US20140017409A1 - Corrosion resistance passivation formulation and process of preparation thereof - Google Patents
Corrosion resistance passivation formulation and process of preparation thereof Download PDFInfo
- Publication number
- US20140017409A1 US20140017409A1 US14/007,878 US201214007878A US2014017409A1 US 20140017409 A1 US20140017409 A1 US 20140017409A1 US 201214007878 A US201214007878 A US 201214007878A US 2014017409 A1 US2014017409 A1 US 2014017409A1
- Authority
- US
- United States
- Prior art keywords
- zinc
- passivation
- formulation
- acid
- zinc alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/53—Treatment of zinc or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/56—Treatment of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/82—After-treatment
- C23C22/83—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2222/00—Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
- C23C2222/10—Use of solutions containing trivalent chromium but free of hexavalent chromium
Definitions
- the present invention relates to a chemical composition and process of preparation thereof. More particularly, the present invention relates to a corrosion resistance passivation formulation for conferring high corrosion resistance to metals and their alloys.
- corrosion resisting formulations typically contain chromium in its hexavalent form.
- environmental concerns and subsequent legislative action in the form of directives such as European Union's vehicle end of life directive led to efforts to find suitable alternatives for hexavalent chromium.
- hexavalent chromium formulations have now been largely replaced by trivalent chromium-based formulations.
- this technology has matured over the last few years, it is always desired by the end users to improve the performance of passivation films in terms of higher corrosion resistance as measured by the neutral salt spray life.
- applying a further coat of organic, inorganic or hybrid polymer formulation is a widely prevalent practice.
- Such polymer formulations are referred as Sealers, Fixers or Topcoats in the industrial practice. However, such topcoats are not applied for passivation films on aluminium, magnesium and their alloys.
- Trivalent chromium-based passivation or conversion coating formulations when used without a further topcoat do not consistently show high corrosion resistance as measured by neutral salt spray test.
- topcoat on trivalent chromium passivation gives better corrosion resistance.
- coating thickness may be as high as 2 microns which may not be suitable for low tolerance components. This is particularly true in the case where the topcoat is based on purely organic materials such as epoxy, acrylic, and polyurethane among others.
- Object of the present invention is to provide a chromium based passivation film formulation for improved corrosion resistance.
- Another object of the present invention is to provide chromium based passivation film that incorporates ceramic particles in the passivation film.
- Yet another object of the present invention is to provide a process of application of passivation film on zinc and zinc alloys.
- Further object of the present invention is to provide a process of manufacturing chromium based passivation film/formulation for corrosion resistance.
- FIG. 1 describes a process of applying passivation formulation of the present invention on zinc and zinc alloys in accordance with the present invention.
- the present invention provides a corrosion resistant passivation formulation for zinc and zinc alloys, the passivation formulation comprising:
- the present invention provides a process of application of passivation film on zinc and zinc alloy, the process comprising:
- the present invention provides a passivation formulation and a process for forming trivalent chromium-based passivation film on zinc and zinc alloys.
- the passivation film incorporates nano-ceramic particles resulting in higher corrosion resistance as compared to a trivalent chromium passivation film without nano-sized ceramic particles.
- the corrosion resistance of the coating is further enhanced by a topcoat or a sealant
- the trivalent chromate passivation formulation in accordance with the present invention is an aqueous formulation which comprises trivalent chromium ions in a range of 0.01 to 0.22 moles.
- the trivalent chromium ions are used above 0.05 moles.
- the formulation includes organic acid in the range of 0 to 0.022 moles.
- the organic acid is used above 0.005 moles.
- the formulation includes transition metal ion in a range of 0 to 0.02 moles.
- the formulation includes boric acid in a range of 0 to 0.02 moles. Preferably, the boric acid is used above 0.01 moles. Further, the formulation includes fluoride ions in a range of 0 to 0.1 moles. Preferably, the fluoride ions are used above 0.02 moles. Furthermore, the formulation includes ceramic nano-particles in a range of 0.08 to 0.4 moles. Preferably, the ceramic nano-particles are used above 0.08 to 0.4 moles. Water is used to dilute the passivation formulation to 1000 ml.
- the trivalent chromium ions are selected from chromium salts such as chromium chloride (CrCl 3 ), chromium nitrate Cr(NO 3 ) 3 , and chromium sulphate Cr 2 (SO 4 ) 3 Specifically, higher concentration of chromium in the formulation results in a thicker film and thus increases corrosion resistance of the film.
- chromium salts such as chromium chloride (CrCl 3 ), chromium nitrate Cr(NO 3 ) 3 , and chromium sulphate Cr 2 (SO 4 ) 3
- organic acids are selected from a group consisting of Ethanedioic acid,
- Butanedioic Acid 2-3-dihydroxy butanedioic acid, Propanedioic acid, 3-carboxy-3-hydroxy penatanedioic acid and the like.
- the organic acids are used to complex the chromium ion. More specifically, higher chromium ion concentration in the formulation requires a higher organic acid concentration as well.
- transition metal salts are used in the form of chlorides, sulphates, or nitrates of Manganese (Mn), Nickel (Ni), Cobalt (Co), Vanadium (V) and Iron (Fe).
- Mn Manganese
- Ni Nickel
- Cobalt Co
- Vanadium V
- Fe Iron
- the transition metals salts are known to play a role in accelerating the chromate film formation. A higher transition metal salt concentration results in a faster chromate film formation and thereby reducing the time required for passivation.
- fluoride is any one fluoride selected from sodium fluoride, potassium fluoride, ammonium fluoride, ammonium bifluoride, fluorosalicylic acid, fluorozirconic acid and the like.
- the fluorides play a role in improving the finish of the passivated film. A higher fluoride concentration gives a brighter and polished finish.
- nano-particles of ceramic materials are selected from nanoparticles of silicon dioxide (SiO 2 ), aluminium oxide (Al 2 O 3 ), Zirconium oxide (ZrO2), titanium dioxide (TiO 2 ), either alone or in combination or in the form of mixed oxide.
- the ceramic particles have particle size in the range of 5 nm to 30 nm preferably smaller than 15 nm, and surface area above 50 g cm ⁇ 3 and preferably above 200 g cm 3 , which are stable and do not coagulate or gel in acidic as well as alkaline pH conditions on their own or during operation in the presence of other elements in the passivation formulation.
- the process ( 100 ) includes plating a zinc/zinc alloy.
- the plated zinc/zinc alloy is then rinsed with water.
- the rinsed zinc/zinc alloy is treated with nitric acid for 10-20 seconds.
- the concentration of the nitric acid is in the range of 0.2 to 1% and preferably 0.5%.”
- the treated zinc/zinc alloy is again rinsed with water.
- the passivation formulation at pH 2.2 to 3.0 is applied to the rinsed zinc/zinc alloy at temperatures ranging from 25° to 40° C. for about 30-90 seconds.
- the passivated zinc/zinc alloy is then rinsed with water and treated with a top coat/sealer for about 30-90 seconds and dried thereafter.
- the dried zinc/zinc alloy is baked at 80°-120° C. for 15-20 minutes to obtain a corrosion resistant zinc/zinc alloy surface.
- the passivation formulation of the present invention act on the zinc coatings between pH 2.2 to 3.0 when contacted for 30 to 90 seconds at low temperatures ranging from 25° to 40° C. to form a chromate conversion coating that incorporates the ceramic particles and thereby offers a superior corrosion resistance.
- the process conditions are suitable for treating hot dip galvanized surfaces.
- the corrosion resistance of the passivation film thus formed provides corrosion resistance of the order of 300 Hrs in salt spray compared to 240 Hrs of salt spray provided by prior art method. Further, the corrosion resistance is further improved by using a topcoat or a sealant based on either organosilane or epoxy or acrylic polymers.
- the salt spray life obtained on components that are plated from a chloride bath in a barrel consistently exceed 168 hours (5% white rust).
- the components that are vat plated from alkaline bath offer a corrosion resistance of more than 216 hours for 5% white rust consistently.
- application of a top coat followed by oven baking results in a salt spray life in excess of 264 hours for the components that are plated with the chloride bath.
- the corresponding figure for vat plated articles from an alkaline bath is 416 hours.
- the ceramic nanoparticles are added to commercially available aluminium passivation formulations from the market.
- a salt spray life of 600 hours was obtained as against 300 hours without addition of ceramic nanoparticles. Similar results were envisaged for magnesium and its alloys.
- a passivation bath containing 0.04 M Cr3+ ions, 0.05 M ethanedioic acid, 0.06 M F-ions and 0.05 M SiO2 nanoparticles (average particle size 10 nm) was prepared.
- Steel test panels were subjected to an alkaline, non-cyanide electroplating vat process to deposit a zinc plating (average thickness of 8 microns) thereon after which they are thoroughly water rinsed followed by activation in 0.5% nitric acid for 15 s.
- the panels were further rinsed with water and then dipped in the passivation bath prepared as above. The temperature was maintained at 35° C. and pH of 2.6.
- the panels were then rinsed in water and dried and oven baked at 100° C. for 15 minutes.
- the panels were then subjected to a salt spray test as per ASTM B 117.
- White rust was first observed after 120 hours.
- steel fastener bolts (size M10 ⁇ 35) were subjected to an acid electroplating barrel process to deposit a zinc plating (thickness on the head was 8 microns) thereon. after which they are thoroughly water rinsed followed by activation in 0.5% nitric acid for 15 s.
- the panels were further rinsed with water and then dipped in the passivation bath prepared as above. The temperature was maintained at 35° C. and pH of 2.6.
- the panels were then rinsed in water and dried and oven baked at 100° C. for 15 minutes.
- the panels were then subjected to a salt spray test as per ASTM B 117.
- White rust was first observed after 96 hours. On steel panels passivated in a bath without SiO2 nanoparticles white rust was first observed after 48 hours.
- Steel test panels were subjected to an alkaline, non-cyanide electroplating vat process to deposit a zinc plating (average thickness of 8 microns) thereon after which they are thoroughly water rinsed followed by activation in 0.5% nitric acid for 15 s.
- the panels were further rinsed with water and then dipped in the passivation bath prepared as above. The temperature was maintained at 30° C. and pH of 2.7.
- the panels were then rinsed in water and dried and oven baked at 100° C. for 15 minutes.
- the panels were then subjected to a salt spray test as per ASTM B117.
- White rust was first observed after 216 hours.
- white rust was first observed after 120 hours.
- steel fastener bolts (size M10 ⁇ 35) were subjected to an acid electroplating barrel process to deposit a zinc plating (thickness on the head was 8 microns) thereon after which they are thoroughly water rinsed followed by activation in 0.5% nitric acid for 15 s.
- the panels were further rinsed with water and then dipped in the passivation bath prepared as above. The temperature was maintained at 35° C. and pH of 2.7.
- the fasteners were then rinsed in water and dried and oven baked at 100° C. for 15 minutes.
- the panels were then subjected to a salt spray test as per ASTM B 117.
- White rust was first observed after 168 hours.
- white rust was first observed after 96 hours.
- a passivation bath was prepared by mixing 0.01 M SiO2 nanoparticles (average particle size of 10 nm) with AL-28 passivation from Shree Rasayani.
- An aluminium panel was degreased with Kelco cleaner (Shree Rasayani) followed by a thorough rinsing, then activated by dipping in 50% nitric acid for 1 minute followed by a further water rinsing.
- the aluminium panel was dipped in the passivation bath for 4 minutes maintained at 40° C. and a pH of 4.
- the panels were then rinsed in water and dried and oven baked at 100° C. for 15 minutes.
- the panels were then subjected to a salt spray test as per ASTM B 117. White rust was not observed even after 600 hours. On panels passivated in a bath without SiO2 nanoparticles white rust was first observed after 288 hours.
- the passivation formulation of the present invention is stable over the wide operating range of pH, temperature and Chromium (III) concentration as well as dissolved metals like zinc and aluminum.
- the total thickness of the coating (including ceramic particle incorporated chromate passivation and a topcoat) is less than 1 micron. Thus, the coating is also suitable for low tolerance components.
- This technology can be applied to not only electroplated zinc and zinc alloys but also to any zinc or zinc alloy surfaces such as hot dip galvanised surfaces as well as aluminium, magnesium and their alloys.
- the nano ceramics when introduced in water based formulation of trivalent chromium ions, does not gel or coagulate while in operation. Thus, the physical stability of the system is adequate for satisfactory operation of the bath.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Chemical Treatment Of Metals (AREA)
- Paints Or Removers (AREA)
Abstract
Description
- The present invention relates to a chemical composition and process of preparation thereof. More particularly, the present invention relates to a corrosion resistance passivation formulation for conferring high corrosion resistance to metals and their alloys.
- Conventionally, to improve the corrosion resistance, the surfaces of the components made from zinc, zinc alloy, aluminium, cadmium, cadmium alloy and the like are treated with chromium containing formulations. A variety of corrosion resistance passivation formulations are available in the public domain with varying degree of success. Specifically, U.S. Pat. No. 7,314,671 describes chromium (VI)-free conversion layer and method for producing it. Another U.S. Pat. No. 6,375,726 describes corrosion resistance coatings for aluminium and aluminium alloys. Similarly, U.S. Pat. No. 4,384,902 discloses trivalent chromium passivate composition and process.
- Typically, corrosion resisting formulations contain chromium in its hexavalent form. However, environmental concerns and subsequent legislative action in the form of directives such as European Union's vehicle end of life directive led to efforts to find suitable alternatives for hexavalent chromium. As a result of these efforts, hexavalent chromium formulations have now been largely replaced by trivalent chromium-based formulations. However, though this technology has matured over the last few years, it is always desired by the end users to improve the performance of passivation films in terms of higher corrosion resistance as measured by the neutral salt spray life. Specifically, for zinc electrodeposits, applying a further coat of organic, inorganic or hybrid polymer formulation is a widely prevalent practice.
- Such polymer formulations are referred as Sealers, Fixers or Topcoats in the industrial practice. However, such topcoats are not applied for passivation films on aluminium, magnesium and their alloys.
- Another US Published Application No. 2010/0203327 describes corrosion resistant trivalent chromium conversion coating and formulation where silica particles are incorporated in the formulation. However, in their case the use of silica reduces the corrosion resistance from 300 hours to 240 hours.
- Trivalent chromium-based passivation or conversion coating formulations when used without a further topcoat do not consistently show high corrosion resistance as measured by neutral salt spray test.
- The use of a topcoat on trivalent chromium passivation gives better corrosion resistance. However, the coating thickness may be as high as 2 microns which may not be suitable for low tolerance components. This is particularly true in the case where the topcoat is based on purely organic materials such as epoxy, acrylic, and polyurethane among others.
- Moreover such sealants have not been developed for passivation films on aluminium, magnesium or their alloys.
- Object of the present invention is to provide a chromium based passivation film formulation for improved corrosion resistance.
- Another object of the present invention is to provide chromium based passivation film that incorporates ceramic particles in the passivation film.
- Yet another object of the present invention is to provide a process of application of passivation film on zinc and zinc alloys.
- Further object of the present invention is to provide a process of manufacturing chromium based passivation film/formulation for corrosion resistance.
-
FIG. 1 describes a process of applying passivation formulation of the present invention on zinc and zinc alloys in accordance with the present invention. - Accordingly, the present invention provides a corrosion resistant passivation formulation for zinc and zinc alloys, the passivation formulation comprising:
-
- trivalent chromium ions in a range of 0.01 to 0.22 moles;
- organic acid in the range of 0 to 0.022 moles;
- transition metal ion in a range of 0 to 0.02 moles
- boric acid in the range of 0 to 0.02 moles;
- fluoride ions in a range of 0 to 0.1 moles;
- ceramic nano-particles in a range of 0.08 to 0.4 moles; and
- water to dilute the passivation formulation to 1000 ml.
- In another aspect, the present invention provides a process of application of passivation film on zinc and zinc alloy, the process comprising:
-
- plating zinc or zinc alloy;
- rinsing the plated zinc/zinc alloy with water;
- treating the rinsed zinc/zinc alloy with nitric acid for 10-60 seconds;
- rinsing the treated zinc/zinc alloy with water;”
- applying a passivation formulation at pH 2.2 to 3.0 to the to the rinsed zinc/zinc alloy at temperatures ranging from 25° to 40° C. for about 30-90 seconds;
- rinsing the passivated zinc/zinc alloy with water;
- treating the rinsed zinc/zinc alloy with a top coat/sealer for about 30-90 seconds;
- drying the coated zinc/zinc alloy; and
- baking the dried zinc/zinc alloy at 80°-120° C. for 15-20 minutes to obtain a corrosion resistant zinc/zinc alloy.
- The foregoing objects of the invention are accomplished and the problems and shortcomings associated with the prior art techniques and approaches are overcome by the present invention as described below in the preferred embodiment.
- The present invention provides a passivation formulation and a process for forming trivalent chromium-based passivation film on zinc and zinc alloys. The passivation film incorporates nano-ceramic particles resulting in higher corrosion resistance as compared to a trivalent chromium passivation film without nano-sized ceramic particles. The corrosion resistance of the coating is further enhanced by a topcoat or a sealant
- The trivalent chromate passivation formulation (hereinafter “the formulation”) in accordance with the present invention is an aqueous formulation which comprises trivalent chromium ions in a range of 0.01 to 0.22 moles. Preferably, the trivalent chromium ions are used above 0.05 moles. Further the formulation includes organic acid in the range of 0 to 0.022 moles. Preferably, the organic acid is used above 0.005 moles. Furthermore, the formulation includes transition metal ion in a range of 0 to 0.02 moles. Preferably, the transition metal used above 0.01 moles.
- The formulation includes boric acid in a range of 0 to 0.02 moles. Preferably, the boric acid is used above 0.01 moles. Further, the formulation includes fluoride ions in a range of 0 to 0.1 moles. Preferably, the fluoride ions are used above 0.02 moles. Furthermore, the formulation includes ceramic nano-particles in a range of 0.08 to 0.4 moles. Preferably, the ceramic nano-particles are used above 0.08 to 0.4 moles. Water is used to dilute the passivation formulation to 1000 ml.
- The trivalent chromium ions are selected from chromium salts such as chromium chloride (CrCl3), chromium nitrate Cr(NO3)3, and chromium sulphate Cr2(SO4)3 Specifically, higher concentration of chromium in the formulation results in a thicker film and thus increases corrosion resistance of the film.
- Further, the organic acids are selected from a group consisting of Ethanedioic acid,
- Butanedioic Acid, 2-3-dihydroxy butanedioic acid, Propanedioic acid, 3-carboxy-3-hydroxy penatanedioic acid and the like. Specifically, the organic acids are used to complex the chromium ion. More specifically, higher chromium ion concentration in the formulation requires a higher organic acid concentration as well.
- Furthermore, the transition metal salts are used in the form of chlorides, sulphates, or nitrates of Manganese (Mn), Nickel (Ni), Cobalt (Co), Vanadium (V) and Iron (Fe). The transition metals salts are known to play a role in accelerating the chromate film formation. A higher transition metal salt concentration results in a faster chromate film formation and thereby reducing the time required for passivation. Moreover, fluoride is any one fluoride selected from sodium fluoride, potassium fluoride, ammonium fluoride, ammonium bifluoride, fluorosalicylic acid, fluorozirconic acid and the like. The fluorides play a role in improving the finish of the passivated film. A higher fluoride concentration gives a brighter and polished finish.
- Also, nano-particles of ceramic materials are selected from nanoparticles of silicon dioxide (SiO2), aluminium oxide (Al2O3), Zirconium oxide (ZrO2), titanium dioxide (TiO2), either alone or in combination or in the form of mixed oxide. Specifically, the ceramic particles have particle size in the range of 5 nm to 30 nm preferably smaller than 15 nm, and surface area above 50 g cm−3 and preferably above 200 g cm3, which are stable and do not coagulate or gel in acidic as well as alkaline pH conditions on their own or during operation in the presence of other elements in the passivation formulation.
- Referring now to
FIG. 1 , there is shown a flowchart for a process (100) of preparation of passivation of zinc/zinc alloy using the passivation formulation -described above. The process (100) includes plating a zinc/zinc alloy. The plated zinc/zinc alloy is then rinsed with water. Thereafter, the rinsed zinc/zinc alloy is treated with nitric acid for 10-20 seconds. Specifically, the concentration of the nitric acid is in the range of 0.2 to 1% and preferably 0.5%.” The treated zinc/zinc alloy is again rinsed with water. The passivation formulation at pH 2.2 to 3.0 is applied to the rinsed zinc/zinc alloy at temperatures ranging from 25° to 40° C. for about 30-90 seconds. The passivated zinc/zinc alloy is then rinsed with water and treated with a top coat/sealer for about 30-90 seconds and dried thereafter. The dried zinc/zinc alloy is baked at 80°-120° C. for 15-20 minutes to obtain a corrosion resistant zinc/zinc alloy surface. - The passivation formulation of the present invention act on the zinc coatings between pH 2.2 to 3.0 when contacted for 30 to 90 seconds at low temperatures ranging from 25° to 40° C. to form a chromate conversion coating that incorporates the ceramic particles and thereby offers a superior corrosion resistance. At higher temperatures of 60° to 80° C., it is preferred to keep the pH at the higher end of the range mentioned above and the contact time can be reduced to as low as 5 to 10 seconds for an effective passivation film formation to take place. Specifically, the process conditions are suitable for treating hot dip galvanized surfaces. The corrosion resistance of the passivation film thus formed provides corrosion resistance of the order of 300 Hrs in salt spray compared to 240 Hrs of salt spray provided by prior art method. Further, the corrosion resistance is further improved by using a topcoat or a sealant based on either organosilane or epoxy or acrylic polymers.
- Further, the salt spray life obtained on components that are plated from a chloride bath in a barrel consistently exceed 168 hours (5% white rust). The components that are vat plated from alkaline bath offer a corrosion resistance of more than 216 hours for 5% white rust consistently. Furthermore, application of a top coat followed by oven baking results in a salt spray life in excess of 264 hours for the components that are plated with the chloride bath. The corresponding figure for vat plated articles from an alkaline bath is 416 hours.
- Specifically, for passivation on aluminium and aluminium alloys, the ceramic nanoparticles are added to commercially available aluminium passivation formulations from the market. A salt spray life of 600 hours was obtained as against 300 hours without addition of ceramic nanoparticles. Similar results were envisaged for magnesium and its alloys.
- A passivation bath containing 0.04 M Cr3+ ions, 0.05 M ethanedioic acid, 0.06 M F-ions and 0.05 M SiO2 nanoparticles (average particle size 10 nm) was prepared. Steel test panels were subjected to an alkaline, non-cyanide electroplating vat process to deposit a zinc plating (average thickness of 8 microns) thereon after which they are thoroughly water rinsed followed by activation in 0.5% nitric acid for 15 s. The panels were further rinsed with water and then dipped in the passivation bath prepared as above. The temperature was maintained at 35° C. and pH of 2.6. The panels were then rinsed in water and dried and oven baked at 100° C. for 15 minutes. The panels were then subjected to a salt spray test as per ASTM B 117. White rust was first observed after 120 hours. On steel panels passivated in a bath without SiO2 nanoparticles white rust was first observed after 72 hours.
- Similarly, steel fastener bolts (size M10×35) were subjected to an acid electroplating barrel process to deposit a zinc plating (thickness on the head was 8 microns) thereon. after which they are thoroughly water rinsed followed by activation in 0.5% nitric acid for 15 s. The panels were further rinsed with water and then dipped in the passivation bath prepared as above. The temperature was maintained at 35° C. and pH of 2.6. The panels were then rinsed in water and dried and oven baked at 100° C. for 15 minutes. The panels were then subjected to a salt spray test as per ASTM B 117. White rust was first observed after 96 hours. On steel panels passivated in a bath without SiO2 nanoparticles white rust was first observed after 48 hours.
- A passivation bath containing 0.09 M Cr3+ ions, 0.05 M propanedioic acid, 0.01 M cobalt nitrate and 0.1 M SiO2 nanoparticles (average particle size 12 nm), was prepared. Steel test panels were subjected to an alkaline, non-cyanide electroplating vat process to deposit a zinc plating (average thickness of 8 microns) thereon after which they are thoroughly water rinsed followed by activation in 0.5% nitric acid for 15 s. The panels were further rinsed with water and then dipped in the passivation bath prepared as above. The temperature was maintained at 30° C. and pH of 2.7. The panels were then rinsed in water and dried and oven baked at 100° C. for 15 minutes. The panels were then subjected to a salt spray test as per ASTM B117. White rust was first observed after 216 hours. On steel panels passivated in a bath without SiO2 nanoparticles white rust was first observed after 120 hours.
- Similarly steel fastener bolts (size M10×35) were subjected to an acid electroplating barrel process to deposit a zinc plating (thickness on the head was 8 microns) thereon after which they are thoroughly water rinsed followed by activation in 0.5% nitric acid for 15 s. The panels were further rinsed with water and then dipped in the passivation bath prepared as above. The temperature was maintained at 35° C. and pH of 2.7. The fasteners were then rinsed in water and dried and oven baked at 100° C. for 15 minutes. The panels were then subjected to a salt spray test as per ASTM B 117. White rust was first observed after 168 hours. On steel panels passivated in a bath without SiO2 nanoparticles white rust was first observed after 96 hours.
- A passivation bath was prepared by mixing 0.01 M SiO2 nanoparticles (average particle size of 10 nm) with AL-28 passivation from Shree Rasayani. An aluminium panel was degreased with Kelco cleaner (Shree Rasayani) followed by a thorough rinsing, then activated by dipping in 50% nitric acid for 1 minute followed by a further water rinsing. The aluminium panel was dipped in the passivation bath for 4 minutes maintained at 40° C. and a pH of 4. The panels were then rinsed in water and dried and oven baked at 100° C. for 15 minutes. The panels were then subjected to a salt spray test as per ASTM B 117. White rust was not observed even after 600 hours. On panels passivated in a bath without SiO2 nanoparticles white rust was first observed after 288 hours.
- 1. The passivation formulation of the present invention is stable over the wide operating range of pH, temperature and Chromium (III) concentration as well as dissolved metals like zinc and aluminum.
- 2. The total thickness of the coating (including ceramic particle incorporated chromate passivation and a topcoat) is less than 1 micron. Thus, the coating is also suitable for low tolerance components.
- 3. This technology can be applied to not only electroplated zinc and zinc alloys but also to any zinc or zinc alloy surfaces such as hot dip galvanised surfaces as well as aluminium, magnesium and their alloys.
- 4. The nano ceramics when introduced in water based formulation of trivalent chromium ions, does not gel or coagulate while in operation. Thus, the physical stability of the system is adequate for satisfactory operation of the bath.
- The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the present invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the present invention and its practical application, to thereby enable others skilled in the art to best utilize the present invention and various embodiments with various modifications as are suited to the particular use contemplated. It is understood that various omission and substitutions of equivalents are contemplated as circumstance may suggest or render expedient, but such are intended to cover the application or implementation without departing from the spirit or scope of the present invention.
Claims (8)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN979MU2011 | 2011-03-30 | ||
IN979/MUM/2011 | 2011-03-30 | ||
PCT/IN2012/000204 WO2012143934A2 (en) | 2011-03-30 | 2012-03-28 | Corrosion resistance passivation formulation and process of preparation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140017409A1 true US20140017409A1 (en) | 2014-01-16 |
Family
ID=46801602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/007,878 Abandoned US20140017409A1 (en) | 2011-03-30 | 2012-03-28 | Corrosion resistance passivation formulation and process of preparation thereof |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140017409A1 (en) |
EP (1) | EP2691555A2 (en) |
WO (1) | WO2012143934A2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105039949A (en) * | 2015-07-21 | 2015-11-11 | 安徽江威精密制造有限公司 | Aluminum piece passivator and preparation method thereof |
US9606048B2 (en) * | 2014-06-30 | 2017-03-28 | Momentive Performance Materials Inc. | Method for determining the weight and thickness of a passivation or conversion coating on a substrate |
WO2019000451A1 (en) * | 2017-06-30 | 2019-01-03 | 深圳市恒兆智科技有限公司 | Silane passivator, metal workpiece, and passivation method therefor |
CN112813471A (en) * | 2021-02-02 | 2021-05-18 | 山东建筑大学 | Green electroplating process for door and window hardware |
CN112853338A (en) * | 2021-02-06 | 2021-05-28 | 赵伟 | Aluminum or aluminum alloy passivation solution |
CN112853335A (en) * | 2021-02-06 | 2021-05-28 | 赵伟 | Preparation method of aluminum or aluminum alloy passivation solution |
CN113151765A (en) * | 2021-03-08 | 2021-07-23 | 常熟科弘材料科技有限公司 | Environment-friendly high-performance coating steel plate and preparation method thereof |
US11230777B2 (en) | 2019-06-20 | 2022-01-25 | Hamilton Sundstrand Corporation | Wear-resistant coating |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103046037B (en) * | 2012-11-19 | 2015-01-07 | 上海应用技术学院 | High corrosion resistance trivalent chromium blue and white passivating liquid as well as preparation method and application of blue and white passivating liquid |
DE102016005656A1 (en) * | 2016-05-11 | 2017-11-16 | Surtec International Gmbh | Conversion layers for metallic surfaces |
EP3246429A1 (en) * | 2016-05-20 | 2017-11-22 | ATOTECH Deutschland GmbH | Aqueous zink passivation composition and method for passivation of a zinc surface using such a composition |
CN108179418B (en) * | 2018-02-08 | 2024-02-20 | 广州超邦化工有限公司 | Preparation method of zinc-nickel alloy coating structure suitable for strong corrosion environment |
CN114107969A (en) * | 2021-11-26 | 2022-03-01 | 山西汾西重工有限责任公司 | Passivation solution and preparation method of blue-white passivation film |
CN114990539A (en) * | 2022-06-14 | 2022-09-02 | 无锡伊佩克科技有限公司 | Hot galvanizing chromium-free passivator and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5061315A (en) * | 1986-12-23 | 1991-10-29 | Albright & Wilson Limited | Products for treating surfaces |
US20060127681A1 (en) * | 2003-02-25 | 2006-06-15 | Heribert Domes | Method for coating metallic surfaces with a silane-rich composition |
US20100160102A1 (en) * | 2006-01-16 | 2010-06-24 | Schaeffler Kg | Chromium(vi)-free composition for protection of a galvanized metal surface against corrosion, process for producing it and pulley |
US20110151126A1 (en) * | 2008-08-29 | 2011-06-23 | Metts Glenn A | Trivalent chromium conversion coating |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4384902A (en) | 1981-06-15 | 1983-05-24 | Occidental Chemical Corporation | Trivalent chromium passivate composition and process |
US7314671B1 (en) | 1996-04-19 | 2008-01-01 | Surtec International Gmbh | Chromium(VI)-free conversion layer and method for producing it |
US6375726B1 (en) | 2000-10-31 | 2002-04-23 | The United States Of America As Represented By The Secretary Of The Navy | Corrosion resistant coatings for aluminum and aluminum alloys |
JP3332374B1 (en) * | 2001-11-30 | 2002-10-07 | ディップソール株式会社 | A treatment solution for forming a hexavalent chromium-free rust preventive film on zinc and zinc alloy plating, a hexavalent chromium-free rust preventive film, and a method for forming the same. |
JP3620510B2 (en) * | 2002-04-05 | 2005-02-16 | ユケン工業株式会社 | Substrate, manufacturing method thereof and automobile parts |
JP4628726B2 (en) * | 2004-03-02 | 2011-02-09 | 日本表面化学株式会社 | Aluminum member, method for producing the same, and chemical for production |
EP2940188B1 (en) * | 2007-08-03 | 2019-02-13 | Dipsol Chemicals Co., Ltd. | Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment |
EP2138606B1 (en) * | 2008-06-17 | 2012-02-08 | PanGang Group Research Institute Co., Ltd. | A composition containing silica sol, its preparation method, and galvanized self-lubricating metal material using the composition |
-
2012
- 2012-03-28 US US14/007,878 patent/US20140017409A1/en not_active Abandoned
- 2012-03-28 WO PCT/IN2012/000204 patent/WO2012143934A2/en active Application Filing
- 2012-03-28 EP EP12756263.5A patent/EP2691555A2/en not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5061315A (en) * | 1986-12-23 | 1991-10-29 | Albright & Wilson Limited | Products for treating surfaces |
US20060127681A1 (en) * | 2003-02-25 | 2006-06-15 | Heribert Domes | Method for coating metallic surfaces with a silane-rich composition |
US20100160102A1 (en) * | 2006-01-16 | 2010-06-24 | Schaeffler Kg | Chromium(vi)-free composition for protection of a galvanized metal surface against corrosion, process for producing it and pulley |
US20110151126A1 (en) * | 2008-08-29 | 2011-06-23 | Metts Glenn A | Trivalent chromium conversion coating |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9606048B2 (en) * | 2014-06-30 | 2017-03-28 | Momentive Performance Materials Inc. | Method for determining the weight and thickness of a passivation or conversion coating on a substrate |
JP2017522547A (en) * | 2014-06-30 | 2017-08-10 | モメンティブ パフォーマンス マテリアルズ インコーポレイテッド | Method for measuring weight and thickness of passivation coating composition on substrate |
CN105039949A (en) * | 2015-07-21 | 2015-11-11 | 安徽江威精密制造有限公司 | Aluminum piece passivator and preparation method thereof |
WO2019000451A1 (en) * | 2017-06-30 | 2019-01-03 | 深圳市恒兆智科技有限公司 | Silane passivator, metal workpiece, and passivation method therefor |
US11230777B2 (en) | 2019-06-20 | 2022-01-25 | Hamilton Sundstrand Corporation | Wear-resistant coating |
CN112813471A (en) * | 2021-02-02 | 2021-05-18 | 山东建筑大学 | Green electroplating process for door and window hardware |
CN112853338A (en) * | 2021-02-06 | 2021-05-28 | 赵伟 | Aluminum or aluminum alloy passivation solution |
CN112853335A (en) * | 2021-02-06 | 2021-05-28 | 赵伟 | Preparation method of aluminum or aluminum alloy passivation solution |
CN113151765A (en) * | 2021-03-08 | 2021-07-23 | 常熟科弘材料科技有限公司 | Environment-friendly high-performance coating steel plate and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP2691555A2 (en) | 2014-02-05 |
WO2012143934A3 (en) | 2013-01-17 |
WO2012143934A2 (en) | 2012-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140017409A1 (en) | Corrosion resistance passivation formulation and process of preparation thereof | |
KR100839744B1 (en) | Treating solution for metal surface treatment and a method for surface treatment | |
KR100674778B1 (en) | Treating solution for surface treatment of metal, a method for surface treatment and metal material | |
CA2110456C (en) | Method and composition for treatment of metals | |
KR100869402B1 (en) | A surface treating solution for surface treatment of aluminum or magnesium metal and a method for surface treatment | |
JP5274560B2 (en) | Chemical treatment solution and treatment method for coating base of steel material | |
EP1433875A1 (en) | Chemical conversion coating agent and surface-treated metal | |
KR20110028298A (en) | Chemical conversion liquid for metal structure and surface treating method | |
US20140154525A1 (en) | Aqueous solution and method for the formation of a passivation layer | |
JP3987633B2 (en) | Metal protective film forming treatment agent and forming method | |
JP4446230B2 (en) | Trivalent chromate solution for aluminum or aluminum alloy and method for forming corrosion-resistant film on aluminum or aluminum alloy surface using the same | |
JP6377226B1 (en) | Trivalent chromium chemical conversion treatment solution for zinc or zinc alloy substrate and chemical conversion treatment method using the same | |
EP1419288A1 (en) | Non-chrome passivation process for zinc and zinc alloys | |
EP1859930B1 (en) | Surface-treated metallic material | |
CN102011118A (en) | Trivalent chromium passivating agent for zinc and zinc alloy coatings | |
CA2606171A1 (en) | Method of chemical treatment and chemically treated member | |
CA2613639C (en) | Method and agent for chemical conversion treatment and chemically conversion-treated members | |
US11008659B2 (en) | Trivalent chromium chemical conversion liquid for zinc or zinc alloy bases and chemical conversion coating film | |
JP2005325401A (en) | Surface treatment method for zinc or zinc alloy coated steel | |
TWI279452B (en) | A Zn-plated steel sheet with an inorganic and organic composite plated layer excellent in corrosion resistance | |
Lampman | Chemical Conversion Coatings | |
JPH10140396A (en) | Treatment of surface of aluminum based metallic material | |
JP2004285373A (en) | Method for forming highly corrosion resistant chemical conversion coating containing no hexavalent chromium and fluorine on aluminum or aluminum alloy and highly corrosion resistant aluminum or aluminum alloy | |
MX2007011230A (en) | Surface-treated metallic material. | |
JP2005179738A (en) | Method of producing surface treated steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RASAYANI SHREE, INDIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KULKARNI, ASHISH SHARAD;PONKSHE, SHRIPADRAJ RAMCHANDRA;KULKARNI, JAIDEEP SHARAD;AND OTHERS;REEL/FRAME:034725/0582 Effective date: 20141226 Owner name: MAHINDRA & MAHINDRA LIMITED, INDIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KULKARNI, ASHISH SHARAD;PONKSHE, SHRIPADRAJ RAMCHANDRA;KULKARNI, JAIDEEP SHARAD;AND OTHERS;REEL/FRAME:034725/0582 Effective date: 20141226 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |