among them, butene is particularly preferred. It is sufficient ⁇ - Orefin total 30 to 60 moles of 2 be used on more kinds may the case of two or more (X- Orefuin 0/0 included having 4 to 20 carbon atoms in the noted present invention .
  • a Orefuin copolymer (Z) is a repeating unit guiding force from propylene, 30 to 80 Monore 0/0, preferably ⁇ or 40-80 Monore 0/0, more preferably ⁇ or 45-70 mole 0/0, 0-20 mol of repeating units derived from ethylene 0/0, preferably 0 to 18 mol 0/0, more preferably 3 to 15 mole 0/0, a- Orefuinka Is also derived 10-50 mole 0/0, preferably from 15 to 50 mole 0/0, and more preferably are contained in a proportion of 20 to 45 mole 0/0.
  • a structural unit derived from an aromatic vinyl conjugate such as styrene in addition to the above-mentioned ⁇ -olefin-derived structural unit, a structural unit derived from an aromatic vinyl conjugate such as styrene, A structural unit derived from the above-mentioned polyene-based unsaturated compound having a heavy bond (polyene), a structural unit having a strong force such as alcohol, carboxylic acid, amine and derivatives thereof may be contained.
  • V is an embodiment which includes a structural unit other than ethylene, propylene, and a-olefin having 4 to 20 carbon atoms.
  • the propylene 'a-olefin copolymer (Z) has a Young's modulus of preferably 150 MPa or less, more preferably 100 MPa or less, and still more preferably 50 MPa or less.
  • the elastic modulus can be determined by press-molding the copolymer (Z) and then performing a tensile test by the method described in Examples below.
  • the molding conditions are as follows: After preheating at a temperature of 190 ° C, pressurizing (100 kgZcm 2 ) for 2 minutes, then pressurizing (100 kgZcm 2 ) at 20 ° C and cooling to produce a lmm thick sheet. .
  • the propylene-a-olefin copolymer (Z) has an intrinsic viscosity [7?] Measured in decalin at 135 ° C of usually 0.01 to LOdlZg, preferably 0.5 to LOdlZg. More preferably, it is desired to be in the range of 1 to 8 dlZg.
  • the propylene-a-olefin copolymer (Z) has a single glass transition temperature, and the glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) is usually 0 ° C. Or less, preferably 3 ° C. or less, more preferably 5 ° C. or less.
  • Tg glass transition temperature measured by a differential scanning calorimeter
  • the molecular weight distribution (MwZMn, polystyrene equivalent, Mw: weight average molecular weight, Mn: number average molecular weight) determined by gel permeation chromatography (GPC) is preferably 4.0 or less, particularly 3.5 or less. Is preferably
  • the propylene-at-olefin copolymer (Z), particularly the propylene-ethylene-butene copolymer, satisfies the following relationship as measured by 13 CNMR.
  • 13 C-NMR measured with benzene solution
  • a structural unit derived from (X-olefin) having 4 to 20 carbon atoms in the body about 22.
  • Absorption intensity A of 0-20.9 ppm and absorption intensity of about 19.0-20.6 ppm B Approximately 19.0-22.
  • 13 C-NMR measurement is performed at 120 ° C with the highest magnetic field peak being 34.4 ppm.
  • the number of integrations should be 10,000 or more. It is preferable that the content be in this range because the transparency, scratch resistance and impact resistance are improved.
  • the copolymer contains structural units derived from 1-butene, the highest magnetic field peak of the signal derived from CH (methine) of the structural unit derived from 1-butene shall be 34.4 ppm. I do.
  • the ⁇ -olefin having 4 to 20 carbon atoms is preferably 1-butene.
  • Such propylene 'ex Orefuin copolymer is a repeating unit 30-80 mole 0/0 derived propylene force in the presence of a meta-port Sen-based catalysts below, guide ethylene repeating units from 0 to 20 mole 0/0 wither, a repeating unit also directed a- Orefuinka 10-50 mole 0/0 by copolymerizing propylene with ethylene and a Orefuin so obtained it is in.
  • meta-aqueous catalyst examples include:
  • At least one catalyst system comprising at least one compound selected from the group consisting of:
  • M is Ti, Zr, Hf, Rn, Nd, Sm or Ru
  • Cp 1 and Cp 2 are a cyclopentagel group or an indul group bonded to M by ⁇ .
  • X 1 and X 2 are an aionic ligand or a neutral Lewis base ligand
  • is C, ⁇ , ⁇ , S, Ge, Si Or a Sn atom or a group containing these atoms.
  • transition metal compound represented by the general formula (1) the transition metal compound Cp and Cp 2 are different groups and the like, more preferably the other hand one of the Cp 1 and Cp 2 Is a cyclopentagel group or a derivative thereof, and the other group is a fluorenyl group.
  • a transition metal compound which is a derivative group thereof it is preferable that one of Cp 1 and Cp 2 is a cyclopentagel group or a derivative thereof, and the other is a fluorenyl group or a derivative thereof.
  • the above-mentioned meta-mouth catalyst is preferably used as the catalyst for producing the propylene-a-one-year-old olefin copolymer (Z).
  • the above-mentioned meta-mouth catalyst is preferably used as the above-mentioned meta-mouth catalyst.
  • a conventionally known titanium catalyst comprising a solid titanium catalyst component and an organoaluminum compound or a vanadium catalyst comprising a soluble vanadium compound and an organoaluminum compound can also be used.
  • represents Ti, Zr, Hf, Rn, Nd, Sm or Ru
  • Cp 1 and Cp 2 represent a cyclopentagel group or an indul group bonded to M by ⁇ .
  • a fluorenyl group, or a derivative group thereof, Cp 1 and Cp 2 are different groups
  • X 1 and X 2 are an aionic ligand or a neutral Lewis base ligand
  • Z is C, O, B, S, Ge, S are Sn atoms or a group containing these atoms.
  • the use of -olefin, quantitative ratio, Young's modulus, [], Tg, Mw / Mn, catalyst containing transition metal compound (1), etc. are not described to avoid duplication, but ⁇ -olefin copolymer) The same as
  • the propylene-based copolymer composition of the present invention contains 30 to 80 parts by weight, preferably 40 to 70 parts by weight of a non-crosslinked force or partially crosslinked olefin thermoplastic elastomer (X), polypropylene ( ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ) 0-40 parts by weight, preferably a 0 to 35 parts by weight, 30 to 80 mol configuration units derived from propylene 0/0, wherein the amount of the structural units 0-20 mole 0/0 derived from ethylene, carbon atoms 4 the propylene emissions' alpha-Orefuin copolymer a constitutional unit derived from a Orefuin of 20 comprising an amount of 10 to 50 mole 0/0 ( ⁇ ) 5 ⁇ 60 parts by weight, preferably contains from 5 to 50 parts by weight.
  • X non-crosslinked force or partially crosslinked olefin thermoplastic elastomer
  • polypropylene ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the sum of ( ⁇ ), ( ⁇ ), and ( ⁇ ) is 100 parts by weight.
  • the ratio of ( ⁇ ) to ( ⁇ ) is preferably ( ⁇ ) / ( ⁇ ) in a weight ratio of OZlOO to 90ZlO, more preferably OZlOO to 70Z30. It is preferably 10Z90 to 40 ⁇ 60.
  • the propylene copolymer composition according to another embodiment of the present invention contains 30 to 80 parts by weight, preferably 30 to 80 parts by weight of a non-crosslinked or partially crosslinked olefinic thermoplastic elastomer (X).
  • the ratio of ( ⁇ ) and ( ⁇ ) in the present invention is preferably ( ⁇ ) / ( ⁇ ) in weight ratio, more preferably OZlOO to 9 OZlO, more preferably 0 ⁇ 100 to 70 ⁇ 30, More preferably, it is 10 ⁇ 90 ⁇ 40 ⁇ 60.
  • the propylene-based copolymer composition of the present invention contains a softener, a tackifier, a weather-resistant stabilizer, a heat-resistant stabilizer, a heat-resistant stabilizer, an antistatic agent, Additives such as inhibitors, anti-blocking agents, anti-fogging agents, lubricants, pigments, dyes, plasticizers, crosslinking agents, crosslinking aids, anti-aging agents, hydrochloric acid absorbents, antioxidants, maleic anhydride and acrylic acid , Shira If necessary, a modifier such as a coupling agent, a crosslinking agent such as an organic peroxide, a crosslinking aid such as dibutylbenzene, etc. may be added. Further, other copolymers can be blended in a small amount without departing from the spirit of the present invention.
  • the propylene-based polymer composition according to the present invention can be produced by using any known method. For example, a non-crosslinked force or a partially crosslinked olefinic thermoplastic elastomer ( X) 30 to 80 parts by weight, propylene polymer (Y) 0 to 40 parts by weight, propylene / ⁇ -olefin copolymer ( ⁇ ⁇ ⁇ ) 5 to 60 parts by weight (where ( ⁇ ), ( ⁇ ), (The sum of ( ⁇ ) is 100 parts by weight.) And other components optionally added are melt-kneaded all at once using an extruder, a kneader or the like.
  • a non-crosslinked or partially crosslinked olefinic thermoplastic elastomer 0 to 40 parts by weight of a propylene polymer ( ⁇ ), propylene a Olefin copolymer (ZZ) 5 to 60 parts by weight (here, the sum of ( ⁇ ), ( ⁇ ), and ( ⁇ ⁇ ) is 100 parts by weight) and other optional components are added to an extruder and a kneader. It is obtained by melt-kneading all at once using
  • the propylene-based polymer composition according to the present invention as described above has a power that can be widely used in conventionally known polyolefin applications. , Filaments, and other molded articles of various shapes.
  • molded body examples include known thermoforming methods such as extrusion molding, injection molding, inflation molding, blow molding, extrusion blow molding, injection blow molding, press molding, vacuum molding, calendar molding, and foam molding. And a molded article obtained by the above method.
  • the molded product will be described below with reference to several examples.
  • the molded article according to the present invention is, for example, an extrusion molded article or an injection molded article
  • its shape and product type are not particularly limited. Examples include filaments and the like, and particularly preferred are sheets, skin materials, automobile inner and outer layer materials, building materials and the like.
  • a propylene-based polymer composition is extrusion-molded or injection-molded, a conventionally known extruder is used. Placement, injection equipment and molding conditions can be employed. Further, at the time of extrusion molding, a crosslinking treatment can be performed with an electron beam or ⁇ -ray.
  • the propylene-based copolymer composition according to the present invention has rubber elasticity by blending the specific propylene-based copolymer with a non-crosslinked or partially crosslinked olefinic thermoplastic resin. By holding, a propylene-based copolymer composition having an excellent balance between abrasion resistance and heat resistance can be obtained.
  • a dumbbell piece with a thickness of 50mm and a width of 5mm and a thickness of lmmt is given a strain of 100% (up to 60mm between chucks) at a mark length of 30mm and a pulling speed of 30mmZmin.
  • the length (L) of the marked line was measured.
  • Residual strain (%) [(L30) / 30] x 100.
  • JIS No. 3 dumbbell was used and measured at 23 ° C with a span distance of 30 mm and a pulling speed of 30 mmZmin.
  • TMA softening temperature
  • TMA Conforming to JIS K7196, using a specimen having a thickness of lmm, 1. a pressure of 2KgZcm 2 to the plane indenter 8 PIPI phi at a heating rate 5 ° CZmin, from TMA curve, a softening temperature (° C) I asked. In this specification, this softening temperature is sometimes referred to as TMA.
  • test piece having a thickness of lmm Using a test piece having a thickness of lmm, measurement was performed with a digital turbidity meter “NDH-20DJ” manufactured by Nippon Denshoku Industries Co., Ltd.
  • a 10cm X 10cm X lmmt test piece was bent 180 ° so as to be symmetrical, and a cylindrical weight of 5cm in radius and 10kg in weight was placed on the test piece for 1 hour. Was evaluated by.
  • the Izod impact strength was determined by performing an impact test under the following conditions using an injection-molded test piece in accordance with ASTM D-256.
  • Test piece 12.7mm (width) X 6.4mm (thickness) X 64mm (length)
  • Measurement temperature 0 ° C and 30 ° C.
  • HST Heat seal strength
  • a test film with a width of 250 mm and a thickness of 50 microns was prepared under the conditions of a cylinder temperature of 230 ° C, a chill roll temperature of 20 ° C, and a screw rotation of 80 rpm, and a heat sealing pressure of 2 kgZcm 2 , Heat sealing time; lsec, pulling speed; measured at 300 mmZmin.
  • the sample was packed in an aluminum pan, the temperature was raised to 200 ° C in 100 ° CZ minutes, held at 200 ° C for 10 minutes, and then at 100 ° C / minute to ⁇ 150 ° C 10 ° C / min The temperature was lowered at 10 ° C./minute, and the temperature was increased from 10 ° C./min.
  • the measurement was performed at 140 ° C. in an orthodichlorobenzene solvent using GPC (gel permeation chromatography).
  • JIS A hardness (HS) was measured according to JIS K6301.
  • the resulting polymer was 36.lg.
  • the polymer composition was as follows: propylene content was 58.2 mol%, ethylene content was 4.1 mol%, 1-butene content was 37.7 mol%, intrinsic viscosity [7?] Was 2.69 dlZg, and glass
  • the transition temperature Tg was -18.3 ° C, there was no melting peak, and the molecular weight distribution by GPC was 2.4.
  • the plate was formed at a hot plate temperature of 190 ° C, residual heat for 6 minutes, and pressurized (100 kgZcm 2 ) for 2 minutes, and then transferred to a press molding machine with a hot plate temperature of 20 ° C and pressed (100 kgZcm2). 2 ) By cooling, a lmm thick sheet was prepared.
  • the sheet properties are shown below.
  • Table 1 shows the physical properties measured for the obtained polymer.
  • Polymerization was carried out in the same manner as in Synthesis Example 1 except that the amount of hexane charged was changed to 500 ml and 1-butene was changed to 240 g.
  • the obtained polymer was 39.2 g.
  • the composition of the polymer was 67.9 mol% for propylene content, 5.1 mol% for ethylene content, and 1-butene content.
  • the amount is 27.Omol%, the intrinsic viscosity [7?] Is 2.89dlZg, the glass transition temperature Tg is -19.7 ° C, there is no melting peak, and the molecular weight distribution by GPC is 2. It was 0.
  • the plate was formed at a hot plate temperature of 190 ° C, residual heat for 6 minutes, and pressurized (100 kgZcm 2 ) for 2 minutes, and then transferred to a press molding machine with a hot plate temperature of 20 ° C and pressed (100 kgZcm). 2 ) By cooling, a lmm thick sheet was prepared. The sheet properties are shown below.
  • Table 1 shows the physical properties measured for the obtained polymer.
  • Polymerization was carried out in the same manner as in Synthesis Example 2 except that the pressure was increased to 5.4 MPa with propylene.
  • the obtained polymer was 82.6 g.
  • the polymer composition was as follows: propylene content: 61.3 mol%, ethylene content: 10.3 mol%, 1-butene content: 28.4 mol%, intrinsic viscosity [r?]: 2.67 dlZg, glass
  • the transition temperature Tg was 24.7 ° C, no melting peak was present, and the molecular weight distribution by GPC was 2.0.
  • Table 1 shows the physical properties measured for the obtained polymer.
  • (V) Polymerization was carried out in the same manner as in Synthesis Example 2 except that zirconium dichloride was used.
  • the obtained polymer was 48.3 g.
  • the polymer composition was as follows: propylene content: 64.3 mol%, ethylene content: 8.3 mol%, 1-butene content: 27.4 mol%, intrinsic viscosity [r?]: 3.67 dlZg, glass transition
  • the temperature Tg was 22.1 ° C, no melting peak was present, and the molecular weight distribution by GPC was 2.0.
  • the plate was molded at a hot plate temperature of 190 ° C, residual heat for 6 minutes, and pressurized (100 kgZcm 2 ) for 2 minutes, and then transferred to a press molding machine at a hot plate temperature of 20 ° C and pressed (100 kgZcm2). 2 ) By cooling, a lmm thick sheet was prepared.
  • the sheet properties are shown below.
  • Table 1 shows the physical properties measured for the obtained polymer.
  • Polymerization was carried out in the same manner as in Example 3, except that the pressure was changed to 0.47 MPa with propylene.
  • the obtained polymer was 120.lg.
  • the polymer has a propylene content of 40.8 mol%, an ethylene content of 23.5 mol%, a 1-butene content of 35.7 mol%, an intrinsic viscosity [r?] Of 1.52 dlZg and a glass
  • the transition temperature (Tg) was -36.3 ° C, there was no melting peak, and the molecular weight distribution by GPC was 2.0.
  • JISA hardness 45
  • Tensile modulus 2MPa ⁇ Gloss: 60%.
  • Table 1 shows the physical properties measured for the obtained polymer.
  • the polymerization was continued for 30 minutes while maintaining the internal temperature at 70 ° C. and the propylene pressure at 0.6 MPa, and the polymerization was stopped by adding 20 ml of methanol. After the pressure was released, a polymer of the polymerization solution was precipitated in 2 L of methanol, and dried under vacuum at 130 ° C. for 12 hours. The amount of the polymer obtained was 100.2 g.
  • the melting point of the polymer was 87.6 ° C, the intrinsic viscosity [r?] Was 1.40 dlZg, the butene content was 20.3 mol%, and the glass transition temperature was 5.6 ° C.
  • the molecular weight distribution (MwZMn) measured by GPC was 2.3.
  • the solution was added in a polymerization vessel and polymerized for 30 minutes while maintaining the internal temperature at 30 ° C. and the propylene pressure at 0.6 MPa.
  • the polymerization was stopped by adding 20 ml of methanol. After depressurizing, the polymer was precipitated in 2 L of methanol with the polymerization solution force, and dried under vacuum at 130 ° C for 12 hours.
  • the resulting polymer was 109 Og.
  • the melting point of the polymer was absent, the intrinsic viscosity [7?] Was 2.15 dlZg, the butene content was 35.6 mol%, and the glass transition temperature was 10.6 ° C.
  • the molecular weight distribution (MwZMn) measured by GPC was 2.3.
  • the mixture was added to the polymerization vessel, and polymerization was carried out for 30 minutes while maintaining the internal temperature at 70 ° C and the propylene pressure at 0.6 MPa, and the polymerization was stopped by adding 20 ml of methanol. After depressurization, a polymer was precipitated from the polymerization solution in 2 L of methanol and dried under vacuum at 130 ° C for 12 hours. The obtained polymer was 51.2 g. Further, the melting point of the polymer was 87.6 ° C, the intrinsic viscosity [ ⁇ ?] Was 2.57 dlZg, the otaten content was 20.1 mol%, and the glass transition temperature was 19.6 ° C. The molecular weight distribution (MwZMn) measured by GPC was 2.4.
  • the pressure inside the system is reduced to 0.76 MPa by a pressure of 0.70 MPa, polymerization is performed for 20 minutes while maintaining the internal temperature at 40 ° C and the system pressure at 0.76 MPa with propylene, and 20 ml of methanol is added to perform polymerization. Stopped. After depressurization, a polymerization solution polymer was precipitated in 2 L of methanol and dried under vacuum at 130 ° C for 12 hours. The obtained polymer was 10.4 g.
  • the intrinsic viscosity [7?] Measured in decalin at 135 ° C is 1.81 dlZg, the glass transition temperature Tg is -14 ° C, there is no melting peak, and the butene content is 44.0. Mol%, and the molecular weight distribution by GPC was 2.1.
  • the plate was formed at a hot plate temperature of 190 ° C, preheating for 6 minutes, and pressurized (100 kgZcm 2 ) for 2 minutes, and then transferred to a press molding machine at a hot plate temperature of 20 ° C and pressed (100 kgZcm2). 2 ) By cooling, a lmm thick sheet was prepared.
  • the sheet properties are shown below.
  • Table 1 shows the physical properties measured for the obtained polymer.
  • the catalyst concentration at this time was 0.001 mmol Z liter of diphenylmethylene (cyclopentagel) (fluorene) zirconium dichloride, triphenylcarbenyltetramethylene (pentafluorophenol) with respect to the whole system. ) Borate force O. 004 mmol Z liters.
  • the polymer liquid phase separated from oil and water was brought into contact with 3 times the volume of acetone under vigorous stirring to precipitate the polymer, which was thoroughly washed with acetone, and the solid part (copolymer) was collected by filtration. did. It was dried at 130 ° C. and 350 mmHg for 12 hours under flowing nitrogen.
  • the ethylene content was 17.0 mol%, the butene content was 9.2 mol%, and the molecular weight distribution by GPC was 2.2.
  • JP-A-2-274763 a bulk polymerization method of propylene in the presence of hydrogen using a catalyst comprising diphenylmethylene (cyclopentagel) fluorenylzirconium dichloride and methylaluminoxane.
  • Tm measured by differential scanning calorimetry is 127 ° C and Tc is 57 ° C.
  • Table 1 shows properties of the copolymers obtained in Synthesis Examples 1 to 12.
  • This composition had a tensile modulus of 17 MPa, a TMA of 126 ° C, a gloss change rate of A Glo ss of 10, a residual strain of 6, a JIS A hardness of 74, and a haze of 7.
  • Table 2 shows the physical properties measured for the obtained resin composition.
  • This composition had a tensile modulus of 27 MPa, a TMA of 155 ° C., a gloss change rate of A Glo ss of 10, a residual strain of 8, a JIS A hardness of 82, and a haze of 10.
  • Example 1 the propylene-ethylene-butene copolymer (S-1) obtained in Synthesis Example 1 was replaced with the propylene 'ethylene' butene copolymer (S-2) obtained in Synthesis Example 2.
  • a thermoplastic resin composition was obtained in the same manner as in Example 1, except that the composition was changed.
  • This composition had a tensile modulus of 34 MPa, a TMA of 134 ° C., a gloss change rate A Gloss of 8, a residual strain of 8, a JIS A hardness of 85, and a haze of 6.
  • Table 2 shows the physical properties measured for the obtained resin composition.
  • Example 2 the propylene-ethylene-butene copolymer (S-1) obtained in Synthesis Example 1 was replaced with the propylene 'ethylene' butene copolymer (S-2) obtained in Synthesis Example 2.
  • a thermoplastic resin composition was obtained in the same manner as in Example 2 except that the composition was changed.
  • This composition has a tensile modulus of 44 MPa, a TMA of 154 ° C, and a gloss change rate of A Glo. ss was 9, residual strain was 8, JIS A hardness was 88, and haze was 7.
  • Table 2 shows the physical properties measured for the obtained resin composition.
  • Example 1 the propylene-ethylene-butene copolymer (S-1) obtained in Synthesis Example 1 was replaced with the propylene 'ethylene' butene copolymer (S-3) obtained in Synthesis Example 3.
  • a thermoplastic resin composition was obtained in the same manner as in Example 1, except that the composition was changed.
  • This composition had a tensile modulus of 17 MPa, a TMA of 134 ° C., a gloss change rate A Gloss of 11, a residual strain of 8, a JIS A hardness of 76, and a haze of 9.
  • Table 2 shows the physical properties measured for the obtained resin composition.
  • Example 2 the propylene-ethylene-butene copolymer (S-1) obtained in Synthesis Example 1 was replaced with the propylene 'ethylene' butene copolymer (S-3) obtained in Synthesis Example 3.
  • a thermoplastic resin composition was obtained in the same manner as in Example 2 except that the composition was changed.
  • This composition had a tensile modulus of 24 MPa, a TMA of 154 ° C., a gloss change rate of A G loss of 10, a residual strain of 8, a JIS A hardness of 82, and a haze of 8.
  • Table 2 shows the physical properties measured for the obtained resin composition.
  • Example 2 the propylene-ethylene-butene copolymer (S-1) obtained in Synthesis Example 1 was replaced with the propylene 'ethylene' butene copolymer (S-4) obtained in Synthesis Example 4.
  • a thermoplastic resin composition was obtained in the same manner as in Example 2 except that the composition was changed.
  • This composition had a tensile modulus of 27 MPa, a TMA of 156 ° C., a gloss change rate of A Glo ss of 7, a residual strain of 7, a JIS A hardness of 81, and a haze of 8.
  • Table 2 shows the physical properties measured for the obtained resin composition.
  • Example 2 the propylene-ethylene-butene copolymer (S-1) obtained in Synthesis Example 1 was replaced with the propylene 'ethylene' butene copolymer (S-5) obtained in Synthesis Example 5.
  • a thermoplastic resin composition was obtained in the same manner as in Example 2 except that the composition was changed.
  • This composition has a tensile modulus of 24 MPa, a TMA of 126 ° C, and a gloss change rate of A Glo. ss was 47, residual strain was 9, JIS A hardness was 81, and haze was 38.
  • Table 2 shows the physical properties measured for the obtained resin composition.
  • Example 2 the propylene / ethylene / butene copolymer (S-1) obtained in Synthesis Example 1 was changed to the propylene'butene copolymer (S-10) obtained in Synthesis Example 10. Except for the above, a thermoplastic resin composition was obtained in the same manner as in Example 2.
  • This composition had a tensile modulus of 184 MPa, a TMA of 154 ° C., a gloss change rate of A G1 oss of 9, a residual strain of 28, a JIS A hardness of 95, and a haze of 14.
  • Table 2 shows the physical properties measured for the obtained resin composition.
  • Example 2 the propylene / ethylene / butene copolymer (S-1) obtained in Synthesis Example 1 was changed to the propylene'ethylene copolymer (S-11) obtained in Synthesis Example 11. Except for the above, a thermoplastic resin composition was obtained in the same manner as in Example 2.
  • This composition had a tensile modulus of 14 MPa, a TMA of 64 ° C., a gloss change rate of A Gloss s of 59, a residual strain of 28, a JIS A hardness of 75, and a haze of 74.
  • Table 2 shows the physical properties measured for the obtained resin composition.
  • Example 2 the propylene-ethylene-butene copolymer (S-1) obtained in Synthesis Example 1 was replaced with the propylene 'ethylene' butene copolymer (S-12) obtained in Synthesis Example 12.
  • a thermoplastic resin composition was obtained in the same manner as in Example 2 except that the composition was changed.
  • This composition had a tensile modulus of 24 MPa, a TMA of 154 ° C., a gloss change rate of A Gloss of 39, a residual strain of 8, a JIS A hardness of 82, and a haze of 12.
  • Table 2 shows the physical properties measured for the obtained resin composition.
  • composition f Propylene-ethylene-vinyl copolymer (S-2) 90 80
  • thermoplastic resin As a thermoplastic resin (lib), 10 parts by weight of the syndiotactic polypropylene (Syndio PP) (A-1) obtained in Synthesis Example 13 and the propylene 'ethylene' butene copolymer obtained in Synthesis Example 3 ( S-3) was mixed with 90 parts by weight, and a thermoplastic resin composition was obtained by melt-kneading. This composition had a tensile modulus of 7 MPa, a TMA of 106 ° C, and a gloss change rate of A Gloss of 9 The residual strain was 6, the JIS A hardness was 74, and the haze was 7. Table 3 shows the measured physical properties of the obtained resin composition.
  • Example 9 20 parts by weight of the syndiotactic polypropylene (Syndiol PP) (A-1) obtained in Synthesis Example 13 and the propylene 'ethylene' butene copolymer obtained in Synthesis Example 3 were used.
  • a thermoplastic resin composition was obtained in the same manner as in Example 9, except that (S-3) was changed to 80 parts by weight.
  • This composition had a tensile modulus of 24 MPa, a TMA of 116 ° C., a gloss change rate of A Gloss of 5, a residual strain of 8, a JIS A hardness of 83, and a haze of 10.
  • Table 3 shows the physical properties measured for the obtained resin composition.
  • Example 10 the propylene / ethylene / butene copolymer (S-3) obtained in Synthesis Example 3 was replaced with the propylene / ethylene / butene copolymer (S-4) obtained in Synthesis Example 4.
  • a thermoplastic resin composition was obtained in the same manner as in Example 10, except that the composition was changed.
  • This composition had a tensile modulus of 17 MPa, a TMA of 114 ° C., a gloss change rate of A Glo ss of 6, a residual strain of 8, a JIS A hardness of 80, and a haze of 10.
  • Table 3 shows the physical properties measured for the obtained resin composition.
  • Example 10 the propylene / ethylene / butene copolymer (S-3) obtained in Synthesis Example 3 was replaced with the propylene / ethylene / butene copolymer (S-5) obtained in Synthesis Example 5.
  • a thermoplastic resin composition was obtained in the same manner as in Example 10, except that the composition was changed.
  • This composition had a tensile modulus of 17 MPa, a TMA of 100 ° C., a gloss change rate of A Glo ss of 16, a residual strain of 10, a JIS A hardness of 80, and a haze of 20. Obtained resin composition Table 3 shows the measured physical properties of the products.
  • Example 10 the propylene • ethylene'butene copolymer (S-3) obtained in Synthesis Example 3 was changed to the propylene'butene copolymer (S-10) obtained in Synthesis Example 10. Except for the above, a thermoplastic resin composition was obtained in the same manner as in Example 10.
  • This composition had a tensile modulus of 164 MPa, a TMA of 120 ° C., a gloss change rate of A G1 oss of 5, a residual strain of 28, a JIS A hardness of 95 or more, and a haze of 14.
  • Table 3 shows the measured physical properties of the obtained resin composition.
  • Example 10 the propylene • ethylene′butene copolymer (S-3) obtained in Synthesis Example 3 was changed to the propylene′ethylene copolymer (S-11) obtained in Synthesis Example 11. Except for the above, a thermoplastic resin composition was obtained in the same manner as in Example 10.
  • This composition had a tensile modulus of 19 MPa, a TMA of 102 ° C., a gloss change rate A Glo ss of 25, a residual strain of 8, a JIS A hardness of 81, and a haze of 8.
  • Table 3 shows the physical properties measured for the obtained resin composition.
  • Example 10 the propylene • ethylene′butene copolymer (S-3) obtained in Synthesis Example 3 was changed to the propylene′ethylene copolymer (S-12) obtained in Synthesis Example 12. Except for the above, a thermoplastic resin composition was obtained in the same manner as in Example 10.
  • the composition had a tensile modulus of 19 MPa, a TMA of 102 ° C., a gloss change ⁇ Gloss of 35, a residual strain of 14, a JIS A hardness of 81, and a haze of 38.
  • Table 3 shows the physical properties measured for the obtained resin composition.
  • Example 13 the propylene-butene copolymer (S-6) obtained in Synthesis Example 6 was replaced with Instead, a polypropylene resin composition was obtained in the same manner as in Example 13 except that the propylene′-butene copolymer (S-7) obtained in Synthesis Example 7 was used. Table 4 shows the obtained physical properties.
  • Example 13 the propylene / butene copolymer (S-8) obtained in Synthesis Example 8 was used instead of the propylene / butene copolymer (S-6) obtained in Synthesis Example 6.
  • a polypropylene resin composition was obtained in the same manner as in Example 13 except for the above. Table 4 shows the obtained physical properties.
  • Example 13 the propylene-butene copolymer (S-9) obtained in Synthesis Example 9 was used instead of the propylene / butene copolymer (S-6) obtained in Synthesis Example 6. Except for the difference, the same procedure as in Example 13 was carried out to obtain a polypropylene resin composition. Table 4 shows the obtained physical properties.
  • Example 17 a propylene 'butene copolymer (S-8) obtained in Synthesis Example 8 was used instead of the propylene' butene copolymer (S-7) obtained in Synthesis Example 7. In the same manner as in Example 17, a polypropylene resin composition was obtained. Table 4 shows the obtained physical properties.
  • Example 17 except that the propylene 'otene copolymer (S-9) obtained in Synthesis Example 9 was used instead of the propylene' butene copolymer (S-7) obtained in Synthesis Example 7, In the same manner as in Example 17, a polypropylene resin composition was obtained. Table 4 shows the obtained physical properties.
  • Example 17 in place of the propylene 'butene copolymer (S-7) obtained in Synthesis Example 7, the propylene' ethylene / butene copolymer (S-1) obtained in Synthesis Example 1 was used. Other than that was carried out in the same manner as in Example 17, to obtain a polypropylene resin composition. Table 4 shows the obtained physical properties.
  • Example 17 the propylene 'ethylene / butene copolymer (S-2) obtained in Synthesis Example 2 was used instead of the propylene' butene copolymer (S-7) obtained in Synthesis Example 7. Other than that was carried out in the same manner as in Example 17, to obtain a polypropylene resin composition. Table 4 shows the obtained physical properties.
  • Example 17 a propylene 'ethylene copolymer (S-11) obtained in Synthesis Example 11 was used instead of the propylene' butene copolymer (S-7) obtained in Synthesis Example 7. In the same manner as in Example 17, a polypropylene resin composition was obtained. Table 4 shows the obtained physical properties.
  • a fat composition was obtained.
  • Table 4 shows the obtained physical properties.
  • Ethylene 'ph'ten random copolymer (C-1) 20 30 Tensile modulus (YMXMpa) 440 420 410 370 570 550 520 1200 470 390 590 1000 1000 Transparency (Ha Ze ) (X) 12 10 12 10 25 15 14 75 15 10 86 92 Wear resistance (A GIossXX) 3 3 3 5 3 3 5 12 3 3 3 29
  • Non-crosslinked or partially crosslinked Orefuin thermoplastic elastomer primary Mitsui Chemicals Co., MILASTOMER 5030N, 60 parts by weight ( ⁇ isotactic polypropylene 15 weight 0/0 and E styrene 'number 3 or more carbon a- Orefuin 'to the non-conjugated including Poryen copolymer 50 weight 0/0), syndiotactic homopolypropylene obtained in synthesis example 13 (Y- 1) 8 parts by weight of propylene obtained in synthesis example 2' ethylene 'A butene copolymer (S-2) (32 parts by weight) was added and melt-kneaded to obtain a propylene-based polymer composition. The obtained composition was subjected to melt press molding at 200 ° C., and physical properties were evaluated in a desired test shape. Table 5 shows the results of the physical property evaluation.
  • the tensile modulus of this composition was lOMPa, the TMA was 145 ° C, the gloss change ⁇ Gloss before and after abrasion was 15, the permanent elongation was 7, and the JIS A hardness was 83.
  • Example 23 except that the propylene 'ethylene' butene copolymer (S-2) obtained in Synthesis Example 2 was changed to the propylene 'ethylene' butene copolymer (S-1) obtained in Synthesis Example 1 was performed in the same manner as in Example 23.
  • the obtained composition was subjected to melt press molding at 200 ° C, and physical properties were evaluated in a desired test shape. Table 5 shows the results of the physical property evaluation.
  • This composition had a tensile modulus of 13 MPa, a TMA of 144 ° C., a dalos change ratio ⁇ Gloss before and after wear of 14, a permanent elongation of 8, and a JIS A hardness of 84.
  • Example 23 except that the propylene 'ethylene' butene copolymer (S-2) obtained in Synthesis Example 2 was changed to the propylene 'ethylene' butene copolymer (S-3) obtained in Synthesis Example 3 was performed in the same manner as in Example 23.
  • the obtained composition was subjected to melt press molding at 200 ° C, and physical properties were evaluated in a desired test shape. Table 5 shows the results of the physical property evaluation.
  • This composition had a tensile modulus of 14 MPa, a TMA of 145 ° C., a dalos change ratio ⁇ Gloss before and after wear of 12, a permanent elongation of 7, and a JIS A hardness of 84.
  • Example 23 except that the propylene 'ethylene' butene copolymer (S-2) obtained in Synthesis Example 2 was changed to the propylene 'ethylene' butene copolymer (S-4) obtained in Synthesis Example 4 Is real The procedure was as in Example 23.
  • the obtained composition was subjected to melt press molding at 200 ° C, and physical properties were evaluated in a desired test shape. Table 5 shows the results of the physical property evaluation.
  • This composition had a tensile modulus of 12 MPa, a TMA of 145 ° C., a dalos change ratio ⁇ Gloss before and after wear of 9, a permanent elongation of 7, and a JIS A hardness of 82.
  • Example 23 was repeated except that the propylene 'ethylene' butene copolymer (S-2) obtained in Synthesis Example 2 was changed to the propylene 'butene copolymer (S-6) obtained in Synthesis Example 6. Performed as in Example 23.
  • the obtained composition was subjected to melt press molding at 200 ° C, and physical properties were evaluated in a desired test form. Table 5 shows the results of the physical property evaluation.
  • This composition had a tensile modulus of 53 MPa, a TMA of 155 ° C., a dalos change ratio ⁇ Gloss before and after wear of 9, a permanent elongation of 12, and a JIS A hardness of 91.
  • Non-crosslinked or partially crosslinked thermoplastic elastomer manufactured by Mitsui Chemicals, Inc., Mirastomer 5030N, 68 parts by weight, and the propylene 'ethylene' butene copolymer (S— 2) 32 parts by weight were added and melt-kneaded to obtain a propylene-based polymer composition.
  • the obtained composition was subjected to melt press molding at 200 ° C, and physical properties were evaluated in a desired test shape. Table 5 shows the results of the physical property evaluation.
  • This composition had a tensile modulus of 8 MPa, a TMA of 142 ° C., a dalos change ratio ⁇ Gloss before and after wear of 18, a permanent elongation of 7, and a JIS A hardness of 80.
  • Example 28 the propylene-ethylene-butene copolymer (S-2) obtained in Synthesis Example 2 was changed to the propylene 'ethylene' butene copolymer (S-4) obtained in Synthesis Example 4.
  • the procedure was performed in the same manner as in Example 28 except for The obtained composition was subjected to melt press molding at 200 ° C., and physical properties were evaluated in a desired test shape. Table 5 shows the results of the physical property evaluation.
  • the tensile modulus of this composition was 11 MPa, the TMA was 142 ° C., the daross change ⁇ Gloss before and after abrasion was 15, the permanent elongation was 9, and the JIS A hardness was 78.
  • Example 28 the propylene / ethylene / butene copolymer obtained in Synthesis Example 2
  • Example 28 was carried out in the same manner as in Example 28 except that (S-2) was changed to the propylene'butene copolymer (S-6) obtained in Synthesis Example 6.
  • the obtained composition was subjected to melt press molding at 200 ° C, and physical properties were evaluated in a desired test shape. Table 5 shows the results of the physical property evaluation.
  • This composition had a tensile modulus of 47 MPa, a TMA of 141 ° C., a dalos change ratio ⁇ Gloss before and after abrasion of 17, a permanent elongation of 12, and a JIS A hardness of 90.
  • Non-crosslinked or partially crosslinked Orefuin thermoplastic elastomer primary Mitsui Chemicals Co., MILASTOMER 5030N, 70 parts by weight ( ⁇ isotactic polypropylene 15 weight 0/0 and E styrene 'number 3 or more carbon a- Orefuin 'to the non-conjugated including Poryen copolymer 50 weight 0/0), Mitsui I ⁇ Co. ⁇ isotactic polypropylene polymer (Y- 2) (grade:.
  • This composition had a tensile modulus of 27 MPa, a TMA of 154 ° C., a dalos change ratio ⁇ Gloss before and after wear of 14, a permanent elongation of 8, and a JIS A hardness of 86.
  • Example 31 except that the propylene / ethylene / butene copolymer (S-2) obtained in Synthesis Example 2 was changed to the propylene 'ethylene' butene copolymer (S-4) obtained in Synthesis Example 4 was performed in the same manner as in Example 31.
  • the obtained composition was subjected to melt press molding at 200 ° C, and physical properties were evaluated in a desired test shape. Table 5 shows the results of the physical property evaluation.
  • This composition had a tensile modulus of 29 MPa, a TMA of 154 ° C., a dalos change ratio ⁇ Gloss before and after abrasion of 11, a permanent elongation of 9, and a JIS A hardness of 86.
  • the procedure was performed in the same manner as in Example 32 except that the parts were changed.
  • the obtained composition was subjected to melt press molding at 200 ° C, and physical properties were evaluated in a desired test shape. Table 5 shows the results of the physical property evaluation.
  • the composition had a tensile modulus of 21 MPa, a TMA of 154 ° C, a gloss change ⁇ Gloss before and after abrasion of 10, a permanent elongation of 10, and a JIS A hardness of 84.
  • a non-crosslinked or partially crosslinked oil-based thermoplastic elastomer, Mirastomer 5030N, manufactured by Mitsui Chemicals, Inc. was subjected to melt press molding at 200 ° C., and physical properties were evaluated in a desired test shape. Table 5 shows the results of the physical property evaluation.
  • the composition had a tensile modulus of 3 MPa, a TMA of 154 ° C., a dalos change ratio ⁇ Gloss before and after wear of 96, a permanent elongation of 8, and a JIS A hardness of 50.
  • the present invention provides a thermoplastic resin composition excellent in transparency, flexibility, rubber elasticity, heat resistance, and abrasion resistance in a well-balanced manner, and a molded article obtained therefrom.
  • thermoplastic resin composition excellent in balance among transparency, flexibility, heat sealing, and impact resistance can be provided by being blended with the thermoplastic resin.
  • Olefin copolymers are also provided.
  • the present invention provides a polypropylene resin composition having excellent rigidity and impact resistance, and an excellent balance of whitening resistance, abrasion resistance and heat sealability.
  • a propylene-based copolymer composition having excellent rubber-like properties (e.g., permanent elongation and compression set), excellent heat resistance, and excellent abrasion resistance and scratch resistance. Is performed.
  • thermoplastic resin composition provided by the present invention has a strength that can be widely used for conventionally known polyolefin applications, particularly sheets, unstretched or stretched films, pipes, wire coverings, filaments, and other various shapes. It can be suitably used by molding into a molded article of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 透明性、柔軟性、ゴム弾性、耐熱性、耐衝撃性、耐磨耗性などに優れる組成物、剛性および耐衝撃性に優れ、かつ耐白化性、耐摩耗性、ヒートシール性のバランスに優れた組成物、ゴム的性質、耐熱性、耐摩耗性、柔軟性に優れた組成物を提供する。  13C-NMRで、炭素数4~20のα-オレフィン由来の構成単位のCH(メチン)に由来するシグナルのうち、最も高磁場で存在するピークを34.4ppmと定めたシグナルチャートにおいて、約22.0~20.9ppmの吸収強度Aと約19.0~20.6ppmの吸収強度Bが、プロピレンメチルに帰属される約19.0~22.0ppmの吸収強度Cに対して、下記の関係式(i)と(ii)を満たす特定のプロピレン・α-オレフィン共重合体を含む組成物、その成形体、並びに該α-オレフィン系共重合体である; (A/C)×100≦8・・・・・・ (i) (B/C)×100≧60・・・・・・ (ii)。

Description

明 細 書
aーォレフイン系重合体組成物、該組成物からなる成形体、新規重合体 技術分野
[0001] 本発明は oc一才レフイン系共重合体を含む榭脂組成物、該組成物からなる成形体 、及び新規な共重合体に関する。
背景技術
[0002] 熱可塑性榭脂、特にポリオレフインは、安価で剛性、耐湿性、および耐熱性に優れ て ヽるため自動車材料や家電材料など広範囲な用途で使用されて 、る。
[0003] 一方で環境ホルモン、ダイォキシン等の問題力も脱軟質塩ビの動向が強まる中、柔 軟性、透明性を有するポリオレフインが望まれていた。このような状況の中で TPOと 称される熱可塑性ポリオレフイン系エラストマ一は柔軟性に優れるが透明性が無ぐ また PPにスチレン系エラストマ一を添加した系は、柔軟で透明性を有するがゴム弹 性に劣り、高価であるため、用途が限られていた。(特許文献 1〜11)
なお、特許文献 12には、プロピレン 'エチレン · 1—ブテン共重合体が記載されてい る力 透明性、柔軟性に優れかつゴム弾性を有する材料については記載されていな い。
[0004] また、従来よりポリプロピレンは、剛性、耐熱性、透明性などに優れた熱可塑性成形 材料として広く利用されている。このポリプロピレンは、柔軟性および耐衝撃性には劣 るので、通常ポリプロピレンに軟質ゴム成分を配合して 、る。
[0005] このようにポリプロピレンに軟質ゴム成分を配合すると、柔軟性および耐衝撃性が改 善されたポリプロピレン組成物が得られる力 一方耐熱性が低下してしまうという問題 点があった。またこのようなポリプロピレン組成物は、低温ヒーシール性の向上も望ま れている。
[0006] このため柔軟性および耐衝撃性に優れるとともに耐熱性および低温ヒートシール性 にも優れたポリプロピレン組成物の出現が望まれて ヽた。
[0007] また結晶性ポリプロピレンは、引張強度、剛性、表面硬度、耐衝撃強度などの機械 特性、光沢性、透明性などの光学特性、あるいは無毒性、無臭性などの食品衛生性 などに優れており、特に食品包装の分野に広く利用されている。この結晶性ポリプロ ピレンフィルムは、ヒートシール温度まで加熱すると収縮してしまい、このフィルム単層 ではヒートシールすることが困難である。このため結晶性ポリプロピレンフィルムには、 通常ヒートシール層が設けられており、このヒートシール層は、一般的に低密度ポリエ チレン、プロピレン 'エチレンランダム共重合体などのポリマーで形成されている。
[0008] ところでこのようなヒートシール層を形成するポリマーには、(1)基材 (結晶性ポリプ ロピレンフィルム)よりもかなり低温でヒートシールすることができること、 (2)ヒートシ一 ル強度に優れていることと、ヒートシール強度の経時変化が少ないこと、(3)基材との 密着性に優れて 、ること、(4)基材と同等ある!/、はそれ以上に透明性に優れて 、るこ と、(5)貯蔵時にブロッキングを生じないこと、(6)製袋装置、充填包装治具に粘着し な 、こと、 (7)耐スクラッチ性に優れて 、ることなどの性能が要求される。
[0009] し力しながら従来公知のヒートシール材料はこれら性能を全て満たして 、るとは!、え ず、たとえば上記の低密度ポリエチレンは低温でヒートシールすることはできる力 ヒ ートシール強度、基材との密着性および透明性に劣り、さらに包装治具などに粘着し やす 、などの問題点がある。
[0010] またプロピレン 'エチレンランダム共重合体は、上記の性能(2)〜(7)を満たしてい るが、(1)を満たしておらず、プロピレン 'エチレンランダム共重合体をヒートシール層 とするポリプロピレン複合フィルムは、ヒートシール温度巾が狭い。このためこの複合 フィルムを自動包装機、自動製袋機などによりヒートシールする際には、ヒートシール 温度を厳密に管理しなくてはならないという問題点がある。さらにプロピレン 'エチレン ランダム共重合体とエチレン. α—ォレフイン共重合体とのブレンド物をヒートシール 材料として用いることも提案されている力 このブレンド物は、プロピレン 'エチレンラ ンダム共重合体に比べて低温ヒートシール性は改良されている力 透明性に劣って いる。
[0011] ところで先に本出願人は、プロピレン含有率が 55〜85重量%であり、示差走査熱 量計で測定される結晶融解熱量が 20〜80jZgであるプロピレン' 1ーブテンランダム 共重合体は、透明性に優れ、かつ低温ヒートシール性も良好であって、ヒートシール 材料として有用であることを見出した。そしてこのプロピレン · 1—ブテンランダム共重 合体とァイソタクティックポリプロピレンと力もなり、プロピレン · 1—ブテンランダム共重 合体を 50重量0 /0以上の量で含有する組成物をポリプロピレンフィルムのヒートシール 層として用いることを提案した (特許文献 13)。しカゝしながら、この組成物から形成され るヒートシール層は、低温ヒートシール性および耐ブロッキング性に優れている力 前 記のプロピレン 'エチレンランダム共重合体力 形成されるヒートシール層に比べると 耐ブロッキング性、耐スクラッチ性がやや劣る。
[0012] またプロピレン · 1ーブテン共重合体と、結晶性プロピレン' α—ォレフインランダム 共重合体とからなり、プロピレン · 1ーブテン共重合体を 10〜40重量%の量で含有す る組成物を、ァイソタクティックポリプロピレンのヒートシール層とする複合フィルムもヒ ートシール性に優れた複合フィルムとして本出願人によって提案されて 、る(特許文 献 14)。
しかしながらこのようなポリプロピレンフィルムは、より高速包装に適用しうるような特性 が望まれており、低温ヒートシール性の向上とともに優れたスリップ性、耐ブロッキング 性が望まれている。
[0013] 特開平 08— 238733号公報にはメタ口セン触媒で合成したプロピレン · 1—ブテン 共重合体と、結晶性プロピレン' a—ォレフインランダム共重合体とからヒートシール 層とする複合フィルムが示されている力 プロピレン · 1ーブテン共重合体の融点を 70 °C付近にすると結晶化速度が遅くなり、生産性が低下するといつた問題点があった。 また、プロピレン · 1ーブテン共重合体の含量が多いと、成形性の低下や、フィルム外 観の悪ィ匕が発生し易 、と 、う問題点があった (特許文献 15)。
[0014] 架橋型ォレフイン系熱可塑性エラストマ一は、省エネルギー、省資源タイプのエラス トマ一として、特に天然ゴムの代替として自動車部品、工業機械部品、電子'電気機 器部品、建材等に広く使用されている。
[0015] 架橋型ォレフイン系熱可塑性エラストマ一は、 A. Y. Coran らの文献 (Rubber Chemistry and Technology、 53卷 (1980年)、 141ページ)【こ詳糸田【こ記され ているように、広く知られている(非特許文献 1)。
[0016] 一方で非架橋型あるいは部分架橋型のォレフィン系熱可塑性エラストマ一につい ては、たとえば、前記特許文献 1〜9に記載されている。 [0017] し力しながら非架橋型または部分架橋型熱可塑性エラストマ一はゴム的性質 (永久 伸び、圧縮永久歪など)、耐熱性などに優れるものの、耐摩耗性、耐傷つき性に劣る ために軟
質塩ビを代替するには至っておらず、環境問題、廃棄処理問題等のない軟質塩ビを 代替しうる耐摩耗性、耐傷つき性に優れたォレフィン系熱可塑性エラストマ一組成物 の出現が望まれていた。
特許文献 1 :特公昭 53— 21021号公報
特許文献 2:特公昭 55 - 18448号公報
特許文献 3:特公昭 56 - 15741号公報
特許文献 4:特公昭 56 - 15742号公報
特許文献 5:特公昭 58— 46138号公報
特許文献 6:特公昭 58 - 56575号公報
特許文献 7:特公昭 59 - 30376号公報
特許文献 8:特公昭 62— 938号公報
特許文献 9:特公昭 62— 59139号公報
特許文献 10:特開平 7— 149999号公報
特許文献 11:特開平 8— 27353号公報
特許文献 12 :特開平 3— 200813号公報
特許文献 13:特開昭 54 - 114887号公報
特許文献 14:特公昭 61— 42626号公報
特許文献 15:特開平 08 - 238733号公報
非特許文献 l :Rubber Chemistry and Technology、 53卷 (1980年)、 141 ぺ1 ~~ジ
発明の開示
発明が解決しょうとする課題
[0018] 本発明が解決しょうとする第 1の課題は、透明性、柔軟性、ゴム弾性、耐熱性、耐磨 耗性などカゝら選ばれる物性が改善された熱可塑性榭脂組成物、および該組成物か らなる成形体を提供することにある。 [0019] また本発明は、透明性、柔軟性、ゴム弾性、耐熱性、耐磨耗性などに優れた熱可 塑性榭脂組成物を与えることができる (X一才レフイン系共重合体を提供することも課 題とする。
[0020] 本発明が解決しょうとする第 2の課題は、剛性および耐衝撃性に優れ、かつ耐白化 性、耐摩耗性、ヒートシール性のバランスに優れたポリプロピレン榭脂組成物を提供 することにある。
[0021] 本発明が解決しょうとする第 3の課題は、従来の非架橋または部分架橋型熱可塑 性エラストマ一の性能を保持し、かつ耐摩耗性、柔軟性にも優れたプロピレン系重合 体組成物を提供することにある。
課題を解決するための手段
[0022] 本発明は、熱可塑性榭脂に (X一才レフイン系共重合体 (S)を配合することにより、 熱可塑性榭脂の物性を改善することことに基づく物性が改善された熱可塑性榭脂組 成物、およびそれから得られる成形体を提案するものであり、さらにそのような α—ォ レフイン系共重合体を提供するものである。
[0023] 本発明は、エチレン由来の構成単位を 1〜30モル0 /0、プロピレン由来の構成単位 を 30〜79モル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を 10〜50モル % (ただしエチレン由来の構成単位と炭素数 4〜20の (Xーォレフイン由来の構成単 位との合計量は 21から 70モル0 /0である)の量で含み、かつ ο—ジクロ口ベンゼン溶液 で測定した13 C— NMRで、炭素数 4〜20の α—ォレフイン由来の構成単位の CH (メ チン)に由来するシグナルのうち、最も高磁場で存在するピークを 34. 4ppmと定め たシグ
ナノレチャートにお 、て、約 22. o〜20. 9ppmの吸収強度 Aと約 19. 0〜20. 6ppm の吸収強度 Bが、プロピレンメチルに帰属される約 19. 0-22. Oppmの吸収強度 C に対して、下記の関係式 (i)と (ii)を満たす α—才レフイン系共重合体 (I)と、
(A/C) X 100≤8 (i)
(B/C) X 100≥60 (ii)
他の熱可塑性榭脂 (II)とを含む熱可塑性榭脂組成物、およびそれから得られる成形 体を提供する。 [0024] また本発明の別の態様においては、エチレンと、プロピレンと、炭素数 4〜20の oc 一才レフインを、下記一般式(1)で表される遷移金属化合物を含む触媒の存在下に 重合して得られ、
エチレン由来の構成単位を 1から 30モル0 /0、プロピレン由来の構成単位を 30〜79 モル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を 10〜50モル0 /0 (ただしェ チレン由来の構成単位と炭素数 4〜20の aーォレフイン由来の構成単位との合計量 は 21から 70モル0 /0である)の量で含む α—ォレフィン系共重合体(Γ )と他の熱可塑 性榭脂 (II)とを含む熱可塑性榭脂組成物、およびそれから得られる成形体を提供す る。
[0025] [化 1]
Figure imgf000007_0001
[0026] [式(1)中、 Μは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp2は Mと π 結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれら の誘導体基であり、 Cp1と Cp2は異なる基であり、 X1および X2は、ァ-オン性配位子 または中性ルイス塩基配位子であり、 Zは C, O, B, S, Ge, Sほたは Sn原子あるい はこれらの原子を含有する基である。 ]。
[0027] 前記 α—ォレフィン系共重合体 (I)または α—ォレフィン系共重合体 (Γ )において 、示差走査型熱量計 (DSC)により測定した融解ピークが存在せず、 135°Cのデカリ ン中で測定した極限粘度 [ r? ]が 0. 01〜: LOdlZgの範囲にあり、 GPCによる分子量 分布が 4以下であり、ガラス転移温度 Tgがー 5°C以下である aーォレフイン系共重合 体である前記の熱可塑性榭脂組成物およびそれから得られる成形体は、本発明の 好ましい態様である。
[0028] 本発明は新規な ex一才レフイン系共重合体として、前記した特徴を有する exーォレ フィン系共重合体 (I)および a一才レフイン系共重合体 (Γ )を提供する。 [0029] また本発明は、プロピレン系重合体 (A) 50〜99. 8重量%と
プロピレン力 導かれる構成単位を 90〜40モル0 /0の量で含有し、プロピレンを除く 炭素原子数 2〜20の α—ォレフインから導かれる構成単位を 10〜60モル0 /0の量で 含み、かつ ο—ジクロ口ベンゼン溶液で測定した13 C— NMRで、炭素数 4〜20の α ーォレフイン由来の構成単位の CH (メチン)に由来するシグナルのうち、最も高磁場 で存在
するピークを 34. 4ppmと定めたシグナルチャートにおいて、約 22. 0〜20. 9ppmの 吸収強度 Aと約 19. 0-20. 6ppmの吸収強度 B力 プロピレンメチルに帰属される 約 19. 0〜22. Oppmの吸収強度 Cに対して、下記の関係式 (i)と (ii)を満たす、プロ ピレン. atーォレフイン共重合体(B) O. 2〜50重量0 /0
(A/C) X 100≤8 (i)
(B/C) X 100≥60 (ii)
を含むことを特徴とするポリプロピレン榭脂組成物、およびそれから得られる成形体を 提供する。
[0030] 本発明の別の態様として、
プロピレン系重合体 (A) 50〜99. 8重量0 /0
プロピレンと、炭素数 2〜20の α—ォレフイン (ただしプロピレンを除く)を、前記一般 式(1)で表される遷移金属化合物を含む触媒の存在下に重合して得られ、プロピレ ンカも導かれる構成単位を 90〜40モル0 /0の量で含有し、プロピレンを除く炭素原子 数 2〜20の aーォレフインから導かれる構成単位を 10〜60モル0 /0の量で含むプロ ピレン' aーォレフイン共重合体 (BB) (ただしプロピレン ·エチレン 2元共重合体を除 く) 0. 2〜50重量%を含むことを特徴とするポリプロピレン榭脂組成物、およびそれ から得られる成形体を提供する。
[0031] さらに本発明は、非架橋である力または部分架橋されたォレフイン系熱可塑性エラ ストマー(X) 30〜80重量部と、プロピレン系重合体 (Y) 0〜40重量部と、プロピレン 由来の構成単位を 30〜80モル0 /0、エチレン由来の構成単位を 0〜30モル0 /0、炭素 数 4〜20の aーォレフイン成分由来の構成単位を 10〜50モル0 /0 (ここでプロピレン 由来の構成単位、エチレン由来の構成単位、炭素数 4〜20の α—ォレフイン由来の 構成単位の合計量は 100モル0 /0)の量含み、かつ o—ジクロ口ベンゼン溶液で測定し た13 C— NMRで、炭素数 4〜20の α—ォレフイン由来の構成単位の CH (メチン)に 由来するシグナルのうち、最も高磁場で存在するピークを 34. 4ppmと定めたシグナ ノレチャートにお ヽて、約 22. o〜20. 9ppmの吸収強度 Aと約 19. 0〜20. 6ppmの 吸収強度 Bが、プロピレンメチルに帰属される約 19. 0-22. Oppmの吸収強度 Cに 対して、下記の関係式 (i)と (ii)を満たすプロピレン' a—ォレフイン共重合体 (Z) 5〜 60重量部(ここで (X)、 (Y)、 (Z)の合計は 100重量部である)
(A/C) X 100≤8 (i)
(B/C) X 100≥60 (ii)
を含有するプロピレン系共重合体組成物、およびそれから得られる成形体を提供す る。
[0032] 本発明の別の態様としては、非架橋である力または部分架橋されたォレフイン系熱 可塑性エラストマ一(X) 30〜80重量部と、プロピレン系重合体 (Y) 0〜40重量部と、 プロピレンと、炭素数 4〜20の aーォレフイン(ただしプロピレンを除く)と、必要に応 じてエチレンとを、前記一般式(1)で表される遷移金属化合物を含む触媒の存在下 に重合して得られ、プロピレン由来の構成単位を 30〜80モル0 /0、エチレン由来の構 成単位を 0〜30モル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を 10〜50 モル0 /0 (ここでプロピレン由来の構成単位、エチレン由来の構成単位、炭素数 4〜20 の aーォレフイン由来の構成単位の合計量は 100モル0 /0)の量含むプロピレン' a -ォレフイン共重合体 (ZZ) 5〜60重量部(ここで (X)、 (Y)、 (ZZ)の合計は 100重 量部である)を含有するプロピレン系共重合体組成物、およびそれから得られる成形 体を提供する。
発明の効果
[0033] 本発明により透明性、柔軟性、ゴム弾性、耐熱性、耐磨耗性にバランス良く優れて いる
熱可塑性榭脂組成物およびそれから得られる成形体が提供される。
[0034] 本発明によれば、熱可塑性榭脂に配合することにより、透明性、柔軟性、耐熱性、 耐磨耗性のノランスに優れた熱可塑性榭脂組成物を提供し得るひ一ォレフイン系共 重合体も提供される。
[0035] また本発明によって、剛性および耐衝撃性に優れ、かつ耐白化性、耐摩耗性、ヒー トシール性のバランスに優れたポリプロピレン榭脂組成物が提供される。
[0036] さらに本発明によれば、ゴム的性質 (永久伸び、圧縮永久歪など)、耐熱性などに 優れ、耐摩耗性、耐傷つき性にも優れたプロピレン系共重合体組成物が提供される 発明を実施するための最良の形態
[0037] 本発明は、熱可塑性榭脂に (X一才レフイン系共重合体 (S)を配合することによって 熱可塑性榭脂の物性を改善されることに基づくもので、物性が改善された熱可塑性 榭脂組成物、およびそれから得られる成形体を提供するものであり、さらにそのような aーォレフイン系共重合体を提供するものである。
[0038] 本 明の第 ίの暴体的な例
本発明によって提供される熱可塑性榭脂に α—才レフイン系共重合体 (S)を配合 した物性が改善された熱可塑性榭脂組成物の第 1の具体的な例として、下記のよう な榭脂組成物を挙げることができる。
[0039] すなわち、エチレン由来の構成単位を 1から 30モル0 /0、プロピレン由来の構成単位 を 30〜79モル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を 10〜50モル % (ただしエチレン由来の構成単位と炭素数 4〜20の (Xーォレフイン由来の構成単 位との合計量は 21から 70モル0 /0である)の量で含み、かつ ο—ジクロ口ベンゼン溶液 で測定した13 C— NMRで、炭素数 4〜20の α—ォレフイン由来の構成単位の CH (メ チン)に由来するシグナルのうち、最も高磁場で存在するピークを 34. 4ppmと定め たシグナノレチャートにお!/、て約 22. 0〜20. 9ppmの吸収強度 Aと約 19. 0〜20. 6p pmの吸収強度 Bがプロピレンメチルに帰属される約 19. 0-22. Oppmの吸収強度 Cに対して、下記の関係式 (i)と (ii)を満たす α—ォレフィン系共重合体 (I)と、
(A/C) X 100≤8 (i)
(B/C) X 100≥60 (ii)
他の熱可塑性榭脂 (II)とを含む熱可塑性榭脂組成物を挙げることができる。
[0040] また本発明の別の態様として、エチレンと、プロピレンと、炭素数 4〜20の α—ォレ フィンを、下記一般式(1)で表される遷移金属化合物を含む触媒の存在下に重合し て得られ、
エチレン由来の構成単位を 1から 30モル0 /0、プロピレン由来の構成単位を 30〜79 モル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を 10〜50モル0 /0 (ただしェ チレン由来の構成単位と炭素数 4〜20の aーォレフイン由来の構成単位との合計量 は 21から 70モル0 /0である)の量で含む α—ォレフィン系共重合体(Γ )と他の熱可塑 性榭脂 (II)とを含むことを特徴とする熱可塑性榭脂組成物;
[化 2]
Figure imgf000011_0001
[式(1)中、 Μは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp2は Mと π結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれ らの誘導体基であり、 Cp1と Cp2は異なる基であり、 X1および X2は、ァ-オン性配位子 または中性ルイス塩基配位子であり、 Zは C, O, B, S, Ge, Sほたは Sn原子あるい はこれらの原子を含有する基である。 ]。
このような熱可塑性榭脂組成物を構成する成分について以下に説明する。
α—ォレフイン系共重合体 ω
まず α—才レフイン系共重合体 (I)について説明する。
本発明に係る aーォレフイン系共重合体 (I)においては13 CNMRによる測定による シグナルの強度が、以下のような関係を満たす。すなわち、
o—ジクロ口ベンゼン溶液で測定した13 C— NMRで、炭素数 4〜20の atーォレフィ ン由来の構成単位の CH (メチン)由来のシグナルのうち、最も高磁場で存在するピ ークを 34. 4ppmと定めたシグナルチャートにおいて、約 22. 0〜20. 9ppmの吸収 強度 Aと約 19. 0〜20. 6ppmの吸収強度 Bがプロピレンメチルに帰属される約 19. 0-22. Oppmの吸収強度 Cに対して、下記の関係式 (i)と (ii)を満たし、好ましくは、 関係式 (i),、 (ii),、更に好ましくは関係式 (i),,、 (ii),,を満たすことが好まし 、。
(A/C) <100≤8···· ·· ω
(B/C) > <100≥60··· ··· (ϋ)
(A/C) <100≤7···· ·· (i),
(B/C) > <100≥64··· ··· (ϋ),
(A/C) <100≤6···· ·· (i),,
(B/C) > <100≥68··· ··· (ϋ),
なお、この構造は、以下のようにして測定される。すなわち、試料 50mgを o—ジクロ 口ベンゼン Z重水素化ベンゼン =5Zlの混合溶媒約 0. 5mlに溶解したものを日本 電子製 EX— 400型 NMR測定装置を用い、シングルプロトンパルスデカップリングの 測定モードで、パルス幅 4. s、パルス間隔 5. 5s、 180ppmの観測範囲で、化学 シフト基準を炭素数 4〜20の α—ォレフイン由来の構成単位の CH (メチン)に由来 するシグナルのうち、最も高磁場のピークを 34.4ppmとして、 120°Cで13 C—NMR 測定を行う。積算回数は、 10, 000回以上とする。なお、共重合体が 1—ブテン由来 の構成単位を含む場合は、 1—ブテン由来の構成単位の CH (メチン)由来のシグナ ルの、最も高磁場側のピークを 34.4ppmとするものとする。 a—ォレフイン系共重合 体 (I)がこのような範囲にあるとシンジォタクティック性に優れ透明性、柔軟性、耐摩 耗性に優れる傾向にある。 aーォレフイン系重合体 (I)における炭素数 4〜20の α ーォレフインは、 1ーブテンであることが好ましい。
本発明に係る α—ォレフイン系共重合体 (I)はエチレン由来の構成単位を 1〜 30 モル0 /0、プロピレン由来の構成単位を 30〜79モル0 /0、炭素数 4〜20の α—ォレフィ ン
由来の構成単位を 10〜50モル0 /0 (ここで該共重合体 (I)中のエチレン由来の構成 単位、プロピレン由来の構成単位、炭素数 4から 20の (Xーォレフイン由来の構成単 位の合計を 100モル0 /0とし、エチレン由来の構成単位と炭素数 4〜20の α—ォレフ イン由来の構成単位との合計量は 21〜70モル0 /0である)、好ましくはエチレン由来 の構成単位を 3〜25モル0 /0、プロピレン由来の構成単位を 35〜75モル0 /0、炭素数 4〜20の aーォレフイン由来の構成単位を 20〜45モル0 /0 (ここで該共重合体(I)中 のエチレン由来の構成単位、プロピレン由来の構成単位、炭素数 4から 20の α—ォ レフイン由来の構成単位の合計を 100モル0 /0とし、エチレン由来の構成単位と炭素 数 4〜20の α—ォレフイン由来の構成単位との合計量は 25〜65モル0 /0である)、特 に好ましくはエチレン由来の構成単位を 3〜25モル0 /0、プロピレン由来の構成単位 を 35〜65モル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を 20〜45モル % (ここで該共重合体 (I)中のエチレン由来の構成単位、プロピレン由来の構成単位 、炭素数 4から 20の α—ォレフイン由来の構成単位の合計を 100モル0 /0とし、ェチレ ン由来の構成単位と炭素数 4〜20の aーォレフイン由来の構成単位との合計量は 3 5〜65モル0 /0である)、さらに好ましくはエチレン由来の構成単位を 5〜25モル0 /0、 プロピレン由来の構成単位を 40〜65モル0 /0、炭素数 4〜20の α—ォレフイン由来 の構成単位を 20〜40モル0 /0含んでいる(ここで該共重合体 (I)中のエチレン由来の 構成単位、プロピレン由来の構成単位、炭素数 4から 20の aーォレフイン由来の構 成単位の合計を 100モル0 /0とし、エチレン由来の構成単位と炭素数 4〜20の ex—ォ レフイン由来の構成単位との合計量は 35〜60モル0 /0である)。このような量でェチレ ン由来の構成単位、プロピレン由来の構成単位、炭素数 4〜20の (Xーォレフイン由 来の構成単位を含有する α一才レフイン系共重合体 (I)は、熱可塑性榭脂との相溶 性が良好となり、得られる a一才レフイン系共重合体は、充分な透明性、柔軟性、ゴ ム弾性、耐摩耗性を発揮する傾向がある。
また本発明の新規な (X一才レフイン系共重合体 (I a)は、
エチレン由来の構成単位を 1〜30モル0 /0、プロピレン由来の構成単位を 30〜69モ ル%、炭素数 4〜20の at—ォレフイン由来の構成単位 (A)を 10〜50モル0 /0 (ここで 該共重合体 (I a)中のエチレン由来の構成単位、プロピレン由来の構成単位、炭素 数 4力 20の a—ォレフイン由来の構成単位の合計を 100モル0 /0とし、エチレン成分 単位と炭素数 4〜20の α—ォレフイン由来の成分単位との合計量は 31〜70モル0 /0 である)、好ましくはエチレン由来の構成単位を 3〜25モル0 /0、プロピレン由来の構 成単位を 35〜65モル0 /0、炭素数 4〜20の at—ォレフイン由来の構成単位 (Α)を 20 〜45モル0 /0 (ここで該共重合体(I— a)中のエチレン由来の構成単位、プロピレン由 来の構成単位、炭素数 4から 20の aーォレフイン由来の構成単位の合計を 100モル %とし、エチレン由来の構成単位と炭素数 4〜20の a ォレフィン由来の構成成分 単位との合計量は 35〜65モル%である)、さらに好ましくはエチレン由来の構成単 位を 5〜25モル0 /0、プロピレン由来の構成単位を 40〜65モル0 /0、炭素数 4〜20の a—ォレフイン由来の構成単位 (A)を 20〜40モル0 /0含んで 、る(ここで該共重合体 (i-a)中のエチレン由来の構成単位、プロピレン由来の構成単位、炭素数 4から 20 の (X—ォレフイン由来の構成単位の合計を 100モル0 /0とし、エチレン由来の構成単 位と炭素数 4〜20の α—ォレフイン由来の構成単位との合計量は 35〜60モル0 /0で ある)。
[0046] 組成がこの範囲にあると、特に熱可塑性榭脂との相溶性が良好となり、得られる a 一才レフイン系共重合体 (I a)は、充分な透明性、柔軟性、ゴム弾性、耐摩耗性を 発揮する傾向がある。なお上記 a一才レフイン系共重合体 (I a)は、前記 α—ォレ フィン系共重合体 (I)に含まれるものである。
[0047] このような α—ォレフィン系共重合体 (I)を調製する際に用いられる aーォレフイン としては、炭素数力 〜 20、好ましくは 4〜12の範囲にあれば特に限定されず、直鎖 状であっても、分岐を有していてもよい。
[0048] このような aーォレフインとしては、具体的には、例えば、 1ーブテン、 2 ブテン、 1 —ペンテン、 1—へキセン、 1—ヘプタン、 1—オタテン、 1—ノネン、 1—デセン、 1— ゥンデセン、 1—ドデセン、 3—メチル 1—ブテン、 3—メチル 1—ペンテン、 4—メ チル— 1—ペンテン、 4—メチル—1一へキセン、 4, 4 ジメチルー 1—へキセン、 4, 4 ジメチルー 1—ペンテン、 4 ェチル—1—へキセン、 3 ェチル—1—へキセン 等が挙げられ、 1ーブテン、 1—へキセン、 1—オタテン、 1—デセン、 4—メチル 1 —ペンテンが好ましぐさらに 1—ブテン、 1—へキセン、 1—オタテン、 1—デセンが 好ましぐ特に 1ーブテンが好ましい。これらの α—ォレフィンは、 1種または 2種以上 組み合わせて用いることができる。例えば、炭素数 4〜20の α ォレフィンの内から 選択される 1種の aーォレフイン (ィ)と、該炭素数 4〜20の aーォレフインの内から 選択され、上記と異なる α ォレフィン (口)とを、(ィ) Ζ (口) = (50〜99モル0 /0) Ζ ( 1〜50モル0 /0) ( (ィ) + (口) = 100モル0 /0)の量比で用いることができる。
[0049] この α—ォレフイン系共重合体 (I)中には、上記 α—ォレフイン由来の構成単位以 外に、スチレンなどの芳香族ビ-ルイ匕合物由来の構成単位、 2個以上の 2重結合を 有する上記ポリェン系不飽和化合物(ポリェン)由来の構成単位、アルコール、カル ボン酸、ァミン及びこれら誘導体等力もなる構成単位等が含まれていてもよい。また エチレン、プロピレン、炭素数 4から 20の aーォレフイン以外の構成単位が含まれて V、な 、態様も好まし 、態様である。
[0050] aーォレフイン系共重合体 (I)は、 135°Cデカリン中で測定した極限粘度 [ r? ]が、 通常 0. 01〜: LOdlZg、好ましくは 0. 05〜: LOdl/gの範囲にあることが望ましい。該 a一才レフイン系共重合体 (I)の極限粘度 [ r? ]が、前記範囲内にあると、耐候性、耐 オゾン性、耐熱老化性、低温特性、耐動的疲労性などの特性に優れたひ一才レフィ ン系共重合体となる。
[0051] この aーォレフイン系共重合体 (I)は、単一のガラス転移温度を有し、かつ示差走 查熱量計 (DSC)によって測定したガラス転移温度 Tgが、通常— 5°C以下、好ましく は 10°C以下、特に好ましくは 15°C以下の範囲にあることが望ましい。該 α—才 レフイン系共重合体 (I)のガラス転移温度 Tgが前記範囲内にあると、耐寒性、低温特 性に優れる。
[0052] また GPCにより測定した分子量分布(MwZMn、ポリスチレン換算、 Mw:重量平 均分子量、 Mn:数平均分子量)は 4. 0以下、好ましくは 1. 5〜3. 0であることが好ま しい。この範囲にあると、透明性、耐傷付性、耐衝撃性が良好となるため好ましい。ま た示差走査熱量計 (DSC)によって測定した融解ピークが、存在しないことが望まし い。この場合、柔軟性、耐傷付性、透明性、耐白化性に優れる。
aーォレフイン系共重合体 (I)の 1¾告
このような α—ォレフィン共重合体 (I)は、下記に示すメタ口セン系触媒の存在下に プロピレンとエチレンと αーォレフインを共重合させて得ることができる。
[0053] このようなメタ口セン系触媒としては、
(a)下記一般式(1)で表される遷移金属化合物と、
(b) (b— 1)上記遷移金属化合物(a)中の遷移金属 Mと反応してイオン性の錯体を 形成する化合物、
(b 2)有機アルミニウムォキシィ匕合物、 (b 3)有機アルミニウム化合物
力 選ばれる少なくとも 1種の化合物とからなる少なくとも 1つの触媒系が挙げられる。
[0054] [化 3]
Figure imgf000016_0001
X 1
[0055] [式(1)中、 Mは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp2は Mと π 結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれら の誘導体基であり、 X1および X2は、ァ-オン性配位子または中性ルイス塩基配位子 であり、 Ζは C, Ο, Β, S, Ge, Siまたは Sn原子あるいはこれらの原子を含有する基 である。 ]。
[0056] 上記一般式(1)で表される遷移金属化合物の内でも、 Cp1と Cp2が異なる基である 遷移金属化合物が挙げられ、より好ましくは Cp1および Cp2のうちのいずれか一方の 基がシクロペンタジェ -ル基またはその誘導体基であり、もう一方の基がフルォレニ ル基またはその誘導体基であるような遷移金属化合物が挙げられる。これらの内でも 、 Cp1および Cp2のうちの!/、ずれか一方の基がシクロペンタジェ -ル基またはその誘 導体基であり、もう一方の基がフルォレニル基またはその誘導体基であることが好ま しい。
[0057] 本発明においては、上記 oc—ォレフイン共重合体 (I)製造用の触媒としては、上記 のようなメタ口セン系触媒が好ましく用いられる力 場合によっては上記メタ口セン系 触媒以外の、従来より公知の固体状チタン触媒成分と有機アルミニウム化合物とから なるチタン系触媒や、可溶性バナジウム化合物と有機アルミニウム化合物とからなる バナジウム系触媒を用いることもできる。
[0058] 本発明では、好ましくは上記のようなメタ口セン系触媒の存在下に、エチレン、プロ ピレンとひ一才レフインを通常液相で共重合させる。この際、一般に炭化水素溶媒が 用いられる力 プロピレンを溶媒として用いてもよい。共重合はバッチ法または連続 法の 、ずれの方法でも行うことができる。
[0059] メタ口セン系触媒を用い、共重合をバッチ法で実施する場合には、重合系内の遷 移金属化合物(a)は、重合容積 1リットル当り、通常 0. 00005〜1ミリモル、好ましく は 0. 0001〜0. 5ミリモノレとなるような量で用!ヽられる。
[0060] イオン化イオン性化合物 (b— 1)は、遷移金属化合物 (a)に対するイオン化イオン 性化合物のモル比(0)— 1) 7 (&) )で、 0. 5〜20、好ましくは 1〜10となるような量で 用いられる。
[0061] 有機アルミニウムォキシィ匕合物 (b— 2)は、遷移金属化合物(a)中の遷移金属原子
(M)に対するアルミニウム原子 (A1)のモル比(A1ZM)で、 1〜: LOOOO、好ましくは 1 0〜5000となるような量で用いられる。また有機アルミニウム化合物(b
- 3)は、重合容積 1リットル当り、通常約 0〜5ミリモル、好ましくは約 0〜2ミリモルとな るような量で用いられる。
[0062] 共重合反応は、通常、温度が— 20〜150°C、好ましくは 0〜120°C、さらに好ましく は 0〜100°Cの範囲で、圧力が 0を超えて〜 80kg/cm2、好ましくは 0を超えて〜 50 kgZcm2の範囲の条件下に行なわれる。
[0063] また反応時間 (重合が連続法で実施される場合には平均滞留時間)は、触媒濃度 、重合温度などの条件によっても異なるが、通常 5分間〜 3時間、好ましくは 10分間 〜1. 5時間である。
[0064] エチレンとプロピレンと a—ォレフインは、上述のような特定組成の a—ォレフイン 共重合体 (I)が得られるような量でそれぞれ重合系に供給される。なお共重合に際し ては、水素などの分子量調節剤を用いることもできる。上記のようにしてエチレンとプ ロピレンと α—ォレフインを共重合させると、 aーォレフイン共重合体 (I)は通常これ を含む重合液として得られる。この重合液は常法により処理され、 aーォレフイン共 重合体 (I)が得られる。
ひ一才レフイン系重合体 (Γ )
本発明の aーォレフイン系重合体 ( )は、
エチレンと、プロピレンと、炭素数 4〜20の aーォレフインを、下記一般式(1)で表 される遷移金属化合物を含む触媒の存在下に重合して得られ、
エチレン由来の構成単位を 1から 30モル0 /0、プロピレン由来の構成単位を 30〜79 モル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を 10〜50モル0 /0 (ただしェ チレン由来の構成単位と炭素数 4〜20の aーォレフイン由来の構成単位との合計量 は 21から 70モル%である)の量で含む a—ォレフイン系共重合体 (Γ )である; [0065] [化 4]
Figure imgf000018_0001
[0066] [式(1)中、 Mは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp2は Mと π結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれ らの誘導体基であり、 Cp1と Cp2は異なる基であり、 X1および X2は、ァ-オン性配位子 または中性ルイス塩基配位子であり、 Zは C, O, B, S, Ge, Sほたは Sn原子あるい はこれらの原子を含有する基である。 ]。
[0067] 用いられる aーォレフイン、量比、他の成分、 [ 7? ]、 Tg、 Mw/Mn,融解ピークの 有無、遷移金属化合物(1)を含む触媒などは、重複を避けるため記載しないが、 a ォレフィン系共重合体 (I)についてと同じである。
[0068] また本発明の aーォレフイン系重合体 (Γ -a)は、(Γ )に含まれるものであり、ェチ レン由来の構成単位を 1〜30モル0 /0、プロピレン由来の構成単位を 30〜69モル0 /0 、炭素数 4〜20の α—ォレフィン由来の構成単位 (A)を 10〜50モル0 /0 (ここ で該共重合体 ( -a)中のエチレン由来の構成単位、プロピレン由来の構成単位、 炭素数 4から 20の α—ォレフイン由来の構成単位の合計を 100モル0 /0とし、エチレン 由来の構成単位と炭素数 4〜20の aーォレフイン由来の構成単位との合計量は 31 〜70モル%である)の割合で含有するものである。各成分単位の好ましい量比は、 重複を避けるため記載しないが前述した共重合体 (Γ -a)と同じである。
[0069] 本発明に係る α—ォレフイン系共重合体 (I)または (Γ )は、 JISA硬度が 90以下、 好ましくは 80以下であり、引っ張り弾性率が lOOMPa以下、好ましくは 70MPa以下 であり、ダロス変化率 Δ glossが 60%以下、好ましくは 50%以下である。
[0070] 上記物性は、プレスシートを作製して測定する。成形条件は、 190°Cで余熱後、加 圧(lOOkgZcm2) 2分で成形したのち、 20。Cで 5分間加圧(lOOkgZcm2)冷却する ことにより、測定項目に応じた厚みのシートを作製する。試験条件は、後述する実施 例の方法で行う。
請腦 (II)
本発明に係る (X一才レフイン系共重合体 (I)または α—才レフイン系共重合体 ( ) 以外の、その他の熱可塑性榭脂としては融点が 50°C以上、好ましくは 80°C以上、ま たは融点が存在しない場合はガラス転移点が 40°C以上、好ましくは 80°C以上の熱 可塑性榭脂であれば特に制限無く用いることができる。またその目的によって、熱可 塑性榭脂として弾性率が高!、榭脂 (熱可塑性榭脂 (Ila) )と低 、榭脂 (熱可塑性榭脂 (lib) )とを適宜使!ヽ分けることができる。
綱旨 (11a)
本発明に係る熱可塑性榭脂としては、弾性率が 800MPa以上、好ましくは 1000M Pa以上である熱可塑性榭脂が用いられ、たとえばポリオレフイン、ポリアミド、ポリエス テルおよびポリアセタールなどの結晶性熱可塑性榭脂、ポリスチレン、アクリロニトリル ブタジエン スチレン共重合体 (ABS)、ポリカーボネート、ポリフエ-レンォキサイ ドなどの非熱可塑性榭脂が用いられる。なお前記弾性率は、熱可塑性榭脂をプレス 成形した後、後述する実施例の方法で引っ張り試験を行うことにより求めることができ る。成形条件は、 DSCで測定した融点またはガラス転移温度の高い方の温度以上 であって 200〜300°Cの間の適切な温度で余熱後、加圧(lOOkgZcm2) 3分で成 形したのち、 20°Cで 5分間加圧(lOOkgZcm2)冷却することにより lmm厚のシート を作製することで行う。例えば後述するポリプロピレンの場合は、 200°Cで余熱後、加 圧 3分、冷却 5分として行う。
[0071] ポリオレフインとしては、ポリエチレン、ポリプロピレン、ポリ 1ーブテン、ポリメチノレ ペンテン、ポリメチルブテンなどのォレフィン単独重合体、プロピレン 'エチレンランダ ム共重合体などのォレフィン共重合体などを挙げることができ、ポリプロピレン、ポリ 1ーブテン、ポリメチルペンテンが好ましい。
[0072] ポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブ チレンテレフタレートなどの芳香族系ポリエステル、ポリ力プロラタトン、ポリヒドロキシ ブチレートなどを挙げることができ、ポリエチレンテレフタレートが特に好まし!/、。
[0073] ポリアミドとしては、ナイロン 6、ナイロン 66、ナイロン 10、ナイロン 12、ナイ ロン 46等の脂肪族ポリアミド、芳香族ジカルボン酸と脂肪族ジァミンより製造される 芳香族ポリアミドなどを挙げることができ、ナイロン— 6が特に好ましい。
[0074] ポリアセタールとしては、ポリホルムアルデヒド(ポリオキシメチレン)、ポリアセト
アルデヒド、ポリプロピオンアルデヒド、ポリブチルアルデヒドなどを挙げることができ、 ポリホルムアルデヒドが特に好まし 、。
[0075] ポリスチレンは、スチレンの単独重合体であってもよぐスチレンとアクリロニトリル、メ タクリル酸メチル、 aーメチルスチレンとの二元共重合体であってもよい。
[0076] ABSとしては、アクリロニトリル力 誘導される構成単位を 20〜35モル0 /0の量で含 有し、ブタジエンから誘導される構成単位を 20〜30モル0 /0の量で含有し、スチレン 力も誘導される構成単位を 40〜60モル%の量で含有するものが好ましく用いられる
[0077] ポリカーボネートとしては、ビス(4 ヒドロキシフエ-ル)メタン、 1, 1—ビス(4 ヒド ロキシフエ-ル)ェタン、 2, 2 ビス(4 ヒドロキシフエ-ル)プロパン、 2, 2 ビス(4 —ヒドロキシフエ-ル)ブタンなどから得られるものを挙げることができ、 2, 2 ビス(4 —ヒドロキシフエニル)プロパン力も得られるポリカーボネートが特に好ましい。
[0078] ポリフエ-レンォキシドとしては、ポリ(2, 6 ジメチル一 1, 4 フエ-レンォキシド) を用いることが好ましい。
[0079] これらの熱可塑性榭脂のなかでは、ポリオレフインが好ましぐポリプロピレンまたは ポリブテン、ポリメチルペンテンを主体とした重合体がより好ましぐ特に 230°C、 2. 1 6kg荷重におけるメルトフローレート力 0. l〜200g/10分であるポリプロピレンが 最も好ましい。
[0080] ポリプロピレンはァイソタクチックポリプロピレン、シンジオタチックポリプロピレンの ヽ ずれも用いられる力 ァイソタクチックポリプロピレンが耐熱性に優れ好ましい。ァイソ タクチックポリプロピレンにはホモポリプロピレン、ランダムポリプロピレン、ブロックポリ プロピレンンがいずれも好適に用いられる。
[0081] 上記のような熱可塑性榭脂は、単独で用いてもよぐ 2種以上組み合わせて用いて もよい。さらに上記の熱可塑性榭脂とともに、上記以外の熱可塑性榭脂を用いてもよ い。
膽鋼旨 (lib)
本発明に係る熱可塑性榭脂としては、弾性率が 800MPa未満、好ましくは 700MP a未満である熱可塑性榭脂が用いられ、たとえばポリオレフイン、軟質塩ビ、ポリアミド エラストマ一、ポリエステルエラストマ一、ポリウレタンエラストマ一が用いられる。
[0082] このなかで、ポリオレフインが最も好ましぐポリオレフインとしては、ポリエチレン、ポ リプロピレン、ポリ 1ーブテンなどのォレフィン単独重合体、プロピレン 'エチレンラン ダム共重合体などのォレフィン共重合体などを挙げることができ、中でもポリプロピレ ン、プロピレン 'エチレンランダム共重合体が好ましぐシンジォタクティックポリプロピ レンが最も好ましい。
[0083] また前記弾性率は、熱可塑性榭脂をプレス成形した後、後述する実施例の方法で 引っ張り試験を行うことにより求めることができる。成形条件は、 DSCで測定した融点 またはガラス転移温度の高 、方の温度以上であって、 200〜300°Cの温度で余熱後 、加圧(lOOkgZcm2) 3分で成形したのち、 20。Cで加圧(lOOkgZcm2)冷却するこ とにより lmm厚のシートを作製することで行う。例えば前述のポリプロピレン、プロピレ ン共重合体 (プロピレン 'エチレン共重合体など含む)の場合は、 200°Cで余熱後、 加圧 3分、冷却 5分として行う。
[0084] 上記のような熱可塑性榭脂は、単独で用いてもよぐ 2種以上組み合わせて用いて もよい。さらに上記の熱可塑性榭脂とともに、上記以外の熱可塑性榭脂を用いてもよ い。
膽鋼旨糸滅 ·
次に、本発明に係る熱可塑性榭脂組成物にっ ヽて説明する。
[0085] 本発明に係る熱可塑性榭脂組成物は、前記 ex一才レフイン系共重合体 (I); 1〜99 重量部、好ましくは 5〜90重量部、更に好ましくは、 10〜80重量部と、熱可塑性榭 脂(Π) ; 99〜1重量部、好ましくは 95〜10重量部、更に好ましくは 90〜10重量部と 力も形成されている力 または前記 α—ォレフィン系共重合体 (Γ ) ; 1〜99重量部、 好ましくは 5〜90重量部、更に好ましくは、 10〜80重量部と、熱可塑性榭脂 (Π) ; 99 〜1重量部、好ましくは 95〜10重量部、更に好ましくは 90〜10重量部と力も形成さ れている。
[0086] 本発明の熱可塑性榭脂組成物には、本発明の目的を損なわない範囲で、前記 oc
—ォレフイン系共重合体に必要に応じて添加材配合されていてもよい。また、本発明 の趣旨を逸脱しない限り他の合成樹脂を少量ブレンドすることができる。
[0087] 本発明の熱可塑性榭脂組成物は、公知の任意の方法を採用して製造することがで き、たとえば、 aーォレフイン系共重合体 (I)または α—ォレフィン系共重合体 (Γ )と 熱可塑性榭脂 (II)および所望により添加される他成分を、押出機、ニーダ一等を用 いて溶融混練することにより得られる。
[0088] 本発明に係わる熱可塑性榭脂組成物の弓 Iつ張り弾性率は好ましくは 5MPa以上、 より好ましくは l OMPa以上である。耐熱性 (TMA)は好ましくは 90°C以上、より好ま しくは 100°C以上、より好ましくは 120°C以上である。ダロス変化率 Δ Glossは好まし くは 60%以下、より好ましくは 50%以下である。残留歪みは好ましくは 30%以下、よ り好ましくは 30%以下、さらに好ましくは 20%以下である。 JIS A硬度が好ましくは 9 5以下、より好ましくは 93以下である。ヘイズが好ましくは 40%以下、より好ましくは 3 0%以下である。
[0089] このうちでも、複数の物性が上記範囲に入ることが好ましぐ耐熱性 (TMA)、残留 歪、 AGlossがともに上記範囲に入ることがより好ましい。例えば TMAが 120°C以上 、残留歪 20%以下、 AGlossが 50%以下を満たすような熱可塑性榭脂組成物が挙 げられる。
[0090] この場合、測定項目に応じて、厚み lmmまたは 2mmのプレスシートを作成して測 定に供する。
[0091] 成形条件は、 DSCで測定した融点またはガラス転移温度の高い方の温度以上で あって、 200〜300°Cの温度で余熱後、加圧(100kgZcm2) 3分で成形したのち、 2 0°Cで 5分加圧(lOOkgZcm2)冷却することにより所定の厚みのシートを作製するこ とで行う。例えば代表的な条件としては、 200°Cで余熱後、加圧(100kgZcm2) 3分 で成形したのち、 20°Cで 5分加圧(lOOkgZcm2)冷却することにより所定の厚みの シートを作製する。熱可塑性榭脂組成物が、例えば、ポリプロピレン、プロピレン共重 合体 (プロピレン.エチレンランダム共重合体などを含む)を含む場合は、この条件で 成形して試験に供することができる。
[0092] また、各物性の試験方法は、後述する実施例に記載したとおりである。
τ 鋼旨糸且 からなる)^开^:
上記のような本発明に係る熱可塑性榭脂組成物は、従来公知のポリオレフイン用途 に広
く用いることができる力 特にポリオレフイン糸且成物をたとえばシート、未延伸または延 伸フィルム、フィラメント、他の種々形状の成形体に成形して利用することができる。
[0093] 成形体としては具体的には、押出成形、射出成形、インフレーション成形、ブロー 成形、押出ブロー成形、射出ブロー成形、プレス成形、真空成形、カレンダー成形、 発泡成形どの公知の熱成形方法により得られる成形体が挙げられる。以下に数例挙 げて成形体を
説明する。
[0094] 本発明に係る成形体がたとえば押出成形体である場合、その形状および製品種類 は特に限定されないが、たとえばシート、フィルム (未延伸)、パイプ、ホース、電線被 覆、チューブなどが挙げられ、特にシート (表皮材)、フィルム、チューブ、医療用チュ ーブ、モノフィラメント (不織布)などが好ましい。
[0095] 本発明に係る熱可塑性組成物を押出成形する際には、従来公知の押出装置およ び成形条件を採用することができ、たとえば単軸スクリュー押出機、混練押出機、ラム 押出機、ギヤ押出機などを用いて、溶融した熱可塑性組成物を特定のダイスなどか ら押出すことにより所望の形状に成形することができる。
[0096] 延伸フィルムは、上記のような押出シートまたは押出フィルム (未延伸)を、たとえば テンター法 (縦横延伸、横縦延伸)、同時二軸延伸法、一軸延伸法などの公知の延 伸方法により延伸して得ることができる。
[0097] シートまたは未延伸フィルムを延伸する際の延伸倍率は、二軸延伸の場合には通 常 20〜70倍程度、また一軸延伸の場合には通常 2〜10倍程度である。延伸によつ て、厚み 5〜200 μ m程度の延伸フィルムを得ることが望ましい。
[0098] また、フィルム状成形体として、インフレーションフィルムを製造することもできる。ィ ンフレーシヨン成形時にはドローダウンを生じにくい。
[0099] 上記のような本発明に係る熱可塑性組成物からなるシートおよびフィルム成形体は 、帯電しにくぐ引張弾性率などの剛性、耐熱性、耐衝撃性、耐老化性、透明性、透 視性、光沢、剛性、防湿性およびガスノ リヤー性に優れており、包装用フィルムなど として幅広く用いることができる。特に防湿性に優れるため、薬品の錠剤、カプセルな どの包装に用いられるプレススルーパック(press through pack)などに好適に用 いられる。また本発明に係る (X一才レフイン系共重合体 (I)または他の熱可塑性榭脂 との熱可塑性榭脂組成物は水系塗料により得られる塗膜への耐チッビング性付与を 、塗膜外観を保ったままで行う場合、プライマーもしくは水系塗料への添加剤として 使用可能な水性榭脂組成物としても用いられる。
[0100] また、フィラメント成形体は、たとえば溶融した熱可塑性組成物を、紡糸口金を通し て押出すことにより製造することができる。具体的にはスパンボンド法、メルトブロン法 が好適に用いられる。このようにして得られたフィラメントを、さらに延伸してもよい。こ の延伸は、フィラメントの少なくとも一軸方向が分子配向する程度に行なえばよぐ通 常 5〜10倍程度の倍率で行なうことが望ま ヽ。本発明に係る熱可塑性組成物から なるフィラメントは帯電しにくぐまた透明性、剛性、耐熱性および耐衝撃性、伸縮性 に優れている。
[0101] 射出成形体は、従来公知の射出成形装置を用いて公知の条件を採用して、熱可 塑性組成物を種々の形状に射出成形して製造することができる。本発明に係る熱可 塑性組成物からなる射出成形体は帯電しにくぐ透明性、剛性、耐熱性、耐衝撃性、 表面光沢、耐薬品性
、耐磨耗性などに優れてり、自動車内装用トリム材、自動車用外装材、家電製品のハ ウジング、容器など幅広く用いることができる。
[0102] ブロー成形体は、従来公知のブロー成形装置を用いて公知の条件を採用して、プ ロピレン系重合体組成物をブロー成形することにより製造することができる。 [0103] たとえば押出ブロー成形では、上記プロピレン系重合体組成物を榭脂温度 100〜 300°Cの溶融状態でダイより押出してチューブ状パリソンを形成し、次いでパリソンを 所望形状の金型中に保持した後空気を吹き込み、榭脂温度 130〜300°Cで金型に 着装することにより中空成形体を製造することができる。延伸(ブロー)倍率は、横方 向に 1. 5〜5倍程度であることが望ましい。
[0104] また、射出ブロー成形では、上記熱可塑性組成物を榭脂温度 100°C〜300°Cでパ リソン金型に射出してノ リソンを成形し、次いでパリソンを所望形状の金型中に保持 した後空気を吹き込み、榭脂温度 120°C〜300°Cで金型に着装することにより中空 成形体を製造することができる。延伸(ブロー)倍率は、縦方向に 1. 1〜1. 8倍、横 方向に 1. 3〜2. 5倍であることが好ましい。
[0105] 本発明に係る熱可塑性組成物からなるブロー成形体は、透明性、柔軟性、耐熱性 および耐衝撃性に優れるとともに防湿性にも優れて 、る。
[0106] プレス成形体としてはモールドスタンビング成形体が挙げられ、たとえば基材と表皮 材とを同時にプレス成形して両者を複合一体化成形 (モールドスタンビング成形)す る際の基材を本発明に係るプロピレン組成物で形成することができる。
[0107] このようなモールドスタンビング成形体としては、具体的には、ドア一トリム、リアーパ ッケージトリム、シートバックガー-ッシュ、インストルメントパネルなどの自動車用内装 材が挙げられる。 本発明に係る熱可塑性組成物からなるプレス成形体は帯電しに くぐ柔軟性、耐熱性、透明性、耐衝撃性、耐老化性、表面光沢、耐薬品性、耐磨耗 性などに優れている。
本発明の第 2の具体的な例
本発明によって提供される熱可塑性榭脂に α—才レフイン系共重合体 (S)を配合 した物性が改善された熱可塑性榭脂組成物の第 2の具体的な例として、下記のよう な榭脂組成物を挙げることができる。
[0108] すなわち、プロピレン系重合体 (Α) 50〜99. 8重量0 /0と、プロピレンから導かれる 構成単位を 90〜40モル%の量で含有し、プロピレンを除く炭素原子数 2〜20の α ーォレフインから導かれる構成単位を 10〜60モル0 /0の量で含み、かつ ο—ジクロ口 ベンゼン溶液で測定した13 C— NMRで、炭素数 4〜20の aーォレフイン由来の構成 単位の CH (メチン)由来のシグナルのうち最も高磁場で存在するピークを、 34. 4pp mと定めたシグナルチャートにおいて、約 22. 0〜20. 9ppmの吸収強度 Aと約 19. 0〜20. 6ppmの吸収強度 B力 プロピレンメチルに帰属される約 19. 0〜22. Oppm の吸収強度 Cに対して、下記の関係式 (i)と (ii)を満たすプロピレン' a—ォレフイン 共重合体 (B) (ただしプロピレン 'エチレン 2元共重合体は除く)を、
(A/C) X 100≤8 (i)
(B/C) X 100≥60 (ii)
0. 2〜50重量%を含むポリプロピレン榭脂組成物を挙げることができる。
[0109] また、プロピレン系重合体 (A) 50〜99. 8重量0 /0と、プロピレンと、炭素数 2〜
20の α—ォレフィン (ただしプロピレンを除く)を、前記一般式(1)で表される遷移金 属化合物を含む触媒の存在下に重合して得られ、
プロピレン力 導かれる構成単位を 90〜40モル0 /0の量で含有し、プロピレンを除く 炭素原子数 2〜20の α—ォレフインから導かれる構成単位を 10〜60モル0 /0の量で 含むプロピレン · αーォレフイン共重合体(BB) (ただしプロピレン 'エチレン 2元共重 合体は除く) 0. 2〜50重量%を含むポリプロピレン榭脂組成物を挙げることができる プロピレン系重合体 (A)
本発明で用いられるプロピレン系重合体の引張り弾性率は 400Mpa以上であるこ と力 子ましく、ァイソタクティックポリプロピレン、シンジォタクティックポリプロピレンから 少なくとも 1種選ばれることが更に好ましい。 前記弾性率は、プロピレン系重合体を プレス成形した後、後述する実施例の方法で引っ張り試験を行うことにより求めること ができる。成形条件は、 200°Cの温度で余熱後、加圧(100kgZcm2) 3分で成形し たのち、 20°Cで 5分間加圧(lOOkgZcm2)冷却することにより lmm厚のシートを作 製することで行う。
[0110] まず、ァイソタクティックポリプロピレンから以下に説明する。
[0111] ァイソタクティックポリプロピレンは、 NMR法により測定したァイソタクティックペンタ ッド分率が 0. 9以上、好ましくは 0. 95以上のポリプロピレンである。
ァイソタクティックペンタッド分率 (mmmm)は、 13C—NMRを使用して測定される分 子鎖中のペンタッド単位でのァイソタクティック連鎖の存在割合を示しており、プロピ レンモノマー単位が 5個連続してメソ結合した連鎖の中心にあるプロピレンモノマー 単位の分率である。具体的には、 13C— NMR ^ベクトルで観測されるメチル炭素領 域の全吸収ピーク中に占める mmmmピークの分率として算出される値である。 なお、このアイソタクティックペンタッド分率 (mmmm)は、以下のようにして測定され る。
[0112] mmmm分率は、 13C—NMRスペクトルにおける Pmmmm (プロピレン単位が 5単 位連続してァイソタクティック結合した部位における第 3単位目のメチル基に由来する 吸収強度)および P (プロピレン単位の全メチル基に由来する吸収強度)の吸収強
W
度から下記式(2)により求められる。
mmmm分率 = Pmmmm/ P (2)
W
NMR測定は、例えば次のようにして行われる。すなわち、試料 0. 35gをへキサクロ 口ブタジエン 2. Omlに加熱溶解させる。この溶液をグラスフィルター(G2)で濾過した 後、重水素化ベンゼン 0. 5mlをカ卩え、内径 10mmの NMRチューブに装入する。そ して日本電子製 GX— 500型 NMR測定装置を用い、 120°Cで13 C— NMR測定を行 う。積算回数は、 10, 000回以上とする。
[0113] ァイソタクティックポリプロピレン (A)としては、プロピレン単独重合体またはプロピレ ンとプロピレン以外の炭素原子数が 2〜20の aーォレフインとの共重合体を挙げるこ とができる。ここで、プロピレン以外の炭素原子数が 2〜20の α—ォレフィンとしては 、エチレン、 1—ブテン、 1—ペンテン、 1—へキセン、 4—メチル 1—ペンテン、 1— オタテン、 1—デセン、 1—ドデセン、 1—テトラデセン、 1—へキサデセン、 1—ォクタ デセン、 1 エイコセンなどが挙げられ、エチレンまたは炭素原子数が 4〜 10の α— ォレフィンが好ましい。
[0114] これらの α—ォレフインは、プロピレンとランダム共重合体を形成してもよぐブロック 共重合体を形成してもよい。これらの a—ォレフインカも導かれる構成単位は、ポリプ ロピレン中に 40モル0 /0以下、好ましくは 20モル0 /0以下の割合で含んで 、てもよ 、。
[0115] ァイソタクティックポリプロピレン (A)は、 ASTM D 1238に準拠して 230°C、荷重
2. 16kgで測定されるメルトフローレート(MFR)が 0. 01〜: LOOOgZlO分、好ましく は 0. 05〜500g/10分の範囲にあることが望ましい。
[0116] このようなァイソタクティックポリプロピレン (A)は、例えば(a)マグネシウム、チタン、 ハロゲンおよび電子供与体を必須成分として含有する固体触媒成分、 (b)有機アル ミニゥム化合物、および (c)電子供与体力 なるチーグラー触媒系を用いて重合する ことにより製造することができる。またメタ口セン触媒を用いても同様に得ることができ る。
[0117] 次に、シンジォタクティックポリプロピレンについて以下に説明する。
[0118] シンジォタクティックポリプロピレンは、少量例えば、 10モル0 /0以下、好ましくは 5モ ル%以下の量でエチレン、炭素数 4以上の ーォレフイン等が共重合されていてもよ い。このようなシンジォタクティックポリプロピレンの製造の際には、触媒としては、特 開平 10— 300084に記載してあるメタ口セン系触媒を例示することができる。
[0119] ここでシンジォタックティックペンタッド分率(rrrr、ペンタッドシンジオタクティシテー )が 0. 5以上、好ましくは 0. 6以上、より好ましくは 0. 7以上、特に好ましくは 0. 80以 上であるものであり、 0. 5以上のものは耐熱性、成形性に優れ、結晶性のポリプロピ レンとしての特性が良好で好まし 、。
[0120] なお、このシンジォタクティックペンタッド分率 (rrrr)は、以下のようにして測定され る。 rrrr分率は、 13C— NMR ^ベクトルにおける Prrrr (プロピレン単位が 5単位連続 してシンジォタクティック結合した部位における第 3単位目のメチル基に由来する吸 収強度)および PW (プロピレン単位の全メチル基に由来する吸収強度)の吸収強 度から下記式(3)により求められる。
[0121] rrrr分率 =PrrrrZP (3)
W
NMR測定は、たとえば次のようにして行われる。すなわち、試料 0. 35gをへキサク ロロブタジエン 2. Omlに加熱溶解させる。この溶液をグラスフィルター(G2)で濾過し た後、重水素化ベンゼン 0. 5mlを加え、内径 10mmの NMRチューブに装入する。 そして日本電子製 GX— 500型 NMR測定装置を用い、 120°Cで13 C— NMR測定を 行う。積算回数は、 10, 000回以上とする。
[0122] また、シンジォタクティックポリプロピレンのメルトフローレート(MFR、 190°C、 2. 16 kg荷重)は、 0. 001〜1000g/10分、好ましくは 0. 01〜500g/10分であること力 S 望ましい。 MFRIがこのような範囲にあると、良好な流動性を示し、このシンジォタクテ イツクポリプロピレンを他の成分と配合し易ぐまた得られた組成物から機械的強度に 優れた成形品が得られる傾向がある。
プロピレン' gーォレフイン共重合体(B)
本発明に係るプロピレン α—ォレフイン系共重合体 (B)は、 13CNMRによる測定に よるシグナルの強度が、以下のような関係を満たす。すなわち、
o—ジクロ口ベンゼン溶液で測定した13 C— NMRで、炭素数 4〜20の atーォレフイン 由来の構成単位の CH (メチン)に由来するシグナルのうち、最も高磁場で存在する ピークを 34.4ppmと定めたシグナルチャートにおいて、約 22. 0〜20. 9ppmの吸 収強度 Aと約 19. 0-20. 6ppmの吸収強度 B力 プロピレンメチルに帰属される約 1 9. 0〜22. Oppmの吸収強度 Cに対して、下記の関係式 (i)と (ii)を満たし、好ましく は、関係式 (i) '、 (ii) '、更に好ましくは関係式 (i),,、 (ii) "を満たすことが好ましい。
(A/C) <100≤8···· ·· ω
(B/C) > <100≥60··· ··· (ϋ)
(A/C) <100≤7···· ·· (i),
(B/C) > <100≥64··· ··· (ϋ),
(A/C) <100≤6···· ·· (i),,
(B/C) > <100≥68··· ··· (ϋ),
なお、この構造は、以下のようにして測定される。すなわち、試
料 50mgを o—ジクロ口ベンゼン Z重水素化ベンゼン =5Zlの混合溶媒約 0. 5mlに 溶解したものを日本電子製 EX— 400型 NMR測定装置を用い、シングルプロトンパ ルスデカップリングの測定モードで、パルス幅 4. 7 ns、パルス間隔 5. 5s、 180ppm の観測範囲で、化学シフト基準を炭素数 4〜20の α—ォレフイン由来の構成単位の CH (メチン)に由来するシグナルのうち、最も高磁場のピークを 34.4ppmとして、 12 0°Cで13 C— NMR測定を行う。積算回数は、 10, 000回以上とする。なお、共重合体 が 1―ブテン由来の構成単位を含む場合は、 1-ブテン由来の構成単位の CH (メチ ン)に由来するシグナルの内、最も高磁場側のピークを 34.4ppmとするものとする。 プロピレン a—ォレフイン系共重合体(B)がこのような範囲にあるとシンジオタクティ ック性に優れ透明性、剛性、耐摩耗性に優れる傾向にある。
[0124] なお、プロピレン' aーォレフイン系共重合体(B)において α—ォレフインとしては、 少なくとも炭素数 4〜20の α—ォレフィンを含有するものであることが好ましぐ当該 炭素数 4〜20の a—ォレフインとしてはブテンがより好ましい。
[0125] 本発明に係るプロピレン' (X—ォレフイン系共重合体 (B)は、プロピレン力 導かれ る構成単位を 90〜40モル0 /0、好ましくは 85〜45モル0 /0、更に好ましくは 80〜50モ ル%の量で含有し、プロピレンを除く炭素原子数 2〜20の a—ォレフインカも導かれ る構成単位を 10〜60モル0 /0、好ましくは 15〜55モル0 /0、更に好ましくは 20〜50モ ル%の量で含有している(ただしプロピレン.エチレン 2元共重合体は除く)。
[0126] プロピレン' aーォレフイン系共重合体 (B)がこのような範囲にあると耐白化性、耐 摩耗性、ヒートシール性に優れる傾向にある。
[0127] このようなプロピレン' a—ォレフイン系共重合体 (B)を調製する際に用いられる a ーォレフインとしては、プロピレンを除く炭素数が 2〜20、好ましくは 2〜12の範囲に あれば特に限定されず、直鎖状であっても、分岐、環状構造を有していてもよい。
[0128] このような α—ォレフインとしては、具体的には、例えば、エチレン、 1ーブテン、 2- ブテン、 1—ペンテン、 1—へキセン、 1—ヘプタン、 1—オタテン、 1—ノネン、 1—デ セン、 1—ゥンデセン、 1—ドデセン、 3—メチル—1—ブテン、 3—メチル—1—ペンテ ン、 4ーメチルー 1 ペンテン、 4ーメチルー 1一へキセン、 4, 4 ジメチルー 1一へキ セン、 4, 4 ジメチルー 1—ペンテン、 4 ェチル—1—へキセン、 3 ェチル 1— へキセン、シクロブテン、シクロペンテン、シクロへキセン、 3, 4ージメチノレシクロペン テン、 3—メチルシクロへキセン、 2—(2 メチルブチル) 1ーシクロへキセン、シク 口オタテンおよび 3a, 5, 6, 7a—テトラヒドロー 4, 7 メタノー 1H—インデンのような シクロォレフイン類、 2 ノルボルネン、 5—メチル 2 ノルボルネン、 5 ェチル 2 ノルボルネン、 5 イソプロピル 2 ノルボルネン、 5—n—ブチルー 2 ノルボル ネン、 5 イソブチルー 2 ノルボルネン、 5, 6 ジメチルー 2 ノルボルネン、 5 ク ロロ 2 ノルボルネンおよび 5 フルォロ 2 ノルボルネンのようなノルボルネン 類等が挙げられ、 1ーブテン、 1—へキセン、 1—オタテン、
1—デセン、 4—メチル 1—ペンテンが好ましぐさらに 1—ブテン、 1—へキセン、 1 —オタテン、 1—デセンが好ましぐ特に 1—ブテンが好ましい。これらの α ォレフィ ンは、 1種または 2種以上組み合わせて用いることもできる。例えば、エチレン (ィ)と、 該炭素数 4〜20の ex—ォレフインの内力 選択され、上記と異なる ex—ォレフイン(口 )とを、(ィ) / (口) = 2Ζ98〜50Ζ50モル0 /0 ( (ィ) + (口) = 100モル0 /0)の量比で用 いることがでさる。
[0129] このプロピレン · aーォレフイン系共重合体(B)中には、上記 α—ォレフイン由来の 構成単位以外に、少量のスチレンなどの芳香族ビニルイ匕合物由来の構成単位、 2個 以上の 2重結合を有する上記ポリェン系不飽和化合物(ポリェン)由来の構成単位、 アルコール、カルボン酸、ァミン及びこれら誘導体等からなる構成単位等が含まれて いてもよい。また、プロピレン由来の構成単位と α—ォレフィン由来の構成単位以外 の構成単位を含有しな 、態様も 1つの好まし 、態様である。
[0130] プロピレン' a—ォレフイン系共重合体 (B)は、 135°Cデカリン中で測定した極限粘 度 [ r? ]が、通常 0. 01〜: LOdl 好ましくは 0. 05〜: LOdl 更に好ましくは、 0. l〜5dlZgの範囲にあることが望ましい。該 α—ォレフイン系共重合体 (B)の極限粘 度 [ r? ]が、前記範囲内にあると、耐候性、耐オゾン性、耐熱老化性、低温特性、耐動 的疲労性などの特性に優れた a—ォレフイン系共重合体となる。
[0131] このプロピレン. aーォレフイン系共重合体(B)は、単一のガラス転移温度を有し、 かつ示差走査熱量計 (DSC)によって測定したガラス転移温度 Tgが、通常 0°C以下 、好ましくは 3°C以下、特に好ましくは 5°C以下の範囲にあることが望ましい。該 プロピレン' aーォレフイン系共重合体 (B)のガラス転移温度 Tgが前記範囲内にある と、耐寒性、低温特性に優れる。
[0132] また GPCにより測定した分子量分布(MwZMn、ポリスチレン換算、 Mw :重量平 均分子量、 Mn :数平均分子量)は 4. 0以下であることが好ましい。この範囲にあると 、透明性、耐傷付性、耐衝撃性が良好となるため好ましい。
[0133] また示差走査熱量計 (DSC)によって測定した融解ピークが、存在しな!、ことが望ま しい。この場合、柔軟性、耐摩耗性、透明性、耐白化性に優れる。
[0134] このようなプロピレン' ex—ォレフイン共重合体(B)は、下記に示すメタ口セン系触媒 の存在下にプロピレンと (X—ォレフインを共重合させて得ることができる。 [0135] このようなメタ口セン系触媒としては、
(a)下記一般式(1)で表される遷移金属化合物と、
(b) (b— 1)上記遷移金属化合物(a)中の遷移金属 Mと反応してイオン性の錯体を 形成する化合物、
(b 2)有機アルミニウムォキシィ匕合物、
(b 3)有機アルミニウム化合物
力 選ばれる少なくとも 1種の化合物とからなる少なくとも 1つの触媒系が挙げられる。
[0136] [化 5]
Figure imgf000032_0001
X 1
[0137] [式(1)中、 Mは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp2は Mと π 結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれら の誘導体基であり、 X1および X2は、ァ-オン性配位子または中性ルイス塩基配位子 であり、 Ζは C, Ο, Β, S, Ge, Siまたは Sn原子あるいはこれらの原子を含有する基 である。 ]。
[0138] 上記一般式(1)で表される遷移金属化合物の内でも、 Cpと Cp2が異なる基である 遷移金属化合物が挙げられ、より好ましくは Cp1および Cp2のうちのいずれか一方の 基がシクロペンタジェ -ル基またはその誘導体基であり、もう一方の基がフルォレニ ル基またはその誘導体基であるような遷移金属化合物が挙げられる。これらの内でも 、 Cp1および Cp2のうちの!/、ずれか一方の基がシクロペンタジェ -ル基またはその誘 導体基であり、もう一方の基がフルォレニル基またはその誘導体基であることが好ま しい。
[0139] 本発明においては、上記プロピレン' a一才レフイン共重合体 (B)製造用の触媒と しては、上記のようなメタ口セン系触媒が好ましく用いられる力 場合によっては上記 メタ口セン系触媒以外の、従来より公知の固体状チタン触媒成分と有機アルミニウム 化合物とからなるチタン系触媒や、可溶性バナジウム化合物と有機アルミニウム化合 物とからなるバナジウム系触媒を用いることもできる。
具体的な製造条件については、重複を避けるため繰り返し記載はしないが、上記 α 一才レフイン共重合体 (I)の製造にっ 、て記載した方法に準じて製造することができ る。
aーォレフイン系重合体(BB)
本発明の exーォレフイン系重合体(BB)は、
プロピレンと、炭素数 2〜20の α—ォレフイン (ただしプロピレンを除く)を、下記一般 式(1)で表される遷移金属化合物を含む触媒の存在下に重合して得られ、 プロピレン力 導かれる構成単位を 90〜40モル0 /0の量で含有し、プロピレンを除く 炭素原子数 2〜20の α—ォレフインから導かれる構成単位を 10〜60モル0 /0の量で 含むことを特徴としている(ただしプロピレン 'エチレン 2元共重合体を除く);
[0140] [化 6]
Figure imgf000033_0001
κ 9 (1 )
Cp1
X1
[0141] [式(1)中、 Mは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp2は Mと π 結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれら の誘導体基であり、 Cp1と Cp2は異なる基であり、 X1および X2は、ァ-オン性配位子 または中性ルイス塩基配位子であり、 Zは C, O, B, S, Ge, Sほたは Sn原子あるい はこれらの原子を含有する基である。 ]。
[0142] 用いられる aーォレフイン、量比、他の成分、 [ 7? ]、 Tg、 Mw/Mn,融解ピークの 有無、遷移金属化合物(1)を含む触媒などは、重複を避けるため記載しないが、 a ォレフィン系共重合体 (B)についてと同じである。
エチレン' aーォレフインランダム共重合体(C) 本発明に係るエチレン' a—ォレフインランダム共重合体 (C)としては、エチレンと、 炭素数 3〜20、好ましくは 3〜10の aーォレフインとのランダム共重合体が望ましい。 このような α ォレフィンとしては、具体的には、プロピレン、 1—ブテン、 1—ペンテ ン、 1—へキセン、 4—メチル 1— ペンテン、 1—オタテン、 1—デセン、 1—ドデセ ンなどが挙げられる。これらは、単独で、あるいは 2種以上組み合わせて用いることが できる。これらの中でも、プロピレン、 1—ブテン、 1—へキセン、 1—オタテンが好まし い。
[0143] また、このエチレン' a—ォレフインランダム共重合体 (C)の調製の際に、必要に応 じて、他のコモノマーとして、たとえば 1, 6 へキサジェン、 1, 8—ォクタジェン等の ジェン類、あるいはシクロペンテン等の環状ォレフィン類等を少量使用することができ る。
[0144] エチレン' aーォレフインランダム共重合体(C) (エチレン' aーォレフイン'ポリェン 共重合体を含む。 )におけるエチレン力 誘導される構成単位含有量 (以下、ェチレ ン含有量と称する。)は、通常、 85〜99. 9モル0 /0、好ましくは 90〜99. 5モル0 /0であ る。エチレン. a—ォレフインランダム共重合体(C)の組成は、通常 10mm φの試料 管中で約 200mgのエチレン' α—ォレフイン共重合体を lmlのへキサクロロブタジェ ンに均一に溶解させた試料の13 C— NMR ^ベクトルを、測定周波数 25. 05MHz, スペクトル幅 1500Hz、パルス繰返し時間 4. 2sec. 、ノ レス幅 6 sec. の条件下で 測定して決定される。
[0145] エチレン' a—ォレフインランダム共重合体(C)は、密度が 0. 850〜0. 960g/cm 3、好ましくは 0. 850〜0. 930g/cm3 、さらに好ましくは 0. 850〜0. 900g/cm3 である。なお、密度は、 ASTM D1505に準拠し、密度勾配管を用いて測定した。ま た、エチレン. a—ォレフインランダム共重合体 (C)は、
ASTM D— 1238に準拠し、 190°C、 2. 16kg荷重下で測定したメルトフロート(以 下、 MFR (190°C)と略記する)が 0. l〜70gZlO分、好ましくは 1
〜40gZlO分の範囲内にある。エチレン' a—ォレフインランダム共重合体(C)の分 子構造は、直鎖状であってもよいし、また、長鎖あるいは短鎖の側鎖を有する分岐状 であってもよい。 上記エチレン' aーォレフインランダム共重合体 (C)の製造法については特に制限 はないが、ラジカル重合触媒、フィリップス触媒、チーグラー'ナッタ触媒、あるいはメ タロセン触媒を用いて、エチレンの単独重合、またはエチレンと α—ォレフィンとを共 重合すること〖こよって製造することができる。
無機充埴剤 (D)
本発明に係る無機充填剤 (D)としては、微粉末タルク、カオリナイト、焼成クレー、 ノイロフィライト、セリサイト、ウォラスナイトなどの珪酸塩;沈降性炭酸カルシウム、重 質炭酸カルシウム、炭酸マグネシウムなどの炭酸塩;水酸ィ匕アルミニウム、水酸化マ グネシゥムなどの水酸ィ匕物;酸ィ匕チタン、酸化亜鉛、亜鉛華、酸化マグネシウム、酸 化アルミニウムなどの酸ィ匕物;硫酸カルシウム、硫酸バリウム、硫酸マグネシウムなど の硫酸塩;含水珪酸カルシウム、含水珪酸アルミニウム、含水珪酸、無水珪酸などの 珪酸または珪酸塩;その他微粉末シリカ、カーボンブラックなどの粉末状充填剤、マ イカ、ガラスフレークなどのフレーク状充填剤、塩基性硫酸マグネシウムゥイスカー、 チタン酸カルシウムゥイスカー、ホウ酸アルミニウムゥイスカー、セピオライト、 PMF (Pr ocessed Mineral Fiber)、ゾノトライト、チタン酸カリ、エレスタダイト、ガラス繊維、 炭素繊維などの繊維状充填剤、ガラスバルン、フライアッシュノ レンなどのバルン状 充填剤などが挙げられる。
本発明に係るポリプロピレン榭脂組成物には、本発明の目的を損なわない範囲で、 耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、アンチブロッキング剤、 発砲剤、防曇剤、滑剤、顔料、染料、可塑剤、老化防止剤、塩酸吸収剤、酸化防止 剤等の添加剤を配合することができる。またェマルジヨンィ匕するためのアクリル系榭脂 等が少量配合されて 、ても良 ヽ。
ポリプロピレン撒脂組成物
本発明に係る榭脂組成物はプロピレン系重合体 (A) 50〜99. 8重量%と前記プロ ピレン. aーォレフイン共重合体(B) 0. 2〜50重量0 /0を含む(ここで (A) (B)の合計 量は 100重量%である)。さらに好ましくはプロピレン系重合体 (A) 55〜90重量%と プロピレン' aーォレフイン共重合体(B) 10〜45重量0 /0、特に好ましくはプロピレン 系重合体 (A) 60〜85重量0 /0とプロピレン. atーォレフイン共重合体(B) 15〜40重 量%、を含む (ここで (A) (B)の合計量は 100重量%である)。
[0147] またはプロピレン系重合体 (A) 50〜99. 8重量0 /0と前記プロピレン' aーォレフイン 共重合体 (BB) O. 2〜50重量%を含む(ここで (A) (BB)の合計量は 100重量%で ある)。さらに好ましくはプロピレン系重合体 (A) 55〜90重量0 /0とプロピレン' a—ォ レフイン共重合体(BB) 10〜45重量0 /0、特に好ましくはプロピレン系重合体 (A) 60 〜85重量0 /0とプロピレン' atーォレフイン共重合体(BB) 15〜40重量0 /0、を含む(こ こで (A) (BB)の合計量は 100重量%である)。
[0148] 本発明に係るポリプロピレン榭脂組成物は、上記プロピレン系重合体 (A)と、上記 プロピレン' aーォレフイン共重合体(B)またはプロピレン' α—ォレフイン共重合体( ΒΒ)を含み、必要に応じて、エチレン' aーォレフインランダム共重合体 (C)、上記無 機充填剤 (D)、上記添加剤の少なくとも 1成分を含む。
[0149] 本発明に係るポリプロピレン榭脂組成物が成分 (C)および Zまたは成分 (D)を含 む場合、プロピレン系重合体 (A)は、組成物全体 ( (A) + (B)、組成物が(C)および Zまたは (D)を含む場合はこれらも含む)に対して、 30〜99. 8重量%、好まし くは 30〜95重量%、さらに好ましくは 40〜80重量%の量で含有されている。
[0150] プロピレン' aーォレフイン共重合体(B)は、組成物全体に対して、 0. 2〜70重量 %、好ましくは 1〜60重量%、さらに好ましくは 5〜50重量%の量で含有されている。
[0151] またはプロピレン' a—ォレフイン共重合体 (BB)を用いる場合であって、成分 (C) および Zまたは成分 (D)を含む場合、プロピレン系重合体 (A)は、組成物全体 ( (A) + (BB)、組成物が(C)および Zまたは(D)を含む場合はこれらも含む)に対して、 3 0〜99. 8重量0 /0、好ましくは 30〜95重量0 /0、さらに好ましくは 40〜80重量0 /0の量 で含有されている。プロピレン' aーォレフイン共重合体 (BB)は、組成物全体に対し て、 0. 2〜70重量%、好ましくは 1〜60重量%、さらに好ましくは 5〜50重量%の量 で含有されている。
[0152] プロピレン系重合体 (A)およびプロピレン' α—ォレフイン共重合体 (Β)との割合ま たはプロピレン系重合体 (Α)およびプロピレン. aーォレフイン共重合体(BB)との割 合が上記の範囲にあると、得られるポリプロピレン榭脂組成物は、剛性、耐衝撃性、 耐白化性、耐摩耗性のバランスに優れる傾向にある。
[0153] 必要に応じて用いられるエチレン · α—ォレフインランダム共重合体 (C)は、組成物 全体に対して、通常 1〜40重量%、好ましくは 5〜35重量%の量で含まれていてもよ い。エチレン. α—ォレフインランダム共重合体 (C)を上記のような量で含有すると、 表面硬度、耐衝撃性、特に耐低温衝撃強度の優れた成形体を調製できる組成物が 得られる。
[0154] 必要に応じて用いられる無機充填剤 (D)は、組成物全体に対して、通常 1〜30重 量%、好ましくは 5〜20重量%の量で含まれていてもよい。無機充填剤 (E)を上記の ような量で含有すると、剛性、表面硬度、耐衝撃性に優れた成形体を調製できる組成 物が得られ
る。
[0155] 本発明のポリプロピレン榭脂組成物は、公知の任意の方法を採用して製造すること ができ、例えば (A)プロピレン系重合体 (B)プロピレン' α—ォレフイン共重合体また は(ΒΒ)プロピレン' aーォレフイン共重合体と、必要に応じて(C)エチレン' α—ォレ フィンランダム共重合体、(D)無機充填剤、および所望によりさらに添加される添カロ 剤を、ヘンシェルミキサー、 V型プレンダー、リボンプレンダ一等の混合機で混合後、 押出機、ニーダ一等を用いて溶融混練することにより得られる。
[0156] 本発明のポリプロピレン榭脂組成物の引っ張り弾性率は 400Mpa以上、好ましくは 500MPa〜2500MPaである。本発明のポリプロピレン榭脂組成物の耐磨耗性( Δ Gloss (%) )は 30%以下好ましくは 1〜25%である。
[0157] また前記弾性率、耐磨耗性は、榭脂組成物をプレス成形した後、後述する実施例 の方法で引っ張り試験を行うことにより求めることができる。成形条件は、 200°Cの温 度で余熱後、加圧(100kgZcm2) 3分で成形したのち、 20°Cで 5分加圧(lOOkgZc m2)冷却することにより測定項目に応じた厚みのシートを作製することで行う。
[0158] 本発明のポリプロピレン榭脂組成物のアイゾット衝撃強度 (0°C、 j/m)は 30jZm 以上、好ましくは 35〜: LOOOjZm (非破壊)である。射出成形条件は (東芝機械製 IS 55EPNを用いて、シリンダー温度 200°C、金型温度 40°C、冷却時間 30 秒)である。 ポリプロピレン撒脂組成物からなる成形体
本発明に係るポリプロピレン榭脂組成物は、従来公知のポリオレフイン用途に広く 用いることができる力 成形体としては具体的には、押出成形、射出成形、インフレ一 シヨン成形、ブロー成形、押出ブロー成形、射出ブロー成形、プレス成形、真空成形 、カレンダー成形、発泡成形などの公知の熱成形方法により得られる成形体が挙げ られる。
[0159] 本発明に係るポリプロピレン榭脂組成物は、従来公知のポリオレフイン用途に広く 用いることができる力 特にポリオレフイン糸且成物をたとえばシート、未延伸または延 伸フィルム、フィラメント、他の種々形状の成形体に成形して利用することができる。
[0160] ポリプロピレン榭脂組成物力もなる成形体の具体的は例としては、前記した本発明 の第 1の具体例である熱可塑性榭脂糸且成物からなる成形体について述べた具体的 態様をそのままポリプロピレン榭脂組成物に適用することができる。これらの、具体的 例は、繰り返し記載することを避けるために記載しないが、先の熱可塑性榭脂組成物 からなる成形体にっ ヽての記載に基づ ヽて、適宜好ま ヽ成形体を形成させること ができる。
本 明の第 3の暴体的な例
本発明によって提供される熱可塑性榭脂に α—才レフイン系共重合体 (S)を配合 した物性が改善された熱可塑性榭脂組成物の第 3の具体的な例として、下記のよう な榭脂組成物を挙げることができる。
[0161] すなわち、非架橋である力または部分架橋されたォレフイン系熱可塑性エラストマ 一(Χ) 30〜80重量部と、プロピレン系重合体 (Υ) 0〜40重量部と、プロピレン由来 の構成単位を 30〜80モル0 /0、エチレン由来の構成単位を 0〜30モル0 /0、炭素数 4 〜20の α—ォレフイン由来の構成単位を 10〜50モル0 /0 (ここでプロピレン由来の構 成単位、エチレン由来の構成単位、炭素数 4〜20の aーォレフイン由来の構成単位 の合計量は 100モル0 /0)の量含み、かつ ο—ジクロ口ベンゼン溶液で測定した13 C— NMRで、炭素数 4〜20の (Xーォレフイン由来の構成単位の CH (メチン)に由来する シグナルのうち、最も高磁場で存在するピークを 34. 4ppmと定めたシグナルチヤ一 トにお ヽて、約 22. 0〜20. 9ppmの吸収強度 Aと約 19. 0〜20. 6ppmの吸収強度 B力 プロピレンメチルに帰属される約 19. 0〜22. Oppmの吸収強度 Cに対して、下 記の関係式 (i)と (ii)を満たすプロピレン' a—ォレフイン共重合体 (Z)を
(A/C) X 100≤8 (i)
(B/C) X 100≥60 (ii)
5〜60重量部(ここで (X)、 (Y)、 (Ζ)の合計は 100重量部である)含有するプロピレ ン系共重合体組成物を挙げることができる。
[0162] また別の態様として、非架橋であるカゝまたは部分架橋されたォレフイン系熱可塑性 エラストマ一(Χ) 30〜80重量部と、プロピレン系重合体 (Υ) 0〜40重量部と、プロピ レンと、炭素数 4〜20の aーォレフイン(ただしプロピレンを除く)と、必要に応じてェ チレンとを、下記一般式(1)で表される遷移金属化合物を含む触媒の存在下に重合 して得られ、プロピレン由来の構成単位を 30〜80モル0 /0、エチレン由来の構成単位 を 0〜30モル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を 10〜50モル0 /0 (ここでプロピレン由来の構成単位、エチレン由来の構成単位、炭素数 4〜20の ex - ォレフィン由来の構成単位の合計量は 100モル0 /0)の量含むプロピレン' aーォレフ イン共重合体 (ZZ) 5〜60重量部(ここで (X)、 (Y)、 (ZZ)の合計は 100重量部であ る)を含有するプロピレン系共重合体組成物を挙げることができる;
[0163] [化 7]
Figure imgf000039_0001
[0164] [式(1)中、 Mは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp2は Mと π 結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれら の誘導体基であり、 X1および X2は、ァ-オン性配位子または中性ルイス塩基配位子 であり、 Ζは C, Ο, Β, S, Ge, Siまたは Sn原子あるいはこれらの原子を含有する基 である。 ]。
[0165] 以下に、本発明に係わるプロピレン系共重合体組成物について具体的に説明する [0166] 「非架橋または部分的に架橋されたォレフイン系熱可朔性エラストマ一 (X) Ί 本発明で用いられる非架橋または部分架橋されたォレフイン系熱可塑性エラストマ 一はポリプロピレンと、非共役ジェンを含有したエチレン' aーォレフインランダム共 重合体を含有していることが望ましいが、これに限らず、例えばポリプロピレンとェチ レン' a—ォレフインランダム共重合体を含有する非架橋である力または部分架橋さ れたォレフイン系熱可塑性エラストマ一であってもよぐ aーォレフインとしては、プロ ピレン、ブテンであることが望ましい。
[0167] 本発明で用いられる非架橋である力または部分架橋されたォレフイン系熱可塑性 エラストマ一は、 230°C、 10kg荷重で測定される MFRが 0. 001〜100であることが 好ましぐ 0. 01〜80であることが更に好ましい。
[0168] また本発明で用いられる非架橋である力または部分架橋されたォレフイン系熱可塑 性エラストマ一の DSCの吸熱曲線から求められる融点(Tm)は 120〜165°Cである ことが好ましぐ 130〜160°Cの範囲にあることが更に好ましい。本発明に係るォレフ イン系熱可塑性エラストマ一組成物は、非架橋の熱可塑性エラストマ一組成物または 部分的に架橋された熱可塑性エラストマ一組成物であり、特定の結晶性ポリオレフィ ン榭脂 (X— 1)と、特定の α ォレフィン系共重合体ゴム (X— 2)とから構成されてな る。
[0169] [結晶性ポリオレフイン榭脂 (X— 1) ]
本発明で用いられる結晶性ポリオレフイン榭脂 (X—1)は、高圧法または低圧法の 何れかによる 1種またはそれ以上のモノォレフィンを重合して得られる結晶性の高分 子量固体生成物からなる。このような榭脂としては、たとえばァイソタクチックおよびシ ンジオタクチックのモノォレフィン重合体榭脂が挙げられるが、これらの代表的な榭脂 は商業的に入手できる。
[0170] 上記結晶性ポリオレフイン樹脂の適当な原料ォレフィンとしては、具体例には、ェチ レン、プロピレン、 1—ブテン、 1—ペンテン、 1—へキセン、 2—メチル 1—プロペン 、 3—メチルー 1 ペンテン、 4ーメチルー 1 ペンテン、 5—メチルー 1一へキセン、 1 オタテン、 1ーデセンおよびこれらのォレフィンを 2種以上混合した混合ォレフィン が挙げられる。
[0171] 特に、プロピレン含量が 70モル%以上、好ましくはプロピレン含量が 80モル%以上 のァイソタクチックポリプロピレンが好適に用いられる。
[0172] 重合様式はランダム型でもブロック型でも、榭脂状物が得られればどのような重合 様式を採用しても差支えない。本発明で用いられる結晶性ポリオレフイン榭脂は、 M FR (A- 1STM A-4 1238— 65T、 230。C)力通常 0. 01〜: LOOg/10分、特に 0. 05〜50gZlO分の範囲にあることが好ましい。
[0173] また本発明の熱可塑性エラストマ一 (X)に用いられる結晶性ポリオレフイン (X— 1) は、 DSCの吸熱曲線から求められる融点(Tm)が 120〜165°Cであることが好ましく 、 130°C〜160の範囲にあることが更に好ましい。また結晶性ポリオレフイン (X)は、 後述する (Y)として挙げられた以外の結晶性ポリオレフインであることが一つの好まし い態様である。
[0174] 上記結晶性ポリオレフイン榭脂 (X— 1)は、組成物の流動性および耐熱性を向上さ せる役割を持っている。本発明においては、結晶性ポリオレフイン榭脂 (X—1)は、結 晶性ポリオレフイン榭脂 (X— 1)および a—ォレフイン系共重合体ゴム (X— 2)の合 計量 100重量部中に、 10〜60重量部、好ましくは 20〜55重量部の割合で用いられ る。
[0175] 上記のような割合で結晶性ポリオレフイン榭脂 (X— 1)を用いると、ゴム弾性に優れ るとともに、成形力卩ェに優れたォレフィン系熱可塑性エラストマ一組成物が得られる。
aーォレフイン系共重合体ゴム(X— 2)
本発明で用いられる a—ォレフイン系共重合体ゴム (X— 2)は、炭素原子数 2〜20 、好ましくは炭素原子数 2〜 12の oc一才レフインと、非共役ポリェン、例えば非共役 ジェンとを共重合して得られるゴムである。
[0176] 上記 α ォレフィンとしては、具体的には、エチレン、プロピレン、 1—ブテン、 1 - へキセン、 4—メチル 1—ペンテン、 1—ヘプテン、 1—オタテン、 1—ノネン、 1—デ セン、 1—ゥンデセン、 1—ドデセン、 1—トリデセン、 1—テトラデセン、 1—ペンタデセ ン、 1—へキサデセン、 1—ヘプタデセン、 1—ノナデセン、 1—エイコセン、 9—メチル 1ーデセン、 11ーメチルー 1ードデセン、 12—ェチルー 1ーテトラデセンなどが挙 げられる。
[0177] 本発明においては、上記のような α—ォレフインを単独で用いても良ぐまた 2種以 上の混合物として用いても良い。 4—メチル 1—ペンテンと、他の α ォレフィンを 混合物として用いる場合、 4ーメチルー 1 ペンテンと、他の aーォレフインとのモル 比(他の α—ォレフイン Z4—メチルー 1 ペンテン)は、 10Ζ90〜95Ζ5の範囲内 にあることが好ましい。
[0178] 上記 α—ォレフィンのうち、特にエチレン、プロピレン、 1ーブテンが好ましく用いら れる。
[0179] 非共役ポリェンとしては、具体的には、ジシクロペンタジェン、 1, 4一へキサジェン 、シクロォクタジェン、メチレンノルボルネン、ェチリデンノルボルネン 4ーメチルー 1, 4一へキサジェン、 5—メチルー 1, 4一へキサジェン、 4ーェチルー 1, 4一へキサジ ェン、 5—メチルー 1, 4一へブタジエン、 5 ェチルー 1, 4一へブタジエン、 5—メチ ルー 1 , 5 へブタジエン、 6—メチルー 1, 5 へブタジエン、 5 ェチルー 1, 5 へ ブタジエン、 4ーメチルー 1, 4ーォクタジェン、 5—メチルー 1, 4ーォクタジ ェン、 4ーェチルー 1, 4ーォクタジェン、 5 ェチルー 1, 4ーォクタジェン、 5—メチ ルー 1 , 5—ォクタジェン、 6—メチルー 1, 5—ォクタジェン、 5 ェチルー 1, 5 オタ タジェン、 6 ェチルー 1, 5—ォクタジェン、 6—メチルー 1, 6—ォクタジェン、 7—メ チルー 1, 6—ォクタジェン、 6 ェチルー 1, 6—ォクタジェン、 4ーメチルー 1, 4ーノ ナジェン、 5—メチルー 1, 4ーノナジェン、 4ーェチルー 1, 4ーノナジェン、 5 ェチ ルー 1 , 4ーノナジェン、 5—メチルー 1, 5 ノナジェン、 6—メチルー 1, 5 ノナジェ ン、 5 ェチルー 1, 5 ノナジェン、 6 ェチルー 1, 5 ノナジェン、 6—メチルー 1, 6 ノナジェン、 7—メチルー 1, 6 ノナジェン、 6 ェチルー 1, 6 ノナジェン、 7- ェチルー 1, 6 ノナジェン、 7—メチルー 1, 7 ノナジェン、 8—メチルー 1, 7 ノナ ジェン、 7 ェチルー 1, 7 ノナジェン、 5—メチルー 1, 4ーデカジエン、 5 ェチル - 1, 4ーデカジエン、 5—メチルー 1, 5 デカジエン、 6—メチルー 1, 5 デカジエ ン、 5 ェチル 1, 5 デカジエン、 6 ェチル 1, 5 デカジエン、 6—メチルー 1 , 6 デカジエン、 7—メチル 1, 6 デカジエン、 6 ェチル 1, 6 デカジエン、 7 ェチル 1, 6 デカジエン、 7—メチルー 1, 7 デカジエン、 8—メチルー 1, 7 ーデカジエン、 7 ェチルー 1, 7 デカジエン、 8 ェチルー 1, 7 デカジエン、 8 ーメチルー 1 , 8 デカジエン、 9ーメチルー 1, 8 デカジエン、 8 ェチルー 1, 8— デカジエン、 9ーメチルー 1 , 8 ゥンデカジエンなどが挙げられる。特に中でも 5 ーェチリデン 2 ノルボルネン、 5 ビ-ルー 2 ノルボルネン、ジシクロペンタジェ ン、 4, 8 ジメチルー 1, 4, 8 デカトリェン(DMDT)、 4ーェチリデンー8 メチル - 1, 7—ノナジェン(EMND)が望ましい。
[0180] 本発明にお 、ては、上記のような非共役ポリェン、例えば非共役ジェンを単独で用 いてもよぐまた 2種以上の混合物として用いてもよい。さらに、上記のような非共役ポ リエンの他に、他の共重合可能なモノマーを、本発明の目的を損なわない範囲で用 いてもよい。
[0181] 本発明で用いられる a一才レフイン系共重合体ゴムを構成する非共役ジェンの含 有量 ίま、 0. 01〜30モノレ0 /0、好ましく ίま 0. 1〜20モノレ0 /0、特に好ましく ίま 0. 1〜10 モル0 /0の範囲内にある。
[0182] 本発明で用いられる aーォレフイン系共重合体ゴムとしては、例えばエチレン '炭 素数 3以上の aーォレフイン'非共役ポリェン共重合体であって、エチレンと炭素数 3 以上の aーォレフインとの比率であるエチレン Z炭素数 3以上の aーォレフイン(モ ル比)が 40Z60— 95Z5であるものが挙げられる。
[0183] 本発明で用いられる aーォレフイン系共重合体ゴムの 135°Cデカリン溶媒中で測 定した極限粘度 [ τ? ]は、 1. 0〜10. OdlZg、好ましくは 1. 5〜7dlZgの範囲にある 。また本発明で用いられる a一才レフイン系共重合体ゴムは、特に制限はないが DS Cの吸熱曲線から求められる融点 (Tm)が存在しないかまたは 120°C未満に存在す ることが好ましい。
[0184] 本発明においては、 aーォレフイン系共重合体ゴム (X— 2)は、結晶性ポリオレフィ ン榭脂 (X- 1)および aーォレフイン系共重合体ゴム (X— 2)の合計量 100重量部 中に、 90〜40重量部、好ましくは 80〜45重量部の割合で用いられる。
[0185] 上記のような aーォレフイン系共重合体ゴム (X— 2)は、以下の方法で製造すること ができる。本発明で用いられる (X—ォレフイン系共重合体ゴム (X— 2)は、ォレフィン 重合用触媒の存在下に、炭素原子数 2〜20のひ一才レフインと、非共役ジェンとを 共重合させることにより得られる。
[0186] 本発明に係るォレフィン系熱可塑性エラストマ一組成物には、結晶性ポリオレフイン 榭脂 (X—1)および α—ォレフィン系共重合体ゴム (X— 2)の他に、任意成分として 軟化剤 (X— 3)および Ζまたは無機充填剤 (Χ- 4)を含めることができる。
[0187] 本発明で用いられる軟化剤 (X— 3)としては、通常ゴムに使用される軟化剤を用い ることができ、具体的には、プロセスオイル、潤滑油、パラフィン、流動パラフィン、石 油アスファルト、ワセリン等の石油系物質;コールタール、コールタールピッチ等のコ ールタール類;ヒマシ油、アマ-油、ナタネ油、大豆油、ヤシ油等の脂肪油;トール油 、蜜ロウ、カルナウパロウ、ラノリン等のロウ類;リシノール酸、パルミチン酸、ステアリン 酸、ステアリン酸バリウム、ステアリン酸カルシウム等の脂肪酸またはその金属塩;石 油榭脂、クマロンインデン榭脂、ァタクチックポリプロピレン等の合成高分子物質;ジ ォクチルフタレート、ジォクチルアジペート、ジォクチルセバケート等のエステル系可 塑剤;その他マイクロクリスタリンワックス、サブ (ファタチス)、液状ポリブタジエン、変 性液状ポリブタジエン、液状チォコールなどが挙げられる。
[0188] 本発明にお 、ては、軟化剤 (X— 3)は、結晶性ポリオレフイン榭脂 (X— 1)および ex ーォレフイン系共重合体ゴム (X— 2)の合計量 100重量部に対し、通常 200重量部 以下、好ましくは 2〜: LOO重量部の割合で用いられる。本発明において、軟化剤 (X —3)の使用量が 200重量部を超えると、得られる熱可塑性エラストマ一組成物の耐 熱性、耐熱老化性が低下する傾向にある。
[0189] 本発明で用いられる無機充填剤 (X— 4)としては、具体的には、炭酸カルシウム、 ケィ酸カルシウム、クレー、カリオン、タルク、シリカ、ケイソゥ土、雲母粉、アスベスト、 アルミナ、硫酸バリウム、硫酸アルミニウム、硫酸カルシウム、塩基性炭酸マグネシゥ ム、二硫ィ匕モリブデン、グラフアイト、ガラス繊維、ガラス球、シラスノ レーンなどが挙 げられる。
[0190] 本発明においては、無機充填剤 (X— 4)は、結晶性ポリオレフイン榭脂 (X— 1)およ び α—ォレフィン系共重合体ゴム (X— 2)の合計量 100重量部に対して、通常 100 重量部以下、好ましくは 2〜50重量部の割合で用いられる。本発明において、無機 充填剤 (X— 4)の使用量が 100重量部を超えると、得られる熱可塑性エラストマ一組 成物のゴム弾性、成形加工性が低下する傾向にある。
[0191] また、本発明に係る部分的に架橋されたォレフイン系熱可塑性エラストマ一組成物 は、上述した結晶性ポリオレフイン榭脂 (X—1)と、 aーォレフイン系共重合体ゴム (X 2)と、必要に応じて配合される軟化剤 (X- 3)および Zまたは無機充填剤 (X-4) 、さらには上記エチレン' a—ォレフイン共重合体ゴム、エチレン' a—ォレフイン'非 共役ジェン共重合体ゴム等との混合物を、下記のような有機過酸化物の存在下に、 動的に熱処理して部分的に架橋することによって得られる。
[0192] ここに、「動的に熱処理する」とは、溶融状態で混練することをいう。有機過酸化物と しては、具体的には、ジクミルパーオキサイド、ジー tert ブチルパーオキサイド、 2, 5 ジメチルー 2, 5 ジ一(tert ブチルパーォキシ)へキサン、 2, 5 ジメチルー 2 , 5 ジ—(tert—ブチルパーォキシ)へキシン— 3、 1, 3 ビス(tert— ブチルバ 一ォキシイソプロピル)ベンゼン、 1, 1—ビス(tert—ブチルパーォキシ)—3, 3, 5— トリメチルシクロへキサン、 n—ブチルー 4, 4 ビス(tert ブチルパーォキシ)バレレ ート、ベンゾィルパーオキサイド、 p—クロ口ベンゾィルパーオキサイド、 2, 4ージクロ 口ベンゾィルパーオキサイド、 tert ブチルパーォキシベンゾエート、 tert ブチル パーォキシイソプロピルカーボネート、ジァ
セチルパーオキサイド、ラウロイルパーオキサイド、 tert ブチルタミルパーォキサイ ドなどが挙げられる。
[0193] このような有機過酸ィ匕物は、被処理物全体、すなわち結晶性ポリオレフイン榭脂 (X
1)および α—ォレフイン系共重合体ゴム (X— 2)の合計量 100重量部に対し 0. 0 2〜3重量部、好ましくは 0. 05〜1重量部となるような量で用いられる。この配合量が 上記範囲よりも少ないと、得られる熱可塑性エラストマ一組成物は、架橋度が低いた め、耐熱性、引張特性、弾性回復および反発弾性等が十分でない。また、この配合 量が上記範囲よりも多いと、得られる熱可塑性エラストマ一組成物は、架橋度が高く なり過ぎて成形性の低下をもたらす場合がある。
[0194] 本発明においては、前記有機過酸化物による部分架橋処理に際し、硫黄、 ρ—キノ ンジォキシム、 ρ, ρ,ージベンゾイノレキノンジォキシム、 Ν—メチノレー Ν, N,一m—フ ェ-レンジマレイミド等のパーォキシ架橋助剤、あるいはジビュルベンゼン、トリアリル シァヌレート、エチレングリコールジメタタリレート、ポリエチレングリコールジメタクリレ ート、トリメチロールプロパントリメタタリレート、アクリルメタタリレート等の多官能性メタ タリレートモノマー、ビュルブチラートまたはビニルステアレート等の多官能性ビュル モノマーを配合してもよ 、。
[0195] 上記のような架橋助剤などの化合物を用いることにより、均一かつ温和な架橋反応 が期待できる。このような架橋助剤ある 、は多官能性ビュルモノマーなどの化合物は 、上記被処理物全体 100重量部に対し、通常 2重量部以下、さらに好ましくは 0. 3〜 1重量部となるような量で用いられる。
[0196] また有機過酸化物の分解を促進するために、トリェチルァミン、トリプチルァミン、 2 , 4, 6—トリ(ジメチルァミノ)フエノール等の三級アミンゃ、アルミニウム、コノルト、ノ ナジゥム、銅、カルシウム、ジルコニウム、マンガン、マグネシウム、鉛、水銀等のナフ テン酸塩などの分解促進剤を用いてもょ 、。
[0197] 本発明における動的な熱処理は、非開放型の装置中で行なうことが好ましぐまた 窒素、炭酸ガス等の不活性ガス雰囲気下で行なうことが好ましい。その温度は、結晶 性ポリオレフイン榭脂(X— 1)の融点から 300°Cの範囲であり、通常 150〜250°C、 好ましくは 170〜225°Cである。混練時間は、通常 1〜20分間、好ましくは 1〜10分 間である。また、加えられる剪断力は、剪断速度として 10〜: LOO,
Figure imgf000046_0001
好まし <は 100〜50, OOOsec—1である。
[0198] 混練装置としては、ミキシングロール、インテンシブミキサー(たとえばバンバリ一ミキ サー、ニーダ一)、一軸または二軸押出機等を用い得るが、非開放型の装置が好ま しい。
[0199] 本発明によれば、上述した動的な熱処理によって、結晶性ポリオレフイン榭脂 (X— 1)と α—ォレフイン系共重合体ゴム (X— 2)とからなる非架橋の、または部分的に架 橋されたォレフイン系熱可塑性エラストマ一組成物が得られる。
[0200] なお、本発明において、熱可塑性エラストマ一糸且成物が部分的に架橋されたとは、 下記の方法で測定したゲル含量が 20%以上、好ましくは 20〜99. 5%、特に好まし くは 45〜98%の範囲内にある場合をいう。ゲル含量の測定熱可塑性エラストマ一組 成物の試料を lOOmg秤取し、これを 0. 5mm X O. 5mm X O. 5mmの細片に裁断し たものを、密閉容器中にて 30mlのシクロへキサンに、 23°Cで 48時間浸漬した後、試 料を濾紙上に取出し、室温で 72時間以上、恒量となるまで乾燥する。
[0201] この乾燥残渣の重量力 ポリマー成分以外のすべてのシクロへキサン不溶性成分( 繊維状フイラ一、充填剤、顔料等)の重量、およびシクロへキサン浸漬前の試料中の 結晶性ポリオレフイン榭脂 (X— 1)の重量を減じたものを、「補正された最終重量 [Y] 」とする。
[0202] 一方、試料中の α—ォレフィン系共重合体 (X— 2)を、「補正された初期重量 [Χ]」 とする。ここに、ゲル含量は、次の式で求められる。
[0203] ゲル含量 [wt%] = (補正された最終重量 [Y]Z補正された初期重量 [X]) X 100
[プロピレン系重合体 (Υ) ]
プロピレン系重合体 (Υ)としては、前記ポリプロピレン榭脂組成物について記載し たプロピレン系重合体 (Α)と同様の重合体を使用することができる。
[0204] 本発明で用いられるプロピレン系重合体 (Υ)の引張り弾性率は 400Mpa以上であ ること力 S好ましく、好ましくは、 400MPa〜2500MPa、より好ましくは、 500Mpa〜20 OOMpaであり、ァイソタクティックポリプロピレン、シンジォタクティックポリプロピレンか ら少なくとも 1種選ばれることが更に好ましい。 なお前記弾性率は、プロピレン系重 合体をプレス成形した後、後述する実施例の方法で引っ張り試験を行うことにより求 めることができる。成形条件は、 200°Cの温度で余熱後、加圧(100kgZcm2) 3分で 成形したのち、 20°Cで 5分加圧(lOOkgZcm2)冷却することにより lmm厚のシート を作製することで行う。
[0205] まず、ァイソタクティックポリプロピレンから以下に説明する。
ァイソタクティックポリプロピレンは、 NMR法により測定したァイソタクティックペンタツ ド分率が 0. 9以上、好ましくは 0. 95以上のポリプロピレンである。
[0206] ァイソタクティックペンタッド分率の測定は、前記第 2の具体的な例の中で挙げたプ ロピレン系重合体 (A)
Figure imgf000047_0001
、て説明した方法で行う。
[0207] ァイソタクティックポリプロピレンとしては、プロピレン単独重合体またはプロピレンと プロピレン以外の炭素原子数が 2〜20の α—ォレフインとの共重合体を挙げることが できる。ここで、プロピレン以外の炭素原子数が 2〜20の a—ォレフインとしては、ェ チレン、 1—ブテン、 1 ペンテン、 1—へキセン、 4—メチル 1—ペンテン、 1—オタ テン、 1—デセン、 1—ドデセン、 1—テトラデセン、 1—へキサデセン、 1—ォクタデセ ン、 1 エイコセンなどが挙げられ、エチレンまたは炭素原子数力 〜10の aーォレ フィンが好ましい。これらの α—ォレフインは、プロピレンとランダム共重合体を形成し てもよく、ブロック共重合体を形成してもよい。これらの α ォレフインカ 導かれる構 成単位は、ポリプロピレン中に 40モル0 /0以下、好ましくは 20モル0 /0以下の割合で含 んでいてもよい。
[0208] ァイソタクティックポリプロピレンは、 ASTM D 1238に準拠して 230°C、荷重 2.
16kgで測定されるメルトフローレート(MFR)が 0. 01〜: LOOOgZlO分、好ましくは 0 . 05〜500g/10分の範囲にあることが望ましい。
[0209] このようなァイソタクティックポリプロピレンは、例えば(a)マグネシウム、チタン、ハロ ゲンおよび電子供与体を必須成分として含有する固体触媒成分、 (b)有機アルミ- ゥム化合物、および (c)電子供与体力 なるチーグラー触媒系を用いて重合すること により製造することができる。またメタ口セン触媒を用いても同様に得ることができる。
[0210] プロピレン系重合体 (Y)がァイソタクティックポリプロピレンであるとき、前記結晶性 ポリオレフイン榭脂 (X— 1)で好適に用いられるァイソタクティックポリプロピレンと同じ であっても異なって!/、てもよ 、。プロピレン系重合体 (Y)および結晶性ポリオレフイン 榭脂 (X— 1)のどちらにもァイソタクティックポリプロピレンを用いる場合、本発明の榭 脂組成物中に 10〜60重量%、好ましくは 15〜50重量%含まれることが好ましい。
[0211] ァイソタクティックポリプロピレンとしては、チーグラー触媒で製造されたポリプロピレ ン共重合体のうちでは、耐白化性と耐衝撃性のバランスが優れるプロピレン'ェチレ ンランダム共重合体およびプロピレン ·エチレンブロック共重合体が好まし 、。
次に、シンジォタクティックポリプロピレンについて以下に説明する。
[0212] シンジォタクティックポリプロピレンは、少量例えば、 10モル%以下、好ましくは 5モ ル%以下の量でエチレン、炭素数 4以上の 0Lーォレフイン等が共重合されていてもよ い。
このようなシンジォタクティックポリプロピレンの製造の際には、触媒としては、特開平 10— 300084に記載してあるメタ口セン系触媒を例示することができる。
[0213] ここでシンジォタックティックペンタッド分率(rrrr、ペンタッドシンジオタクティシテー )が 0. 5以上、好ましくは 0. 6以上、より好ましくは 0. 7以上、特に好ましくは 0. 80以 上であるものであり、 0. 5以上のものは耐熱性、成形性に優れ、結晶性のポリプロピ レンとしての特性が良好で好まし 、。
[0214] シンジォタクティックペンタッド分率の測定は、前記第 2の具体的な例の中で挙げた プロピレン系重合体 (A)の項にお 、て説明した方法で行う。
[0215] また、シンジォタクティックポリプロピレンのメルトフローレート(MFR、 190°C、 2. 16 kg荷重)は、 0. 001〜1000g/10分、好ましくは 0. 01〜500g/10分であること力 S 望ましい。 MFR力 のような範囲にあると、良好な流動性を示し、このシンジォタクテ イツクポリプロピレンを他の成分と配合し易ぐまた得られた組成物から機械的強度に 優れた成形品が得られる傾向がある。
[0216] このようなプロピレン系重合体 (Y)は、榭脂組成物中に 0〜40重量部、好ましくは 0 〜35重量部、より好ましくは 5〜35重量部含まれる。シンジォタクティックポリプロピレ ン (Y)がこの範囲にあると α—ォレフィン系共重合体組成物の耐熱性とゴム弾性、耐 磨耗性のバランスに優れる。
[プロピレン'ひーォレフイン共重合体 (Ζ) ]
本発明で用いられるプロピレン' α—ォレフイン共重合体 (Ζ)はプロピレン由来の構 成単位を 30〜80モル0 /0、エチレン由来の構成単位を 0〜20モル0 /0の量含み、炭素 数 4〜20の α—ォレフイン由来の構成単位を 20〜50モル0 /0の量含むことが好ましく 、 α—ォレフィンとしてはブテン、オタテンカも選ばれることが望ましい。中でもブテン であることが特に好ましい。なお本発明では炭素数 4〜20の α—ォレフィンは 2種以 上使用されてもよくその場合は 2種以上の (X—ォレフインの合計が 30〜60モル0 /0含 まれていれば良い。
[0217] 本発明で用いられるプロピレン. aーォレフイン共重合体 (Z)は、プロピレンから導 力れる繰返し単位を、 30〜80モノレ0 /0、好ましく ίま 40〜80モノレ0 /0、より好ましく ίま 45 〜70モル0 /0、エチレンから導かれる繰返し単位を 0〜20モル0 /0、好ましくは、 0〜18 モル0 /0、より好ましくは 3〜15モル0 /0、 a—ォレフインカも導かれる繰返し単位 を 10〜50モル0 /0、好ましくは 15〜50モル0 /0、より好ましくは 20〜45モル0 /0の割合 で含有している。
[0218] この exーォレフイン系共重合体 (Z)中には、上記 α—ォレフイン由来の構成単位以 外に、スチレンなどの芳香族ビ-ルイ匕合物由来の構成単位、 2個以上の 2重結合を 有する上記ポリェン系不飽和化合物(ポリェン)由来の構成単位、アルコール、カル ボン酸、ァミン及びこれら誘導体等力もなる構成単位等が含まれていてもよい。また エチレン、プロピレン、炭素数 4から 20の aーォレフイン以外の構成単位が含まれて V、な 、態様も好まし 、態様である。
[0219] このプロピレン' a—ォレフイン共重合体 (Z)は、ヤングモジュラスが好ましくは 150 MPa以下、より好ましくは lOOMPa以下、さらに好ましくは 50MPa以下である。
[0220] また前記弾性率は、共重合体 (Z)をプレス成形した後、後述する実施例の方法で 引っ張り試験を行うことにより求めることができる。成形条件は、 190°Cの温度で余熱 後、加圧(lOOkgZcm2) 2分で成形したのち、 20°Cで加圧(lOOkgZcm2)冷却する ことにより lmm厚のシートを作製することで行う。
[0221] このようなプロピレン · aーォレフイン共重合体 (Z)は、 135°Cデカリン中で測定した 極限粘度 [ 7? ]が、通常 0. 01〜: LOdlZg、好ましくは 0. 5〜: LOdlZg、さらに好ましく は 1〜8dlZgの範囲にあることが望まし 、。
[0222] このプロピレン · aーォレフイン共重合体 (Z)は、単一のガラス転移温度を有し、力 つ示差走査熱量計 (DSC)によって測定したガラス転移温度 (Tg)が、通常 0°C以下 、好ましくは 3°C以下、さらに好ましくは 5°C以下であることが望ましい。該プロピ レン' a一才レフイン共重合体 (Z)のガラス転移温度 (Tg)が前記範囲内にあると、耐 寒性、低温特性に優れる。またゲルパーミエーシヨンクロマトグラフィー(GPC)により 求められる分子量分布(MwZMn、ポリスチレン換算、 Mw :重量平均分子量、 Mn : 数平均分子量)は 4. 0以下であることが好ましぐ特に 3. 5以下であることが好ましい
[0223] ここでプロピレン' atーォレフイン共重合体(Z)、特にプロピレン エチレンーブテン 共重合体にあっては、 13CNMRによる測定によるシグナルの強度力 以下のような関 係を満たす。すなわち、 o ジクロ口ベンゼン溶液で測定した13 C— NMRで、共重合 体中の炭素数 4〜20の (Xーォレフイン由来の構成単位の CH (メチン)に由来するシ グナルのうち、最も高磁場で存在するピークを 34. 4ppmと定めたシグナルチャート において、約 22. 0〜20. 9ppmの吸収強度 Aと約 19. 0〜20. 6ppmの吸収強度 B 1S プロピレンメチルに帰属される約 19. 0〜22. Oppmの吸収強度 Cに対して、下 記の関係式 (i)と (ii)を満たし、好ましくは、関係式 (i) '、(ii) '、更に好ましくは関係 式 (i) ' '、 (ii) ' 'を満たすことが好ま 、。
(A/C) X 100≤8 (i)
(B/C) X 100≥60 (ii)
(A/C) X 100≤ 7 (i),
(B/C) X 100≥64 (ii) '
(A/C) X 100≤ 6 (i),,
(B/C) X 100≥68 (ii),,
この範囲にあると、透明性、耐傷付性、耐衝撃性が良好となるため好ましい。
[0224] なお、この構造は、以下のようにして測定される。すなわち、試料 50mgを o—ジク ロロベンゼン Z重水素化ベンゼン = 5Zlの混合溶媒約 0. 5mlに溶解したものを日 本電子製 EX— 400型 NMR測定装置を用い、シングルプロトンパルスデカップリング の測定モードで、パルス幅 4. s、パルス間隔 5. 5s、 180ppmの観測範囲で、ィ匕 学シフト基準を炭素数 4〜20の α—ォレフイン由来の構成単位の CH (メチン)に由 来するシグナルの内、最も高磁場のピークを 34. 4ppmとして、 120°Cで13 C—NMR 測定を行う。積算回数は、 10, 000回以上とする。この範囲にあると、透明性、耐傷 付性、耐衝撃性が良好となるため好ましい。なお、共重合体が 1ーブテン由来の構成 単位を含む場合は、 1—ブテン由来の構成単位の CH (メチン)に由来するシグナル のうち、最も高磁場側のピークを 34. 4ppmとするものとする。
[0225] プロピレン' aーォレフイン共重合体(Z)において、炭素数 4〜20の α—ォレフイン は、 1—ブテンであることが好ましい。
[0226] このような、プロピレン' exーォレフイン共重合体 (Ζ)は、下記に示すメタ口セン系触 媒の存在下にプロピレン力 導かれる繰り返し単位が 30〜80モル0 /0、エチレンから 導かれる繰り返し単位が 0〜20モル0 /0、 a—ォレフインカも導かれる繰り返し単位が 10〜50モル0 /0となるようにプロピレンとエチレンと aーォレフインを共重合させて得ら れる。
[0227] このようなメタ口セン系触媒としては、
(a)下記一般式(1)で表される遷移金属化合物と、
(b) (b— 1)上記遷移金属化合物(a)中の遷移金属 Mと反応してイオン性の錯体を 形成する化合物、
(b 2)有機アルミニウムォキシィ匕合物、
(b 3)有機アルミニウム化合物
力 選ばれる少なくとも 1種の化合物とからなる少なくとも 1つの触媒系が挙げられる。
[0228] [化 8]
Figure imgf000052_0001
X 1
[0229] [式(1)中、 Mは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp2は Mと π 結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれら の誘導体基であり、 X1および X2は、ァ-オン性配位子または中性ルイス塩基配位子 であり、 Ζは C, Ο, Β, S, Ge, Siまたは Sn原子あるいはこれらの原子を含有する基 である。 ]。
[0230] 上記一般式(1)で表される遷移金属化合物の内でも、 Cpと Cp2が異なる基である 遷移金属化合物が挙げられ、より好ましくは Cp1および Cp2のうちのいずれか一方の 基がシクロペンタジェ -ル基またはその誘導体基であり、もう一方の基がフルォレニ ル基
またはその誘導体基であるような遷移金属化合物が挙げられる。これらの内でも、 Cp 1および Cp2のうちのいずれか一方の基がシクロペンタジェ -ル基またはその誘導体 基であり、もう一方の基がフルォレニル基またはその誘導体基であることが好ましい。 [0231] 本発明においては、上記プロピレン' a一才レフイン共重合体 (Z)製造用の触媒と しては、上記のようなメタ口セン系触媒が好ましく用いられる力 場合によっては上記 メタ口セン系触媒以外の、従来より公知の固体状チタン触媒成分と有機アルミニウム 化合物とからなるチタン系触媒や、可溶性バナジウム化合物と有機アルミニウム化合 物とからなるバナジウム系触媒を用いることもできる。
具体的な製造条件については、重複を避けるため繰り返し記載はしないが、上記 a一才レフイン共重合体 (I)の製造にっ 、て記載した方法に準じて製造することがで きる。
[0232] プロピレン. α—ォレフイン系重合体(ΖΖ)
本発明のプロピレン · α—ォレフイン系重合体(ΖΖ)は、
プロピレンと、炭素数 4〜20の α—ォレフインと、必要に応じてエチレンとを、下記一 般式(1)で表される遷移金属化合物を含む触媒の存在下に重合して得られ、 プロピレン由来の構成単位を 30〜80モル0 /0、エチレン由来の構成単位を 0〜30モ ル%、炭素数 4〜20の α—ォレフイン由来の構成単位を 10〜50モル0 /0 (ここでプロ ピレン由来の構成単位、エチレン由来の構成単位、炭素数 4〜20の (Xーォレフイン 由来の構成単位の合計量は 100モル%)の量含むことを特徴としている(ただしプロ ピレン.エチレン 2元共重合体を除く);
[0233] [化 9]
Figure imgf000053_0001
[0234] [式(1)中、 Μは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp2は Mと π 結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれら の誘導体基であり、 Cp1と Cp2は異なる基であり、 X1および X2は、ァ-オン性配位子 または中性ルイス塩基配位子であり、 Zは C, O, B, S, Ge, Sほたは Sn原子あるい はこれらの原子を含有する基である。 ]。 [0235] 用いられる ーォレフイン、量比、ヤングモジュラス、 [ ]、 Tg、 Mw/Mn,遷移金 属化合物(1)を含む触媒などは、重複を避けるため記載しないが、 αォレフィン系共 重合体 )についてと同じである。
[プロピレン系重合体組成物]
本発明のプロピレン系共重合体組成物は、非架橋である力または部分架橋された ォレフィン系熱可塑性エラストマ一(X)を 30〜80重量部、好ましくは 40〜70重量部 、ポリプロピレン (Υ) 0〜40重量部、好ましくは 0〜35重量部と、プロピレン由来の構 成単位を 30〜80モル0 /0、エチレン由来の構成単位を 0〜20モル0 /0の量含み、炭素 数 4〜20の aーォレフイン由来の構成単位を 10〜50モル0 /0の量含む前記プロピレ ン' α—ォレフイン共重合体 (Ζ) 5〜60重量部、好ましくは 5〜50重量部を含有する 。なおここで (Χ)、 (Υ)、 (Ζ)の合計は 100重量部である。また本発明における (Υ)と (Ζ)の比率としては、(Υ) / (Ζ)が重量比で特に OZlOO〜90ZlOの割合で あることが好ましぐより好ましくは OZlOO〜70Z30であり、さらに好ましくは 10Z90 〜40Ζ60である。
[0236] また本発明の別の態様であるプロピレン系共重合体組成物は、非架橋であるかま たは部分架橋されたォレフイン系熱可塑性エラストマ一 (X)を 30〜80重量部、好ま しくは 40〜70重量部、ポリプロピレン (Υ) 0〜40重量部、好ましくは 0〜 35重量部と 、プロピレン由来の構成単位を 30〜80モル0 /0、エチレン由来の構成単位を 0〜20 モル%の量含み、炭素数 4〜20の atーォレフイン由来の構成単位を 10〜50モル0 /0 の量含むプロピレン' ーォレフイン共重合体(ZZ) 5〜60重量部、好ましくは 5〜50 重量部を含有する。なおここで (Χ)、 (Υ)、 (ΖΖ)の合計は 100重量部である。また本 発明における (Υ)と (ΖΖ)の比率としては、 (Υ) / (ΖΖ)が重量比で特に OZlOO〜9 OZlOの割合であることが好ましぐより好ましくは 0Ζ100〜70Ζ30であり、さらに好 ましくは 10Ζ90〜40Ζ60である。
[0237] 本発明のプロピレン系共重合体組成物には、本発明の目的を損なわな!/、範囲で、 軟化剤、粘着付与剤、耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、 アンチブロッキング剤、防曇剤、滑剤、顔料、染料、可塑剤、架橋剤、架橋助剤、老 化防止剤、塩酸吸収剤、酸化防止剤等の添加剤、無水マレイン酸やアクリル酸、シラ ンカップリング剤等の変性剤、有機過酸ィ匕物などの架橋剤ゃジビュルベンゼン等の 架橋助剤等が必要に応じて配合されていてもよい。また、本発明の趣旨を逸脱しな い限りその他の共重合体を少量ブレンドすることができる。
[0238] 本発明に係るプロピレン系重合体組成物は、公知の任意の方法を採用して製造す ることができ、たとえば、非架橋である力または部分架橋されたォレフイン系熱可塑性 エラストマ一(X) 30〜80重量部と、プロピレン系重合体 (Y) 0〜40重量部、プロピレ ン · α—ォレフィン共重合体 (Ζ) 5〜60重量部(ここで (Χ)、 (Υ)、 (Ζ)の合計は 100 重量部である)および所望により添加される他成分を、押出機、ニーダ一等を用いて 一括で溶融混練することにより得られる。また別の態様においては、非架橋であるか または部分架橋されたォレフイン系熱可塑性エラストマ一 (X) 30〜80重量部と、プロ ピレン系重合体 (Υ) 0〜40重量部、プロピレン' aーォレフイン共重合体(ZZ) 5〜60 重量部(ここで (Χ)、 (Υ)、 (ΖΖ)の合計は 100重量部である)および所望により添加さ れる他成分を、押出機、ニーダ一等を用いて一括で溶融混練することにより得られる
[成形体]
上記のような本発明に係るプロピレン系重合体組成物は、従来公知のポリオレフィ ン用途に広く用いることができる力 特にポリオレフイン糸且成物をたとえばシート、未延 伸または延伸フィルム、パイプ、電線被覆、フィラメント、他の種々形状の成形体に成 形して利用することができる。
[0239] 成形体としては具体的には、押出成形、射出成形、インフレーション成形、ブロー 成形、押出ブロー成形、射出ブロー成形、プレス成形、真空成形、カレンダー成形、 発泡成形などの公知の熱成形方法により得られる成形体が挙げられる。以下に数例 挙げて成形体を説明する。
[0240] 本発明に係る成形体がたとえば押出成形あるいは射出成形体である場合、その形 状および製品種類は特に限定されないが、たとえばシート、フィルム (未延伸)、パイ プ、ホース、電線被覆、フィラメントなどが挙げられ、特にシート、表皮材、自動車内外 層材、建築資材などが好ましい。
[0241] プロピレン系重合体組成物を押出成形、射出成形する際には、従来公知の押出装 置、射出装置および成形条件を採用することができる。また押し出し成形の際、電子 線や γ線にて架橋処理を行うこともできる。
[0242] 本発明に係るプロピレン系共重合体組成物は、非架橋または部分架橋されたォレ フィン系熱可塑性榭脂に前記特定のプロピレン系共重合体を配合することにより、ゴ ム弾性を保持して、耐摩耗性、耐熱性とのバランスに優れたプロピレン系共重合体組 成物が得られる。
実施例
[0243] 以下、実施例に基づいて本発明をさらに具体的に説明する力 本発明はこれら実 施例に限定されるものではない。
[0244] 本発明にお 、て用いた物性の試験条件等を以下に記す。
1.残留歪み;
長さ 50mm、幅が 5mmの形状を有する厚さ lmmtのダンベル片を標線間 30mm、 引っ張り速度 30mmZminで 100% (チャック間を 60mmまで)歪みを与え、 10分間 保持した後に除荷 10分後の標線長さ (L)を測定した。
[0245] 残留歪み(%) = [ (L 30) /30] X 100。
2.引っ張り弾性率;
JIS K6301に準拠して、 JIS3号ダンベルを用い、スパン間: 30mm、引っ張り速度 : 30mmZminで 23°Cにて測定した。
3.耐熱性 (TMA):軟化温度 (°C);
JIS K7196に準拠し、厚さ lmmの試験片を用いて、昇温速度 5°CZminで 1. 8 πιπι φの平面圧子に 2KgZcm2の圧力をかけ、 TMA曲線より、軟化温度(°C)を求 めた。なお本明細書ではこの軟化温度のことを TMAと呼ぶことがある。
4.ヘイズ(%);
厚さ lmmの試験片を用いて、日本電色工業 (株)製のデジタル濁度計「NDH— 2 0DJにて測定した。
[0246] 5.耐摩耗性試験
東洋精機製、学振摩耗試験機を用いて、厚さ 2mmの試験片を用いて、 45R、 SU S製の摩耗圧子 470gの先端を綿帆布 # 10に覆い、これを 23°C、往復回数 100回、 往復速度 33回 Zmin、ストローク 100mmで試料を摩耗させ、その前後のグロス変化 率 Δ Glossを以下のようにして求めた。
Δ Gloss = [ (摩耗前の Gloss 摩耗後の Gloss) Z摩耗前の Gloss] X 100
6.耐白化性試験
10cm X 10cm X lmmtの試験片を左右対称となるように 180° 折り曲げ、これに 半径 5cm、重さ 10kgの円筒状の重りを 1時間乗せた後の白化の度合いを目視にて 観察し下記基準によって評価した。
〇:白化無し
△:僅かに白化
X:著しく白ィ匕
7.アイゾット衝撃強度
アイゾット衝撃強度は、射出成形試験片を用いて、 ASTM D— 256に準拠して 、下記の条件にて衝撃試験を行なって求めた。
<試験条件 >
試験片: 12. 7mm (幅) X 6. 4mm (厚さ) X 64mm (長さ)
ノッチ:機械加工
測定温度: 0°C及び 30°C。
8.ヒートシール性くヒートシール強度(HST) (gZl5mm幅) >;
キャストフィルム成形機を用いて、シリンダー温度 230°C、チルロール温度は 20°C、 スクリュー回転は 80rpmの条件下で幅 250mm幅、厚さ 50ミクロンの試験フィルムを 作成し、ヒートシール圧力; 2kgZcm2、ヒートシール時間; lsec、引っ張り速度; 300 mmZminにて測定した。
9.融点 (Tm)およびガラス転移温度 (Tg)
DSCの吸熱曲線を求め、最大ピーク位置の温度を Tmとする。
測定は、試料をアルミパンに詰め、 100°CZ分で 200°Cまで昇温し、 200°Cで 10分 間保持したのち、 100°C/分で—150°Cまで 10°C/minで降温し、ついで 10°C/ 分で昇温する際の吸熱曲線より求めた。
10.極限粘度 [ 7? ] 135°C、デカリン中で測定した。
11. Mw/Mn
GPC (ゲルパーミエーシヨンクロマトグラフィー)を用い、オルトジクロロベンゼン溶媒 で、 140°Cで測定した。
12. JIS A硬度;
JIS K6301に従って、 JIS A硬度 (HS)を測定した。
[0248] (合成例 1)
[プロピレン'ブテン ·エチレン共重合体(S— 1)の合成]
充分に窒素置換した 2000mlの重合装置に、 100mlの乾燥へキサン、 1ーブテン 4 80gとトリイソブチルアルミニウム(1. Ommol)を常温で仕込んだ後、重合装置内温を 35。Cに昇温し、プロピレンで 0. 6MPaにカロ圧し、次いでエチレンで 0. 62MPaにカロ 圧した。その後、ジフエ-ルメチレン(シクロペンタジェ -ル)フルォレ-ルジルコ-ゥ ムジクロライド 0. 005mmolとアルミニウム換算で 1. 5mmolのメチルアルミノキサン( 東ソー ·ファインケム社製)を接触させたトルエン溶液を重合器内に添加し、内温 35 。C、エチレン圧 0. 62MPaを保ちながら 5分間重合し、 20mlのメタノールを添力卩し重 合を停止した。脱圧後、 2Lのメタノール中で重合溶液力もポリマーを析出し、真空下 130°C、 12時間乾燥した。得られたポリマーは、 36. lgであった。また、ポリマーの 組成は、プロピレン含量が 58. 2mol%、エチレン含量が 4. lmol%、 1—ブテン含 量が 37. 7mol%であり、極限粘度 [ 7? ]が 2. 69dlZgであり、ガラス転移温度 Tgは — 18. 3°Cであり、融解ピークは存在せず、 GPCによる分子量分布は 2. 4であった。 また13 C— NMRで測定される吸収強度比 (AZC) X 100=4、 (B/C) X 100 = 78 であった。
[0249] 上記サンプルを用い、熱板温度 190°C、余熱 6分、加圧(lOOkgZcm2) 2分で成 形したのち、熱板温度 20°Cのプレス成形機に移して加圧(lOOkgZcm2)冷却するこ とにより lmm厚のシートを作製した。シート物性を以下に示す。
[0250] JISA硬度: 54 引っ張り弾性率: 4MPa Δ Gloss : 10%
得られたポリマーにつ ヽて測定した物性を表 1に示す。
[0251] (合成例 2) [プロピレン'ブテン ·エチレン共重合体(S— 2)の合成]
へキサンの仕込みを 500ml、 1 -ブテンを 240gにした以外は合成例 1と同様の方 法で重合を行った。得られたポリマーは、 39. 2gであった。また、ポリマーの組成は、 プロピレン含量が 67. 9mol%、エチレン含量が 5. lmol%、 1—ブテン含
量が 27. Omol%であり、極限粘度 [ 7? ]が 2. 89dlZgであり、ガラス転移温度 Tgは - 19. 7°Cであり、融解ピークは存在せず、 GPCによる分子量分布は 2. 0であった。 また13 C— NMRで測定される吸収強度比 (AZC) X 100 = 3、 (B/C) X 100 = 81 であった。
[0252] 上記サンプルを用い、熱板温度 190°C、余熱 6分、加圧(lOOkgZcm2) 2分で成 形したのち、熱板温度 20°Cのプレス成形機に移して加圧(lOOkgZcm2)冷却するこ とにより lmm厚のシートを作製した。シート物性を以下に示す。
[0253] JISA硬度: 51 引っ張り弾性率: 2MPa Δ Gloss : 7%
得られたポリマーにつ ヽて測定した物性を表 1に示す。
[0254] (合成例 3)
[プロピレン'ブテン ·エチレン共重合体(S— 3)の合成]
プロピレンで 5. 4MPaに加圧した以外は合成例 2と同様の方法で重合を行った。 得られたポリマーは、 82. 6gであった。また、ポリマーの組成は、プロピレン含量が 6 1. 3mol%、エチレン含量が 10. 3mol%、 1ーブテン含量が 28. 4mol%であり、極 限粘度 [ r? ]が 2. 67dlZgであり、ガラス転移温度 Tgは 24. 7°Cであり、融解ピー クは存在せず、 GPCによる分子量分布は 2. 0であった。また13 C—NMRで測定され る吸収強度比 (AZC) X 100 = 3、 (B/C) X 100 = 79であった。
[0255] 上記サンプルを用い、熱板温度 190°C、余熱 6分、加圧(lOOkgZcm2) 2分で成 形したのち、熱板温度 20°Cのプレス成形機に移して加圧(lOOkgZcm2)冷却するこ とにより lmm厚のシートを作製した。シート物性を以下に示す。
[0256] JISA硬度: 51 引っ張り弾性率: 2MPa Δ Gloss : 20%
得られたポリマーにつ ヽて測定した物性を表 1に示す。
[0257] (合成例 4)
[プロピレン'ブテン ·エチレン共重合体(S— 4)の合成] ジフエ-ルメチレン(シクロペンタジェ -ル)フルォレ -ルジルコニウムジクロライドを ジフエ-ルメチレン(シクロペンタジェ -ル)(オタタメチルジヒドロべンゾィルフルォレ
-ル)ジルコニウムジクロリドに変更した以外は合成例 2と同様の方法で重合を行った 。得られたポリマーは、 48. 3gであった。また、ポリマーの組成は、プロピレン含量が 64. 3mol%、エチレン含量が 8. 3mol%、 1ーブテン含量が 27. 4mol%であり、極 限粘度 [ r? ]が 3. 67dlZgであり、ガラス転移温度 Tgは 22. 1°Cであり、融解ピー クは存在せず、 GPCによる分子量分布は 2. 0であった。また13 C—NMRで測定され る吸収強度比 (AZC) X 100 = 3、 (B/C) X 100 = 81であった。
[0258] 上記サンプルを用い、熱板温度 190°C、余熱 6分、加圧(lOOkgZcm2) 2分で成 形したのち、熱板温度 20°Cのプレス成形機に移して加圧(lOOkgZcm2)冷却するこ とにより lmm厚のシートを作製した。シート物性を以下に示す。
JISA硬度: 54 引っ張り弾性率: 4MPa A Gloss: 9%。
得られたポリマーにつ ヽて測定した物性を表 1に示す。
[0259] (合成例 5)
[プロピレン'ブテン ·エチレン共重合体(S— 5)の合成]
プロピレンで 0. 47MPaとした以外は、実施例 3と同様の方法で重合を行った。得 られたポリマーは、 120. lgであった。また、ポリマーの糸且成は、プロピレン含量が 40 . 8mol%、エチレン含量が 23. 5mol%、 1ーブテン含量が 35. 7mol%であり、極限 粘度 [ r? ]が 1. 52dlZgであり、ガラス転移温度 (Tg)がー 36. 3°C、融解ピークは存 在せず、 GPCによる分子量分布は 2. 0であった。
[0260] また 13C—NMRで測定される吸収強度比(AZC) X 100=4、 (B/C) X 100 = 82であった。
[0261] 上記サンプルを用い、熱板温度 190°C、余熱 6分、加圧(lOOkgZcm2) 2分で成 形したのち、熱板温度 20°Cのプレス成形機に移して加圧(lOOkgZcm2)冷却するこ とにより lmm厚のシートを作製した。シート物性を以下に示す。
[0262] JISA硬度: 45 引っ張り弾性率: 2MPa Δ Gloss : 60%。
得られたポリマーにつ ヽて測定した物性を表 1に示す。
[0263] (合成例 6) [プロピレン'ブテン共重合体 (S— 6)の合成]
充分に窒素置換した 1500mlの重合装置に、 717mlの乾燥へキサン、 1—ブテン 2 Ogとトリイソブチルアルミニウム (0. 75mmol)を常温で仕込んだ後、重合装置内温を 70°C〖こ昇温し、プロピレンで 0. 6MPa〖こカロ圧した。次いで、ジフエ-ルメチレン(シク 口ペンタジェ -ル)フルォレ -ルジルコニウムジクロライド 0. 075mmolとアルミニウム 換算で 0. 45mmolのメチルアルミノキサン (東ソ一 ·ファインケム社製)を接触させたト ルェン溶液を重合器内に添加し、内温 70°C、プロピレン圧 0. 6MPaを保ちながら 30 分間重合し、 20mlのメタノールを添加し重合を停止した。脱圧後、 2Lのメタノール中 で重合溶液カゝらポリマーを析出し、真空下 130°C、 12時間乾燥した。得られたポリマ 一は、 100. 2gであった。また、ポリマーの融点が 87. 6°Cであり、極限粘度 [ r? ]が 1 . 40dlZgであり、ブテン含量が 20. 3モル%で、ガラス転移温度は 5. 6°Cであつ た。 GPCにより測定した分子量分布(MwZMn)は 2. 3であった。また13 C—NMR で測定される吸収強度比 (AZC) X 100 = 2、 (B/C) X 100 = 80であった。
[0264] (合成例 7)
[プロピレン'ブテン共重合体 (S— 7)の合成]
充分に窒素置換した 1500mlの重合装置に、 677mlの乾燥へキサン、 1ーブテン 5 0gとトリイソブチルアルミニウム (0. 75mmol)を常温で仕込んだ後、重合装置内温を 70°C〖こ昇温し、プロピレンで 0. 6MPa〖こカロ圧した。次いで、ジフエ-ルメチレン(シク 口ペンタジェ -ル)フルォレ -ルジルコニウムジクロライド 0. 075mmolとアルミニウム 換算で 0. 45mmolのメチルアルミノキサン (東ソ一 ·ファインケム社製)を接触させたト ルェン溶液を重合器内に添加し、内温 70°C、プロピレン圧 0. 6MPaを保ちながら 37 分間重合し、 20mlのメタノールを添加し重合を停止した。脱圧後、 2Lのメタノール中 で重合溶液カゝらポリマーを析出し、真空下 130°C、 12時間乾燥した。得られたポリマ 一は、 124. lgであった。また、ポリマーの融点が 77. 2°Cであり、極限粘度 [ r? ]が 1 . 18dlZgであり、ブテン含量が 27. 6モル%で、ガラス転移温度は 6. 8°Cであつ た。 GPCにより測定した分子量分布(MwZMn)は 2. 2であった。また13 C— NMR で測定される吸収強度比 (AZC) X 100=4、 (B/C) X 100 = 79であった。
[0265] (合成例 8) [プロピレン'ブテン共重合体 (S— 8)の合成]
充分に窒素置換した 1500mlの重合装置に、 500mlの乾燥へキサン、 1ーブテ ン 150gとトリイソブチルアルミニウム(0. 75mmol)を常温で仕込んだ後、重合装置 内温を 30°Cに昇温し、プロピレンで 0. 6MPaにカロ圧した。次いで、ジフエ-ルメチレ ン(シクロペンタジェ -ル)フルォレ -ルジルコニウムジクロライド 0. 0325mmolとァ ルミ-ゥム換算で 0. 45mmolのメチルアルミノキサン(東ソ一'ファインケム社製)を接 触させたトルエン溶液を重合器内に添カ卩し、内温 30°C、プロピレン圧 0. 6MPaを保 ちながら 30分間重合し、 20mlのメタノールを添加し重合を停止した。脱圧後、 2Lの メタノール中で重合溶液力もポリマーを析出し、真空下 130°C、 12時間乾燥した。得 られたポリマーは、 109. Ogであった。また、ポリマーの融点は存在せず、極限粘度 [ 7? ]が 2. 15dlZgであり、ブテン含量が 35. 6モル%で、ガラス転移温度は 10. 6 °Cであった。 GPCにより測定した分子量分布(MwZMn)は 2. 3であった。また13 C —NMRで測定される吸収強度比(AZC) X 100=4、(8 じ) 100 = 73でぁった
[0266] (合成例 9)
[プロピレン'オタテン共重合体 (S— 9)の合成]
充分に窒素置換した 1500mlの重合装置に、 500mlの乾燥へキサン、 1—オタテン 150gとトリイソブチルアルミニウム(2. 25mmol)を常温で仕込んだ後、重合装置内 温を 30°Cに昇温し、プロピレンで 0. 6MPa〖こカロ圧した。次いで、ジフエ-ルメチレン( シクロペンタジェ -ル)フルォレ -ルジルコニウムジクロライド 0. 075mmolとアルミ二 ゥム換算で 0. 45mmolのメチルアルミノキサン(東ソ一'ファインケム社製)を接触さ せたトルエン溶液を重合器内に添カ卩し、内温 70°C、プロピレン圧 0. 6MPaを保ちな 力 30分間重合し、 20mlのメタノールを添加し重合を停止した。脱圧後、 2Lのメタノ ール中で重合溶液からポリマーを析出し、真空下 130°C、 12時間乾燥した。得られ たポリマーは、 51. 2gであった。また、ポリマーの融点が 87. 6°Cであり、極限粘度 [ τ? ]が 2. 57dlZgであり、オタテン含量が 20. 1モル%で、ガラス転移温度は 19. 6°Cであった。 GPCにより測定した分子量分布(MwZMn)は 2. 4であった。
[0267] (合成例 10) [プロピレン'ブテン共重合体 (S— 10)の合成]
充分に窒素置換した 2000mlの重合装置に、 833mlの乾燥へキサン、 1ーブテン 1 50gとトリイソブチルアルミニウム(1. Ommol)、次いで、ジフエ-ルメチレン(シクロべ ンタジェ -ル)フルォレ -ルジルコニウムジクロリドを 0. OOlmmolとアルミニウム換算 で 0. 3mmolのメチルアルミノキサン(東ソ一'ファインケム社製)を接触させたトルェ ン溶液を重合器内に添加し、重合装置内温を 40°Cに昇温し、プロピレンで系内の圧 力を 0. 76MPa〖こなるよう〖こカロ圧し、内温 40°C、系内圧力を 0. 76MPaにプロピレン で保ちながら 20分間重合し、 20mlのメタノールを添加し重合を停止した。脱圧後、 2 Lのメタノール中で重合溶液力 ポリマーを析出し、真空下 130°C、 12時間乾燥した 。得られたポリマーは、 10. 4gであった。
[0268] 135°Cデカリン中で測定した極限粘度 [ 7? ]は、 1. 81dlZgであり、ガラス転移温度 Tgは— 14°Cであり、融解ピークは存在せず、ブテン含量は 44. 0モル%であり、 GP Cによる分子量分布は 2. 1であった。また13 C— NMRで測定される吸収強度比 (A/ C) X 100 = 5、 (B/C) X 100 = 70であった。
[0269] 上記サンプルを用い、熱板温度 190°C、予熱 6分、加圧(lOOkgZcm2) 2分で成 形したのち、熱板温度 20°Cのプレス成形機に移して加圧(lOOkgZcm2)冷却するこ とにより lmm厚のシートを作製した。シート物性を以下に示す。
[0270] JISA硬度: 95 引っ張り弾性率: 120MPa Δ Gloss : 10%
得られたポリマーにつ ヽて測定した物性を表 1に示す。
[0271] (合成例 11)
[プロピレン'エチレン共重合体(S— 11)の合成]
減圧乾燥および窒素置換してある 1. 5リットルのオートクレープに、常温でヘプタン を 750ml加え、続いてトリイソブチルアルミニウムの 1. 0ミリモル Zmlトルエン溶液を アルミニウム原子に換算してその量が 0. 3ミリモルとなるように 0. 3ml加え、撹拌下に プロピレンを 50. 7リットル(25°C、 1気圧)装入し、昇温を開始し 30°Cに到達させた。 その後、系内をエチレンで 5. 5kg/cm2Gとなるように加圧し、公知の方法で合成し たジフエ-ルメチレン(シクロペンタジェ -ル)(フルォレ -ル)ジルコニウムジクロリドの ヘプタン溶液(0. 0002mMZml)を 3. 75ml,トリフエ-ルカルベ-ゥムテトラ(ペン タフルォロフエ-ル)ボレートのトルエン溶液(0. 002mMZml)を 2. Omlカ卩え、プロ ピレンとエチレンの共重合を開始させた。この時の触媒濃度は、全系に対してジフエ -ルメチレン(シクロペンタジェ -ル)(フルォレ -ル)ジルコニウムジクロリドが 0. 001 ミリモル Zリットル、トリフエ-ルカルベ-ゥムテトラ(ペンタフルォロフエ-ル)ボレート 力 O. 004ミリモル Zリットルであった。
[0272] 重合中、エチレンを連続的に供給することにより、内圧を 5. 5kgZcm2Gに保持し た。重合を開始して 30分後、重合反応をメチルアルコールを添加することにより停止 した。脱圧後、ポリマー溶液を取り出し、このポリマー溶液に対して、水 1リットルに対 して濃塩酸 5mlを添加した水溶液を 1: 1の割合で用いてこのポリマー溶液を洗浄し、 触媒残渣を水相に移行させた。この触媒混合溶液を静置したのち、水相を分離除去 しさらに蒸留水で 2回洗浄し、重合液相を油水分離した。次いで、油水分離された重 合液相を 3倍量のアセトンと強撹拌下に接触させ、重合体を析出させたのち、ァセト ンで十分に洗浄し固体部(共重合体)を濾過により採取した。窒素流通下、 130°C、 3 50mmHgで 12時間乾燥した。
[0273] 以上のようにして得られたプロピレン ·エチレン共重合体の 135°Cデカリン中で測定 した極限粘度 [ r? ]は 2. 4dlZgであり、ガラス転移温度は 28°Cであり、エチレン含 量は 20モル%であり、 GPCにより測定した分子量分布(MwZMn)は 2. 9であった 。また13 C— NMRで測定される吸収強度比 (AZC) X 100=4、 (B/C) X 100 = 7 8であった。
[0274] (合成例 12)
[ァイソタクティックプロピレン'エチレン'ブテン共重合体 (S— 12)の合成] 充分に窒素置換した 2000mlの重合装置に、 833mlの乾燥へキサン、 1ーブテン 1 00gとトリイソブチルアルミニウム(1. Ommol)を常温で仕込んだ後、重合装置内温を 40°C〖こ昇温し、プロピレンで系内の圧力を 0. 76MPa〖こなるよう〖こカロ圧した後〖こ、ェ チレンで、系内圧力を 0. 8MPa〖こ調整した。次いで、ジメチルメチレン(3— tert ブ チルー 5—メチルシクロペンタジェ -ル)フルォレ -ルジルコニウムジクロライド 0. 00 lmmolとアルミニウム換算で 0. 3mmolのメチルアルミノキサン(東ソ一'ファインケム 社製)を接触させたトルエン溶液を重合器内に添加し、内温 40°C、系内圧力を 0. 8 MPaにエチレンで保ちながら 20分間重合し、 20mlのメタノールを添カ卩し重合を停止 した。脱圧後、 2Lのメタノール中で重合溶液力もポリマーを析出し、真空下 130°C、 1 2時間乾燥した。得られたポリマーは、 46. 4gであり、極限粘度 [ 7? ]が 1. 81dlZgで めつに。
[0275] 得られたポリマーの 135°Cデカリン中で測定した極限粘度 [ 7? ]は、 1. 81dlZgで あり、ガラス転移温度 Tgは 27. 6°Cであり、融解ピークは存在せず、エチレン 含量は 17. 0モル%、ブテン含量は 9. 2モル%であり、 GPCによる分子量分布は 2. 2であった。
[0276] (合成例 13)
[シンジオタクチックポリプロピレン (A— 1)の合成]
特開平 2— 274763号公報に記載の方法に従 、、ジフエニルメチレン (シクロペンタ ジェ -ル)フルォレニルジルコニウムジクロライドおよびメチルアルミノキサンからなる 触媒を用いて、水素の存在下でプロピレンの塊状重合法によって得られたシンジォ タクチックポリプロピレンのメルトフローインデックス力 4. 4gZl0min、 GPCによる 分子量分布は 2. 3、 13C—NMRによって測定されたシンジオタクチックペンタッド分 率 (r. r. r. r)が 0. 823、示差走査熱量分析で測定した Tmが 127°C、 Tcが 57°Cで めつに。
[0277] 合成例 1〜 12で得られた共重合体の諸物性を表 1に示した。
[0278] [表 1]
Figure imgf000066_0001
[0279] (実施例 1)
三井ィ匕学 (株)製ァイソタクティックポリプロピレン (ァイソ一 PP) (グレード: B101、 M FR=0. 5、融点 165°C) (Ila) 10重量部と、合成例 1で得られたプロピレン 'エチレン 'ブテン共重合体 (S— 1) 90重量部とを混合し、溶融混練により熱可塑性榭脂組成 物を得た。
[0280] この組成物の引張り弾性率は 17MPaであり、 TMAは 126°C、グロス変化率 A Glo ssは 10、残留歪は 6、 JIS A硬度は 74、ヘイズは 7であった。
得られた榭脂組成物について測定した物性を表 2に示す。
[0281] (実施例 2)
実施例 1において、三井ィ匕学 (株)製ァイソタクティックポリプロピレン (ァイソ一 PP) ( グレード: B101、 MFR=0. 5,融点 165°C) (Ila)を 20重量部、合成例 1で得られた プロピレン'エチレン'ブテン共重合体 (S— 1)を 80重量部に変えた以外は、実施例 1と同様にして熱可塑性榭脂組成物を得た。得られた榭脂組成物につ ヽて測定した 物性を表 2に示す。
この組成物の引張り弾性率は 27MPaであり、 TMAは 155°C、グロス変化率 A Glo ssは 10、残留歪は 8、 JIS A硬度は 82、ヘイズは 10であった。
[0282] (実施例 3)
実施例 1にお 、て、合成例 1で得られたプロピレン ·エチレン ·ブテン共重合体 (S - 1)を合成例 2で得られたプロピレン'エチレン'ブテン共重合体 (S— 2)に変えた以外 は、実施例 1と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 34MPaであり、 TMAは 134°C、グロス変化率 A Glo ssは 8、残留歪は 8、 JIS A硬度は 85、ヘイズは 6であった。得られた榭脂組成物に っ 、て測定した物性を表 2に示す。
[0283] (実施例 4)
実施例 2にお 、て、合成例 1で得られたプロピレン ·エチレン ·ブテン共重合体 (S - 1)を合成例 2で得られたプロピレン'エチレン'ブテン共重合体 (S— 2)に変えた以外 は、実施例 2と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 44MPaであり、 TMAは 154°C、グロス変化率 A Glo ssは 9、残留歪は 8、 JIS A硬度は 88、ヘイズは 7であった。得られた榭脂組成物に っ 、て測定した物性を表 2に示す。
[0284] (実施例 5)
実施例 1にお 、て、合成例 1で得られたプロピレン ·エチレン ·ブテン共重合体 (S - 1)を合成例 3で得られたプロピレン'エチレン'ブテン共重合体 (S— 3)に変えた以外 は、実施例 1と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 17MPaであり、 TMAは 134°C、グロス変化率 A Glo ssは 11、残留歪は 8、 JIS A硬度は 76、ヘイズは 9であった。得られた榭脂組成物に っ 、て測定した物性を表 2に示す。
[0285] (実施例 6)
実施例 2にお 、て、合成例 1で得られたプロピレン ·エチレン ·ブテン共重合体 (S - 1)を合成例 3で得られたプロピレン'エチレン'ブテン共重合体 (S— 3)に変えた以外 は、実施例 2と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 24MPaであり、 TMAは 154°C、グロス変化率 A G lossは 10、残留歪は 8、 JIS A硬度は 82、ヘイズは 8であった。得られた榭脂組成物 について測定した物性を表 2に示す。
[0286] (実施例 7)
実施例 2にお 、て、合成例 1で得られたプロピレン ·エチレン ·ブテン共重合体 (S - 1)を合成例 4で得られたプロピレン'エチレン'ブテン共重合体 (S— 4)に変えた以外 は、実施例 2と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 27MPaであり、 TMAは 156°C、グロス変化率 A Glo ssは 7、残留歪は 7、 JIS A硬度は 81、ヘイズは 8であった。得られた榭脂組成物に っ 、て測定した物性を表 2に示す。
[0287] (実施例 8)
実施例 2にお 、て、合成例 1で得られたプロピレン ·エチレン ·ブテン共重合体 (S - 1)を合成例 5で得られたプロピレン'エチレン'ブテン共重合体 (S— 5)に変えた以外 は、実施例 2と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 24MPaであり、 TMAは 126°C、グロス変化率 A Glo ssは 47、残留歪は 9、 JIS A硬度は 81、ヘイズは 38であった。得られた榭脂組成物 について測定した物性を表 2に示す。
[0288] (比較例 1)
実施例 2にお 、て、合成例 1で得られたプロピレン ·エチレン ·ブテン共重合体 (S - 1)を合成例 10で得られたプロピレン'ブテン共重合体 (S— 10)に変えた以外は、実 施例 2と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 184MPaであり、 TMAは 154°C、グロス変化率 A G1 ossは 9、残留歪は 28、 JIS A硬度は 95、ヘイズは 14であった。得られた榭脂組成 物について測定した物性を表 2に示す。
[0289] (比較例 2)
実施例 2にお 、て、合成例 1で得られたプロピレン ·エチレン ·ブテン共重合体 (S - 1)を合成例 11で得られたプロピレン 'エチレン共重合体 (S— 11)に変えた以外は、 実施例 2と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 14MPaであり、 TMAは 64°C、グロス変化率 A Glos sは 59、残留歪は 28、 JIS A硬度は 75、ヘイズは 74であった。得られた榭脂組成物 について測定した物性を表 2に示す。
[0290] (比較例 3)
実施例 2にお 、て、合成例 1で得られたプロピレン ·エチレン ·ブテン共重合体 (S - 1)を合成例 12で得られたプロピレン'エチレン'ブテン共重合体 (S— 12)に変えた 以外は、実施例 2と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 24MPaであり、 TMAは 154°C、グロス変化率 A Glo ssは 39、残留歪は 8、 JIS A硬度は 82、ヘイズは 12であった。得られた榭脂組成物 について測定した物性を表 2に示す。
[0291] [表 2] 〕室) (¾薪02929
表 2
実施例実施例実施例実施例実施例実施例実施例実施例比較例比較例比較例 1 2 3 4 5 6 7 8 1 2 3 樹脂 フ。ロピレン · Iチレン■フ'テン共重合体 (S-1 ) 90 80
組成物 フ。ロピレン■エチレン■ブ亍ン共重合体(S-2) 90 80
プロピレン■エチレン■ブテン共重合体(S- 3) 90 80
プロピレン - 1チレン-フ τン共重合体(S-4) 80
プロピレン ·エチレン■フ τン共重合体(S-5) 80
プロピレン■ 亍ン共重合体(S- 10) 80 プロピレン · Ιチレン共重合体 (S-1 1 ) 80 プロピレン 'エチレン ·ブテン共重合体(S - 12) 80 ァイソ- PP (Ha) 10 20 10 20 10 20 20 20 20 20 20 樹脂 引張り弾性率 (Mpa) 17 27 34 44 17 24 27 24 184 14 24 組成物 TMA (°C) 126 155 134 154 134 154 156 126 154 64 154 の物性 Δ Gloss (%) 10 10 8 9 1 1 10 7 47 9 59 49 残留歪 (%) 6 8 8 8 8 8 7 9 28 28 8
JIS A硬度 74 82 85 88 76 82 81 81 95 75 82 ヘイズ 7 10 6 7 9 8 8 38 14 74 12
熱可塑性榭脂 (lib)として合成例 13で得られたシンジォタクチックポリプロピレン (シ ンジォ PP) (A- 1) 10重量部と、合成例 3で得られたプロピレン 'エチレン 'ブテン 共重合体 (S— 3) 90重量部とを混合し、溶融混練により熱可塑性榭脂組成物を得た この組成物の引張り弾性率は 7MPaであり、 TMAは 106°C、グロス変化率 A Glos sは 9、残留歪は 6、 JIS A硬度は 74、ヘイズは 7であった。得られた榭脂組成物につ V、て測定した物性を表 3に示す。
[0293] (実施例 10)
実施例 9にお 、て、合成例 13で得られたシンジオタクチックポリプロピレン (シンジ ォー PP) (A— 1)を 20重量部、合成例 3で得られたプロピレン 'エチレン 'ブテン共重 合体 (S— 3)を 80重量部に変えた以外は、実施例 9と同様にして熱可塑性榭脂組成 物を得た。
この組成物の引張り弾性率は 24MPaであり、 TMAは 116°C、グロス変化率 A Glo ssは 5、残留歪は 8、 JIS A硬度は 83、ヘイズは 10であった。得られた榭脂組成物に っ 、て測定した物性を表 3に示す。
[0294] (実施例 11)
実施例 10にお 、て、合成例 3で得られたプロピレン ·エチレン'ブテン共重合体 (S - 3)を合成例 4で得られたプロピレン'エチレン'ブテン共重合体 (S— 4)に変えた以 外は、実施例 10と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 17MPaであり、 TMAは 114°C、グロス変化率 A Glo ssは 6、残留歪は 8、 JIS A硬度は 80、ヘイズは 10であった。得られた榭脂組成物に っ 、て測定した物性を表 3に示す。
[0295] (実施例 12)
実施例 10にお 、て、合成例 3で得られたプロピレン ·エチレン'ブテン共重合体 (S - 3)を合成例 5で得られたプロピレン'エチレン'ブテン共重合体 (S— 5)に変えた以 外は、実施例 10と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 17MPaであり、 TMAは 100°C、グロス変化率 A Glo ssは 16、残留歪は 10、 JIS A硬度は 80、ヘイズは 20であった。得られた榭脂組成 物につ 、て測定した物性を表 3に示す。
[0296] (比較例 4)
実施例 10にお 、て、合成例 3で得られたプロピレン ·エチレン'ブテン共重合体 (S - 3)を合成例 10で得られたプロピレン'ブテン共重合体 (S— 10)に変えた以外は、 実施例 10と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 164MPaであり、 TMAは 120°C、グロス変化率 A G1 ossは 5、残留歪は 28、 JIS A硬度は 95以上、ヘイズは 14であった。得られた榭脂 組成物につ 、て測定した物性を表 3に示す。
[0297] (比較例 5)
実施例 10にお 、て、合成例 3で得られたプロピレン ·エチレン'ブテン共重合体 (S - 3)を合成例 11で得られたプロピレン 'エチレン共重合体 (S— 11)に変えた以外は 、実施例 10と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 19MPaであり、 TMAは 102°C、グロス変化率 A Glo ssは 25、残留歪は 8、 JIS A硬度は 81、ヘイズは 8であった。得られた榭脂組成物に っ 、て測定した物性を表 3に示す。
[0298] (比較例 6)
実施例 10にお 、て、合成例 3で得られたプロピレン ·エチレン'ブテン共重合体 (S - 3)を合成例 12で得られたプロピレン 'エチレン共重合体 (S— 12)に変えた以外は 、実施例 10と同様にして熱可塑性榭脂組成物を得た。
この組成物の引張り弾性率は 19MPaであり、 TMAは 102°C、グロス変化率 Δ Gloss は 35、残留歪は 14、 JIS A硬度は 81、ヘイズは 38であった。得られた榭脂組成物 につ 、て測定した物性を表 3に示す。
[0299] [表 3]
Figure imgf000073_0001
[0300] (実施例 13)
合成例 13で得られたシンジォタクティックポリプロピレン (A— 1) 80重量部と、合成 例 6で得られたプロピレン'ブテン共重合体 (S— 6) 20重量部とを混合し、溶融混練 によりポリプロピレン榭脂組成物を得た。得られた物性を表 4に示す。
[0301] (実施例 14)
実施例 13にお 、て、合成例 6で得られたプロピレン ·ブテン共重合体 (S— 6)の代 わりに、合成例 7で得られたプロピレン'ブテン共重合体 (S— 7)を用いた以外は実施 例 13と同様に行い、ポリプロピレン榭脂組成物を得た。得られた物性を表 4に示す。
[0302] (実施例 15)
実施例 13にお 、て、合成例 6で得られたプロピレン ·ブテン共重合体 (S— 6)の代 わりに、合成例 8で得られたプロピレン'ブテン共重合体 (S— 8)を用いた以外は実施 例 13と同様に行い、ポリプロピレン榭脂組成物を得た。得られた物性を表 4に示す。
[0303] (実施例 16)
実施例 13にお 、て、合成例 6で得られたプロピレン ·ブテン共重合体 (S— 6)の代 わりに、合成例 9で得られたプロピレン'オタテン共重合体 (S— 9)を用いた以外は実 施例 13と同様に行い、ポリプロピレン榭脂組成物を得た。得られた物性を表 4に示す
[0304] (実施例 17)
三井化学 (株)製ァイソタクティックポリプロピレンランダム共重合体 (グレード: F33 7D、 MFR=6. 5,エチレン含量 = 3. lwt%、融点 138°C) (A— 2)を 80重量部、 合成例 7で得られたプロピレン'ブテン共重合体 (S— 7) 20重量部とを混合し、溶融 混練によりポリプロピレン榭脂組成物を得た。得られた物性を表 4に示す。
[0305] (実施例 18)
実施例 17において、合成例 7で得られたプロピレン'ブテン共重合体 (S— 7)の 代わりに、合成例 8で得られたプロピレン'ブテン共重合体 (S— 8)を用いた以外は実 施例 17と同様に行い、ポリプロピレン榭脂組成物を得た。得られた物性を表 4に示す
[0306] (実施例 19)
実施例 17において、合成例 7で得られたプロピレン'ブテン共重合体 (S— 7)の代 わりに、合成例 9で得られたプロピレン'オタテン共重合体 (S— 9)を用いた以外は実 施例 17と同様に行い、ポリプロピレン榭脂組成物を得た。得られた物性を表 4に示す
[0307] (実施例 20)
三井化学 (株)製ァイソタクティックポリプロピレンブロック共重合体 (グレード: J736 、 MFR= 26. 0,エチレン含量 = 2. 6wt%、融点 164°C) (A— 3)を 70重量部、合 成例 8で得られたプロピレン'ブテン共重合体 (S— 8)を 10重量部、三井化学 (株)製 エチレン'ブテン共重合体(グレード: A4070、 MFR= 7. 1,エチレン含量 =84. 1 モル0 /0) (C— 1) 20重量部とを混合し、溶融混練によりポリプロピレン榭脂組成物を 得た。得られた物性を表 4に示す。
[0308] (実施例 21)
実施例 17において、合成例 7で得られたプロピレン'ブテン共重合体 (S— 7)の代 わりに、合成例 1で得られたプロピレン'エチレン ·ブテン共重合体 (S— 1)を用いた 以外は実施例 17と同様に行い、ポリプロピレン榭脂組成物を得た。得られた物性を 表 4に示す。
[0309] (実施例 22)
実施例 17において、合成例 7で得られたプロピレン'ブテン共重合体 (S— 7)の代 わりに、合成例 2で得られたプロピレン'エチレン ·ブテン共重合体 (S— 2)を用いた 以外は実施例 17と同様に行い、ポリプロピレン榭脂組成物を得た。得られた物性を 表 4
に示す。
[0310] (比較例 7)
実施例 17において、合成例 7で得られたプロピレン'ブテン共重合体 (S— 7)の代 わりに、合成例 11で得られたプロピレン 'エチレン共重合体 (S— 11)を用いた以外 は実施例 17と同様に行い、ポリプロピレン榭脂組成物を得た。得られた物性を表 4に 示す。
[0311] (比較例 8)
三井化学 (株)製ァイソタクティックポリプロピレンブロック共重合体 (グレード: J736 、 MFR= 26. 0,エチレン含量 = 2. 6wt%、融点 164°C) (A— 3)を 70重量部、三 井化学 (株)製エチレン'ブテン共重合体(グレード: A4070、 MFR= 7. 1,エチレン 含量 =84. 1モル%) (C— 1) 30重量部とを混合し、溶融混練によりポリプロピレン榭 脂組成物を得た。得られた物性を表 4に示す。
[0312] [表 4] 表 4 実施例 実施例 実施例 実施例 実施例実施例 実施例 実施例 実施例 実施例 比較例 比較例 項目 13 14 15 16 17 18 19 20 21 22 7 8 シンシ 'オタクテユック木'リブ叱'レン (A— 1 ) 80 BO 80 80 80
アイ'ノタクテイククホ'リブ叱'レンランダム共重合体 (A- 2) 80 80 80 80 80 ァイソタクテイククホ'リブロビレンフ'ロック共重合体 (A- 3) 70 70 フ¾ビレン · テン共重合体は - 6) 20
フ'ロピレン- テン共重合体は- 7) 20 20
フ Qビレン ·プ亍ン共重合体 (S- 8) 20 20 10
ブロビレン '才クテン共重合体 (S- 9) 20 20
プロピレン- 1チレン共重合体 (S - 1 1) 20
7ロビレン · Ιチレン 'テン共重合体 (S-1 ) 20
プロピレン - ILチレン■ テン共重合体 (S - 2) 20
エチレン 'フ'テンランダム共重合体 (C- 1) 20 30 引っ張り弾性率 (YMXMpa) 440 420 410 370 570 550 520 1200 470 390 590 1000 透明性 (HaZe)(X) 12 10 12 10 25 15 14 75 15 10 86 92 耐摩耗性 ( A GIossXX) 3 3 3 5 3 3 5 12 3 3 3 29
TMA(¾) 127 127 127 127 138 138 137 165 138 127 125 165 耐白化性 o O O O O O O O O O X X アイゾット衝撃強度 (0°C、 J/m) 38 48 60 74 54 72 81 74 62 81 アイゾット衝撃強度 (_30°C, J/m) 29 32 ヒートシール性(90°C) (N/15mm) 2.6 2.9 28 3.2 2.9 2.9 3.1 2.9 3.2 0.4
[0313] (実施例 23)
非架橋または部分架橋されたォレフイン系熱可塑性エラストマ一、三井化学 (株)製 、ミラストマー 5030N、 60重量部(ァイソタクチックポリプロピレン 15重量0 /0およびェ チレン'炭素数 3以上の a—ォレフイン'非共役ポリェン共重合体 50重量0 /0を含む) に対して、合成例 13で得られたシンジオタクチックホモポリプロピレン (Y— 1) 8重量 部と合成例 2で得られたプロピレン'エチレン'ブテン共重合体 (S— 2) 32重量部を添 加し、溶融混練によりプロピレン系重合体組成物を得た。得られた組成物を 200°Cに て溶融プレス成形を行い、所望の試験形状にて物性評価を実施した。物性評価の結 果を表 5に示す。
[0314] この組成物の引張り弾性率は lOMPaであり、 TMAは 145°C、摩耗前後のグロス変 化率 Δ Glossは 15、永久伸びは 7、 JIS A硬度は 83であった。
[0315] (実施例 24)
実施例 23で、合成例 2で得られたプロピレン'エチレン'ブテン共重合体 (S— 2)を 合成例 1で得られたプロピレン'エチレン'ブテン共重合体 (S— 1)に変えた以外は実 施例 23と同様に行った。得られた組成物を 200°Cにて溶融プレス成形を行い、所望 の試験形状にて物性評価を実施した。物性評価の結果を表 5に示す。
この組成物の引張り弾性率は 13MPaであり、 TMAは 144°C、摩耗前後のダロス変 化率 Δ Glossは 14、永久伸びは 8、 JIS A硬度は 84であった。
[0316] (実施例 25)
実施例 23で、合成例 2で得られたプロピレン'エチレン'ブテン共重合体 (S— 2)を 合成例 3で得られたプロピレン'エチレン'ブテン共重合体 (S— 3)に変えた以外は実 施例 23と同様に行った。得られた組成物を 200°Cにて溶融プレス成形を行い、所望 の試験形状にて物性評価を実施した。物性評価の結果を表 5に示す。
この組成物の引張り弾性率は 14MPaであり、 TMAは 145°C、摩耗前後のダロス変 化率 Δ Glossは 12、永久伸びは 7、 JIS A硬度は 84であった。
[0317] (実施例 26)
実施例 23で、合成例 2で得られたプロピレン'エチレン'ブテン共重合体 (S— 2)を 合成例 4で得られたプロピレン'エチレン'ブテン共重合体 (S— 4)に変えた以外は実 施例 23と同様に行った。得られた組成物を 200°Cにて溶融プレス成形を行い、所望 の試験形状にて物性評価を実施した。物性評価の結果を表 5に示す。
この組成物の引張り弾性率は 12MPaであり、 TMAは 145°C、摩耗前後のダロス変 化率 Δ Glossは 9、永久伸びは 7、 JIS A硬度は 82であった。
[0318] (実施例 27)
実施例 23で、合成例 2で得られたプロピレン'エチレン'ブテン共重合体 (S— 2)を 合成例 6で得られたプロピレン'ブテン共重合体 (S - 6)に変えた以外は実施例 23と 同様に行った。得られた組成物を 200°Cにて溶融プレス成形を行い、所望の試験形 状にて物性評価を実施した。物性評価の結果を表 5に示す。
この組成物の引張り弾性率は 53MPaであり、 TMAは 155°C、摩耗前後のダロス変 化率 Δ Glossは 9、永久伸びは 12、 JIS A硬度は 91であった。
[0319] (実施例 28)
非架橋または部分架橋されたォレフイン系熱可塑性エラストマ一、三井化学 (株)製 、ミラストマー 5030N、 68重量部と、、上記合成例 2で得られたプロピレン 'ェチレ ン 'ブテン共重合体 (S— 2) 32量部を添加し、溶融混練によりプロピレン系重合体組 成物を得た。得られた組成物を 200°Cにて溶融プレス成形を行い、所望の試験形状 にて物性評価を実施した。物性評価の結果を表 5に示す。
この組成物の引張り弾性率は 8MPaであり、 TMAは 142°C、摩耗前後のダロス変 化率 Δ Glossは 18、永久伸びは 7、 JIS A硬度は 80であった。
[0320] (実施例 29)
実施例 28にお 、て合成例 2で得られたプロピレン ·エチレン ·ブテン共重合体 (S— 2)を合成例 4で得られたプロピレン'エチレン'ブテン共重合体 (S— 4)に変えた以外 は実施例 28と同様に行った。得られた組成物を 200°Cにて溶融プレス成形を行!、、 所望の試験形状にて物性評価を実施した。物性評価の結果を表 5に示す。
この組成物の引張り弾性率は l lMPaであり、 TMAは 142°C、摩耗前後のダロス変 化率 Δ Glossは 15、永久伸びは 9、 JIS A硬度は 78であった。
[0321] (実施例 30)
上記実施例 28にお 、て合成例 2で得られたプロピレン ·エチレン ·ブテン共重合体 (S - 2)を合成例 6で得られたプロピレン'ブテン共重合体 (S— 6)に変えた以外は実 施例 28と同様に行った。得られた組成物を 200°Cにて溶融プレス成形を行い、所望 の試験形状にて物性評価を実施した。物性評価の結果を表 5に示す。
この組成物の引張り弾性率は 47MPaであり、 TMAは 141°C、摩耗前後のダロス変 化率 Δ Glossは 17、永久伸びは 12、 JIS A硬度は 90であった。
[0322] (実施例 31)
非架橋または部分架橋されたォレフイン系熱可塑性エラストマ一、三井化学 (株)製 、ミラストマー 5030N、 70重量部(ァイソタクチックポリプロピレン 15重量0 /0およびェ チレン'炭素数 3以上の a—ォレフイン'非共役ポリェン共重合体 50重量0 /0を含む) に対して、三井ィ匕学 (株)製ァイソタクティックポリプロピレン重合体 (Y— 2) (グレード: B101、 MFR=0. 5gZl0min、融点 165°C)を 6重量部、上記合成例 2で得られた プロピレン'エチレン'ブテン共重合体(S - 2)重 24量部を添カ卩し、溶融混練によりプ ロピレン系重合体組成物を得た。得られた組成物を 200°Cにて溶融プレス成形を行 い、所望の試験形状にて物性評価を実施した。物性評価の結果を表 5に示す。
この組成物の引張り弾性率は 27MPaであり、 TMAは 154°C、摩耗前後のダロス変 化率 Δ Glossは 14、永久伸びは 8、 JIS A硬度は 86であった。
[0323] (実施例 32)
実施例 31で、合成例 2で得られたプロピレン ·エチレン ·ブテン共重合体 (S— 2)を 合成例 4で得られたプロピレン'エチレン'ブテン共重合体 (S— 4)に変えた以外は実 施例 31と同様に行った。得られた組成物を 200°Cにて溶融プレス成形を行い、所望 の試験形状にて物性評価を実施した。物性評価の結果を表 5に示す。
この組成物の引張り弾性率は 29MPaであり、 TMAは 154°C、摩耗前後のダロス変 化率 Δ Glossは 11、永久伸びは 9、 JIS A硬度は 86であった。
[0324] (実施例 33)
実施例 32で、非架橋または部分架橋されたォレフイン系熱可塑性エラストマ一、三 井ィ匕学 (株)製、ミラストマー 5030N、 50重量部、三井ィ匕学 (株)製ァイソタクティック ポリプロピレン重合体(グレード: B101、 MFR=0. 5gZl0min、融点 165°C)を 10 重量部、合成例 4で得られたプロピレン'エチレン'ブテン共重合体 (S— 4)を 40重量 部に変えた以外は実施例 32と同様に行った。得られた組成物を 200°Cにて溶融プ レス成形を行い、所望の試験形状にて物性評価を実施した。物性評価の結 果を表 5に示す。
[0325] この組成物の引張り弾性率は 21MPaであり、 TMAは 154°C、摩耗前後のグロス変 化率 Δ Glossは 10、永久伸びは 10、 JIS A硬度は 84であった。
[0326] (比較例 9)
非架橋または部分架橋されたォレフイン系熱可塑性エラストマ一、三井化学 (株)製 、ミラストマー 5030Nを 200°Cにて溶融プレス成形を行い、所望の試験形状にて物 性評価を実施した。物性評価の結果を表 5に示す。
この組成物の引張り弾性率は 3MPaであり、 TMAは 154°C、摩耗前後のダロス変 化率 Δ Glossは 96、永久伸びは 8、 JIS A硬度は 50であった。
[0327] [表 5]
表 5
実施例実施例実施例実施例実施例実施例実施例実施例実施例実施例実施例比較例
23 24 25 26 27 28 29 30 31 32 33 9 熱可塑性エラストマ - 60 60 60 60 60 60 68 68 70 70 50 100 樹脂 シンシ 'オタク亍イツクホモホ。リフ'ロピレン (Y-1 ) 8 8 8 8 8
ァイソタクティックホ 'リブロピレン重合体 (Y- 2) 6 6 10 組成物 プロピレン■エチレン■ テン共重合体 (S- 2) 32 32 24
ロピレン'エチレン テン共重合体(S-1 ) 32
ロピレン 'ェチレン 'フ'テン共重合体(S - 3) 32
フ 'ロピレン 'エチレン'フ 'テン共重合体(S - 4) 32 32 24 40 フ 'ロピレン 'エチレン'ブ亍ン共重合体(S-6) 32 32
樹脂 引張り弾性率 (Mpa) 10 13 14 12 53 8 1 1 47 27 29 21 3 組成物 T A (°C) 145 144 145 145 155 142 141 141 154 154 154 154 の物性 A Gloss (%) 15 14 12 9 9 18 15 17 14 1 1 10 96 永久伸び (%) 7 8 7 7 12 7 9 12 8 9 10 8
JIS A硬度 83 84 84 82 91 80 78 90 86 86 84 50
産業上の利用可能性
[0328] 本発明により透明性、柔軟性、ゴム弾性、耐熱性、耐磨耗性にバランス良く優れて いる熱可塑性榭脂組成物およびそれから得られる成形体が提供される。
[0329] 本発明によれば、熱可塑性榭脂に配合することにより、透明性、柔軟性、ヒートシ一 ル、耐衝撃性とのバランスに優れた熱可塑性榭脂組成物を提供し得る a—ォレフィ ン系共重合体も提供される。
[0330] また本発明によって、剛性および耐衝撃性に優れ、かつ耐白化性、耐摩耗性、ヒー トシール性のバランスに優れたポリプロピレン榭脂組成物が提供される。
[0331] さらに本発明によれば、ゴム的性質 (永久伸び、圧縮永久歪など)、耐熱性などに 優れ、耐摩耗性、耐傷つき性にも優れたプロピレン系共重合体組成物が、提供され る。
[0332] 本発明により提供される熱可塑性榭脂組成物は、従来公知のポリオレフイン用途に 広く用いることができる力 特にシート、未延伸または延伸フィルム、パイプ、電線被 覆、フィラメント、その他の種々形状の成形体に成形して好適に利用できるものである

Claims

請求の範囲
[1] エチレン由来の構成単位を 1から 30モル0 /0、プロピレン由来の構成単位を 30〜79 モル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を 10〜50モル0 /0 (ただしェ チレン由来の構成単位と炭素数 4〜20の aーォレフイン由来の構成単位との合計量 は 21から 70モル0 /0である)の量で含み、かつ ο ジクロロベンゼン溶液で測定した13 C NMRで、炭素数 4〜20の aーォレフイン由来の構成単位の CH (メチン)に由来 するシグナルのうち、最も高磁場で存在するピークを 34. 4ppmと定めたシグナルチ ヤートにお ヽて、約 22. 0〜20. 9ppmの吸収強度 Aと約 19. 0〜20. 6ppmの吸収 強度 Bが、プロピレンメチルに帰属される約 19. 0-22. Oppmの吸収強度 Cに対し て、下記の関係式 (i)と (ii)を満たす α ォレフィン系共重合体 (I)と、
(A/C) X 100≤8 (i)
(B/C) X 100≥60 (ii)
他の熱可塑性榭脂 (II)とを含むことを特徴とする熱可塑性榭脂組成物。
[2] エチレンと、プロピレンと、炭素数 4〜20の exーォレフインを、下記一般式(1)で表 される遷移金属化合物を含む触媒の存在下に重合して得られ、
エチレン由来の構成単位を 1から 30モル0 /0、プロピレン由来の構成単位を 30〜79 モル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を 10〜50モル0 /0 (ただしェ チレン由来の構成単位と炭素数 4〜20の aーォレフイン由来の構成単位との合計量 は 21から 70モル0 /0である)の量で含む α—ォレフィン系共重合体(Γ )と他の熱可塑 性榭脂 (II)とを含むことを特徴とする熱可塑性榭脂組成物;
[化 1]
Figure imgf000083_0001
[式(1)中、 Μは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp ま Mと π結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれ らの誘導体基であり、 Cp1と Cp2は異なる基であり、 X1および X2は、ァ-オン性配位子 または中性ルイス塩基配位子であり、 Zは C, O, B, S, Ge, Sほたは Sn原子あるい はこれらの原子を含有する基である。 ]。
[3] 前記 a一才レフイン系共重合体 (I)または (Γ )が、示差走査型熱量計 (DSC)によ り測定した融解ピークが存在せず、 135°Cのデカリン中で測定した極限粘度 [ 7? ]が 0 . 01〜: LOdlZgの範囲にあり、 GPCによる分子量分布力 以下であり、ガラス転移温 度 Tgがー 5°C以下であることを特徴とする請求項 1または 2に記載の熱可塑性榭脂 組成物。
[4] 前記他の熱可塑性榭脂 (II)力 230°C、 2. 16kg荷重におけるメルトフローレート が 0. l〜200g/10分の範囲にあるポリプロピレンであることを特徴とする請求項 1か ら 3の ヽずれかに記載の熱可塑性榭脂組成物。
[5] 請求項 1〜4の!ヽずれかに記載の熱可塑性榭脂組成物から得られる成形体。
[6] エチレン由来の構成単位を 1から 30モル0 /0、プロピレン由来の構成単位を 30〜69 モル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を 10〜50モル0 /0 (ただしェ チレン由来の構成単位と炭素数 4〜20の aーォレフイン由来の構成単位との合計量 は 31から 70モル0 /0の量で含み、かつ ο ジクロロベンゼン溶液で測定した13 C—N MRで、炭素数 4〜20の exーォレフイン由来の構成単位の CH (メチン)に由来するシ グナルのうち、最も高磁場で存在するピークを 34. 4ppmと定めたシグナルチャート において約 22. 0〜20. 9ppmの吸収強度 Aと約 19. 0〜20. 6ppmの吸収強度 B 1S プロピレンメチルに帰属される約 19. 0〜22. Oppmの吸収強度 Cに対して、下 記の関係式 (i)と (ii)を満たすことを特徴とする、 a一才レフイン系共重合体 (I a);
(A/C) X 100≤8 (i)
(B/C) X 100≥60 (ii)。
[7] エチレンと、プロピレンと、炭素数 4〜20の ocーォレフインを、下記一般式(1)で表 される遷移金属化合物を含む触媒の存在下に重合して得られ、
エチレン由来の構成単位を 1から 30モル0 /0、プロピレン由来の構成単位を 30〜69 モル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を 10〜50モル0 /0 (ただしェ チレン由来の構成単位と炭素数 4〜20の α—ォレフイン由来の構成単位との合計量 は 31から 70モル0 /0であるの量で含む α—ォレフィン系共重合体(Γ -a);
[化 2]
Figure imgf000085_0001
[式(1)中、 Mは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp2は Mと π結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれ らの誘導体基であり、 Cp1と Cp2は異なる基であり、 X1および X2は、ァ-オン性配位子 または中性ルイス塩基配位子であり、 Zは C, O, B, S, Ge, Sほたは Sn原子あるい はこれらの原子を含有する基である。 ]。
[8] プロピレン系重合体 (A) 50〜99. 8重量%と
プロピレン力 導かれる構成単位を 90〜40モル0 /0の量で含有し、プロピレンを除く 炭素原子数 2〜20の α—ォレフインから導かれる構成単位を 10〜60モル0 /0の量で 含み、かつ ο—ジクロ口ベンゼン溶液で測定した13 C— NMRで、炭素数 4〜20の α ーォレフイン由来の構成単位の CH (メチン)に由来するシグナルのうち最も高磁場で 存在するピークを 34. 4ppmと定めたシグナルチャートにおいて、約 22. 0〜20. 9p pmの吸収強度 Aと約 19. 0-20. 6ppmの吸収強度 B力 プロピレンメチルに帰属さ れる約 19. 0〜22. Oppmの吸収強度 Cに対して、下記の関係式 (i)と (ii)を満たす、
(A/C) X 100≤8 (i)
(B/C) X 100≥60 (ii)
プロピレン' aーォレフイン共重合体(B) (ただしプロピレン 'エチレン 2元共重合体を 除く) 0. 2〜50重量%を含むことを特徴とするポリプロピレン榭脂組成物。
[9] プロピレン系重合体 (A) 50〜99. 8重量%と
プロピレンと、炭素数 2〜20の α—ォレフイン (ただしプロピレンを除く)を、下記一般 式(1)で表される遷移金属化合物を含む触媒の存在下に重合して得られ、プロピレ ンカも導かれる構成単位を 90〜40モル0 /0の量で含有し、プロピレンを除く炭素原子 数 2〜20の aーォレフインから導かれる構成単位を 10〜60モル0 /0の量で含むプロ ピレン' aーォレフイン共重合体 (BB) (ただしプロピレン ·エチレン 2元共重合体を除 く) 0. 2〜50重量%を含むことを特徴とするポリプロピレン榭脂組成物;
[化 3]
Figure imgf000086_0001
[式(1)中、 Mは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp2は Mと π結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれ らの誘導体基であり、 Cp1と Cp2は異なる基であり、 X1および X2は、ァ-オン性配位子 または中性ルイス塩基配位子であり、 Zは C, O, B, S, Ge, Sほたは Sn原子あるい はこれらの原子を含有する基である。 ]。
[10] 前記プロピレン系重合体 (A)の引張り弾性率力 OOMpa以上であり、プロピレン' aーォレフイン共重合体(B)またはプロピレン · α—ォレフイン共重合体(BB)の、 13 5°Cのデカリン中で測定した極限粘度 [ 7? ]が 0. 01〜: LOdlZgの範囲にあり、 GPCに より求めた分子量分布 (Mw/Mn)が 4以下であり、ガラス転移温度 (Tg)が 0°C以下 であることを特徴とする請求項 8または 9に記載のポリプロピレン榭脂組成物。
[11] 前記プロピレン' aーォレフイン共重合体(B)またはプロピレン' α—ォレフイン共重 合体(ΒΒ)のプロピレンを除く炭素原子数 2〜20から選ばれる aーォレフインがェチ レン、ブテン、オタテンカ 少なくとも 1種、選ばれることを特徴とする請求項 8から 10 のいずれか〖こ記載のポリプロピレン榭脂組成物。
[12] さらに結晶化度が 40%以下のエチレン' a—ォレフインランダム共重合体 (C)を、 組成物全体に対して 1〜40重量%の量で含有することを特徴とする請求項 8から 11 のいずれか〖こ記載のポリプロピレン榭脂組成物。
[13] さらに無機充填剤 (D)を、組成物全体に対して 1〜30重量%の量で含有することを 特徴とする請求項 8から 12のいずれかに記載のポリプロピレン榭脂組成物。
[14] 請求項 8から 13のいずれかに記載のポリプロピレン榭脂組成物力も得られる成形 体。
[15] 非架橋である力または部分架橋されたォレフイン系熱可塑性エラストマ一 (X) 30〜 80重量部と、プロピレン系重合体 (Y) 0〜40重量部と、プロピレン由来の構成単位を 30〜80モル0 /0、エチレン由来の構成単位を 0〜30モル0 /0、炭素数 4〜20の α—ォ レフイン由来の構成単位を 10〜50モル0 /0 (ここでプロピレン由来の構成単位、ェチ レン由来の構成単位、炭素数 4〜20の aーォレフイン由来の構成単位の合計量は 1 00モル0 /0)の量含み、かつ ο—ジクロ口ベンゼン溶液で測定した13 C— NMRで、炭 素数
4〜20の aーォレフイン由来の構成単位の CH (メチン)に由来するシグナルのうち、 最も高磁場で存在するピークを 34. 4ppmと定めたシグナルチャートにおいて、約 22 . 0〜20. 9ppmの吸収強度 Aと約 19. 0〜20. 6ppmの吸収強度 Bがプロピレンメチ ルに帰属される約 19. 0〜22. Oppmの吸収強度 Cに対して、下記の関係式 (i)と (ii )を満たし、
(A/C) X 100≤8 (i)
(B/C) X 100≥60 (ii)
プロピレン' aーォレフイン共重合体 (Z) 5〜60重量部(ここで (X)、 (Y)、 (Z)の合計 は 100重量部である)を含有するプロピレン系共重合体組成物。
[16] 非架橋である力または部分架橋されたォレフイン系熱可塑性エラストマ一 (X) 30〜 80重量部と、プロピレン系重合体 (Y) 0〜40重量部と、プロピレンと、炭素数 4〜20 の aーォレフイン (ただしプロピレンを除く)と、必要に応じてエチレンとを、下記一般 式(1)で表される遷移金属化合物を含む触媒の存在下に重合して得られ、プロピレ ン由来の構成単位を 30〜80モル0 /0、エチレン由来の構成単位を 0〜30モル0 /0、炭 素数 4〜20の α—ォレフイン由来の構成単位を 10〜50モル0 /0 (ここでプロピレン由 来の構成単位、エチレン由来の構成単位、炭素数 4〜20の aーォレフイン由来の構 成単位の合計量は 100モル0 /0)の量含むプロピレン' α—ォレフイン共重合体(ΖΖ) 5〜60重量部(ここで (X)、 (Υ)、 (ΖΖ)の合計は 100重量部である)を含有するプロ ピレン系共重合体組成物;
[化 4]
Figure imgf000088_0001
[式(1)中、 Mは Ti, Zr、 Hf、 Rn, Nd、 Smまたは Ruであり、 Cp1および Cp2は Mと π 結合しているシクロペンタジェ-ル基、インデュル基、フルォレニル基、またはそれら の誘導体基であり、 Cp1と Cp2は異なる基であり、 X1および X2は、ァ-オン性配位子 または中性ルイス塩基配位子であり、 Zは C, O, B, S, Ge, Sほたは Sn原子あるい はこれらの原子を含有する基である。 ]。
[17] 前記プロピレン' aーォレフイン共重合体(Z)またはプロピレン' α—ォレフイン共重 合体 (ΖΖ)の炭素数 4〜20の α—ォレフィンが 1—ブテン、 1—オタテンカ 選ばれる ことを特徴とする請求項 15または 16に記載のプロピレン系重合体組成物。
[18] 請求項 15〜 17のいずれかに記載のプロピレン系重合体組成物力も得られる成形 体。
PCT/JP2005/006938 2004-04-19 2005-04-08 α-オレフィン系重合体組成物、該組成物からなる成形体、新規重合体 WO2005103141A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/578,972 US7847040B2 (en) 2004-04-19 2005-04-08 α-olefin-based polymer composition, molded product formed from the composition, and novel polymer
CN2005800117743A CN1942516B (zh) 2004-04-19 2005-04-08 α-烯烃类聚合物组合物、由该组合物制成的成形体、新聚合物
EP20050728526 EP1741747B1 (en) 2004-04-19 2005-04-08 Alpha-olefin polymer compositions, molded objects made from the compositions, and novel polymer
JP2006512500A JP4949019B2 (ja) 2004-04-19 2005-04-08 α−オレフィン系重合体組成物、該組成物からなる成形体、新規重合体

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004122611 2004-04-19
JP2004-122611 2004-04-19
JP2004-217730 2004-07-26
JP2004217730 2004-07-26
JP2004-233041 2004-08-10
JP2004233041 2004-08-10
JP2004302872 2004-10-18
JP2004-302872 2004-10-18

Publications (1)

Publication Number Publication Date
WO2005103141A1 true WO2005103141A1 (ja) 2005-11-03

Family

ID=35196940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006938 WO2005103141A1 (ja) 2004-04-19 2005-04-08 α-オレフィン系重合体組成物、該組成物からなる成形体、新規重合体

Country Status (6)

Country Link
US (1) US7847040B2 (ja)
EP (2) EP1741747B1 (ja)
JP (2) JP4949019B2 (ja)
KR (3) KR100855246B1 (ja)
CN (3) CN1942516B (ja)
WO (1) WO2005103141A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066475A1 (ja) * 2005-12-09 2007-06-14 Mitsui Chemicals, Inc. 振動制御用材料、振動制御用成形体、および振動制御用多層積層体
JP2007160610A (ja) * 2005-12-12 2007-06-28 Mitsui Chemicals Inc オレフィン系熱可塑性エラストマー積層体
JP2007161816A (ja) * 2005-12-12 2007-06-28 Mitsui Chemicals Inc 自動車内装表皮部材
JP2007161815A (ja) * 2005-12-12 2007-06-28 Mitsui Chemicals Inc 自動車用モール
JP2007216455A (ja) * 2006-02-15 2007-08-30 Mitsui Chemicals Inc ポリオレフィン系多層フィルム
JP2007269943A (ja) * 2006-03-31 2007-10-18 Mitsui Chemicals Inc 発泡性オレフィン系熱可塑性エラストマー組成物及びその発泡体
JP2007269942A (ja) * 2006-03-31 2007-10-18 Mitsui Chemicals Inc オレフィン系熱可塑性エラストマー発泡体および発泡積層体
JP2007269829A (ja) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc 発泡性オレフィン系熱可塑性エラストマー組成物及びその発泡体
WO2008035584A1 (fr) * 2006-09-20 2008-03-27 Mitsui Chemicals, Inc. Composition de polyoléfine
WO2008059746A1 (fr) * 2006-11-17 2008-05-22 Mitsui Chemicals, Inc. Composition de résine de propylène, procédé de fabrication d'une composition de résine de propylène, composition de polymère de propylène, corps moulé fait à partir de la composition de résine de propylène et fil électrique
JP2008196057A (ja) * 2007-02-08 2008-08-28 Mitsui Chemicals Inc オレフィン系熱可塑性エラストマー製合成皮革
JP2008195746A (ja) * 2007-02-08 2008-08-28 Mitsui Chemicals Inc オレフィン系熱可塑性エラストマー成形体
JP2008239686A (ja) * 2007-03-26 2008-10-09 Mitsui Chemicals Inc 制振性組成物及びその成形体
EP2246390A1 (en) * 2004-11-25 2010-11-03 Mitsui Chemicals, Inc. Propylene resin composition and use thereof
JP2011514391A (ja) * 2008-01-24 2011-05-06 クロペイ・プラスティック・プロダクツ・カンパニー・インコーポレーテッド エラストマー材料
JP2011116972A (ja) * 2009-11-02 2011-06-16 Japan Polypropylene Corp プロピレン−エチレン−1−ブテン三元共重合体および樹脂組成物
JP2011162650A (ja) * 2010-02-09 2011-08-25 Mitsui Chemicals Inc ポリプロピレン樹脂組成物とこれからなる成形体
US8007902B2 (en) * 2008-05-05 2011-08-30 A. Schulman, Inc. Multilayer clear over color polyolefin sheets and layered backing structure
JP2012067323A (ja) * 2012-01-10 2012-04-05 Mitsui Chemicals Inc プロピレン重合体組成物
JP2013151626A (ja) * 2012-01-26 2013-08-08 Mitsui Chemicals Inc インフレーションフィルム、インフレーションフィルムの製造方法、ブロー成形体、ブロー成形体の製造方法、熱成形体及び熱成形体の製造方法
EP2048194A4 (en) * 2006-07-31 2014-03-26 Mitsui Chemicals Inc THERMOPLASTIC RESIN COMPOSITION FOR SOLAR CELL SIDING, SHEET FOR SOLAR CELL SIEFING, AND SOLAR CELL
JP2016028122A (ja) * 2014-07-10 2016-02-25 日本ポリプロ株式会社 変形回復性耐熱構造体用プロピレン系樹脂組成物および変形回復性耐熱構造体
JP2016531970A (ja) * 2013-08-12 2016-10-13 エービービー テクノロジー エルティーディー. ケーブルの絶縁体のための熱可塑性ブレンド組成物
WO2018135562A1 (ja) 2017-01-20 2018-07-26 三井化学株式会社 積層体及びテープワインディングパイプ
WO2018181290A1 (ja) 2017-03-29 2018-10-04 三井化学株式会社 積層体及びその製造方法
JP2018165297A (ja) * 2017-03-28 2018-10-25 三井化学株式会社 プロピレン系樹脂組成物
JP2019075240A (ja) * 2017-10-13 2019-05-16 矢崎エナジーシステム株式会社 発泡ポリオレフィン被覆電線・ケーブルの製造方法および発泡ポリオレフィン被覆電線・ケーブル
JP2020111690A (ja) * 2019-01-15 2020-07-27 三井化学株式会社 樹脂組成物、およびこれを用いた合成木材

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098452A1 (ja) * 2005-03-18 2006-09-21 Mitsui Chemicals, Inc. プロピレン系重合体組成物、その用途、および熱可塑性重合体組成物の製造方法
KR101044214B1 (ko) * 2005-05-18 2011-06-29 미쓰이 가가쿠 가부시키가이샤 올레핀 중합용 촉매, 올레핀 중합체의 제조방법, 프로필렌계 공중합체의 제조방법, 프로필렌 중합체, 프로필렌계 중합체 조성물 및 이들의 용도
AU2007228116A1 (en) * 2006-03-17 2007-09-27 Mitsui Chemicals, Inc. Polypropylene resin composition, molded body, sheet and container
CN101421346B (zh) 2006-04-13 2011-05-11 三井化学株式会社 热塑性树脂组合物、太阳能电池密封用片材及太阳能电池
EP2042553B1 (en) * 2006-07-13 2011-09-21 Mitsui Chemicals, Inc. Thermoplastic resin composition, multilayer laminate made of the same, article obtained by having the thermoplastic resin composition adhered thereto, and method for protecting surface of article
JP5457623B2 (ja) * 2006-12-28 2014-04-02 カルソニックカンセイ株式会社 樹脂成形品
JP5631589B2 (ja) * 2007-06-14 2014-11-26 三井化学株式会社 熱可塑性エラストマー組成物
KR101609503B1 (ko) * 2012-03-28 2016-04-05 미쓰이 가가쿠 가부시키가이샤 프로필렌·α-올레핀 공중합체 및 그의 용도
RU2500047C1 (ru) * 2012-05-03 2013-11-27 ЗАО "Лидер-Компаунд" Электропроводящая пероксидносшиваемая композиция
JP6179265B2 (ja) * 2013-08-12 2017-08-16 東洋インキScホールディングス株式会社 接着剤組成物、電池用包装材、及び電池用容器
KR101488142B1 (ko) * 2014-12-10 2015-01-29 주식회사 삼성그라테크 자동차 기재용 다층 구조의 폴리프로필렌계 상향식 인플레이션 접착성 필름
JP6596204B2 (ja) * 2015-01-05 2019-10-23 株式会社プライムポリマー プロピレン系樹脂組成物
JP2016216060A (ja) * 2015-05-15 2016-12-22 旭化成株式会社 プレススルーパック包装体用蓋材及びプレススルーパック包装体、並びにそれらの製造方法
BR112019004620B1 (pt) * 2016-10-06 2023-05-02 Basell Poliolefine Italia S.R.L Uso de uma folha ou filme compreendendo copolímero à base de 1- buteno
JP6939019B2 (ja) * 2017-03-30 2021-09-22 豊田合成株式会社 熱可塑性エラストマー組成物及びガラスラン
US10567084B2 (en) 2017-12-18 2020-02-18 Honeywell International Inc. Thermal interface structure for optical transceiver modules
KR102623485B1 (ko) * 2017-12-27 2024-01-10 에스케이이노베이션 주식회사 중합체 조성물, 이를 포함하는 수지 조성물 및 중합체 조성물의 제조방법
GR1010513B (el) * 2023-02-01 2023-07-24 Εμμ. Κουβιδης Α.Β.Ε.Ε., Συστημα πλαστικων σωληνων, κουτιων διακλαδωσης και εξαρτηματων για ηλεκτρολογικες εγκαταστασεις με προστασια εναντι της επιφανειακης φθορας

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321021B1 (ja) 1971-01-20 1978-06-30
JPS5518448B2 (ja) 1975-07-21 1980-05-19
JPS5620053A (en) * 1979-07-30 1981-02-25 Dainichi Seika Kogyo Kk Colored resin composition
JPS5615742B2 (ja) 1977-06-02 1981-04-11
JPS5615741B2 (ja) 1977-06-01 1981-04-11
JPS5641238A (en) * 1979-09-10 1981-04-17 Mitsubishi Petrochem Co Ltd Thermoplastic elastomer composition
JPS5846138B2 (ja) 1977-11-09 1983-10-14 モンサント・カンパニ− 熱可塑性エラストマ−状ブレンド
JPS5856575B2 (ja) 1982-01-11 1983-12-15 三井化学株式会社 熱可塑性エラストマ−組成物の製造方法
JPS5930376B2 (ja) 1976-01-28 1984-07-26 株式会社クボタ 歩行型農用コンバイン
JPS62938B2 (ja) 1978-11-24 1987-01-10 Mitsui Petrochemical Ind
JPS6259139B2 (ja) 1978-11-24 1987-12-09 Mitsui Petrochemical Ind
JPH02173111A (ja) * 1988-12-27 1990-07-04 Mitsui Petrochem Ind Ltd α―オレフィン系ランダム共重合体の製造方法
JPH0370713A (ja) * 1989-08-10 1991-03-26 Mitsui Toatsu Chem Inc プロピレンとブテンの共重合体
JPH03200813A (ja) 1989-04-28 1991-09-02 Mitsui Toatsu Chem Inc シンジオタクチックポリプロピレン共重合体
JPH04502488A (ja) * 1989-10-30 1992-05-07 フイナ・リサーチ・ソシエテ・アノニム プロピレンとオレフインとのシンジオタクチツク共重合体の製造法
JPH07149999A (ja) 1993-11-30 1995-06-13 Mitsubishi Chem Corp 熱可塑性エラストマー組成物及びその射出成形体
JPH0827353A (ja) 1994-07-15 1996-01-30 Mitsubishi Chem Corp 熱可塑性エラストマー組成物及びその射出成形体
EP0936247A1 (en) 1998-02-10 1999-08-18 Mitsui Chemicals, Inc. Polypropylene resin composition and non-stretched film thereof
JP2000198893A (ja) 1998-10-26 2000-07-18 Mitsui Chemicals Inc 結晶性α―オレフィン系共重合体組成物および該組成物を含む熱可塑性樹脂組成物
JP2001047577A (ja) 1999-08-12 2001-02-20 Mitsui Chemicals Inc 軟質ポリプロピレン組成物からなる層を含む積層体
EP1630197A1 (en) 2003-05-28 2006-03-01 Mitsui Chemicals, Inc. Propylene polymer composition and use thereof

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862106A (en) * 1971-01-20 1975-01-21 Uniroyal Inc Thermoplastic blend of partially cured monoolefin copolymer rubber and polyolefin plastic
US4130535A (en) * 1975-07-21 1978-12-19 Monsanto Company Thermoplastic vulcanizates of olefin rubber and polyolefin resin
JPS5321021A (en) 1976-08-11 1978-02-27 Hitachi Ltd Solution treatment method for pipe
DE2822815C2 (de) * 1977-05-26 1994-02-17 Mitsui Petrochemical Ind Verfahren zur Herstellung einer teilweise vulkanisierten thermoplastischen Masse
JPS5828968B2 (ja) * 1977-08-31 1983-06-20 ソニー株式会社 Pll方式周波数シンセサイザチュ−ナ
US4311628A (en) * 1977-11-09 1982-01-19 Monsanto Company Thermoplastic elastomeric blends of olefin rubber and polyolefin resin
JPS54114887A (en) 1978-02-28 1979-09-07 Komatsu Ltd Method of processing machines
JPS5518448A (en) 1978-07-28 1980-02-08 Tokyo Ink Kk Quick-drying printing ink composition
JPS6044934B2 (ja) 1979-07-18 1985-10-07 ニユ・チヤ−ム株式会社 衛生用品
DE2929483A1 (de) 1979-07-20 1981-02-05 Siemens Ag Zahnaerztliche handstueckanordnung
JPS5846138A (ja) 1981-09-16 1983-03-17 東レ株式会社 ホツトロ−ラ装置
JPS5856575A (ja) 1981-09-29 1983-04-04 Fujitsu Ltd 画像デ−タ拡大方式
JPS5930736A (ja) 1982-08-12 1984-02-18 Shibata Hario Glass Kk ガラス製2重壁容器の接着方法
JPS6142626A (ja) 1984-08-06 1986-03-01 Canon Inc カメラのデ−タ写込装置
JPS62938A (ja) 1985-06-26 1987-01-06 Canon Inc 一眼レフカメラのシヤツタ−駆動機構
JPH0623038B2 (ja) 1985-09-06 1994-03-30 日野自動車工業株式会社 クラツチの切換え装置
JP2685263B2 (ja) * 1988-12-26 1997-12-03 三井石油化学工業株式会社 プロピレン系ランダム共重合体およびその製造方法
JP2819417B2 (ja) 1989-04-17 1998-10-30 東レ・ダウコーニング・シリコーン株式会社 抗菌性シリコーンゴム粒状物の製造方法
PT93853A (pt) * 1989-04-28 1990-11-20 Mitsui Toatsu Chemicals Processo para a preparacao de um copolimero de polipropileno sindiotatico
JP3230770B2 (ja) * 1992-10-23 2001-11-19 三井化学株式会社 熱可塑性エラストマー表皮シート
US5338801A (en) * 1993-10-20 1994-08-16 Himont Incorporated Compositions of propylene polymer materials and olefin polymer materials with reduced gloss
JP3491850B2 (ja) 1995-03-07 2004-01-26 三井化学株式会社 ポリプロピレン複合フィルム
JPH08165382A (ja) * 1994-12-15 1996-06-25 Mitsui Toatsu Chem Inc 透明で柔軟性に優れたポリプロピレン製プレス成形シート
JPH0912635A (ja) * 1995-07-03 1997-01-14 Mitsui Petrochem Ind Ltd プロピレン系エラストマー
EP0792914B1 (en) * 1995-09-14 2002-08-14 Mitsui Chemicals, Inc. Polyolefin composition and article molded therefrom
DE69727284T2 (de) * 1996-11-26 2004-11-25 Basell North America Inc. Polyolefinzusammensetzungen für die Herstellung von geprägten Folien mit verbesserter Erhaltung der Narbenstruktur
JP3664567B2 (ja) 1997-04-22 2005-06-29 日本特殊陶業株式会社 セラミックヒータおよびセラミックグロープラグ
JPH1180233A (ja) * 1997-07-11 1999-03-26 Sumitomo Chem Co Ltd プロピレン系共重合体、プロピレン系共重合体の製造方法、ポリオレフィン系樹脂用配合剤及び熱可塑性樹脂組成物
EP1013711B1 (en) * 1997-08-28 2004-11-10 Mitsui Chemicals, Inc. Thermoplastic olefin elastomer composition
JP2000001583A (ja) * 1998-04-17 2000-01-07 Sumitomo Chem Co Ltd 熱可塑性エラストマ―組成物
JP3795275B2 (ja) * 1998-10-20 2006-07-12 三井化学株式会社 軟質ポリプロピレン系組成物
JP4592848B2 (ja) * 1998-10-21 2010-12-08 三井化学株式会社 軟質透明性シンジオタクティックポリプロピレン組成物
JP3783496B2 (ja) * 1998-12-07 2006-06-07 三井化学株式会社 水蒸気滅菌用中空容器
JP2001172450A (ja) * 1999-12-15 2001-06-26 Mitsui Chemicals Inc シンジオタクティックポリプロピレン系組成物
JP2003082175A (ja) * 2001-09-10 2003-03-19 Mitsui Chemicals Inc 改質剤用シンジオタクティックプロピレン共重合体組成物および該組成物を含むプロピレン重合体組成物
JP2003313434A (ja) * 2002-02-25 2003-11-06 Sumitomo Chem Co Ltd 熱可塑性エラストマー組成物

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321021B1 (ja) 1971-01-20 1978-06-30
JPS5518448B2 (ja) 1975-07-21 1980-05-19
JPS5930376B2 (ja) 1976-01-28 1984-07-26 株式会社クボタ 歩行型農用コンバイン
JPS5615741B2 (ja) 1977-06-01 1981-04-11
JPS5615742B2 (ja) 1977-06-02 1981-04-11
JPS5846138B2 (ja) 1977-11-09 1983-10-14 モンサント・カンパニ− 熱可塑性エラストマ−状ブレンド
JPS62938B2 (ja) 1978-11-24 1987-01-10 Mitsui Petrochemical Ind
JPS6259139B2 (ja) 1978-11-24 1987-12-09 Mitsui Petrochemical Ind
JPS5620053A (en) * 1979-07-30 1981-02-25 Dainichi Seika Kogyo Kk Colored resin composition
JPS5641238A (en) * 1979-09-10 1981-04-17 Mitsubishi Petrochem Co Ltd Thermoplastic elastomer composition
JPS5856575B2 (ja) 1982-01-11 1983-12-15 三井化学株式会社 熱可塑性エラストマ−組成物の製造方法
JPH02173111A (ja) * 1988-12-27 1990-07-04 Mitsui Petrochem Ind Ltd α―オレフィン系ランダム共重合体の製造方法
JPH03200813A (ja) 1989-04-28 1991-09-02 Mitsui Toatsu Chem Inc シンジオタクチックポリプロピレン共重合体
JPH0370713A (ja) * 1989-08-10 1991-03-26 Mitsui Toatsu Chem Inc プロピレンとブテンの共重合体
US5169924A (en) 1989-08-10 1992-12-08 Mitsui Toatsu Chemicals, Incorporated Copolymer of propylene and butene-1
JPH04502488A (ja) * 1989-10-30 1992-05-07 フイナ・リサーチ・ソシエテ・アノニム プロピレンとオレフインとのシンジオタクチツク共重合体の製造法
JPH07149999A (ja) 1993-11-30 1995-06-13 Mitsubishi Chem Corp 熱可塑性エラストマー組成物及びその射出成形体
JPH0827353A (ja) 1994-07-15 1996-01-30 Mitsubishi Chem Corp 熱可塑性エラストマー組成物及びその射出成形体
EP0936247A1 (en) 1998-02-10 1999-08-18 Mitsui Chemicals, Inc. Polypropylene resin composition and non-stretched film thereof
JP2000198893A (ja) 1998-10-26 2000-07-18 Mitsui Chemicals Inc 結晶性α―オレフィン系共重合体組成物および該組成物を含む熱可塑性樹脂組成物
JP2001047577A (ja) 1999-08-12 2001-02-20 Mitsui Chemicals Inc 軟質ポリプロピレン組成物からなる層を含む積層体
EP1630197A1 (en) 2003-05-28 2006-03-01 Mitsui Chemicals, Inc. Propylene polymer composition and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1741747A4 *

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962974B2 (en) 2004-11-25 2015-02-24 Mitsui Chemicals, Inc. Propylene based resin composition and use thereof
US8338697B2 (en) 2004-11-25 2012-12-25 Mitsui Chemicals, Inc. Propylene resin composition and use thereof
US8592674B2 (en) 2004-11-25 2013-11-26 Mitsui Chemicals, Inc. Propylene based resin composition and use thereof
US9969853B2 (en) 2004-11-25 2018-05-15 Mitsui Chemicals, Inc. Propylene based resin composition and use thereof
US9217078B2 (en) 2004-11-25 2015-12-22 Mitsui Chemicals, Inc. Propylene based resin composition and use thereof
EP2402393A1 (en) * 2004-11-25 2012-01-04 Mitsui Chemicals, Inc. Propylene resin composition and use thereof
US9908983B2 (en) 2004-11-25 2018-03-06 Mitsui Chemicals, Inc. Propylene based resin composition and use thereof
US9963567B2 (en) 2004-11-25 2018-05-08 Mitsui Chemicals, Inc. Propylene based resin composition and use thereof
US8946543B2 (en) 2004-11-25 2015-02-03 Mitsui Chemicals, Inc. Propylene based resin composition and use thereof
EP2402392A1 (en) * 2004-11-25 2012-01-04 Mitsui Chemicals, Inc. Propylene resin composition and use thereof
EP2246390A1 (en) * 2004-11-25 2010-11-03 Mitsui Chemicals, Inc. Propylene resin composition and use thereof
US8329825B2 (en) 2005-12-09 2012-12-11 Mitsui Chemicals, Inc. Material for vibration control, article for vibration control and multilayer laminate for vibration control
JP5330691B2 (ja) * 2005-12-09 2013-10-30 三井化学株式会社 振動制御用材料
WO2007066475A1 (ja) * 2005-12-09 2007-06-14 Mitsui Chemicals, Inc. 振動制御用材料、振動制御用成形体、および振動制御用多層積層体
JP2007161816A (ja) * 2005-12-12 2007-06-28 Mitsui Chemicals Inc 自動車内装表皮部材
JP2007161815A (ja) * 2005-12-12 2007-06-28 Mitsui Chemicals Inc 自動車用モール
JP2007160610A (ja) * 2005-12-12 2007-06-28 Mitsui Chemicals Inc オレフィン系熱可塑性エラストマー積層体
JP4598689B2 (ja) * 2006-02-15 2010-12-15 三井化学株式会社 ポリオレフィン系多層フィルム
JP2007216455A (ja) * 2006-02-15 2007-08-30 Mitsui Chemicals Inc ポリオレフィン系多層フィルム
JP2007269829A (ja) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc 発泡性オレフィン系熱可塑性エラストマー組成物及びその発泡体
JP2007269942A (ja) * 2006-03-31 2007-10-18 Mitsui Chemicals Inc オレフィン系熱可塑性エラストマー発泡体および発泡積層体
JP2007269943A (ja) * 2006-03-31 2007-10-18 Mitsui Chemicals Inc 発泡性オレフィン系熱可塑性エラストマー組成物及びその発泡体
EP2048194A4 (en) * 2006-07-31 2014-03-26 Mitsui Chemicals Inc THERMOPLASTIC RESIN COMPOSITION FOR SOLAR CELL SIDING, SHEET FOR SOLAR CELL SIEFING, AND SOLAR CELL
KR101107913B1 (ko) 2006-09-20 2012-01-25 미쓰이 가가쿠 가부시키가이샤 폴리올레핀 조성물
US8008401B2 (en) 2006-09-20 2011-08-30 Mitsui Chemicals, Inc. Polyolefin composition
CN101516988B (zh) * 2006-09-20 2012-06-13 三井化学株式会社 聚烯烃组合物
JP5289054B2 (ja) * 2006-09-20 2013-09-11 三井化学株式会社 ポリオレフィン組成物
WO2008035584A1 (fr) * 2006-09-20 2008-03-27 Mitsui Chemicals, Inc. Composition de polyoléfine
JPWO2008059746A1 (ja) * 2006-11-17 2010-03-04 三井化学株式会社 プロピレン系樹脂組成物、プロピレン系樹脂組成物の製造方法、プロピレン系重合体組成物、該プロピレン系樹脂組成物からなる成形体および電線
JP2013237861A (ja) * 2006-11-17 2013-11-28 Mitsui Chemicals Inc プロピレン系樹脂組成物、プロピレン系樹脂組成物の製造方法、該プロピレン系樹脂組成物からなる成形体および電線
WO2008059746A1 (fr) * 2006-11-17 2008-05-22 Mitsui Chemicals, Inc. Composition de résine de propylène, procédé de fabrication d'une composition de résine de propylène, composition de polymère de propylène, corps moulé fait à partir de la composition de résine de propylène et fil électrique
US7863368B2 (en) 2006-11-17 2011-01-04 Mitsui Chemicals, Inc. Propylene resin composition, process for producing propylene resin composition, propylene polymer composition, shaped article produced of the propylene resin composition, and electric wire
JP4712739B2 (ja) * 2007-02-08 2011-06-29 三井化学株式会社 オレフィン系熱可塑性エラストマー製合成皮革
JP2008195746A (ja) * 2007-02-08 2008-08-28 Mitsui Chemicals Inc オレフィン系熱可塑性エラストマー成形体
JP2008196057A (ja) * 2007-02-08 2008-08-28 Mitsui Chemicals Inc オレフィン系熱可塑性エラストマー製合成皮革
JP2008239686A (ja) * 2007-03-26 2008-10-09 Mitsui Chemicals Inc 制振性組成物及びその成形体
US9327477B2 (en) 2008-01-24 2016-05-03 Clopay Plastic Products Company, Inc. Elastomeric materials
US9669606B2 (en) 2008-01-24 2017-06-06 Clopay Plastic Products Company, Inc. Elastomeric materials
JP2011514391A (ja) * 2008-01-24 2011-05-06 クロペイ・プラスティック・プロダクツ・カンパニー・インコーポレーテッド エラストマー材料
US20120064317A1 (en) * 2008-05-05 2012-03-15 A. Schulman, Inc. Multilayer Clear Over Color Polyolefin Sheets and Layered Backing Structure
US8007902B2 (en) * 2008-05-05 2011-08-30 A. Schulman, Inc. Multilayer clear over color polyolefin sheets and layered backing structure
US8182906B2 (en) * 2008-05-05 2012-05-22 A. Schulman, Inc. Multilayer clear over color polyolefin sheets and layered backing structure
JP2011116972A (ja) * 2009-11-02 2011-06-16 Japan Polypropylene Corp プロピレン−エチレン−1−ブテン三元共重合体および樹脂組成物
JP2014028975A (ja) * 2009-11-02 2014-02-13 Japan Polypropylene Corp プロピレン−エチレン−1−ブテン三元共重合体および樹脂組成物
JP2011162650A (ja) * 2010-02-09 2011-08-25 Mitsui Chemicals Inc ポリプロピレン樹脂組成物とこれからなる成形体
JP2012067323A (ja) * 2012-01-10 2012-04-05 Mitsui Chemicals Inc プロピレン重合体組成物
JP2013151626A (ja) * 2012-01-26 2013-08-08 Mitsui Chemicals Inc インフレーションフィルム、インフレーションフィルムの製造方法、ブロー成形体、ブロー成形体の製造方法、熱成形体及び熱成形体の製造方法
JP2016531970A (ja) * 2013-08-12 2016-10-13 エービービー テクノロジー エルティーディー. ケーブルの絶縁体のための熱可塑性ブレンド組成物
JP2016028122A (ja) * 2014-07-10 2016-02-25 日本ポリプロ株式会社 変形回復性耐熱構造体用プロピレン系樹脂組成物および変形回復性耐熱構造体
WO2018135562A1 (ja) 2017-01-20 2018-07-26 三井化学株式会社 積層体及びテープワインディングパイプ
EP4230398A1 (en) 2017-01-20 2023-08-23 Mitsui Chemicals, Inc. Laminate and tape winding pipe
JP2018165297A (ja) * 2017-03-28 2018-10-25 三井化学株式会社 プロピレン系樹脂組成物
WO2018181290A1 (ja) 2017-03-29 2018-10-04 三井化学株式会社 積層体及びその製造方法
JP2019075240A (ja) * 2017-10-13 2019-05-16 矢崎エナジーシステム株式会社 発泡ポリオレフィン被覆電線・ケーブルの製造方法および発泡ポリオレフィン被覆電線・ケーブル
JP2020111690A (ja) * 2019-01-15 2020-07-27 三井化学株式会社 樹脂組成物、およびこれを用いた合成木材
JP7211824B2 (ja) 2019-01-15 2023-01-24 三井化学株式会社 樹脂組成物、およびこれを用いた合成木材

Also Published As

Publication number Publication date
KR100855245B1 (ko) 2008-09-01
JP2012052130A (ja) 2012-03-15
EP1741747A1 (en) 2007-01-10
KR20070015202A (ko) 2007-02-01
CN1942516B (zh) 2012-01-25
CN101392083B (zh) 2011-04-06
KR20070120171A (ko) 2007-12-21
US7847040B2 (en) 2010-12-07
JP5550622B2 (ja) 2014-07-16
EP1741747A4 (en) 2009-03-25
JPWO2005103141A1 (ja) 2008-03-13
CN101392081B (zh) 2012-10-10
CN1942516A (zh) 2007-04-04
KR100855246B1 (ko) 2008-09-01
EP2460850A1 (en) 2012-06-06
JP4949019B2 (ja) 2012-06-06
EP1741747B1 (en) 2015-05-20
US20070225431A1 (en) 2007-09-27
KR100807765B1 (ko) 2008-02-28
CN101392083A (zh) 2009-03-25
CN101392081A (zh) 2009-03-25
KR20070120170A (ko) 2007-12-21

Similar Documents

Publication Publication Date Title
WO2005103141A1 (ja) α-オレフィン系重合体組成物、該組成物からなる成形体、新規重合体
JP4790416B2 (ja) プロピレン系重合体組成物およびその用途
EP1820821B1 (en) Propylene resin composition and use thereof
AU2006223826A1 (en) Propylene polymer composition, use thereof, and process for production of thermoplastic polymer composition
JP2007186665A (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法
JP4574550B2 (ja) シンジオタクティックプロピレン系重合体組成物
US9017593B2 (en) Composite materials comprising propylene-based polymer blend coatings
CN107531966B (zh) 聚-1-丁烯树脂组合物及由其得到的成型体
JP6057827B2 (ja) 熱可塑性重合体組成物、およびその用途
JP4732749B2 (ja) 熱可塑性樹脂組成物、成形体およびその用途
JP2017222850A (ja) プロピレン系樹脂組成物およびその製造方法、ならびに該プロピレン系樹脂組成物を用いた成形体
JP2011219777A (ja) プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
JP2007160610A (ja) オレフィン系熱可塑性エラストマー積層体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512500

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11578972

Country of ref document: US

Ref document number: 2007225431

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580011774.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005728526

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6862/DELNP/2006

Country of ref document: IN

Ref document number: 1020067024093

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005728526

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067024093

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11578972

Country of ref document: US