JP3987633B2 - Metal protective film forming treatment agent and forming method - Google Patents

Metal protective film forming treatment agent and forming method Download PDF

Info

Publication number
JP3987633B2
JP3987633B2 JP13971498A JP13971498A JP3987633B2 JP 3987633 B2 JP3987633 B2 JP 3987633B2 JP 13971498 A JP13971498 A JP 13971498A JP 13971498 A JP13971498 A JP 13971498A JP 3987633 B2 JP3987633 B2 JP 3987633B2
Authority
JP
Japan
Prior art keywords
acid
metal
film
liquid composition
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13971498A
Other languages
Japanese (ja)
Other versions
JPH11335865A (en
Inventor
秀郎 諏佐
光臣 香取
太一郎 寄本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Hyomen Kagaku KK
Original Assignee
Nippon Hyomen Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hyomen Kagaku KK filed Critical Nippon Hyomen Kagaku KK
Priority to JP13971498A priority Critical patent/JP3987633B2/en
Publication of JPH11335865A publication Critical patent/JPH11335865A/en
Application granted granted Critical
Publication of JP3987633B2 publication Critical patent/JP3987633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium

Description

【0001】
【発明の属する技術分野】
本発明は広く亜鉛、ニッケル、銅、銀、鉄、カドミニウム、アルミニウム、マグネシウム及びこれらの合金ならびにこれらのめっきを施した金属材料に関する。特にこれらの金属に亜鉛または亜鉛合金で表面を被覆した金属材料に関する。より特には亜鉛または亜鉛合金で表面を被覆した鉄系材料に関する。
【0002】
【従来の技術】
亜鉛による鉄系材料の犠牲防食は最も効果的で経済的であるため、多くの鉄系材料は種々の方法により亜鉛または亜鉛合金により被覆をされており、建材、自動車、家電などの広い分野で利用されている。亜鉛による犠牲防食は、亜鉛及び鉄が接触した状況下で電池が形成され、卑な金属である亜鉛が陽極となり溶解することにより鉄の溶解を抑制するものである。よって、犠牲防食効果は、亜鉛の消失と同時に終了するため、効果の持続には亜鉛層の溶解の抑制が必要である。亜鉛層の溶解抑制を行わない場合、亜鉛めっきされた鉄系材料・部品は、亜鉛の錆である白錆がすぐに発生してしまう。亜鉛めっきに通常施される亜鉛層の保護方法としてリン酸塩皮膜処理とクロメ−ト皮膜処理があり、クロメ−ト皮膜処理はさらに電解クロメ−ト処理、塗布型クロメ−ト処理、反応型クロメ−ト処理の3種類に分類される。クロメート処理は亜鉛に限らずアルミニウムやカドミニウム、マグネシウムなどにも施される。
【0003】
リン酸塩皮膜処理は特開平3−107469に示されるように40〜50℃あるいは75℃付近まで加温された皮膜形成成分である亜鉛イオンとリン酸イオンならびにエッチング剤あるいは皮膜緻密化剤としてのフッ素イオンあるいは錯フッ化物イオンを必須成分とする処理液に浸漬し皮膜生成後、水洗した後乾燥を行う処理である。この方法で得られた皮膜の表面形態は燐酸亜鉛の針状結晶が折り重なるように生成された凹凸に激しい物であり、この表面形態が、この皮膜の目的である塗装の密着性の向上あるいは、塗装後の耐食性向上に寄与している。しかしながらこの皮膜は未塗装時防錆力(耐食性)が著しく不足している上、処理外観は無光沢の灰色〜灰白色で装飾性に乏しく、単独での使用は美観上好ましくないため、加工品などの部分塗装品や塗装を施さない品物には適さない欠点がある。リン酸塩皮膜はこのままでは、塗装密着性に乏しく、ブリスターと呼ばれる不良が発生し、耐食性も不十分であるため化成後シーリングと呼ばれる後処理を行なわなければならないが、この後処理剤の主成分はクロム酸(六価クロム)であり、リン酸塩皮膜も六価クロムの問題から逃れられない。また、リン酸塩皮膜は、フッ素イオンあるいは錯フッ化物イオンを含有しないと皮膜生成しないためこれらの物質が必須成分であるがこれらの物質は腐食性が強く、排出規制物質でもある。さらに処理温度が高く、加温のための設備やコストがかかる欠点を持っている。
【0004】
一方クロメ−ト皮膜はリン酸塩皮膜より未塗装でも耐食性に優れているが、クロメ−ト処理はいずれも有害な六価クロムを使用するため処理液のみならず、処理品から溶出する六価クロムが人体や環境へ悪影響があるとして近年、大きな問題となっている。これはクロメート皮膜が皮膜中の六価クロムにより、耐食性を発揮する皮膜である以上、如何ともしがたい問題である。このほかの問題として電解クロメ−ト処理は、電解によりクロメ−ト皮膜を化成するため、常に付き回りの問題が付いて回り、均一な皮膜化成が難しく、電流密度による品質(性能)のバラツキが生じる可能性がある。また電解中に発生するクロム酸ミストは他の方法より深刻な公害問題と成りうる。塗布型クロメ−ト処理はクロム酸を主成分とする酸性水溶液を金属表面に塗布した後、水洗せずに加熱乾燥する方法である。塗布型であるため電解クロメ−トと同様に複雑な形状に不向きであり、均一な厚みでの塗布を行うには対象物の制限を受けるが鋼板などへの適用へは支障がない。これに対し反応型クロメ−トは外観の均一性や複雑な形状の品物への適用性に優れており、安定した耐食性が得られ塗装下地だけでなく単独で使用される場合が多いが、六価クロムの公害上の課題を残している。
【0005】
【発明が解決しようとする課題】
本発明の目的は、亜鉛、ニッケル、銅、銀、鉄、カドミニウム、アルミニウム、マグネシウム及びこれらの合金表面に保護皮膜を形成させるに当たり、有害な六価クロムを用いず、腐食性の強いフッ素化合物を必須成分とせず、均一で良好な外観と耐食性並びに塗装下地として優れた性能を兼ね備えた皮膜を生成させることにある。
【0006】
【課題を解決するための手段】
本発明者らが鋭意研究した結果、特定の金属を主成分の一つとした水性酸性液状組成物を用いた方法により従来技術における問題を解決する事を見いだした。すなわち、Mo、W、V、Nb、Ta、Ti、Zr、Ce、Sr、三価のクロムの1種以上の供給源とリンの酸素酸、酸素酸塩あるいはこれらの無水物と酸化性物質の供給源を含有する水性酸性液状組成物または、0.01〜150g/Lの三価のクロムイオンと0.01〜100g/Lの塩素、フッ素、硫酸イオン、酢酸イオンを含有する水性酸性液状組成物または、0.01〜150g/Lの鉄、コバルト、ニッケル、マグネシウム、カルシウム、アルミニウムと有機酸又は無機酸の一種以上と任意成分としてフッ素を含有する水性酸性液状組成物の層で被覆する工程と、水性酸性液状組成物層を濯ぎを行わずそのまま乾燥する工程とからなる方法により、六価クロムを用いずに美しい光沢のある外観と優れた耐食性、優れた塗装下地性を有する皮膜が生成可能であることを見い出した。また、皮膜形成後更に、ケイ素化合物含有水溶液、樹脂及び/又は無機コロイドまたはpHが7.5以上の水溶液に接触させる事により、更に耐食性が向上した保護皮膜が得られることが判明した。種々の方法で皮膜形成後、更に有機または無機およびこれらの複合防錆皮膜をオーバーコートする事により本発明の金属保護方法は非常にレベルの高い金属保護方法となる。また、本発明により得られた皮膜は、耐熱耐食性に優れており、従来のクロメ−ト皮膜の欠点であった加熱処理による耐食性の低下問題を解決する物であることが判明した。これらの他に浸漬でこの処理を行う場合に限らず塗布による場合も従来の処理設備をそのまま使用できる経済的メリットもこの方法の特徴でもある。
【0007】
本発明の詳細を述べると次の通りである。本発明の水性酸性液状組成物は、1)Mo、W、V、Nb、Ta、Ti、Zr、Ce、Sr、三価のクロムの金属カチオン、これらのオキシ金属アニオンなどの供給源とリンの酸素酸、酸素酸塩あるいはこれらの無水物塩と酸化性物質の供給源を含有する組成物、2)0.01〜150g/Lの三価のクロムイオンと0.01〜100g/Lの塩素、フッ素、硫酸イオン、酢酸イオン、蟻酸イオン、琥珀酸イオン、グリコール酸イオンから選ばれる1種以上を含有する組成物、3)0.01〜150g/Lの鉄、コバルト、ニッケル、マグネシウム、カルシウム、アルミニウムから選ばれる一種以上と有機酸又は無機酸の一種以上と任意成分としてフッ素を含有する組成物がある。
【0008】
1)の組成物に於ける各成分の正確な挙動は不明であるがモリブデン酸イオン、タングステン酸イオン、バナジン酸イオン、ニオブ酸イオン、タンタル酸イオン、三価のクロムイオンなどの各種金属供給源とリンの酸素酸、酸素酸塩あるいはこれらの無水物は皮膜の骨格をなす成分と推定され、酸化性物質はリン酸の酸素酸、酸素酸塩、これらの無水物の溶液中での電離を抑制し溶液の安定性を確保すると共に、亜鉛表面を適度にエッチングし、スム−ズな皮膜生成に寄与していると推測する。モリブデン酸イオン、タングステン酸イオン、バナジン酸イオン、ニオブ酸イオン、タンタル酸イオン、三価のクロムイオンのなどの金属供給源の総量は0.2〜300g/Lで0.5〜80g/Lが好ましい。これより少ないと良好な皮膜生成が行われ難く、皮膜が生成しなかったり、皮膜が薄く要求する機能が得られなかったりする。また、これより多量な場合、皮膜外観・光沢が低下したり、耐食性及び/または塗装密着性(塗装下地性)が低下したりする。加えるならば汲み出しによる経済的損失も大きくなり適当でない。これらの供給源としてバナジン酸アンモン、タングステン酸ソ−ダ、酢酸クロム、硝酸クロムなどが挙げられ、特に供給源を制限する物ではない。
【0009】
リンの酸素酸、酸素酸塩あるいはこれらの無水物は0.2〜300g/L好ましくは3〜90g/Lを含有する必要がある。これより少ないと良好な皮膜生成が行われ難く、皮膜が生成しなかったり、皮膜が薄く要求する機能が得られなかったりする。また、これより多量な場合、皮膜外観・光沢が低下したり、耐食性及び/または塗装密着性(塗装下地性)が低下したりする。加えるならば汲み出しによる経済的損失も大きくなり適当でない。
【0010】
リンの酸素酸として正リン酸はもとよりジ亜リン酸、次亜リン酸、ピロリン酸、トリポリリン酸、過リン酸などが使用できる。酸化性物質として過酸化物、塩素酸、臭素酸、硝酸、ペルオクソ酸等が使用可能であるが、これらの金属塩を使用すれば金属と酸化性物質が同時に供給可能である。これらを0.2〜400g/L好ましくは2〜100g/L含有する。これより少量では液の安定性が低下したり、皮膜化成速度が不安定になり、多量では耐食性及び/または塗装密着性(塗装下地性)が低下したりする。加えるならば汲み出しによる経済的損失も大きくなり適当でない。また、いずれの場合も皮膜化成しない場合がある。pHは0.1〜6.5好ましくは1.0〜4.0が望ましい。これより低いと均一な皮膜化成が難しくなり、高いとやや耐食性が低下する傾向がある。pHの調整に用いる薬品は、高い場合は硝酸、硫酸などの酸を、低い場合はアンモニア、水酸化ナトリウムなどのアルカリを添加すれば良く添加薬品を制限する物ではない。
これらの組成物の中でより良好な性能を示す組成物の組合せは0.01〜100g/Lの三価のクロムイオンと0.01〜100g/Lの硝酸イオンと0.1〜200g/Lのリン酸イオンを含有する組合せの組成物である。
【0011】
皮膜生成の処理条件に特に制限はなく、一般的反応型クロメート処理を行う条件(液温20〜30℃、処理時間20〜60秒、かく拌有り)や、処理時間250秒、かく拌無しの条件でも処理可能であり、広い条件幅を持っている。また、ロールコーターなどによる塗布式の製膜方法にも対応可能である。電解で皮膜生成する場合の条件は電流密度30A/dm2以下好ましくは0.5〜3A/dm2、通電時間1〜1200秒、好ましくは30〜180秒である。電流密度が低い場合も皮膜は生成するが、本発明は電解しなくとも皮膜生成するため、電解による皮膜生成と反応による皮膜生成の判別は難しく、電流密度の下限を規定できない。高い場合は高電流密度部にヤケあるいはコゲと呼ばれる外観不良が発生する。処理時間が短い場合は皮膜生成しないか、生成しても厚みが不足しているため耐食性が劣る。長い場合は時として無光沢の外観不良が発生する。また、過剰の処理時間は生産性を極端に低下させる。
【0012】
2)の組成物に於ける各成分の挙動は1)に類似するものと推定され0.1〜150g/L好ましくは0.5〜50g/Lの三価のクロムイオンは1)の三価のクロムイオンと同様に機能し、0.1〜100g/L好ましくは1〜10g/Lの塩素、フッ素、硫酸イオン、酢酸イオンなどは1)の酸化性物質ならびにリン酸化合物の両方或いは片方の働きを行うものと推定される。三価のクロムの供給方法に特に指定はなく、塩化クロム、酢酸クロムなどの塩で供給すれば三価クロム以外の成分も供給できるため都合がよい。またこの組成物中にケイ素化合物やリン酸、硝酸を加えることは耐食性を向上し安定させるために有効であり、それぞれの量は1〜200g/L程度が目安となる。この水性酸性液状組成物による層の被覆方法は1)と同様である。
【0013】
3)の組成物は0.01〜150g/Lの鉄、コバルト、ニッケル、マグネシウム、カルシウム、アルミニウムと有機酸又は無機酸の一種以上と任意成分としてフッ素を含有する。酸としては塩酸、硫酸、硝酸、過酸化水素、リン酸並びに蟻酸、酢酸、琥珀酸、ジグリコール酸などのカルボン酸などが好ましい。それぞれの濃度は0.01〜200g/L、好ましくは1〜40g/Lが適量であり、これより少量では皮膜生成がスムーズに行われず、ムラ、シミなどの化成不良が生じる。これより多量では経済的損失が大きいだけでなく、過剰のエッチングによる化成不良などの問題も生じる。またこの組成物中にケイ素化合物を加えることは外観、耐食性の向上の為に有効であり、加える際の目安は0.01〜100g/Lである。この水性酸性液状組成物による層の被覆方法は、1)と同様浸漬、塗布いずれにおいても可能である。
【0014】
これらの組成物中にさらにアルカリ土類金属、無機コロイド、シランカップリング剤、有機カルボン酸の一種あるいは二種以上を含有させることが出来る。無機コロイドとしてシリカゾル、アルミナゾル、チタンゾル、ジルコニヤゾルなどが、シランカップリング剤としてビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシランなどが使用できる。アルカリ土類金属が皮膜へ析出するとは考えにくいが添加により耐食性が向上することから、皮膜を緻密化させる効果があると推定する。無機コロイド、シランカップリング剤などはコストなどから必ずしも添加の必要性はないが、本発明の処理後、塗装やコーティングを行う際、密着性の向上などに働き結果として耐食性が向上する。
【0015】
これらの水性酸性液状組成物による層で被覆後、水性酸性液状組成物による層の濯ぎを行わずそのまま乾燥する方法により、六価クロムを用いずに美しい光沢のある外観と優れた耐食性、優れた塗装下地性を有する皮膜が生成可能であることを見い出した。また、皮膜形成後更に、ケイ素化合物含有水溶液、樹脂及び/又は無機コロイドまたはpHが7.5以上の水溶液に接触させる事により、更に耐食性が向上した保護皮膜が得られることが判明した。
ケイ素化合物としては珪酸ナトリウム、珪酸カリウム、珪酸リチウム、珪酸アンモニウムあるいは粒径500nm以下のコロイダルシリカなどが挙げられ、粒径50nm以下のコロイダルシリカは安定した性能を示す傾向がある。これらの適量は0.01〜500g/L好ましくは10〜150g/Lである。
【0016】
種々の方法で皮膜形成後、更に有機または無機およびこれらの複合防錆皮膜をオーバーコートする事により本発明の金属保護方法は非常にレベルの高い金属保護方法となる。オーバーコートの方法は特に限定せず、塗布塗装、浸漬塗装、静電塗装、電着塗装、粉体塗装など種々の方法が可能であり、塗料も特に限定をせず水系あるいは水系以外でも適用可能である。
【0017】
本発明に規定する水性酸性液状組成物を用いる方法により、有害な六価クロムや腐食性の強いフッ化物を使用せず、従来のクロメートとほぼ同一処理設備、処理条件、処理方法で亜鉛表面に不溶性の強固な皮膜を生成することが可能である。これにより処理物からの六価クロム溶出を心配する一般ユーザーのみならず、従来クロム酸の有害性にさらされていたクロメート製造者やクロメート処理業者の健康面での影響や野生動物への影響に関する問題を解決することが可能となる。
【0018】
本発明以前の技術してクロメート処理法とリン酸塩処理法が公知であるが、いずれも有害な六価クロムを使用するものである。また、クロムを用いない保護皮膜形成技術として特開昭52−92836号、特開昭57−145987号、特開平9−53192号などがあるが、これらの性能は低く耐食性や塗装下地性など満足出来るものではない。また、処理温度が高く(40〜60℃前後)設備の増加や、エネルギーコストの増加が見込まれるものもあり本発明に及ばない。
また、本発明により得られた皮膜は、耐熱耐食性に優れており、従来のクロメ−ト皮膜の欠点であった加熱処理による耐食性の低下問題を解決することが判明した。
【0019】
【実施例】
以下、実施例により本発明を説明する。試験は試験片を脱脂、硝酸浸漬などの適当な前処理を行った後、以下に示すそれぞれの処理を行った。評価は外観および耐食性について行い、本発明の実施例の結果を表1に比較例の結果を表2に示す。
【0020】
実施例1
電気亜鉛めっきした鉄板(100×100×1mm)を硝酸クロム18g/L、75%リン酸18g/L、67.5%硝酸15g/Lを含みアンモニアでpH1.8に調整した処理液に10秒間浸漬後、濯ぎ工程を行わずに乾燥して試験片を作製した。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0021】
実施例2
電気亜鉛めっきした鉄板(100×100×1mm)を硝酸クロム16g/L、75%リン酸19g/L、67.5%硝酸14g/Lを含みアンモニアでpH1.7に調整した処理液に11秒間浸漬後、濯ぎ工程を行わずに乾燥した後、珪酸ソーダ30g/L、水酸化ナトリウム15g/Lを含有した水溶液に15秒間浸漬し試験片を作製した。試験片にさらに200℃、2時間の加熱処理を行なった。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0022】
実施例3
電気亜鉛めっきした鉄板(100×100×1mm)をタングステン酸アンモン5g/L、硝酸クロム12g/L、75%リン酸25g/L、60%硝酸25g/Lを含む水溶液をアンモニアでpH2.0に調整した処理液に15秒間浸漬後、濯ぎ工程を行わず乾燥したのち、三号珪酸ソーダ50g/Lと水酸化ナトリウム2g/Lを含む水溶液に30秒間浸漬し、試験片を作製した。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0023】
実施例4
溶融亜鉛めっきした鉄板(100×100×1mm)をモリブデン酸ソーダ15g/L、亜リン酸20g/L、60%硝酸25g/Lを含む水溶液をアンモニアでpH2.0に調整した処理液に20秒間浸漬し、濯ぎ工程を行わず、乾燥した物を5G018(日本表面化学(株)製)に浸漬し乾燥した。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0024】
実施例5
電気亜鉛めっきした鉄板(50×100×1mm)をpH1.0の硝酸クロム15g/L、バナジン酸アンモン2g/L、次亜リン酸20g/L、60%硝酸18g/Lを含む処理液に20秒間浸漬し、濯ぎ工程を行わず乾燥した物を5G018(日本表面化学(株)製)に浸漬し乾燥した物を試験片とした。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0025】
実施例6
亜鉛めっきした鉄板(50×100×1mm)をバナジン酸アンモン10g/L、硝酸クロム20g/L、75%リン酸20g/L、62.5%硝酸20g/L、コロイダルシリカ20g/Lを含む水溶液をアンモニアでpH2.0に調整した処理液で電流密度1A/dm2、電解時間2分間の陰極電解を行った後濯ぎ工程を行わず乾燥しさらに5G018(日本表面化学(株)製)に浸漬し、乾燥した物を試験片とした。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0026】
実施例7
亜鉛めっきした鉄板(50×100×1mm)をモリブデン酸アンモン5g/L、硝酸クロム20g/L、亜リン酸25g/L、62.5%硝酸20g/L、コロイダルシリカ20g/Lを含む水溶液をアンモニアでpH3.6に調整した処理液に2分間浸漬後、電流密度1A/dm2、電解時間2分間の陰極電解を行い皮膜生成後水洗し、乾燥せずに5G018(日本表面化学(株)製)に浸漬しコーティング処理した物を試験片とした。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0027】
実施例8
電気亜鉛めっきした鉄板(100×100×1mm)を硝酸クロム15g/L、75%リン酸15g/L、67.5%硝酸15g/Lを含みアンモニアでpH1.8に調整した処理液に5秒間浸漬後、濯ぎ工程を行わずに乾燥した後スカイハロートップコートF(日本特殊塗料(株)製)を塗布したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はスカイハロートップコートFの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0028】
実施例9
電気亜鉛めっきした鉄板(100×100×1mm)を塩化クロム12g/L、75%リン酸20g/L、67.5%硝酸10g/Lを含みアンモニアでpH1.8に調整した処理液に7秒間浸漬後、濯ぎ工程を行わずに乾燥した後シルビアU(日本特殊塗料(株)製)に浸漬したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はシルビアUの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0029】
実施例10
溶融亜鉛めっきした鉄板(100×100×1mm)をpH1.8の硫酸クロム10g/L、塩酸1.5g/L、60%硫酸1g/Lを含む処理液に10秒間浸漬し、濯ぎ工程を行わず乾燥した後、コロイダルシリカ120g/L、カ性カリ2g/L、カ性ソ−ダ5g/Lを含む処理液に50℃−30秒浸漬して試験片を作製した。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0030】
実施例11
溶融亜鉛めっきした鉄板(100×100×1mm)をpH1.8の酢酸クロム10g/L、塩酸1.5g/L、60%硫酸1g/L、リン酸1g/Lを含む処理液に10秒間浸漬し、濯ぎ工程を行わず乾燥した後、シルビアU(日本特殊塗料(株)製)に浸漬したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はシルビアUの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0031】
実施例12
亜鉛−ニッケル合金めっきした鉄板(100×100×1mm)を、塩化クロム4g/L、フッ化アンモニウム6g/L、75%硫酸2g/Lを含む水溶液をアンモニアでpH2.0に調整した処理液に10秒間浸漬し濯ぎ工程せずに乾燥した後皮膜生成後、シルビアU(日本特殊塗料(株)製)を塗布したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はシルビアUの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0032】
実施例13
亜鉛−鉄合金めっきした鉄板(100×100×1mm)をpH1.6の酢酸クロム6g/L、フッ酸1g/L、リン酸5g/L、硫酸2g/Lを含む処理液に5秒間浸漬し濯ぎ工程なしで乾燥後、スカイハロートップコートF(日本特殊塗料(株)製)に浸漬したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はスカイハロートップコートFの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0033】
実施例14
電気亜鉛めっきした鉄板を硫酸アルミニウム7.5g/L、リン酸10g/L、67.5%硝酸4.5g/Lを含むpH3.0の水溶液に12秒間浸漬し濯ぎ工程を行わず乾燥し試験片とした。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0034】
実施例15
亜鉛めっきした鉄板を硝酸アルミニウム8.5g/L、三号珪酸ソーダ90g/L、62.5%硝酸5g/Lを含むpH2.2の水溶液に10秒間浸漬し濯ぎ工程を行わず乾燥し試験片とした。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0035】
実施例16
亜鉛めっきした鉄板を硫酸アルミニウム5g/L、リン酸5g/L、塩酸2g/L、67.5%硝酸3g/Lを含むpH2.8の水溶液に20秒間浸漬し濯ぎ工程を行わず乾燥した後、スカイハロートップコートF(日本特殊塗料(株)製)に浸漬したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はスカイハロートップコートFの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0036】
実施例17
亜鉛めっきした鉄板をpH3.0の硫酸アルミニウム15g/L、三号珪酸ソーダ17g/L、フッ酸5g/L、リン酸2g/L、酢酸2g/L、67.5%硝酸5g/Lを含む処理液に15秒間浸漬し、濯ぎ工程せずに乾燥した後、珪酸カリウム80g/L、カ性カリ7g/L、カタロイドSI−30(触媒化成(株)製)20g/Lを含む処理液に30秒浸漬して試験片を作製した。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0037】
実施例18
亜鉛−鉄合金めっきした鉄板に硝酸クロム5g/L、硝酸2g/L、硫酸2g/Lを含むpH3.0に調整した処理液を2秒間浸漬し濯ぎ工程を行わず乾燥した後、GX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0038】
実施例19
溶融亜鉛めっきした鉄板に塩化クロム10g/L、硝酸10g/L、リン酸15g/Lを含むpH2.3に調整した処理液を塗布し濯ぎ工程を行わず乾燥した後、GX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0039】
実施例20
亜鉛めっきした鉄板を硫酸鉄7g/L、リン酸12g/L、塩酸1g/L、67.5%硝酸2g/Lを含むpH2.7の水溶液に15秒間浸漬し濯ぎ工程を行わず乾燥した後、スカイハロートップコートF(日本特殊塗料(株)製)に浸漬したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はスカイハロートップコートFの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0040】
実施例21
亜鉛めっきした鉄板(100×100×1mm)を硝酸マグネシウム20g/L、硫酸1g/L、75%リン酸20g/L、62.5%硝酸1g/Lを含む水溶液をアンモニアでpH2.1に調整した処理液で電流密度2A/dm2、電解時間60秒の陰極電解を行った後、濯ぎ工程を行わず乾燥した。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0041】
実施例22
亜鉛めっきした鉄板(100×100×1mm)を硝酸マグネシウム18g/L、硫酸1g/L、75%リン酸15g/L、62.5%硝酸1g/Lを含む水溶液をアンモニアでpH1.7に調整した処理液で電流密度3A/dm2、電解時間30秒の陰極電解を行った後、濯ぎ工程を行わず乾燥し更に、スカイハロートップコートF(日本特殊塗料(株)製)に浸漬したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はスカイハロートップコートFの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0042】
比較例1
表面に何の処理もしていない亜鉛めっきした鉄板(50×100×1mm)を試験片とし、塩水噴霧試験(JIS Z 2371)における白錆発生までの時間を調査した。
【0043】
比較例2
亜鉛めっきした鉄板(50×100×1mm)を市販の3価クロメート処理液(アイディプZ−348:アイコーケミカル(株))に1分間浸漬し皮膜生成後水洗し、乾燥した物を試験片とした。外観を目視で評価し、耐食性は塩水噴霧試験(JIS Z 2371)における白錆発生までの時間を調査した。
【0044】
比較例3
亜鉛めっきした鉄板(50×100×1mm)をプレパレンZ(日本パーカライジング(株))にて表面調整後、70℃に加温した市販のリン酸塩皮膜処理液(パルボンド3300:日本パーカライジング(株))に15秒間浸漬し皮膜生成後水洗し、六価クロムを用いた後処理を施さず乾燥した後、スカイハロートップコートF(日本特殊塗料(株)製)に浸漬したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はスカイハロートップコートFの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0045】
比較例4
35%過酸化水素35g/L、62%硝酸を10g/L、硫酸チタン0.5g/Lを含有するpH1.8処理液で亜鉛めっきした鉄板(100×100×1mm)を60秒間浸漬し化成処理を施した。水洗し乾燥した物を試験片とした。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0046】
比較例5
35%過酸化水素30g/L、62%硝酸を15g/L、コロイダルシリカ70g/L、硫酸チタン0.3g/Lを含有するpH1.6処理液で亜鉛めっきした鉄板(100×100×1mm)を60秒間浸漬し化成処理を施した。水洗し乾燥した後、スカイハロートップコートF(日本特殊塗料(株)製)を塗布したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はスカイハロートップコートFの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0047】
比較例6
35%過酸化水素50g/L、62%硝酸を5g/L、コロイダルシリカ100g/L、硫酸チタン0.3g/Lを含有するpH2.0の処理液で亜鉛めっきした鉄板(100×100×1mm)を65秒間浸漬し化成処理を施した。水洗し乾燥した後、シルビアU(日本特殊塗料(株)製)を塗布したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はシルビアUの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0048】
比較例7
モリブデン酸ナトリウム12.1g/L、75%リン酸14.7g/Lを含有する処理液に60℃−2分浸漬して試験片を作製した。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0049】
比較例8
モリブデン酸ナトリウム12.1g/L、75%リン酸14.7g/L、珪酸ソーダ10g/Lを含有する処理液に60℃−2分浸漬後、コロイダルシリカ90g/L、カ性カリ10g/L、カ性ソ−ダ2g/Lを含む処理液に50℃−30秒浸漬して試験片を作製した。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0050】
比較例9
モリブデン酸ナトリウム0.1mol/L、リン酸0.15mol/Lを含有する処理液に60℃−2分浸漬後、水洗し乾燥して試験片とした。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0051】
比較例10
亜鉛めっきした鉄板を硝酸アルミニウム8g/L、三号珪酸ソーダ95g/L、を含む水溶液に15秒間浸漬し濯ぎ工程を行わず乾燥し試験片とした。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0052】
比較例11
亜鉛めっきした鉄板を水酸化アルミニウム3g/L、三号珪酸ソーダ100g/Lを含む水溶液に10秒間浸漬し濯ぎ工程を行わず乾燥した後、シルビアU(日本特殊塗料(株)製)を塗布したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はシルビアUの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0053】
比較例12
亜鉛めっきした鉄板に市販のクロメート剤(ローメイト62:日本表面化学(株)製)を用いて既存のクロメート皮膜を生成後、200℃、2時間の加熱処理を行ない試験片とした。外観を目視で評価し、耐食性は144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0054】
比較例13
亜鉛めっきした鉄板を塩化亜鉛15g/L、珪酸ソーダ3g/Lを含む水溶液に60℃、10分間浸漬し濯ぎ工程を行わず乾燥した後、シルビアU(日本特殊塗料(株)製)を塗布したのち乾燥し試験片を作製した。外観を目視で評価し、塗装下地性は碁盤目セロテープはく離試験後の残存面積にて評価し、耐食性はシルビアUの代わりにGX−235T(アクリルクリヤー塗装:日本表面化学(株)製)に浸漬し乾燥して作成した試験片を用いて144時間後の塩水噴霧試験(JIS Z 2371)結果より評価した。
【0055】
【表1】

Figure 0003987633
【表2】
Figure 0003987633
[0001]
BACKGROUND OF THE INVENTION
The present invention generally relates to zinc, nickel, copper, silver, iron, cadmium, aluminum, magnesium and alloys thereof, and metal materials plated with these. In particular, the present invention relates to a metal material whose surface is coated with zinc or a zinc alloy. More particularly, the present invention relates to an iron-based material whose surface is coated with zinc or a zinc alloy.
[0002]
[Prior art]
Since the sacrificial protection of ferrous materials with zinc is the most effective and economical, many ferrous materials are coated with zinc or zinc alloys by various methods, and are used in a wide range of fields such as building materials, automobiles, and home appliances. It's being used. Sacrificial corrosion protection with zinc suppresses dissolution of iron by forming a battery under the condition where zinc and iron are in contact with each other, and zinc as a base metal is dissolved as an anode. Therefore, since the sacrificial anticorrosive effect ends at the same time as the disappearance of zinc, it is necessary to suppress dissolution of the zinc layer in order to maintain the effect. If the dissolution of the zinc layer is not suppressed, white rust, which is zinc rust, will immediately occur in the galvanized iron-based materials and parts. There are two methods of protecting the zinc layer usually applied to galvanization: phosphate film treatment and chromate film treatment. The chromate film treatment further includes electrolytic chromate treatment, coating-type chromate treatment, and reactive chromate treatment. -It is classified into three types of processing. The chromate treatment is applied not only to zinc but also to aluminum, cadmium, magnesium and the like.
[0003]
As disclosed in JP-A-3-107469, the phosphate film treatment is carried out by using zinc ions and phosphate ions, which are film forming components heated to 40 to 50 ° C. or near 75 ° C., and an etching agent or film densifying agent. This is a treatment in which the film is immersed in a treatment solution containing fluorine ions or complex fluoride ions as essential components to form a film, washed with water and then dried. The surface form of the film obtained by this method is intense in the unevenness generated so that the needle-shaped crystals of zinc phosphate are folded, and this surface form improves the adhesion of the coating that is the purpose of this film, or Contributes to improved corrosion resistance after painting. However, this film has a remarkable lack of anti-corrosion power (corrosion resistance) when unpainted, and the processed appearance is matte gray to grayish white with poor decorativeness. There is a disadvantage that is not suitable for partially coated products and products that are not painted. As it is, the phosphate film has poor paint adhesion, causes a defect called blister, and has insufficient corrosion resistance, so a post-treatment called sealing after chemical conversion must be performed. Is chromic acid (hexavalent chromium), and the phosphate film cannot escape from the problem of hexavalent chromium. In addition, since a phosphate film does not form a film unless it contains fluorine ions or complex fluoride ions, these substances are essential components. However, these substances are highly corrosive and are emission control substances. In addition, the processing temperature is high, and there are drawbacks in that it requires equipment and costs for heating.
[0004]
On the other hand, although the chromate film has better corrosion resistance than the phosphate film even though it is not painted, the chromate treatment uses hexavalent chromium, which is harmful, so hexavalent leaching from the treated product as well as the treatment liquid. In recent years, chromium has become a serious problem because it has a negative effect on the human body and the environment. This is a problem that cannot be solved as long as the chromate film is a film that exhibits corrosion resistance due to hexavalent chromium in the film. Another problem is that the electrolytic chromate treatment forms a chromate film by electrolysis, so there is always a problem of wraparound, and it is difficult to form a uniform film, resulting in variations in quality (performance) due to current density. It can happen. Also, chromate mist generated during electrolysis can be a more serious pollution problem than other methods. The coating type chromate treatment is a method in which an acidic aqueous solution containing chromic acid as a main component is applied to a metal surface and then heated and dried without being washed with water. Since it is a coating type, it is not suitable for a complicated shape like an electrolytic chromate, and there is no problem in application to a steel sheet or the like although it is restricted by an object to perform coating with a uniform thickness. On the other hand, reactive chromate has excellent appearance uniformity and applicability to products with complex shapes, and provides stable corrosion resistance. The problem of pollution of chromium is left.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to use a highly corrosive fluorine compound without using harmful hexavalent chromium in forming a protective film on the surface of zinc, nickel, copper, silver, iron, cadmium, aluminum, magnesium and their alloys. It is not an essential component but a film having a uniform and good appearance, corrosion resistance, and excellent performance as a coating base.
[0006]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, it has been found that a problem in the prior art is solved by a method using an aqueous acidic liquid composition containing a specific metal as one of the main components. That is, one or more sources of Mo, W, V, Nb, Ta, Ti, Zr, Ce, Sr, trivalent chromium and phosphorus oxyacids, oxyacid salts or their anhydrides and oxidizing substances. An aqueous acidic liquid composition containing a supply source or an aqueous acidic liquid composition containing 0.01 to 150 g / L of trivalent chromium ions and 0.01 to 100 g / L of chlorine, fluorine, sulfate ions and acetate ions Or an aqueous acidic liquid composition layer containing 0.01 to 150 g / L of iron, cobalt, nickel, magnesium, calcium, aluminum and one or more organic acids or inorganic acids and fluorine as an optional component And a process of drying the aqueous acidic liquid composition layer without rinsing, a beautiful glossy appearance without using hexavalent chromium, excellent corrosion resistance, and excellent coating foundation properties Coating having have found that it is possible product. Further, it was found that a protective coating with further improved corrosion resistance can be obtained by contacting with a silicon compound-containing aqueous solution, a resin and / or an inorganic colloid or an aqueous solution having a pH of 7.5 or more after the formation of the coating. After the film is formed by various methods, the metal protection method of the present invention becomes a very high level metal protection method by further overcoating organic or inorganic and these composite anticorrosion films. Moreover, the film obtained by the present invention is excellent in heat and corrosion resistance, and has been found to solve the problem of deterioration in corrosion resistance due to heat treatment, which is a defect of the conventional chromate film. In addition to these, not only when this treatment is performed by dipping, but also by coating, the economic merit that the conventional treatment equipment can be used as it is is also a feature of this method.
[0007]
The details of the present invention will be described as follows. The aqueous acidic liquid composition of the present invention comprises 1) Mo, W, V, Nb, Ta, Ti, Zr, Ce, Sr, a metal cation of trivalent chromium, a source of these oxymetal anions, etc. A composition containing a source of oxygen acid, oxyacid salt or anhydride thereof and an oxidizing substance, 2) 0.01 to 150 g / L of trivalent chromium ions and 0.01 to 100 g / L of chlorine , A composition containing one or more selected from fluorine, sulfate ion, acetate ion, formate ion, oxalate ion, glycolate ion, 3) 0.01 to 150 g / L of iron, cobalt, nickel, magnesium, calcium There is a composition containing fluorine as an optional component and at least one selected from aluminum and at least one organic or inorganic acid.
[0008]
Although the exact behavior of each component in the composition of 1) is unknown, various metal sources such as molybdate, tungstate, vanadate, niobate, tantalate, and trivalent chromium ions And oxygen oxyacids, oxyacid salts, or their anhydrides are presumed to be the components of the film skeleton, and oxidizing substances are ionized in a solution of phosphoric oxyacids, oxyacid salts, or their anhydrides in solution. It is presumed that the stability of the solution is suppressed and the zinc surface is appropriately etched to contribute to the formation of a smooth film. The total amount of metal sources such as molybdate, tungstate, vanadate, niobate, tantalate, and trivalent chromium ions is 0.2 to 300 g / L, and 0.5 to 80 g / L. preferable. If the amount is less than this, it is difficult to produce a good film, and no film is formed, or the required function of the thin film cannot be obtained. On the other hand, when the amount is larger than this, the appearance and gloss of the film are lowered, and the corrosion resistance and / or the coating adhesion (paint base property) is lowered. If it is added, the economic loss due to pumping will increase and it is not appropriate. Examples of these sources include ammonium vanadate, soda tungstate, chromium acetate, chromium nitrate, and the like, and the source is not particularly limited.
[0009]
The phosphorus oxyacid, oxyacid salt or anhydride thereof should contain 0.2 to 300 g / L, preferably 3 to 90 g / L. If the amount is less than this, it is difficult to produce a good film, and no film is formed, or the required function of the thin film cannot be obtained. On the other hand, when the amount is larger than this, the appearance and gloss of the film are lowered, and the corrosion resistance and / or the coating adhesion (paint base property) is lowered. If it is added, the economic loss due to pumping will increase and it is not appropriate.
[0010]
As the oxygen acid of phosphorus, not only orthophosphoric acid but also diphosphorous acid, hypophosphorous acid, pyrophosphoric acid, tripolyphosphoric acid, and superphosphoric acid can be used. As the oxidizing substance, peroxide, chloric acid, bromic acid, nitric acid, peroxo acid, and the like can be used. If these metal salts are used, the metal and the oxidizing substance can be supplied simultaneously. These contain 0.2-400 g / L, preferably 2-100 g / L. If the amount is less than this, the stability of the liquid is lowered, and the film formation rate becomes unstable. If the amount is more than this, the corrosion resistance and / or the coating adhesion (coating foundation property) is lowered. If it is added, the economic loss due to pumping will increase and it is not appropriate. In either case, the film may not be formed. The pH is 0.1 to 6.5, preferably 1.0 to 4.0. If it is lower than this, uniform film formation becomes difficult, and if it is higher, the corrosion resistance tends to be slightly lowered. The chemicals used for adjusting the pH are not limited to such chemicals as long as acids such as nitric acid and sulfuric acid are added when they are high, and alkalis such as ammonia and sodium hydroxide are added when they are low.
Among these compositions, the combination of compositions showing better performance is 0.01-100 g / L of trivalent chromium ions, 0.01-100 g / L of nitrate ions, and 0.1-200 g / L. It is the composition of the combination containing the phosphate ion of.
[0011]
There are no particular restrictions on the treatment conditions for film formation, conditions for conducting general reaction chromate treatment (liquid temperature 20-30 ° C., treatment time 20-60 seconds, with stirring), treatment time 250 seconds, no stirring. It can be processed under conditions, and has a wide range of conditions. Further, it can be applied to a coating type film forming method using a roll coater or the like. The conditions for forming a film by electrolysis are a current density of 30 A / dm 2 or less, preferably 0.5 to 3 A / dm 2, an energization time of 1 to 1200 seconds, preferably 30 to 180 seconds. Even when the current density is low, a film is formed. However, since the present invention generates a film without electrolysis, it is difficult to distinguish between film formation by electrolysis and film formation by reaction, and the lower limit of current density cannot be defined. When it is high, an appearance defect called burn or burnt occurs in the high current density portion. When the treatment time is short, the film is not formed, or even if it is formed, the thickness is insufficient, so the corrosion resistance is inferior. If it is long, a dull appearance defect sometimes occurs. In addition, excessive processing time drastically reduces productivity.
[0012]
The behavior of each component in the composition of 2) is estimated to be similar to 1), and the trivalent chromium ion of 0.1 to 150 g / L, preferably 0.5 to 50 g / L is the trivalent of 1). 1 to 100 g / L, preferably 1 to 10 g / L of chlorine, fluorine, sulfate ion, acetate ion, etc. 1) oxidizing substance and / or phosphate compound Presumed to work. There is no particular designation for the method of supplying trivalent chromium, and it is convenient to supply components other than trivalent chromium by supplying with a salt such as chromium chloride or chromium acetate. Moreover, adding a silicon compound, phosphoric acid and nitric acid to this composition is effective for improving and stabilizing the corrosion resistance, and the amount of each is about 1 to 200 g / L. The method of coating the layer with this aqueous acidic liquid composition is the same as 1).
[0013]
The composition 3) contains 0.01 to 150 g / L of iron, cobalt, nickel, magnesium, calcium, aluminum, one or more organic acids or inorganic acids, and fluorine as an optional component. As the acid, hydrochloric acid, sulfuric acid, nitric acid, hydrogen peroxide, phosphoric acid and carboxylic acids such as formic acid, acetic acid, succinic acid and diglycolic acid are preferred. Each concentration is 0.01 to 200 g / L, preferably 1 to 40 g / L, and if it is less than this, the film formation is not smoothly performed, and formation defects such as unevenness and spots occur. If the amount is larger than this, not only the economic loss is large, but also problems such as poor formation due to excessive etching occur. Moreover, adding a silicon compound to this composition is effective for improving the appearance and corrosion resistance, and the standard for adding is 0.01 to 100 g / L. The method of coating the layer with this aqueous acidic liquid composition can be performed by either dipping or coating as in 1).
[0014]
These compositions may further contain one or more of alkaline earth metals, inorganic colloids, silane coupling agents, and organic carboxylic acids. Silica sol, alumina sol, titanium sol, zirconia sol and the like can be used as the inorganic colloid, and vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane and the like can be used as the silane coupling agent. Although it is unlikely that alkaline earth metal precipitates on the film, it is presumed that there is an effect of densifying the film because the addition improves the corrosion resistance. Inorganic colloids, silane coupling agents, and the like are not necessarily added due to cost and the like, but when coating or coating is performed after the treatment of the present invention, it works to improve adhesion and as a result, corrosion resistance is improved.
[0015]
After coating with a layer of these aqueous acidic liquid compositions, a method of drying as it is without rinsing the layers with the aqueous acidic liquid composition, a beautiful glossy appearance and excellent corrosion resistance without using hexavalent chromium, excellent It has been found that a film having a coating base property can be produced. Further, it was found that a protective coating with further improved corrosion resistance can be obtained by contacting with a silicon compound-containing aqueous solution, a resin and / or an inorganic colloid or an aqueous solution having a pH of 7.5 or more after the formation of the coating.
Examples of the silicon compound include sodium silicate, potassium silicate, lithium silicate, ammonium silicate, colloidal silica having a particle size of 500 nm or less, and colloidal silica having a particle size of 50 nm or less tends to exhibit stable performance. An appropriate amount of these is 0.01 to 500 g / L, preferably 10 to 150 g / L.
[0016]
After the film is formed by various methods, the metal protection method of the present invention becomes a very high level metal protection method by further overcoating organic or inorganic and these composite anticorrosion films. The overcoat method is not particularly limited, and various methods such as coating, immersion coating, electrostatic coating, electrodeposition coating, and powder coating are possible, and the coating is not particularly limited, and can be applied to water-based or non-water-based coatings. It is.
[0017]
By using the aqueous acidic liquid composition defined in the present invention, no harmful hexavalent chromium or highly corrosive fluoride is used, and it is applied to the zinc surface with almost the same processing equipment, processing conditions and processing methods as conventional chromate. It is possible to produce an insoluble strong film. As a result, not only general users who are worried about elution of hexavalent chromium from the treated product, but also health effects and effects on wild animals of chromate manufacturers and chromate treatment companies that have been exposed to the harmful effects of chromic acid. It becomes possible to solve the problem.
[0018]
The chromate treatment method and the phosphate treatment method are known as technologies prior to the present invention, and both use harmful hexavalent chromium. Further, there are JP-A 52-92936, JP-A 57-145987, and JP-A 9-53192 as protective film forming techniques that do not use chromium. However, these performances are low and satisfactory in corrosion resistance and coating base properties. It is not possible. In addition, there are some that are high in processing temperature (about 40 to 60 ° C.) and that are expected to increase facilities and increase energy costs.
Further, it has been found that the film obtained by the present invention is excellent in heat resistance and corrosion resistance, and solves the problem of deterioration in corrosion resistance due to heat treatment, which is a defect of the conventional chromate film.
[0019]
【Example】
Hereinafter, the present invention will be described by way of examples. In the test, the test piece was subjected to appropriate pretreatments such as degreasing and nitric acid immersion, and then each treatment shown below was performed. The evaluation is performed for appearance and corrosion resistance. The results of the examples of the present invention are shown in Table 1, and the results of the comparative examples are shown in Table 2.
[0020]
Example 1
An electrogalvanized iron plate (100 × 100 × 1 mm) containing 10 g of chromium nitrate, 18 g / L of 75% phosphoric acid, 15 g / L of 67.5% nitric acid and adjusted to pH 1.8 with ammonia for 10 seconds After immersion, the test piece was prepared by drying without performing a rinsing step. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0021]
Example 2
An electrogalvanized iron plate (100 × 100 × 1 mm) containing 11 g / L of chromium nitrate, 19 g / L of 75% phosphoric acid, 14 g / L of 67.5% nitric acid and adjusted to pH 1.7 with ammonia for 11 seconds After immersion, the sample was dried without performing a rinsing step, and then immersed in an aqueous solution containing sodium silicate 30 g / L and sodium hydroxide 15 g / L for 15 seconds to prepare a test piece. The test piece was further heat-treated at 200 ° C. for 2 hours. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0022]
Example 3
An aqueous solution containing 5 g / L of ammonium tungstate, 12 g / L of chromium nitrate, 25 g / L of 75% phosphoric acid, 25 g / L of 60% nitric acid was adjusted to pH 2.0 with ammonia by electrogalvanized iron plate (100 × 100 × 1 mm). After dipping in the prepared treatment solution for 15 seconds and drying without performing a rinsing step, the sample was immersed in an aqueous solution containing 50 g / L of No. 3 sodium silicate and 2 g / L of sodium hydroxide for 30 seconds to prepare a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0023]
Example 4
Hot-dip galvanized iron plate (100 × 100 × 1 mm) is treated with an aqueous solution containing sodium molybdate 15 g / L, phosphorous acid 20 g / L, 60% nitric acid 25 g / L adjusted to pH 2.0 with ammonia for 20 seconds. It was immersed and the rinsing process was not performed, and the dried product was immersed in 5G018 (manufactured by Nippon Surface Chemical Co., Ltd.) and dried. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0024]
Example 5
An electrogalvanized iron plate (50 × 100 × 1 mm) in a treatment liquid containing 15 g / L of chromium nitrate having a pH of 1.0, 2 g / L of ammonium vanadate, 20 g / L of hypophosphorous acid, and 18 g / L of 60% nitric acid. The test piece was dipped in 5G018 (manufactured by Nippon Surface Chemistry Co., Ltd.) and dried after dipping for 2 seconds and not performing the rinsing step. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0025]
Example 6
Zinc-plated iron plate (50 × 100 × 1 mm) containing 10 g / L ammonium vanadate, 20 g / L chromium nitrate, 20 g / L 75% phosphoric acid, 20 g / L 62.5% nitric acid, 20 g / L colloidal silica Was subjected to cathodic electrolysis with a treatment liquid adjusted to pH 2.0 with ammonia at a current density of 1 A / dm 2 and an electrolysis time of 2 minutes, then dried without rinsing, and further immersed in 5G018 (manufactured by Nippon Surface Chemical Co., Ltd.). The dried product was used as a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0026]
Example 7
A galvanized iron plate (50 × 100 × 1 mm) containing an aqueous solution containing 5 g / L of molybdate, 20 g / L of chromium nitrate, 25 g / L of phosphorous acid, 20 g / L of 62.5% nitric acid, and 20 g / L of colloidal silica. After immersion in a treatment solution adjusted to pH 3.6 with ammonia for 2 minutes, cathodic electrolysis was performed at a current density of 1 A / dm 2 and an electrolysis time of 2 minutes to form a film, washed with water, and dried without drying 5G018 (manufactured by Nippon Surface Chemical Co., Ltd.) The test piece was dipped in and coated. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0027]
Example 8
An electrogalvanized iron plate (100 × 100 × 1 mm) containing 15 g / L of chromium nitrate, 15 g / L of 75% phosphoric acid, 15 g / L of 67.5% nitric acid and adjusted to a pH of 1.8 with ammonia for 5 seconds. After dipping, the sample was dried without performing a rinsing step, and after applying Sky Hello Top Coat F (manufactured by Nippon Special Paint Co., Ltd.), it was dried to prepare a test piece. The appearance is evaluated visually, and the coating foundation is evaluated by the remaining area after the cross-cut cello tape peeling test, and the corrosion resistance is GX-235T (acrylic clear coating: manufactured by Nippon Surface Chemistry Co., Ltd.) instead of Sky Hello Top Coat F. ) Was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours using a test piece that was immersed in and dried.
[0028]
Example 9
An electrogalvanized iron plate (100 × 100 × 1 mm) containing 7 g of chromium chloride, 20 g / L of 75% phosphoric acid, 10 g / L of 67.5% nitric acid and adjusted to pH 1.8 with ammonia for 7 seconds After soaking, the specimen was dried without performing a rinsing step, soaked in Silvia U (manufactured by Nippon Special Paint Co., Ltd.), and dried to prepare a test piece. Appearance is evaluated visually, and the coating base property is evaluated by the remaining area after the cross-cut cello tape peeling test. It evaluated from the result of the salt spray test (JIS Z 2371) after 144 hours using the test piece prepared by drying.
[0029]
Example 10
A galvanized iron plate (100 × 100 × 1 mm) is immersed in a treatment solution containing 10 g / L of pH 1.8 chromium sulfate, 1.5 g / L of hydrochloric acid and 1 g / L of 60% sulfuric acid for 10 seconds to perform a rinsing step. After drying, the specimen was immersed in a treatment solution containing colloidal silica 120 g / L, caustic potash 2 g / L, caustic soda 5 g / L at 50 ° C. for 30 seconds. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0030]
Example 11
Hot-dip galvanized iron plate (100 x 100 x 1 mm) is immersed in a treatment solution containing 10 g / L of pH 1.8 chromium acetate, 1.5 g / L of hydrochloric acid, 1 g / L of 60% sulfuric acid, and 1 g / L of phosphoric acid for 10 seconds. Then, after drying without performing the rinsing step, the specimen was immersed in Silvia U (manufactured by Nippon Special Paint Co., Ltd.) and dried to prepare a test piece. Appearance is evaluated visually, and the coating base property is evaluated by the remaining area after the cross-cut cello tape peeling test. It evaluated from the result of the salt spray test (JIS Z 2371) after 144 hours using the test piece prepared by drying.
[0031]
Example 12
A steel plate (100 × 100 × 1 mm) plated with zinc-nickel alloy is treated with an aqueous solution containing chromium chloride 4 g / L, ammonium fluoride 6 g / L, 75% sulfuric acid 2 g / L adjusted to pH 2.0 with ammonia. After dipping for 10 seconds and drying without rinsing, after forming a film, Silvia U (manufactured by Nippon Special Paint Co., Ltd.) was applied and dried to prepare a test piece. Appearance is evaluated visually, and the coating foundation is evaluated by the remaining area after the peel-off cell tape test, and the corrosion resistance is immersed in GX-235T (acrylic clear coating: manufactured by Nippon Surface Chemical Co., Ltd.) instead of Silvia U. It evaluated from the result of the salt spray test (JIS Z 2371) after 144 hours using the test piece prepared by drying.
[0032]
Example 13
A zinc-iron alloy-plated iron plate (100 × 100 × 1 mm) is immersed for 5 seconds in a treatment solution containing 6 g / L of chromium acetate at pH 1.6, 1 g / L of hydrofluoric acid, 5 g / L of phosphoric acid, and 2 g / L of sulfuric acid. After drying without a rinsing step, the sample was dipped in Sky Hello Top Coat F (manufactured by Nippon Special Paint Co., Ltd.) and dried to prepare a test piece. The appearance is evaluated visually, and the coating foundation is evaluated by the remaining area after the cross-cut cello tape peeling test, and the corrosion resistance is GX-235T (acrylic clear coating: manufactured by Nippon Surface Chemistry Co., Ltd.) instead of Sky Hello Top Coat F. ) Was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours using a test piece that was immersed in and dried.
[0033]
Example 14
An electrogalvanized iron plate was immersed in an aqueous solution of pH 3.0 containing aluminum sulfate 7.5 g / L, phosphoric acid 10 g / L, 67.5% nitric acid 4.5 g / L for 12 seconds and dried without rinsing. It was a piece. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0034]
Example 15
A galvanized iron plate was immersed in an aqueous solution of pH 2.2 containing 8.5 g / L aluminum nitrate, 90 g / L No. 3 sodium silicate, and 5 g / L 62.5% nitric acid, dried for 10 seconds without performing a rinsing step, and a test piece It was. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0035]
Example 16
After galvanized iron plate is immersed in an aqueous solution of pH 2.8 containing 5 g / L of aluminum sulfate, 5 g / L of phosphoric acid, 2 g / L of hydrochloric acid, and 3 g / L of 67.5% nitric acid, and dried without performing a rinsing step Then, it was dipped in Sky Hello Top Coat F (manufactured by Nippon Special Paint Co., Ltd.) and dried to prepare a test piece. The appearance is evaluated visually, and the coating foundation is evaluated by the remaining area after the cross-cut cello tape peeling test, and the corrosion resistance is GX-235T (acrylic clear coating: manufactured by Nippon Surface Chemistry Co., Ltd.) instead of Sky Hello Top Coat F. ) Was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours using a test piece that was immersed in and dried.
[0036]
Example 17
Zinc-plated iron plate containing 15 g / L of aluminum sulfate pH 3.0, 17 g / L of No. 3 sodium silicate, 5 g / L of hydrofluoric acid, 2 g / L of phosphoric acid, 2 g / L of acetic acid, 5 g / L of 67.5% nitric acid After immersing in the treatment liquid for 15 seconds and drying without rinsing, the treatment liquid containing potassium silicate 80 g / L, caustic potash 7 g / L, and Cataloid SI-30 (catalyst chemicals) 20 g / L A test piece was prepared by immersion for 30 seconds. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0037]
Example 18
A treatment solution adjusted to pH 3.0 containing 5 g / L of chromium nitrate, 2 g / L of nitric acid and 2 g / L of sulfuric acid was immersed in a zinc-iron alloy-plated iron plate for 2 seconds and dried without performing a rinsing step. It was immersed in (acrylic clear coating: manufactured by Nippon Surface Chemical Co., Ltd.) and dried to prepare a test piece. The appearance was evaluated visually, the coating foundation property was evaluated by the remaining area after the cross-cut cellophane peeling test, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0038]
Example 19
A hot-dip galvanized iron plate was coated with a treatment solution adjusted to pH 2.3 containing 10 g / L of chromium chloride, 10 g / L of nitric acid and 15 g / L of phosphoric acid, dried without performing a rinsing step, and then GX-235T (acrylic clear Coating: manufactured by Nippon Surface Chemical Co., Ltd.) and dried to prepare a test piece. The appearance was evaluated visually, the coating foundation property was evaluated by the remaining area after the cross-cut cellophane peeling test, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0039]
Example 20
After galvanized iron plate is dipped in an aqueous solution of pH 2.7 containing iron sulfate 7 g / L, phosphoric acid 12 g / L, hydrochloric acid 1 g / L, 67.5% nitric acid 2 g / L for 15 seconds and dried without performing a rinsing step Then, it was dipped in Sky Hello Top Coat F (manufactured by Nippon Special Paint Co., Ltd.) and dried to prepare a test piece. The appearance is evaluated visually, and the coating foundation is evaluated by the remaining area after the cross-cut cello tape peeling test, and the corrosion resistance is GX-235T (acrylic clear coating: manufactured by Nippon Surface Chemistry Co., Ltd.) instead of Sky Hello Top Coat F. ) Was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours using a test piece that was immersed in and dried.
[0040]
Example 21
A zinc-plated iron plate (100 x 100 x 1 mm) is adjusted to pH 2.1 with ammonia in an aqueous solution containing 20 g / L of magnesium nitrate, 1 g / L of sulfuric acid, 20 g / L of 75% phosphoric acid, and 1 g / L of 62.5% nitric acid. Cathodic electrolysis with a current density of 2 A / dm 2 and an electrolysis time of 60 seconds was performed with the treated liquid, and then dried without performing a rinsing step. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0041]
Example 22
An aqueous solution containing 18 g / L magnesium nitrate, 1 g / L sulfuric acid, 15 g / L 75% phosphoric acid, and 1 g / L 62.5% nitric acid is adjusted to pH 1.7 with ammonia in a galvanized iron plate (100 × 100 × 1 mm). The cathode was electrolyzed with a current density of 3 A / dm 2 and an electrolysis time of 30 seconds with the treated liquid, dried without performing a rinsing step, and further immersed in Sky Hello Top Coat F (manufactured by Nippon Special Paint Co., Ltd.) and then dried. A test piece was prepared. The appearance is evaluated visually, and the coating foundation is evaluated by the remaining area after the cross-cut cello tape peeling test, and the corrosion resistance is GX-235T (acrylic clear coating: manufactured by Nippon Surface Chemistry Co., Ltd.) instead of Sky Hello Top Coat F. ) Was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours using a test piece that was immersed in and dried.
[0042]
Comparative Example 1
Using a galvanized iron plate (50 × 100 × 1 mm) with no treatment on the surface as a test piece, the time until the occurrence of white rust in a salt spray test (JIS Z 2371) was investigated.
[0043]
Comparative Example 2
A galvanized iron plate (50 × 100 × 1 mm) was immersed in a commercially available trivalent chromate treatment solution (Idip Z-348: Aiko Chemical Co., Ltd.) for 1 minute to form a film, washed with water, and dried. . The appearance was visually evaluated, and the corrosion resistance was investigated by measuring the time until white rust occurred in the salt spray test (JIS Z 2371).
[0044]
Comparative Example 3
A commercially available phosphate coating solution (Palbond 3300: Nippon Parkerizing Co., Ltd.) prepared by heating the surface of a galvanized steel plate (50 × 100 × 1 mm) with Preparen Z (Nihon Parkerizing Co., Ltd.) and then heating to 70 ° C. ) For 15 seconds, after forming a film, washed with water, dried without any post-treatment using hexavalent chromium, dipped in Sky Hello Top Coat F (manufactured by Nippon Special Paint Co., Ltd.), and then dried to give a test piece. Produced. The appearance is evaluated visually, and the coating foundation is evaluated by the remaining area after the cross-cut cello tape peeling test, and the corrosion resistance is GX-235T (acrylic clear coating: manufactured by Nippon Surface Chemistry Co., Ltd.) instead of Sky Hello Top Coat F. ) Was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours using a test piece that was immersed in and dried.
[0045]
Comparative Example 4
35% hydrogen peroxide 35g / L, 62% nitric acid 10g / L, titanium plate galvanized iron plate (100 × 100 × 1mm) with a pH 1.8 treatment solution containing 0.5g / L is immersed for 60 seconds for chemical conversion Treated. A test piece was washed and dried. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0046]
Comparative Example 5
35% hydrogen peroxide 30 g / L, 62% nitric acid 15 g / L, colloidal silica 70 g / L, iron plate galvanized with pH 1.6 treatment solution containing titanium sulfate 0.3 g / L (100 × 100 × 1 mm) Was immersed for 60 seconds and subjected to chemical conversion treatment. After washing with water and drying, a sky hello topcoat F (manufactured by Nippon Special Paint Co., Ltd.) was applied and dried to prepare a test piece. The appearance is evaluated visually, and the coating foundation is evaluated by the remaining area after the cross-cut cello tape peeling test, and the corrosion resistance is GX-235T (acrylic clear coating: manufactured by Nippon Surface Chemistry Co., Ltd.) instead of Sky Hello Top Coat F. ) Was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours using a test piece that was immersed in and dried.
[0047]
Comparative Example 6
35% hydrogen peroxide 50 g / L, 62% nitric acid 5 g / L, colloidal silica 100 g / L, iron plate galvanized with a pH 2.0 treatment solution containing titanium sulfate 0.3 g / L (100 × 100 × 1 mm ) Was immersed for 65 seconds and subjected to chemical conversion treatment. After washing and drying, Silvia U (manufactured by Nippon Special Paint Co., Ltd.) was applied and dried to prepare a test piece. Appearance is evaluated visually, and the coating base property is evaluated by the remaining area after the cross-cut cello tape peeling test. It evaluated from the result of the salt spray test (JIS Z 2371) after 144 hours using the test piece prepared by drying.
[0048]
Comparative Example 7
A test piece was prepared by dipping in a treatment solution containing 12.1 g / L of sodium molybdate and 14.7 g / L of 75% phosphoric acid at 60 ° C. for 2 minutes. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0049]
Comparative Example 8
After immersion in a treatment solution containing sodium molybdate 12.1 g / L, 75% phosphoric acid 14.7 g / L, and sodium silicate 10 g / L at 60 ° C. for 2 minutes, colloidal silica 90 g / L, caustic potash 10 g / L A test piece was prepared by immersing in a treatment solution containing caustic soda 2 g / L at 50 ° C. for 30 seconds. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0050]
Comparative Example 9
After immersion in a treatment solution containing sodium molybdate 0.1 mol / L and phosphoric acid 0.15 mol / L at 60 ° C. for 2 minutes, it was washed with water and dried to obtain a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0051]
Comparative Example 10
The galvanized iron plate was immersed in an aqueous solution containing aluminum nitrate 8 g / L and No. 3 sodium silicate 95 g / L for 15 seconds and dried without performing a rinsing step to obtain a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0052]
Comparative Example 11
The galvanized iron plate was dipped in an aqueous solution containing aluminum hydroxide 3 g / L and No. 3 sodium silicate 100 g / L for 10 seconds and dried without rinsing, and then Silvia U (manufactured by Nippon Special Paint Co., Ltd.) was applied. Thereafter, it was dried to prepare a test piece. Appearance is evaluated visually, and the coating base property is evaluated by the remaining area after the cross-cut cello tape peeling test. It evaluated from the result of the salt spray test (JIS Z 2371) after 144 hours using the test piece prepared by drying.
[0053]
Comparative Example 12
An existing chromate film was formed on a galvanized iron plate using a commercially available chromate agent (Romemate 62: manufactured by Nippon Surface Chemical Co., Ltd.), and then heat-treated at 200 ° C. for 2 hours to obtain a test piece. The appearance was visually evaluated, and the corrosion resistance was evaluated from the results of a salt spray test (JIS Z 2371) after 144 hours.
[0054]
Comparative Example 13
The galvanized iron plate was dipped in an aqueous solution containing zinc chloride 15 g / L and sodium silicate 3 g / L at 60 ° C. for 10 minutes, dried without rinsing, and then coated with Silvia U (manufactured by Nippon Special Paint Co., Ltd.). Thereafter, it was dried to prepare a test piece. Appearance is evaluated visually, and the coating base property is evaluated by the remaining area after the cross-cut cello tape peeling test. It evaluated from the result of the salt spray test (JIS Z 2371) after 144 hours using the test piece prepared by drying.
[0055]
[Table 1]
Figure 0003987633
[Table 2]
Figure 0003987633

Claims (10)

Zn、Zn−Ni合金、及びZn−Fe合金から選択された金属の表面を水性酸性液状組成物による層で被覆する工程及び前記水性酸性液状組成物層を濯ぎを行わず乾燥する工程からなる金属の保護皮膜形成方法であって、前記水性酸性液状組成物が、A)Mo、W、V、Nb、Ta、Ti、Zr、Ce、Sr及び三価のクロムから成る群から選択される少なくとも一つの供給源、B)酸化性物質の供給源、並びにC)リンの酸素酸、酸素酸塩又はこれらの無水物を含有する金属の保護皮膜形成方法。A step of coating a surface of a metal selected from Zn, a Zn—Ni alloy, and a Zn—Fe alloy with a layer of an aqueous acidic liquid composition ; and a step of drying the aqueous acidic liquid composition layer without rinsing. A method for forming a protective film of metal, wherein the aqueous acidic liquid composition is selected from the group consisting of A) Mo, W, V, Nb, Ta, Ti, Zr, Ce, Sr and trivalent chromium. One source, B) a source of an oxidizing substance, and C) a method for forming a protective film of a metal containing phosphorus oxyacid, oxyacid salt or anhydride thereof. 前記A)が0.01〜100g/Lの三価のクロムイオン、前記B)が0.01〜100g/Lの硝酸イオン、及びC)が0.1〜200g/Lのリン酸イオンである請求項1に記載の方法。  A) is a trivalent chromium ion of 0.01 to 100 g / L, B) is a nitrate ion of 0.01 to 100 g / L, and C) is a phosphate ion of 0.1 to 200 g / L. The method of claim 1. Zn、Zn−Ni合金、及びZn−Fe合金から選択された金属の表面を水性酸性液状組成物による層で被覆する工程及び前記水性酸性液状組成物層を濯ぎを行わず乾燥する工程からなる金属の保護皮膜形成方法であって、前記水性酸性液状組成物が、A)0.01〜150g/Lの三価のクロムイオン、並びにB)0.01〜100g/Lの塩素、フッ素、硫酸イオン、酢酸イオン、蟻酸イオン、琥珀酸イオン及びグリコール酸イオンから成る群から選択される少なくとも1種を含有する金属の保護皮膜形成方法。 A metal comprising a step of coating a surface of a metal selected from Zn, a Zn-Ni alloy, and a Zn-Fe alloy with a layer of an aqueous acidic liquid composition and a step of drying the aqueous acidic liquid composition layer without rinsing The aqueous acidic liquid composition comprises A) 0.01 to 150 g / L trivalent chromium ions, and B) 0.01 to 100 g / L chlorine, fluorine and sulfate ions. A method for forming a protective film of a metal comprising at least one selected from the group consisting of acetate ion, formate ion, oxalate ion and glycolate ion. Zn、Zn−Ni合金、及びZn−Fe合金から選択された金属の表面を水性酸性液状組成物による層で被覆する工程及び前記水性酸性液状組成物層を濯ぎを行わず乾燥する工程からなる金属の保護皮膜形成方法であって、前記水性酸性液状組成物が、A)0.01〜150g/Lの鉄、コバルト、ニッケル、マグネシウム、カルシウム及びアルミニウムから成る群から選択される少なくとも一種、及びB)有機酸及び無機酸から成る群から選択される少なくとも一種を含有する金属の保護皮膜形成方法。 A metal comprising a step of coating a surface of a metal selected from Zn, a Zn-Ni alloy, and a Zn-Fe alloy with a layer of an aqueous acidic liquid composition and a step of drying the aqueous acidic liquid composition layer without rinsing The aqueous acidic liquid composition is A) at least one selected from the group consisting of 0.01 to 150 g / L of iron, cobalt, nickel, magnesium, calcium and aluminum, and B ) A method for forming a protective film of a metal containing at least one selected from the group consisting of organic acids and inorganic acids. 前記成分B)過酸化物、塩素酸、臭素酸、硝酸、及びこれらの塩から選択され、前記成分C)正リン酸、縮合リン酸、亜リン酸、次亜リン酸、及びこれらの塩又はこれらの無水物から選択される請求項1に記載の保護皮膜形成方法 Said component B) is selected from peroxides, chloric acid, bromic acid, nitric acid, and salts thereof, and said component C) is orthophosphoric acid, condensed phosphoric acid, phosphorous acid, hypophosphorous acid, and these The method for forming a protective film according to claim 1, which is selected from a salt or an anhydride thereof. 前記成分A)マグネシウム又はアルミニウムであり前記成分B)塩酸、硫酸、硝酸、過酸化水素、リン酸、蟻酸、酢酸、琥珀酸、及びカルボン酸から選択される請求項4に記載の保護皮膜形成方法The protection according to claim 4, wherein said component A) is magnesium or aluminum and said component B) is selected from hydrochloric acid, sulfuric acid, nitric acid, hydrogen peroxide, phosphoric acid, formic acid, acetic acid, succinic acid, and carboxylic acid. Film formation method . 前記水性酸性液状組成物がさらにアルカリ土類金属、ケイ素化合物、及びアルミナゾルから成る群から選択される少なくとも1種、シランカップリング剤、並びに有機カルボン酸から成る群から選択される少なくとも一種を含有する請求項のいずれか一の請求項に記載の保護皮膜形成方法The aqueous acidic liquid composition further contains at least one selected from the group consisting of alkaline earth metals, silicon compounds, and alumina sols, at least one selected from the group consisting of silane coupling agents, and organic carboxylic acids. protection film forming method according to any one of claims 1-6. 前記金属表面に請求項1〜のいずれか一の請求項に記載の方法により保護皮膜を形成した後、更に、ケイ素化合物含有水溶液、及び樹脂並びに/又は無機コロイド若しくはpHが7.5以上の水溶液を接触させる保護皮膜形成方法。After the protective film is formed on the metal surface by the method according to any one of claims 1 to 6 , the silicon compound-containing aqueous solution and the resin and / or the inorganic colloid or pH is 7.5 or more. Mamoru film forming method Tamotsu Ru contacting the aqueous solution. 前記ケイ素化合物が珪酸ナトリウム、珪酸カリウム、珪酸リチウム、又は粒径500nm以下のコロイダルシリカである請求項8に記載の保護皮膜形成方法The protective film forming method according to claim 8, wherein the silicon compound is sodium silicate, potassium silicate, lithium silicate, or colloidal silica having a particle size of 500 nm or less. 前記金属表面に請求項1〜のいずれか一の請求項に記載の方法により保護皮膜を形成した後、更に有機又は無機及びこれらの複合防錆皮膜をオーバーコートする金属の保護皮膜形成方法。A method for forming a protective film for a metal, comprising forming a protective film on the metal surface by the method according to any one of claims 1 to 9 , and further overcoating organic or inorganic and a composite anticorrosive film thereof.
JP13971498A 1998-05-21 1998-05-21 Metal protective film forming treatment agent and forming method Expired - Lifetime JP3987633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13971498A JP3987633B2 (en) 1998-05-21 1998-05-21 Metal protective film forming treatment agent and forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13971498A JP3987633B2 (en) 1998-05-21 1998-05-21 Metal protective film forming treatment agent and forming method

Publications (2)

Publication Number Publication Date
JPH11335865A JPH11335865A (en) 1999-12-07
JP3987633B2 true JP3987633B2 (en) 2007-10-10

Family

ID=15251716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13971498A Expired - Lifetime JP3987633B2 (en) 1998-05-21 1998-05-21 Metal protective film forming treatment agent and forming method

Country Status (1)

Country Link
JP (1) JP3987633B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW526283B (en) * 1999-03-12 2003-04-01 Toyo Kohan Co Ltd Method for producing surface treated metal, surface treated metal, surface treated metal coated with organic resin
JP2002266080A (en) * 2001-03-07 2002-09-18 Nippon Paint Co Ltd Phosphate chemical conversion treatment solution, chemical conversion treatment method and chemical conversion treated steel sheet
JP4727840B2 (en) * 2001-04-19 2011-07-20 株式会社神戸製鋼所 Coated steel sheet excellent in workability and corrosion resistance, and method for producing the same
JP5300113B2 (en) * 2001-04-27 2013-09-25 日本表面化学株式会社 Metal surface treatment agent, metal surface treatment method using metal surface treatment agent, and iron component subjected to surface treatment
JP5183837B2 (en) * 2001-05-07 2013-04-17 日本ペイント株式会社 Chemical conversion treatment agent and treatment method
JP3332373B1 (en) 2001-11-30 2002-10-07 ディップソール株式会社 A treatment solution for forming a hexavalent chromium-free rust preventive film on zinc and zinc alloy plating, a hexavalent chromium-free rust preventive film, and a method for forming the same.
JP3332374B1 (en) 2001-11-30 2002-10-07 ディップソール株式会社 A treatment solution for forming a hexavalent chromium-free rust preventive film on zinc and zinc alloy plating, a hexavalent chromium-free rust preventive film, and a method for forming the same.
JP2005097669A (en) * 2003-09-24 2005-04-14 Ishihara Chem Co Ltd Liquid and method for post-treating plated surface
JP4738747B2 (en) * 2004-01-22 2011-08-03 日本表面化学株式会社 Black film agent and black film forming method
JP4628726B2 (en) * 2004-03-02 2011-02-09 日本表面化学株式会社 Aluminum member, method for producing the same, and chemical for production
JP5051970B2 (en) * 2004-06-25 2012-10-17 ディップソール株式会社 Treatment liquid for substrate surface containing nickel, copper or silver, its preparation method and surface treatment method
JP4747019B2 (en) * 2006-04-11 2011-08-10 ミリオン化学株式会社 Chemical conversion treatment method and chemical treatment of magnesium alloy
CN101448975B (en) 2006-05-10 2011-07-27 汉高股份及两合公司 Improved trivalent chromium-containing composition for use in corrosion resistant coating on metal surfaces
JP5090101B2 (en) * 2007-08-10 2012-12-05 株式会社大和化成研究所 Chemical conversion solution for zinc or zinc alloy plating film and method for forming anticorrosion film using the same
WO2009028801A2 (en) 2007-08-24 2009-03-05 Posco Coating composition for steel sheets having zinc and zinc alloy coating layer, method for forming coating layer using the coating composition and steel sheet having the coating layer formed thereof
JP5638191B2 (en) * 2008-11-05 2014-12-10 日本パーカライジング株式会社 Chemical conversion treated metal plate and manufacturing method thereof
US10156016B2 (en) 2013-03-15 2018-12-18 Henkel Ag & Co. Kgaa Trivalent chromium-containing composition for aluminum and aluminum alloys
JPWO2018074298A1 (en) * 2016-10-18 2018-10-18 日新製鋼株式会社 Surface-treated galvanized steel sheet and method for producing the same
CN107488854B (en) * 2017-08-25 2018-11-16 长春长光宇航复合材料有限公司 A kind of cyanate resin base composite material optical mirror plane and preparation method thereof

Also Published As

Publication number Publication date
JPH11335865A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
JP3392008B2 (en) Metal protective film forming treatment agent and treatment method
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
CA2465701C (en) Post-treatment for metal coated substrates
JP5007469B2 (en) Green trivalent chromium conversion coating
WO2004055237A1 (en) Treating fluid for surface treatment of metal and method for surface treatment
JPWO2002103080A1 (en) Treatment solution for surface treatment of metal and surface treatment method
JPS6136588B2 (en)
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
JP5130226B2 (en) Aqueous reaction solution and method for passivating workpieces with zinc or zinc alloy surfaces
US4537837A (en) Corrosion resistant metal composite with metallic undercoat and chromium topcoat
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
JP2000017451A (en) Protective film-formed steel sheet, its production and composition for forming protective film
JPH05117869A (en) Metallic surface treating agent for forming composite film
WO2005056883A1 (en) Electroplated coating of zinc alloy with excellent corrosion resistance and plated metal material having same
JP2005105321A (en) Method for manufacturing surface treated steel sheet of excellent appearance, surface treated steel sheet, film-covered surface-treated steel sheet
JP5300113B2 (en) Metal surface treatment agent, metal surface treatment method using metal surface treatment agent, and iron component subjected to surface treatment
JP4179527B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet obtained by coating surface-treated steel sheet with organic resin
JPS5834178A (en) Chromate treatment for plated steel plate
JPH11152588A (en) Composition for forming rust preventive protective coating for metal and its formation
JPH0149789B2 (en)
JP3330423B2 (en) Cathode electrolytic resin chromate type metal surface treatment method
JP3367454B2 (en) Method for producing chromate-treated galvanized steel sheet with excellent organic resin film adhesion and edge creep resistance
JPS63143292A (en) Production of electrolytically chromated steel sheet having excellent corrosion resistance
JPH101798A (en) Electrolytic chromate treating method
JPS6075584A (en) Method for modifying surface of zinc alloy plated steel sheet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term