US20060193988A1 - Method for coating metallic surfaces with a mixture containing at least two silanes - Google Patents

Method for coating metallic surfaces with a mixture containing at least two silanes Download PDF

Info

Publication number
US20060193988A1
US20060193988A1 US10/546,624 US54662405A US2006193988A1 US 20060193988 A1 US20060193988 A1 US 20060193988A1 US 54662405 A US54662405 A US 54662405A US 2006193988 A1 US2006193988 A1 US 2006193988A1
Authority
US
United States
Prior art keywords
silane
process according
group
fluorine
aqueous composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/546,624
Other languages
English (en)
Inventor
Manfred Walter
Axel Schone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHEMETAL GmbH
Original Assignee
CHEMETAL GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32928840&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20060193988(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE10308237.9A external-priority patent/DE10308237B4/de
Priority claimed from DE10332744.4A external-priority patent/DE10332744B4/de
Application filed by CHEMETAL GmbH filed Critical CHEMETAL GmbH
Assigned to CHEMETAL GMBH reassignment CHEMETAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROWN, KEVIN, JUNG, CHRISTIAN, KLIEHM, NORBERT, SCHONE, AXEL, WALTER, MANFRED, KOLBERG, THOMAS
Publication of US20060193988A1 publication Critical patent/US20060193988A1/en
Priority to US12/958,009 priority Critical patent/US8932679B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the invention relates to a process for coating metallic surfaces with an aqueous composition comprising at least one fluorine-free silane and at least one fluorine-containing silane and, if desired, organic film formers and/or further components.
  • the invention further relates to such aqueous compositions and also to the use of the substrates coated by the process of the invention.
  • silanes in aqueous compositions for producing siloxane-rich corrosion-protective coatings is known in principle. Although these coatings have become established, the processes for coating with an aqueous composition predominantly comprising silane are in some cases difficult to implement. This coating is not always formed with ideal properties. In addition there may be problems in the ability sufficiently to characterize the very thin, transparent silane coatings on the metallic substrate, and defects therein, with the naked eye or with optical aids. Corrosion protection and film adhesion of the siloxane-rich coatings formed are often high, though not always so, and in some cases are not high enough for certain applications even when the coatings are appropriately applied.
  • silane-containing aqueous compositions In the context of the design of silane-containing aqueous compositions, moreover, it has been found appropriate to add a small or large amount of at least one component selected from the group consisting of monomers, oligomers and polymers. With compositions of this kind the nature and amount of the silane added are sometimes critical to a successful outcome. Normally, however, the amounts of silane added for the purpose are comparatively low—often only up to 5% by weight—and in that case act as a coupling agent, where the intention is that it is the adhesion-promoting (coupling) effect in particular between the metallic substrate and coating material and, where appropriate, between pigment and organic coating-material constituents that should prevail, although to a minor extent in some cases there may also be a slight crosslinking effect. Additions of silane are made predominantly to thermally curable resin systems.
  • WO 00/46310 teaches a process for coating metallic surfaces with a liquid composition which comprises a hydrolyzed aminosilane and a hydrolyzed multi-silyl-functional silane, but no fluorine-containing silane.
  • DE-A1-101 49 148 describes aqueous coating compositions based on organic film former, fine inorganic particles and also lubricants and/or organic corrosion inhibitor, the compositions providing outstanding results in corrosion resistance, adhesion and formability, not least on Galvalume® steel sheets, despite the absence of chromium compounds, but nevertheless also exhibiting inadequate corrosion resistance as an organic film approximately 1 ⁇ m thick on hot-dip-galvanized, electrolytically galvanized or Galfan®-coated metallic strips, i.e. on metallic surfaces which are difficult to protect against corrosion.
  • the compositions, their constituents and the properties of the raw materials and coatings in that publication are expressly incorporated by reference into this specification.
  • German patent application DE 103 08 237 of 25.02.2003 relating to compositions of similar constitution and to corresponding processes for coating metallic surfaces, is explicitly incorporated by reference in terms of the raw materials and their properties, the preparation of the compositions and/or the hydrolyzing of the silanes, the compositions such as concentrates and baths and their properties, the effects, the formation of the coatings such as the drying, filming and curing, for example, the compositions and the properties of the coatings formed, and also the variants of the processes.
  • the object is achieved with a process for coating a metallic surface, in particular of aluminum, iron, copper, magnesium, nickel, titanium, tin, zinc or alloys containing aluminum, iron, copper, magnesium, nickel, titanium, tin and/or zinc, with an aqueous composition, also comprising, if desired, organic solvent and other components, which is substantially or entirely free from chromium(VI) compounds, for the purpose of pretreatment prior to a further coating or for treatment, where the article to be coated—in particular a strip or strip section—is, if desired, formed after coating, which process is characterized in that the composition comprises, besides water,
  • the silanes in the composition being water-soluble or becoming water-soluble in particular by virtue of (further) hydrolysis reactions and/or chemical reactions prior to application to the metallic surface,
  • the clean, pickled, cleaned and/or pretreated metallic surface being contacted with the aqueous composition and a film being formed on the metallic surface and subsequently dried and, if desired, additionally cured,
  • the object is also achieved by aqueous compositions corresponding to claim 26 .
  • the silane is characterized in this specification by the dominant constituent of the products, which are generally available commercially.
  • the silanes present in the aqueous composition are monomers, oligomers, polymers, copolymers and/or reaction products with further components as a result of hydrolysis reactions, condensation reactions and/or further reactions. The reactions take place primarily in solution, in the course of the drying and, where appropriate, curing of the coating.
  • the term “silane” is utilized in this context for silanes, silanols, siloxanes, polysiloxanes and their reaction products and/or derivatives, which are often “silane” mixtures. In view of the often highly complex chemical reactions which occur in this context, and in view of highly complex analyses and operations, it is not possible to specify the particular further silanes and other reaction products.
  • silanes for the purposes of this specification are regarded as being water-soluble if they summarily at room temperature in the silane composition have a solubility in water of at least 0.05 g/l, preferably at least 0.1 g/l, more preferably at least 0.2 g/l or at least 0.3 g/l. This does not imply that every single one of these silanes must have this minimum solubility but rather that these minimum values are achieved on average.
  • aqueous composition preferably there is at least one silane selected from the fluorine-free silanes: from in each case at least one acyloxysilane, alkoxysilane, silane having at least one amino group such as an aminoalkylsilane, silane having at least one succinic acid group and/or succinic anhydride group, bis-silyl-silane, silane having at least one epoxy group such as a glycidyloxysilane, (meth)acrylato-silane, multi-silyl-silane, ureidosilane, vinylsilane and/or at least one silanol and/or at least one siloxane or polysiloxane whose composition corresponds chemically to that of the aforementioned silanes.
  • silane selected from the fluorine-free silanes: from in each case at least one acyloxysilane, alkoxysilane, silane having at least one amino group such as an aminoalkylsi
  • It comprises at least one silane and/or (in each case) at least one monomeric, dimeric, oligomeric and/or polymeric silanol and/or (in each case) at least one monomeric, dimeric, oligomeric and/or polymeric siloxane, the term “oligomers” being intended here to embrace even trimers.
  • the aqueous composition there is at least one silane selected from the fluorine-containing silanes: from in each case at least one acyloxysilane, alkoxysilane, silane having at least one amino group such as an aminoalkylsilane, silane having at least one succinic acid group and/or succinic anhydride group, bis-silyl-silane, silane having at least one epoxy group such as a glycidyloxysilane, (meth)acrylato-silane, multi-silyl-silane, ureidosilane, vinylsilane and/or at least one silanol and/or at least one siloxane or polysiloxane whose composition corresponds chemically to that of the aforementioned silanes, containing in each case at least one group that contains one, or contains at least one, fluorine atom.
  • silane selected from the fluorine-containing silanes: from in each case at least one acyloxysilane,
  • the aqueous composition comprises at least one fluoroalkoxyalkylsilane, at least one mono-, di- or trifunctional fluorosilane, at least one mono-, bis- or tris-fluorosilane, at least one fluorosilane based on ethoxysilane and/or based on methoxysilane and/or at least one fluorosilane having at least one functional group such as, for example, an amino group, in particular in the form of a cocondensate, such as, for example, a fluoroalkyldialkoxysilane, a fluoroaminoalkylpropyltrialkoxysilane, a fluoromethanesulfonate, a fluoropropylalkyldialkoxysilane, a triphenylfluorosilane, a trialkoxyfluorosilane, a trialkylfluorosilane and/or a tridecafluorooctylt
  • composition comprises at least one silane that contains at least two amino groups and also at least one ethyl group and/or at least one methyl group.
  • the amount of all silanes a) and b), including any reaction products formed with other components is together preferably from 0.01 to 100 g/l in a concentrate or from 0.002 to 12 g/l in a bath. In the case of a concentrate this amount is more preferably in the range from 0.05 to 80 g/l, very preferably in the range from 0.1 to 60 g/l, in particular roughly 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22.5, 25, 27.5, 30, 35, 40, 45, 50 or 55 g/l.
  • this amount is more preferably in the range from 0.005 to 5 g/l, very preferably in the range from 0.01 to 3 g/l, in particular roughly 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 2.0, 2.25, 2.5 or 2.75 g/l.
  • Dilution of the concentrate which is normally carried out with water and only occasionally with a mixture of water and at least one organic solvent, can be carried out in particular by a factor of from 1.5 to 30, frequently by a factor of from 2 to 20, in particular by a factor of from 3 to 12.
  • the proportion of a) to b) is preferably in each case in the range from 1:0.01 to 1:4, more preferably in a proportion of from 1:0.03 to 1:3, very preferably in a proportion of from 1:0.05 to 1:2.5 and in particular is in each case at least 1:0.08, 1:0.12, 1:0.16, 1:0.2, 1:0.25, 1:0.3, 1:0.35, 1:0.4, 1:0.45 or 1:0.5 or in particular in each case up to 1:2.5, 1:2.2, 1:2, 1:1.8, 1:1.6, 1:1.4, 1:1.2, 1:1.1, 1:1, 1:0.9, 1:0.8, 1:0.7 or 1:0.6.
  • the particular optimum of this proportion may fluctuate, however, according to which silanes a) and b) are used and how they are hydrolyzed.
  • an aqueous composition is selected on the criteria that more than 60% by weight, in particular more than 80% by weight of the silanes have good water-solubility and that the composition prepared therewith in the form of a concentrate or bath possesses good stability for the time of processing. This processing time may vary between 2 hours and 6 months according to requirements. Good stability here means that the composition undergoes only slight precipitation, if any at all, and only slight chemical and/or physical change, if any at all.
  • the composition composed essentially of silanes and solvents is preferably clear. In this context it is preferred to select those silanes and those reactions and process steps such that the compounds formed from the silanes in such reactions/steps adopt structures which can be regarded as ladder structures to a relatively large extent, in particular predominantly or even extensively.
  • At least two different fluorine-free silanes can be particularly preferable to add at least two different fluorine-free silanes, possibly even three or four different fluorine-free silanes, to the aqueous composition.
  • Particular preference is given to a combination of in each case at least one organosilane, one organo-functional silane and one fluoro-silane, in particular of in each case at least one aminosilane, one multi-silyl-silane and one fluoro-silane.
  • the aqueous composition which in this specification is referred to as a solution, need not be a solution in the strict sense, especially since it is often possible only by means of additional analyses to determine whether the solutions in question are true solutions.
  • the aqueous composition may also be a suspension and/or emulsion, especially when particles, particularly inorganic particles, are added.
  • the aqueous composition comprises as solvent at least water, the water content in the solvent mixture being more than 50% by weight in the case of a concentrate and more than 75% by weight in the case of a bath composition.
  • the amount of water in the solvent mixture in the case of a concentrate is preferably at least 60% by weight, more preferably at least 70% by weight, very preferably at least 80% by weight, in particular at least 90% by weight.
  • the amount of water in the solvent mixture in the case of a bath composition is preferably at least 80% by weight, more preferably at least 85% by weight, very preferably at least 90% by weight, in particular at least 95% by weight.
  • the amount of further solvents other than water in other words particularly of organic solvents such as ethanol, methanol, propanol and/or isopropanol, for example, may on the one hand be added to the concentrate or to the bath and/or may be formed in the concentrate or bath by chemical reactions.
  • organic solvents such as ethanol, methanol, propanol and/or isopropanol
  • a certain organic solvent content or low organic solvent content is sometimes preferred, but in some cases, owing to chemical reactions, it is unavoidable unless the organic solvent is removed artificially afterwards.
  • the aqueous composition contains not more than 0.2 g/l chromium, preferably not more than 0.1 g/l chromium, more preferably not more than 0.02 g/l chromium, the chromium content possibly originating in particular from entrainments and/or from etching operations on chromium-containing alloys and/or chrome plating. Preferably there are also no contents of further heavy metals, besides iron, manganese and zinc, that total more than 0.8 g/l.
  • the aqueous composition comprises the silanes a) and b), water and, if desired, at least one organic solvent such as methanol, ethanol, isopropanol and/or propanol, for example, at least one alkaline agent such as ammonia, for example, at least one acidic agent such as acetic acid and/or glacial acetic acid, for example, at least one surfactant to reduce the surface tension and for uniformly and reliably coating the metallic surface, such as at least one nonionic, at least one anionic, at least one cationic and/or at least one amphoteric surfactant, for example, and/or at least one additive such as at least one preservative and/or at least one biocide, for example.
  • at least one organic solvent such as methanol, ethanol, isopropanol and/or propanol
  • at least one alkaline agent such as ammonia
  • at least one acidic agent such as acetic acid and/or glacial acetic acid
  • the bath compositions of the aqueous compositions predominantly comprising silanes preferably have a water content in the range from 80 to 99.9% by weight, more preferably in the range from 90 to 99.8% by weight, very preferably in the range from 94 to 99.7% by weight, particularly in the range from 96 to 99.6% by weight, in particular about 91, 91.5, 92, 92.5, 93, 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 97.9, 98.2, 98.5, 98.8, 99.1 or 99.4% by weight.
  • the amounts of further components besides silanes and solvents in the bath are normally not more than 5 g/l in total, preferably not more than 3 g/l in total, more preferably not more than 1.5 g/l, but in the concentrate may be higher accordingly.
  • amounts of chelate(s), in each case including the resultant reaction products of from 0.01 to 15% by weight, based on the solids content of the bath composition, more preferably, in each case independently of one another, amounts of from 0.03 to 11% by weight, in particular roughly amounts, independently of one another in each case, of 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 or 10.5% by weight.
  • At least one silane is selected that is compatible with water, i.e. such that the at least one silane and/or, where appropriate, its hydrolysis and condensation products are miscible with the components of the aqueous composition, without disruption, and have a keeping duration of at least several weeks, and that it allows the formation of a defect-free wet film and dry film which in particular is coherent, uniform and free from craters.
  • Selected in particular is at least one silane which enables high corrosion resistance in particular in combination with the selected, at least one chelate.
  • At least one chelate is selected which behaves stably in aqueous dispersions in the presence of the other components of the aqueous composition for a number of days or weeks and which enables a high corrosion resistance.
  • the at least one silane but also the at least one chelate are able to attach chemically to the envisaged metal surface that is to be contacted therewith and where appropriate are likewise able, to attach chemically to the coating material to be applied subsequently.
  • the at least one metal chelate is in particular one of Al, B, Ca, Fe, Hf, La, Mg, Mn, Si, Ti, Y, Zn, Zr and/or at least one lanthanide such as Ce or such as a Ce-containing lanthanide mixture, selected with particular preference from the group consisting of Al, Hf, Mn, Si, Ti, Y and Zr.
  • the concentrates of the aqueous compositions comprising predominantly silanes and also chelate(s) and also of the part-components as a starting product of polymer-containing compositions preferably have a water content in the range from 20 to 95% by weight, in particular from 30 to 90% by weight.
  • the concentrates preferably comprise the silanes, including the reaction products formed therefrom, in an amount in the range from 0.1 to 60% by weight, more preferably in the range from 0.2 to 45% by weight, very preferably in the range from 0.3 to 35% by weight, in particular in the range from 0.5 to 32% by weight, especially of about 0.8, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22.5, 25, 27.5 or 30% by weight, and preferably comprise the at least one chelate, including any reaction products formed therefrom, in the range from 0.1 to 50% by weight, more preferably in the range from 0.2 to 40% by weight, very preferably in the range from 0.3 to 30% by weight, in particular in the range from 0.5 to 25% by weight, especially of about 0.75, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22.5% by weight.
  • the bath compositions of the aqueous compositions comprising predominantly silane and chelate preferably have a water content in the range from 80 to 99.9% by weight, which may also include a fraction of at least one organic solvent.
  • the amount of water and/or at least one organic solvent is preferably in the range from 90 to 99.8% by weight, more preferably in the range from 94 to 99.7% by weight, in particular in the range from 96 to 99.6% by weight, especially of about 95, 95.5, 96, 96.5, 97, 97.5, 97.9, 98.2, 98.5, 98.8, 99.1 or 99.4% by weight.
  • the bath compositions preferably comprise the silanes, including any reaction products formed therefrom with other components, in an amount in the range from 0.01 to 10% by weight, more preferably in the range from 0.05 to 7% by weight, very preferably in the range from 0.1 to 5% by weight, in particular in the range from 0.2 to 4% by weight, especially of about 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 or 3.8% by weight, and preferably comprise the at least one chelate, including any reaction products formed therefrom, in the range from 0.01 to 10% by weight, more preferably in the range from 0.05 to 7% by weight, very preferably in the range from 0.1 to 5% by weight, in particular in the range from 0.2 to 4% by weight, especially of about 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
  • the amounts of the silanes and of the at least one chelate, including in each case the reaction products formed therefrom, particularly those of titanium, hafnium and/or zirconium, preferably account for at least 20% by weight, in particular at least 30% by weight, more preferably at least 40%, very preferably at least 50% by weight, in particular in each case at least 60, 70, 80, 90, 94, 95, 96, 97, 98 or 99% by weight of the solids contents of this composition.
  • this composition is composed essentially of water, in each case at least one silane and/or reaction products thereof, at least one chelate, including any reaction products formed therefrom, and also, if desired, amounts of substances selected from the group consisting of alcohols, acids such as carboxylic acids and fatty acids such as acetic acid and/or mineral acids and other substances which influence pH, such as ammonia, and/or additives and impurities.
  • the total amount of further compounds, including additives, besides silane and chelate is normally up to 20% by weight of the solids content of silane and chelate, preferably up to 15% by weight, more preferably up to 10% by weight, very preferably up to 5% by weight, in particular up to 1 or 2% by weight.
  • the ratio of the at least one silane, including the reaction products formed therefrom, to the at least one chelate, including any reaction products formed therefrom can preferably be in the range from 0.8:1 to 1.2:1, it has surprisingly become clear that this ratio can also be in particular in the range from 0.2:1 to 0.5:1 or can be from 2:1 to 5:1, since there may be an optimum there in certain situations.
  • the pH of the bath composition can be in particular in the range from 3 to 9.5, preferably in the range from 3.5 to 9, in particular in the range from 4 to 8.8.
  • an amount of a weak acid or of a dilute strong acid, or an acid mixture In particular it is possible to use at least one acid such as carboxylic acids or fatty acids such as acetic acid and/or mineral acids and other substances which influence pH, such as ammonia.
  • the bath composition can in some cases be adjusted to pH values about 3.5 units less by addition of acid, if the chemical system withstands the chosen pH and remains stable.
  • a solvent such as an alcohol to stabilize the silane.
  • the coatings formed with these bath compositions typically have a film thickness in the range from 0.01 to 0.6 ⁇ m, generally from 0.015 to 0.25 ⁇ m.
  • the inventive composition may also comprise monomers, oligomers, polymers and/or copolymers.
  • copolymers preferably embraces block copolymers and graft copolymers as well.
  • the acid number of the synthetic resins is preferably from 3 to 100, more preferably from 3 to 60 or from 4 to 50.
  • copolymers having an acid number in the range from 3 to 50 are added to the aqueous composition.
  • the components of the organic film former that are to be added are already in partly neutralized form.
  • the organic film former may preferably include a fraction of at least one copolymer having an acid number in the range from 3 to 80, in particular to an extent of at least 50% by weight of the synthetic resins added.
  • Within a high acid-number range it is normally not necessary to stabilize a film former cationically, anionically and/or sterically. In the case of a low acid number, however, such stabilization is often necessary. In that case it is advantageous to use already (partly) stabilized synthetic resins and/or mixtures thereof.
  • the aqueous composition preferably comprises at least one synthetic resin such as organic polymer, copolymer and/or mixture thereof, in particular a synthetic resin based on acrylate, ethylene, polyester, polyurethane, silicone-polyester, epoxide, phenol, styrene, melamine-formaldehyde, urea-formaldehyde and/or vinyl.
  • synthetic resin such as organic polymer, copolymer and/or mixture thereof, in particular a synthetic resin based on acrylate, ethylene, polyester, polyurethane, silicone-polyester, epoxide, phenol, styrene, melamine-formaldehyde, urea-formaldehyde and/or vinyl.
  • the organic film former may preferably comprise a synthetic resin mixture of at least one polymer and/or at least one copolymer, comprising, in each case independently of one another, synthetic resin based on acrylate, epoxide, ethylene, urea-formaldehyde, phenol, polyester, polyurethane, styrene, styrene-butadiene and/or vinyl.
  • the film former may also be a cationically, anionically and/or sterically stabilized synthetic resin or polymer and/or a dispersion thereof or even a solution thereof.
  • acrylate includes acrylic esters, polyacrylic acid, methacrylic esters and methacrylate.
  • the organic film former may preferably comprise at least one component based on
  • the organic film former may also preferably comprise as synthetic resin an amount of organic polymer, copolymer and/or mixtures thereof based on polyethyleneimine, polyvinyl alcohol, polyvinylphenol, polyvinylpyrrolidone and/or polyaspartic acid, in particular copolymers with a phosphorus-containing vinyl compound.
  • a conductive polymer is added to the aqueous composition.
  • the weight ratio of compounds of component d)—monomers/oligomers/polymers/copolymers—to silanes in the concentrate and/or in the bath is preferably in the range from 0.1:1 to 10:1, more preferably in the range from 0.2:1 to 5:1, very preferably in the range from 0.3:1 to 3:1, and in particular is up to 2:1 or up to 1.5:1.
  • the silanes can act not only and normally only to a minor extent or not at all as a coupling agent.
  • the weight ratio of compounds of component d)—monomers/oligomers/polymers/copolymers—to silanes in the concentrate and/or in the bath is preferably in the range from 3:1 to 200:1, more preferably in the range from 8:1 to 120:1, very preferably in the range from 12:1 to 100:1.
  • the silanes in many cases act partly, predominantly or wholly only as a coupling agent.
  • a mixture of organic film formers in which at least one part of the film formers has a glass transition temperature T g of substantially equal and/or similar T g . It is particularly preferred here for at least part of the organic film formers to have a glass transition temperature T g in the range from 10 to 70° C., very preferably in the range from 15 to 65° C., in particular in the range from 20 to 60° C.
  • the organic film former then preferably comprises at least one fraction of at least one polymer and/or at least one copolymer having a minimum film formation temperature MFFT in the range from ⁇ 10 to +99° C., more preferably in the range from 0 to 90° C., in particular from 5° C.
  • the aqueous composition is admixed with synthetic resins of which at least 80% by weight have thermoplastic properties, in particular at least 90% by weight.
  • film-forming assistants in this context is not simple; often a mixture of at least two film-forming assistants is necessary.
  • Particularly advantageous film-forming assistants are what are called long-chain alcohols, particularly those having 4 to 20 carbon atoms, such as a butanediol, a butyl glycol, a butyl diglycol, an ethylene glycol ether such as ethylene glycol monobutyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethyl glycol propyl ether, ethylene glycol hexyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol hexyl ether or a polypropylene glycol ether such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monobutyl ether,
  • a hydrophobic surface which owing to the hydrophobicity and/or the surface microstructure has self-cleaning properties.
  • the surface microstructure through the addition of organic and/or inorganic particles, through formation of organic particles, through the appropriate process regime to obtain a microstructure such that as a result there is structuring in the nanometer and/or micrometer range.
  • the particles which are added preferably possess to a relatively large extent a rough surface and/or a complex geometry and/or associate and/or are associated so as to form aggregates and/or agglomerates which are of complex shape or rough to a greater extent.
  • This process may be assisted by adding particles differing in fineness: that is, particles of different average size and/or different size distribution.
  • the coating produced in this way may preferably have a surface that has a microstructure which is at least partly such that a microstructure is superimposed on a moderately fine microstructure.
  • This coating may be constituted on the basis of the compositions of the particularly preferred first, second or third variant.
  • At least one component selected from e 1 ) to e 9 ) is present and if desired at least one of components c) or d) is also present, in addition, if desired, to at least one monomer/oligomer/polymer/copolymer and/or to at least one inorganic compound in particle form.
  • lubricant e 2 it is preferred as lubricant e 2 ) to use at least one wax selected from the group consisting of paraffins, polyethylenes and polypropylenes, in particular an oxidized wax, the amount of waxes in the aqueous composition being preferably in the range from 0.01 to 5% by weight, more preferably in the range from 0.02 to 3.5% by weight, very preferably in the range from 0.05 to 2% by weight.
  • the melting point of the wax used as lubricant is preferably in the range from 40 to 165° C., more preferably in the range from 50 to 160° C., and in particular in the range from 120 to 150° C.
  • a lubricant having a melting point in the range from 120 to 165° C. it is particularly advantageous, in addition to a lubricant having a melting point in the range from 120 to 165° C., to add a lubricant having a melting point in the range from 45 to 95° C. or having a glass transition temperature in the range from ⁇ 20° C. to +60° C., in particular in amounts of from 2 to 30% by weight, preferably from 5 to 20% by weight, of the total solids content.
  • This latter lubricant may also be used with advantage alone.
  • the wax in the form of an aqueous dispersion and/or a cationically, anionically and/or sterically stabilized dispersion, since it can then be maintained in homogeneously distributed form in the aqueous composition with ease.
  • the at least one lubricant which if desired may also at the same time be a forming agent, is preferably present in an amount in the range from 0.1 to 25 g/l and more preferably in an amount in the range from 1 to 15 g/l in the aqueous composition.
  • the aqueous composition preferably comprises at least one organic corrosion inhibitor e 3 ), based in particular on amine(s), preferably at least one alkanolamine—preferably a long-chain alkanolamine, at least one TPA-amine complex such as acid adduct-4-oxo-4-p-tolyl butyrate-4-ethylmorpholine, at least one zinc salt of aminocarboxylate, of 5-nitro-isophthalic acid or of cyanic acid, at least one polymeric ammonium salt with fatty acid, at least one metal salt of a sulfonic acid such as dodecyl-naphthalenesulfonic acid, at least one amino complex and transition metal complex of toluenepropionic acid, 2-mercapto-benzothiazolyl-succinic acid and/or of at least one of their amino salts, at least one conductive polymer and/or at least one thiol, it being possible for the amount of organic corrosion inhibitors in the aqueous composition
  • the at least one organic corrosion inhibitor is preferably not highly volatile at room temperature. Further, it may be advantageous if it is readily soluble in water and/or readily dispersible in water, in particular at more than 20 g/l. Particular preference is given, inter alia, to alkylaminoethanols such as dimethylaminoethanol and/or complexes based on a TPA amine such as N-ethylmorpholine complex with 4-methyl- ⁇ -oxo-benzenebutanoic acid. This corrosion inhibitor can be added in order to produce greater corrosion inhibition or to make corrosion inhibition even greater.
  • the aqueous composition preferably contains from 0.1 to 80 g/l of the at least one anti-corrosion pigment e 4 ).
  • these include, in particular, various silicates based on aluminum silicates, aluminosilicates, alumino-alkaline-earth metal silicates, and alkaline-earth metal silicates.
  • the anti-corrosion pigments preferably have an average particle diameter, measured on a scanning electron microscope, in the range from 0.01 to 0.5 ⁇ m diameter, in particular in the range from 0.02 to 0.3 ⁇ m.
  • the various kinds of anti-corrosion pigments are known in principle. An addition of at least one of these pigments, however, does not appear fundamentally to be necessary, but makes alternative variants possible.
  • the agents for neutralizing and/or sterically stabilizing the acid groups of the synthetic resins with an acid number in particular in the range from 5 to 50, e 5 ), may be, inter alia, low-volatility alkanolamines and hydroxides such as sodium hydroxide and potassium hydroxide solutions, but preferably high-volatility alkanolamines, ammonia and compounds based on morpholine and alkanolamines. Their effect is that the neutralized synthetic resins become miscible with water and/or are even soluble in water in the case of an acid number of about 150 or more.
  • organic solvent e 6 it is also possible if desired to add at least one organic solvent e 6 ).
  • organic solvent for the organic polymers it is possible to use at least one water-miscible and/or water-soluble alcohol, a glycol ether or n-methylpyrrolidone and/or water; where a solvent mixture is used it is possible in particular to use a mixture of at least one long-chain alcohol, such as propylene glycol, an ester alcohol, a glycol ether and/or butanediol, for example, with water. In many cases, however, it is preferred to add only water without any organic solvent at all.
  • organic solvent its amount is preferably from 0.1 to 10% by weight, in particular from 0.25 to 5% by weight, very preferably from 0.4 to 3% by weight.
  • organic solvent for strip production it is preferred to use, rather, only water and almost no organic solvents or none at all, apart possibly from small amounts of alcohol.
  • wetting agent in order to allow the wet film to be applied uniformly in its two-dimensional extent and in film thickness and also to allow it to be applied coherently and with no defects.
  • wetting agents are suitable for this purpose, preferably acrylates, silanes, polysiloxanes, and long-chain alcohols, which lower the surface tension of the aqueous composition.
  • Particular preference is given to adding at least one polysiloxane e 7 ).
  • the addition of at least one surfactant e 9 may help to improve the wetting of the composition of the invention on a metallic surface and to improve the coating, in particular to make it more uniform.
  • a distinct improvement can be achieved in particular in the case of surfaces which are particularly rough.
  • Suitability for this purpose is possessed by a very large number of kinds of surfactants, particularly nonionic, cationic, amphoteric and anionic surfactants.
  • a low level of addition in the range from 0.01 to 0.4 g/l is often sufficient.
  • compositions of the invention can, furthermore, also be used as an after-rinse solution, following a prior coating operation such as, for example, a conversion coating operation.
  • a conversion coating it is possible, for example, to apply coatings based on at least one organic and/or inorganic acid, if desired with further adjuvants, based on a phosphating treatment, for example on the basis of iron, calcium, magnesium, manganese and/or zinc, produced on the basis of a complex fluoride-containing solution or dispersion, based on phosphonate, based on at least one silane/siloxane and/or polysiloxane and/or based on rare earth compounds, to the metallic surfaces first of all.
  • Such solutions or after-rinse solutions may therefore be particularly suitable for bright corrosion protection, where no paint and no paint-like coatings are applied.
  • a conversion coating based on rare earth compounds such as cerium oxide, for example, can be employed in particular on surfaces rich in Al, Mg, Ti and/or Zn.
  • aqueous concentrates an aqueous mixture in accordance with table 1 was prepared for the silanes which were not yet prehydrolyzed, the said mixture already containing the glacial acetic acid and ethanol, by prehydrolyzing at least one silane in acidic medium for at least three days at room temperature with stirring, where the silanes to be used were not already in prehydrolyzed form. Thereafter the silane already in prehydrolyzed form, where appropriate, was added, the system was stirred intensively and the preparation was stored at room temperature where appropriate. Thereafter the concentrates were diluted with water and, if desired, a pH modifier such as ammonia and/or glacial acetic acid was added in order to obtain treatment baths ready for use.
  • a pH modifier such as ammonia and/or glacial acetic acid was added in order to obtain treatment baths ready for use.
  • Silanes A and B are fluorine-free, silane C is fluorine-containing.
  • Silane A is an amino-functional trialkoxysilane which was hydrolyzed for only about two hours before being added to the composition.
  • Silane B is a bis-trialkoxysilane which was hydrolyzed and stored for about three days before being added to the composition.
  • Silane C is a water-soluble aminoalkyl-functional fluoroalkylalkoxysilane which was added to the composition only after a very long time of hydrolysis and of storage.
  • the silanes present in the aqueous composition are monomers, oligomers, polymers, copolymers and/or reaction products with further components owing to hydrolysis reactions, condensation reactions and/or other reactions. The reactions take place primarily in the solution, during drying and, where appropriate, curing of the coating.
  • silane is used here for silanes, silanols, siloxanes, polysiloxanes and their reaction products and derivatives, which are often “silane” mixtures. All of the concentrates and baths proved to be stable for one week without changes or precipitation. No ethanol was added. Amounts of ethanol in the compositions originated only from chemical reactions.
  • Polymer D is a readily filming thermoplastic polymer based on ethoxylate.
  • Polymer E is a polyethylene copolymer.
  • the SiO 2 particles had an average size of approximately 200 nm.
  • Monoethanolamine and/or ammonia were added to the bath in order to adapt the pH.
  • an amount of approximately 0.1 g/l of nonionic surfactant was added in each case. This addition of surfactant helped in more effective wetting of the cleaned metallic surface. As a result, more uniform film formation was obtained, particularly in the case of metallic surfaces of relatively complex shape or of particular roughness. Using these compositions, a coating with a dry film thickness of significantly less than 1 ⁇ m was produced.
  • compositions of high silane content amounts in g/l for concentrates; remainder water Inventive/comparative examples CE CE CE IE IE IE IE CE CE CE IE IE IE 1 2 3 4 5 6 7 8 9 10 11 12 13 Organo- 46 — 46 23 46 59 — — — 92 92 92 92 functional silane A Organosilane B — 95 95 48 95 122 — — — 190 190 190 F-silane C — — — — 4.3 8.5 1.7 4.3 8.5 17 — 17 34 102 Polymer D — — — — — — — — — — — — — — Polymer E — — — — — — — — — — — — — — SiO 2 particles — — — — — — — — — — — — — — — — — Glacial acetic 0.5
  • the films formed here were transparent, uniform and coherent. In all cases apart from CE 2, they showed no coloring on steel sheet. The structure, gloss and color of the metallic surface appeared to be changed only a little as a result of the coating.
  • the corrosion protection values run from 0 to 5, with 5 representing the poorest values.
  • the selection of the systems composed of fluorine-free silanes and/or of fluorine-containing silane showed its worth, since all of these combinations gave very stable solutions.
  • the contact angle was measured using a DIGIDROP Contact Angle Meter from GBX Scientific Instruments using double-distilled water over 5 measurements per sheet. The greater the contact angles, the more hydrophobic the surface. In the case of experiment CE 2, in contradistinction to the other coated sheets, the steel sheet coated showed the color of golden rust, which had an adverse effect on the contact angle. Additionally it was found that the contact angle was determined not only by the silane applied, alone, but also by the effects of the surface treatment, such as the pH, for example. It emerged, surprisingly, that in the case of these experiments an remarkably strict correlation occurred between the hydrophobicity of the coated surface, the contact angle, and the corrosion resistance of the coating system.
  • the coatings produced herewith are in many cases suitable for coating with powder coating material or with solvent-based paint. Water-based paint compositions, in contrast, are repelled.
  • aqueous solutions were prepared as in the case of experiment series A), with the exceptions that the compositions were chosen in accordance with table 3 and the conversion-coated metal sheets based on the aluminum alloy AA 6063 were coated by being immersed in the bath solution for 1 minute at room temperature.
  • the thicknesses of the coating of the invention produced with the after-rinse solution were from 0.2 to 0.3 ⁇ m.
  • the coatings of the invention were transparent and slightly iridescent. They were highly uniform and very greatly enhanced the corrosion resistance of the underlying conversion coating based on cerium-rich oxides.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
US10/546,624 2003-02-25 2004-02-25 Method for coating metallic surfaces with a mixture containing at least two silanes Abandoned US20060193988A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/958,009 US8932679B2 (en) 2003-02-25 2010-12-01 Method for coating metallic surfaces with a mixture containing at least two silanes

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10308237.9A DE10308237B4 (de) 2003-02-25 2003-02-25 Verfahren zur Beschichtung von metallischen Oberflächen, zugehörige Zusammensetzung und ihre Verwendung
DE10308237.9 2003-02-25
DE10332744.4A DE10332744B4 (de) 2003-07-17 2003-07-17 Verfahren zur Beschichtung von metallischen Oberflächen, Verwendung der nach dem Verfahren beschichteten Substrate und wässerige Zusammensetzung zur Behandlung einer metallischen Oberfläche
DE10332744.4 2003-07-17
PCT/EP2004/001830 WO2004076718A1 (de) 2003-02-25 2004-02-25 Verfahren zur beschichtung von metallischen oberflächen mit einem gemisch enthaltend mindestens zwei silane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/958,009 Continuation US8932679B2 (en) 2003-02-25 2010-12-01 Method for coating metallic surfaces with a mixture containing at least two silanes

Publications (1)

Publication Number Publication Date
US20060193988A1 true US20060193988A1 (en) 2006-08-31

Family

ID=32928840

Family Applications (6)

Application Number Title Priority Date Filing Date
US10/546,624 Abandoned US20060193988A1 (en) 2003-02-25 2004-02-25 Method for coating metallic surfaces with a mixture containing at least two silanes
US10/546,582 Expired - Fee Related US9175170B2 (en) 2003-02-25 2004-02-25 Method for coating metallic surfaces with a composition that is rich in polymers
US10/546,583 Abandoned US20060127681A1 (en) 2003-02-25 2004-02-25 Method for coating metallic surfaces with a silane-rich composition
US12/857,722 Abandoned US20110039115A1 (en) 2003-02-25 2010-08-17 Process for coating metallic surfaces with a silane-rich composition
US12/958,009 Expired - Fee Related US8932679B2 (en) 2003-02-25 2010-12-01 Method for coating metallic surfaces with a mixture containing at least two silanes
US14/834,912 Abandoned US20150361274A1 (en) 2003-02-25 2015-08-25 Method for coating metallic surfaces with a composition that is rich in polymers

Family Applications After (5)

Application Number Title Priority Date Filing Date
US10/546,582 Expired - Fee Related US9175170B2 (en) 2003-02-25 2004-02-25 Method for coating metallic surfaces with a composition that is rich in polymers
US10/546,583 Abandoned US20060127681A1 (en) 2003-02-25 2004-02-25 Method for coating metallic surfaces with a silane-rich composition
US12/857,722 Abandoned US20110039115A1 (en) 2003-02-25 2010-08-17 Process for coating metallic surfaces with a silane-rich composition
US12/958,009 Expired - Fee Related US8932679B2 (en) 2003-02-25 2010-12-01 Method for coating metallic surfaces with a mixture containing at least two silanes
US14/834,912 Abandoned US20150361274A1 (en) 2003-02-25 2015-08-25 Method for coating metallic surfaces with a composition that is rich in polymers

Country Status (11)

Country Link
US (6) US20060193988A1 (es)
EP (3) EP1599616B1 (es)
JP (3) JP4537377B2 (es)
CN (1) CN101705484A (es)
AT (3) ATE553229T1 (es)
AU (2) AU2004215696B2 (es)
CA (2) CA2517057C (es)
ES (2) ES2385982T3 (es)
MX (2) MXPA05009075A (es)
RU (1) RU2357003C2 (es)
WO (3) WO2004076568A1 (es)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060233958A1 (en) * 2005-03-23 2006-10-19 Shin-Etsu Chemical Co., Ltd. Non-chromate aqueous metal surface treating composition, surface-treated steel, painted steel, steel surface treatment method, and painted steel preparing method
US20080281054A1 (en) * 2005-10-26 2008-11-13 Nanogate Ag Mixed Silanes
US20110253007A1 (en) * 2008-10-16 2011-10-20 Ralf Zastrau Silanes Blend
WO2012014059A1 (en) * 2010-07-28 2012-02-02 Az Electronic Materials Usa Corp. A composition for coating over a photoresist pattern
US20140255611A1 (en) * 2011-10-14 2014-09-11 University Paul Sabatier Toulouse Iii Process for the anticorrosion treatment of a solid metal substrate and treated solid metal substrate capable of being obtained by such a process
WO2014186097A1 (en) * 2013-05-15 2014-11-20 Srg Global Inc. Organometallic adhesion promoters for paint-over-chrome plated polymers
RU2534231C2 (ru) * 2011-07-19 2014-11-27 Иван Соломонович Пятов Способ получения защитного покрытия на поверхности металлического изделия, работающего в условиях высокоагрессивной среды, повышенных температур и истирающих воздействий
US20150080282A1 (en) * 2013-09-17 2015-03-19 General Electric Company Cleansing and film-forming washes for turbine compressors
WO2015128364A1 (en) * 2014-02-28 2015-09-03 Tata Steel Uk Limited Method for producing a siloxane coated metal substrate and a siloxane coated metal substrate produced thereby
US20150354403A1 (en) * 2014-06-05 2015-12-10 General Electric Company Off-line wash systems and methods for a gas turbine engine
US20160076458A1 (en) * 2014-09-12 2016-03-17 General Electric Company System and method for providing a film treatment to a surface using cooling devices
US10272653B2 (en) * 2016-06-24 2019-04-30 State Grid Hunan Electric Power Company Live Working Center Surface treatment composition, insulating fiber, yarn, rope and preparation method thereof
CN109985782A (zh) * 2019-04-10 2019-07-09 贵州钢绳股份有限公司 一种利用冷镀锌工艺在拉丝机卷筒内壁进行防锈处理的方法
US11007750B2 (en) 2015-01-30 2021-05-18 Arcelormittal Preparation method of a coated sheet comprising the application of an aqueous solution comprising an amino acid and its associated use for improving the compatibility with an adhesive
US11008660B2 (en) 2015-01-30 2021-05-18 Arcelormittal Method for the production of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve tribological properties
US11060174B2 (en) 2015-01-30 2021-07-13 Arcelormittal Method for the preparation of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve corrosion resistance
US11066750B2 (en) * 2007-08-27 2021-07-20 Momentive Performance Materials Inc. Metal corrosion inhibition
US11998946B2 (en) 2018-06-14 2024-06-04 Voestalpine Stahl Gmbh Method for producing lacquer-coated electrical strips, and lacquer-coated electrical strip

Families Citing this family (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009717A1 (en) 2002-07-24 2004-01-29 University Of Cincinnati Superprimer
MXPA05009075A (es) * 2003-02-25 2005-10-19 Chemetall Gmbh Metodo para recubrir superficies metalicas con una composicion rica en polimero.
FR2866029B1 (fr) 2004-02-11 2006-05-26 Dacral Composition de revetement anti-corrosion en dispersion aqueuse comprenant un titanate et/ou un zirconate organique
EP1732707B1 (en) 2004-03-19 2015-04-22 Commonwealth Scientific and Industrial Research Organisation Activation method
JP2005325440A (ja) * 2004-04-16 2005-11-24 Nippon Steel Corp 表面処理金属及びその製造方法
WO2006015754A2 (de) * 2004-08-03 2006-02-16 Chemetall Gmbh Verfahren zum schützen einer metallischen oberfläche mit einer korrosionsinhibierenden beschichtung
JP3968595B2 (ja) * 2004-11-05 2007-08-29 船井電機株式会社 Ieee1394シリアルバスに接続されるセットトップボックス、及びieee1394シリアルバスに接続されるコントローラ機器
US20060099332A1 (en) 2004-11-10 2006-05-11 Mats Eriksson Process for producing a repair coating on a coated metallic surface
US8101014B2 (en) * 2004-11-10 2012-01-24 Chemetall Gmbh Process for coating metallic surfaces with a multicomponent aqueous composition
PL1812620T5 (pl) * 2004-11-10 2021-08-02 Chemetall Gmbh Sposób powlekania metalowych powierzchni za pomocą wodnej kompozycji zawierającej silan/silanol/siloksan/polisiloksan i ta kompozycja
EP1828335B1 (en) 2005-01-21 2010-03-10 Commonwealth Scientific And Industrial Research Organisation Activation method using modifying agent
RU2378416C2 (ru) * 2005-02-02 2010-01-10 Нихон Паркирайзинг Ко., Лтд. Водное средство для обработки поверхности металлического материала, способ обработки поверхности и поверхностно обработанный металлический материал
KR100947198B1 (ko) * 2005-02-02 2010-03-11 니혼 파커라이징 가부시키가이샤 수계 금속 재료 표면 처리제, 표면 처리 방법 및 표면 처리금속 재료
US20080138615A1 (en) 2005-04-04 2008-06-12 Thomas Kolberg Method for Coating Metallic Surfaces with an Aqueous Composition and Said Composition
US10041176B2 (en) * 2005-04-07 2018-08-07 Momentive Performance Materials Inc. No-rinse pretreatment methods and compositions
US7695771B2 (en) * 2005-04-14 2010-04-13 Chemetall Gmbh Process for forming a well visible non-chromate conversion coating for magnesium and magnesium alloys
KR100979056B1 (ko) * 2005-07-25 2010-08-30 주식회사 포스코 내식성 및 용접성이 우수한 프리실드 강판 및 이의 제조방법
US8119239B2 (en) * 2005-08-19 2012-02-21 Nippon Paint Co., Ltd. Surface-conditioning composition comprising metal phosphate particles, metal alkoxide and stabilizer, and method of production thereof
US20070254159A1 (en) * 2005-08-26 2007-11-01 Ppg Industries Ohio, Inc. Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods
US20070088111A1 (en) * 2005-08-26 2007-04-19 Ppg Industries Ohio, Inc. Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods
US8231970B2 (en) * 2005-08-26 2012-07-31 Ppg Industries Ohio, Inc Coating compositions exhibiting corrosion resistance properties and related coated substrates
US7745010B2 (en) * 2005-08-26 2010-06-29 Prc Desoto International, Inc. Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods
US20070048550A1 (en) * 2005-08-26 2007-03-01 Millero Edward R Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods
EP1788042A3 (de) * 2005-09-29 2009-09-09 Mustafa Keddo Antifouling-Beschichtungszusammensetzung für Wasserfahrzeuge
DE102006002224A1 (de) * 2006-01-16 2007-07-19 Schaeffler Kg Anordnung zum Schutz eines Substrates vor Korrosion, Verfahren zu dessen Herstellung sowie Riemenscheibe
KR101186740B1 (ko) 2006-02-17 2012-09-28 삼성전자주식회사 뱅크형성 방법 및 이에 의해 형성된 뱅크를 함유하는 유기박막 트랜지스터
JP5213308B2 (ja) * 2006-03-08 2013-06-19 日本ペイント株式会社 金属用表面処理剤
DE502006000960D1 (de) * 2006-04-19 2008-07-31 Ropal Ag Verfahren zur Herstellung eines korrosionsgeschützten und hochglänzenden Substrats
CN101426859B (zh) * 2006-04-20 2012-03-21 株式会社钟化 固化性组合物
JP5000199B2 (ja) * 2006-05-30 2012-08-15 学校法人日本大学 硬質膜の製造方法
US8106229B2 (en) 2006-05-30 2012-01-31 Nalco Company Organically modifid silica and use thereof
JP5546097B2 (ja) * 2006-06-23 2014-07-09 新日鐵住金株式会社 表面処理金属材及び金属表面処理剤
EP2099953B1 (en) * 2006-09-29 2019-04-03 Momentive Performance Materials Inc. Storage stable composition of partial and/or complete condensate of hydrolyzable organofunctional silane
ES2359930T3 (es) * 2006-10-27 2011-05-30 Tata Steel Uk Limited Método para el recubrimiento de un substrato.
CN100551982C (zh) * 2006-12-14 2009-10-21 自贡市斯纳防锈蚀技术有限公司 双组分水性环氧富锌硅烷金属防腐涂料
JP4945432B2 (ja) 2006-12-28 2012-06-06 富士フイルム株式会社 平版印刷版の作製方法
US7878054B2 (en) 2007-02-28 2011-02-01 The Boeing Company Barrier coatings for polymeric substrates
DE102007011553A1 (de) * 2007-03-09 2008-09-11 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen mit einer wässerigen, Polymere enthaltenden Zusammensetzung, die wässerige Zusammensetzung und Verwendung der beschichteten Substrate
DE102008007261A1 (de) 2007-08-28 2009-03-05 Evonik Degussa Gmbh Wässrige Silansysteme basierend auf Bis(trialkoxysilyalkyl)aminen
BRPI0816608A2 (pt) * 2007-10-06 2019-08-27 Du Pont composição eltrodepositável e dispersão aquosa eletrodepositável
US7795538B2 (en) * 2007-11-06 2010-09-14 Honeywell International Inc. Flexible insulated wires for use in high temperatures and methods of manufacturing
CN101925660A (zh) * 2007-11-26 2010-12-22 都柏林技术学院知识产权公司 有机硅烷涂层组合物及其应用
JP5319929B2 (ja) * 2008-02-08 2013-10-16 マツモトファインケミカル株式会社 水系表面処理組成物
US20100015339A1 (en) * 2008-03-07 2010-01-21 Evonik Degussa Gmbh Silane-containing corrosion protection coatings
US20090242081A1 (en) * 2008-03-26 2009-10-01 Richard Bauer Aluminum Treatment Composition
JP5528677B2 (ja) 2008-03-31 2014-06-25 富士フイルム株式会社 重合性組成物、固体撮像素子用遮光性カラーフィルタ、固体撮像素子および固体撮像素子用遮光性カラーフィルタの製造方法
EP2320274A4 (en) 2008-08-22 2011-12-14 Fujifilm Corp METHOD FOR MANUFACTURING A LITHOGRAPHIC PRINTING PLATE
JP5364513B2 (ja) 2008-09-12 2013-12-11 富士フイルム株式会社 平版印刷版原版用現像液及び平版印刷版の製造方法
CN102165374B (zh) 2008-09-24 2013-07-31 富士胶片株式会社 制备平版印刷版的方法
CN102165025A (zh) * 2008-09-25 2011-08-24 纳幕尔杜邦公司 可电沉积组合物
JP5340102B2 (ja) 2008-10-03 2013-11-13 富士フイルム株式会社 分散組成物、重合性組成物、遮光性カラーフィルタ、固体撮像素子、液晶表示装置、ウェハレベルレンズ、及び撮像ユニット
AU2009320812A1 (en) 2008-11-26 2010-06-03 Fujifilm Corporation Method for manufacturing lithographic printing plate, developer for original lithographic printing plate, and replenisher for developing original lithographic printing plate
EP2204698B1 (en) 2009-01-06 2018-08-08 FUJIFILM Corporation Plate surface treatment agent for lithographic printing plate and method for treating lithographic printing plate
JP5206970B2 (ja) * 2009-01-09 2013-06-12 信越化学工業株式会社 親水化処理基材、親水化処理粉体、及び親水化処理粉体分散液の製造方法
JP2010180330A (ja) 2009-02-05 2010-08-19 Fujifilm Corp 非水系インク、インクセット、画像記録方法、画像記録装置、および記録物
JP5349097B2 (ja) 2009-03-19 2013-11-20 富士フイルム株式会社 インク組成物、インクジェット記録方法、印刷物、及び、成形印刷物の製造方法
JP2010243517A (ja) 2009-03-31 2010-10-28 Fujifilm Corp 平版印刷版原版及び平版印刷版の作製方法
JP5383289B2 (ja) 2009-03-31 2014-01-08 富士フイルム株式会社 インク組成物、インクジェット用であるインク組成物、インクジェット記録方法、およびインクジェット法による印刷物
US9850395B2 (en) 2009-07-07 2017-12-26 Ak Steel Properties, Inc. Polymer coated metallic substrate and method for making
DE102010030115A1 (de) 2009-08-11 2011-02-17 Evonik Degussa Gmbh Glycidyloxyalkylalkoxysilan-basierte wässrige Silansysteme für den Blankkorrosionsschutz und Korrosionsschutz von Metallen
EP2481603A4 (en) 2009-09-24 2015-11-18 Fujifilm Corp LITHOGRAPHIC ORIGINAL PRESSURE PLATE
JP5554531B2 (ja) * 2009-09-24 2014-07-23 関西ペイント株式会社 金属材料の塗装方法
US10907071B2 (en) * 2009-10-13 2021-02-02 Axalta Coating Systems IP Co. LLC Organosilane condensate coating composition
US8865247B2 (en) * 2009-12-18 2014-10-21 Ethicon, Inc. Needle coating formulation having lubricity and durability
EP2339401B1 (en) 2009-12-28 2016-02-17 Fujifilm Corporation Method of preparing lithographic printing plate
JP5588887B2 (ja) 2010-01-29 2014-09-10 富士フイルム株式会社 平版印刷版の作製方法
JP5525873B2 (ja) 2010-03-15 2014-06-18 富士フイルム株式会社 平版印刷版の作製方法
JP2011221522A (ja) 2010-03-26 2011-11-04 Fujifilm Corp 平版印刷版の作製方法
JP5572576B2 (ja) 2010-04-30 2014-08-13 富士フイルム株式会社 平版印刷版原版及びその製版方法
JP5182535B2 (ja) * 2010-05-28 2013-04-17 信越化学工業株式会社 水性シロキサン塗料組成物及びその製造方法、表面処理剤、表面処理鋼材並びに塗装鋼材
ES2664797T3 (es) * 2010-09-10 2018-04-23 Chemetall Gmbh Procedimiento para el recubrimiento de superficies metálicas con un agente de recubrimiento que contiene polímero, el agente de recubrimiento y su uso
US9034473B2 (en) * 2010-10-05 2015-05-19 Basf Se Method for passivating a metallic surface with a basic composition
CN102030919B (zh) * 2010-11-12 2012-02-08 杭州中富彩新材料科技有限公司 环保型表面高分子改性水性着色剂及其制备方法
DE102011084183A1 (de) 2011-03-25 2012-09-27 Evonik Degussa Gmbh Wässrige Korrosionsschutzformulierung auf Silanebasis
US20140017409A1 (en) * 2011-03-30 2014-01-16 Mahindra & Mahindra Limited Corrosion resistance passivation formulation and process of preparation thereof
JP2012233243A (ja) * 2011-05-09 2012-11-29 Nippon Paint Co Ltd 金属基材を表面処理するための化成処理剤及びそれを用いた金属基材の表面処理方法
CN104271799B (zh) * 2011-10-24 2017-03-08 凯密特尔有限责任公司 用多组分水性组合物涂覆金属表面的方法
US8980387B2 (en) * 2011-10-27 2015-03-17 General Electric Company Method of coating a surface and article incorporating coated surface
KR101143529B1 (ko) 2011-12-09 2012-05-09 이현용 기능성 입자층이 코팅된 금속부를 가지는 가구의 제조방법
WO2013095332A1 (en) 2011-12-19 2013-06-27 Hewlett-Packard Development Company, L.P. Pretreatment fluids with ammonium metal chelate cross-linker for printing media
US9505024B2 (en) 2011-12-19 2016-11-29 Hewlett-Packard Development Company, L.P. Method of producing a printed image on a pre-treated, low-porous or non-porous medium
JP5463346B2 (ja) 2011-12-26 2014-04-09 富士フイルム株式会社 平版印刷版の製版方法
CN104136555B (zh) 2012-04-24 2016-12-21 惠普发展公司,有限责任合伙企业 喷墨墨水
RU2532245C2 (ru) * 2012-06-29 2014-10-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (НИТУ "МИСиС") Способ нанесения покрытия на основе полифениленсульфида на металлическую подложку
WO2014034828A1 (ja) * 2012-09-03 2014-03-06 三井化学株式会社 防錆用組成物およびこれを含む水分散体
CN102876093B (zh) * 2012-10-15 2016-04-06 北京赛科康仑环保科技有限公司 一种复合金属涂层、其制备方法及其用途
US9273215B2 (en) * 2012-10-30 2016-03-01 Rohm And Haas Electronic Materials Llc Adhesion promoter
CN102978594B (zh) * 2012-11-12 2014-12-03 岑添祥 一种硅烷化成剂及其制备方法
CN102993960A (zh) * 2012-12-17 2013-03-27 青岛汉河药业有限公司 金属表面的稀土防腐工艺
CN103031551B (zh) * 2012-12-18 2016-05-11 合肥中澜新材料科技有限公司 一种含有乙二胺四亚甲基叉膦酸钠的金属表面硅烷处理剂及其制备方法
CN103060791B (zh) * 2012-12-18 2016-06-08 芜湖恒坤汽车部件有限公司 一种含有钛酸四异丙酯的金属表面硅烷处理剂及其制备方法
CN103060787B (zh) * 2012-12-18 2016-03-02 安徽六方重联机械股份有限公司 一种含有二乙醇胺的金属表面硅烷处理剂及其制备方法
JP2013129846A (ja) * 2013-03-08 2013-07-04 Matsumoto Fine Chemical Co Ltd 水系表面処理組成物
WO2014136752A1 (ja) * 2013-03-08 2014-09-12 中国塗料株式会社 防食塗料組成物、防食塗膜および基材の防食方法
ES2662851T3 (es) 2013-03-15 2018-04-10 Akzo Nobel Coatings International B.V. Composiciones de revestimiento formadas a partir de emulsiones de látex compuestas de copolímero de (poli)etileno y ácido (met)acrílico
JP5860830B2 (ja) * 2013-03-27 2016-02-16 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 加水分解性有機官能性シランの部分および/または完全縮合物の貯蔵に安定な組成物
CN103254763A (zh) * 2013-04-08 2013-08-21 马鞍山拓锐金属表面技术有限公司 一种多硅烷水性金属表面处理剂及其制备方法
HUE060961T2 (hu) * 2013-07-10 2023-04-28 Chemetall Gmbh Eljárás fém felületû hordozók bevonására és az eljárásnak megfelelõen bevont tárgyak
DE102013109801B4 (de) * 2013-09-09 2020-07-09 Thyssenkrupp Rasselstein Gmbh Mit einer Polymerbeschichtung beschichtetes Weißblech und Verfahren zu dessen Herstellung
CN105722931A (zh) * 2013-10-01 2016-06-29 塔塔钢铁有限公司 用于处理镀锌层退火或镀锌的钢表面的无铬水基涂料
US20150125610A1 (en) * 2013-11-01 2015-05-07 Bulk Chemicals, Inc. Process and seal treatment for improving corrosion resistance and paint adhesion of metal surfaces
WO2015070933A1 (de) 2013-11-18 2015-05-21 Basf Coatings Gmbh Verfahren zur beschichtung metallischer substrate mit einer konversionsschicht und einer sol-gel-schicht
RU2545302C1 (ru) * 2013-11-28 2015-03-27 Закрытое акционерное общество "Научно-производственное предприятие "Спектр" Антикоррозионный состав для покрытий
ES2921449T3 (es) * 2014-01-23 2022-08-25 Chemetall Gmbh Procedimiento para el recubrimiento de superficies metálicas, dicho sustrato recubierto y su uso
US9994727B2 (en) * 2014-01-24 2018-06-12 Packaging Service Co., Inc. Low VOC adhesion pretreating and paint additive compositions, pretreating and paint compositions therefrom and methods of making and using same
JP5592579B2 (ja) * 2014-03-07 2014-09-17 関西ペイント株式会社 金属材料の塗装方法
JP6625998B2 (ja) * 2014-03-18 2019-12-25 スリーエム イノベイティブ プロパティズ カンパニー 処理された物品及びこれを作製する方法
KR20160001799A (ko) * 2014-06-26 2016-01-07 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
JP6242010B2 (ja) * 2014-07-14 2017-12-06 関西ペイント株式会社 水性金属表面処理組成物
KR101468466B1 (ko) * 2014-07-14 2014-12-03 주식회사 유성하이테크 친환경 복합 도료 조성물 및 이를 이용한 강재 구조물 및 콘크리트 구조물 표면의 보호 시공 공법
JP5710058B1 (ja) * 2014-08-05 2015-04-30 日新製鋼株式会社 塗装鋼板および外装建材
CN114561636A (zh) * 2014-09-22 2022-05-31 汉高股份有限及两合公司 用于金属表面预处理的碱性基于铈的涂层组合物
JP6023776B2 (ja) 2014-11-07 2016-11-09 日新製鋼株式会社 塗装金属帯の製造方法
RU2579066C1 (ru) * 2014-11-19 2016-03-27 Владимир Леонидович Плеханов Состав для получения гидрофобного покрытия
US11085125B2 (en) * 2014-12-02 2021-08-10 Oceanit Laboratories, Inc. Controlled method for applying coating materials to complex heat transfer surfaces
US10052655B2 (en) * 2014-12-17 2018-08-21 Whirlpool Corporation Transparent tinted coating for appliance exterior panels to allow for tinted surface patterns and a process for application of coating
GB201502250D0 (en) * 2015-02-11 2015-03-25 Tioxide Europe Ltd Coated product
JP6777377B2 (ja) * 2015-03-31 2020-10-28 日本表面化学株式会社 水溶性コーティング剤組成物
CN104928662A (zh) * 2015-04-10 2015-09-23 蚌埠市时代电子有限公司 一种环保无毒金属表面处理剂
CN104818470A (zh) * 2015-04-10 2015-08-05 蚌埠市时代电子有限公司 一种有机胺缓蚀金属表面处理剂
CN104818479A (zh) * 2015-04-10 2015-08-05 蚌埠市时代电子有限公司 一种铜及铜合金专用金属表面处理剂
CN104831285A (zh) * 2015-04-10 2015-08-12 蚌埠市时代电子有限公司 一种多功能金属表面处理剂
CN104818472A (zh) * 2015-04-10 2015-08-05 蚌埠市时代电子有限公司 一种黑色金属表面处理剂
CN104818475A (zh) * 2015-04-10 2015-08-05 蚌埠市时代电子有限公司 一种润滑型金属表面处理剂
CN104818471A (zh) * 2015-04-10 2015-08-05 蚌埠市时代电子有限公司 一种丝胶稀土金属表面处理剂
CN104962923A (zh) * 2015-04-10 2015-10-07 蚌埠市时代电子有限公司 一种高效冷却金属表面处理剂
CN104818477A (zh) * 2015-04-10 2015-08-05 蚌埠市时代电子有限公司 一种抑菌防腐金属表面处理剂
CN107709619B (zh) 2015-04-15 2020-12-15 汉高股份有限及两合公司 含有聚酰胺-胺聚合物的薄防腐蚀涂层
KR101592147B1 (ko) * 2015-08-19 2016-02-04 이대석 알루미늄 기판의 산화막 형성방법
BR112018004464B1 (pt) 2015-09-07 2022-07-26 Ikea Supply Ag Elemento deslizante, sistema deslizante, uso de composição lipofílica e método para prover um elemento deslizante
KR102652843B1 (ko) 2015-09-07 2024-04-01 이케아 서플라이 아게 서랍, 및 이러한 서랍용 서랍 슬라이딩 시스템
ES2769043T3 (es) 2015-09-07 2020-06-24 Ikea Supply Ag Mesa extensible
WO2017042201A1 (en) * 2015-09-07 2017-03-16 Ikea Supply Ag A sliding screen sliding system
WO2017044034A1 (en) * 2015-09-07 2017-03-16 Ikea Supply Ag A sofa bed, and a sofa bed sliding system for such sofa bed
KR101792240B1 (ko) * 2015-09-18 2017-10-31 주식회사 포스코 편면도금 강판의 표면처리용 조성물, 이를 이용하여 표면처리된 강판, 및 이를 이용한 표면처리 방법
US10858540B2 (en) 2015-09-23 2020-12-08 3M Innovative Properties Company Composition including silanes and methods of making a treated article
KR101752306B1 (ko) 2015-10-07 2017-06-30 (주)켐옵틱스 광경화형 계면의 접착증진 조성물 및 이를 이용한 기판의 표면개질방법
US20180312711A1 (en) * 2015-10-30 2018-11-01 Sun Chemical Corporation Water-based coating compositions
EP3178884B1 (de) 2015-12-08 2018-02-07 Evonik Degussa GmbH Wässrige [3-(2,3-dihydroxyprop-1-oxy)propyl]silanololigomere-enthaltende zusammensetzung, verfahren zu deren herstellung und deren verwendung
FR3047491B1 (fr) * 2016-02-09 2018-01-19 Safran Elaboration d'un traitement anti-corrosion par voie sol-gel
JP6621694B2 (ja) * 2016-03-25 2019-12-18 株式会社神戸製鋼所 ポリオレフィン系樹脂接着用表面処理鋼板及びそれを用いた複合部材
JP6640638B2 (ja) * 2016-03-31 2020-02-05 株式会社神戸製鋼所 化成処理金属板
CN106048582A (zh) * 2016-07-11 2016-10-26 张卫东 一种新型含壳聚糖的播种机表面处理用水基防锈剂及其制作方法
CN106048583A (zh) * 2016-07-11 2016-10-26 张卫东 一种抗菌驱虫型播种机表面处理用水基防锈剂及其制作方法
CN106191843A (zh) * 2016-07-11 2016-12-07 张卫东 一种添加纳米硫酸钡的播种机表面处理用水基防锈剂及其制作方法
CN106048572A (zh) * 2016-07-11 2016-10-26 张卫东 一种抗冻播种机表面处理用水基防锈剂及其制作方法
EP3269986A1 (de) * 2016-07-15 2018-01-17 HILTI Aktiengesellschaft Spreizdübel mit zinklegierungs-beschichtung
CN106086858A (zh) * 2016-07-28 2016-11-09 安徽吉思特智能装备有限公司 一种添加纳米二氧化硅的碎石机表面处理用水基防锈剂及其制作方法
CN106245016A (zh) * 2016-07-28 2016-12-21 安徽吉思特智能装备有限公司 一种适涂性佳的碎石机表面处理用水基防锈剂及其制作方法
CN106118454A (zh) * 2016-07-28 2016-11-16 安徽吉思特智能装备有限公司 一种耐候性佳的碎石机表面处理用水基防锈剂及其制作方法
CN106048578A (zh) * 2016-07-28 2016-10-26 安徽吉思特智能装备有限公司 一种添加纳米氧化铝的耐高温碎石机表面处理用水基防锈剂及其制作方法
KR101692929B1 (ko) * 2016-08-24 2017-01-04 서번산업엔지니어링주식회사 공기조화시스템의 부식방지용 도장조성물
CN109983085B (zh) * 2016-11-30 2021-04-23 阿克佐诺贝尔国际涂料股份有限公司 对金属基材具有防腐蚀效果的无铬涂料组合物
CN106798952B (zh) * 2017-02-13 2019-12-10 先健科技(深圳)有限公司 可吸收铁基骨折内固定材料
SE540785C2 (en) * 2017-03-03 2018-11-13 Ikea Supply Ag A furniture rotary system having reduced friction, and a piece of furniture comprising such system
SE540465C2 (en) * 2017-03-03 2018-09-18 Ikea Supply Ag Furniture lubricant comprising a C10 to C28 alkane and a triglyceride
KR102657200B1 (ko) 2017-03-30 2024-04-12 타타 스틸 이즈무이덴 베.뷔. 금속 표면 처리용 수성 산성 조성물, 이 조성물을 사용한 처리 방법, 및 처리된 금속 표면
EP3398998A1 (de) 2017-05-03 2018-11-07 Evonik Degussa GmbH Wässrige sol-gel-zusammensetzung als lagerstabile vorstufe für zinkstaubfarben
JP6787493B2 (ja) * 2017-07-21 2020-11-18 Dic株式会社 組成物及び印刷インキ
CN110945091B (zh) 2017-07-26 2022-11-04 凯密特尔有限责任公司 适于浸涂并且在低温下固化的涂料组合物
US11939490B2 (en) * 2017-07-31 2024-03-26 Momentive Performance Materials Inc. Curable surface-protective coating composition, processes for its preparation and application to a metallic substrate and resulting coated metallic substrate
WO2019224286A1 (en) * 2018-05-24 2019-11-28 Atotech Deutschland Gmbh Anti-fingerprint coatings
EP3810701B1 (en) * 2018-06-25 2022-10-19 DDP Specialty Electronic Materials US, LLC Primer composition
JP7101066B2 (ja) * 2018-07-10 2022-07-14 日本ペイント・サーフケミカルズ株式会社 クロムフリー金属表面処理剤、金属表面処理方法、及び金属基材
JP7291203B2 (ja) * 2018-07-30 2023-06-14 ポスコ カンパニー リミテッド 電磁鋼板、電磁鋼板用絶縁被膜組成物および電磁鋼板の製造方法
CN112739782B (zh) * 2018-07-30 2022-04-26 Posco公司 电工钢板用绝缘覆膜组合物和具有绝缘覆膜的电工钢板
WO2020049132A1 (en) 2018-09-07 2020-03-12 Chemetall Gmbh Method for treating surfaces of aluminum containing substrates
MX2021002641A (es) 2018-09-07 2021-05-12 Chemetall Gmbh Metodo para tratar superficies de sustratos que contienen aluminio.
GB2581513A (en) * 2019-02-21 2020-08-26 Kastus Tech Dac Nanostructured hybrid sol-gel coatings for metal surface protection
CN109929325A (zh) * 2019-04-11 2019-06-25 惠州市嘉淇涂料有限公司 一种铝扣板丝印水性油墨
KR102060594B1 (ko) 2019-05-27 2019-12-30 황이순 강자재용 방수 도장 조성물 및 방수 도장 방법
TWI738082B (zh) * 2019-10-09 2021-09-01 才將科技股份有限公司 一種連接金屬和樹脂之接著劑、接著層及其應用
TWI705083B (zh) * 2019-11-13 2020-09-21 南亞塑膠工業股份有限公司 硬化劑組合物及其硬化劑塗料配方
KR102329418B1 (ko) 2019-12-03 2021-11-22 주식회사 포스코 강판 표면처리용 용액 조성물, 이를 이용하여 표면처리된 강판 및 그 제조 방법
KR102329503B1 (ko) * 2019-12-03 2021-11-19 주식회사 포스코 강판 표면처리용 용액 조성물, 이를 이용하여 표면처리된 강판 및 그 제조 방법
KR102307916B1 (ko) * 2019-12-05 2021-09-30 주식회사 포스코 우수한 내식성 및 표면색상을 부여하는 삼원계 용융아연합금 도금강판용 표면처리 조성물, 이를 이용하여 표면처리된 삼원계 용융아연합금도금 강판 및 이의 제조방법
DE102019134136B3 (de) * 2019-12-12 2021-04-29 Voestalpine Stahl Gmbh Verfahren zur herstellung von beschichteten elektrobändern und beschichtetes elektroband
US11884466B2 (en) * 2020-12-11 2024-01-30 Sonoco Development, Inc. Sustainable barrer containers and methods
KR20220089747A (ko) * 2020-12-21 2022-06-29 주식회사 포스코 발포기공을 갖는 비구속형 제진 금속판
CN112853337A (zh) * 2021-01-11 2021-05-28 厦门腾兴隆化工有限公司 一种硅烷处理剂及其制备方法
KR20240021167A (ko) * 2021-06-17 2024-02-16 니뽄 페인트 서프 케미컬즈 컴퍼니 리미티드 표면 처리 금속 부재의 제조 방법 및 가공 성형 금속 부재용의 수계 표면 처리제
JP7338943B1 (ja) 2022-03-14 2023-09-05 昭和飛行機工業株式会社 ハニカムコア用アルミニウム箔の耐食処理方法
CN114773937A (zh) * 2022-06-22 2022-07-22 太原科技大学 基于无头轧制工艺免磷化板及其制备方法
US20240279564A1 (en) * 2023-02-14 2024-08-22 Actnano, Inc. Compositions for reducing friction or stiction of a surface, methods and articles comprising the same
GR20230100291A (el) * 2023-04-05 2024-11-11 Παπαδοπουλος Νικολαος-Ξαφακης Σωτηριος Ο.Ε., Μεθοδος αναπτυξης αντιρρυπαντικων και αντιστατικων επικαλυψεων μεσω αυτοματοποιημενων συστηματων επιφανειακης επεξεργασιας
WO2025132211A1 (en) 2023-12-18 2025-06-26 Chemetall Gmbh Pretreatment of galvanized metallic substrates with aluminum oxide hydroxide containing rinsing solutions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053081A (en) * 1990-04-02 1991-10-01 Oakite Products, Inc. Composition and method for treatment of conversion coated metal surfaces with an aqueous solution of 3-aminopropyltriethoxy silane and titanium chelate
US5324545A (en) * 1991-11-21 1994-06-28 Ewald Dorken Ag Dip-coating method for protecting chromatized or passivated zinc coatings on steel or the like
US5451431A (en) * 1993-11-16 1995-09-19 Betz Laboratories, Inc. Composition and process for treating metal surfaces
US5739369A (en) * 1995-04-20 1998-04-14 Shin-Etsu Chemical Co., Ltd. Water-soluble surface treating agents
US6203854B1 (en) * 1997-09-17 2001-03-20 Brent International Plc Methods of and compositions for preventing corrosion of metal substrates
US20010031811A1 (en) * 1993-12-13 2001-10-18 Huawen Li Durable coating composition, process for producing durable, antireflective coatings, and coated articles
US6478886B1 (en) * 1998-04-01 2002-11-12 Kunz Gmbh Agent for sealing metallic ground coats, especially ground coats consisting of zinc or zinc alloys
US6875479B2 (en) * 2000-10-11 2005-04-05 Chemetall Gmbh Method for coating metal surfaces with an aqueous, polymer-containing composition, said aqueous composition and the use of the coated substrates

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063016A (en) * 1975-12-15 1977-12-13 University Of Delaware Chitin complexes with alcohols and carbonyl compounds
US4112151A (en) * 1976-01-09 1978-09-05 Monarch Marking Systems, Inc. Impregnating porous articles
US4311738A (en) * 1980-05-27 1982-01-19 Dow Corning Corporation Method for rendering non-ferrous metals corrosion resistant
JPS5721451A (en) * 1980-07-15 1982-02-04 Kansai Paint Co Ltd Alkyd resin-containing emulsion composition
CA1211406A (en) 1980-12-24 1986-09-16 Tomihiro Hara Plated steel sheet with chromate and composite silicate resin films
JPS57190003A (en) * 1981-05-18 1982-11-22 Asahi Chem Ind Co Ltd Wholly porous activated gel
DE3307954A1 (de) * 1983-03-07 1984-09-13 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von elektrisch leitfaehigen feinteiligen pyrrolpoylmerisaten
US4457790A (en) * 1983-05-09 1984-07-03 Parker Chemical Company Treatment of metal with group IV B metal ion and derivative of polyalkenylphenol
US4659394A (en) * 1983-08-31 1987-04-21 Nippon Kokan Kabushiki Kaisha Process for preparation of highly anticorrosive surface-treated steel plate
JPH01104783A (ja) * 1987-07-23 1989-04-21 Nisshin Steel Co Ltd 耐食性、耐指紋性に優れた表面処理鋼板の製造方法
US5246507A (en) * 1988-01-04 1993-09-21 Kao Corporation Metal surface treatment and aqueous solution therefor
JP2617544B2 (ja) * 1988-11-14 1997-06-04 三菱重工業株式会社 気液接触方法
US4959180A (en) * 1989-02-03 1990-09-25 The United States Of America As Represented By The United States Department Of Energy Colloidal polyaniline
US4986886A (en) * 1990-05-30 1991-01-22 Drexel University Polymerization of thiophene and its derivatives
JPH04110476A (ja) * 1990-08-30 1992-04-10 Kobe Steel Ltd 歪取り焼鈍後に密着性と絶縁性にすぐれた絶縁被膜を有する電磁鋼板の製造方法
US5108793A (en) * 1990-12-24 1992-04-28 Armco Steel Company, L.P. Steel sheet with enhanced corrosion resistance having a silane treated silicate coating
TW247319B (es) * 1992-06-17 1995-05-11 Japat Ltd
US6132645A (en) * 1992-08-14 2000-10-17 Eeonyx Corporation Electrically conductive compositions of carbon particles and methods for their production
TW278096B (es) * 1992-09-24 1996-06-11 Dsm Nv
US5531820A (en) * 1993-08-13 1996-07-02 Brent America, Inc. Composition and method for treatment of phosphated metal surfaces
JPH08170046A (ja) * 1994-02-17 1996-07-02 Nippon Paint Co Ltd 水性コーティング組成物
US5433976A (en) * 1994-03-07 1995-07-18 Armco, Inc. Metal pretreated with an aqueous solution containing a dissolved inorganic silicate or aluminate, an organofuctional silane and a non-functional silane for enhanced corrosion resistance
JPH07316440A (ja) * 1994-03-30 1995-12-05 Kansai Paint Co Ltd 水性硬化性樹脂組成物
FR2718140B1 (fr) * 1994-03-31 1996-06-21 France Telecom Compositions polymériques électriquement conductrices, procédé de fabrication de telles compositions, substrats revêtus avec ces compositions et solutions oxydantes pour leur fabrication.
US6068711A (en) * 1994-10-07 2000-05-30 Mcmaster University Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements
US5711996A (en) * 1995-09-28 1998-01-27 Man-Gill Chemical Company Aqueous coating compositions and coated metal surfaces
US6051670A (en) * 1995-12-20 2000-04-18 Phillips Petroleum Company Compositions and processes for treating subterranean formations
JPH09296121A (ja) * 1996-05-02 1997-11-18 Nippon Parkerizing Co Ltd 金属材料用水性表面親水性化処理剤および表面処理方法
US5700523A (en) * 1996-06-03 1997-12-23 Bulk Chemicals, Inc. Method for treating metal surfaces using a silicate solution and a silane solution
JPH1060280A (ja) * 1996-08-14 1998-03-03 Japan Synthetic Rubber Co Ltd 水系分散体
US6235916B1 (en) * 1996-12-24 2001-05-22 University Of Southern Mississippi Internally plasticizing and crosslinkable monomers and applications thereof
US5968417A (en) * 1997-03-03 1999-10-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Conducting compositions of matter
US6054514A (en) * 1997-05-20 2000-04-25 Americhem, Inc. Additives for enhancing corrosion protection of metals
JP3898302B2 (ja) * 1997-10-03 2007-03-28 日本パーカライジング株式会社 金属材料用表面処理剤組成物および処理方法
US6328874B1 (en) * 1998-01-05 2001-12-11 Mcdonnell Douglas Corporation Anodically formed intrinsically conductive polymer-aluminum oxide composite as a coating on aluminum
TWI221861B (en) * 1998-04-22 2004-10-11 Toyo Boseki Agent for treating metallic surface, surface-treated metal material and coated metal material
USH1967H1 (en) * 1998-07-02 2001-06-05 Kimberly-Clark Worldwide, Inc. Methods for improving the adhesion and/or colorfastness of ink jet inks with respect to substrates applied thereto
GB9824223D0 (en) * 1998-11-05 1998-12-30 British Aerospace Adhesive bonding process for aluminium and/or aluminium alloy
JP3817944B2 (ja) * 1998-12-18 2006-09-06 Jfeスチール株式会社 樹脂組成物および樹脂被覆亜鉛系めっき鋼板
JP2000192252A (ja) * 1998-12-24 2000-07-11 Nisshin Steel Co Ltd めっき鋼板用表面処理液およびその処理方法
US6132808A (en) * 1999-02-05 2000-10-17 Brent International Plc Method of treating metals using amino silanes and multi-silyl-functional silanes in admixture
DE19913242C2 (de) * 1999-03-24 2001-09-27 Electro Chem Eng Gmbh Chemisch passivierter Gegenstand aus Magnesium oder seinen Legierungen, Verfahren zur Herstellung und seine Verwendung
US20040029395A1 (en) * 2002-08-12 2004-02-12 Peng Zhang Process solutions containing acetylenic diol surfactants
US7344607B2 (en) * 1999-07-08 2008-03-18 Ge Betz, Inc. Non-chromate conversion coating treatment for metals
US6623791B2 (en) * 1999-07-30 2003-09-23 Ppg Industries Ohio, Inc. Coating compositions having improved adhesion, coated substrates and methods related thereto
KR100567176B1 (ko) * 1999-10-22 2006-04-03 제이에프이 스틸 가부시키가이샤 금속표면처리조성물 및 표면처리금속재료
JP2001201611A (ja) * 2000-01-21 2001-07-27 Hitachi Ltd 光学的機能性シート及びこれを用いた面状光源並びに画像表示装置
JP3857866B2 (ja) * 2000-02-29 2006-12-13 日本ペイント株式会社 ノンクロメート金属表面処理剤、表面処理方法および処理された塗装鋼材
JP4393660B2 (ja) * 2000-02-29 2010-01-06 日本ペイント株式会社 Pcm用ノンクロメート金属表面処理剤、pcm表面処理方法および処理されたpcm鋼板
JP2001240977A (ja) * 2000-02-29 2001-09-04 Nippon Paint Co Ltd 金属表面処理方法
NL1014657C2 (nl) * 2000-03-16 2001-09-19 Ocu Technologies B V Toner gecoat met geleidend polymeer.
JP3787262B2 (ja) 2000-04-27 2006-06-21 大日本塗料株式会社 水性塗料組成物
JP3851106B2 (ja) * 2000-05-11 2006-11-29 日本パーカライジング株式会社 金属表面処理剤、金属表面処理方法及び表面処理金属材料
CA2345929C (en) * 2000-05-15 2008-08-26 Nippon Paint Co., Ltd. Metal surface-treating method
EP1285032B1 (en) 2000-05-19 2005-08-31 E.I. Du Pont De Nemours And Company Emulsion and water-repellent composition
KR100449373B1 (ko) 2000-05-25 2004-09-18 아사히 가세이 가부시키가이샤 블록 공중합체 및 이의 조성물
US20030185990A1 (en) * 2000-09-25 2003-10-02 Klaus Bittner Method for pretreating and coating metal surfaces prior to forming, with a paint-like coating and use of substrates so coated
CA2423036A1 (en) * 2000-09-25 2003-03-24 Chemetall Gmbh Method for coating metallic surfaces and use of substrates coated in such a way or coatings produced in such a way
JP2002121486A (ja) * 2000-10-06 2002-04-23 E I Du Pont De Nemours & Co フルオロカーボンシラン加水分解物含有水性エマルジョンおよび耐熱撥水性の被覆物
AU1500902A (en) * 2000-10-11 2002-04-22 Chemetall Gmbh Method for coating metallic surfaces with an aqueous composition, the aqueous composition and use of the coated substrates
EP1328590B1 (de) * 2000-10-11 2011-08-03 Chemetall GmbH Verfahren zur vorbehandlung oder/und beschichtung von metallischen oberflächen vor der umformung mit einem lackähnlichen überzug und verwendung der derart beschichteten substrate
JP2002129110A (ja) * 2000-10-31 2002-05-09 Asahi Glass Co Ltd 水性塗料用組成物
AT409965B (de) * 2000-11-15 2002-12-27 Solutia Austria Gmbh Wässrige bindemittel auf basis von epoxidharzen
JP5124893B2 (ja) * 2001-01-31 2013-01-23 旭硝子株式会社 水性塗料用組成物
JP4822378B2 (ja) * 2001-02-06 2011-11-24 株式会社ブリヂストン 成膜装置および成膜方法
JP2002256154A (ja) * 2001-03-02 2002-09-11 Shinto Fine Co Ltd 良好な造膜性を持つエマルション樹脂組成物
DE10110833B4 (de) * 2001-03-06 2005-03-24 Chemetall Gmbh Verfahren zum Aufbringen eines Phosphatüberzuges und Verwendung der derart phosphatierten Metallteile
DE10110834B4 (de) * 2001-03-06 2005-03-10 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen und Verwendung der derart beschichteten Substrate
CA2440226A1 (en) * 2001-03-08 2002-09-19 John Sinko Conductive polymer-inorganic hybrid composites
WO2002090619A2 (de) * 2001-03-16 2002-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Additionsprodukt, seine herstellung und seine verwendung als korrosionsinhibitor
WO2002103727A1 (en) * 2001-06-15 2002-12-27 Showa Denko K.K. Formed substrate used for solid electrolytic capacitor, production method thereof and solid electrolytic capacitor using the substrate
JP4078044B2 (ja) * 2001-06-26 2008-04-23 日本パーカライジング株式会社 金属表面処理剤、金属材料の表面処理方法及び表面処理金属材料
JP4834195B2 (ja) * 2001-07-09 2011-12-14 関西ペイント株式会社 金属表面処理組成物
EP1436355B1 (de) * 2001-10-22 2005-12-14 Henkel Kommanditgesellschaft auf Aktien Oberflächenbeschichtete al/zn-stahlbleche und oberflächenbeschichtungsmittel
US6805756B2 (en) * 2002-05-22 2004-10-19 Ppg Industries Ohio, Inc. Universal aqueous coating compositions for pretreating metal surfaces
US6942899B2 (en) * 2002-07-08 2005-09-13 The Boeing Company Coating for inhibiting oxidation of a substrate
DE10258291A1 (de) * 2002-12-13 2004-07-08 Henkel Kgaa Verfahren zur Beschichtung von Metallsubstraten mit einem radikalisch polymerisierbaren Überzugsmittel und beschichtete Substrate
US7510612B2 (en) * 2002-12-24 2009-03-31 Nippon Paint Co., Ltd. Chemical conversion coating agent and surface-treated metal
EP1433875B1 (en) * 2002-12-24 2013-11-27 Chemetall GmbH Chemical conversion coating agent and surface-treated metal
DE60324379D1 (de) * 2002-12-24 2008-12-11 Chemetall Gmbh Chemisches Konversionsbeschichtungsmittel und beschichtete Metalloberflächen
US7070586B2 (en) * 2003-01-17 2006-07-04 Applied Medical Resources Corporation Surgical access apparatus and method
MXPA05009075A (es) * 2003-02-25 2005-10-19 Chemetall Gmbh Metodo para recubrir superficies metalicas con una composicion rica en polimero.
US6875514B2 (en) * 2003-03-21 2005-04-05 E. I. Du Pont De Nemours And Company Coating composition containing polytrimethylene ether diol useful as a primer composition
US7033673B2 (en) * 2003-07-25 2006-04-25 Analytical Services & Materials, Inc. Erosion-resistant silicone coatings for protection of fluid-handling parts
WO2006015754A2 (de) * 2004-08-03 2006-02-16 Chemetall Gmbh Verfahren zum schützen einer metallischen oberfläche mit einer korrosionsinhibierenden beschichtung
US20060099332A1 (en) * 2004-11-10 2006-05-11 Mats Eriksson Process for producing a repair coating on a coated metallic surface
PL1812620T5 (pl) * 2004-11-10 2021-08-02 Chemetall Gmbh Sposób powlekania metalowych powierzchni za pomocą wodnej kompozycji zawierającej silan/silanol/siloksan/polisiloksan i ta kompozycja
US20080138615A1 (en) * 2005-04-04 2008-06-12 Thomas Kolberg Method for Coating Metallic Surfaces with an Aqueous Composition and Said Composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053081A (en) * 1990-04-02 1991-10-01 Oakite Products, Inc. Composition and method for treatment of conversion coated metal surfaces with an aqueous solution of 3-aminopropyltriethoxy silane and titanium chelate
US5324545A (en) * 1991-11-21 1994-06-28 Ewald Dorken Ag Dip-coating method for protecting chromatized or passivated zinc coatings on steel or the like
US5393611A (en) * 1991-11-21 1995-02-28 Ewald Dorken Ag Dip-coating method for protecting chromatized or passivated zinc coatings on steel or the like
US5451431A (en) * 1993-11-16 1995-09-19 Betz Laboratories, Inc. Composition and process for treating metal surfaces
US20010031811A1 (en) * 1993-12-13 2001-10-18 Huawen Li Durable coating composition, process for producing durable, antireflective coatings, and coated articles
US5739369A (en) * 1995-04-20 1998-04-14 Shin-Etsu Chemical Co., Ltd. Water-soluble surface treating agents
US6203854B1 (en) * 1997-09-17 2001-03-20 Brent International Plc Methods of and compositions for preventing corrosion of metal substrates
US6478886B1 (en) * 1998-04-01 2002-11-12 Kunz Gmbh Agent for sealing metallic ground coats, especially ground coats consisting of zinc or zinc alloys
US6875479B2 (en) * 2000-10-11 2005-04-05 Chemetall Gmbh Method for coating metal surfaces with an aqueous, polymer-containing composition, said aqueous composition and the use of the coated substrates

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060233958A1 (en) * 2005-03-23 2006-10-19 Shin-Etsu Chemical Co., Ltd. Non-chromate aqueous metal surface treating composition, surface-treated steel, painted steel, steel surface treatment method, and painted steel preparing method
US7638172B2 (en) 2005-03-23 2009-12-29 Shin-Etsu Chemical Co., Ltd. Non-chromate aqueous metal surface treating composition, surface-treated steel, painted steel, steel surface treatment method, and painted steel preparing method
US20080281054A1 (en) * 2005-10-26 2008-11-13 Nanogate Ag Mixed Silanes
US7985798B2 (en) * 2005-10-26 2011-07-26 Nanogate Ag Mixed silanes
US11066750B2 (en) * 2007-08-27 2021-07-20 Momentive Performance Materials Inc. Metal corrosion inhibition
US8758498B2 (en) * 2008-10-16 2014-06-24 Dow Corning Corporation Silanes blend
US20110253007A1 (en) * 2008-10-16 2011-10-20 Ralf Zastrau Silanes Blend
US8852848B2 (en) 2010-07-28 2014-10-07 Z Electronic Materials USA Corp. Composition for coating over a photoresist pattern
WO2012014059A1 (en) * 2010-07-28 2012-02-02 Az Electronic Materials Usa Corp. A composition for coating over a photoresist pattern
RU2534231C2 (ru) * 2011-07-19 2014-11-27 Иван Соломонович Пятов Способ получения защитного покрытия на поверхности металлического изделия, работающего в условиях высокоагрессивной среды, повышенных температур и истирающих воздействий
US20140255611A1 (en) * 2011-10-14 2014-09-11 University Paul Sabatier Toulouse Iii Process for the anticorrosion treatment of a solid metal substrate and treated solid metal substrate capable of being obtained by such a process
US9506159B2 (en) 2013-05-15 2016-11-29 Srg Global, Inc. Organometallic adhesion promoters for paint-over-chrome plated polymers
WO2014186097A1 (en) * 2013-05-15 2014-11-20 Srg Global Inc. Organometallic adhesion promoters for paint-over-chrome plated polymers
US20150080282A1 (en) * 2013-09-17 2015-03-19 General Electric Company Cleansing and film-forming washes for turbine compressors
WO2015128364A1 (en) * 2014-02-28 2015-09-03 Tata Steel Uk Limited Method for producing a siloxane coated metal substrate and a siloxane coated metal substrate produced thereby
US20150354403A1 (en) * 2014-06-05 2015-12-10 General Electric Company Off-line wash systems and methods for a gas turbine engine
CN105422283A (zh) * 2014-09-12 2016-03-23 通用电气公司 用于使用冷却装置向表面提供膜处理的系统及方法
US20160076458A1 (en) * 2014-09-12 2016-03-17 General Electric Company System and method for providing a film treatment to a surface using cooling devices
US11007750B2 (en) 2015-01-30 2021-05-18 Arcelormittal Preparation method of a coated sheet comprising the application of an aqueous solution comprising an amino acid and its associated use for improving the compatibility with an adhesive
US11008660B2 (en) 2015-01-30 2021-05-18 Arcelormittal Method for the production of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve tribological properties
US11060174B2 (en) 2015-01-30 2021-07-13 Arcelormittal Method for the preparation of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve corrosion resistance
US11236413B2 (en) 2015-01-30 2022-02-01 Arcelormittal Coated metal sheet having an amino acid to improve corrosion resistance
US10272653B2 (en) * 2016-06-24 2019-04-30 State Grid Hunan Electric Power Company Live Working Center Surface treatment composition, insulating fiber, yarn, rope and preparation method thereof
US11998946B2 (en) 2018-06-14 2024-06-04 Voestalpine Stahl Gmbh Method for producing lacquer-coated electrical strips, and lacquer-coated electrical strip
CN109985782A (zh) * 2019-04-10 2019-07-09 贵州钢绳股份有限公司 一种利用冷镀锌工艺在拉丝机卷筒内壁进行防锈处理的方法

Also Published As

Publication number Publication date
AU2004215696B2 (en) 2010-11-25
ATE557069T1 (de) 2012-05-15
CA2517059C (en) 2012-10-23
US20060099429A1 (en) 2006-05-11
RU2357003C2 (ru) 2009-05-27
US8932679B2 (en) 2015-01-13
US20060127681A1 (en) 2006-06-15
EP1599615A1 (de) 2005-11-30
AU2004215240B2 (en) 2010-02-04
JP4518419B2 (ja) 2010-08-04
JP4537377B2 (ja) 2010-09-01
ATE553229T1 (de) 2012-04-15
ES2387805T3 (es) 2012-10-02
JP2006519924A (ja) 2006-08-31
CN101705484A (zh) 2010-05-12
EP1599551B1 (de) 2012-05-09
JP5032111B2 (ja) 2012-09-26
US9175170B2 (en) 2015-11-03
WO2004076718A1 (de) 2004-09-10
EP1599551A1 (de) 2005-11-30
JP2006519307A (ja) 2006-08-24
AU2004215240A1 (en) 2004-09-10
MXPA05009075A (es) 2005-10-19
ES2385982T3 (es) 2012-08-06
WO2004076717A1 (de) 2004-09-10
WO2004076568A1 (de) 2004-09-10
AU2004215696A1 (en) 2004-09-10
US20110039115A1 (en) 2011-02-17
EP1599616B1 (de) 2012-04-11
AU2004215240C1 (en) 2010-10-07
CA2517057A1 (en) 2004-09-10
CA2517059A1 (en) 2004-09-10
US20150361274A1 (en) 2015-12-17
ATE553163T1 (de) 2012-04-15
US20110086173A1 (en) 2011-04-14
RU2005129537A (ru) 2006-03-10
CA2517057C (en) 2013-11-12
EP1599616A1 (de) 2005-11-30
JP2006519308A (ja) 2006-08-24
EP1599615B1 (de) 2012-04-11
MXPA05009076A (es) 2005-10-19

Similar Documents

Publication Publication Date Title
US8932679B2 (en) Method for coating metallic surfaces with a mixture containing at least two silanes
US7615257B2 (en) Method for pretreating and/or coating metallic surfaces with a paint-like coating prior to forming and use of substrates coated in this way
CA2754138C (en) Process for coating metallic surfaces in a multi-stage process
RU2418885C2 (ru) Способ нанесения покрытия на металлическую поверхность путем ее обработки водной композицией, водная композиция и применение металлических субстратов с покрытием
CN1777700B (zh) 以含至少两种硅烷的混合物涂布金属表面的方法
US20040009300A1 (en) Method for pretreating and subsequently coating metallic surfaces with paint-type coating prior to forming and use og sybstrates coated in this way
US10378120B2 (en) Method for coating metallic surfaces with a multi-component aqueous composition
ZA200302123B (en) Method for pretreating and coating metal surfaces, prior to forming, with a paint-like coating and use of substrates so coated.

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEMETAL GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WALTER, MANFRED;SCHONE, AXEL;JUNG, CHRISTIAN;AND OTHERS;REEL/FRAME:016964/0746;SIGNING DATES FROM 20050927 TO 20051014

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION