KR100674778B1 - Treating solution for surface treatment of metal, a method for surface treatment and metal material - Google Patents

Treating solution for surface treatment of metal, a method for surface treatment and metal material Download PDF

Info

Publication number
KR100674778B1
KR100674778B1 KR1020057010530A KR20057010530A KR100674778B1 KR 100674778 B1 KR100674778 B1 KR 100674778B1 KR 1020057010530 A KR1020057010530 A KR 1020057010530A KR 20057010530 A KR20057010530 A KR 20057010530A KR 100674778 B1 KR100674778 B1 KR 100674778B1
Authority
KR
South Korea
Prior art keywords
treatment
surface treatment
metal
compound
ppm
Prior art date
Application number
KR1020057010530A
Other languages
Korean (ko)
Other versions
KR20050097916A (en
Inventor
다카오미 나카야마
히로유키 사토
도시유키 아이시마
에이사쿠 오카다
후미야 요시다
가쯔히로 시오타
Original Assignee
니혼 파커라이징 가부시키가이샤
도요타지도샤가부시키가이샤
다이하츠고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니혼 파커라이징 가부시키가이샤, 도요타지도샤가부시키가이샤, 다이하츠고교 가부시키가이샤 filed Critical 니혼 파커라이징 가부시키가이샤
Publication of KR20050097916A publication Critical patent/KR20050097916A/en
Application granted granted Critical
Publication of KR100674778B1 publication Critical patent/KR100674778B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/76Applying the liquid by spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

환경에 유해한 성분을 포함하지 않고, 폐기물이 되는 슬러지를 발생시키지 않으며, 금속 표면에 도장 후의 내식성이 우수한 표면처리 피막을 석출시킬 수 있는 표면처리용 처리액 및 표면처리 방법을 제공한다. 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료로부터 선택되는 금속재료를 각각 단독으로 또는 그의 2종류 이상을 동시에 표면처리하기 위한 수계 표면처리액으로서, 지르코늄 화합물 및 티타늄 화합물로부터 선택되는 1종류 이상의 화합물을 상기 금속원소로서 5~5000 ppm 포함하고, 또한 유리 플루오르이온을 0.1~100 ppm 포함하며, 또한 pH가 2~6인 금속의 표면처리용 처리액이다. 이 처리액에는, 추가로 칼슘 화합물, 마그네슘 화합물 또는 스트론튬 화합물, 질산근, 산소산 및/또는 산소산염, 고분자 화합물, 계면활성제를 함유시켜도 된다. 금속재료를 상기 처리액과 접촉시키거나 또는 상기 처리액 중에서 전해처리하여 피막을 형성시킨다.The present invention provides a surface treatment treatment liquid and a surface treatment method that do not contain harmful components to the environment, do not generate waste sludge, and can deposit a surface treatment film having excellent corrosion resistance after coating on a metal surface. As an aqueous surface treatment liquid for surface-treating a metal material selected from an iron-based material, a zinc-based material, an aluminum-based material, and a magnesium-based material alone or two or more of them simultaneously, one kind selected from a zirconium compound and a titanium compound The above compound contains 5 to 5000 ppm as the metal element, 0.1 to 100 ppm of free fluorine ions, and is a treatment solution for surface treatment of metal having a pH of 2 to 6. The treatment liquid may further contain a calcium compound, a magnesium compound or a strontium compound, a nitrate muscle, an oxygen acid and / or an oxygen acid salt, a high molecular compound, and a surfactant. A metal material is brought into contact with the treatment liquid or electrolytically treated in the treatment liquid to form a film.

표면처리, 내식성, 피막형성, 지르코늄 화합물, 티타늄 화합물 Surface treatment, corrosion resistance, film formation, zirconium compound, titanium compound

Description

금속의 표면처리용 처리액, 표면처리 방법 및 금속 재료{Treating solution for surface treatment of metal, a method for surface treatment and metal material}Treating solution for surface treatment of metal, a method for surface treatment and metal material

본 발명은, 자동차 차체로 대표되는 바와 같은 철계 재료, 아연계 재료, 알루미늄계 및 마그네슘계 재료의 단독 또는 그의 2종류 내지 4종류로 되는 구조물의 금속재료 표면에, 각각 단독으로 또는 그의 2종류 내지 4종류를 동시에, 도장 후의 내식성이 우수한 표면처리 피막을 석출시키는 것을 가능하게 하는 표면처리용 처리액 및 표면처리 방법에 관한 것이다.The present invention is solely or two or more of each of the iron-based material, the zinc-based material, the aluminum-based, and the magnesium-based material as represented by the automobile body, alone or two to four kinds thereof. At the same time, the present invention relates to a treatment solution for surface treatment and a surface treatment method capable of simultaneously depositing a surface treatment film having excellent corrosion resistance after coating.

금속 표면에 도장 후의 내식성이 우수한 표면처리 피막을 석출시키는 수법으로서는, 인산아연 처리법이나 크로메이트 처리법이 현재 일반적으로 사용되고 있다. 인산아연 처리법은, 냉연강판(冷延鋼板) 등의 강(steel), 아연도금 강판 및 일부의 알루미늄 합금 표면에 내식성이 우수한 피막을 석출시킬 수 있다. 그러나, 인산아연 처리를 행할 때는, 반응의 부생성물인 슬러지(sludge)의 발생을 피할 수 없고, 또한 알루미늄 합금의 종류에 따라서는 도장 후의 내사청성(resistance for corrosion)을 충분히 확보할 수 없다. 알루미늄 합금에 대해서는, 크로메이트 처리를 실시함으로써 충분한 도장 후의 성능을 확보하는 것이 가능하다. 그러나, 최근 환경규제로부터 처리액 중에 유해한 6가 크롬을 포함하는 크로메이트 처리는 멀리 하는 추세이다. 따라서, 처리액 중에 유해 성분을 포함하지 않는 표면처리 방법으로서, 이하에 나타내는 발명이 제안되어 있다. As a method of depositing the surface treatment film excellent in corrosion resistance after coating on a metal surface, the zinc phosphate treatment method and the chromate treatment method are generally used now. The zinc phosphate treatment method can deposit a film excellent in corrosion resistance on the surface of steel, such as a cold rolled steel plate, a galvanized steel plate, and some aluminum alloy surfaces. However, when performing zinc phosphate treatment, the generation of sludge which is a by-product of the reaction cannot be avoided, and depending on the type of aluminum alloy, the resistance for corrosion after coating cannot be sufficiently secured. About an aluminum alloy, it is possible to ensure the performance after sufficient coating by performing chromate treatment. However, from recent environmental regulations, chromate treatments containing harmful hexavalent chromium in treatment liquids have tended to be kept away. Therefore, the invention shown below is proposed as a surface treatment method which does not contain a harmful component in a process liquid.

예를 들면, 고립전자쌍을 갖는 질소원자를 함유하는 화합물 및 상기 화합물과 지르코늄 화합물을 함유하는 금속 표면용 무크롬 코팅제가 제안되어 있다(일본국 특허공개 제2000-204485호 공보 참조). 이 방법은, 상기 조성물을 도포함으로써, 유해 성분인 6가 크롬을 포함하지 않고 도장 후의 내식성 및 밀착성이 우수한 표면처리 피막을 얻는 것을 가능하게 하는 것이다. 그러나, 대상이 되는 금속소재가 알루미늄 합금에 한정되어 있고, 또한 도포 건조에 의해 표면처리 피막을 형성시키기 때문에, 자동차 차체와 같은 복잡한 구조물에 도포하는 것은 곤란하다.For example, a compound containing a nitrogen atom having a lone electron pair and a chromium-free coating agent for a metal surface containing the compound and a zirconium compound have been proposed (see Japanese Patent Application Laid-Open No. 2000-204485). This method makes it possible to obtain a surface treatment film which does not contain hexavalent chromium, which is a harmful component, and which is excellent in corrosion resistance and adhesion after coating, by applying the composition. However, since the target metal material is limited to aluminum alloy and forms a surface treatment film by application drying, it is difficult to apply it to a complicated structure such as an automobile body.

따라서, 화성반응(化成反應)에 의해 도장 후의 밀착성 및 내식성이 우수한 표면처리 피막을 석출시키는 방법으로서 다수의 방법이 제안되어 있다(예를 들면, 일본국 특허공개 제(소)56-136978호 공보, 일본국 특허공개 제(평)8-176841호 공보, 일본국 특허공개 제(평)9-25436호 공보, 일본국 특허공개 제(평)9-31404호 공보 참조). 그러나, 어떤 방법도 대상이 되는 금속재료가, 소재 그 자체의 내식성이 우수한 알루미늄 합금에 한정되어 있어, 철계 재료나 아연계 재료 표면에 표면처리 피막을 석출시키는 것은 불가능하였다.Therefore, a number of methods have been proposed as a method of depositing a surface treated film excellent in adhesion and corrosion resistance after coating by chemical reaction (for example, Japanese Patent Application Laid-Open No. 56-136978). (Japanese Patent Application Laid-Open No. 8-176841, Japanese Patent Laid-Open No. 9-25436, and Japanese Patent Application Laid-open No. 9-31404). However, the metal material to be subjected to any method is limited to an aluminum alloy having excellent corrosion resistance of the material itself, and it is impossible to deposit a surface treatment film on the surface of the iron-based material or the zinc-based material.

또한, 금속 아세틸아세토네이트, 수용성 무기 티탄 화합물 또는 수용성 무기 지르코늄 화합물로 되는 표면처리 조성물로, 도장 후의 내식성 및 밀착성이 우수한 표면처리 피막을 석출시키는 수법이 제안되어 있다(일본국 특허공개 제2000-199077호 공보 참조). 이 방법을 사용함으로써, 적용되는 금속재료가 알루미늄 합금 이외 에 마그네슘, 마그네슘 합금, 아연 및 아연도금 합금으로까지 확대되었다. 그러나, 이 방법으로는 냉연강판 등의 철계 재료 표면에 표면처리 피막을 석출시키는 것은 불가능하여, 철계 재료를 동시에 처리하는 것은 불가능하다. Also, a surface treatment composition comprising a metal acetylacetonate, a water soluble inorganic titanium compound, or a water soluble inorganic zirconium compound has been proposed in which a method of depositing a surface treated film excellent in corrosion resistance and adhesion after coating has been proposed (Japanese Patent Laid-Open No. 2000-199077). See publication number). By using this method, the applied metal materials have been extended to magnesium, magnesium alloys, zinc and galvanized alloys in addition to aluminum alloys. However, in this method, it is impossible to deposit a surface treatment film on the surface of iron-based materials such as cold rolled steel sheets, and it is impossible to simultaneously process iron-based materials.

더욱이, 크롬프리(chrome-free) 도포형 산성 조성물에 의한 금속의 표면처리 방법, 예를 들면 내식성이 우수한 피막이 될 수 있는 성분의 수용액을 금속 표면에 도포한 후, 수세(水洗) 공정을 행하지 않고 소부(baking) 건조함으로써 피막을 고정화하는 금속의 표면처리 방법이 제안되어 있다(일본국 특허공개 제(평)5-195244호 공보 참조). 이 방법은, 피막의 생성에 화학반응을 수반하지 않기 때문에, 아연도금 강판, 냉연강판 및 알루미늄 합금 등의 금속 표면에 피막처리를 실시하는 것이 가능하다. 그러나, 상기 일본국 특허공개 제2000-204485호 공보에 개시된 발명과 마찬가지로 도포 건조에 의해 피막을 생성시키기 때문에, 자동차 차체와 같은 복잡한 구조물에 균일한 피막처리를 실시하는 것은 곤란하다.Furthermore, a metal surface treatment method using a chromium-free coating type acidic composition, for example, after applying an aqueous solution of a component that can be a film having excellent corrosion resistance to the metal surface, without performing a water washing step A method of surface treatment of a metal for fixing a film by baking drying is proposed (see Japanese Patent Laid-Open No. 5-195244). Since this method does not involve a chemical reaction in the formation of the film, it is possible to coat the metal surface such as a galvanized steel sheet, a cold rolled steel sheet, and an aluminum alloy. However, in the same manner as the invention disclosed in Japanese Patent Laid-Open No. 2000-204485, since a film is formed by coating drying, it is difficult to perform a uniform film treatment on a complex structure such as an automobile body.

따라서, 종래 기술에서는 환경에 유해한 성분을 포함하지 않고, 폐기물이 되는 슬러지가 발생하지 않는 처리액으로, 자동차 차체와 같이 냉연강판 등의 철계 재료와 아연도금 강판 등의 아연계 재료, 더욱이 알루미늄계 및 마그네슘계 재료의 2종류 내지 4종류를 동시에 처리하고, 내식성과 밀착성이 우수한 표면처리를 실시하는 것은 불가능하였다.Therefore, in the prior art, the treatment liquid does not contain components harmful to the environment and does not generate waste sludge, such as iron-based materials such as cold rolled steel sheets and zinc-based materials such as galvanized steel sheets, such as automobile bodies, and aluminum and It was not possible to simultaneously treat two to four kinds of magnesium-based materials and to perform a surface treatment excellent in corrosion resistance and adhesion.

발명의 개시Disclosure of the Invention

본 발명은, 종래 기술에서는 불가능하였던, 환경에 유해한 성분을 포함하지 않고, 폐기물이 되는 슬러지가 발생하지 않으며, 철계 재료, 아연계 재료, 알루미늄계 및 마그네슘계 재료의 표면에 도장 후의 내식성이 우수한 표면처리 피막을 석출시키는 것을 가능하게 하는 표면처리용 처리액을 제공하고, 또한 자동차 차체와 같이 철계 재료, 아연계 재료, 알루미늄계 및 마그네슘계 재료의 2종류 내지 4종류를 조합시킨 구조물의 금속 표면에, 도장 후의 내식성이 우수한 표면처리 피막을 동일 조성, 동일 조건에서 동시에 석출시키는 것을 가능하게 하는 표면처리용 처리액을 제공하며, 추가로 이 표면처리용 처리액을 사용하는 표면처리 방법을 제공하는 것을 목적으로 한다.The present invention does not contain components harmful to the environment, which is impossible in the prior art, does not generate waste sludge, and has excellent corrosion resistance after coating on iron, zinc, aluminum and magnesium materials. Provided is a treatment liquid for surface treatment that makes it possible to deposit a treatment film, and also to a metal surface of a structure in which two to four kinds of iron-based materials, zinc-based materials, aluminum-based and magnesium-based materials are combined, such as an automobile body. To provide a treatment solution for surface treatment which enables to simultaneously deposit a surface treatment film having excellent corrosion resistance after coating under the same composition and under the same conditions, and further to provide a surface treatment method using the treatment solution for surface treatment. The purpose.

본 발명자 등은 상기 과제를 해결하기 위한 수단에 대해 예의 검토한 결과, 종래 기술에는 없는 표면처리용 처리액 및 표면처리 방법을 완성하는데 이르렀다.MEANS TO SOLVE THE PROBLEM As a result of earnestly examining the means for solving the said subject, the present inventors came to complete the surface treatment process liquid and the surface treatment method which are not in the prior art.

즉 본 발명은 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료로부터 선택되는 금속재료를 각각 단독으로 또는 그의 2종류 이상을 동시에 표면처리하기 위한 수계 표면처리액으로서, 지르코늄 화합물 및 티타늄 화합물로부터 선택되는 1종류 이상의 화합물을 상기 금속원소로서 5~5000 ppm 포함하고, 또한 유리(遊離) 플루오르이온을 0.1~100 ppm 포함하며, 또한 pH가 2~6인 것을 특징으로 하는 금속의 표면처리용 처리액이다. That is, the present invention is an aqueous surface treatment liquid for surface treatment of a metal material selected from an iron-based material, a zinc-based material, an aluminum-based material, and a magnesium-based material alone or two or more of them simultaneously, from a zirconium compound and a titanium compound. 5 to 5000 ppm of said at least one compound selected as said metal element, 0.1 to 100 ppm of free fluoride ions, and pH of 2 to 6, said surface treatment treatment of metal It is liquid.

이 표면처리용 처리액에는, 추가로 칼슘 화합물, 마그네슘 화합물 및 스트론튬 화합물로 이루어진 군으로부터 선택되는 1종류 이상의 화합물을 함유시켜도 된다. 그 때의 이들 화합물의 농도는, 이들의 금속원소로서 칼슘 화합물의 경우는 5~100 ppm, 마그네슘 화합물 또는 스트론튬 화합물의 경우는 10~5000 ppm이 바람직하다. 이 처리액에는, 추가로 질산근(硝酸根)을 1000~50000 ppm 함유시키는 것이 바람직하다. 또한, 추가로 HClO3, HBrO3, HNO2, HNO3, HMnO4, HVO3, H2O2, H2WO4, H2MoO4 및 이들의 염류 중으로부터 선택되는 적어도 1종류의 산소산 및/또는 산소산염을 함유시키는 것이 바람직하다. 이들 표면처리용 처리액에는, 추가로 수용성 고분자 화합물 및 수분산성 고분자 화합물로부터 선택되는 적어도 1종류의 고분자 화합물을 함유시켜도 되고, 비이온계 계면활성제, 음이온계 계면활성제 및 양이온계 계면활성제로부터 선택되는 적어도 1종류의 계면활성제를 함유시켜도 된다.The treatment solution for surface treatment may further contain at least one compound selected from the group consisting of calcium compounds, magnesium compounds and strontium compounds. The concentration of these compounds at that time is preferably 5 to 100 ppm in the case of calcium compounds, and 10 to 5000 ppm in the case of magnesium compounds or strontium compounds as these metal elements. It is preferable to contain 1000-50000 ppm of nitrate roots in this process liquid further. Further, at least one oxygen acid selected from HClO 3 , HBrO 3 , HNO 2 , HNO 3 , HMnO 4 , HVO 3 , H 2 O 2 , H 2 WO 4 , H 2 MoO 4 and salts thereof, and It is preferred to contain oxalate. These surface treatment liquids may further contain at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound, and are selected from nonionic surfactants, anionic surfactants and cationic surfactants. You may contain at least 1 type of surfactant.

또한, 본 발명은 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료로부터 선택되는 금속재료의 각각 단독을 또는 그의 2종류 이상을 동시에, 상술한 표면처리용 처리액과 접촉시키는 것을 특징으로 하는 금속의 표면처리 방법이다. 이 표면처리 방법에 있어서, 금속재료를 표면처리용 처리액과 접촉시킨 후에 수세하거나 또는 수세하지 않고, 추가로 코발트, 니켈, 주석, 구리, 티타늄 및 지르코늄으로 이루어진 군으로부터 선택되는 적어도 1종류의 원소를 포함하는 화합물의 산성 수용액과 접촉시켜도 되고, 또한 수용성 고분자 화합물 및 수분산성 고분자 화합물로부터 선택되는 적어도 1종류의 고분자 화합물을 포함하는 처리액과 접촉시켜도 된다.In addition, the present invention is characterized in that each of the metal materials selected from an iron-based material, a zinc-based material, an aluminum-based material and a magnesium-based material alone or two or more thereof is brought into contact with the above-mentioned surface treatment treatment liquid. Metal surface treatment method. In this surface treatment method, at least one element selected from the group consisting of cobalt, nickel, tin, copper, titanium, and zirconium, with or without washing with a metal material after contact with the treatment liquid for surface treatment. It may be brought into contact with an acidic aqueous solution of a compound containing, and may be brought into contact with a treatment liquid containing at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound.

또한, 본 발명은 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료로부터 선택되는 금속재료의 각각 단독을 또는 그의 2종류 이상을 동시에, 상기 금속재료를 음극으로 하여 상술한 표면처리용 처리액 중에서 전해처리하는 것을 특징으로 하는 금속의 표면처리 방법이다. 이 표면처리 방법에 있어서, 금속재료를 표면처리용 처리액 중에서 전해처리한 후에 수세하거나 또는 수세하지 않고, 추가로 코발트, 니켈, 주석, 구리, 티타늄 및 지르코늄으로 이루어진 군으로부터 선택되는 적어도 1종류의 원소를 포함하는 화합물의 산성 수용액과 접촉시켜도 되고, 또한 수용성 고분자 화합물 및 수분산성 고분자 화합물로부터 선택되는 적어도 1종류의 고분자 화합물을 포함하는 처리액과 접촉시켜도 된다.In addition, the present invention is the treatment solution for surface treatment described above, wherein each of metal materials selected from an iron-based material, a zinc-based material, an aluminum-based material and a magnesium-based material alone or two or more thereof is used simultaneously, and the metal material is used as a cathode. The surface treatment method of the metal characterized by electrolytic treatment in the middle. In the surface treatment method, at least one kind selected from the group consisting of cobalt, nickel, tin, copper, titanium, and zirconium, without washing or washing with water after electrolytic treatment of the metal material in the treatment solution for surface treatment. It may be brought into contact with an acidic aqueous solution of a compound containing an element, or may be brought into contact with a treatment liquid containing at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound.

또한, 본 발명은 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료로부터 선택된 탈지·청정화 처리되어 있지 않은 금속재료의 각각 단독을 또는 그의 2종류 이상을 동시에, 상술한 비이온계 계면활성제, 음이온계 계면활성제 및 양이온계 계면활성제로부터 선택되는 적어도 1종류의 계면활성제를 함유시킨 표면처리액과 접촉시켜, 금속 표면의 탈지 처리와 피막형성 처리를 동시에 행할 수 있는 방법이다. In addition, the present invention provides the above-mentioned nonionic surfactant, each of which alone or two or more of the metal materials which have not been degreased and cleaned, selected from an iron-based material, a zinc-based material, an aluminum-based material and a magnesium-based material; It is a method which can carry out the degreasing process of a metal surface, and a film formation process simultaneously by contacting with the surface treatment liquid containing at least 1 sort (s) of surfactant chosen from anionic surfactant and cationic surfactant.

또한, 본 발명은 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료로부터 선택되는 금속재료 표면에, 상술한 표면처리 방법에 의해 형성된 티타늄 및 지르코늄으로부터 선택되는 금속원소의 적어도 1종류를 포함하는 표면처리 피막을 갖고, 또한 상기 표면처리 피막의 부착량이 상기 금속원소 환산으로 철계 금속재료 표면의 경우에는 30 ㎎/㎡ 이상이고, 아연계 금속재료 표면의 경우에는 20 ㎎/㎡ 이상이며, 알루미늄계 금속재료 표면의 경우에는 10 ㎎/㎡ 이상이고, 마그네슘계 금속재료 표면의 경우에는 10 ㎎/㎡ 이상인 것을 특징으로 하는 금속재료이다.The present invention also includes at least one kind of metal element selected from titanium and zirconium formed by the surface treatment method described above on the surface of a metal material selected from an iron material, a zinc material, an aluminum material and a magnesium material. It has a surface treatment film, and the adhesion amount of the said surface treatment film is 30 mg / m <2> or more in the case of the iron metal material surface in conversion of the said metal element, 20 mg / m <2> or more in the case of the zinc-based metal material surface, and aluminum type The metal material surface is 10 mg / m 2 or more, and the magnesium-based metal material surface is 10 mg / m 2 or more.

도면의 간단한 설명Brief description of the drawings

도 1은, 본 발명의 실시예 및 비교예에 제공한 시험용 제공판(供試板)의 평면도이다. 도 2는 그 시험용 제공판의 정면도이다. 1 is a plan view of a test providing plate provided in Examples and Comparative Examples of the present invention. 2 is a front view of the test providing plate.

발명을 실시하기 위한 최선의 형태Best Mode for Carrying Out the Invention

본 발명은 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료로부터 선택되는 금속재료를 각각 단독으로 또는 그의 2종류 이상을 동시에 표면처리하여, 도장 후의 내식성이 우수한 표면처리 피막을 석출시키는 기술에 관한 것이다. 여기에서 철계 재료란, 냉연강판 및 열간압연(熱間壓延) 강판 등의 강판, 주철 및 소결재(燒結材) 등의 철계 금속을 말한다. 또한 아연계 재료란, 아연 다이캐스트나 아연 함유 도금을 말한다. 이 아연 함유 도금은, 아연 또는 아연과 다른 금속(예를 들면 니켈, 철, 알루미늄, 망간, 크롬, 마그네슘, 코발트, 납 및 안티몬 등의 적어도 1종류의 금속)의 합금 및 불가피한 불순물에 의해 도금된 것을 말하고, 그 도금 방법은 예를 들면 용융도금, 전기도금, 증착도금 등으로 제한은 없다. 또한, 알루미늄계 재료란, 5000계 알루미늄 합금이나 6000계 알루미늄 합금과 같은 알루미늄 합금판재나 ADC-12로 대표되는 알루미늄 합금 다이캐스트 등을 나타낸다. 더욱이, 마그네슘계 재료란, 마그네슘 합금을 사용한 판재나 다이캐스트 등을 말한다. The present invention provides a technique for surface treatment of a metal material selected from an iron-based material, a zinc-based material, an aluminum-based material, and a magnesium-based material alone or two or more thereof at the same time to deposit a surface-treated coating having excellent corrosion resistance after coating. It is about. The iron-based material refers to iron-based metals such as steel sheets such as cold rolled steel sheets and hot rolled steel sheets, cast iron and sintered materials. In addition, zinc type material means zinc die-casting and zinc containing plating. This zinc-containing plating is plated with an alloy and unavoidable impurities of zinc or zinc and another metal (for example, at least one metal such as nickel, iron, aluminum, manganese, chromium, magnesium, cobalt, lead and antimony). The plating method is not limited to, for example, hot dip plating, electroplating, vapor deposition plating, and the like. In addition, an aluminum type material shows the aluminum alloy plate materials, such as a 5000 type aluminum alloy and a 6000 type aluminum alloy, the aluminum alloy die-cast represented by ADC-12, etc. Moreover, magnesium type material means the board | plate material, die-cast, etc. which used magnesium alloy.

본 발명은, 상기 금속재료의 단독을 구성부재에 포함하는 구조물, 또는 상기 금속재료의 2종류 내지 4종류를 구성부재에 포함하는 구조물에 적용된다. 그리고, 상기 금속재료의 2종류 내지 4종류를 구성부재에 포함하는 구조물에 적용하는 경우는, 2종류 내지 4종류의 금속재료의 표면을 동시에 표면처리할 수 있는 것이다. 여기에서, 2종류 내지 4종류의 금속재료를 동시에 표면처리하는 경우는, 이종(異種) 금속끼리 접촉되지 않는 상태여도 상관없고, 용접, 접착, 리벳(rivet) 고정 등의 접합 방법에 의해 이종 금속끼리 접합 접촉된 상태여도 상관없다. The present invention is applied to a structure including the metal material alone in a constituent member, or a structure including two to four kinds of the metal material in a constituent member. In the case where two to four kinds of the metal materials are applied to the structure including the constituent members, the surfaces of the two to four kinds of metal materials can be surface treated at the same time. Here, when surface treatment of two or four kinds of metal materials is carried out simultaneously, dissimilar metals may not be in contact with each other, and dissimilar metals may be formed by a joining method such as welding, bonding, or rivet fixing. It may be in the state where the joint contacted each other.

본 발명의 표면처리용 처리액은, 지르코늄 화합물 및 티타늄 화합물로부터 선택되는 1종류 이상의 화합물을 상기 금속원소로서 5~5000 ppm 포함하고, 유리 플루오르이온을 0.1~100 ppm 포함하며, 또한 pH가 2~6인 처리액이다. 여기에서, 본 발명에서 사용되는 지르코늄 화합물로서는 ZrCl4, ZrOCl2, Zr(SO4)2, ZrOSO4, Zr(NO3)4, ZrO(NO3)2, H2ZrF6, H2ZrF6의 염, ZrO2, ZrOBr2 및 ZrF4 등을 들 수 있다. 또한 티타늄 화합물로서는 TiCl4, Ti(SO4)2, TiOSO4, Ti(NO3)4, TiO(NO3)2, TiO2OC2O4, H2TiF6, H2TiF6의 염, TiO2 및 TiF4 등을 들 수 있다. 본 발명에서는 지르코늄 화합물이 바람직하게 사용된다. The treatment solution for surface treatment of the present invention contains 5 to 5000 ppm of at least one compound selected from a zirconium compound and a titanium compound as the metal element, 0.1 to 100 ppm of free fluorine ion, and a pH of 2 to It is a treatment liquid of six. Here, as a zirconium compound used in the present invention, ZrCl 4 , ZrOCl 2 , Zr (SO 4 ) 2 , ZrOSO 4 , Zr (NO 3 ) 4 , ZrO (NO 3 ) 2 , H 2 ZrF 6 , H 2 ZrF 6 Salts, ZrO 2 , ZrOBr 2 , ZrF 4 and the like. As the titanium compound, salts of TiCl 4 , Ti (SO 4 ) 2 , TiOSO 4 , Ti (NO 3 ) 4 , TiO (NO 3 ) 2 , TiO 2 OC 2 O 4 , H 2 TiF 6 , H 2 TiF 6 , TiO 2 , TiF 4 , and the like. In the present invention, a zirconium compound is preferably used.

본 발명에 사용되는 지르코늄 화합물 및 티타늄 화합물로부터 선택되는 1종류 이상의 화합물의 농도는, 상기 금속원소로서(즉, 지르코늄 및/또는 티타늄으로서) 5~5000 ppm인 것이 바람직하고, 보다 바람직하게는 10~3000 ppm이다. 본 발명의 표면처리용 처리액 및 표면처리 방법을 사용하여 얻어지는 피막은 지르코늄 또는 티타늄의 산화물이나 수산화물이기 때문에, 상기 지르코늄 화합물 또는 티타늄 화합물로부터 선택되는 1종류 이상의 화합물의 농도가 지르코늄 및/또는 티타늄으로서 5 ppm 보다도 작으면, 피막 주성분 농도가 작아지기 때문에 내식성을 얻기 위해 충분한 부착량을 실용적인 처리시간으로 얻는 것이 곤란해진다. 또한, 농도가 5000 ppm 보다도 큰 경우는, 충분한 부착량은 얻어지지만, 그 이상 내식성을 향상시키는 효과는 없어, 경제적으로 불리할 뿐이다.The concentration of the at least one compound selected from the zirconium compound and the titanium compound used in the present invention is preferably 5 to 5000 ppm as the metal element (that is, as zirconium and / or titanium), more preferably 10 to 3000 ppm. Since the film obtained by using the treatment solution for surface treatment and the surface treatment method of the present invention is an oxide or hydroxide of zirconium or titanium, the concentration of one or more compounds selected from the zirconium compound or titanium compound is zirconium and / or titanium. If it is smaller than 5 ppm, since the main concentration of the coating film becomes small, it is difficult to obtain a sufficient amount of adhesion in a practical treatment time in order to obtain corrosion resistance. In addition, when the concentration is larger than 5000 ppm, a sufficient adhesion amount is obtained, but there is no effect of improving the corrosion resistance any more, which is only economically disadvantageous.

지르코늄 화합물 또는 티타늄 화합물은, 산성용액에는 비교적 용해되지만, 알칼리용액 중에서는 불안정하여, 용이하게 지르코늄 또는 티타늄의 산화물 또는 수산화물로서 석출된다. 본 발명의 표면처리용 처리액의 pH는 2~6, 보다 바람직한 pH는 3~6이다. 이 pH에서 피처리 금속재료를 본 발명의 표면처리용 처리액과 접촉시키면, 피처리 금속재료의 용해반응이 일어난다. 그리고, 피처리 금속재료가 용해됨으로써, 피처리 금속재료 계면(界面)에서는 pH의 상승이 일어나, 지르코늄 및 티타늄의 산화물 또는 수산화물이 피막으로서 피처리 금속재료 표면에 석출되는 것이다.The zirconium compound or titanium compound is relatively dissolved in an acidic solution, but is unstable in an alkaline solution and easily precipitates as an oxide or hydroxide of zirconium or titanium. PH of the process liquid for surface treatments of this invention is 2-6, and more preferable pHs are 3-6. When the metal material to be treated is brought into contact with the treatment solution for surface treatment of the present invention at this pH, dissolution reaction of the metal material to be processed occurs. As the metal material to be dissolved is dissolved, the pH rises at the metal material interface, and oxides or hydroxides of zirconium and titanium are deposited on the surface of the metal material as a film.

본 발명의 표면처리용 처리액으로는, 그 중에 유리 플루오르이온을 존재시킨다. 유리 플루오르이온을 존재시키는 데에는, 표면처리용 처리액에 플루오르 화합물을 첨가한다. 이 유리 플루오르이온의 공급원으로서는 플루오르화 수소산, H2ZrF6, H2ZrH6의 염, H2TiF6, H2TiF6의 염, H2SiF6, H2SiF6의 염, HBF4, HBF4의 염, NaHF2, KHF2, NH4HF2, NaF, KF 및 NH4F 등을 들 수 있다. 유리 플루오르이온은, 표면처리용 처리액 중에 있어서의 지르코늄 화합물 및 티타늄 화합물의 안정성을 향상시키는 작용을 갖는다. 더욱이 유리 플루오르이온은, 본 발명의 표면처리의 대상으로 하는 금속재료인 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료의 어떤 재료에 대해서도 산성용액 중에서의 용해반응을 촉진하는 작용을 갖는다. 따라서, 플루오르 화합물을 첨가하고 유리 플루오르이온을 존재시킴으로써, 본 발명의 표면처리용 처리액의 안정성을 높이면서, 또한 피처리 금속재료에 대한 반응성도 높이는 것이 가능해진다.As the treatment solution for surface treatment of the present invention, free fluorine ions are present therein. In order to make free fluorine ion exist, a fluorine compound is added to the surface treatment liquid. As a source of this free fluorine ion, hydrofluoric acid, a salt of H 2 ZrF 6 , H 2 ZrH 6 , a salt of H 2 TiF 6 , a H 2 TiF 6 , a salt of H 2 SiF 6 , a H 2 SiF 6 , HBF 4 , Salts of HBF 4 , NaHF 2 , KHF 2 , NH 4 HF 2 , NaF, KF, NH 4 F and the like. Free fluorine ion has the effect | action which improves the stability of a zirconium compound and a titanium compound in the process liquid for surface treatment. Furthermore, the free fluorine ion has an effect of promoting dissolution reaction in an acidic solution to any material of iron-based material, zinc-based material, aluminum-based material and magnesium-based material which is the metal material to be subjected to the surface treatment of the present invention. Therefore, the addition of a fluorine compound and the presence of free fluorine ions make it possible to increase the stability of the treatment solution for surface treatment of the present invention and to increase the reactivity to the metal material to be treated.

본 출원인은, 앞서 철 또는 아연의 적어도 1종류를 포함하는 금속의 표면을 처리하기 위한 표면처리용 조성물 및 표면처리용 처리액에 대해서, 티타늄 화합물이나 지르코늄 화합물과 플루오르 함유 화합물을 사용하여, 표면처리용 조성물 및 표면처리용 처리액 중의 상기 금속원소의 합계 몰 중량 A와 플루오르 함유 화합물 중의 전체 플루오르원자를 HF로 환산했을 때의 몰 중량 B의 비 A/B를 특정 범위, 즉 0.06~0.18로 하는 것을 제안하였다(WO02/103080). 본 발명에 의하면, 티타늄 화합물이나 지르코늄 화합물의 금속원소의 농도, pH, 유리 플루오르이온의 농도를 규정함으로써, 상기의 특정 범위 밖에 있어서도 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료로부터 선택되는 금속재료를 각각 단독으로 또는 그의 2종류 이상을 동시에 표면처리하는 것이 가능하다. The present applicant has previously used a titanium compound, a zirconium compound, and a fluorine-containing compound for the surface treatment composition and the surface treatment liquid for treating the surface of a metal containing at least one kind of iron or zinc. The ratio A / B of the total molar weight A of the metal elements in the composition for the composition and the treatment solution for the surface treatment and the molar weight B when the total fluorine atoms in the fluorine-containing compound is converted into HF is set to a specific range, that is, 0.06 to 0.18. It was proposed (WO02 / 103080). According to the present invention, by defining the concentration of metal elements, pH, and free fluorine ions of a titanium compound or a zirconium compound, it is selected from an iron-based material, a zinc-based material, an aluminum-based material, and a magnesium-based material even outside the above specific ranges. It is possible to surface-treat a metal material individually or simultaneously two or more types thereof.

철계 재료, 아연계 재료, 알루미늄계 및 마그네슘계 재료는, 각각의 반응성이 상이하기 때문에, 종래 기술에서는 상기 금속재료의 2종류 이상을 동시에 표면처리하는 것은 불가능하였다. 본 발명에 있어서는, 표면처리용 처리액의 안정성과 반응성의 밸런스를 유리 플루오르이온의 농도를 조정함으로써 자유자재로 변경할 수 있기 때문에, 반응성이 상이한 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료의 2종류 이상을 동시에, 또는 각각 단독으로 표면처리를 실시하는 것이 가능하다.Since the iron-based material, the zinc-based material, the aluminum-based, and the magnesium-based materials are different in reactivity, it has not been possible to simultaneously surface-treat two or more kinds of the metal materials in the prior art. In the present invention, since the balance between the stability and the reactivity of the treatment solution for surface treatment can be changed freely by adjusting the concentration of free fluorine ions, iron-based materials, zinc-based materials, aluminum-based materials and magnesium-based materials having different reactivity. It is possible to surface-treat two or more kinds of at the same time or individually.

여기에서 말하는 유리 플루오르이온의 농도는, 시판의 이온전극을 사용하여 측정되는 플루오르이온 농도를 나타낸다. 본 발명의 표면처리용 처리액 중의 유리 플루오르이온의 농도는 0.1~100 ppm인 것이 바람직하고, 보다 바람직하게는 2~70 ppm이다. 유리 플루오르이온의 농도가 100 ppm 보다도 높은 경우는, 피처리 금속재료의 용해반응은 촉진되지만, 표면처리용 처리액 중에서의 지르코늄 화합물 및 티타늄 화합물이 매우 안정하기 때문에, 피처리 금속재료 계면에서 pH가 상승해도 피막으로서 석출되기 어려워진다. 또한, 0.1 ppm 보다도 작은 경우는, 표면처리용 처리액의 안정성과 반응성의 향상에 대한 효과가 작아, 유리 플루오르이온을 함유시키는 의미가 없어진다.The concentration of free fluorine ions herein refers to the concentration of fluorine ion measured using a commercially available ion electrode. It is preferable that the concentration of free fluorine ion in the process liquid for surface treatment of this invention is 0.1-100 ppm, More preferably, it is 2-70 ppm. When the concentration of free fluorine ion is higher than 100 ppm, dissolution reaction of the metal material to be treated is promoted, but since the zirconium compound and titanium compound in the surface treatment solution are very stable, the pH at the interface of the metal material to be treated is very stable. Even if it rises, it becomes difficult to precipitate as a film. Moreover, when smaller than 0.1 ppm, the effect on the improvement of stability and reactivity of the surface treatment process liquid is small, and it becomes meaningless to contain free fluorine ion.

본 발명에 있어서의 유리 플루오르이온은, 표면처리용 처리액의 안정성 및 반응성의 향상작용 이외에, 피처리 금속재료의 용해에 의해 용출된 성분을 표면처리용 처리액 중에 안정하게 유지하는 작용을 담당한다. 종래 기술의 하나인 인산아연 처리의 경우는, 예를 들면 철계 금속재료로부터 용출된 철이온이 인산과 불용성 염인 인산철을 만들기 때문에 슬러지가 발생한다. 본 발명의 표면처리용 처리액에 있어서도, 처리액 중에 인산근을 포함시킬 수 있지만, 인산근의 농도가 1.0 g/L를 초과하면 슬러지가 발생하는 경우가 있다. 또한, 처리욕(處理浴)의 용량에 대해 현저하게 피처리 금속재료의 처리량이 많은 경우는, 용출된 성분을 가용화하기 위해, 예를 들면 황산, 염산 등의 무기산; 초산, 옥살산, 타르타르산, 구연산, 숙신산, 글루콘산, 프탈산 등의 유기산; 용출 성분을 킬레이트할 수 있는 킬레이트제 등을 1종류 또는 2종류 이상 첨가해도 된다.The free fluorine ion in the present invention plays a role of stably maintaining the component eluted by dissolution of the metal material to be treated in the surface treatment solution, in addition to improving the stability and reactivity of the surface treatment solution. . In the case of zinc phosphate treatment, which is one of the prior arts, sludge occurs because, for example, iron ions eluted from an iron-based metal material produce phosphoric acid and iron phosphate, which is an insoluble salt. Even in the treatment solution for surface treatment of the present invention, phosphate root may be included in the treatment liquid, but sludge may occur when the concentration of the phosphate muscle exceeds 1.0 g / L. In addition, when the throughput of the metal material to be treated is remarkably large with respect to the capacity of the treatment bath, for example, inorganic acids such as sulfuric acid and hydrochloric acid; Organic acids such as acetic acid, oxalic acid, tartaric acid, citric acid, succinic acid, gluconic acid, and phthalic acid; You may add 1 type, or 2 or more types of chelating agents etc. which can chelate an eluting component.

본 발명의 표면처리용 처리액에는, 칼슘 화합물, 마그네슘 화합물 및 스트론튬 화합물로 이루어진 군으로부터 선택되는 적어도 1종류 이상을 포함할 수 있다. 본 발명은, 어느 특정 농도의 지르코늄 화합물 및 티타늄 화합물을 포함하는 수용액의 유리 플루오르이온의 농도를 어느 일정 범위로 함으로써, 철계 재료, 아연계 재료, 알루미늄계 및 마그네슘계 재료의 2종류 내지 4종류를 동시에, 또는 각각 단독으로 표면처리를 실시하는 것을 가능하게 한 것이다. 여기에서, 상기 칼슘 화합물, 마그네슘 화합물 또는 스트론튬 화합물에 포함되는 금속원소(칼슘, 마그네슘 또는 스트론튬)는, 수용액 중에서 플루오르와 플루오르화물의 염을 생성함으로써, 수용액 중의 유리 플루오르이온 농도를 일정 값으로 유지하려고 하는 작용을 갖는다. 이 작용에 의해, 다양한 종류의 피처리 금속재료를 동시에 표면처리해도 그 사용 비율에 의존하지 않고, 항상 일정한 유리 플루오르이온 농도가 유지되기 때문에, 각각의 피처리 금속재료에 최적인 피막부착량이 얻어진다.The treatment solution for surface treatment of the present invention may include at least one or more selected from the group consisting of calcium compounds, magnesium compounds and strontium compounds. The present invention provides two to four kinds of iron-based materials, zinc-based materials, aluminum-based, and magnesium-based materials by setting the concentration of free fluorine ions in an aqueous solution containing a zirconium compound and a titanium compound at a specific concentration in a certain range. It is possible to perform surface treatment simultaneously or individually. Here, the metal element (calcium, magnesium or strontium) contained in the calcium compound, magnesium compound or strontium compound is intended to maintain the free fluorine ion concentration in the aqueous solution by generating salts of fluorine and fluoride in the aqueous solution. Has action. By this action, even if the surface treatment of various kinds of metal materials to be treated simultaneously does not depend on the use ratio and always maintains a constant free fluorine concentration, the optimum coating amount for each metal material is obtained. .

본 발명에 사용할 수 있는 칼슘 화합물, 마그네슘 화합물 또는 스트론튬 화합물로서는, 예를 들면 이들 금속원소의 산화물, 수산화물, 염화물, 황산염, 질산염 및 탄산염 등을 들 수 있다. 또한, 칼슘 화합물, 마그네슘 화합물 및 스트론튬 화합물 이외에도 플루오르 함유 수용액 중의 유리 플루오르이온 농도를 일정하게 유지하는 작용이 있는 화합물이라면, 무기물, 유기물의 여하를 불문하고 본 발명에 사용할 수 있다.Examples of calcium compounds, magnesium compounds or strontium compounds that can be used in the present invention include oxides, hydroxides, chlorides, sulfates, nitrates and carbonates of these metal elements. In addition to the calcium compound, the magnesium compound and the strontium compound, any compound having a function of maintaining a constant free fluorine concentration in the fluorine-containing aqueous solution can be used in the present invention regardless of whether it is an inorganic substance or an organic substance.

본 발명에 사용하는 마그네슘 화합물 또는 스트론튬 화합물의 농도는, 상기 금속원소로서 10~5000 ppm인 것이 바람직하고, 보다 바람직하게는 100~3000 ppm이다. 칼슘 화합물의 경우는, 플루오르화칼슘의 용해도가 현저하게 작기 때문에 칼슘으로서 5~100 ppm이 바람직하고, 보다 바람직하게는 5~50 ppm이다. 여기에서, 상기 화합물의 농도가 상한값 보다도 큰 경우는, 표면처리용 처리액의 안정성이 손상되어 연속 조업상의 지장이 생길 가능성이 있다. 또한, 상기 화합물의 농도가 하한값 보다도 작은 경우는, 특히 철계 재료 위의 본 발명의 피막의 부착량이 저하될 염려가 있다. It is preferable that the density | concentration of the magnesium compound or strontium compound used for this invention is 10-5000 ppm as said metal element, More preferably, it is 100-3000 ppm. In the case of a calcium compound, since solubility of calcium fluoride is remarkably small, 5-100 ppm is preferable as calcium, More preferably, it is 5-50 ppm. Here, when the concentration of the compound is larger than the upper limit, the stability of the treatment solution for surface treatment may be impaired, resulting in problems in continuous operation. In addition, when the concentration of the compound is smaller than the lower limit, there is a concern that the adhesion amount of the coating film of the present invention on the iron-based material is particularly lowered.

또한, 본 발명의 표면처리용 처리액에는 질산근을 1000~50000 ppm, 보다 바람직하게는 1000~30000 ppm 첨가할 수 있다. 질산근은 산화제로서 작용하여, 본 발명에 있어서의 피막 석출반응을 촉진하는 작용과, 상기 칼슘 화합물, 마그네슘 화합물 또는 스트론튬 화합물의 표면처리용 처리액 중에서의 용해도를 높이는 작용을 갖는다. 따라서, 질산근의 농도가 1000 ppm 보다도 작은 경우에도, 내식성이 우수한 피막을 석출시키는 것은 가능하지만, 상기 칼슘 화합물, 마그네슘 화합물 또는 스트론튬 화합물의 농도가 높은 경우에는, 표면처리용 처리액의 안정성이 손상될 염려가 있다. 또한, 질산근의 농도는 50000 ppm으로 충분하고, 그 이상 질산근을 첨가해도 경제적으로 불리해질 뿐이다. In addition, 1000-50000 ppm of nitrates can be added to the surface treatment liquid of this invention, More preferably, 1000-30000 ppm can be added. Nitrate acts as an oxidizing agent to promote the film deposition reaction in the present invention and to increase the solubility of the calcium compound, magnesium compound or strontium compound in the treatment solution for surface treatment. Therefore, even when the concentration of the nitrate is less than 1000 ppm, it is possible to deposit a film having excellent corrosion resistance, but when the concentration of the calcium compound, magnesium compound or strontium compound is high, the stability of the treatment solution for surface treatment is impaired. There is concern. In addition, the concentration of the nitrate is 50000 ppm is sufficient, even if the addition of nitrate more than that will be economically disadvantageous.

또한, 본 발명의 표면처리용 처리액에는 HClO3, HBrO3, HNO3, HNO2, HMnO4, HVO3, H2O2, H2WO4 및 H2MoO4로 이루어진 군으로부터 선택되는 적어도 1종류의 산소산 및/또는 이들 산소산의 염류를 첨가할 수 있다. 산소산 또는 그의 염은, 피처리소재에 대한 산화제로서 작용하여, 본 발명에 있어서의 피막형성반응을 촉진한다. 상기의 산소산 또는 이들 산소산의 염류의 첨가 농도에는 특별히 한정은 없지만, 10~5000 ppm 정도의 첨가량으로 산화제로서의 효과를 충분히 발휘한다.Further, the treatment solution for surface treatment of the present invention includes at least one selected from the group consisting of HClO 3 , HBrO 3 , HNO 3 , HNO 2 , HMnO 4 , HVO 3 , H 2 O 2 , H 2 WO 4 and H 2 MoO 4 . One type of oxygen acid and / or salts of these oxygen acids can be added. The oxygen acid or its salt acts as an oxidizing agent for the material to be treated to promote the film forming reaction in the present invention. Although there is no restriction | limiting in particular in the addition concentration of said oxygen acid or these salts of these oxygen acids, The effect as an oxidizing agent is exhibited fully by the addition amount about 10-5000 ppm.

더욱이, 본 발명의 표면처리용 처리액에는, 수용성 고분자 화합물 및 수분산성 고분자 화합물로부터 선택되는 적어도 1종류의 고분자 화합물을 첨가해도 된다. 본 발명의 표면처리용 처리액을 사용하여 표면처리한 금속재료는 충분한 내식성을 갖고 있지만, 윤활성 등의 추가적인 기능이 필요한 경우에는, 목적으로 하는 기능에 따라 고분자 화합물을 선택해서 첨가하여, 피막의 물성을 개질(改質)해도 된다. 상기의 수용성 고분자 화합물 및 수분산성 고분자 화합물로서는, 예를 들면 폴리비닐알코올, 폴리(메타)아크릴산, 아크릴산과 메타크릴산의 공중합체, 에틸렌과 (메타)아크릴산이나 (메타)아크릴레이트 등의 아크릴계 단량체의 공중합체, 에틸렌과 초산비닐의 공중합체, 폴리우레탄, 아미노변성페놀 수지, 폴리에스테르 수지, 에폭시 수지 등의 금속의 표면처리에 일반적으로 사용되고 있는 고분자 화합물을 사용할 수 있다.Moreover, you may add at least 1 sort (s) of high molecular compound chosen from the water-soluble high molecular compound and the water dispersible high molecular compound to the process liquid for surface treatments of this invention. Although the metal material surface-treated using the surface treatment process liquid of this invention has sufficient corrosion resistance, when additional functions, such as lubricity, are needed, a polymeric compound is selected and added according to the objective function, and the physical property of a film is carried out. You may modify this. As said water-soluble high molecular compound and water-dispersible high molecular compound, polyvinyl alcohol, poly (meth) acrylic acid, the copolymer of acrylic acid and methacrylic acid, acrylic monomers, such as ethylene and (meth) acrylic acid and (meth) acrylate, for example. The high molecular compound generally used for surface treatment of metals, such as a copolymer of a copolymer, a copolymer of ethylene and vinyl acetate, a polyurethane, an amino modified phenol resin, a polyester resin, and an epoxy resin, can be used.

본 발명의 표면처리용 처리액을 사용하여 금속의 표면을 처리하는데는, 일반적인 방법으로 표면을 탈지 처리하고, 청정화한 피처리 금속재료를 표면처리용 처리액에 접촉시키기만 해도 된다. 이것에 의해, 금속소재 표면에 지르코늄 및 티타늄으로부터 선택되는 금속원소의 산화물 및/또는 수산화물로 되는 피막이 석출되고, 밀착성 및 내식성이 좋은 표면처리 피막층이 형성된다. 이 접촉 처리는 스프레이 처리, 침지 처리 및 흘려붓기 처리 등의 어떠한 공법도 사용할 수 있고, 이 접촉 방법은 성능에 영향을 미치지 않는다. 상기 금속의 수산화물을 순수한 수산화물로서 얻는 것은 화학적으로 곤란하여, 일반적으로는 상기 금속의 산화물에 수화수(水和水)가 부착한 형태도 수산화물의 범주에 넣고 있다. 따라서, 상기 금속의 수산화물은 열을 가함으로써, 최종적으로는 산화물이 된다. 본 발명에 있어서의 표면처리 피막층의 구조는, 표면처리를 실시한 후에 상온 또는 저온에서 건조한 경우는, 산화물과 수산화물이 혼재한 상태, 더욱이 표면처리 후에 고온에서 건조한 경우는, 산화물만 내지는 산화물이 많은 상태가 되어 있다고 생각된다. To treat the surface of the metal using the surface treatment liquid of the present invention, the surface may be degreased by a general method, and the cleansed metal material may be brought into contact with the surface treatment liquid. As a result, a film made of an oxide and / or a hydroxide of a metal element selected from zirconium and titanium is deposited on the surface of the metal material, thereby forming a surface treated film layer having good adhesion and corrosion resistance. This contact treatment can use any method such as spray treatment, dipping treatment and pouring treatment, and this contact method does not affect performance. It is chemically difficult to obtain the hydroxide of the metal as a pure hydroxide, and in general, the form in which hydrated water adheres to the oxide of the metal is also included in the category of hydroxide. Accordingly, the hydroxide of the metal becomes an oxide finally by applying heat. The structure of the surface-treated coating layer in the present invention is a state in which oxides and hydroxides are mixed when dried at room temperature or low temperature after surface treatment, or in which only oxides or oxides are large when dried at high temperature after surface treatment. I think it is.

본 발명에 있어서의 표면처리용 처리액의 사용조건에는, 특별히 한정은 없다. 본 발명의 표면처리액의 반응성은, 표면처리용 처리액 중의 지르코늄 화합물 또는 티타늄 화합물의 농도와, 유리 플루오르이온 농도를 변경함으로써, 자유자재로 조절할 수 있다. 그 때문에, 처리온도 및 처리시간은 처리욕의 반응성과 조합시켜 어떻게라도 변경하는 것이 가능하다.There is no restriction | limiting in particular in the use condition of the process liquid for surface treatments in this invention. The reactivity of the surface treatment liquid of the present invention can be freely adjusted by changing the concentration of the zirconium compound or the titanium compound and the free fluorine concentration in the treatment solution for the surface treatment. Therefore, the treatment temperature and treatment time can be changed in any way in combination with the reactivity of the treatment bath.

또한, 상기 표면처리용 처리액에, 비이온계 계면활성제, 음이온계 계면활성제 및 양이온계 계면활성제의 군 중으로부터 선택되는 적어도 1종류의 계면활성제를 첨가하여 표면처리에 사용할 수 있다. 이 표면처리용 처리액을 사용하여 금속소재를 표면처리하는 경우는, 피처리 금속재료를 미리 탈지 처리하고, 청정화하지 않아도 양호한 피막을 형성시킬 수 있다. 즉, 이 표면처리용 처리액은 탈지 화성 겸용 표면처리제로서 사용할 수 있다. Moreover, at least 1 type of surfactant chosen from the group of a nonionic surfactant, anionic surfactant, and cationic surfactant can be added to the said surface treatment liquid, and it can be used for surface treatment. In the case of surface treatment of a metal material using this surface treatment treatment liquid, a good film can be formed without degreasing the treated metal material in advance and cleaning. In other words, the treatment solution for surface treatment can be used as a surface treatment agent for use in both degreasing properties.

또한, 본 발명의 표면처리용 처리액을 사용하여 금속의 표면을 처리하는데는, 피처리 금속재료를 음극으로 하여 표면처리용 처리액 중에서 전해를 행하는 방법을 채용하는 것도 가능하다. 여기에서, 피처리 금속재료를 음극으로 하여 전해처리를 행하면, 음극 계면에서는 수소의 환원반응이 일어나 pH가 상승한다. pH의 상승에 수반해서, 음극 계면에서의 지르코늄 화합물 및/또는 티타늄 화합물의 안정성이 저하되어, 산화물 또는 물을 포함한 수산화물로서 표면처리 피막이 석출된다. In addition, when treating the surface of metal using the surface treatment liquid of this invention, it is also possible to employ | adopt the method of electrolyzing in the surface treatment liquid using the to-be-processed metal material as a cathode. Here, when electrolytic treatment is performed using the metal material to be treated as a cathode, a reduction reaction of hydrogen occurs at the cathode interface and the pH rises. With the rise of pH, the stability of a zirconium compound and / or a titanium compound in a cathode interface falls, and a surface treatment film precipitates as a hydroxide containing an oxide or water.

또한, 피처리 금속재료를 표면처리용 처리액과 접촉한 후, 또는 표면처리용 처리액 중에서 전해처리한 후에 수세하거나 또는 수세하지 않고, 코발트, 니켈, 주석, 구리, 티타늄 및 지르코늄으로 이루어진 군으로부터 선택되는 적어도 1종류의 원소를 포함하는 화합물의 산성 수용액 또는 수용성 고분자 화합물 및 수분산성 고분자 화합물로부터 선택되는 적어도 1종류의 고분자 화합물을 포함하는 처리액과 접촉시킴으로써, 더욱이 본 발명의 효과를 높일 수 있다. Further, the metal material to be treated may be washed with or without water after contact with the treatment liquid for surface treatment or after electrolytic treatment in the treatment liquid for surface treatment, and may be selected from the group consisting of cobalt, nickel, tin, copper, titanium and zirconium. The effect of the present invention can be further enhanced by contacting with an acidic aqueous solution of a compound containing at least one element selected or a treatment liquid containing at least one polymer compound selected from a water-soluble polymer compound and a water dispersible polymer compound. .

본 발명에 의해 얻어진 표면처리 피막층은, 박막에서 우수한 도장성능을 나타내지만, 피처리 금속재료의 표면 상태에 따라서는, 표면처리 피막층에 미세한 결함부가 존재할 가능성이 있다. 따라서, 코발트, 니켈, 주석, 구리, 티타늄 및 지르코늄으로 이루어진 군으로부터 선택되는 적어도 1종류의 원소를 포함하는 화합물의 산성 수용액, 또는 수용성 고분자 화합물 및 수분산성 고분자 화합물로부터 선택되는 적어도 1종류의 고분자 화합물을 포함하는 처리액과 접촉시킴으로써, 상기의 미세한 결함부가 피복되어 내식성이 더욱 높아지는 것이다.Although the surface-treated coating layer obtained by this invention shows the outstanding coating performance in a thin film, depending on the surface state of a to-be-processed metal material, a fine defect part may exist in a surface-treated coating layer. Therefore, an acidic aqueous solution of a compound containing at least one element selected from the group consisting of cobalt, nickel, tin, copper, titanium and zirconium, or at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound By contacting with the processing liquid containing the above, the above-mentioned fine defect part is coat | covered and corrosion resistance becomes high further.

상기한 코발트, 니켈, 주석, 구리, 티타늄 및 지르코늄으로 이루어진 군으로부터 선택되는 적어도 1종류의 원소를 포함하는 화합물은, 특별히 한정은 없지만, 입수가 용이한 상기 금속원소의 산화물, 수산화물, 플루오르화물, 착플루오르화물, 염화물, 질산염, 옥시질산염, 황산염, 옥시황산염, 탄산염, 옥시탄산염, 인산염, 옥시인산염, 옥살산염, 옥시옥살산염 및 유기 금속 화합물 등을 사용할 수 있다. 또한, 상기 금속원소를 포함하는 산성 수용액의 pH는 2~6인 것이 바람직하고, 인산, 질산, 황산, 플루오르화수소산, 염산 및 유기산 등의 산이나, 수산화나트륨, 수산화칼륨, 수산화리튬, 알칼리금속염, 암모늄염 및 아민류 등의 알칼리로 조정할 수 있다.The compound containing at least one element selected from the group consisting of cobalt, nickel, tin, copper, titanium and zirconium described above is not particularly limited, but oxides, hydroxides, fluorides and complexes of the above-described metal elements are easily available. Fluorides, chlorides, nitrates, oxynitrates, sulfates, oxysulfates, carbonates, oxycarbonates, phosphates, oxyphosphates, oxalates, oxyoxalates and organometallic compounds. In addition, the pH of the acidic aqueous solution containing the metal element is preferably 2 to 6, and acids such as phosphoric acid, nitric acid, sulfuric acid, hydrofluoric acid, hydrochloric acid and organic acid, and sodium hydroxide, potassium hydroxide, lithium hydroxide, and alkali metal salts. And alkali such as ammonium salts and amines.

또한, 상기한 수용성 고분자 화합물 및 수분산성 고분자 화합물로부터 선택되는 적어도 1종류의 고분자 화합물로서는, 예를 들면 폴리비닐알코올, 폴리(메타)아크릴산, 아크릴산과 메타크릴산의 공중합체, 에틸렌과 (메타)아크릴산이나 (메타)아크릴레이트 등의 아크릴계 단량체의 공중합체, 에틸렌과 초산비닐의 공중합체, 폴리우레탄, 아미노변성페놀 수지, 폴리에스테르 수지, 에폭시 수지, 탄닌(tannin) 및 탄닌산과 그의 염, 및 피틴산(phytic acid) 등을 사용할 수 있다.Moreover, as at least 1 type of high molecular compound chosen from said water-soluble high molecular compound and water-dispersible high molecular compound, a polyvinyl alcohol, poly (meth) acrylic acid, the copolymer of acrylic acid and methacrylic acid, ethylene, and (meth) Copolymers of acrylic monomers such as acrylic acid and (meth) acrylates, copolymers of ethylene and vinyl acetate, polyurethanes, amino-modified phenol resins, polyester resins, epoxy resins, tannins and tannic acids and salts thereof, and phytic acid (phytic acid) can be used.

본 발명은, 피처리 금속재료 표면에 지르코늄 및 또는 티타늄으로부터 선택되는 금속원소의 산화물 및/또는 수산화물로 되는 표면처리 피막층을 설치함으로써, 금속재료의 내식성을 비약적으로 높이는 것을 가능하게 한 것이다. 여기에서, 상기 금속원소의 산화물 및 수산화물은, 산이나 알칼리에 침식되기 어려워 화학적으로 안정한 성질을 갖고 있다. 실제 금속의 부식환경에서는, 금속의 용출이 일어나는 애노드(anode)부에서는 pH의 저하가, 또한 환원반응이 일어나는 캐소드(cathode)부에서는 pH의 상승이 일어난다. 따라서, 내산성 및 내알칼리성이 떨어지는 표면처리 피막은, 부식환경하에서 용해되어 그 효과가 상실되어간다. 본 발명에 있어서의 표면처리 피막층의 주성분은, 산이나 알칼리에 침식되기 어렵기 때문에, 부식환경하에 있어서도 우수한 효과가 지속된다.The present invention makes it possible to dramatically increase the corrosion resistance of a metal material by providing a surface treated film layer of an oxide and / or a hydroxide of a metal element selected from zirconium and / or titanium on the surface of the metal material to be treated. Here, the oxides and hydroxides of the metal elements are hardly eroded by acids or alkalis and have chemically stable properties. In the corrosive environment of the metal, the pH decreases in the anode portion where the metal is eluted, and in the cathode portion in which the reduction reaction occurs. Therefore, the surface treatment film which is inferior in acid resistance and alkali resistance melt | dissolves in a corrosive environment, and the effect loses. Since the main component of the surface treatment film layer in this invention is hard to corrode by acid and alkali, the outstanding effect also persists in a corrosive environment.

또한, 상기 금속원소의 산화물 및 수산화물은, 금속과 산소를 매개로 한 네트워크 구조를 만들기 때문에, 매우 양호한 배리어(barrier) 피막이 된다. 금속재료의 부식은 사용되는 환경에 따라서도 상이하지만, 일반적으로는 물과 산소가 존재하는 상황에서의 산소요구형 부식으로, 그 부식속도는 염화물 등의 성분의 존재에 의해 촉진된다. 여기에서, 본 발명의 표면처리 피막층은, 물, 산소 및 부식촉진 성분에 대한 배리어 효과를 갖기 때문에, 우수한 내식성을 발휘할 수 있다. In addition, the oxides and hydroxides of the metal elements form a network structure in which the metal and the oxygen are mediated, which results in a very good barrier coating. Corrosion of metal materials also varies depending on the environment used, but is generally oxygen demanded corrosion in the presence of water and oxygen, and the corrosion rate is promoted by the presence of a component such as chloride. Here, since the surface treatment film layer of this invention has a barrier effect with respect to water, oxygen, and a corrosion promoting component, it can exhibit the outstanding corrosion resistance.

여기에서, 상기 배리어 효과를 이용하여 냉간압연(冷間壓延) 강판, 열간압연 강판, 주철 및 소결재 등의 철계 재료의 내식성을 높이는데는, 상기 금속원소 환산으로 30 ㎎/㎡ 이상의 부착량이 필요하고, 바람직하게는 40 ㎎/㎡ 이상, 보다 바람직하게는 50 ㎎/㎡ 이상의 부착량이다. 또한, 아연 또는 아연도금 강판, 합금화 용융 아연도금 강판 등의 아연계 재료의 내식성을 높이는데는, 상기 금속원소 환산으로 20 ㎎/㎡ 이상의 부착량이 필요하고, 바람직하게는 30 ㎎/㎡ 이상의 부착량이다. 더욱이, 알루미늄 주물 및 알루미늄 합금판 등의 알루미늄계 재료의 내식성을 높이는데는, 상기 금속원소 환산으로 10 ㎎/㎡ 이상의 부착량이 필요하고, 바람직하게는 20 ㎎/㎡ 이상의 부착량이다. 또한, 마그네슘 합금판 및 마그네슘 주물 등의 마그네슘계 재료의 내식성을 높이는데는, 상기 금속원소 환산으로 10 ㎎/㎡ 이상의 부착량이 필요하고, 바람직하게는 20 ㎎/㎡ 이상의 부착량이다. 부착량의 상한에 관해서는 특별히 제한은 없지만, 부착량이 1 g/㎡를 초과하면 표면처리 피막층에 크랙이 발생하기 쉬워져, 균일한 피막을 얻는 작업이 곤란해진다. 따라서, 철계 재료, 아연계 재료 및 알루미늄계 재료 모두, 부착량의 상한은 1 g/㎡, 보다 바람직하게는 800 ㎎/㎡이다.Here, in order to improve the corrosion resistance of iron-based materials such as cold rolled steel sheet, hot rolled steel sheet, cast iron and sintered material by using the barrier effect, an adhesion amount of 30 mg / m 2 or more is required in terms of the metal element. Preferably, it is an adhesion amount of 40 mg / m <2> or more, More preferably, 50 mg / m <2> or more. In addition, in order to increase the corrosion resistance of zinc-based materials such as zinc or galvanized steel sheets and alloyed hot dip galvanized steel sheets, an adhesion amount of 20 mg / m 2 or more is required in terms of the above metal elements, and preferably an adhesion amount of 30 mg / m 2 or more. . Further, in order to increase the corrosion resistance of aluminum-based materials such as aluminum castings and aluminum alloy plates, an adhesion amount of 10 mg / m 2 or more is required in terms of the above metal elements, and preferably an adhesion amount of 20 mg / m 2 or more. In order to increase the corrosion resistance of magnesium-based materials such as magnesium alloy plates and magnesium castings, an adhesion amount of 10 mg / m 2 or more is required in terms of the metal element, and an adhesion amount of 20 mg / m 2 or more is preferable. Although there is no restriction | limiting in particular about the upper limit of adhesion amount, When an adhesion amount exceeds 1 g / m <2>, a crack will generate | occur | produce easily in a surface treatment film layer, and the operation | work which obtains a uniform film becomes difficult. Therefore, the upper limit of the adhesion amount in all of the iron-based material, the zinc-based material, and the aluminum-based material is 1 g / m 2, more preferably 800 mg / m 2.

이하에 실시예를 비교예와 함께 들어, 본 발명의 표면처리용 처리액 및 표면처리 방법의 효과를 구체적으로 설명한다. 또한, 실시예에서 사용한 피처리 소재, 탈지제 및 도료는 시판되고 있는 재료 중에서 임의로 선정한 것으로, 본 발명의 표면처리용 처리액 및 표면처리 방법의 실제 용도를 한정하는 것은 아니다.An Example is given to the following with a comparative example, and the effect of the surface treatment process liquid and surface treatment method of this invention is demonstrated concretely. In addition, the to-be-processed material, the degreasing agent, and the coating material used in the Example are arbitrarily selected from the material which is marketed, and do not limit the practical use of the surface treatment process liquid and surface treatment method of this invention.

[시험용 제공판][Experimental Edition]

실시예와 비교예의 시험용 제공판에, 냉연강판, 용융 아연도금 강판, 알루미늄 합금판 및 마그네슘 합금판을 사용하였다. 이 시험용 제공판의 약호와 내역을 이하에 나타낸다. 또한, 표면처리 후의 외관의 평가에는 SPC, GA 및 Al의 3종류의 금속재료를 스폿 용접(spot welding)으로 접합한 상태의 시험용 제공판을 사용하였다. 표면처리 피막층의 부착량의 평가에는 SPC, GA, Al, Mg의 각각 개개의 시험용 제공판과, SPC, GA 및 Al의 3종류의 금속재료를 스폿 용접으로 접합한 상태의 시험용 제공판을 사용하였다. 도장성능의 평가에는 SPC, GA 및 Al의 3종류의 금속재료를 스폿 용접으로 접합한 상태의 시험용 제공판을 사용하여 표면처리, 도장, 도장성능 평가까지의 일련의 시험을 실시하였다. 도 1은 SPC, GA 및 Al 3종류의 금속재료를 스폿 용접한 시험용 제공판의 평면도, 도 2는 그의 정면도이다. 1은 스폿 용접부를 나타낸다. Cold rolled steel sheets, hot-dip galvanized steel sheets, aluminum alloy sheets, and magnesium alloy sheets were used as test plates for the examples and comparative examples. The symbol and description of this test plate are shown below. In addition, in the evaluation of the appearance after the surface treatment, a test providing plate in a state in which three kinds of SPC, GA, and Al metal materials were joined by spot welding was used. For the evaluation of the adhesion amount of the surface-treated coating layer, an individual test donor plate of SPC, GA, Al, and Mg, and a test donor plate in a state in which three kinds of metal materials of SPC, GA, and Al were joined by spot welding were used. For evaluation of coating performance, a series of tests from surface treatment, painting, and coating performance evaluation were conducted using a test provision plate in which three kinds of metal materials, SPC, GA, and Al were joined by spot welding. BRIEF DESCRIPTION OF THE DRAWINGS The top view of the test provision board which spot-welded three types of metal materials of SPC, GA, and Al, and FIG. 2 is the front view. 1 represents a spot weld.

·SPC(냉연강판:JIS-G-3141)SPC (cold rolled steel: JIS-G-3141)

·GA(양면 합금화 용융 아연도금 강판:도금 부착량 45 g/㎡)GA (Double Sided Alloy Hot-dip Galvanized Steel Sheet: Plating Amount 45 g / m2)

·Al(알루미늄 합금판:6000계 알루미늄 합금)Al (aluminum alloy plate: 6000 aluminum alloy)

·Mg(마그네슘 합금판:JIS-H-4201)Mg (magnesium alloy plate: JIS-H-4201)

〔처리공정〕[Processing Step]

실시예, 비교예의 처리공정은 다음과 같다.The process of an Example and a comparative example is as follows.

실시예 1~4, 실시예 7 및 비교예 1~4: 알칼리 탈지→수세→피막 화성처리→수세→순수세(純水洗)→건조Examples 1-4, Example 7 and Comparative Examples 1-4: Alkali degreasing → washing | cleaning → coating | film | coat chemical conversion treatment → washing water → pure water washing → drying

실시예 5: 알칼리 탈지→수세→전해 화성처리→수세→순수세→건조Example 5 Alkaline Degreasing → Washing → Electrolytic Chemical Treatment → Water Washing → Pure Water → Drying

실시예 6: 피막 화성처리(탈지 화성 겸용)→수세→순수세→건조Example 6 Film Chemical Treatment (Combination with Degreasing Chemical) → Water Wash → Pure Water → Drying

실시예 8: 알칼리 탈지→수세→피막 화성처리→수세→후처리→순수세→건조Example 8: Alkaline degreasing → washing → coating chemical treatment → washing → post treatment → pure washing → drying

실시예 9: 피막 화성처리(탈지 화성 겸용)→수세→후처리→순수세→건조Example 9 Coating Chemical Treatment (Combination with Degreasing Chemical) → Water Washing → After Treatment → Pure Washing → Drying

비교예 5: 알칼리 탈지→수세→표면조정→인산아연 처리→수세→순수세→건조Comparative Example 5: Alkali degreasing → washing → surface adjustment → zinc phosphate treatment → washing with water → pure washing → drying

상기에 있어서, 알칼리탈지는 실시예, 비교예 모두 파인 클리너(fine cleaner) L 4460(등록상표:니혼 파커라이징(주)제)을 2%로 수돗물로 희석하고 40℃, 120초간 피처리판에 스프레이하여 사용하였다. 피막처리 후의 수세 및 순수세는 실시예, 비교예 모두 실온에서 30초간 피처리판에 스프레이하였다. In the above, alkaline degreasing was performed by diluting fine cleaner L 4460 (registered trademark: Nippon Parkerizing Co., Ltd.) with tap water at 2% in 40 ° C. for 120 seconds in both Examples and Comparative Examples. Was used. Water washing and pure water washing after the coating treatment were sprayed onto the treated plate for 30 seconds at room temperature in both the Examples and Comparative Examples.

실시예 1Example 1

옥시질산지르코늄 시약과 질산을 사용하여 지르코늄 농도가 200 ppm인 수용액을 조제하였다. 이 수용액을 45℃로 가온한 후, 수산화나트륨 시약과 플루오르화 수소산을 사용하여 pH를 3.0으로 조정하고, 또한 플루오르이온 미터(IM-55G;도아덴파고교(주)제)로 측정되는 유리 플루오르이온 농도를 1 ppm으로 조정하여 표면처리용 처리액으로 하였다. 유리 플루오르이온 농도를 조정한 후의 표면처리용 처리액 중의 전체 플루오르 농도는 50 ppm이었다. An aqueous solution having a zirconium concentration of 200 ppm was prepared using a zirconium oxynitrate reagent and nitric acid. After heating this aqueous solution to 45 degreeC, pH is adjusted to 3.0 using sodium hydroxide reagent and hydrofluoric acid, and also the free fluorine ion measured by a fluorine ion meter (IM-55G; Doa Denpa Kogyo Co., Ltd. product). The concentration was adjusted to 1 ppm to obtain a treatment solution for surface treatment. The total fluorine concentration in the treatment solution for surface treatment after adjusting the free fluorine ion concentration was 50 ppm.

탈지 후에 수세를 실시한 시험용 제공판을, 상기의 표면처리용 처리액에 120초간 침지하여 표면처리를 행하였다. The test-providing plate subjected to washing with water after degreasing was immersed in the surface treatment solution for 120 seconds for surface treatment.

실시예 2Example 2

옥시질산지르코늄 시약, 질산마그네슘 시약, 질산스트론튬 시약을 사용하여 지르코늄 농도가 100 ppm, 마그네슘 농도가 5000 ppm, 스트론튬 농도가 2000 ppm, 질산근이 28470 ppm인 수용액을 조제하였다. 이 수용액을 50℃로 가온한 후, 암모니아수 시약과 플루오르화수소산을 사용하여 pH를 4.0으로 조정하고, 또한 플루오르이온 미터(IM-55G;도아덴파고교(주)제)로 측정되는 유리 플루오르이온 농도를 80 ppm으로 조정하여 표면처리용 처리액으로 하였다. 유리 플루오르이온 농도를 조정한 후의 표면처리용 처리액 중의 전체 플루오르 농도는 2000 ppm이었다. An aqueous solution having a zirconium concentration of 100 ppm, a magnesium concentration of 5000 ppm, a strontium concentration of 2000 ppm, and a muscle of 28470 ppm was prepared using a zirconium oxynitrate reagent, a magnesium nitrate reagent, and a strontium nitrate reagent. After heating this aqueous solution to 50 degreeC, pH was adjusted to 4.0 using the ammonia water reagent and hydrofluoric acid, and also the free fluorine ion concentration measured by a fluorine ion meter (IM-55G; product made from Doadenpa Kogyo Co., Ltd.). Was adjusted to 80 ppm to obtain a treatment solution for surface treatment. The total fluorine concentration in the treatment solution for surface treatment after adjusting the free fluorine ion concentration was 2000 ppm.

탈지 후에 수세를 실시한 시험용 제공판을, 상기의 표면처리용 처리액에 60초간 침지하여 표면처리를 행하였다. The test providing plate subjected to water washing after degreasing was immersed in the surface treatment solution for 60 seconds to perform a surface treatment.

실시예 3Example 3

헥사플루오지르콘산(IV) 수용액, 황산티탄(IV) 수용액, 황산칼슘 시약, 질산을 사용하여 지르코늄 농도가 1000 ppm, 티타늄 농도가 2000 ppm, 칼슘 농도가 5 ppm, 질산근이 1000 ppm인 수용액을 조제하였다. 이 수용액을 40℃로 가온한 후, 수산화칼륨 시약과 플루오르화수소산을 사용하여 pH를 5.0으로 조정하고, 또한 플루오르이온 미터(IM-55G;도아덴파고교(주)제)로 측정되는 유리 플루오르이온 농도를 25 ppm으로 조정하여 표면처리용 처리액으로 하였다. 유리 플루오르이온 농도를 조정한 후의 표면처리용 처리액 중의 전체 플루오르 농도는 2250 ppm이었다. Aqueous solution containing 1000 ppm zirconium, 2000 ppm titanium, 5 ppm calcium, and 1000 ppm nitric acid was prepared using hexafluorozirconic acid (IV) solution, titanium (IV) sulfate solution, calcium sulfate reagent, and nitric acid. It prepared. After heating this aqueous solution to 40 degreeC, the pH is adjusted to 5.0 using potassium hydroxide reagent and hydrofluoric acid, and also the free fluorine ion measured by the fluorine ion meter (IM-55G; Doa Denpa Kogyo Co., Ltd. product). The concentration was adjusted to 25 ppm to obtain a treatment solution for surface treatment. The total fluorine concentration in the treatment solution for surface treatment after adjusting the free fluorine ion concentration was 2250 ppm.

탈지 후에 수세를 실시한 시험용 제공판을, 상기의 표면처리용 처리액에 90초간 침지하여 표면처리를 행하였다. The test providing plate subjected to water washing after degreasing was immersed in the surface treatment solution for 90 seconds to perform a surface treatment.

실시예 4Example 4

헥사플루오로티탄산(IV) 수용액, 질산스트론튬 시약, 아질산나트륨 시약을 사용하여 티타늄 농도가 5000 ppm, 스트론튬 농도가 5000 ppm, 질산근이 7080 ppm, 아질산근이 40 ppm인 수용액을 조제하였다. 이 수용액을 35℃로 가온한 후, 트리에탄올아민 시약과 플루오르화수소산을 사용하여 pH를 4.0으로 조정하고, 또한 플루오르이온 미터(IM-55G;도아덴파고교(주)제)로 측정되는 유리 플루오르이온 농도를 10 ppm으로 조정하여 표면처리용 처리액으로 하였다. 유리 플루오르이온 농도를 조정한 후의 표면처리용 처리액 중의 전체 플루오르 농도는 11900 ppm이었다. An aqueous solution of 5000 ppm titanium, 5000 strontium concentration, 7080 ppm nitrate muscle, and 40 ppm nitrite muscle was prepared using an aqueous hexafluorotitanic acid (IV) solution, a strontium nitrate reagent, and a sodium nitrite reagent. After heating this aqueous solution to 35 degreeC, the pH is adjusted to 4.0 using a triethanolamine reagent and hydrofluoric acid, and also the free fluorine ion measured by a fluorine ion meter (IM-55G; product made from Doadenpa Co., Ltd.). The concentration was adjusted to 10 ppm to obtain a treatment solution for surface treatment. The total fluorine concentration in the treatment solution for surface treatment after adjusting the free fluorine ion concentration was 11900 ppm.

탈지 후에 수세를 실시한 시험용 제공판에, 상기의 표면처리용 처리액을 120초간 스프레이로 분무하여 표면처리를 행하였다. The surface treatment was sprayed on the test providing plate subjected to water washing after degreasing with a spray for 120 seconds.

실시예 5Example 5

옥시질산지르코늄 시약, 헥사플루오로티탄산(IV) 수용액, 질산마그네슘 시약, 질산, 염소산나트륨 시약을 사용하여 지르코늄 농도가 5 ppm, 티타늄 농도가 5 ppm, 마그네슘 농도가 100 ppm, 질산근이 30520 ppm, 염소산근이 100 ppm인 수용액 을 조제하였다. 이 수용액을 30℃로 가온한 후, 암모니아수 시약과 플루오르화수소산을 사용하여 pH를 6.0으로 조정하고, 또한 플루오르이온 미터(IM-55G;도아덴파고교(주)제)로 측정되는 유리 플루오르이온 농도를 0.5 ppm으로 조정한 표면처리용 처리액으로 하였다. 유리 플루오르이온 농도를 조정한 후의 표면처리용 처리액 중의 전체 플루오르 농도는 12 ppm이었다. Using zirconium oxynitrate reagent, aqueous hexafluorotitanic acid (IV) solution, magnesium nitrate reagent, nitric acid, sodium chlorate reagent, 5 ppm zirconium, 5 ppm titanium, 100 ppm magnesium, 30520 ppm nitrate An aqueous solution having 100 ppm of chloric acid root was prepared. After heating this aqueous solution to 30 degreeC, pH was adjusted to 6.0 using an ammonia water reagent and hydrofluoric acid, and also the free fluorine concentration measured by a fluorine-ion meter (IM-55G; Doa Denpa Kogyo Co., Ltd. product). It was set as the processing liquid for surface treatments adjusted to 0.5 ppm. The total fluorine concentration in the treatment solution for surface treatment after adjusting the free fluorine ion concentration was 12 ppm.

탈지 후에 수세를 실시한 시험용 제공판을 음극으로 하고, 양극에 카본 전극을 사용하며, 상기 표면처리용 처리액 중에서 5 A/d㎡의 전해조건에서 5초간 전해하며 표면처리를 행하였다. After degreasing, the test plate subjected to washing with water was used as a cathode, a carbon electrode was used for the anode, and surface treatment was performed by electrolysis for 5 seconds under an electrolytic condition of 5 A / dm 2 in the surface treatment solution.

실시예 6Example 6

옥시질산지르코늄 시약, 산화마그네슘 시약, 질산, 과산화수소수 시약을 사용하여 지르코늄 농도가 150 ppm, 마그네슘 농도가 10 ppm, 질산근이 5200 ppm, 과산화수소가 10 ppm인 수용액을 조제하였다. 이 수용액을 50℃로 가온한 후, 암모니아수 시약과 플루오르화수소산을 사용하여 pH를 5.0으로 조정하고, 또한 플루오르이온 미터(IM-55G;도아덴파고교(주)제)로 측정되는 유리 플루오르이온 농도를 50 ppm으로 조정하고, 더욱이 비이온계 계면활성제인 폴리옥시에틸렌노닐페닐에테르(에틸렌옥사이드 부가 몰수:12몰)를 2 g/L 첨가하여 표면처리용 처리액으로 하였다. 유리 플루오르이온 농도를 조정한 후의 표면처리용 처리액 중의 전체 플루오르 농도는 170 ppm이었다. A zirconium oxynitrate reagent, magnesium oxide reagent, nitric acid, and hydrogen peroxide reagent were used to prepare an aqueous solution containing 150 ppm of zirconium, 10 ppm of magnesium, 5200 ppm of nitrate, and 10 ppm of hydrogen peroxide. After heating this aqueous solution to 50 degreeC, pH was adjusted to 5.0 using an ammonia water reagent and hydrofluoric acid, and also the free fluorine ion concentration measured by a fluorine ion meter (IM-55G; product made from Doadenpa Kogyo Co., Ltd.). Was adjusted to 50 ppm, and 2 g / L of polyoxyethylene nonylphenyl ether (12 mol of ethylene oxide added mole number) which is a nonionic surfactant was further added to obtain a treatment solution for surface treatment. The total fluorine concentration in the treating solution for surface treatment after adjusting the free fluorine ion concentration was 170 ppm.

탈지 처리를 행하지 않고 도유(塗油)된 그대로의 시험용 제공판에, 상기 표면처리용 처리액을 90초간 스프레이로 분무하여 탈지와 동시에 표면처리를 행하였 다. The surface-treated treatment liquid was sprayed with a spray for 90 seconds onto the test-providing plate as it was, without performing degreasing treatment, to perform degreasing and surface treatment.

실시예 7Example 7

황산티탄(IV)수용액, 질산칼슘 시약, 질산마그네슘 시약, 과망간산칼륨 시약을 사용하여 티타늄 농도가 100 ppm, 칼슘 농도가 50 ppm, 마그네슘 농도가 5000 ppm, 질산근이 25660 ppm, 과망간산이 10 ppm인 수용액을 조제하였다. 더욱이 이 수용액에 수용성 아크릴계 고분자 화합물(쥬리마 AC-10L:니혼쥰야쿠 가부시키가이샤제)을 고형분 농도가 1%가 되도록 첨가하여 50℃로 가온한 후, 수산화나트륨 시약과 플루오르화수소산으로 pH를 3.0으로 조정하고, 플루오르이온 미터(IM-55G;도아덴파고교(주)제)로 측정되는 유리 플루오르이온 농도를 95 ppm으로 조정하여 표면처리용 처리액으로 하였다. 유리 플루오르이온 농도를 조정한 후의 표면처리용 처리액 중의 전체 플루오르 농도는 2000 ppm이었다.Using titanium (IV) sulfate solution, calcium nitrate reagent, magnesium nitrate reagent, potassium permanganate reagent, titanium concentration is 100 ppm, calcium concentration is 50 ppm, magnesium concentration is 5000 ppm, muscle nitrate is 25660 ppm, permanganic acid is 10 ppm An aqueous solution was prepared. Furthermore, a water-soluble acrylic polymer compound (Jurima AC-10L: manufactured by Nippon Kayaku Co., Ltd.) was added to the aqueous solution so that the solid content concentration was 1%, and heated to 50 ° C. Then, the pH was adjusted with sodium hydroxide reagent and hydrofluoric acid. It adjusted to 3.0, adjusted the free fluorine concentration measured by a fluorine meter (IM-55G; Toa Denpa Kogyo Co., Ltd.) to 95 ppm, and used it as the surface treatment liquid. The total fluorine concentration in the treatment solution for surface treatment after adjusting the free fluorine ion concentration was 2000 ppm.

탈지 처리 후에 수세를 실시한 시험용 제공판을, 상기 표면처리용 처리액에 60초간 침지하여 표면처리를 행하였다. The test providing plate subjected to water washing after the degreasing treatment was immersed in the treatment solution for surface treatment for 60 seconds to perform surface treatment.

실시예 8Example 8

수용성 아크릴계 고분자 화합물(쥬리마 AC-10L:니혼쥰야쿠 가부시키가이샤제)이 고형분 농도로 1%, 인산 시약이 인산근으로서 2 g/L인 수용액을 조제하였다. 이 수용액을 40℃로 가온한 후, 암모니아수 시약으로 pH를 4.5로 조정하여 후처리액을 제작하였다. 실시예 5의 표면처리로 피막 화성 및 수세를 행한 시험용 제공판을, 상기 후처리액에 30초간 침지하여 후처리를 행하였다.An aqueous solution of 1% water-soluble acrylic polymer compound (Jurima AC-10L: manufactured by Nippon Kayaku Co., Ltd.) at a solid content concentration and 2 g / L as the phosphate reagent was prepared as a phosphate root. After warming this aqueous solution to 40 degreeC, pH was adjusted to 4.5 with the ammonia water reagent, and the after-treatment liquid was produced. The test providing plate subjected to the film formation and the water washing by the surface treatment of Example 5 was immersed in the post-treatment solution for 30 seconds to perform post-treatment.

실시예 9Example 9

헥사플루오로지르콘산(IV) 수용액과 질산코발트 시약을 사용하여 지르코늄 농도가 50 ppm, 코발트 농도가 50 ppm인 수용액을 조제하고, 추가로 상기 수용액을 40℃로 가온한 후, 암모니아수 시약으로 pH를 5.0으로 조정하여 후처리액을 제작하였다. 실시예 6의 표면처리로 피막 화성 및 수세를 행한 시험용 제공판을, 상기 후처리액에 30초간 침지하여 후처리를 행하였다.Using an aqueous solution of hexafluorozirconic acid (IV) and a cobalt nitrate reagent, an aqueous solution having a zirconium concentration of 50 ppm and a cobalt concentration of 50 ppm was prepared. The aqueous solution was further heated to 40 ° C, and the pH was adjusted with an ammonia solution. Adjusting to 5.0 to prepare a post-treatment liquid. The test providing plate subjected to the film formation and the water washing by the surface treatment of Example 6 was immersed in the post-treatment solution for 30 seconds to perform post-treatment.

비교예 1Comparative Example 1

옥시질산지르코늄 시약, 질산마그네슘 시약, 질산을 사용하여 지르코늄 농도가 500 ppm, 마그네슘 농도가 1000 ppm, 질산근이 6780 ppm인 수용액을 조제하였다. 이 수용액을 45℃로 가온한 후, 수산화나트륨 시약으로 pH를 4.0으로 조정하여 표면처리용 처리액으로 하였다. 상기 표면처리용 처리액 중의 유리 플루오르이온 농도를 시판의 플루오르이온 미터(IM-55G;도아덴파고교(주)제)로 측정한 결과, 0 ppm이었다.An aqueous solution having a zirconium concentration of 500 ppm, a magnesium concentration of 1000 ppm, and a root of 6780 ppm was prepared using a zirconium oxynitrate reagent, a magnesium nitrate reagent, and nitric acid. After warming this aqueous solution to 45 degreeC, pH was adjusted to 4.0 with the sodium hydroxide reagent, and it was set as the treatment liquid for surface treatment. It was 0 ppm when the free fluorine ion concentration in the said process liquid for surface treatments was measured with the commercially available fluorine meter (IM-55G; the Toadenpa Kogyo Co., Ltd. product).

탈지 후에 수세를 실시한 시험용 제공판을, 상기 표면처리용 처리액에 120초간 침지하여 표면처리를 행하였다.After the degreasing, the test plate subjected to washing with water was immersed in the surface treatment solution for 120 seconds to perform surface treatment.

비교예 2Comparative Example 2

황산티탄(IV)수용액을 사용하여 티타늄 농도가 2000 ppm인 수용액을 조정하였다. 상기 수용액을 50℃로 가온한 후, 암모니아수 시약과 플루오르화수소산으로 pH를 3.5로 조정하고, 플루오르이온 미터(IM-55G;도아덴파고교(주)제)로 측정되는 유리 플루오르이온 농도를 400 ppm으로 조정하여 표면처리용 처리액으로 하였다. Titanium (IV) aqueous solution was used to adjust the aqueous solution of 2000 ppm of titanium. After the aqueous solution was warmed to 50 ° C., the pH was adjusted to 3.5 with an ammonia water reagent and hydrofluoric acid, and the free fluorine concentration measured by a fluoride meter (IM-55G; manufactured by Doadenpa Co., Ltd.) was 400 ppm. It adjusted to the surface treatment liquid.

탈지 후에 수세를 실시한 시험용 제공판을, 상기 표면처리용 처리액에 90초 간 침지하여 표면처리를 행하였다.After the degreasing, the test providing plate subjected to water washing was immersed in the surface treatment solution for 90 seconds to perform surface treatment.

비교예 3Comparative Example 3

시판의 크로믹 크로메이트(chromic chromate) 처리약제인 알크롬 713(등록상표:니혼 파커라이징(주)제)을 3.6%로 수돗물로 희석하고, 추가로 전산도(全酸度), 유리산도(遊離酸度)를 카탈로그값의 중심으로 조정하였다.Alchrom 713 (trademark: Nihon Parkerizing Co., Ltd.), a commercially available chromatic chromate treatment drug, was diluted with tap water to 3.6%, and further acidity and free acidity were added. Was adjusted to the center of the catalog value.

탈지 후에 수세를 실시한 시험용 제공판을, 35℃로 가온한 상기 크로메이트 처리액에 60초간 침지하여 크로메이트 처리를 행하였다.The test serving plate subjected to water washing after degreasing was immersed in the chromate treatment liquid heated to 35 ° C. for 60 seconds to perform chromate treatment.

비교예 4Comparative Example 4

시판의 비크로메이트 처리약제인 팔코트 3756(등록상표:니혼 파커라이징(주)제)을 2%로 수돗물로 희석하고, 추가로 전산도, 유리산도를 카탈로그값의 중심으로 조정하였다. 탈지 후에 수세를 실시한 시험용 제공판을, 40℃로 가온한 상기의 비크로메이트 처리액에 60초간 침지하여 비크로메이트 처리를 행하였다.Palcote 3756 (trademark: Nippon Parkerizing Co., Ltd.), a commercially available non-chromate treatment agent, was diluted with tap water at 2%, and the acidity and free acidity were further adjusted to the center of the catalog value. The test providing plate subjected to water washing after degreasing was immersed in the bichromate treatment liquid heated at 40 ° C. for 60 seconds to perform a bichromate treatment.

비교예 5Comparative Example 5

탈지 후에 수세를 실시한 시험용 제공판에, 표면조정 처리제인 프레파렌 ZN(등록상표:니혼 파커라이징(주)제)을 0.1%로 수돗물로 희석한 액을 실온에서 30초간 스프레이로 분무한 후에, 팔본드 L 3020(등록상표:니혼 파커라이징(주)제)을 4.8%로 수돗물로 희석하고, 추가로 플루오르화수소나트륨 시약을 플루오르로서 200 ppm 첨가한 후에, 전산도, 유리산도를 카탈로그값의 중심으로 조정한 42℃의 인산아연 화성 처리액에 침지하여 인산아연 피막을 석출시켰다.After spraying the test plate subjected to washing with water after degreasing, spraying a solution of preparene ZN (registered trademark: Nihon Parkerizing Co., Ltd.), which is a surface adjustment agent, with tap water at 0.1% with a spray for 30 seconds at room temperature, After dilution of L 3020 (registered trademark: Nippon Parker Co., Ltd.) with tap water to 4.8% and further adding 200 ppm of sodium hydrogen fluoride reagent as fluorine, the acidity and free acidity were adjusted to the center of the catalog value. The zinc phosphate coating was deposited by immersing in a 42 ° C zinc phosphate chemical treatment solution.

〔표면처리 피막의 평가〕[Evaluation of Surface Treatment Coating]

실시예 및 비교예의 표면처리 후의 시험용 제공판의 외관을 육안으로 평가하였다. 그 결과를 표 1에 나타낸다. 또한, 표면처리 피막층의 부착량을 형광X선 분석장치(스템 3270;리가쿠덴키고교(주)제)로 측정하였다. 그 결과를 표 2 및 표 3에 나타낸다. 또한, 표면처리 피막층의 부착량은, 각각의 금속재료를 접합하지 않고 개개로 처리한 경우(접합 없음)와, 스폿 용접으로 접합하여 처리한 경우(합 있음)에 대해 측정을 행하였다.The external appearance of the test-providing plate after the surface treatment of Examples and Comparative Examples was visually evaluated. The results are shown in Table 1. In addition, the adhesion amount of the surface treatment film layer was measured by the fluorescent X-ray analyzer (Stem 3270; Rigaku Denki Kogyo Co., Ltd. product). The results are shown in Tables 2 and 3. In addition, the adhesion amount of the surface treatment film layer was measured about the case where each metal material was processed individually without bonding (without joining), and the case where it welded with spot welding (with sum).

Figure 112005030664064-pct00001
Figure 112005030664064-pct00001

표 1은 실시예 및 비교예에서 얻어진 표면처리 피막의 외관 평가결과를 나타낸다. 실시예는, 전체 시험용 제공판의 전체 금속재료종에 대해 균일한 피막을 얻을 수 있었다. 더욱이, 실시예에서 사용한 시험용 제공판의 스폿 용접부에도 표면처리 피막이 석출되어 있는 모습이 관찰되었다. 이것에 대해, 비교예에서는 전체 시험용 제공판에 대해 균일한 피막을 석출시키는 것은 불가능하였다. 특히, 비교예 3, 4 및 5에서는 스폿 용접부에는 전혀 피막이 석출되어 있지 않았다. 또한, 비교예 5는 냉연강판, 아연도금 강판, 알루미늄 합금을 동시에 처리할 때 사용되는 인산아연 처리액이지만, 이번 시험과 같이, 각각의 테스트 피스(test piece)를 용접에 의해 접합한 조건에서는 냉연강판 위에 들여다보임(lack of hiding)이라고 불리는 금속재료 소지(素地)가 노출된 부분이 나타나 있었다.Table 1 shows the external appearance evaluation result of the surface treatment film obtained by the Example and the comparative example. In the example, it was possible to obtain a uniform coating with respect to all metal material species of all test plates. Moreover, the appearance that the surface treatment film was deposited also in the spot weld part of the test provision plate used in the Example was observed. On the other hand, in the comparative example, it was impossible to deposit a uniform film with respect to the whole test plate. In particular, in Comparative Examples 3, 4, and 5, no film was deposited at the spot welds. In addition, Comparative Example 5 is a zinc phosphate treatment liquid used when simultaneously processing a cold rolled steel sheet, a galvanized steel sheet, and an aluminum alloy. However, cold rolling is performed under the conditions in which each test piece is joined by welding as in this test. The exposed part of the metal material called the lack of hiding was shown on the steel plate.

Figure 112005030664064-pct00002
Figure 112005030664064-pct00002

Figure 112005030664064-pct00003
Figure 112005030664064-pct00003

표 2 및 표 3은 실시예 및 비교예에서 얻어진 표면처리 피막의 부착량의 측정 결과를 나타낸다. 실시예에서는, 전체 시험용 제공판의 전체 금속재료종에 대해 목표로 하는 부착량을 얻을 수 있었다. 또한, 실시예에 있어서의 표면처리 피막층의 부착량은, 시험용 제공판 접합의 유무에 상관없이 일정하였다. 이에 대해, 비교예에서는 피막 외관 평가결과로부터도 명확한 바와 같이, 전체 시험용 제공판에 대해 균일한 피막을 석출시기는 것은 불가능하였다.Table 2 and Table 3 show the measurement results of the adhesion amount of the surface treatment film obtained in the Example and the comparative example. In the Example, the target adhesion amount could be obtained with respect to all the metal material types of all the test-providing plates. In addition, the adhesion amount of the surface treatment film layer in an Example was constant irrespective of the presence or absence of the test plate joining for a test. On the other hand, in the comparative example, as apparent from the film appearance evaluation result, it was impossible to deposit a uniform film with respect to the whole test plate.

〔도장성능의 평가〕[Evaluation of Coating Performance]

(도장성능 평가판의 제작)(Production of coating performance evaluation version)

실시예 및 비교예의 표면처리판의 도장성능을 평가하기 위해, In order to evaluate the coating performance of the surface treatment plates of Examples and Comparative Examples,

양이온 전착 도장→순수세→소부→중간칠→소부→덧칠→소부Cationic electrodeposition coating → pure water washing → baking → middle coating → baking → coating → baking

의 공정으로 도장을 행하였다. 양이온 전착 도장, 중간칠 도장, 덧칠 도장은 다음과 같다.Painting was carried out in the step of. Cationic electrodeposition coating, intermediate coating, and overcoat are as follows.

양이온 전착 도장: 에폭시계 양이온 전착 도장(에레크론 9400:간사이페인트(주)제), 전압 200 V, 막 두께 20 ㎛, 175℃에서 20분 소부Cationic electrodeposition coating: epoxy based cationic electrodeposition coating (Erecron 9400: manufactured by Kansai Paint Co., Ltd.), voltage 200 V, film thickness of 20 µm, 20 minutes at 175 ° C.

중간칠 도장 도장: 아미노알키드계 도료(아미락 TP-37 회색:간사이페인트(주)제), 스프레이 도장, 막 두께 35 ㎛, 140℃에서 20분 소부Intermediate lacquer coating coating: Amino alkyd paint (Amirak TP-37 gray: Kansai Paint Co., Ltd.), spray coating, film thickness 35 μm, 140 ° C. for 20 minutes

덧칠 도장: 아미노알키드계 도료(아미락 TM-13 흰색:간사이페인트(주)제), 스프레이 도장, 막 두께 35 ㎛, 140℃에서 20분 소부Coating: Amino alkyd paint (Amirak TM-13 white: Kansai Paint Co., Ltd.), spray coating, film thickness 35 μm, 140 ° C. for 20 minutes

(도장성능 평가)(Painting performance evaluation)

실시예 및 비교예의 도장성능 평가를 행하였다. 그 결과를 표 4 및 표 5에 나타낸다. 평가 항목과 약호를 이하에 나타낸다. 또한, 전착 도장 완료시점에서의 도막을 전착 도막, 덧칠 도장 완료 시점에서의 도막을 3 coats 도막이라고 칭하기로 한다.Coating performance evaluation of the Example and the comparative example was performed. The results are shown in Tables 4 and 5. Evaluation items and symbol are shown below. In addition, the coating film at the time of electrodeposition coating completion is called an electrodeposition coating film, and the coating film at the time of completion of an overcoat coating is called a 3 coats coating film.

① SST: 염수 분무시험(전착 도막)① SST: salt spray test (electrodeposit coating)

② SDT: 염온수 시험(전착 도막)② SDT: Salt Water Test (Electrode Coating Film)

③ 1st ADH: 1차 밀착성(3 coats 도막)③ 1st ADH: 1st adhesion (3 coats coating)

④ 2nd ADH: 내수 2차 밀착성(3 coats 도막)④ 2nd ADH: Water resistance 2nd adhesion (3 coats coating)

SST: 예리한 커터로 크로스컷을 넣은 전착 도장판에 5% 염수를 840시간 분무(JIS-Z-2371에 준한다)하였다. 분무 종료 후에 크로스컷 부분으로부터의 양쪽 최대 팽윤폭을 측정하였다.SST: 5% brine was sprayed for 840 hours (according to JIS-Z-2371) on the electrodeposition paint board which the crosscut was put into the sharp cutter. Both maximum swelling widths from the crosscut portions were measured after the completion of spraying.

SDT: 전착 도장판을 50℃로 승온한 5 wt%의 NaCl 수용액에 840시간 침지하였다. 침지 종료 후에 수돗물로 수세→상온 건조한 테스트 피스의 전면을 고무테이프로 박리하고, 각각의 금속재료 위의 도막의 박리면적을 육안으로 판정하였다.SDT: The electrodeposition coating plate was immersed in 5 wt% of NaCl aqueous solution heated to 50 degreeC for 840 hours. After the immersion, the entire surface of the test piece washed with water and dried at room temperature with a tap water was peeled off with a rubber tape, and the peeling area of the coating film on each metal material was visually determined.

1st ADH: 3 coats 도막에 예리한 커터로 2 ㎜ 간격의 바둑판눈금을 100개 그었다. 바둑판눈금 부분의 셀로판테이프 박리를 행하여 바둑판눈금의 박리 개수를 세었다. 1st ADH: 3 coats 100 checkerboard grids of 2 mm intervals were drawn with a sharp cutter. The cellophane tape peeling of the checkerboard portion was performed and the number of peelings of the checkerboard scale was counted.

2nd ADH: 3 coats 도장판을 40℃의 탈이온수에 240시간 침지하였다. 침지 후에 예리한 커터로 2 ㎜ 간격의 바둑판눈금을 100개 그었다. 바둑판눈금 부분의 셀로판테이프 박리를 행하여 바둑판눈금의 박리 개수를 세었다. 2nd ADH: 3 coats paint plate was immersed in 40 ℃ deionized water for 240 hours. After dipping, 100 checkerboard scales of 2 mm intervals were drawn with a sharp cutter. The cellophane tape peeling of the checkerboard portion was performed and the number of peelings of the checkerboard scale was counted.

Figure 112005030664064-pct00004
Figure 112005030664064-pct00004

표 4는 전착 도막의 도장성능 평가결과를 나타낸다. 실시예는 전체 시험용 제공판에 대해 양호한 내식성을 나타내었다. 이에 대해 비교예 1에서는 표면처리용 처리액 중에 유리 플루오르이온을 전혀 포함하지 않기 때문에, 표면처리 피막이 충분히 석출되지 않아, 내식성이 떨어진다. 또한, 비교예 2에서는 표면처리용 처리액 중의 유리 플루오르이온 농도가 높기 때문에, 특히 SPC 위의 피막 부착량이 작아 내식성이 떨어지는 결과였다. 실시예 5 및 6은 비교예 보다도 우수한 도장성능을 나타내지만, 다른 실시예와 비교하면 전착 도장 후의 내식성이 약간 떨어지는 결과였다. 그러나, 실시예 8 및 9에 나타내어지는 바와 같이, 후처리를 실시함으로써 내식성이 더욱 향상되었다.Table 4 shows the coating performance evaluation results of the electrodeposition coating film. The examples showed good corrosion resistance for the entire test plate. On the other hand, in Comparative Example 1, since no free fluorine ions are included in the treatment solution for surface treatment, the surface treatment film is not sufficiently precipitated and corrosion resistance is poor. In Comparative Example 2, since the free fluorine ion concentration in the treatment solution for surface treatment was high, the amount of coating on the SPC was particularly small, resulting in poor corrosion resistance. Examples 5 and 6 showed better coating performance than the comparative example, but compared with other examples, the corrosion resistance after electrodeposition coating was slightly inferior. However, as shown in Examples 8 and 9, the post-treatment further improved the corrosion resistance.

비교예 3은 알루미늄 합금용 크로메이트 처리제, 비교예 4는 알루미늄 합금용의 비크로메이트 처리제이기 때문에, Al 내식성은 우수하였지만, 다른 시험용 제공판의 내식성은 명확하게 실시예보다 떨어진다. 비교예 5는 현재, 양이온 전착 도장 하지(下地)로서 일반적으로 사용되고 있는 인산아연 처리이다. 그러나, 비교예 5에 있어서도 이번 시험과 같이 각각의 테스트 피스를 용접에 의해 접합한 조건에서는, 실시예와 비교해서 떨어지는 결과였다.Since the comparative example 3 is the chromate treatment agent for aluminum alloys, and the comparative example 4 is the non-chromate treatment agent for aluminum alloys, although Al corrosion resistance was excellent, the corrosion resistance of the other test provision board is clearly inferior to an Example. Comparative Example 5 is a zinc phosphate treatment currently used generally as a base for cationic electrodeposition coating. However, also in the comparative example 5, it was a result inferior compared with an Example in the conditions which joined each test piece by welding like this test.

Figure 112005030664064-pct00005
Figure 112005030664064-pct00005

표 5는 3 coats판의 밀착성 평가결과를 나타낸다. 실시예는, 전체 시험용 제공판에 대해 양호한 밀착성을 나타내었다. 1st ADH에 관해서는 비교예에 있어서도 양호한 결과였지만, 2nd ADH에서는 전착 도막의 내식성과 마찬가지로 전체 시험용 제공판에 대해 양호한 밀착성을 나타내는 수준은 없었다. 또한, 비교예 5에 있어서는, 표면처리 후의 처리욕 중에는 인산아연 처리시의 부생성물인 슬러지가 발생해 있었다. 그러나, 실시예에 있어서는, 어떤 수준에 있어서도 슬러지의 발생은 인정되지 않았다.Table 5 shows the results of the adhesion evaluation of the 3 coats plate. The Example showed good adhesiveness with respect to the whole test plate. Although the 1st ADH was a favorable result also in the comparative example, there was no level which showed favorable adhesiveness with respect to the whole test plate in the 2nd ADH similarly to the corrosion resistance of an electrodeposition coating film. In Comparative Example 5, sludge, which was a by-product of zinc phosphate treatment, was generated in the treatment bath after the surface treatment. However, in the Example, the generation of sludge was not recognized at any level.

이상의 결과로부터, 본 발명품인 표면처리용 처리액 및 표면처리 방법을 사용함으로써, 처리욕 및 처리조건을 변경하지 않고 SPC, GA 및 Al을 동시에 처리하여, 밀착성과 내식성이 우수한 표면처리 피막을 석출시기는 것이 가능한 것이 명확하다. 더욱이, 본 발명을 사용함으로써, 용접부 위에도 내식성이 우수한 표면처리 피막을 석출시키는 것이 가능해졌다. 또한, 본 발명의 표면처리 방법은, 피처리 금속재료와 표면처리용 처리액을 접촉시키기만 해도 되기 때문에, 봉지 구조부 내부와 같이 교반 효과를 기대할 수 없는 부위에도 표면처리 피막을 석출시켜 내식성의 향상을 도모하는 것이 가능하다. From the above results, by using the treatment solution for surface treatment and the surface treatment method of the present invention, SPC, GA, and Al are simultaneously treated without changing the treatment bath and treatment conditions to precipitate a surface treated film excellent in adhesion and corrosion resistance. It is clear that it is possible. Moreover, by using this invention, it became possible to deposit the surface treatment film excellent in corrosion resistance also on a weld part. Moreover, since the surface treatment method of this invention only needs to contact a to-be-processed metal material and the surface treatment liquid, the surface treatment film is precipitated also in the site | part where an agitation effect cannot be expected like the inside of a sealing structure part, and corrosion resistance is improved. It is possible to plan.

본 발명의 표면처리용 처리액 및 이 처리액을 사용한 표면처리 방법에 의하면, 종래 기술에서는 불가능하였던 환경에 유해한 성분을 포함하지 않는 처리욕에서 슬러지를 발생시키지 않고, 철계 재료, 아연계 재료, 알루미늄계 및 마그네슘계 재료의 2종류 내지 4종류를 동시에 또는 각각 단독으로 되는 금속 표면에, 도장 후의 내식성이 우수한 표면처리 피막을 석출시킬 수 있다. 또한, 피처리 금속재료의 표면 조정공정을 행하지 않아도 표면처리 피막을 석출시킬 수 있으며, 그 경우는 처리공정의 단축, 공간 절약화가 가능해진다.According to the treatment liquid for surface treatment of the present invention and the surface treatment method using the treatment liquid, iron-based materials, zinc-based materials, aluminum without generating sludge in a treatment bath containing no harmful components to the environment, which were not possible in the prior art. The surface treatment film excellent in the corrosion resistance after coating can be deposited on the metal surface which becomes two or four types of system type and magnesium type material simultaneously or individually. In addition, a surface treated film can be deposited without performing the surface adjustment process of a to-be-processed metal material, In that case, a process process can be shortened and space saving can be carried out.

Claims (17)

철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료로부터 선택되는 금속재료를 각각 단독으로 또는 그의 2종류 이상을 동시에 표면처리하기 위한 수계 표면처리액으로서, 지르코늄 화합물 및 티타늄 화합물로부터 선택되는 1종류 이상의 화합물을 상기 금속원소로서 5~5000 ppm 포함하고, 또한 유리 플루오르이온을 0.1~100 ppm 포함하며, 또한 pH가 2~6인 것을 특징으로 하는 금속의 표면처리용 처리액.As an aqueous surface treatment liquid for surface-treating a metal material selected from an iron-based material, a zinc-based material, an aluminum-based material, and a magnesium-based material alone or two or more of them simultaneously, one kind selected from a zirconium compound and a titanium compound The above compound contains 5 to 5000 ppm as the metal element, and contains 0.1 to 100 ppm of free fluorine ions, and has a pH of 2 to 6; 제1항에 있어서, 추가로 칼슘 화합물, 마그네슘 화합물 및 스트론튬 화합물로 이루어진 군으로부터 선택되는 1종류 이상의 화합물을 포함하고, 상기 화합물의 농도가 상기 금속원소로서 칼슘 화합물의 경우는 5~100 ppm, 마그네슘 화합물 또는 스트론튬 화합물의 경우는 10~5000 ppm인 금속의 표면처리용 처리액.The method of claim 1, further comprising at least one compound selected from the group consisting of calcium compounds, magnesium compounds and strontium compounds, wherein the concentration of the compound is 5 to 100 ppm, magnesium in the case of the calcium compound as the metal element. In the case of a compound or a strontium compound, a treatment solution for surface treatment of a metal which is 10 to 5000 ppm. 제1항 또는 제2항에 있어서, 추가로 질산근을 1000~50000 ppm 포함하는 금속의 표면처리용 처리액.The treatment liquid for treating the surface of metal according to claim 1 or 2, further comprising 1000 to 50000 ppm of nitrate. 제1항 또는 제2항에 있어서, 추가로 HClO3, HBrO3, HNO2, HNO3, HMnO4, HVO3, H2O2, H2WO4 및 H2MoO4 및 이들의 염류 중으로부터 선택되는 적어도 1종류의 산소산, 산소산염 또는 산소산 및 산소산염을 포함하는 금속의 표면처리용 처리액.The method according to claim 1 or 2, further comprising HClO 3 , HBrO 3 , HNO 2 , HNO 3 , HMnO 4 , HVO 3 , H 2 O 2 , H 2 WO 4 and H 2 MoO 4 and salts thereof. A treatment liquid for surface treatment of a metal containing at least one oxygen acid, oxygen acid salt or oxygen acid and oxygen acid salt selected. 제1항 또는 제2항에 있어서, 추가로 수용성 고분자 화합물 및 수분산성 고분자 화합물로부터 선택되는 적어도 1종류의 고분자 화합물을 포함하는 금속의 표면처리용 처리액.The treatment liquid for treating the surface of metal according to claim 1 or 2, further comprising at least one polymer compound selected from water-soluble polymer compounds and water-dispersible polymer compounds. 제1항에 있어서, 추가로 비이온계 계면활성제, 음이온계 계면활성제 및 양이온계 계면활성제로부터 선택되는 적어도 1종류의 계면활성제를 포함하는 금속의 표면처리용 처리액.The treatment liquid for treating the surface of metal according to claim 1, further comprising at least one type of surfactant selected from nonionic surfactants, anionic surfactants and cationic surfactants. 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료로부터 선택되는 금속재료의 각각 단독을 또는 그의 2종류 이상을 동시에, 제1항의 표면처리용 처리액과 접촉시키는 것을 특징으로 하고,Each of the metal materials selected from iron-based materials, zinc-based materials, aluminum-based materials and magnesium-based materials alone or two or more thereof are brought into contact with the surface treatment treatment liquid according to claim 1, 상기 접촉 처리는 스프레이 처리, 침지 처리 또는 흘려붓기 처리인 것인 금속의 표면처리 방법.And said contact treatment is a spray treatment, dipping treatment or pouring treatment. 제7항에 있어서, 금속재료를 표면처리용 처리액과 접촉시킨 후에 수세하거나 또는 수세하지 않고, 추가로 코발트, 니켈, 주석, 구리, 티타늄 및 지르코늄으로 이루어진 군으로부터 선택되는 적어도 1종류의 원소를 포함하는 화합물의 산성 수용액과 접촉시키는 것을 특징으로 하는 금속의 표면처리 방법.8. The method according to claim 7, wherein at least one element selected from the group consisting of cobalt, nickel, tin, copper, titanium and zirconium is further washed with or without washing with a metal material after contact with the treatment solution for surface treatment. A method for surface treatment of metals, comprising contacting with an acidic aqueous solution of a compound. 제7항에 있어서, 금속재료를 표면처리용 처리액과 접촉시킨 후에 수세하거나 또는 수세하지 않고, 추가로 수용성 고분자 화합물 및 수분산성 고분자 화합물로부터 선택되는 적어도 1종류의 고분자 화합물을 포함하는 처리액과 접촉시키는 것을 특징으로 하는 금속의 표면처리 방법.The treatment liquid according to claim 7, further comprising a treatment liquid comprising at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound, without washing or washing with water after contacting the metal material with the treatment solution for surface treatment. A surface treatment method of a metal, characterized in that the contact. 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료로부터 선택되는 금속재료의 각각 단독을 또는 그의 2종류 이상을 동시에, 상기 금속재료를 음극으로 하고, 카본 전극을 양극으로 하여 제1항의 표면처리용 처리액 중에서 전해처리하는 것을 특징으로 하는 금속의 표면처리 방법.The surface treatment according to claim 1, wherein each of metal materials selected from an iron material, a zinc material, an aluminum material, and a magnesium material is used alone or two or more thereof at the same time, with the metal material as the cathode and the carbon electrode as the anode. Electrolytic treatment in a solution treatment solution, characterized in that the metal surface treatment method. 제10항에 있어서, 금속재료를 표면처리용 처리액 중에서 전해처리한 후에 수세하거나 또는 수세하지 않고, 추가로 코발트, 니켈, 주석, 구리, 티타늄 및 지르코늄으로 이루어진 군으로부터 선택되는 적어도 1종류의 원소를 포함하는 화합물의 산성 수용액과 접촉시키는 것을 특징으로 하는 금속의 표면처리 방법.The at least one element according to claim 10, further selected from the group consisting of cobalt, nickel, tin, copper, titanium, and zirconium, with or without water washing after electrolytic treatment of the metal material in the treatment solution for surface treatment. Method for surface treatment of metals, comprising contacting with an acidic aqueous solution of a compound comprising a. 제10항에 있어서, 금속재료를 표면처리용 처리액 중에서 전해처리한 후에 수세하거나 또는 수세하지 않고, 추가로 수용성 고분자 화합물 및 수분산성 고분자 화합물로부터 선택되는 적어도 1종류의 고분자 화합물을 포함하는 처리액과 접촉시키는 것을 특징으로 하는 금속의 표면처리 방법.The treatment solution according to claim 10, wherein the metal material is rinsed or not washed after the electrolytic treatment in the treatment solution for surface treatment, and further includes at least one polymer compound selected from water-soluble polymer compounds and water-dispersible polymer compounds. And contacting with the metal. 철계 재료, 아연계 재료, 알루미늄계 재료 및 마그네슘계 재료로부터 선택된 탈지·청정화 처리되어 있지 않은 금속재료의 각각 단독을 또는 그의 2종류 이상을 동시에, 제6항의 표면처리용 처리액과 접촉시키는 것을 특징으로 하고,A single or two or more kinds of metal materials which have not been degreased and clarified selected from an iron-based material, a zinc-based material, an aluminum-based material and a magnesium-based material are brought into contact with the surface treatment treatment liquid according to claim 6 at the same time. With 상기 접촉 처리는 스프레이 처리, 침지 처리 또는 흘려붓기 처리인 것인 금속의 표면처리 방법. And said contact treatment is a spray treatment, dipping treatment or pouring treatment. 철계 금속재료 표면에 제7항 내지 제13항 중 어느 한 항의 표면처리 방법에 의해 형성된 티타늄 및 지르코늄으로부터 선택되는 금속원소의 적어도 1종류를 포함하는 표면처리 피막을 갖고, 또한 상기 표면처리 피막의 부착량이 상기 금속원소 환산으로 30 ㎎/㎡ 이상인 것을 특징으로 하는 금속재료.A surface treatment film containing at least one kind of metal element selected from titanium and zirconium formed by the surface treatment method according to any one of claims 7 to 13 on the surface of the iron-based metal material, and the adhesion amount of the surface treatment film A metal material, characterized in that 30 mg / ㎡ or more in terms of the metal element. 아연계 금속재료 표면에 제7항 내지 제13항 중 어느 한 항의 표면처리 방법에 의해 형성된 티타늄 또는 지르코늄으로부터 선택되는 금속원소의 적어도 1종류를 포함하는 표면처리 피막을 갖고, 또한 상기 표면처리 피막의 부착량이 상기 금속원소 환산으로 20 ㎎/㎡ 이상인 것을 특징으로 하는 금속재료.A surface treatment film containing at least one kind of metal element selected from titanium or zirconium formed by the surface treatment method according to any one of claims 7 to 13 on the surface of the zinc-based metal material, A metal material, characterized in that the adhesion amount of 20 mg / ㎡ or more in terms of the metal element. 알루미늄계 금속재료 표면에 제7항 내지 제13항 중 어느 한 항의 표면처리 방법에 의해 형성된 티타늄 또는 지르코늄으로부터 선택되는 금속원소의 적어도 1종류를 포함하는 표면처리 피막층을 갖고, 또한 상기 표면처리 피막의 부착량이 상기 금속원소 환산으로 10 ㎎/㎡ 이상인 것을 특징으로 하는 금속재료.A surface treatment film layer containing at least one kind of metal element selected from titanium or zirconium formed by the surface treatment method according to any one of claims 7 to 13 on the surface of the aluminum-based metal material, and further comprising A metal material characterized in that the adhesion amount is 10 mg / m 2 or more in terms of the metal element. 마그네슘계 금속재료 표면에 제7항 내지 제13항 중 어느 한 항의 표면처리 방법에 의해 형성된 티타늄 또는 지르코늄으로부터 선택되는 금속원소의 적어도 1종류를 포함하는 표면처리 피막층을 갖고, 또한 상기 표면처리 피막의 부착량이 상기 금속원소 환산으로 10 ㎎/㎡ 이상인 것을 특징으로 하는 금속재료.A surface treatment film layer containing at least one kind of metal element selected from titanium or zirconium formed by the surface treatment method according to any one of claims 7 to 13 on the surface of the magnesium-based metal material, A metal material characterized in that the adhesion amount is 10 mg / m 2 or more in terms of the metal element.
KR1020057010530A 2002-12-13 2003-12-11 Treating solution for surface treatment of metal, a method for surface treatment and metal material KR100674778B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002362640A JP4205939B2 (en) 2002-12-13 2002-12-13 Metal surface treatment method
JPJP-P-2002-00362640 2002-12-13

Publications (2)

Publication Number Publication Date
KR20050097916A KR20050097916A (en) 2005-10-10
KR100674778B1 true KR100674778B1 (en) 2007-01-25

Family

ID=32588165

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057010530A KR100674778B1 (en) 2002-12-13 2003-12-11 Treating solution for surface treatment of metal, a method for surface treatment and metal material

Country Status (11)

Country Link
US (1) US20060185769A1 (en)
EP (1) EP1571237B1 (en)
JP (1) JP4205939B2 (en)
KR (1) KR100674778B1 (en)
CN (2) CN100537845C (en)
AU (1) AU2003289323A1 (en)
CA (1) CA2509772A1 (en)
ES (1) ES2730576T3 (en)
MX (1) MXPA05006156A (en)
TW (1) TW200416300A (en)
WO (1) WO2004055237A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102176895B1 (en) 2020-07-28 2020-11-10 주식회사 성진케미칼 Chemical composition for forming metal oxide layer wiht excellent paint adhesion on metal surface and using method thereof
KR20230052550A (en) 2021-10-13 2023-04-20 주식회사 성진케미칼 Chemical composition for forming metal oxide layer wiht excellent paint adhesion on metal surface and using method thereof

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452454B2 (en) * 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
US7569132B2 (en) 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
US7578921B2 (en) 2001-10-02 2009-08-25 Henkel Kgaa Process for anodically coating aluminum and/or titanium with ceramic oxides
JP4205939B2 (en) * 2002-12-13 2009-01-07 日本パーカライジング株式会社 Metal surface treatment method
ES2448829T3 (en) * 2002-12-24 2014-03-17 Chemetall Gmbh Chemical conversion coating agent and surface treated metal
JP4067103B2 (en) * 2002-12-24 2008-03-26 日本ペイント株式会社 Degreasing and chemical conversion treatment agent and surface-treated metal
ITMO20040169A1 (en) * 2004-07-02 2004-10-02 Italtecno S R L 'BATHROOM FOR THE CONVERSION COVERING OF ALUMINUM AND ITS ALLOYS AND ITS PROCEDURES'.
BRPI0606329A2 (en) * 2005-01-14 2009-01-27 Henkel Kgaa composition usable for passivation of a metal surface, process for treating a ferrous, aluminum and zinc metal substrate, and article of manufacture
DE102005005858A1 (en) * 2005-02-08 2006-08-17 Henkel Kgaa Process for coating metal sheet, in particular zinc sheet
JP2006241579A (en) * 2005-03-07 2006-09-14 Nippon Paint Co Ltd Chemical conversion treatment agent and surface-treated metal
US7641981B2 (en) * 2005-03-16 2010-01-05 Nihon Parkerizing Co., Ltd. Surface treated metal material
DE102005023728A1 (en) 2005-05-23 2006-11-30 Basf Coatings Ag Lacquer-layer-forming corrosion inhibitor and method for its current-free application
DE102005059314B4 (en) * 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Acid, chromium-free aqueous solution, its concentrate, and a process for the corrosion protection treatment of metal surfaces
JP4748384B2 (en) * 2005-09-21 2011-08-17 日立金属株式会社 Saddle type fitting
US7815751B2 (en) * 2005-09-28 2010-10-19 Coral Chemical Company Zirconium-vanadium conversion coating compositions for ferrous metals and a method for providing conversion coatings
JP5023468B2 (en) * 2005-10-28 2012-09-12 Jfeスチール株式会社 Surface treatment metal plate for can or can lid and method for producing the same, resin-coated metal plate for can or can lid, metal can and can lid
JP5252925B2 (en) * 2005-11-22 2013-07-31 日本パーカライジング株式会社 Surface chemical conversion liquid and method for producing chemical conversion metal plate
TWI340770B (en) 2005-12-06 2011-04-21 Nippon Steel Corp Composite coated metal sheet, treatment agent and method of manufacturing composite coated metal sheet
JP2007182626A (en) * 2005-12-06 2007-07-19 Nippon Steel Corp Composite coated metal sheet, treatment agent for composite coating, and method of manufacturing composite coated metal sheet
JP2007262577A (en) * 2006-03-01 2007-10-11 Nippon Paint Co Ltd Composition for metal surface treatment, metal surface treatment method, and metallic material
JP5092332B2 (en) * 2006-03-22 2012-12-05 Jfeスチール株式会社 Surface-treated steel sheet and manufacturing method thereof
KR20110136905A (en) * 2006-05-02 2011-12-21 제이에프이 스틸 가부시키가이샤 Method of manufacturing hot dip galvannealed steel sheet and hot dip galvannealed steel sheet
MY148014A (en) * 2006-09-07 2013-02-28 Jfe Steel Corp Surface-treated steel shee t
EP2067882B1 (en) * 2006-09-08 2018-04-04 Chemetall GmbH Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
MX2009002468A (en) 2006-09-08 2009-11-23 Nippon Paint Co Ltd Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material.
DE102006053291A1 (en) 2006-11-13 2008-05-15 Basf Coatings Ag Lacquer-layer-forming corrosion protection agent with good adhesion and method for its current-free application
CN101631895B (en) * 2007-02-12 2013-05-08 汉高股份及两合公司 Process for treating metal surfaces
DE102007012406A1 (en) * 2007-03-15 2008-09-18 Basf Coatings Ag Process for corrosion protection equipment of metallic substrates
EP1978131B2 (en) * 2007-03-29 2019-03-06 ATOTECH Deutschland GmbH Means for manufacturing corrosion protection coats on metal surfaces
JP5571277B2 (en) 2007-04-13 2014-08-13 日本パーカライジング株式会社 Surface treatment liquid for zinc-based metal material and surface treatment method for zinc-based metal material
US8673091B2 (en) * 2007-08-03 2014-03-18 Ppg Industries Ohio, Inc Pretreatment compositions and methods for coating a metal substrate
US9428410B2 (en) 2007-09-28 2016-08-30 Ppg Industries Ohio, Inc. Methods for treating a ferrous metal substrate
US9574093B2 (en) * 2007-09-28 2017-02-21 Ppg Industries Ohio, Inc. Methods for coating a metal substrate and related coated metal substrates
US8097093B2 (en) 2007-09-28 2012-01-17 Ppg Industries Ohio, Inc Methods for treating a ferrous metal substrate
JP5470751B2 (en) * 2008-02-13 2014-04-16 Tdk株式会社 Active material and electrode manufacturing method, active material and electrode
HUE032760T2 (en) 2008-03-17 2017-11-28 Henkel Ag & Co Kgaa Method of treating metals with a coating composition
DE102008014465B4 (en) 2008-03-17 2010-05-12 Henkel Ag & Co. Kgaa Optimized Ti / Zr passivation agent for metal surfaces and conversion treatment method
RU2010147566A (en) * 2008-04-25 2012-05-27 ХЕНКЕЛЬ АГ энд Ко. КГаА (DE) PASSIVATING SUBSTANCES BASED ON TREVALENT CHROME FOR THE PROCESSING OF ZINC STEEL
CN101629299B (en) * 2008-07-16 2011-03-30 宝山钢铁股份有限公司 Electroplating degreasing agent for secondary cold rolled material
JP5338195B2 (en) * 2008-08-20 2013-11-13 新日鐵住金株式会社 Surface-treated galvanized steel sheet and method for producing the same
JP5463652B2 (en) * 2008-11-14 2014-04-09 Tdk株式会社 Active material and electrode manufacturing method
EP2186928A1 (en) * 2008-11-14 2010-05-19 Enthone, Inc. Method for the post-treatment of metal layers
JP5407062B2 (en) 2008-11-17 2014-02-05 Tdk株式会社 Active material and electrode manufacturing method, active material, electrode and lithium ion secondary battery
US8282801B2 (en) * 2008-12-18 2012-10-09 Ppg Industries Ohio, Inc. Methods for passivating a metal substrate and related coated metal substrates
JP5347522B2 (en) * 2009-01-20 2013-11-20 Tdk株式会社 Active material and electrode manufacturing method, active material and electrode
DE102009007632A1 (en) 2009-02-05 2010-08-12 Basf Coatings Ag Coating agent for corrosion-resistant coatings
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
JP5434278B2 (en) * 2009-05-29 2014-03-05 Tdk株式会社 Active material and electrode manufacturing method, active material and electrode
US20100316881A1 (en) * 2009-06-16 2010-12-16 Kaylo Alan J Method of reducing mapping of an electrodepositable coating layer
PL2458031T3 (en) * 2009-07-02 2020-01-31 Henkel Ag & Co. Kgaa Chromium- and fluorine-free chemical conversion treatment solution for metal surfaces, metal surface treatment method, and metal surface coating method
DE102009028025A1 (en) 2009-07-27 2011-02-03 Henkel Ag & Co. Kgaa Multi-stage process for the treatment of metal surfaces prior to dip coating
CN101603174B (en) * 2009-07-28 2010-12-08 武汉钢铁(集团)公司 Non-chromium pretreating agent for color coated steel plate
FR2948690B1 (en) * 2009-07-30 2013-03-08 Snecma PIECE COMPRISING A SUBSTRATE CARRYING A CERAMIC COATING LAYER
CN107012455B (en) 2009-12-28 2019-06-04 汉高股份有限及两合公司 Metal pretreatment composition containing zirconium, copper, zinc and nitrate and on metal base relevant coating
JP4920800B2 (en) * 2010-03-23 2012-04-18 新日本製鐵株式会社 Manufacturing method of steel plate for containers
TW201139736A (en) * 2010-05-13 2011-11-16 Zen Material Technologies Inc Color whitening processing method for stainless steel surface and processing liquid used thereby
WO2011149047A1 (en) 2010-05-28 2011-12-01 東洋製罐株式会社 Surface treatment bath, method of manufacturing surface-treated steel plate using said surface treatment bath, and surface-treated steel plate formed with said manufacturing method
JP5861249B2 (en) * 2010-09-15 2016-02-16 Jfeスチール株式会社 Manufacturing method of steel plate for containers
CN108374168A (en) * 2011-02-08 2018-08-07 汉高股份有限及两合公司 Method and composition for the corrosive nature for improving the pretreated zinc surface of zirconium oxide
EP2690202A4 (en) * 2011-03-25 2014-12-03 Nippon Paint Co Ltd Surface treatment agent composition, method for producing surface-treated steel sheet, surface-treated steel-sheet, surface-treated steel sheet with organic coating, can lid, can body, and seamless can
JP5894576B2 (en) 2011-03-25 2016-03-30 日本ペイント・サーフケミカルズ株式会社 Surface treatment composition for tin-plated steel and surface-treated tin-plated steel
JP5750013B2 (en) * 2011-09-07 2015-07-15 日本ペイント株式会社 Electrodeposition coating composition and method for forming an electrocoating film on an object to be coated
JP6055263B2 (en) * 2011-10-14 2016-12-27 日本ペイント・サーフケミカルズ株式会社 Manufacturing method of automobile parts
CN104105822B (en) * 2011-11-30 2016-10-19 日本帕卡濑精株式会社 Supply agent, the manufacture method of surface treated steel plate
WO2013089292A1 (en) * 2011-12-15 2013-06-20 대영엔지니어링 주식회사 Electro-deposition coating method for magnesium steel material
US10400337B2 (en) 2012-08-29 2019-09-03 Ppg Industries Ohio, Inc. Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates
IN2015DN01537A (en) 2012-08-29 2015-07-03 Ppg Ind Ohio Inc
US9273399B2 (en) 2013-03-15 2016-03-01 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a battery electrode
KR20160060655A (en) 2013-09-25 2016-05-30 도요 고한 가부시키가이샤 Surface-treated steel sheet, organic resin-coated metal container and method for producing surface-treated steel sheet
CN103526250A (en) * 2013-09-27 2014-01-22 宁波金恒机械制造有限公司 Cast iron surface treatment agent and treatment method
CN103540919A (en) * 2013-09-27 2014-01-29 宁波金恒机械制造有限公司 Cast iron surface anti-corrosion treatment agent and cast iron surface anti-corrosion treatment method
CN103540918A (en) * 2013-09-27 2014-01-29 宁波金恒机械制造有限公司 Cast iron surface anti-corrosion treatment agent
EP2862957B1 (en) 2013-10-16 2019-08-07 Coatings Foreign IP Co. LLC Process for producing a multilayer coating
JP6220226B2 (en) 2013-10-31 2017-10-25 東洋鋼鈑株式会社 Method for producing surface-treated steel sheet, surface-treated steel sheet, and organic resin-coated metal container
KR20150058859A (en) * 2013-11-21 2015-05-29 삼성전자주식회사 a composition for being coated on metal object, a coating layer using the same and a preparation method thereof
JP6530885B2 (en) 2013-12-18 2019-06-12 東洋製罐株式会社 Surface-treated steel sheet, organic resin-coated metal container, and method for producing surface-treated steel sheet
JP5886919B1 (en) 2014-09-12 2016-03-16 東洋製罐株式会社 Surface-treated steel sheet, method for producing the same, and resin-coated surface-treated steel sheet
US9631281B2 (en) 2014-12-04 2017-04-25 Axalta Coating Systems Ip Co., Llc Processes for producing a multilayer coating
DE102014225237B3 (en) * 2014-12-09 2016-04-28 Henkel Ag & Co. Kgaa Process for the wet-chemical pretreatment of a large number of iron and aluminum components in series
EP3031951B1 (en) 2014-12-12 2017-10-04 Henkel AG & Co. KGaA Optimized process control in the pretreatment of metals to protect against corrosion on the basis of baths containing fluoride
CN104532225A (en) * 2014-12-15 2015-04-22 镁联科技(芜湖)有限公司 Aluminum alloy passivator, preparation method thereof and aluminum alloy passivating method
CN104532224A (en) * 2014-12-15 2015-04-22 镁联科技(芜湖)有限公司 Chromium-free aluminum alloy passivator, preparation method thereof and aluminum alloy passivating method
CN104532221B (en) * 2014-12-15 2017-10-17 镁联科技(芜湖)有限公司 Passivating method without Cr-Al alloy passivator and preparation method thereof He aluminium alloy
JP6495702B2 (en) * 2015-03-19 2019-04-03 株式会社神戸製鋼所 Surface treatment method and surface treatment apparatus
RU2729485C1 (en) 2016-08-24 2020-08-07 Ппг Индастриз Огайо, Инк. Iron-containing cleaner composition
KR102451532B1 (en) * 2017-11-24 2022-10-06 닛폰세이테츠 가부시키가이샤 Chemical conversion treatment liquid regeneration apparatus used for the manufacturing method of a chemical conversion treatment alloy material, and the manufacturing method of a chemical conversion treatment alloy material
WO2019157276A1 (en) * 2018-02-09 2019-08-15 Ppg Industries Ohio, Inc. System for treating a metal substrate
CN108796578A (en) * 2018-05-30 2018-11-13 江苏寅凯照明科技有限公司 A kind of formula and technique substituting aluminium alloy light pole anodic oxidation
EP3924535A1 (en) * 2019-02-11 2021-12-22 PPG Industries Ohio Inc. Systems for treating a metal substrate
CN110424039B (en) * 2019-09-16 2021-08-10 东北大学 Preparation method of magnesium alloy corrosion-resistant self-repairing micro-arc oxidation coating based on hydrotalcite nano corrosion-inhibiting microcapsule
TW202134364A (en) * 2020-01-31 2021-09-16 美商恩特葛瑞斯股份有限公司 Cmp composition for polishing hard materials
JP7438078B2 (en) 2020-10-20 2024-02-26 日本ペイント・サーフケミカルズ株式会社 Water-based coating agent for steel materials, film, coating method for steel materials, and steel materials
CN112899664B (en) * 2021-01-27 2022-08-02 太原科技大学 Magnesium alloy surface zirconia-based film and preparation method thereof
CN113046813B (en) * 2021-02-19 2022-04-19 赣州有色冶金研究所有限公司 Magnesium alloy material, preparation method and welding method thereof
TWI812437B (en) * 2022-08-30 2023-08-11 中國鋼鐵股份有限公司 Method for rapidly evaluating surface discoloration of hot-dip galvanized steel
CN116791072B (en) * 2023-08-14 2024-02-23 广东宏泰节能环保工程有限公司 Metal surface treatment passivating agent and preparation method and application thereof

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1586975A (en) * 1976-07-05 1981-03-25 Kansai Paint Co Ltd Surface treatment of metals
FR2417537A1 (en) * 1978-02-21 1979-09-14 Parker Ste Continentale COMPOSITION BASED ON HAFNIUM TO INHIBIT CORROSION OF METALS
US4313769A (en) * 1980-07-03 1982-02-02 Amchem Products, Inc. Coating solution for metal surfaces
US4273592A (en) * 1979-12-26 1981-06-16 Amchem Products, Inc. Coating solution for metal surfaces
US4457790A (en) * 1983-05-09 1984-07-03 Parker Chemical Company Treatment of metal with group IV B metal ion and derivative of polyalkenylphenol
AU4751885A (en) * 1984-10-09 1986-04-17 Parker Chemical Company Treating extruded aluminium metal surfaces
CA1333043C (en) * 1988-02-15 1994-11-15 Nippon Paint Co., Ltd. Surface treatment chemical and bath for aluminium and its alloy
JPH0364484A (en) * 1989-08-01 1991-03-19 Nippon Paint Co Ltd Surface treating agent and treating bath for aluminum or aluminum alloy
JPH0364485A (en) * 1989-08-01 1991-03-19 Nippon Paint Co Ltd Surface treating agent and treating bath for aluminum or aluminum alloy
AU662758B2 (en) * 1991-08-30 1995-09-14 Henkel Corporation Process for treating metal with aqueous acidic composition that is substantially free from chromium (VI)
US5143562A (en) * 1991-11-01 1992-09-01 Henkel Corporation Broadly applicable phosphate conversion coating composition and process
JP3105322B2 (en) * 1991-12-27 2000-10-30 日産自動車株式会社 Method for forming colorless chromate film on glittering aluminum wheels
DE4317217A1 (en) * 1993-05-24 1994-12-01 Henkel Kgaa Chrome-free conversion treatment of aluminum
US5380374A (en) * 1993-10-15 1995-01-10 Circle-Prosco, Inc. Conversion coatings for metal surfaces
DE4401566A1 (en) * 1994-01-20 1995-07-27 Henkel Kgaa Process for the common pretreatment of steel, galvanized steel, magnesium and aluminum before joining with rubber
US6059896A (en) * 1995-07-21 2000-05-09 Henkel Corporation Composition and process for treating the surface of aluminiferous metals
JPH0982495A (en) * 1995-09-18 1997-03-28 Toshiba Corp Plasma producing device and method
US5935348A (en) * 1995-11-14 1999-08-10 Henkel Kommanditgesellschaft Auf Aktien Composition and process for preventing corrosion and reducing friction on metallic surfaces
JP3437023B2 (en) * 1995-11-20 2003-08-18 日本ペイント株式会社 Aluminum-based metal surface treatment bath and treatment method
US6361833B1 (en) * 1998-10-28 2002-03-26 Henkel Corporation Composition and process for treating metal surfaces
DE19857799A1 (en) * 1998-12-15 2000-06-21 Henkel Kgaa Method of controlling a treatment line
JP4099307B2 (en) * 2000-04-20 2008-06-11 日本ペイント株式会社 Non-chromium anti-rust treatment agent for aluminum, anti-rust treatment method and anti-rust treated aluminum products
EP1325089A2 (en) * 2000-09-25 2003-07-09 Chemetall GmbH Method for pretreating and coating metal surfaces, prior to forming, with a paint-like coating and use of substrates so coated
TWI268965B (en) * 2001-06-15 2006-12-21 Nihon Parkerizing Treating solution for surface treatment of metal and surface treatment method
JP3820165B2 (en) * 2002-03-04 2006-09-13 日本ペイント株式会社 Metal surface treatment composition
JP2003313678A (en) * 2002-04-23 2003-11-06 Nippon Paint Co Ltd Chromium-free surface treatment agent for metal, chromium-free surface treatment method for metal, and aluminum or aluminum alloy
JP4205939B2 (en) * 2002-12-13 2009-01-07 日本パーカライジング株式会社 Metal surface treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102176895B1 (en) 2020-07-28 2020-11-10 주식회사 성진케미칼 Chemical composition for forming metal oxide layer wiht excellent paint adhesion on metal surface and using method thereof
KR20230052550A (en) 2021-10-13 2023-04-20 주식회사 성진케미칼 Chemical composition for forming metal oxide layer wiht excellent paint adhesion on metal surface and using method thereof

Also Published As

Publication number Publication date
MXPA05006156A (en) 2005-12-05
CN1726304A (en) 2006-01-25
US20060185769A1 (en) 2006-08-24
KR20050097916A (en) 2005-10-10
ES2730576T3 (en) 2019-11-12
EP1571237A4 (en) 2007-11-21
WO2004055237A1 (en) 2004-07-01
AU2003289323A1 (en) 2004-07-09
CN100537845C (en) 2009-09-09
JP2004190121A (en) 2004-07-08
EP1571237B1 (en) 2019-03-20
EP1571237A1 (en) 2005-09-07
AU2003289323A8 (en) 2004-07-09
CN101487115B (en) 2013-05-22
JP4205939B2 (en) 2009-01-07
CA2509772A1 (en) 2004-07-01
CN101487115A (en) 2009-07-22
TW200416300A (en) 2004-09-01

Similar Documents

Publication Publication Date Title
KR100674778B1 (en) Treating solution for surface treatment of metal, a method for surface treatment and metal material
KR100839744B1 (en) Treating solution for metal surface treatment and a method for surface treatment
JP4402991B2 (en) Metal surface treatment composition, metal surface treatment liquid, metal surface treatment method and metal material
KR100869402B1 (en) A surface treating solution for surface treatment of aluminum or magnesium metal and a method for surface treatment
JP4242827B2 (en) Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
JP5215043B2 (en) Metal surface treatment liquid and surface treatment method
EP1486585A1 (en) Method of treating metal surfaces
EP1859930B1 (en) Surface-treated metallic material
MX2007011230A (en) Surface-treated metallic material.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140107

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150105

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151217

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171219

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191217

Year of fee payment: 14