WO2004070074A2 - Nanolayer deposition process - Google Patents
Nanolayer deposition process Download PDFInfo
- Publication number
- WO2004070074A2 WO2004070074A2 PCT/US2004/003349 US2004003349W WO2004070074A2 WO 2004070074 A2 WO2004070074 A2 WO 2004070074A2 US 2004003349 W US2004003349 W US 2004003349W WO 2004070074 A2 WO2004070074 A2 WO 2004070074A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- precursors
- deposition
- film
- cvd
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
Definitions
- the present invention relates to the deposition of a thin film and specifically to semiconductor thin film processing.
- Deposition is one of the basic fabrication processes of modem semiconductor device structures. Deposition techniques includes Physical Vapor
- PVD Physical Vapor Deposition
- CVD Chemical Vapor Deposition
- numerous variations of CVD such as pulsed CVD, sequential CVD, or Atomic Layer Deposition (“ALD”).
- PVD process uses a high vacuum apparatus and generated plasma that sputters atoms or clusters of atoms toward the surface of the wafer substrates.
- PVD is a line-of-sight deposition process that is more difficult to achieve conforming film deposition over complex topography, such as deposition of a thin and uniform liner or barrier layer over a small trench or via of 0.13 ⁇ m or less, especially with a high aspect ratio greater than 4:1.
- CVD method is different from PVD method. In CVD, a gas or vapor mixture is flowed over the wafer surface at an elevated temperature. Reactions then take place at the hot surface where deposition takes place.
- the basic characteristic of a CVD process is the reaction at the substrate of all the precursor vapors together. The reaction often requires the presence of an energy source such as thermal energy (in the form of resistive heated substrate, or radiative heating), or plasma energy (in the form of plasma excitation).
- CVD chemical vapor deposition
- CVD typically requires high temperature for deposition which may not be compatible with other processes in the semiconductor process.
- CVD at lower temperature tends to produce low quality films in term of uniformity and impurities.
- the reactions can be further promoted by plasma energy in plasma enhanced CVD process, or by photon energy in rapid thermal CVD process.
- CVD technology has been used in semiconductor processing for a long time, and its characteristics are well known with a variety of precursors available. However, CVD does not meet modern technology requirements for new materials and more stringent film qualities and properties.
- Variations of CVD include pulse CVD or sequential CVD.
- pulse or sequential CVD the chemical vapors or the supplied energies, such as plasma energy, thermal energy, and laser energy, are pulsed instead of continuous, as in CVD process.
- the major advantages of pulse CVD is the high effects of the transient state resulted from the on-off status of the precursors or the energies, and the reduced amount of precursors or energies owing to the pulsed mode.
- Reduced energy which can be accomplished in pulse mode, is desirable because it causes less substrate damage such as the case of plasma processing for thin gate oxide.
- the reduced precursor amount for pulse mode is desirable for specific applications, such as epitaxial deposition, where the precursors need to react with the substrate to extend the single crystal nature of the substrate in a specific arrangement.
- Pulse CVD can be used to create gradient deposition, such as U.S. patent No. 5,102,694 of Taylor et al. ("Taylor"). Taylor discloses a pulsed deposition process in which the precursors are periodically reduced to create a gradient of composition in the deposited films. Taylor's pulsed CVD relies only on the changing of the first set of precursors to vary the film compositions. [0008] Pulsed CVD can be used to modulate precursor flow, as disclosed in U.S. patent No.
- Batey discloses a pulsed deposition process in which the precursor silane is modulated during a steady flow of plasma hydrogen.
- the pulsing of silane creates a sequence of deposition and without the silane pulses, the steady plasma hydrogen cleans and prepares the deposited surface.
- Pulsed CVD can be used to pulse the plasma energy needed for the deposition process, as disclosed in U.S. patent No. 5,344,792 of Sandhu et al.
- Sandhu entitled “Pulsed plasma enhanced CVD of metal suicide conductive films such as TiSi 2 .”
- Sandhu discloses a pulsed deposition process in which the precursors are introduced into a process chamber, then the plasma energy is introduced in pulsed mode to optimize the deposition conditions.
- U.S. patent No. 5,985,375 of Donohoe et al. (“Donohoe”), entitled “Method for pulsed plasma enhanced vapor deposition,” discloses a similar pulsed CVD process with the plasma energy in pulsed mode but with a power-modulated energy waveform. The pulsing of the plasma energy allows the deposition of a metal film with desired characteristics.
- Goto et al. entitled “Deposition of TEOS oxide using pulsed RF plasma,” discloses a tetraethoxysilane (“TEOS”) oxide deposition process using a pulsed RF plasma to control the deposition rate of silicon dioxide.
- TEOS tetraethoxysilane
- the pulsing feature offers the optimization of the deposit films through the transient state instead of the steady state. Pulsing of plasma during nitridation process of gate oxide shows less damage than continuous plasma nitridation process because of higher interaction owing to plasma transient state, and less damage as a result of shorter plasma time. [0010] Pulsed CVD can be used to pulse the precursors needed for the deposition process such as U.S. patent No. 6,306,211 of Takahashi et al.
- Takahashi entitled “Method for growing semiconductor fihn and method for fabricating semiconductor devices.”
- Takahashi discloses a pulsed CVD process to deposit epitaxial film of Si x Ge y C z .
- Epitaxial deposition requires a single crystal substrate, and the deposited film extends the single crystal nature of the substrate, different from CVD poly-crystal or amorphous film deposition.
- the deposited precursors need to bond with the substrate at specific lattice sites.
- a reduced precursor flow thus is highly desirable in epitaxial deposition because it allows the precursors sufficient time to arrange into a correct lattice.
- the process includes a continuous flow of hydrogen to dilute the precursors to be introduced.
- Pulsed CVD as described by Takahashi, to deposit epitaxial film of Si x Ge y C Z; does not allow deposition of high coverage or conformal film on a non-flat substrate, such as in a via or trench for interconnects in semiconductor devices.
- the objective of Takahashi's pulsed CVD is to deposit epitaxial films with sufficiently planar surface as observed by Takahashi, without mention of possible deposition on trenches or vias.
- ALD is another variation of CVD using chemical vapor for deposition.
- various vapors are injected into the chamber in alternating and separated sequences. For example, a first precursor vapor is delivered into the chamber to be adsorbed onto the substrate. Then the first vapor is turned off and evacuated from the chamber. Another precursor vapor is then delivered into the chamber to react with the adsorbed molecules on the substrate to form a desired film. Then this second vapor is turned off and evacuated from the chamber. This sequence is repeated for many cycles until the deposited film reaches the desired thickness.
- ALD processes There are numerous variations of ALD processes, but the
- ALD processes all share two common characteristics: (1) sequential precursor vapor flow and (2) self-limiting thickness per cycle.
- the sequential precursor flow and evacuation characteristic eliminates the gas phase reaction commonly associated with the CVD process.
- the characteristic of self-limiting thickness per cycle offers excellent surface coverage, because the total film thickness does not depend on precursor flow, nor on process time. The total film thickness depends only on the number of cycles.
- the ALD process is not sensitive to the substrate temperature.
- the maximum thickness per cycle of ALD process is one monolayer because of the self limiting feature that the substrate surface is saturated with the first precursor.
- the first precursor can adsorb onto the substrate, or the first precursor can have some reaction at the substrate, but the first precursor also saturates the substrate surface and the surface is terminated with a first precursor ligand.
- the throughput of the ALD process depends on how fast a cycle is. Therefore a small chamber volume is critical. Furthermore, fast switching of the precursor valves is desirable to allow a high throughput.
- a typical ALD cycle is a few seconds long. Therefore the precursor pulses are on the order of seconds. Precursor depletion effect can be severe for this short process time.
- United States Patent No. 5,916,365 to Sherman (“Sherman"), entitled “Sequential chemical vapor deposition,” provides for sequential chemical vapor deposition (ALD) by a sequence of chamber evacuation, adsorption of the first precursor onto the substrate, followed by another chamber evacuation, and then by a second radical precursor to react with the adsorbed precursor on the substrate surface, and a third chamber evacuation.
- the Sherman process produces sub-monolayers per cycle due to adsorption.
- the process cycle can be repeated to grow the desired thickness of film.
- Sherman discloses an ALD process in which the first precursor process flow is self-limiting, meaning that no matter how long the process is, the adsorption thickness cannot changed.
- United States Patent No. 6,015,590 to Suntola et al. (“Suntola”), entitled “Method for growing thin films,” discloses an ALD process which completely separates the precursors.
- the disclosed Suntola process is an improved ALD process (called atomic layer epitaxy ("ALE”) by Suntola) meaning the deposition is achieved through the saturation of precursors on the substrate surface and the subsequent reaction with the reactants.
- ALE atomic layer epitaxy
- the advantage of the Suntola process is the complete separation of precursors, with a better than 99% purging between pulses of precursors to prevent cross reactions.
- Sneh discloses a deposition step for the first precursor introduction, but the deposition of Sneh is self-limiting because of the surface saturation with ligands.
- Sneh discloses a method to extend the thickness of the first precursor introduction step.
- the disclosure discloses another ALD process to sequential precursor flows to increase the thickness of the first precursor introduction step. In some respects, this is similar to a nested loop, where the thickness of the first precursor flow step of an ALD process can be increased by another ALD process.
- the present invention provides a hybrid deposition process of CVD and ALD, called NanoLayer Deposition ("NLD").
- NLD NanoLayer Deposition
- the present invention method to deposit a thin film on a substrate comprises the steps of: a. introducing into a chamber a first plurality of precursors to deposit a first layer on a substrate in a non-self-limiting deposition process; b. purging the first precursors; and c. introducing a second different plurality of precursors that modify the deposited first layer in a modification process, wherein at least one precursor of the second plurality of precursors differs from those of the first plurality of precursors.
- the deposition step in the present invention is not self-limiting and is a function of substrate temperature and process time. This first step is similar to a CVD process using a first set of precursors.
- the purging step is to avoid the possible interaction between the two sets of precursors. Therefore the purging can be accomplished by a pumping step to evacuate the existing precursors from the process chamber.
- the characteristic of the pumping step is the reduction in chamber pressure to evacuate all gases and vapors.
- the purging can also be accomplished by a replacement step by using a non-reacting gas, such as nitrogen or inert gas, to push all the precursors out of the process chamber.
- the replacement step maintains the chamber pressure, with the precursor turned off and the purge gas turned on.
- the second set of precursors modifies the already deposited film characteristics.
- the second set of precursors can treat the deposited film by, for example, a modification of film composition, a doping, or a removal of impurities from the deposited film.
- the second set of precursors can also deposit another layer on the deposited film.
- the additional layer can react with the existing layer to form a compound layer, or can have minimum reaction to form a nanolaminate film, hi one preferred embodiment, the deposition step is preferably a disordered film deposition, in contrast to an ordered film deposition, as in an epitaxial film.
- Deposition conditions for disordered film deposition are much simpler to achieve with less initial surface preparation and fewer special considerations relating to the order of the deposited films, hi ordered film deposition, like epitaxial film deposition, small amounts of precursors are typically used to allow the precursors sufficient time to arrange themselves on the surface to form crystalline fihn. For that purpose, pulsed CVD is highly suited for epitaxial film deposition.
- the epitaxial deposition also requires a buffer layer to ensure a continuous lattice growth, especially with a dissimilar lattice structure of the substrate and the deposited film.
- the present NLD method to deposit a film differs markedly from CVD method with a sequential process and with the introduction of the second set of precursors.
- the present NLD method differs from pulse or sequential CVD with a purging step and with the introduction of the second set of precursors.
- the introduction of the second set of precursors after purging the first precursors in a cyclic sequential process allows the modification of the deposited film in a manner not possible in CVD and pulse and sequential CVD methods.
- the pulsed CVD processes, employing the pulsing of precursors to modify the composition such as gradient of the deposited films differ from the present invention NLD process because they lack the second set of precursors to modify the properties of the deposited films.
- the pulsed CVD processes employing the pulsing of deposition precursors in the presence of plasma precursors to modify the deposited film characteristics, such as a smoother surface differ from the present invention NLD process because they lack the purging step between the pulses, and because the plasma precursors are present throughout the deposition time.
- This pulsed CVD process allows the mixture of the continuous plasma precursors and the deposition precursors.
- the NLD process offers a purging step between the two sets of precursors to avoid cross contamination, to avoid possible gas phase reaction, and to prepare the process chamber for different processes.
- the purging step clears out the precursor, such as a metal-organic chemical vapor deposition ("MOCVD") precursor, before turning on the plasma because the plasma is difficult to strike in the presence of a vapor.
- MOCVD metal-organic chemical vapor deposition
- the pulsed CVD processes employing the pulsing of plasma energy to modify the deposited film characteristics, such as smoother film, different deposition rate, less damage to the deposited films, differ from the present invention NLD process because they lack the second set of precursors to modify the properties of the deposited films. They also lack the purging step between the pulses.
- the pulsing feature offers the optimization of the deposit films through the transient state instead of the steady state, and therefore differ significantly with the present invention NLD method of using the second set of precursors to modify the deposited film characteristics.
- the pulsed CVD processes employing the pulsing of deposition precursors to form epitaxial film differ from the present invention NLD process because they lack the purging step between the precursors pulses.
- the purging step allows the use of incompatible precursors due to the separation effect of the purging step.
- the differences between pulsed CVD and NLD also include the conceptual purpose of the two methods.
- the objective of pulsed CVD is to employ a suitable set of precursors and conditions to deposit the desired films, while the objective of NLD is to deposit a film, even an undesired film, and to provide a modification and treatment step to convert the undesired film into a desired film.
- NLD instead finds a way to treat or modify an existing film to achieve a film with the desired characteristics. Further, recognizing that treating and modifying an existing film is difficult with greater thickness, NLD offers a cyclic process of depositing and treating or modifying, so that the treatment process is performed on very thin fihn and to achieve a thicker film.
- the present NLD method to deposit a film also differs markedly from the ALD method because NLD uses non-self-limiting deposition.
- the deposition step in the present invention NLD method is a function of substrate temperature and process time.
- the deposition/adsorption step in the ALD method is a self-limiting step based on the saturation of precursor ligands on the substrate surface. Once the surface is saturated, the deposition/adsorption in the ALD method stops, and any excess precursor vapors have no further effect on the saturated surface. In other words, the deposition/adsorption step of the ALD method is independent of time after reaching saturation.
- the ALD method also has less dependence on substrate temperature than CVD or NLD methods. Therefore the present invention NLD method is different in many ways from the ALD method.
- the method of deposition further comprises a last purging step, after step (c).
- the last purging step is to remove the second set of precursors from the process chamber, either by evacuation, replacement, or any combination.
- the treatment step can only treat a thin film, or the treatment step is much more effective if treating only a thin film. Therefore the present invention further comprises a further step of repeating the previous steps until a desired thickness is reached.
- the last purging step can be optional because its purpose is to prevent possible reaction between two sets of precursors. In cases where there are minimal reactions between two sets of precursors, the last purging step can be eliminated to have a shorter process time and higher throughput.
- the present invention also provides for the extension to a plurality of other sets of precursors. Another third set of precursors would enhance the modification of the deposited film at the expense of process complexity and lower throughput. Another two sets of precursors would create a multilayer thin film or a nanolaminate film.
- the present invention NLD process can be performed in any process chamber such as a standard CVD process chamber or an ALD small volume, fast switching valve process chamber.
- the chamber wall can be cold wall, warm wall, or hot wall, depending on the desired outputs.
- the delivery system can be showerhead delivery to provide uniform flow, or a sidewall inlet to provide laminar flow, or a shower ring to offer circular delivery.
- the precursor delivery can be liquid injection where the liquid precursors are delivered to a heated vaporizer to convert the precursors into vapor form before delivering into the process chamber.
- the precursor delivery can be vapor draw where the vapor of a liquid precursor is drawn from the liquid precursor container.
- the precursor delivery can be by a bubbler where the vapor of the liquid precursor is enhanced with the bubbling feature of a non reactive carrier gas.
- the steps in the present invention can be any CVD deposition step such as thermally activated CVD, plasma-enhanced CVD using parallel plate plasma, inductively coupled plasma ("ICP"), microwave plasma, remote plasma, or rapid thermal processing using lamp heating.
- the treatment step can be a CVD deposition step to modify the deposited film properties.
- the treatment step can be a plasma treatment, or a temperature treatment.
- the plasma treatment can be an energetic species, and can be further enhanced with a bias to give kinetic energy to the energetic species.
- a strong bias can create reaction such as an ion implantation, as in immersion ion implantation technology.
- a highly energetic species in the treatment step can help in modifying the deposited film properties.
- a bombardment of species can be employed to improve the roughness of the deposited film.
- a chemical reaction can be employed to remove impurities or to change film compositions and to modify the physical properties, such as film density.
- the present invention method can use any CVD precursors or MOCVD precursors.
- the deposition step is further enhanced with the second set of precursors to allow film properties that are difficult or impossible with CVD method.
- the precursors can be thermally activated, plasma activated, or rapid thermal process (“RTP") activated.
- the precursors can be hydrogen, nitrogen, oxygen, ozone, inert gas, water, or inorganic precursors such as NH 3 , SiH 4 , NF 3 , or metal precursors such as TiCl , or organic precursors, or metal organic precursors such as tetrakisdimethyl titanium (“TDMAT”), tetrakisdiethyl titanium (“TDEAT”), tetrakis (methylethylamino) titanium (“TMEAT”), penta- dimethyl-amino-tantalum (“PDMAT”), and pentakis(diethylamido)tantalum (“PDEAT”).
- TDMAT tetrakisdimethyl titanium
- TDEAT tetrakisdiethyl titanium
- TMEAT tetrakis (methylethylamino) titanium
- PDMAT penta- dimethyl-amino-tantalum
- PDEAT pentakis(diethylamido)tantalum
- the process temperature of the present invention is lower than the temperature of similar CVD process to obtain the lower deposition rate and better uniformity.
- a typical process temperature is between 100°C to 1000°C, depending on the thermal budget of the overall process.
- Metal interconnect of a semiconductor process requires the process temperature to be less than 500°C, and the new low dielectric constant (low k) interlevel dielectric process requires the process temperature to be less than 400°C, or even 350°C.
- the temperature can be higher, up to 600°C, or even 800°C.
- the process time of the present invention of each step is between the range of msec to many minutes. Shorter process time is desirable, but too short a process time can create many reliability issues, such as timing requirements and component requirements. A typical throughput of 10 to 60 wafers per hour is acceptable for semiconductor fabrication. Using about 4 to 20 cycles per film thickness, that translates to about 3 to 90 seconds per step.
- One aspect of the present invention is the plasma energy. To treat the sidewall surface of a high aspect ratio trench, the plasma is a high density and high pressure plasma. High density plasma can be accomplished with ICP or microwave. High density plasma can also be accomplished with remote plasma. [0036] High pressure plasma can be a little harder.
- High density and high pressure plasma require a high energy in the chamber volume to compensate for the high collision loss due to the presence of many charged and neutral particles.
- an ICP power source must be close to the chamber volume and contain many inductive segments. These two requirements are difficult to fulfill because as the number of inductive segments increases, the segments are farther away from the chamber volume due to the size of the inductive segments.
- the inductive segments are typically a coil for the plasma source and carry a large current, therefore need to be water cooled.
- Conventional inductive coil has cross section of a square or a circle with a hollow center for water cool flow. The increase in number of inductive coil turns will increase the power, but since the successive turns are farther away from the chamber, the power increase is somewhat reduced.
- the heat removal issue of the helical ribbon differs from the conventional inductive coils.
- our process chamber pressure can be as high as 1000 milliTorr, and with further improvement, can reach 5 Torr, as compared to the typical process pressure of 10 to 100 milliTorr.
- the sidewall treatment of our process can be very good and the result is close to 100% conformality at the sidewall and the top and bottom surface.
- Fig. 1 is a flowchart of a prior art CVD process.
- Fig. 2 is a flowchart of a prior art pulse CVD process.
- Fig. 3 is a flowchart of a prior art ALD process.
- Fig. 4 is a flowchart of the present invention NLD process.
- Fig. 1 shows a flowchart of a prior art CVD process.
- the precursors are introduced into the process chamber.
- the precursors are then reacted at the substrate surface to form a deposited film in step 11.
- the conditions for the precursors reaction can include plasma energy, thermal energy, photon energy, laser energy.
- the deposition characteristics of CVD process is the non-self-limiting nature, meaning film thickness increases with process time and substrate temperature.
- Fig. 2 shows a flowchart of a prior art pulse CVD process.
- step 20 the precursors are introduced into the process chamber in pulses. The precursors are then reacted at the substrate surface to form a deposited film in step 21.
- pulse CVD process can incorporate plasma energy, thermal energy, photon energy, laser energy.
- the pulse CVD process conditions can include precursor pulsing, plasma pulsing, thermal energy pulsing, photon energy pulsing, and laser energy pulsing.
- the deposition characteristics of pulse CVD process is the repeated CVD deposition process.
- Fig. 3 shows a flowchart of a prior art ALD process, hi step 30, the precursors are introduced into the process chamber.
- Fig. 4 shows a flowchart of the present invention NLD process.
- the precursors are introduced into the process chamber. Then the precursors are purged from the process chamber in step 41. Another set of precursors is introduced into the process chamber in step 42. Then this set of precursors is purged from the process chamber in step 43. This purging step 43 is optional. The sequence can be repeated in step 44 until a desired thickness is reached.
- the basic characteristics of NLD process is the non self limiting nature of the deposition in step 41, meaning the deposition of precursors in this step is dependent on process time and substrate temperature.
- the two sets of precursors are not reacted with each other in step 42. Instead, the second set of precursors react with the products of the first set of precursors, resulting after step 40.
- the purging step 41 is normally needed to separate the two sets of precursors to prevent gas phase reaction, but may not be required in all cases because the NLD process does not depend on the two sets of precursors interacting.
- the present NLD method to deposit a film differs significantly from CVD method with a sequential process and with the introduction of the second set of precursors.
- the present NLD method differs from pulse or sequential CVD with a purging step and with the introduction of the second set of precursors.
- the cyclic sequential deposition using two sets of precursors with a purging step separating these two sets of precursors allows the modification of the deposited film in a manner not possible in CVD and pulse and sequential CVD methods.
- the following examples discuss the advantages of NLD versus CVD.
- the term CVD refers to both pulse CVD and sequential CVD methods.
- One example of such and advantage is the surface coverage property of a deposited film. A typical CVD process would run at high temperature and continuously until a film is deposited. The uniformity and surface coverage of the CVD process depends solely on the reaction mechanism of the chemical precursors and the initial substrate surface.
- the NLD method of the present invention provides a second set of precursors to modify the substrate surface characteristics during the deposition time, effectively allowing a substrate surface similar to the initial surface at all times, to prevent surface property changes during the deposition process.
- the NLD method offers an extra controllability to modify the substrate surface during deposition time to improve the surface coverage property of the deposited film.
- An NLD silicon dioxide deposition using TEOS and oxygen as the first set of precursors and plasma argon or hydrogen or nitrogen as the second set of precursors offers more uniformity and surface coverage at a thin film than CVD process using TEOS/oxygen alone.
- an NLD silicon nitride deposition process using silane/ammonia as a first precursors and plasma argon or hydrogen or nitrogen as the second set of precursors offers more unifo ⁇ riity and surface coverage at a thin film than CVD process using silane/ammonia alone.
- Another example of the advantage of NLD over CVD is the process temperature of a deposited film. The CVD process temperature is determined by the reaction mechamsm to provide an acceptable quality film. The lower process temperature in CVD process could change the deposited film properties, such as impurity incorporation due to incomplete reaction, different stoichiometry of the film components.
- the present invention NLD method can run at a lower temperature than CVD method and still offers acceptable quality film because it is possible to modify the deposited film at low temperature to obtain the desired film properties.
- Another example is the densification of a deposited film. CVD method would deposit a complete film, then subject the whole film to a treatment such as annealing.
- the NLD method offers the cyclic sequential method of depositing and heat-treating a small fraction of the whole film.
- the whole film will be deposited a number of time, each time with only a fraction of the thickness. Since the fraction of the thickness is much thinner than the whole film thickness, the heat treatment would be short and effective. The number of cycles can be chosen to optimize the film quality or the short process time.
- Another example is the capability of composition modification of the deposited film such as the carbon removal treatment of a carbon-containing deposited film.
- CVD method would deposit a complete film containing a certain amount of carbon, then subject the whole film to an energetic species such as plasma hydrogen to react with the carbon to remove the carbon from the deposited film.
- an energetic species such as plasma hydrogen to react with the carbon to remove the carbon from the deposited film.
- the energy needed for the energetic species would be very high, and in many cases would be impractical and potentially cause damage to the deposited film or the underlying substrate, hi contrast, the NLD method offers the cyclic sequential method of depositing and carbon removal treatment of a small fraction of the whole film. Since the film to be treated is much thinner, and can be chosen as thin as one desires, the energy of the energetic species can be low and within the range of practicality, to remove the carbon and not damage the deposited film or the underlying substrate.
- Another example is the avoidance of gas phase reaction such as the deposition of TIN using TDMAT metal organic precursor with NH 3 .
- CVD method would be impractical since TDMAT would react with NH 3 in gas phase to create particles and roughen the deposited film.
- a CVD deposition of the whole film using TDMAT and then subjected the deposited film with NH 3 would not be possible to treat the whole film thickness.
- the present invention NLD method offers the cyclic sequential method of depositing using TDMAT and NH 3 treatment of a small fraction of the whole film.
- TMEAT for titanium organic metal precursors
- PDMAT for tantalum organic metal precursors
- other organic metal precursors such as copper hexafluoroacetylacetonate trimethylvinylsilane ("Cu(hfac)TMVS")
- inorganic precursors such as copper hfac (I), copper hfac (II), copper iodine, copper chloride, titanium chloride together with plasma treatment of N 2 , H 2 , Ar, He, or
- Another example is the modification of the property of the deposited film such as the deposition of a oxygen-rich film, a nitrogen-rich film, an oxy- nitride film, or a metal-rich film.
- the CVD method would require the adjustment of all the precursor components. This is not an easy task since the incorporation of an element is not directly proportional to its presence in the precursor vapor form. Many times it is not even possible to modify the resulting film components since CVD is a product of a chemical reaction, and any excess precursors would not participate in the reaction.
- the present invention NLD method offers the cyclic sequential method of depositing and treatment of a small fraction of the whole film.
- the treatment step is a separate step and can be designed to achieve the desired results. If an oxygen-rich film is desired, a energetic oxygen treatment step such as a plasma oxygen, or an ozone flow, could incorporate more oxygen into the deposited film. The incorporation can be done if the deposited film is thin enough, a condition only available in the present invention NLD method, not CVD. If an nitrogen-rich film is desired, a energetic nitrogen treatment step such as a plasma nitrogen, or an ammonia
- NH 3 NH 3
- a energetic oxygen treatment step could incorporate more oxygen into the deposited film of nitride, or a energetic nitrogen treatment step could incorporate more nitrogen into the deposited film of oxide.
- impurity to modify the deposited film property such as, for example, copper doped aluminum film, carbon doped silicon dioxide film, or fluorine doped silicon dioxide film.
- the electromigration resistance of pure aluminum is poor, but this resistance is much improved with the incorporation of a small amount of copper, typically less than a few percent.
- the CVD method would have to employ compatible precursors of aluminum and copper that can deposit a desired mixture.
- the NLD method offers the cyclic sequential method of depositing a fraction of the aluminum film and incorporating copper into the film fraction during the treatment sequence. Since the deposition uses the aluminum precursors and the treatment uses the copper precursors, and these precursors are separately and sequentially introduced into the process chamber, the aluminum and copper precursors need not be compatible.
- Nanolaminate films are multilayer films but the different layers can be very thin, sometimes not complete layers, and sometimes even less than a monolayer.
- a CVD method would be impractical as it requires multiple process chambers and the ability to move a substrate between these chambers without incurring contamination and impurities, hi contrast, the NLD method offers the cyclic sequential method of depositing a first layer film, and then depositing a second layer film during the treatment sequence.
- the first layer could be as thin as a fraction of a monolayer, or as thick desired, such as a few nanometers.
- the NLD method also differs significantly from ALD method with a non self-limiting deposition step.
- the deposition step in the present invention NLD method is a function of substrate temperature and process time.
- the deposition/adsorption step in ALD method is a self-limiting step based on the saturation of precursor ligands on the substrate surface. Once the surface is saturated, the deposition adsorption in ALD method stops and any excess precursor vapors have no further effect on the saturated surface, hi other words, the deposition/adsorption step of ALD method is independent of time after reaching saturation.
- the ALD method also is less dependent on substrate temperature than CVD or NLD methods. Therefore, the present invention NLD method is different in many ways from ALD method.
- the non-self-limiting feature of the present invention NLD method allows the NLD method to share the precursors of CVD method, unlike ALD, which cannot use CVD precursors.
- the deposition step of the present invention NLD method is similar to the deposition step of the CVD method, with the possible exception of lower temperature. Therefore, the NLD method can use all the precursors of the CVD methods, including the newly- developed metal organic precursors or organic metal precursors (MOCVD precursors), hi contrast, the precursor requirements of ALD are different because of the difference in the deposition mechanisms of ALD and NLD.
- ALD precursors must have a self-limiting effect so that the precursor is adsorbed on the substrate, up to a monolayer.
- ALD precursors must readily adsorb at bonding sites on the deposited surface in a self-limiting mode. Once adsorbed, the precursor must react with the reactant to form the desired film. These requirements are different from CVD, where the precursors arrive at the substrate together and the film is deposited continuously from the reaction of the precursors at the substrate surface. Thus many useful CVD precursors are not viable as ALD precursors and vice- versa. And it is not trivial or obvious to select a precursor for the ALD method.
- NLD method Another example of an advantage of the NLD method is the ease of incorporation of the enhancement of CVD technology, such as plasma technology and rapid thermal processing technology.
- CVD technology such as plasma technology and rapid thermal processing technology.
- the NLD method also can share all the advancement of CVD without much modification.
- a plasma deposition step in NLD can be designed and tested quickly because of the available knowledge of the CVD method.
- ALD ALD
- NLD N-dielectric deposition
- MOCVD precursors contain a significant amount of carbon due to its organic content.
- the present invention NLD process uses MOCVD precursors with ease due to the deposition step using MOCVD precursors and the treatment step to remove any carbon left behind during the deposition step.
- An effective carbon removal step is the introduction of energetic hydrogen or nitrogen such as plasma hydrogen or nitrogen.
- NLD method would demand significant research, and so far to the best of our knowledge, there is no commercially successful ALD process available using MOCVD precursors.
- Another example is the non-self-limiting feature of the present invention NLD method also allows the NLD method to adjust the thickness of the deposition step, or the treatment step, or both, to achieve a higher thickness per cycle.
- the ALD method is based on the saturation of ligands on the substrate surface, therefore the thickness per cycle is fixed and cannot be changed.
- the thickness per cycle in the present invention NLD method is a function of process temperature and process time. The optimum thickness for NLD process is the largest thickness per cycle and still able to be treated during the treatment step.
- An NLD process deposits TiN using TDMAT precursor and plasma nitrogen treatment can have the thickness per cycle any where from less than one nanometer to a few nanometers.
- the ability to vary the thickness per cycle allows the NLD process to use less cycles for the same total film thickness, leading to a faster process time and offering higher throughput than ALD process.
- Another example is that the non-self-limiting feature of the present invention NLD method also allows the NLD method to vary the individual thickness of the resulting film, such as a few thicker or thinner layers in the middle of the deposited film, which is not possible in ALD method.
- the center portion of the film can be deposited with a very high thickness per cycle to increase the throughput while the beginning and the end of the deposition is much thinner per cycle to satisfy the requirement of high quality interfaces. This feature is not possible with ALD process, for which all the cycles having the same thickness per cycle.
- ALD process for which all the cycles having the same thickness per cycle.
- Another example is the process temperature of a deposited film.
- ALD process temperature is largely fixed by the chemical reactions between the ligands of the precursors, and therefore ALD method is insensitive to the substrate temperature.
- the present invention NLD method can run at a slightly higher temperature than ALD to offer the deposition characteristics, meaning a process dependent on process temperature and time.
- NLD process can run at a much higher temperature to provide a larger thickness per cycle.
- the variation in thickness per cycle of NLD process can be accomplished by changing the substrate temperature, where a higher temperature would result in a high deposition rate, leading to a larger thickness per cycle.
- the change in substrate temperature is probably best accomplished by rapid thermal processing using radiative heat transfer for fast response time.
- a resistive heated substrate could provide the baseline temperature, and a lamp heating would provide the increase in temperature needed for larger thickness per cycle.
- NLD method NLD method
- ALD method requires the purging step between these two steps because of the designed reaction at the substrate surface.
- the purging step in NLD method helps overall in the cyclic sequential deposition scheme where the incompatibility of the two sets of precursors could cause potential damage. In rare cases where the two sets of precursors are compatible, the purging step is not critical and can be reduced or eliminated to improve the throughput.
- ALD method has excellent conformality and surface coverage, meaning this method will provide a theoretically perfect coverage of any configuration, as long as there is a pathway to it. But ALD is not capable of turning off this feature, meaning the excellent surface coverage is a characteristics of the ALD method.
- NLD the surface coverage characteristics can be modified.
- ALD deposition on an open-pored porous substrate will travel through all the pores and deposit everywhere, potentially shorting the circuit if the deposited fihn is conductive.
- NLD method can deliver a very high deposition rate at the beginning of the deposition cycle, effectively sealing off the open pores before starting deposition of a high quality thin film.
- NLD NLD
- the throughput of ALD is determined by the cycle time due to the independent of the thickness per cycle feature of ALD method. Therefore the chamber design in ALD is highly critical to achieve an acceptable throughput.
- ALD throughput depends strongly on many issues of chamber design, such as small chamber volume to ensure fast saturation and fast removal of precursors, fast switching valves to ensure quick response time of precursor on-off, uniform precursor delivery to ensure non-depletion effect of precursor.
- the fast response time requirement of ALD also puts a constraint on the timing requirement such as the synchronization of the precursor flow, the purging steps.
- the chamber design issues are not as critical because of the potential higher thickness per cycle feature, leading to less number of cycles and higher throughput. Therefore a conventional CVD chamber with large volume, slow valve response time is adequate to perform
- NLD process could benefit from the chamber design of ALD, but NLD has the flexibility of trading some of the throughput for the simplicity of chamber design because the throughput of NLD without any chamber design consideration could be adequate for many applications.
- the advantage of the flexibility in chamber design is the ease of incorporate high density plasma into
- NLD process High density plasma design requires a large chamber volume to equalize the energy of the charged and neutral particles due to high collision, and this requirement constraint contradicts with the small chamber volume requirement of ALD process, but acceptable with NLD process.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006503356A JP5101880B2 (ja) | 2003-02-04 | 2004-02-04 | 薄膜を堆積させるための堆積方法 |
| KR20127018629A KR101483737B1 (ko) | 2003-02-04 | 2004-02-04 | 나노층 증착 공정 |
| EP04708255A EP1601812A2 (en) | 2003-02-04 | 2004-02-04 | Nanolayer deposition process |
| KR1020057014408A KR101238429B1 (ko) | 2003-02-04 | 2004-02-04 | 나노층 증착 공정 |
| KR1020137023126A KR101448186B1 (ko) | 2003-02-04 | 2004-02-04 | 나노층 증착 공정 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/360,135 US7713592B2 (en) | 2003-02-04 | 2003-02-04 | Nanolayer deposition process |
| US10/360,135 | 2003-02-04 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2004070074A2 true WO2004070074A2 (en) | 2004-08-19 |
| WO2004070074A3 WO2004070074A3 (en) | 2004-11-18 |
Family
ID=32771368
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2004/003349 Ceased WO2004070074A2 (en) | 2003-02-04 | 2004-02-04 | Nanolayer deposition process |
Country Status (6)
| Country | Link |
|---|---|
| US (4) | US7713592B2 (enExample) |
| EP (1) | EP1601812A2 (enExample) |
| JP (1) | JP5101880B2 (enExample) |
| KR (3) | KR101448186B1 (enExample) |
| CN (1) | CN1768158A (enExample) |
| WO (1) | WO2004070074A2 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009539270A (ja) * | 2006-05-31 | 2009-11-12 | ティーガル コーポレイション | 半導体加工のためのシステム及び方法 |
| US20220415676A1 (en) * | 2021-06-29 | 2022-12-29 | Applied Materials, Inc. | Selective oxidation on rapid thermal processing (rtp) chamber with active steam generation |
Families Citing this family (486)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9076843B2 (en) | 2001-05-22 | 2015-07-07 | Novellus Systems, Inc. | Method for producing ultra-thin tungsten layers with improved step coverage |
| US9708707B2 (en) | 2001-09-10 | 2017-07-18 | Asm International N.V. | Nanolayer deposition using bias power treatment |
| US20060014384A1 (en) * | 2002-06-05 | 2006-01-19 | Jong-Cheol Lee | Method of forming a layer and forming a capacitor of a semiconductor device having the same layer |
| US9121098B2 (en) * | 2003-02-04 | 2015-09-01 | Asm International N.V. | NanoLayer Deposition process for composite films |
| US20050089638A1 (en) * | 2003-09-16 | 2005-04-28 | Koila, Inc. | Nano-material thermal and electrical contact system |
| KR100622639B1 (ko) * | 2003-11-13 | 2006-09-18 | 매그나칩 반도체 유한회사 | 반도체 소자의 제조 방법 |
| US8414718B2 (en) * | 2004-01-14 | 2013-04-09 | Lockheed Martin Corporation | Energetic material composition |
| KR100591762B1 (ko) * | 2004-01-19 | 2006-06-22 | 삼성전자주식회사 | 증착 장치 및 증착 방법 |
| US20050214456A1 (en) * | 2004-03-29 | 2005-09-29 | Donghul Lu | Enhanced dielectric layers using sequential deposition |
| US7622400B1 (en) * | 2004-05-18 | 2009-11-24 | Novellus Systems, Inc. | Method for improving mechanical properties of low dielectric constant materials |
| US7790003B2 (en) * | 2004-10-12 | 2010-09-07 | Southwest Research Institute | Method for magnetron sputter deposition |
| US7592051B2 (en) * | 2005-02-09 | 2009-09-22 | Southwest Research Institute | Nanostructured low-Cr Cu-Cr coatings for high temperature oxidation resistance |
| US7829157B2 (en) * | 2006-04-07 | 2010-11-09 | Lockheed Martin Corporation | Methods of making multilayered, hydrogen-containing thermite structures |
| US8250985B2 (en) | 2006-06-06 | 2012-08-28 | Lockheed Martin Corporation | Structural metallic binders for reactive fragmentation weapons |
| US7886668B2 (en) * | 2006-06-06 | 2011-02-15 | Lockheed Martin Corporation | Metal matrix composite energetic structures |
| US8795771B2 (en) | 2006-10-27 | 2014-08-05 | Sean T. Barry | ALD of metal-containing films using cyclopentadienyl compounds |
| US7799377B2 (en) * | 2006-12-07 | 2010-09-21 | Electronics And Telecommunications Research Institute | Organic/inorganic thin film deposition method |
| US9120245B1 (en) | 2007-05-09 | 2015-09-01 | The United States Of America As Represented By The Secretary Of The Air Force | Methods for fabrication of parts from bulk low-cost interface-defined nanolaminated materials |
| US9162931B1 (en) | 2007-05-09 | 2015-10-20 | The United States Of America As Represented By The Secretary Of The Air Force | Tailored interfaces between two dissimilar nano-materials and method of manufacture |
| US8617456B1 (en) | 2010-03-22 | 2013-12-31 | The United States Of America As Represented By The Secretary Of The Air Force | Bulk low-cost interface-defined laminated materials and their method of fabrication |
| US8110476B2 (en) | 2008-04-11 | 2012-02-07 | Sandisk 3D Llc | Memory cell that includes a carbon-based memory element and methods of forming the same |
| US8839504B2 (en) * | 2008-05-13 | 2014-09-23 | HGST Netherlands B.V. | Method of fabricating a device having a sidegap |
| US8557685B2 (en) * | 2008-08-07 | 2013-10-15 | Sandisk 3D Llc | Memory cell that includes a carbon-based memory element and methods of forming the same |
| US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
| CA2653581A1 (en) | 2009-02-11 | 2010-08-11 | Kenneth Scott Alexander Butcher | Migration and plasma enhanced chemical vapour deposition |
| US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
| US9159571B2 (en) * | 2009-04-16 | 2015-10-13 | Lam Research Corporation | Tungsten deposition process using germanium-containing reducing agent |
| US20100267230A1 (en) | 2009-04-16 | 2010-10-21 | Anand Chandrashekar | Method for forming tungsten contacts and interconnects with small critical dimensions |
| JP5011355B2 (ja) * | 2009-07-30 | 2012-08-29 | 東京エレクトロン株式会社 | 成膜方法 |
| US10256142B2 (en) | 2009-08-04 | 2019-04-09 | Novellus Systems, Inc. | Tungsten feature fill with nucleation inhibition |
| US12444651B2 (en) | 2009-08-04 | 2025-10-14 | Novellus Systems, Inc. | Tungsten feature fill with nucleation inhibition |
| US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
| US8247332B2 (en) | 2009-12-04 | 2012-08-21 | Novellus Systems, Inc. | Hardmask materials |
| WO2011086971A1 (ja) * | 2010-01-12 | 2011-07-21 | 株式会社 アルバック | 半導体装置の製造方法、及び成膜装置 |
| US8703625B2 (en) * | 2010-02-04 | 2014-04-22 | Air Products And Chemicals, Inc. | Methods to prepare silicon-containing films |
| US8741394B2 (en) | 2010-03-25 | 2014-06-03 | Novellus Systems, Inc. | In-situ deposition of film stacks |
| US9287113B2 (en) | 2012-11-08 | 2016-03-15 | Novellus Systems, Inc. | Methods for depositing films on sensitive substrates |
| US9257274B2 (en) | 2010-04-15 | 2016-02-09 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
| US9373500B2 (en) | 2014-02-21 | 2016-06-21 | Lam Research Corporation | Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications |
| US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
| US9892917B2 (en) | 2010-04-15 | 2018-02-13 | Lam Research Corporation | Plasma assisted atomic layer deposition of multi-layer films for patterning applications |
| US9390909B2 (en) | 2013-11-07 | 2016-07-12 | Novellus Systems, Inc. | Soft landing nanolaminates for advanced patterning |
| US8728956B2 (en) | 2010-04-15 | 2014-05-20 | Novellus Systems, Inc. | Plasma activated conformal film deposition |
| US9611544B2 (en) | 2010-04-15 | 2017-04-04 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
| US9076646B2 (en) | 2010-04-15 | 2015-07-07 | Lam Research Corporation | Plasma enhanced atomic layer deposition with pulsed plasma exposure |
| US8637411B2 (en) | 2010-04-15 | 2014-01-28 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
| US8956983B2 (en) | 2010-04-15 | 2015-02-17 | Novellus Systems, Inc. | Conformal doping via plasma activated atomic layer deposition and conformal film deposition |
| US8652573B2 (en) * | 2010-07-15 | 2014-02-18 | Asm International N.V. | Method of CVD-depositing a film having a substantially uniform film thickness |
| JP5436674B2 (ja) | 2010-07-27 | 2014-03-05 | パナソニック株式会社 | 不揮発性記憶装置の製造方法 |
| JP5541223B2 (ja) * | 2010-07-29 | 2014-07-09 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置 |
| CN102345114B (zh) * | 2010-07-30 | 2013-06-19 | 中芯国际集成电路制造(上海)有限公司 | 一种mocvd加热装置、其形成方法和一种mocvd形成薄膜的方法 |
| US9685320B2 (en) | 2010-09-23 | 2017-06-20 | Lam Research Corporation | Methods for depositing silicon oxide |
| US8524612B2 (en) | 2010-09-23 | 2013-09-03 | Novellus Systems, Inc. | Plasma-activated deposition of conformal films |
| US8647993B2 (en) | 2011-04-11 | 2014-02-11 | Novellus Systems, Inc. | Methods for UV-assisted conformal film deposition |
| US9136180B2 (en) | 2011-06-01 | 2015-09-15 | Asm Ip Holding B.V. | Process for depositing electrode with high effective work function |
| US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
| US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
| US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
| US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
| KR102027360B1 (ko) * | 2011-09-19 | 2019-10-01 | 에이에스엠 인터내셔널 엔.브이. | 복합막을 위한 나노층 퇴적 공정 |
| KR102084901B1 (ko) * | 2011-09-23 | 2020-03-05 | 노벨러스 시스템즈, 인코포레이티드 | 플라즈마 활성화된 컨포멀 유전체 막 증착 |
| US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
| TWI627303B (zh) | 2011-11-04 | 2018-06-21 | Asm國際股份有限公司 | 將摻雜氧化矽沉積在反應室內的基底上的方法 |
| US8592328B2 (en) | 2012-01-20 | 2013-11-26 | Novellus Systems, Inc. | Method for depositing a chlorine-free conformal sin film |
| US8728955B2 (en) | 2012-02-14 | 2014-05-20 | Novellus Systems, Inc. | Method of plasma activated deposition of a conformal film on a substrate surface |
| JP6273257B2 (ja) | 2012-03-27 | 2018-01-31 | ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated | タングステンによるフィーチャ充填 |
| US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
| US9171715B2 (en) | 2012-09-05 | 2015-10-27 | Asm Ip Holding B.V. | Atomic layer deposition of GeO2 |
| US9021985B2 (en) | 2012-09-12 | 2015-05-05 | Asm Ip Holdings B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
| US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
| KR102207992B1 (ko) | 2012-10-23 | 2021-01-26 | 램 리써치 코포레이션 | 서브-포화된 원자층 증착 및 등각막 증착 |
| US9330899B2 (en) | 2012-11-01 | 2016-05-03 | Asm Ip Holding B.V. | Method of depositing thin film |
| SG2013083241A (en) | 2012-11-08 | 2014-06-27 | Novellus Systems Inc | Conformal film deposition for gapfill |
| CN103866285B (zh) * | 2012-12-18 | 2016-05-11 | 中国科学院微电子研究所 | 利用原子层沉积制备薄膜的方法 |
| US9337068B2 (en) | 2012-12-18 | 2016-05-10 | Lam Research Corporation | Oxygen-containing ceramic hard masks and associated wet-cleans |
| US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
| US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
| US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
| US9564309B2 (en) | 2013-03-14 | 2017-02-07 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
| US9824881B2 (en) | 2013-03-14 | 2017-11-21 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
| US9153486B2 (en) | 2013-04-12 | 2015-10-06 | Lam Research Corporation | CVD based metal/semiconductor OHMIC contact for high volume manufacturing applications |
| US9240412B2 (en) | 2013-09-27 | 2016-01-19 | Asm Ip Holding B.V. | Semiconductor structure and device and methods of forming same using selective epitaxial process |
| US9139908B2 (en) * | 2013-12-12 | 2015-09-22 | The Boeing Company | Gradient thin films |
| US9218963B2 (en) | 2013-12-19 | 2015-12-22 | Asm Ip Holding B.V. | Cyclical deposition of germanium |
| US9589808B2 (en) | 2013-12-19 | 2017-03-07 | Lam Research Corporation | Method for depositing extremely low resistivity tungsten |
| KR101551199B1 (ko) * | 2013-12-27 | 2015-09-10 | 주식회사 유진테크 | 사이클릭 박막 증착 방법 및 반도체 제조 방법, 그리고 반도체 소자 |
| US9214334B2 (en) | 2014-02-18 | 2015-12-15 | Lam Research Corporation | High growth rate process for conformal aluminum nitride |
| US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
| US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
| US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
| JP6306411B2 (ja) * | 2014-04-17 | 2018-04-04 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
| US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
| US9478438B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor |
| US9478411B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS |
| US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
| US9576792B2 (en) | 2014-09-17 | 2017-02-21 | Asm Ip Holding B.V. | Deposition of SiN |
| US9214333B1 (en) | 2014-09-24 | 2015-12-15 | Lam Research Corporation | Methods and apparatuses for uniform reduction of the in-feature wet etch rate of a silicon nitride film formed by ALD |
| US9997405B2 (en) | 2014-09-30 | 2018-06-12 | Lam Research Corporation | Feature fill with nucleation inhibition |
| US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
| US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
| US9589790B2 (en) | 2014-11-24 | 2017-03-07 | Lam Research Corporation | Method of depositing ammonia free and chlorine free conformal silicon nitride film |
| US9564312B2 (en) | 2014-11-24 | 2017-02-07 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
| KR102263121B1 (ko) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 및 그 제조 방법 |
| US9953984B2 (en) | 2015-02-11 | 2018-04-24 | Lam Research Corporation | Tungsten for wordline applications |
| US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
| US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
| US10566187B2 (en) | 2015-03-20 | 2020-02-18 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
| US9502238B2 (en) | 2015-04-03 | 2016-11-22 | Lam Research Corporation | Deposition of conformal films by atomic layer deposition and atomic layer etch |
| US9754824B2 (en) | 2015-05-27 | 2017-09-05 | Lam Research Corporation | Tungsten films having low fluorine content |
| US9613818B2 (en) | 2015-05-27 | 2017-04-04 | Lam Research Corporation | Deposition of low fluorine tungsten by sequential CVD process |
| US9978605B2 (en) | 2015-05-27 | 2018-05-22 | Lam Research Corporation | Method of forming low resistivity fluorine free tungsten film without nucleation |
| US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
| US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
| US10526701B2 (en) | 2015-07-09 | 2020-01-07 | Lam Research Corporation | Multi-cycle ALD process for film uniformity and thickness profile modulation |
| US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
| US10410857B2 (en) | 2015-08-24 | 2019-09-10 | Asm Ip Holding B.V. | Formation of SiN thin films |
| US9601693B1 (en) | 2015-09-24 | 2017-03-21 | Lam Research Corporation | Method for encapsulating a chalcogenide material |
| US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
| US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
| US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
| US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
| US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
| US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
| US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
| US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
| US9892913B2 (en) | 2016-03-24 | 2018-02-13 | Asm Ip Holding B.V. | Radial and thickness control via biased multi-port injection settings |
| US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
| US10087522B2 (en) | 2016-04-21 | 2018-10-02 | Asm Ip Holding B.V. | Deposition of metal borides |
| US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
| US10367080B2 (en) * | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
| US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
| KR102592471B1 (ko) | 2016-05-17 | 2023-10-20 | 에이에스엠 아이피 홀딩 비.브이. | 금속 배선 형성 방법 및 이를 이용한 반도체 장치의 제조 방법 |
| US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
| US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
| US9773643B1 (en) | 2016-06-30 | 2017-09-26 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
| US10062563B2 (en) | 2016-07-01 | 2018-08-28 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
| US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
| US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
| US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
| KR102354490B1 (ko) | 2016-07-27 | 2022-01-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
| US10177025B2 (en) | 2016-07-28 | 2019-01-08 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
| US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
| KR102532607B1 (ko) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 가공 장치 및 그 동작 방법 |
| US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
| US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
| US10629435B2 (en) | 2016-07-29 | 2020-04-21 | Lam Research Corporation | Doped ALD films for semiconductor patterning applications |
| US20180047567A1 (en) * | 2016-08-09 | 2018-02-15 | Samsung Electronics Co., Ltd. | Method of fabricating thin film |
| US10037884B2 (en) | 2016-08-31 | 2018-07-31 | Lam Research Corporation | Selective atomic layer deposition for gapfill using sacrificial underlayer |
| US10074543B2 (en) | 2016-08-31 | 2018-09-11 | Lam Research Corporation | High dry etch rate materials for semiconductor patterning applications |
| US9865455B1 (en) | 2016-09-07 | 2018-01-09 | Lam Research Corporation | Nitride film formed by plasma-enhanced and thermal atomic layer deposition process |
| US9847221B1 (en) | 2016-09-29 | 2017-12-19 | Lam Research Corporation | Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing |
| US10049869B2 (en) * | 2016-09-30 | 2018-08-14 | Lam Research Corporation | Composite dielectric interface layers for interconnect structures |
| US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
| US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
| US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
| US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
| US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
| US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
| US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
| US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
| US10454029B2 (en) | 2016-11-11 | 2019-10-22 | Lam Research Corporation | Method for reducing the wet etch rate of a sin film without damaging the underlying substrate |
| US10832908B2 (en) | 2016-11-11 | 2020-11-10 | Lam Research Corporation | Self-aligned multi-patterning process flow with ALD gapfill spacer mask |
| US10134579B2 (en) | 2016-11-14 | 2018-11-20 | Lam Research Corporation | Method for high modulus ALD SiO2 spacer |
| KR102546317B1 (ko) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 |
| US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
| KR102762543B1 (ko) | 2016-12-14 | 2025-02-05 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
| US9916980B1 (en) | 2016-12-15 | 2018-03-13 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
| US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
| KR102700194B1 (ko) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
| US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
| US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
| US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
| US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
| US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
| US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
| US10103040B1 (en) | 2017-03-31 | 2018-10-16 | Asm Ip Holding B.V. | Apparatus and method for manufacturing a semiconductor device |
| USD876504S1 (en) | 2017-04-03 | 2020-02-25 | Asm Ip Holding B.V. | Exhaust flow control ring for semiconductor deposition apparatus |
| KR102457289B1 (ko) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
| US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
| US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
| US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
| US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
| US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
| US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
| US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
| US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
| KR20190009245A (ko) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물 |
| US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
| US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
| US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
| US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
| US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
| US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
| TWI815813B (zh) | 2017-08-04 | 2023-09-21 | 荷蘭商Asm智慧財產控股公司 | 用於分配反應腔內氣體的噴頭總成 |
| US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
| US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
| US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
| US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
| US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
| WO2019036292A1 (en) | 2017-08-14 | 2019-02-21 | Lam Research Corporation | METHOD FOR METAL CASTING FOR THREE-DIMENSIONAL NAND AND VERTICAL WORDS LINE |
| US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
| USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
| US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
| US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
| KR102491945B1 (ko) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
| KR102401446B1 (ko) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| US10269559B2 (en) | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
| US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
| KR102630301B1 (ko) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치 |
| US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
| US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
| US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
| US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
| US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
| US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
| KR102443047B1 (ko) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 방법 및 그에 의해 제조된 장치 |
| US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
| KR102597978B1 (ko) | 2017-11-27 | 2023-11-06 | 에이에스엠 아이피 홀딩 비.브이. | 배치 퍼니스와 함께 사용하기 위한 웨이퍼 카세트를 보관하기 위한 보관 장치 |
| JP7206265B2 (ja) | 2017-11-27 | 2023-01-17 | エーエスエム アイピー ホールディング ビー.ブイ. | クリーン・ミニエンバイロメントを備える装置 |
| US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
| US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
| CN111630203A (zh) | 2018-01-19 | 2020-09-04 | Asm Ip私人控股有限公司 | 通过等离子体辅助沉积来沉积间隙填充层的方法 |
| TWI799494B (zh) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | 沈積方法 |
| USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
| US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
| US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
| USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
| US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
| US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
| US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
| US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
| US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
| KR102636427B1 (ko) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 장치 |
| US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
| US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
| WO2019169335A1 (en) | 2018-03-02 | 2019-09-06 | Lam Research Corporation | Selective deposition using hydrolysis |
| US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
| US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
| KR102646467B1 (ko) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 |
| US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
| US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
| US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
| KR102501472B1 (ko) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
| KR102600229B1 (ko) | 2018-04-09 | 2023-11-10 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 장치, 이를 포함하는 기판 처리 장치 및 기판 처리 방법 |
| US10580645B2 (en) | 2018-04-30 | 2020-03-03 | Asm Ip Holding B.V. | Plasma enhanced atomic layer deposition (PEALD) of SiN using silicon-hydrohalide precursors |
| JP2021523292A (ja) | 2018-05-03 | 2021-09-02 | ラム リサーチ コーポレーションLam Research Corporation | 3d nand構造内にタングステンおよび他の金属を堆積させる方法 |
| KR102709511B1 (ko) | 2018-05-08 | 2024-09-24 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 산화물 막을 주기적 증착 공정에 의해 증착하기 위한 방법 및 관련 소자 구조 |
| US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
| US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
| TWI816783B (zh) | 2018-05-11 | 2023-10-01 | 荷蘭商Asm 智慧財產控股公司 | 用於基板上形成摻雜金屬碳化物薄膜之方法及相關半導體元件結構 |
| KR102596988B1 (ko) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 그에 의해 제조된 장치 |
| US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
| TWI840362B (zh) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 水氣降低的晶圓處置腔室 |
| US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
| US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
| KR102568797B1 (ko) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 시스템 |
| TWI815915B (zh) | 2018-06-27 | 2023-09-21 | 荷蘭商Asm Ip私人控股有限公司 | 用於形成含金屬材料及包含含金屬材料的膜及結構之循環沉積方法 |
| US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
| US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
| KR102686758B1 (ko) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
| US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
| US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
| US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
| US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
| US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
| US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
| US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
| US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
| KR102707956B1 (ko) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
| US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
| US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
| CN110970344B (zh) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | 衬底保持设备、包含所述设备的系统及其使用方法 |
| US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
| KR102592699B1 (ko) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치 |
| US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
| US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
| KR102605121B1 (ko) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
| KR102546322B1 (ko) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
| USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
| US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
| US12378665B2 (en) | 2018-10-26 | 2025-08-05 | Asm Ip Holding B.V. | High temperature coatings for a preclean and etch apparatus and related methods |
| US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
| KR102748291B1 (ko) | 2018-11-02 | 2024-12-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 기판 처리 장치 |
| US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
| US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
| US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
| US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
| US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
| US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
| US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
| KR102636428B1 (ko) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치를 세정하는 방법 |
| US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
| TWI874340B (zh) | 2018-12-14 | 2025-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成裝置結構之方法、其所形成之結構及施行其之系統 |
| CN113424300B (zh) | 2018-12-14 | 2025-05-09 | 朗姆研究公司 | 在3d nand结构上的原子层沉积 |
| WO2020138975A1 (ko) | 2018-12-26 | 2020-07-02 | 한양대학교 에리카산학협력단 | 메모리 소자 및 그 제조 방법 |
| TWI819180B (zh) | 2019-01-17 | 2023-10-21 | 荷蘭商Asm 智慧財產控股公司 | 藉由循環沈積製程於基板上形成含過渡金屬膜之方法 |
| KR102727227B1 (ko) | 2019-01-22 | 2024-11-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| CN111524788B (zh) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | 氧化硅的拓扑选择性膜形成的方法 |
| KR102638425B1 (ko) | 2019-02-20 | 2024-02-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 내에 형성된 오목부를 충진하기 위한 방법 및 장치 |
| TWI845607B (zh) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 用來填充形成於基材表面內之凹部的循環沉積方法及設備 |
| KR20200102357A (ko) | 2019-02-20 | 2020-08-31 | 에이에스엠 아이피 홀딩 비.브이. | 3-d nand 응용의 플러그 충진체 증착용 장치 및 방법 |
| KR102626263B1 (ko) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치 |
| TWI842826B (zh) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備及處理基材之方法 |
| US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
| KR102782593B1 (ko) | 2019-03-08 | 2025-03-14 | 에이에스엠 아이피 홀딩 비.브이. | SiOC 층을 포함한 구조체 및 이의 형성 방법 |
| KR102858005B1 (ko) | 2019-03-08 | 2025-09-09 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체 |
| JP2020167398A (ja) | 2019-03-28 | 2020-10-08 | エーエスエム・アイピー・ホールディング・ベー・フェー | ドアオープナーおよびドアオープナーが提供される基材処理装置 |
| KR102809999B1 (ko) | 2019-04-01 | 2025-05-19 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자를 제조하는 방법 |
| WO2020210260A1 (en) | 2019-04-11 | 2020-10-15 | Lam Research Corporation | High step coverage tungsten deposition |
| US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
| KR20200125453A (ko) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 기상 반응기 시스템 및 이를 사용하는 방법 |
| US12040181B2 (en) | 2019-05-01 | 2024-07-16 | Lam Research Corporation | Modulated atomic layer deposition |
| KR102869364B1 (ko) | 2019-05-07 | 2025-10-10 | 에이에스엠 아이피 홀딩 비.브이. | 비정질 탄소 중합체 막을 개질하는 방법 |
| KR20200130121A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 딥 튜브가 있는 화학물질 공급원 용기 |
| KR20200130652A (ko) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조 |
| JP7598201B2 (ja) | 2019-05-16 | 2024-12-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
| JP7612342B2 (ja) | 2019-05-16 | 2025-01-14 | エーエスエム・アイピー・ホールディング・ベー・フェー | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
| USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
| USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
| WO2020236845A1 (en) * | 2019-05-21 | 2020-11-26 | Oregon State University | Apparatus and method for in-situ microwave anneal enhanced atomic layer deposition |
| WO2020236749A1 (en) | 2019-05-22 | 2020-11-26 | Lam Research Corporation | Nucleation-free tungsten deposition |
| USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
| JP7546000B2 (ja) | 2019-06-04 | 2024-09-05 | ラム リサーチ コーポレーション | パターニングにおける反応性イオンエッチングのための重合保護層 |
| USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
| KR20200141002A (ko) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법 |
| US12431349B2 (en) | 2019-06-07 | 2025-09-30 | Lam Research Corporation | In-situ control of film properties during atomic layer deposition |
| KR20200141931A (ko) | 2019-06-10 | 2020-12-21 | 에이에스엠 아이피 홀딩 비.브이. | 석영 에피택셜 챔버를 세정하는 방법 |
| KR20200143254A (ko) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조 |
| USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
| USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
| KR20210005515A (ko) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법 |
| JP7499079B2 (ja) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同軸導波管を用いたプラズマ装置、基板処理方法 |
| CN112216646A (zh) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | 基板支撑组件及包括其的基板处理装置 |
| CN112242318A (zh) | 2019-07-16 | 2021-01-19 | Asm Ip私人控股有限公司 | 基板处理装置 |
| KR102860110B1 (ko) | 2019-07-17 | 2025-09-16 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 게르마늄 구조를 형성하는 방법 |
| KR20210010816A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 라디칼 보조 점화 플라즈마 시스템 및 방법 |
| US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
| TWI839544B (zh) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成形貌受控的非晶碳聚合物膜之方法 |
| CN112242295B (zh) | 2019-07-19 | 2025-12-09 | Asmip私人控股有限公司 | 形成拓扑受控的无定形碳聚合物膜的方法 |
| CN112309843A (zh) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | 实现高掺杂剂掺入的选择性沉积方法 |
| CN112309899B (zh) | 2019-07-30 | 2025-11-14 | Asmip私人控股有限公司 | 基板处理设备 |
| CN112309900B (zh) | 2019-07-30 | 2025-11-04 | Asmip私人控股有限公司 | 基板处理设备 |
| US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
| US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
| US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
| US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
| CN118422165A (zh) | 2019-08-05 | 2024-08-02 | Asm Ip私人控股有限公司 | 用于化学源容器的液位传感器 |
| WO2021025874A1 (en) | 2019-08-06 | 2021-02-11 | Lam Research Corporation | Thermal atomic layer deposition of silicon-containing films |
| US12449309B2 (en) | 2019-08-06 | 2025-10-21 | Applied Materials, Inc. | Methods for detection using optical emission spectroscopy |
| CN112342526A (zh) | 2019-08-09 | 2021-02-09 | Asm Ip私人控股有限公司 | 包括冷却装置的加热器组件及其使用方法 |
| KR20220047333A (ko) | 2019-08-12 | 2022-04-15 | 램 리써치 코포레이션 | 텅스텐 증착 |
| USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
| USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
| JP2021031769A (ja) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | 成膜原料混合ガス生成装置及び成膜装置 |
| USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
| KR20210024423A (ko) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 홀을 구비한 구조체를 형성하기 위한 방법 |
| USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
| USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
| USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
| KR20210024420A (ko) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법 |
| US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
| KR102806450B1 (ko) | 2019-09-04 | 2025-05-12 | 에이에스엠 아이피 홀딩 비.브이. | 희생 캡핑 층을 이용한 선택적 증착 방법 |
| KR102733104B1 (ko) | 2019-09-05 | 2024-11-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| US12469693B2 (en) | 2019-09-17 | 2025-11-11 | Asm Ip Holding B.V. | Method of forming a carbon-containing layer and structure including the layer |
| KR102801283B1 (ko) * | 2019-09-20 | 2025-04-30 | 엔테그리스, 아이엔씨. | 이온 주입을 위한 플라즈마 침지 방법 |
| US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
| CN112593212B (zh) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法 |
| KR20210042810A (ko) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법 |
| TW202128273A (zh) | 2019-10-08 | 2021-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 氣體注入系統、及將材料沉積於反應室內之基板表面上的方法 |
| TWI846953B (zh) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
| TWI846966B (zh) | 2019-10-10 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成光阻底層之方法及包括光阻底層之結構 |
| US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
| TWI834919B (zh) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽之拓撲選擇性膜形成之方法 |
| US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
| KR102845724B1 (ko) | 2019-10-21 | 2025-08-13 | 에이에스엠 아이피 홀딩 비.브이. | 막을 선택적으로 에칭하기 위한 장치 및 방법 |
| KR20210050453A (ko) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
| US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
| KR102890638B1 (ko) | 2019-11-05 | 2025-11-25 | 에이에스엠 아이피 홀딩 비.브이. | 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템 |
| US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
| KR102861314B1 (ko) | 2019-11-20 | 2025-09-17 | 에이에스엠 아이피 홀딩 비.브이. | 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템 |
| KR20210065848A (ko) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | 제1 유전체 표면과 제2 금속성 표면을 포함한 기판 상에 타겟 막을 선택적으로 형성하기 위한 방법 |
| CN112951697B (zh) | 2019-11-26 | 2025-07-29 | Asmip私人控股有限公司 | 基板处理设备 |
| CN120998766A (zh) | 2019-11-29 | 2025-11-21 | Asm Ip私人控股有限公司 | 基板处理设备 |
| CN112885693B (zh) | 2019-11-29 | 2025-06-10 | Asmip私人控股有限公司 | 基板处理设备 |
| JP7527928B2 (ja) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
| KR20210070898A (ko) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
| KR20210080214A (ko) | 2019-12-19 | 2021-06-30 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
| JP7730637B2 (ja) | 2020-01-06 | 2025-08-28 | エーエスエム・アイピー・ホールディング・ベー・フェー | ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム |
| KR20210089079A (ko) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | 채널형 리프트 핀 |
| US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
| KR102882467B1 (ko) | 2020-01-16 | 2025-11-05 | 에이에스엠 아이피 홀딩 비.브이. | 고 종횡비 피처를 형성하는 방법 |
| KR102675856B1 (ko) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 및 박막 표면 개질 방법 |
| TWI889744B (zh) | 2020-01-29 | 2025-07-11 | 荷蘭商Asm Ip私人控股有限公司 | 污染物捕集系統、及擋板堆疊 |
| TW202513845A (zh) | 2020-02-03 | 2025-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 半導體裝置結構及其形成方法 |
| KR20210100010A (ko) | 2020-02-04 | 2021-08-13 | 에이에스엠 아이피 홀딩 비.브이. | 대형 물품의 투과율 측정을 위한 방법 및 장치 |
| US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
| KR20210103956A (ko) | 2020-02-13 | 2021-08-24 | 에이에스엠 아이피 홀딩 비.브이. | 수광 장치를 포함하는 기판 처리 장치 및 수광 장치의 교정 방법 |
| TW202146691A (zh) | 2020-02-13 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 氣體分配總成、噴淋板總成、及調整至反應室之氣體的傳導率之方法 |
| TWI855223B (zh) | 2020-02-17 | 2024-09-11 | 荷蘭商Asm Ip私人控股有限公司 | 用於生長磷摻雜矽層之方法 |
| TWI895326B (zh) | 2020-02-28 | 2025-09-01 | 荷蘭商Asm Ip私人控股有限公司 | 專用於零件清潔的系統 |
| TW202139347A (zh) | 2020-03-04 | 2021-10-16 | 荷蘭商Asm Ip私人控股有限公司 | 反應器系統、對準夾具、及對準方法 |
| KR102348742B1 (ko) * | 2020-03-04 | 2022-01-07 | (주)플렉시고 | 플렉시블 소재의 내구성 평가용 롤링장치 및 평가시스템 |
| KR20210116249A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법 |
| KR20210116240A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 조절성 접합부를 갖는 기판 핸들링 장치 |
| KR102775390B1 (ko) | 2020-03-12 | 2025-02-28 | 에이에스엠 아이피 홀딩 비.브이. | 타겟 토폴로지 프로파일을 갖는 층 구조를 제조하기 위한 방법 |
| US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
| KR102755229B1 (ko) | 2020-04-02 | 2025-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 |
| TWI887376B (zh) | 2020-04-03 | 2025-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 半導體裝置的製造方法 |
| TWI888525B (zh) | 2020-04-08 | 2025-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於選擇性蝕刻氧化矽膜之設備及方法 |
| KR20210128343A (ko) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조 |
| US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
| US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
| TW202143328A (zh) | 2020-04-21 | 2021-11-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於調整膜應力之方法 |
| KR20210132600A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템 |
| TW202146831A (zh) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法 |
| TW202208671A (zh) | 2020-04-24 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成包括硼化釩及磷化釩層的結構之方法 |
| KR20210132576A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 나이트라이드 함유 층을 형성하는 방법 및 이를 포함하는 구조 |
| KR20210132612A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 화합물들을 안정화하기 위한 방법들 및 장치 |
| KR102783898B1 (ko) | 2020-04-29 | 2025-03-18 | 에이에스엠 아이피 홀딩 비.브이. | 고체 소스 전구체 용기 |
| KR20210134869A (ko) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Foup 핸들러를 이용한 foup의 빠른 교환 |
| JP7726664B2 (ja) | 2020-05-04 | 2025-08-20 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板を処理するための基板処理システム |
| JP7736446B2 (ja) | 2020-05-07 | 2025-09-09 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同調回路を備える反応器システム |
| KR20210137395A (ko) | 2020-05-07 | 2021-11-17 | 에이에스엠 아이피 홀딩 비.브이. | 불소계 라디칼을 이용하여 반응 챔버의 인시츄 식각을 수행하기 위한 장치 및 방법 |
| KR102788543B1 (ko) | 2020-05-13 | 2025-03-27 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 레이저 정렬 고정구 |
| TW202146699A (zh) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
| KR20210143653A (ko) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| KR20210145079A (ko) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | 기판을 처리하기 위한 플랜지 및 장치 |
| KR102795476B1 (ko) | 2020-05-21 | 2025-04-11 | 에이에스엠 아이피 홀딩 비.브이. | 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법 |
| KR102702526B1 (ko) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | 과산화수소를 사용하여 박막을 증착하기 위한 장치 |
| KR20210146802A (ko) | 2020-05-26 | 2021-12-06 | 에이에스엠 아이피 홀딩 비.브이. | 붕소 및 갈륨을 함유한 실리콘 게르마늄 층을 증착하는 방법 |
| TWI876048B (zh) | 2020-05-29 | 2025-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
| TW202212620A (zh) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法 |
| WO2021250477A1 (en) * | 2020-06-10 | 2021-12-16 | 3M Innovative Properties Company | Roll-to-roll vapor deposition apparatus and method |
| TW202208659A (zh) | 2020-06-16 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 沉積含硼之矽鍺層的方法 |
| KR20210158809A (ko) | 2020-06-24 | 2021-12-31 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘이 구비된 층을 형성하는 방법 |
| TWI873359B (zh) | 2020-06-30 | 2025-02-21 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
| US12431354B2 (en) | 2020-07-01 | 2025-09-30 | Asm Ip Holding B.V. | Silicon nitride and silicon oxide deposition methods using fluorine inhibitor |
| KR102707957B1 (ko) | 2020-07-08 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
| TWI864307B (zh) | 2020-07-17 | 2024-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於光微影之結構、方法與系統 |
| TWI878570B (zh) | 2020-07-20 | 2025-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於沉積鉬層之方法及系統 |
| KR20220011092A (ko) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 전이 금속층을 포함하는 구조체를 형성하기 위한 방법 및 시스템 |
| TW202219303A (zh) | 2020-07-27 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | 薄膜沉積製程 |
| KR20230043795A (ko) | 2020-07-28 | 2023-03-31 | 램 리써치 코포레이션 | 실리콘-함유 막들의 불순물 감소 |
| KR20220021863A (ko) | 2020-08-14 | 2022-02-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
| US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
| TW202228863A (zh) | 2020-08-25 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 清潔基板的方法、選擇性沉積的方法、及反應器系統 |
| TW202534193A (zh) | 2020-08-26 | 2025-09-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成金屬氧化矽層及金屬氮氧化矽層的方法 |
| TW202229601A (zh) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統 |
| KR20220033997A (ko) | 2020-09-10 | 2022-03-17 | 에이에스엠 아이피 홀딩 비.브이. | 갭 충진 유체를 증착하기 위한 방법 그리고 이와 관련된 시스템 및 장치 |
| USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
| KR20220036866A (ko) | 2020-09-16 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 산화물 증착 방법 |
| USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
| TWI889903B (zh) | 2020-09-25 | 2025-07-11 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
| US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
| KR20220045900A (ko) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치 |
| CN114293174A (zh) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | 气体供应单元和包括气体供应单元的衬底处理设备 |
| TW202229613A (zh) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 於階梯式結構上沉積材料的方法 |
| KR102873665B1 (ko) | 2020-10-15 | 2025-10-17 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자의 제조 방법, 및 ether-cat을 사용하는 기판 처리 장치 |
| TW202217037A (zh) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 沉積釩金屬的方法、結構、裝置及沉積總成 |
| CN112376024B (zh) * | 2020-10-26 | 2022-08-16 | 北京北方华创微电子装备有限公司 | 一种氧化物薄膜的制备方法 |
| TW202223136A (zh) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基板上形成層之方法、及半導體處理系統 |
| TW202229620A (zh) | 2020-11-12 | 2022-08-01 | 特文特大學 | 沉積系統、用於控制反應條件之方法、沉積方法 |
| TW202229795A (zh) | 2020-11-23 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 具注入器之基板處理設備 |
| TW202235649A (zh) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 填充間隙之方法與相關之系統及裝置 |
| KR102548082B1 (ko) * | 2020-11-26 | 2023-06-26 | 한국화학연구원 | 기상 증착을 이용한 고밀도의 균일한 나노 입자 합성 방법 |
| TW202235675A (zh) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 注入器、及基板處理設備 |
| KR20220081905A (ko) | 2020-12-09 | 2022-06-16 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 증착용 실리콘 전구체 |
| US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
| TW202233884A (zh) | 2020-12-14 | 2022-09-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成臨限電壓控制用之結構的方法 |
| US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
| TW202232639A (zh) | 2020-12-18 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 具有可旋轉台的晶圓處理設備 |
| TW202242184A (zh) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 前驅物膠囊、前驅物容器、氣相沉積總成、及將固態前驅物裝載至前驅物容器中之方法 |
| TW202231903A (zh) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成 |
| TW202226899A (zh) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 具匹配器的電漿處理裝置 |
| USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
| USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
| USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
| USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
| KR20240032126A (ko) | 2021-07-09 | 2024-03-08 | 램 리써치 코포레이션 | 실리콘-함유 막들의 플라즈마 강화 원자 층 증착 |
| USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
| USD1099184S1 (en) | 2021-11-29 | 2025-10-21 | Asm Ip Holding B.V. | Weighted lift pin |
| USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
Family Cites Families (99)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US192954A (en) * | 1877-07-10 | Improvement in delivery apparatus for printing-machines | ||
| US197864A (en) * | 1877-12-04 | Improvement in manufacture of earthenware vessels | ||
| US3632406A (en) * | 1970-01-20 | 1972-01-04 | Norton Co | Low-temperature vapor deposits of thick film coatings |
| SE393967B (sv) | 1974-11-29 | 1977-05-31 | Sateko Oy | Forfarande och for utforande av stroleggning mellan lagren i ett virkespaket |
| US4439463A (en) * | 1982-02-18 | 1984-03-27 | Atlantic Richfield Company | Plasma assisted deposition system |
| EP0117764A1 (en) | 1983-03-01 | 1984-09-05 | Mitsubishi Denki Kabushiki Kaisha | Coil device |
| US4925661A (en) * | 1984-04-19 | 1990-05-15 | Leaf Huang | Target-specific cytotoxic liposomes |
| GB8516537D0 (en) | 1985-06-29 | 1985-07-31 | Standard Telephones Cables Ltd | Pulsed plasma apparatus |
| US5755886A (en) | 1986-12-19 | 1998-05-26 | Applied Materials, Inc. | Apparatus for preventing deposition gases from contacting a selected region of a substrate during deposition processing |
| US4783248A (en) * | 1987-02-10 | 1988-11-08 | Siemens Aktiengesellschaft | Method for the production of a titanium/titanium nitride double layer |
| DE3851462T2 (de) * | 1987-05-18 | 1995-05-04 | Sumitomo Electric Industries | Verfahren zur Herstellung eines supraleitenden Materials des Oxydverbundtyps. |
| JPH0743815Y2 (ja) | 1988-04-11 | 1995-10-09 | ティーディーケイ株式会社 | テープカセット |
| US5688565A (en) | 1988-12-27 | 1997-11-18 | Symetrix Corporation | Misted deposition method of fabricating layered superlattice materials |
| US4918031A (en) | 1988-12-28 | 1990-04-17 | American Telephone And Telegraph Company,At&T Bell Laboratories | Processes depending on plasma generation using a helical resonator |
| US5556501A (en) | 1989-10-03 | 1996-09-17 | Applied Materials, Inc. | Silicon scavenger in an inductively coupled RF plasma reactor |
| US5102694A (en) | 1990-09-27 | 1992-04-07 | Cvd Incorporated | Pulsed chemical vapor deposition of gradient index optical material |
| US6110531A (en) * | 1991-02-25 | 2000-08-29 | Symetrix Corporation | Method and apparatus for preparing integrated circuit thin films by chemical vapor deposition |
| US6024826A (en) | 1996-05-13 | 2000-02-15 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
| KR0184675B1 (ko) | 1991-07-24 | 1999-04-15 | 이노우에 쥰이치 | 챔버내의 전극에 있어서의 실제의 rf파워를 검출 및 제어 가능한 플라즈마 처리장치 |
| US5242530A (en) | 1991-08-05 | 1993-09-07 | International Business Machines Corporation | Pulsed gas plasma-enhanced chemical vapor deposition of silicon |
| US5627013A (en) | 1991-11-14 | 1997-05-06 | Rohm Co., Ltd. | Method of forming a fine pattern of ferroelectric film |
| JPH05148654A (ja) * | 1991-11-28 | 1993-06-15 | Shinko Seiki Co Ltd | パルスプラズマcvdによる成膜方法及びその装置 |
| US5306666A (en) | 1992-07-24 | 1994-04-26 | Nippon Steel Corporation | Process for forming a thin metal film by chemical vapor deposition |
| US5344792A (en) | 1993-03-04 | 1994-09-06 | Micron Technology, Inc. | Pulsed plasma enhanced CVD of metal silicide conductive films such as TiSi2 |
| US5273783A (en) * | 1993-03-24 | 1993-12-28 | Micron Semiconductor, Inc. | Chemical vapor deposition of titanium and titanium containing films using bis (2,4-dimethylpentadienyl) titanium as a precursor |
| KR100264445B1 (ko) | 1993-10-04 | 2000-11-01 | 히가시 데쓰로 | 플라즈마처리장치 |
| US5529857A (en) * | 1993-10-06 | 1996-06-25 | Sanyo Electric Co., Ltd. | Hydrogen-absorbing alloy electrode and process for producing the same |
| KR100276736B1 (ko) | 1993-10-20 | 2001-03-02 | 히가시 데쓰로 | 플라즈마 처리장치 |
| US5468341A (en) | 1993-12-28 | 1995-11-21 | Nec Corporation | Plasma-etching method and apparatus therefor |
| US5460689A (en) * | 1994-02-28 | 1995-10-24 | Applied Materials, Inc. | High pressure plasma treatment method and apparatus |
| US5580385A (en) | 1994-06-30 | 1996-12-03 | Texas Instruments, Incorporated | Structure and method for incorporating an inductively coupled plasma source in a plasma processing chamber |
| US5773363A (en) * | 1994-11-08 | 1998-06-30 | Micron Technology, Inc. | Semiconductor processing method of making electrical contact to a node |
| US5747116A (en) * | 1994-11-08 | 1998-05-05 | Micron Technology, Inc. | Method of forming an electrical contact to a silicon substrate |
| US5576071A (en) | 1994-11-08 | 1996-11-19 | Micron Technology, Inc. | Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organic precursor compounds |
| US5989999A (en) | 1994-11-14 | 1999-11-23 | Applied Materials, Inc. | Construction of a tantalum nitride film on a semiconductor wafer |
| FI100409B (fi) | 1994-11-28 | 1997-11-28 | Asm Int | Menetelmä ja laitteisto ohutkalvojen valmistamiseksi |
| JP3522917B2 (ja) * | 1995-10-03 | 2004-04-26 | 株式会社東芝 | 半導体装置の製造方法および半導体製造装置 |
| US5851293A (en) | 1996-03-29 | 1998-12-22 | Atmi Ecosys Corporation | Flow-stabilized wet scrubber system for treatment of process gases from semiconductor manufacturing operations |
| US5654679A (en) | 1996-06-13 | 1997-08-05 | Rf Power Products, Inc. | Apparatus for matching a variable load impedance with an RF power generator impedance |
| US6342277B1 (en) * | 1996-08-16 | 2002-01-29 | Licensee For Microelectronics: Asm America, Inc. | Sequential chemical vapor deposition |
| US5993916A (en) | 1996-07-12 | 1999-11-30 | Applied Materials, Inc. | Method for substrate processing with improved throughput and yield |
| JP3718297B2 (ja) | 1996-08-12 | 2005-11-24 | アネルバ株式会社 | 薄膜作製方法および薄膜作製装置 |
| US5916365A (en) | 1996-08-16 | 1999-06-29 | Sherman; Arthur | Sequential chemical vapor deposition |
| US5792522A (en) * | 1996-09-18 | 1998-08-11 | Intel Corporation | High density plasma physical vapor deposition |
| US5961793A (en) | 1996-10-31 | 1999-10-05 | Applied Materials, Inc. | Method of reducing generation of particulate matter in a sputtering chamber |
| US5710070A (en) * | 1996-11-08 | 1998-01-20 | Chartered Semiconductor Manufacturing Pte Ltd. | Application of titanium nitride and tungsten nitride thin film resistor for thermal ink jet technology |
| JPH10237662A (ja) * | 1996-12-24 | 1998-09-08 | Sony Corp | 金属膜のプラズマcvd方法、および金属窒化物膜の形成方法ならびに半導体装置 |
| US5919531A (en) * | 1997-03-26 | 1999-07-06 | Gelest, Inc. | Tantalum and tantalum-based films and methods of making the same |
| US5968610A (en) * | 1997-04-02 | 1999-10-19 | United Microelectronics Corp. | Multi-step high density plasma chemical vapor deposition process |
| US6158384A (en) | 1997-06-05 | 2000-12-12 | Applied Materials, Inc. | Plasma reactor with multiple small internal inductive antennas |
| JPH1167693A (ja) * | 1997-06-11 | 1999-03-09 | Tokyo Electron Ltd | Cvd成膜装置およびcvd成膜方法 |
| US6089184A (en) * | 1997-06-11 | 2000-07-18 | Tokyo Electron Limited | CVD apparatus and CVD method |
| US6221792B1 (en) * | 1997-06-24 | 2001-04-24 | Lam Research Corporation | Metal and metal silicide nitridization in a high density, low pressure plasma reactor |
| US6200651B1 (en) | 1997-06-30 | 2001-03-13 | Lam Research Corporation | Method of chemical vapor deposition in a vacuum plasma processor responsive to a pulsed microwave source |
| US6066609A (en) | 1997-07-31 | 2000-05-23 | Siemens Aktiengesellschaft | Aqueous solution for cleaning a semiconductor substrate |
| US5972179A (en) | 1997-09-30 | 1999-10-26 | Lucent Technologies Inc. | Silicon IC contacts using composite TiN barrier layer |
| US5902563A (en) | 1997-10-30 | 1999-05-11 | Pl-Limited | RF/VHF plasma diamond growth method and apparatus and materials produced therein |
| US5972430A (en) | 1997-11-26 | 1999-10-26 | Advanced Technology Materials, Inc. | Digital chemical vapor deposition (CVD) method for forming a multi-component oxide layer |
| US6101971A (en) * | 1998-05-13 | 2000-08-15 | Axcelis Technologies, Inc. | Ion implantation control using charge collection, optical emission spectroscopy and mass analysis |
| US5985375A (en) | 1998-09-03 | 1999-11-16 | Micron Technology, Inc. | Method for pulsed-plasma enhanced vapor deposition |
| US6159842A (en) * | 1999-01-11 | 2000-12-12 | Taiwan Semiconductor Manufacturing Company | Method for fabricating a hybrid low-dielectric-constant intermetal dielectric (IMD) layer with improved reliability for multilevel interconnections |
| US6200893B1 (en) | 1999-03-11 | 2001-03-13 | Genus, Inc | Radical-assisted sequential CVD |
| US6306211B1 (en) | 1999-03-23 | 2001-10-23 | Matsushita Electric Industrial Co., Ltd. | Method for growing semiconductor film and method for fabricating semiconductor device |
| US6150209A (en) * | 1999-04-23 | 2000-11-21 | Taiwan Semiconductor Manufacturing Company | Leakage current reduction of a tantalum oxide layer via a nitrous oxide high density annealing procedure |
| US6268288B1 (en) * | 1999-04-27 | 2001-07-31 | Tokyo Electron Limited | Plasma treated thermal CVD of TaN films from tantalum halide precursors |
| US6236076B1 (en) | 1999-04-29 | 2001-05-22 | Symetrix Corporation | Ferroelectric field effect transistors for nonvolatile memory applications having functional gradient material |
| JP2003502878A (ja) | 1999-06-24 | 2003-01-21 | ナーハ ガジル、プラサード | 原子層化学気相成長装置 |
| US6333202B1 (en) * | 1999-08-26 | 2001-12-25 | International Business Machines Corporation | Flip FERAM cell and method to form same |
| US6140249A (en) * | 1999-08-27 | 2000-10-31 | Micron Technology, Inc. | Low dielectric constant dielectric films and process for making the same |
| US6146907A (en) * | 1999-10-19 | 2000-11-14 | The United States Of America As Represented By The United States Department Of Energy | Method of forming a dielectric thin film having low loss composition of Bax Sry Ca1-x-y TiO3 : Ba0.12-0.25 Sr0.35-0.47 Ca0.32-0.53 TiO3 |
| US6406991B2 (en) * | 1999-12-27 | 2002-06-18 | Hoya Corporation | Method of manufacturing a contact element and a multi-layered wiring substrate, and wafer batch contact board |
| US6436819B1 (en) * | 2000-02-01 | 2002-08-20 | Applied Materials, Inc. | Nitrogen treatment of a metal nitride/metal stack |
| US6743473B1 (en) * | 2000-02-16 | 2004-06-01 | Applied Materials, Inc. | Chemical vapor deposition of barriers from novel precursors |
| US6492283B2 (en) | 2000-02-22 | 2002-12-10 | Asm Microchemistry Oy | Method of forming ultrathin oxide layer |
| EP1266054B1 (en) | 2000-03-07 | 2006-12-20 | Asm International N.V. | Graded thin films |
| US6451390B1 (en) | 2000-04-06 | 2002-09-17 | Applied Materials, Inc. | Deposition of TEOS oxide using pulsed RF plasma |
| US6451161B1 (en) | 2000-04-10 | 2002-09-17 | Nano-Architect Research Corporation | Method and apparatus for generating high-density uniform plasma |
| US20010051215A1 (en) * | 2000-04-13 | 2001-12-13 | Gelest, Inc. | Methods for chemical vapor deposition of titanium-silicon-nitrogen films |
| US6560991B1 (en) * | 2000-12-28 | 2003-05-13 | Kotliar Igor K | Hyperbaric hypoxic fire escape and suppression systems for multilevel buildings, transportation tunnels and other human-occupied environments |
| KR100775159B1 (ko) | 2000-05-15 | 2007-11-12 | 에이에스엠 인터내셔널 엔.붸. | 집적회로의 생산 공정 |
| US6521544B1 (en) * | 2000-08-31 | 2003-02-18 | Micron Technology, Inc. | Method of forming an ultra thin dielectric film |
| US6521529B1 (en) * | 2000-10-05 | 2003-02-18 | Advanced Micro Devices, Inc. | HDP treatment for reduced nickel silicide bridging |
| US6689220B1 (en) | 2000-11-22 | 2004-02-10 | Simplus Systems Corporation | Plasma enhanced pulsed layer deposition |
| US6800173B2 (en) | 2000-12-15 | 2004-10-05 | Novellus Systems, Inc. | Variable gas conductance control for a process chamber |
| US6951804B2 (en) * | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US6613656B2 (en) | 2001-02-13 | 2003-09-02 | Micron Technology, Inc. | Sequential pulse deposition |
| US20020170677A1 (en) | 2001-04-07 | 2002-11-21 | Tucker Steven D. | RF power process apparatus and methods |
| US6610169B2 (en) | 2001-04-21 | 2003-08-26 | Simplus Systems Corporation | Semiconductor processing system and method |
| US7442615B2 (en) | 2001-04-21 | 2008-10-28 | Tegal Corporation | Semiconductor processing system and method |
| US7867905B2 (en) | 2001-04-21 | 2011-01-11 | Tegal Corporation | System and method for semiconductor processing |
| US6756318B2 (en) * | 2001-09-10 | 2004-06-29 | Tegal Corporation | Nanolayer thick film processing system and method |
| WO2003025243A2 (en) * | 2001-09-14 | 2003-03-27 | Asm International N.V. | Metal nitride deposition by ald using gettering reactant |
| US6833161B2 (en) * | 2002-02-26 | 2004-12-21 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US20030211223A1 (en) * | 2002-05-10 | 2003-11-13 | Unilever Bestfoods N.A. | Nut butter |
| US7112485B2 (en) * | 2002-08-28 | 2006-09-26 | Micron Technology, Inc. | Systems and methods for forming zirconium and/or hafnium-containing layers |
| US6987059B1 (en) * | 2003-08-14 | 2006-01-17 | Lsi Logic Corporation | Method and structure for creating ultra low resistance damascene copper wiring |
| US7148155B1 (en) * | 2004-10-26 | 2006-12-12 | Novellus Systems, Inc. | Sequential deposition/anneal film densification method |
| US7341959B2 (en) | 2005-03-21 | 2008-03-11 | Tokyo Electron Limited | Plasma enhanced atomic layer deposition system and method |
| US7718538B2 (en) | 2007-02-21 | 2010-05-18 | Applied Materials, Inc. | Pulsed-plasma system with pulsed sample bias for etching semiconductor substrates |
-
2003
- 2003-02-04 US US10/360,135 patent/US7713592B2/en not_active Expired - Lifetime
-
2004
- 2004-02-04 CN CNA2004800085606A patent/CN1768158A/zh active Pending
- 2004-02-04 KR KR1020137023126A patent/KR101448186B1/ko not_active Expired - Lifetime
- 2004-02-04 WO PCT/US2004/003349 patent/WO2004070074A2/en not_active Ceased
- 2004-02-04 JP JP2006503356A patent/JP5101880B2/ja not_active Expired - Lifetime
- 2004-02-04 EP EP04708255A patent/EP1601812A2/en not_active Withdrawn
- 2004-02-04 KR KR1020057014408A patent/KR101238429B1/ko not_active Expired - Lifetime
- 2004-02-04 KR KR20127018629A patent/KR101483737B1/ko not_active Expired - Lifetime
-
2010
- 2010-03-26 US US12/732,825 patent/US8658259B2/en not_active Expired - Lifetime
-
2012
- 2012-04-17 US US13/449,175 patent/US8940374B2/en not_active Expired - Lifetime
- 2012-05-25 US US13/480,912 patent/US9447496B2/en not_active Expired - Fee Related
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009539270A (ja) * | 2006-05-31 | 2009-11-12 | ティーガル コーポレイション | 半導体加工のためのシステム及び方法 |
| US20220415676A1 (en) * | 2021-06-29 | 2022-12-29 | Applied Materials, Inc. | Selective oxidation on rapid thermal processing (rtp) chamber with active steam generation |
| US11996305B2 (en) * | 2021-06-29 | 2024-05-28 | Applied Materials, Inc. | Selective oxidation on rapid thermal processing (RTP) chamber with active steam generation |
| US12341032B2 (en) | 2021-06-29 | 2025-06-24 | Applied Materials, Inc. | Methods of selective oxidation on rapid thermal processing (RTP) chamber with active steam generation |
Also Published As
| Publication number | Publication date |
|---|---|
| US9447496B2 (en) | 2016-09-20 |
| KR101483737B1 (ko) | 2015-01-16 |
| US20120258257A1 (en) | 2012-10-11 |
| KR101238429B1 (ko) | 2013-02-28 |
| US7713592B2 (en) | 2010-05-11 |
| KR20060056883A (ko) | 2006-05-25 |
| US8940374B2 (en) | 2015-01-27 |
| US20120289061A1 (en) | 2012-11-15 |
| CN1768158A (zh) | 2006-05-03 |
| WO2004070074A3 (en) | 2004-11-18 |
| KR20120096085A (ko) | 2012-08-29 |
| US20100190353A1 (en) | 2010-07-29 |
| JP2006516833A (ja) | 2006-07-06 |
| EP1601812A2 (en) | 2005-12-07 |
| KR20130119497A (ko) | 2013-10-31 |
| KR101448186B1 (ko) | 2014-10-07 |
| US20040151845A1 (en) | 2004-08-05 |
| US8658259B2 (en) | 2014-02-25 |
| JP5101880B2 (ja) | 2012-12-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8940374B2 (en) | Nanolayer deposition process | |
| US9121098B2 (en) | NanoLayer Deposition process for composite films | |
| US6540838B2 (en) | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition | |
| US6451119B2 (en) | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition | |
| TWI265207B (en) | Preparation of metal silicon nitride films via cyclic deposition | |
| US7867896B2 (en) | Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor | |
| US7691757B2 (en) | Deposition of complex nitride films | |
| US20220139713A1 (en) | Molybdenum deposition method | |
| JP2006516304A (ja) | 薄膜を層状堆積させるための方法及び装置 | |
| KR102695769B1 (ko) | Peald 나이트라이드 막들 | |
| KR20250162447A (ko) | 주기적 증착 공정에 의해 기판 표면 상에 몰리브덴 질화물 막을 증착하는 방법 및 이와 관련된 몰리브덴 질화물 막을 포함한 반도체 소자 구조 | |
| KR102027360B1 (ko) | 복합막을 위한 나노층 퇴적 공정 | |
| US20250215565A1 (en) | Vanadium containing layers and methods and systems for depositing said layers | |
| KR102904746B1 (ko) | 주기적 증착 공정에 의해 기판 표면 상에 몰리브덴 질화물 막을 증착하는 방법 및 이와 관련된 몰리브덴 질화물 막을 포함한 반도체 소자 구조 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 1020057014408 Country of ref document: KR Ref document number: 2006503356 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004708255 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 20048085606 Country of ref document: CN |
|
| WWP | Wipo information: published in national office |
Ref document number: 2004708255 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020057014408 Country of ref document: KR |