JP4205939B2 - Metal surface treatment method - Google Patents

Metal surface treatment method Download PDF

Info

Publication number
JP4205939B2
JP4205939B2 JP2002362640A JP2002362640A JP4205939B2 JP 4205939 B2 JP4205939 B2 JP 4205939B2 JP 2002362640 A JP2002362640 A JP 2002362640A JP 2002362640 A JP2002362640 A JP 2002362640A JP 4205939 B2 JP4205939 B2 JP 4205939B2
Authority
JP
Japan
Prior art keywords
surface treatment
metal
compound
ppm
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002362640A
Other languages
Japanese (ja)
Other versions
JP2004190121A (en
Inventor
隆臣 中山
裕之 佐藤
敏行 相島
栄作 岡田
文也 吉田
克博 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Nihon Parkerizing Co Ltd
Toyota Motor Corp
Original Assignee
Daihatsu Motor Co Ltd
Nihon Parkerizing Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Nihon Parkerizing Co Ltd, Toyota Motor Corp filed Critical Daihatsu Motor Co Ltd
Priority to JP2002362640A priority Critical patent/JP4205939B2/en
Priority to TW092133808A priority patent/TW200416300A/en
Priority to CNB2003801059479A priority patent/CN100537845C/en
Priority to EP03780727.8A priority patent/EP1571237B1/en
Priority to CA002509772A priority patent/CA2509772A1/en
Priority to KR1020057010530A priority patent/KR100674778B1/en
Priority to MXPA05006156A priority patent/MXPA05006156A/en
Priority to AU2003289323A priority patent/AU2003289323A1/en
Priority to PCT/JP2003/015868 priority patent/WO2004055237A1/en
Priority to US10/537,329 priority patent/US20060185769A1/en
Priority to ES03780727T priority patent/ES2730576T3/en
Priority to CN2008101849496A priority patent/CN101487115B/en
Publication of JP2004190121A publication Critical patent/JP2004190121A/en
Application granted granted Critical
Publication of JP4205939B2 publication Critical patent/JP4205939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/76Applying the liquid by spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Description

【0001】
【発明の属する技術分野】
本発明は、自動車車体に代表される様な鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料の単独或はその2種乃至4種からなる構造物の金属材料表面に、それぞれ単独に或はその2種乃至4種を同時に、塗装後の耐食性に優れる表面処理皮膜を析出させることを可能とする表面処理用処理液、及び表面処理方法に関する。
【0002】
【従来の技術】
金属表面に塗装後の耐食性に優れる表面処理皮膜を析出させる手法としては、りん酸亜鉛処理法やクロメート処理法が現在一般に用いられている。りん酸亜鉛処理法は、冷延鋼板等の鋼、亜鉛めっき鋼板及び一部のアルミニウム合金表面に耐食性に優れる皮膜を析出させることができる。しかしながら、りん酸亜鉛処理を行う際には、反応の副生成物であるスラッジの発生が避けられず、且つアルミニウム合金の種類によっては塗装後の耐糸錆性を十分に確保することができない。アルミニウム合金に対しては、クロメート処理を施すことによって十分な塗装後の性能を確保することが可能である。しかしながら、昨今の環境規制から処理液中に有害な6価クロムを含むクロメート処理は敬遠される方向にある。そこで、処理液中に有害成分を含まない表面処理方法として、以下に示す発明が提案されている。
【0003】
例えば、孤立電子対を持つ窒素原子を含有する化合物、及び前記化合物とジルコニウム化合物を含有する金属表面用ノンクロムコーティング剤が提案されている(特許文献1参照)。この方法は、前記組成物を塗布することによって、有害成分である6価クロムを含まずに、塗装後の耐食性、及び密着性に優れた表面処理皮膜を得ることを可能とするものである。しかしながら、対象とされる金属素材がアルミニウム合金に限られており、且つ塗布乾燥によって表面処理皮膜を形成せしめるため、自動車車体の様な複雑な構造物に塗布することは困難である。
【0004】
そこで、化成反応によって塗装後の密着性及び耐食性に優れる表面処理皮膜を析出させる方法として多数の方法が提案されている(例えば、特許文献2、特許文献3、特許文献4及び特許文献5参照)。しかしながら、何れの方法も対象とされる金属材料が、素材そのものの耐食性に優れるアルミニウム合金に限定されており、鉄系材料や亜鉛系材料表面に表面処理皮膜を析出させることは不可能であった。
【0005】
また、金属アセチルアセトネートと、水溶性無機チタン化合物又は水溶性無機ジルコニウム化合物とからなる表面処理組成物で、塗装後の耐食性及び密着性に優れる表面処理皮膜を析出せしめる手法が提案されている(特許文献6参照)。この方法を用いることによって、適用される金属材料がアルミニウム合金以外にマグネシウム、マグネシウム合金、亜鉛、及び亜鉛めっき合金にまで拡大された。しかしながら、この方法では冷延鋼板等の鉄系材料表面に表面処理皮膜を析出させることは不可能であり、鉄系材料を同時に処理することはできない。
【0006】
更に、クロムフリー塗布型酸性組成物による金属表面処理方法、例えば、耐食性に優れる皮膜となり得る成分の水溶液を金属表面に塗布した後、水洗工程を行わずに焼き付け乾燥することによって皮膜を固定化する金属表面処理方法が提案されている(特許文献7参照)。この方法は、皮膜の生成に化学反応を伴わないため、亜鉛めっき鋼板、冷延鋼板及びアルミニウム合金等の金属表面に皮膜処理を施すことが可能である。しかしながら、前記特許文献1に開示された発明と同様に、塗布乾燥によって皮膜を生成させるため、自動車車体の様な複雑な構造物に均一な皮膜処理を施すことは困難である。
【0007】
従って、従来技術では環境に有害な成分を含まず、廃棄物となるスラッジが発生しない処理液で、自動車車体の様に冷延鋼板等の鉄系材料と亜鉛めっき鋼板等の亜鉛系材料、更にアルミニウム系及びマグネシウム系材料の2種乃至4種を同時に処理し、耐食性と密着性に優れる表面処理を施すことは不可能であった。
【0008】
【特許文献1】
特開2000−204485号公報
【特許文献2】
特開昭56−136978号公報
【特許文献3】
特開平8−176841号公報
【特許文献4】
特開平9−25436号公報
【特許文献5】
特開平9−31404号公報
【特許文献6】
特開2000−199077号公報
【特許文献7】
特開平5−195244号公報
【0009】
【発明が解決しようとする課題】
本発明は、従来技術では不可能であった、環境に有害な成分を含まず、廃棄物となるスラッジが発生しないで、鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料の表面に塗装後の耐食性に優れる表面処理皮膜を析出させることを可能とする表面処理用処理液を提供し、また自動車車体の様に鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料の2種乃至4種を組み合わせた構造物の金属表面に、塗装後の耐食性に優れる表面処理皮膜を同一組成、同一条件で、同時に析出させることを可能とする表面処理用処理液を提供し、更にこの表面処理用処理液を用いる表面処理方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは前記課題を解決するための手段について鋭意検討した結果、従来技術にはない表面処理用処理液及び表面処理方法を完成するに至った。
すなわち本発明は、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料をそれぞれ単独で或はその2種以上を同時に表面処理するための水系表面処理液であって、ジルコニウム化合物及びチタニウム化合物から選ばれる1種以上の化合物を上記金属元素として5〜5000ppm含み、また遊離フッ素イオンを0.1〜100ppm含み、且つpHが2〜6であることを特徴とする金属の表面処理用処理液である。
【0011】
この表面処理用処理液には、更にカルシウム化合物、マグネシウム化合物及びストロンチウム化合物からなる群から選ばれる1種以上の化合物を含有させてもよい。その際のこれらの化合物の濃度は、これらの金属元素として、カルシウム化合物の場合は5〜100ppm、マグネシウム化合物又はストロンチウム化合物の場合は10〜5000ppmが好ましい。この処理液には、更に硝酸根を1000〜50000ppm含有させるのが好ましい。また、更に、HClO3、HBrO3、HNO2、HNO3、HMnO4、HVO3、H22、H2WO4及びH2MoO4並びにこれらの塩類の中から選ばれる少なくとも1種の酸素酸及び/又は酸素酸塩を含有させるのが好ましい。これらの表面処理用処理液には、更に水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含有させてもよいし、ノニオン系界面活性剤、アニオン系界面活性剤及びカチオン系界面活性剤から選ばれる少なくとも1種の界面活性剤を含有させてもよい。
【0012】
また、本発明は、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料のそれぞれ単独を或はその2種以上を同時に、上述の表面処理用処理液と接触させることを特徴とする金属の表面処理方法である。この表面処理方法において、金属材料を表面処理用処理液と接触させた後に、水洗し或いは水洗せずに、更に、コバルト、ニッケル、すず、銅、チタニウム及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物の酸性水溶液と接触させてもよく、また水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含む処理液と接触させてもよい。
【0013】
また、本発明は、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料のそれぞれ単独を或はその2種以上を同時に、該金属材料を陰極として、上述の表面処理用処理液中にて電解処理することを特徴とする金属の表面処理方法である。この表面処理方法において、金属材料を表面処理用処理液中にて電解処理した後に、水洗し或いは水洗せずに、更に、コバルト、ニッケル、すず、銅、チタニウム及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物の酸性水溶液と接触させてもよく、また水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含む処理液と接触させてもよい。
【0014】
また、本発明は、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれた、脱脂・清浄化処理してない金属材料のそれぞれ単独を或はその2種以上を同時に、上述のノニオン系界面活性剤、アニオン系界面活性剤及びカチオン系界面活性剤から選ばれる少なくとも1種の界面活性剤を含有させた表面処理液と接触させて、金属表面の脱脂処理と皮膜形成処理を同時に行うことができる方法である。
【0015】
また、本発明は、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料表面に、上述の表面処理方法によって形成されたチタニウム及びジルコニウムから選ばれる金属元素の少なくとも1種を含む表面処理皮膜を有し、且つ該表面処理皮膜の付着量が、前記金属元素換算で、鉄系金属材料表面の場合には30mg/m2以上であり、亜鉛系金属材料表面の場合には20mg/m2以上であり、アルミ系金属材料表面の場合には10mg/m2以上であり、マグネシウム系金属材料表面の場合には10mg/m2以上であることを特徴とする金属材料である。
【0016】
【発明の実施の形態】
本発明は、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料をそれぞれ単独で或はその2種以上を同時に表面処理し、塗装後の耐食性に優れる表面処理皮膜を析出させる技術に係わる。ここで鉄系材料とは、冷延鋼板及び熱間圧延鋼板等の鋼板、鋳鉄及び焼結材等の鉄系金属を言う。また、亜鉛系材料とは、亜鉛ダイキャストや亜鉛含有めっきを言う。この亜鉛含有めっきは、亜鉛又は亜鉛と他の金属(例えば、ニッケル、鉄、アルミニウム、マンガン、クロム、マグネシウム、コバルト、鉛及びアンチモン等の少なくとも1種の金属)との合金及び不可避不純物によりめっきされたものを言い、そのめっき方法は例えば溶融めっき、電気めっき、蒸着めっき等で制限はない。また、アルミニウム系材料とは、5000系アルミニウム合金や6000系アルミニウム合金の様なアルミニウム合金板材やADC−12に代表されるアルミニウム合金ダイキャスト等を示す。更に、マグネシウム系材料とは、マグネシウム合金を用いた板材やダイキャスト等を言う。
【0017】
本発明は、前記金属材料の単独を構成部材に含む構造物、或は前記金属材料の2種乃至4種を構成部材に含む構造物に適用される。そして、前記金属材料の2種乃至4種を構成部材に含む構造物に適用する場合は、2種乃至4種の金属材料の表面を同時に表面処理することができるものである。ここで、2種乃至4種の金属材料を同時に表面処理する場合は、異種金属同士が接触しない状態であっても構わないし、溶接、接着、リベット止め等の接合方法によって異種金属同士が接合接触した状態でも構わない。
【0018】
本発明の表面処理用処理液は、ジルコニウム化合物及びチタニウム化合物から選ばれる1種以上の化合物を上記記金属元素として5〜5000ppm含み、遊離フッ素イオンを0.1〜100ppm含み、且つpHが2〜6の処理液である。ここで、本発明で用いられるジルコニウム化合物としては、ZrCl4、ZrOCl2、Zr(SO4)2、ZrOSO4、Zr(NO3)4、ZrO(NO3)2、H2ZrF6、H2ZrF6の塩、ZrO2、ZrOBr2、及びZrF4などが挙げられる。またチタニウム化合物としては、TiCl4、Ti(SO4)2、TiOSO4、Ti(NO3)4、TiO(NO3)2、TiO2OC24、H2TiF6、H2TiF6の塩、TiO2、及びTiF4などが挙げられる。本発明ではジルコニウム化合物が好ましく使用される。
【0019】
本発明に用いられるジルコニウム化合物及びチタニウム化合物から選ばれる1種以上の化合物の濃度は、前記金属元素として(すなわち、ジルコニウム及び/又はチタニウムとして)5〜5000ppmであることが好ましく、より好ましくは10〜3000ppmである。本発明の表面処理用処理液及び表面処理方法を用いて得られる皮膜はジルコニウム又はチタニウムの酸化物や水酸化物であるため、前記ジルコニウム化合物又はチタニウム化合物から選ばれる1種以上の化合物の濃度がジルコニウム及び/又はチタニウムとして5ppmよりも小さいと、皮膜主成分濃度が小さいために耐食性を得るために十分な付着量を実用的な処理時間で得ることが困難となる。また、濃度が5000ppmよりも大きい場合は、十分な付着量は得られるが、それ以上耐食性を向上させる効果はなく、経済的に不利なだけである。
【0020】
ジルコニウム化合物又はチタニウム化合物は、酸性溶液には比較的溶解するが、アルカリ溶液中では不安定であり、容易にジルコニウム又はチタニウムの酸化物又は水酸化物として析出する。本発明の表面処理用処理液のpHは2〜6、より好ましいpHは3〜6である。このpHで被処理金属材料を本発明の表面処理用処理液と接触させると、被処理金属材料の溶解反応が起こる。そして、被処理金属材料が溶解することによって、被処理金属材料界面ではpHの上昇が起こり、ジルコニウム及びチタニウムの酸化物又は水酸化物が皮膜として被処理金属材料表面に析出するのである。
【0021】
本発明の表面処理用処理液では、その中に遊離フッ素イオンを存在させる。遊離フッ素イオンを存在させるには、表面処理用処理液にフッ素化合物を添加する。この遊離フッ素イオンの供給源としては、フッ化水素酸、H2ZrF6、H2ZrF6の塩、H2TiF6、H2TiF6の塩、H2SiF6、H2SiF6の塩、HBF4、HBF4の塩、NaHF2、KHF2、NH4HF2、NaF、KF、及びNH4Fなどが挙げられる。遊離フッ素イオンは、表面処理用処理液中におけるジルコニウム化合物及びチタニウム化合物の安定性を向上させる作用を有する。更に、遊離フッ素イオンは、本発明の表面処理の対象とする金属材料である鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料の何れの材料に対しても酸性溶液中での溶解反応を促進する作用を有する。従って、フッ素化合物を添加して遊離フッ素イオンを存在させることによって、本発明の表面処理用処理液の安定性を高めながら、且つ被処理金属材料に対する反応性をも高めることが可能となる。
【0022】
本出願人は、先に、鉄又は亜鉛の少なくとも1種を含む金属の表面を処理するための表面処理用組成物及び表面処理用処理液について、チタニウム化合物やジルコニウム化合物とフッ素含有化合物とを用い、表面処理用組成物及び表面処理用処理液中の前記金属元素の合計モル重量Aとフッ素含有化合物中の全フッ素原子をHFに換算したときのモル重量Bの比A/Bを特定範囲すなわち0.06〜0.18にすることを提案した(PCT/JP02/05860)。本発明によれば、チタニウム化合物やジルコニウム化合物の金属元素の濃度と、pHと、遊離フッ素イオンの濃度とを規定することによって、上記の特定範囲外においても、鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料をそれぞれ単独で或はその2種以上を同時に表面処理することが可能である。
【0023】
鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料は、各々の反応性が異なるために、従来技術では、前記金属材料の2種以上を同時に表面処理することは不可能であった。本発明においては、表面処理用処理液の安定性と反応性のバランスを遊離フッ素イオンの濃度を調整することによって自在に変えることができるため、反応性の異なる、鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料の2種以上を同時に、又は各々単独に表面処理を施すことが可能である。
【0024】
ここで言う遊離フッ素イオンの濃度は、市販のイオン電極を用いて測定されるフッ素イオン濃度を示す。本発明の表面処理用処理液中の遊離フッ素イオンの濃度は0.1〜100ppmであることが好ましく、より好ましくは、2〜70ppmである。遊離フッ素イオンの濃度が100ppmよりも高い場合は、被処理金属材料の溶解反応は促進されるが、表面処理用処理液中でのジルコニウム化合物及びチタニウム化合物が非常に安定であるため、被処理金属材料界面でpHが上昇しても皮膜として析出し難くなる。また、0.1ppmよりも小さい場合は、表面処理用処理液の安定性と反応性の向上に対する効果が小さく、遊離フッ素イオンを含有させる意味が無くなる。
【0025】
本発明における遊離フッ素イオンは、表面処理用処理液の安定性及び反応性の向上作用の他に、被処理金属材料の溶解によって溶出した成分を表面処理用処理液中に安定に保つ作用を担う。従来技術の一つであるりん酸亜鉛処理の場合は、例えば鉄系金属材料から溶出した鉄イオンがりん酸と不溶性の塩であるりん酸鉄を作るためスラッジが発生する。本発明の表面処理用処理液においても、処理液中にりん酸根を含ませることができるが、りん酸根の濃度が1.0g/Lを超えると、スラッジを発生することがある。また、処理浴の容量に対して著しく被処理金属材料の処理量が多い場合は、溶出した成分を可溶化するために、例えば、硫酸、塩酸等の無機酸;酢酸、蓚酸、酒石酸、クエン酸、琥珀酸、グルコン酸、フタル酸等の有機酸;溶出成分をキレートすることができるキレート剤などを、1種又は2種以上添加してもよい。
【0026】
本発明の表面処理用処理液には、カルシウム化合物、マグネシウム化合物及びストロンチウム化合物からなる群から選ばれる少なくとも1種以上を含むことができる。本発明は、ある特定濃度のジルコニウム化合物及びチタニウム化合物を含む水溶液の遊離フッ素イオンの濃度をある一定範囲にすることによって、鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料の2種乃至4種を同時に、又は各々単独に表面処理を施すことを可能としたものである。ここで、前記カルシウム化合物、マグネシウム化合物又はストロンチウム化合物に含まれる金属元素(カルシウム、マグネシウム又はストロンチウム)は、水溶液中でフッ素とフッ化物の塩を生成することによって、水溶液中の遊離フッ素イオン濃度を一定の値に保とうとする作用を有する。この作用によって、様々な種類の被処理金属材料を同時に表面処理しても、その使用比率に依らず、常に一定な遊離フッ素イオン濃度が保たれるため、それぞれの被処理金属材料に最適な皮膜付着量が得られる。
【0027】
本発明に用いることができるカルシウム化合物、マグネシウム化合物又はストロンチウム化合物としては、例えばこれら金属元素の酸化物、水酸化物、塩化物、硫酸塩、硝酸塩及び炭酸塩などが挙げられる。また、カルシウム化合物、マグネシウム化合物及びストロンチウム化合物以外にも、フッ素含有水溶液中の遊離フッ素イオン濃度を一定に保つ作用がある化合物であれば、無機物、有機物の如何を問わず、本発明に用いることができる。
【0028】
本発明に用いるマグネシウム化合物又はストロンチウム化合物の濃度は、前記金属元素として、10〜5000ppmであることが好ましく、より好ましくは100〜3000ppmである。カルシウム化合物の場合は、フッ化カルシウムの溶解度が著しく小さいためにカルシウムとして5〜100ppmが好ましく、より好ましくは5〜50ppmである。ここで、前記化合物の濃度が上限値よりも大きい場合は、表面処理用処理液の安定性が損なわれ連続操業上の支障が生じる可能性がある。また、前記化合物の濃度が下限値よりも小さい場合は、特に鉄系材料上の本発明の皮膜の付着量が低下する恐れがある。
【0029】
また、本発明の表面処理用処理液には硝酸根を1000〜50000ppm、より好ましくは、1000〜30000ppm添加することができる。硝酸根は、酸化剤として作用し、本発明における皮膜析出反応を促進する作用と、前記カルシウム化合物、マグネシウム化合物又はストロンチウム化合物の表面処理用処理液中での溶解度を高める作用を有する。従って、硝酸根の濃度が1000ppmよりも小さい場合でも、耐食性に優れる皮膜を析出させることはできるが、前記カルシウム化合物、マグネシウム化合物又はストロンチウム化合物の濃度が高い場合には、表面処理用処理液の安定性が損なわれる恐れがある。また、硝酸根の濃度は50000ppmで十分であり、それ以上硝酸根を添加しても経済的に不利となるだけである。
【0030】
また、本発明の表面処理用処理液には、HClO3、HBrO3、HNO3、HNO2、HMnO4、HVO3、H22、H2WO4及びH2MoO4からなる群から選ばれる少なくとも1種の酸素酸及び/又はこれらの酸素酸の塩類を添加することができる。酸素酸又はその塩は、被処理素材に対する酸化剤として作用し、本発明に於ける皮膜形成反応を促進する。上記の酸素酸又はこれらの酸素酸の塩類の添加濃度には特に限定はないが、10〜5000ppm程度の添加量で酸化剤としての効果を充分に発揮する。
【0031】
更に、本発明の表面処理用処理液には、水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を添加してもよい。本発明の表面処理用処理液を用いて表面処理した金属材料は十分な耐食性を有しているが、潤滑性などの更なる機能が必要な場合には、所望の機能に応じて高分子化合物を選択して添加し、皮膜の物性を改質してもよい。上記の水溶性高分子化合物及び水分散性高分子化合物としては、例えばポリビニルアルコール、ポリ(メタ)アクリル酸、アクリル酸とメタクリル酸との共重合体、エチレンと(メタ)アクリル酸や(メタ)アクリルレートなどのアクリル系単量体との共重合体、エチレンと酢酸ビニルとの共重合体、ポリウレタン、アミノ変性フェノール樹脂、ポリエステル樹脂、エポキシ樹脂など金属の表面処理に常用されている高分子化合物を用いることができる。
【0032】
本発明の表面処理用処理液を用いて金属の表面を処理するには、常法で表面を脱脂処理し、清浄化した被処理金属材料を表面処理用処理液に接触させるだけでよい。これによって、金属素材表面にジルコニウム及びチタニウムから選ばれる金属元素の酸化物及び/又は水酸化物からなる皮膜が析出し、密着性及び耐食性の良い表面処理皮膜層が形成される。この接触処理はスプレー処理、浸漬処理及び流しかけ処理などのいかなる工法も用いることができ、この接触方法は性能に影響を及ぼさない。前記金属の水酸化物を純粋な水酸化物として得ることは、化学的に困難であり、一般には、前記金属の酸化物に水和水が付いた形態も水酸化物の範疇に入れている。従って、前記金属の水酸化物は熱を加えることによって、最終的には酸化物となる。本発明における表面処理皮膜層の構造は、表面処理を施した後に常温又は低温で乾燥した場合は、酸化物と水酸化物が混在した状態、更に、表面処理後に高温で乾燥した場合は、酸化物のみ乃至は酸化物が多い状態になっていると考えられる。
【0033】
本発明における表面処理用処理液の使用条件には、特に限定はない。本発明の表面処理液の反応性は、表面処理用処理液中のジルコニウム化合物又はチタニウム化合物の濃度と、遊離フッ素イオン濃度を変えることによって自在にコントロールできる。そのため、処理温度及び処理時間は処理浴の反応性との組合せで、いかようにも変えることが可能である。
【0034】
また、上記の表面処理用処理液に、ノニオン系界面活性剤、アニオン系界面活性剤及びカチオン系界面活性剤の群の中から選ばれる少なくとも1種の界面活性剤を添加して表面処理に用いることができる。この表面処理用処理液を用いて金属素材を表面処理する場合は、被処理金属材料を予め脱脂処理し、清浄化しなくとも良好な皮膜を形成させることができる。すなわち、この表面処理用処理液は脱脂化成兼用表面処理剤として使用できる。
【0035】
また、本発明の表面処理用処理液を用いて金属の表面を処理するには、被処理金属材料を陰極とし、表面処理用処理液中で電解を行う方法を採用することもできる。ここで、被処理金属材料を陰極として電解処理を行うと、陰極界面では水素の還元反応が起りpHが上昇する。pHの上昇に伴い、陰極界面でのジルコニウム化合物及び/又はチタニウム化合物の安定性が低下し、酸化物若しくは水を含んだ水酸化物として表面処理皮膜が析出する。
【0036】
また、被処理金属材料を表面処理用処理液と接触した後、或いは表面処理用処理液中で電解処理した後に、水洗し又は水洗せずに、コバルト、ニッケル、すず、銅、チタニウム及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物の酸性水溶液、若しくは水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含む処理液と接触させることによって、更に、本発明の効果を高めることができる。
【0037】
本発明によって得られた表面処理皮膜層は、薄膜で優れた塗装性能を示すが、被処理金属材料の表面状態によっては、表面処理皮膜層に微細な欠陥部が存在する可能性がある。そこで、コバルト、ニッケル、すず、銅、チタニウム及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物の酸性水溶液、又は水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含む処理液と接触させることによって、上記の微細な欠陥部が被覆され耐食性が更に高まるのである。
【0038】
上記したコバルト、ニッケル、すず、銅、チタニウム及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物は、特に限定はないが、入手が容易である前記金属元素の酸化物、水酸化物、フッ化物、錯フッ化物、塩化物、硝酸塩、オキシ硝酸塩、硫酸塩、オキシ硫酸塩、炭酸塩、オキシ炭酸塩、りん酸塩、オキシりん酸塩、蓚酸塩、オキシ蓚酸塩及び有機金属化合物等を用いることができる。また、前記金属元素を含む酸性水溶液のpHは2〜6であることが好ましく、りん酸、硝酸、硫酸、フッ化水素酸、塩酸、及び、有機酸等の酸や、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アルカリ金属塩、アンモニム塩、及びアミン類等のアルカリで調整することができる。
【0039】
また、上記した水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物としては、例えばポリビニルアルコール、ポリ(メタ)アクリル酸、アクリル酸とメタクリル酸との共重合体、エチレンと(メタ)アクリル酸や(メタ)アクリルレートなどのアクリル系単量体との共重合体、エチレンと酢酸ビニルとの共重合体、ポリウレタン、アミノ変性フェノール樹脂、ポリエステル樹脂、エポキシ樹脂、タンニン及びタンニン酸とその塩、及びフィチン酸等を用いることができる。
【0040】
本発明は、被処理金属材料表面にジルコニウム及び又はチタニウムから選ばれる金属元素の酸化物及び/又は水酸化物からなる表面処理皮膜層を設けることで、金属材料の耐食性を飛躍的に高めることを可能としたものである。ここで、前記金属元素の酸化物及び水酸化物は、酸やアルカリに侵され難く化学的に安定な性質を有している。実際の金属の腐食環境では、金属の溶出が起こるアノード部ではpHの低下が、また還元反応が起こるカソード部ではpHの上昇が起こる。従って、耐酸性及び耐アルカリ性に劣る表面処理皮膜は、腐食環境下で溶解しその効果が失われていく。本発明における表面処理皮膜層の主成分は、酸やアルカリに侵されにくいため、腐食環境下においても優れた効果が持続する。
【0041】
また、前記の金属元素の酸化物及び水酸化物は、金属と酸素を介したネットワーク構造を作るため、非常に良好なバリヤー皮膜となる。金属材料の腐食は、使用される環境によっても異なるが、一般には水と酸素が存在する状況での酸素要求型腐食であり、その腐食スピードは塩化物等の成分の存在によって促進される。ここで、本発明の表面処理皮膜層は、水、酸素及び腐食促進成分に対するバリヤー効果を有するため、優れた耐食性を発揮できる。
【0042】
ここで、前記バリヤー効果を利用して、冷間圧延鋼板、熱間圧延鋼板、鋳鉄及び焼結材等の鉄系材料の耐食性を高めるには、前記金属元素換算で30mg/m2以上の付着量が必要であり、好ましくは40mg/m2以上、より好ましくは50mg/m2以上の付着量である。また、亜鉛又は亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板等の亜鉛系材料の耐食性を高めるには、前記金属元素換算で20mg/m2以上の付着量が必要であり、好ましくは30mg/m2以上の付着量である。更に、アルミニウム鋳物及びアルミニウム合金板等のアルミニウム系材料の耐食性を高めるには、前記金属元素換算で10mg/m2以上の付着量が必要であり、好ましくは20mg/m2以上の付着量である。また、マグネシウム合金板及びマグネシウム鋳物等のマグネシウム系材料の耐食性を高めるには、前記金属元素換算で10mg/m2以上の付着量が必要であり、好ましくは20mg/m2以上の付着量である。付着量の上限に関しては特に制限はないが、付着量が1g/m2を越えると、表面処理皮膜層にクラックが発生し易くなり、均一な皮膜を得る作業が困難となる。従って、鉄系材料、亜鉛系材料、及びアルミニウム系材料ともに、付着量の上限は、1g/m2より好ましくは800mg/m2である。
【0043】
【実施例】
以下に実施例を比較例とともに挙げ、本発明の表面処理用処理液及び表面処理方法の効果を具体的に説明する。なお、実施例で使用した被処理素材、脱脂剤及び塗料は市販されている材料の中から任意に選定したものであり、本発明の表面処理用処理液及び表面処理方法の実際の用途を限定するものではない。
【0044】
〔供試板〕
実施例と比較例の供試板に、冷延鋼板、溶融亜鉛メッキ鋼板、アルミニウム合金板及びマグネシウム合金板を用いた。この供試板の略号と内訳を以下に示す。なお、表面処理後の外観の評価にはSPC、GA及びAlの3種類の金属材料をスポット溶接で接合した状態の供試板を用いた。表面処理皮膜層の付着量の評価にはSPC、GA、Al、Mgのそれぞれ個々の供試板と、SPC、GA及びAlの3種類の金属材料をスポット溶接で接合した状態の供試板とを用いた。塗装性能の評価には、SPC、GA及びAlの3種類の金属材料をスポット溶接で接合した状態の供試板を用い、表面処理、塗装、塗装性能評価までの一連の試験を実施した。図1は、SPC、GA及びAlの3種類の金属材料をスポット溶接した供試板の平面図、図2はその正面図である。1はスポット溶接部を示す。
・SPC(冷延鋼板:JIS−G−3141)
・GA(両面合金化溶融亜鉛メッキ鋼板:メッキ目付量45g/m2
・Al(アルミニウム合金板:6000系アルミニウム合金)
・Mg(マグネシウム合金板:JIS−H−4201)
【0045】
〔処理工程〕
実施例、比較例の処理工程は次のとおりである。
実施例1〜4、実施例7及び比較例1〜4:アルカリ脱脂→水洗→皮膜化成処理→水洗→純水洗→乾燥
実施例5:アルカリ脱脂→水洗→電解化成処理→水洗→純水洗→乾燥
実施例6:皮膜化成処理(脱脂化成兼用)→水洗→純水洗→乾燥
実施例8:アルカリ脱脂→水洗→皮膜化成処理→水洗→後処理→純水洗→乾燥
実施例9:皮膜化成処理(脱脂化成兼用)→水洗→後処理→純水洗→乾燥
比較例5:アルカリ脱脂→水洗→表面調整→りん酸亜鉛処理→水洗→純水洗→乾燥
上記において、アルカリ脱脂は、実施例、比較例ともにファインクリーナーL4460(登録商標:日本パーカライジング(株)製)を2%に水道水で希釈し、40℃、120秒間、被処理板にスプレーして使用した。皮膜処理後の水洗、及び純水洗は、実施例、比較例ともに室温で30秒間、被処理板にスプレーした。
【0046】
実施例1
オキシ硝酸ジルコニウム試薬と硝酸を用いて、ジルコニウム濃度が200ppmである水溶液を調製した。この水溶液を45℃に加温した後、水酸化ナトリウム試薬とフッ化水素酸を用いて、pHを3.0に調整し、またフッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を1ppmに調整して表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は50ppmであった。
脱脂後に水洗を施した供試板を、上記の表面処理用処理液に120秒間浸漬して表面処理を行った。
【0047】
実施例2
オキシ硝酸ジルコニウム試薬と硝酸マグネシウム試薬と硝酸ストロンチウム試薬を用いて、ジルコニウム濃度が100ppm、マグネシウム濃度が5000ppm、ストロンチウム濃度が2000ppm、硝酸根が28470ppmである水溶液を調製した。この水溶液を50℃に加温した後、アンモニア水試薬とフッ化水素酸を用いてpHを4.0に調整し、またフッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を80ppmに調整して表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は2000ppmであった。
脱脂後に水洗を施した供試板を、上記の表面処理用処理液に60秒間浸漬して表面処理を行った。
【0048】
実施例3
ヘキサフルオロジルコン酸(IV)水溶液と硫酸チタン(IV)水溶液と硫酸カルシウム試薬と硝酸を用いて、ジルコニウム濃度が1000ppm、チタニウム濃度が2000ppm、カルシウム濃度が5ppm、硝酸根が1000ppmの水溶液を調製した。この水溶液を40℃に加温した後、水酸化カリウム試薬とフッ化水素酸を用いて、pHを5.0に調整し、またフッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を25ppmに調整して表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は2250ppmであった。
脱脂後に水洗を施した供試板を、上記の表面処理用処理液に90秒間浸漬して表面処理を行った。
【0049】
実施例4
ヘキサフルオロチタン酸(IV)水溶液と硝酸ストロンチウム試薬と亜硝酸ナトリウム試薬を用いて、チタニウム濃度が5000ppm、ストロンチウム濃度が5000ppm、硝酸根が7080ppm、亜硝酸根が40ppmである水溶液を調製した。この水溶液を35℃に加温した後、トリエタノールアミン試薬とフッ化水素酸を用いて、pHを4.0に調整し、またフッ素イオンメーター(IM−55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を10ppmに調整して表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は11900ppmであった。
脱脂後に水洗を施した供試板に、上記の表面処理用処理液を120秒間スプレーで噴霧して表面処理を行った。
【0050】
実施例5
オキシ硝酸ジルコニウム試薬とヘキサフルオロチタン酸(IV)水溶液と硝酸マグネシウム試薬と硝酸と塩素酸ナトリウム試薬を用いて、ジルコニウム濃度が5ppm、チタニウム濃度が5ppm、マグネシウム濃度が100ppm、硝酸根が30520ppm、塩素酸根が100ppmである水溶液を調製した。この水溶液を30℃に加温した後、アンモニア水試薬とフッ化水素酸を用いて、pHを6.0に調整し、フッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を0.5ppmに調整した表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は12ppmであった。
脱脂後に水洗を施した供試板を陰極とし、陽極にカーボン電極を用いて、前記表面処理用処理液中で5A/dm2の電解条件で5秒間電解して表面処理を行った。
【0051】
実施例6
オキシ硝酸ジルコニウム試薬と酸化マグネシウム試薬と硝酸と過酸化水素水試薬を用いて、ジルコニウム濃度が150ppm、マグネシウム濃度が10ppm、硝酸根が5200ppm、過酸化水素が10ppmである水溶液を調製した。この水溶液を50℃に加温した後、アンモニア水試薬とフッ化水素酸を用いて、pHを5.0に調整し、またフッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を50ppmに調整し、更にノニオン系界面活性剤であるポリオキシエチレンノニルフェニルエーテル(エチレンオキサイド付加モル数:12モル)を2g/L添加して表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は170ppmであった。
脱脂処理を行わずに塗油されたままの供試板に、上記の表面処理用処理液を90秒間スプレーで噴霧して脱脂と同時に表面処理を行った。
【0052】
実施例7
硫酸チタン(IV)水溶液と硝酸カルシウム試薬と硝酸マグネシウム試薬と過マンガン酸カリウム試薬とを用いて、チタニウム濃度が100ppm、カルシム濃度が50ppm、マグネシウム濃度が5000ppm、硝酸根が25660ppm、過マンガン酸が10ppmである水溶液を調製した。更に、この水溶液に水溶性アクリル系高分子化合物(ジュリマーAC-10L:日本純薬株式会社製)を固形分濃度が1%になるように添加し50℃に加温した後、水酸化ナトリウム試薬とフッ化水素酸でpHを3.0に調整し、フッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を95ppmに調整して表面処理用処理液とした。遊離フッ素イオン濃度を調整した後の、表面処理用処理液中の全フッ素濃度は2000ppmであった。
脱脂処理後に水洗を施した供試板を、上記の表面処理用処理液に60秒間浸漬して表面処理を行った。
【0053】
実施例8
水溶性アクリル系高分子化合物(ジュリマーAC-10L:日本純薬株式会社製)が固形分濃度で1%、りん酸試薬がりん酸根として2g/Lである水溶液を調調製した。この水溶液を40℃に加温した後、アンモニア水試薬で、pHを4.5に調整して後処理液を作製した。実施例5の表面処理で皮膜化成及び水洗を行った供試板を、上記の後処理液に30秒間浸漬して後処理を行った。
【0054】
実施例9
ヘキサフルオロジルコン酸(IV)水溶液と硝酸コバルト試薬を用いて、ジルコニウム濃度が50ppm、コバルト濃度が50ppmである水溶液を調製し、更に前記水溶液を40℃に加温した後、アンモニア水試薬で、pHを5.0に調整して後処理液を作製した。実施例6の表面処理で皮膜化成及び水洗を行った供試板を、上記の後処理液に30秒間浸漬して後処理を行った。
【0055】
比較例1
オキシ硝酸ジルコニウム試薬と硝酸マグネシウム試薬と硝酸を用いて、ジルコニウム濃度が500ppm、マグネシウム濃度が1000ppm、硝酸根が6780ppmである水溶液を調製した。この水溶液を45℃に加温した後、水酸化ナトリウム試薬でpHを4.0に調整して表面処理用処理液とした。前記表面処理用処理液中の遊離フッ素イオン濃度を市販のフッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定した結果、0ppmであった。
脱脂後に水洗を施した供試板を、上記の表面処理用処理液に120秒間浸漬して表面処理を行った。
【0056】
比較例2
硫酸チタン(IV)水溶液を用いて、チタニウム濃度が2000ppmである水溶液を調整した。前記水溶液を50℃に加温した後、アンモニア水試薬とフッ化水素酸でpHを3.5に調整し、フッ素イオンメーター(IM-55G;東亜電波工業(株)製)で測定される遊離フッ素イオン濃度を400ppmに調整して表面処理用処理液とした。
脱脂後に水洗を施した供試板を、上記の表面処理用処理液に90秒間浸漬して表面処理を行った。
【0057】
比較例3
市販のクロミッククロメート処理薬剤であるアルクロム713(登録商標:日本パーカライジング(株)製)を3.6%に水道水で希釈し、更に全酸度、遊離酸度をカタログ値の中心に調整した。
脱脂後に水洗を施した供試板を、35℃に加温した前記クロメート処理液に60秒間浸漬してクロメート処理を行った。
【0058】
比較例4
市販のノンクロメート処理薬剤であるパルコート3756(登録商標:日本パーカライジング(株)製)を2%に水道水で希釈し、更に全酸度、遊離酸度をカタログ値の中心に調整した。脱脂後に水洗を施した供試板を、40℃に加温した上記のノンクロメート処理液に60秒間浸漬してノンクロメート処理を行った。
【0059】
比較例5
脱脂後に水洗を施した供試板に、表面調整処理剤であるプレパレンZN(登録商標:日本パーカライジング(株)製)を0.1%に水道水で希釈した液を室温で30秒間スプレーで噴霧した後に、パルボンドL3020(登録商標:日本パーカライジング(株)製)を4.8%に水道水で希釈し、更に、フッ化水素ナトリウム試薬をフッ素として200ppm添加した後に、全酸度、遊離酸度をカタログ値の中心に調整した42℃のりん酸亜鉛化成処理液に浸漬してりん酸亜鉛皮膜を析出させた。
【0060】
〔表面処理皮膜の評価〕
実施例及び比較例の表面処理後の供試板の外観を目視で評価した。その結果を表1に示す。また、表面処理皮膜層の付着量を蛍光X線分析装置(システム3270;理学電気工業(株)製)で測定した。その結果を表2及び表3に示す。なお、表面処理皮膜層の付着量は、各々の金属材料を接合せずに個々に処理した場合(接合なし)と、スポット溶接で接合して処理した場合(接合あり)について測定を行った。
【0061】
【表1】

Figure 0004205939
【0062】
表1は、実施例及び比較例で得られた表面処理皮膜の外観評価結果を示す。実施例は、全ての供試板の全ての金属材料種に対して均一な皮膜を得ることができた。更に、実施例で使用した供試板のスポット溶接部にも表面処理皮膜が析出している様子が観察された。これに対して、比較例では全ての供試板に対して均一な皮膜を析出させることはできなかった。特に、比較例3,4、及び5ではスポット溶接部には全く皮膜が析出していなかった。また、比較例5は、冷延鋼板と亜鉛めっき鋼板とアルミニウム合金を同時に処理する際に用いられるりん酸亜鉛処理液であるが、今回の試験の様に、各々のテストピースを溶接によって接合した条件では、冷延鋼板上にスケと呼ばれる金属材料素地が露出した部分が現れていた。
【0063】
【表2】
Figure 0004205939
【0064】
【表3】
Figure 0004205939
【0065】
表2及び表3は、実施例及び比較例で得られた表面処理皮膜の付着量の測定結果を示す。実施例では、全ての供試板の全ての金属材料種に対して目標とする付着量を得ることができた。また、実施例における表面処理皮膜層の付着量は、供試板の接合の有無に依らず一定であった。対して、比較例では皮膜外観評価結果からも明らかな通り、全ての供試板に対して均一な皮膜を析出させることはできなかった。
【0066】
〔塗装性能の評価〕
(塗装性能評価板の作製)
実施例及び比較例の表面処理板の塗装性能を評価するため、
カチオン電着塗装→純水洗→焼き付け→中塗り→焼き付け→上塗り→焼き付け
の工程で塗装を行った。カチオン電着塗装、中塗り塗装、上塗り塗装は次のとおりである。
カチオン電着塗装:エポキシ系カチオン電着塗料(エレクロン9400:関西ペイント(株)製)、電圧200V、膜厚20μm、175℃20分焼き付け
中塗り塗装:アミノアルキッド系塗料(アミラックTP−37グレー:関西ペイント(株)製)、スプレー塗装、膜厚35μm、140℃20分焼き付け
上塗り塗装:アミノアルキッド系塗料(アミラックTM−13白:関西ペイント(株)製)、スプレー塗装、膜厚35μm、140℃20分焼き付け
【0067】
(塗装性能評価)
実施例及び比較例の塗装性能の評価を行った。その結果を表4及び表5に示す。評価項目と略号を以下に示す。なお、電着塗装完了時点での塗膜を電着塗膜、上塗り塗装完了時点での塗膜を3coats塗膜と称することとする。
▲1▼ SST:塩水噴霧試験(電着塗膜)
▲2▼ SDT:塩温水試験(電着塗膜)
▲3▼ 1st ADH:1次密着性(3coats塗膜)
▲4▼ 2nd ADH:耐水2次密着性(3coats塗膜)
【0068】
SST:鋭利なカッターでクロスカットを入れた電着塗装板に5%塩水を840時間噴霧(JIS−Z−2371に準ずる)した。噴霧終了後にクロスカット部からの両側最大膨れ幅を測定した。
SDT:電着塗装板を、50℃に昇温した5wt%のNaCl水溶液に840時間浸漬した。浸漬終了後に水道水で水洗→常温乾燥したテストピースの全面をガムテープで剥離し、各々の金属材料上の塗膜の剥離面積を目視で判定した。
【0069】
1st ADH:3coats塗膜に鋭利なカッターで2mm間隔の碁盤目を100個切った。碁盤目部のセロファンテープ剥離を行い碁盤目の剥離個数を数えた。
2nd ADH:3coats塗装板を40℃の脱イオン水に240時間浸漬した。浸漬後に鋭利なカッターで2mm間隔の碁盤目を100個切った。碁盤目部のセロファンテープ剥離を行い碁盤目の剥離個数を数えた。
【0070】
【表4】
Figure 0004205939
【0071】
表4は、電着塗膜の塗装性能評価結果を示す。実施例は、全ての供試板に対して良好な耐食性を示した。対して比較例1では、表面処理用処理液中に遊離フッ素イオンを全く含まないため、表面処理皮膜が十分に析出せず、耐食性が劣っていた。また、比較例2では、表面処理用処理液中の遊離フッ素イオン濃度が高いため、特にSPC上の皮膜付着量が小さく耐食性に劣る結果であった。実施例5及び6は、比較例よりも優れた塗装性能を示すものの、他の実施例と比較すると若干、電着塗装後の耐食性が劣る結果であった。しかしながら、実施例8及び9に示されるとおり、後処理を施すことによって耐食性が更に向上した。
【0072】
比較例3はアルミ合金用のクロメート処理剤、比較例4はアルミ合金用のノンクロメート処理剤であるため、Alの耐食性は優れていたが、他の供試板の耐食性は明らかに実施例に劣っていた。比較例5は、現在、カチオン電着塗装下地として一般に用いられているりん酸亜鉛処理である。しかしながら、比較例5においても、今回の試験の様に、各々のテストピースを溶接によって接合した条件では、実施例と比較して劣る結果であった。
【0073】
【表5】
Figure 0004205939
【0074】
表5は、3coats板の密着性評価結果を示す。実施例は、全ての供試板に対して良好な密着性を示した。1st ADHに関しては、比較例においても良好な結果であったが、2nd ADHでは、電着塗膜の耐食性と同様に全ての供試板に対して良好な密着性を示す水準はなかった。また、比較例5においては、表面処理後の処理浴中にはりん酸亜鉛処理時の副生成物であるスラッジが発生していた。しかしながら、実施例においては、何れの水準においてもスラッジの発生は認められなかった。
【0075】
以上の結果から、本発明品である表面処理用処理液及び表面処理方法を用いることによって、処理浴及び処理条件を変えることなくSPC、GA及びAlを同時に処理し、密着性と耐食性に優れる表面処理皮膜を析出させることが可能であることが明らかである。更に、本発明を用いることによって、溶接部の上にも耐食性に優れる表面処理皮膜を析出させることが可能となった。また、本発明の表面処理方法は、被処理金属材料と表面処理用処理液を接触させるだけでよいため、袋構造部内部の様に、攪拌効果が期待できない部位にも表面処理皮膜を析出させ耐食性の向上を図ることが可能である。
【0076】
【発明の効果】
本発明の表面処理用処理液及びこの処理液を用いた表面処理方法によれば、従来技術では不可能であった、環境に有害な成分を含まない処理浴で、スラッジを発生させることなく、鉄系材料、亜鉛系材料、アルミニウム系及びマグネシウム系材料の2種乃至4種を同時に又は各々単独からなる金属表面に、塗装後の耐食性に優れる表面処理皮膜を析出させることができる。また、被処理金属材料の表面調整工程を行わなくても表面処理皮膜を析出させることができ、その場合は処理工程の短縮、省スペース化が可能となる。
【図面の簡単な説明】
【図1】供試板の平面図
【図2】供試板の正面図
【符号の説明】
1 スポット溶接部、SPC 冷延鋼板、GA 溶融亜鉛メッキ鋼板、Al アルミニウム合金板[0001]
BACKGROUND OF THE INVENTION
The present invention can be applied to the surface of a metal material of an iron-based material, a zinc-based material, an aluminum-based material, and a magnesium-based material typified by an automobile body or a structure composed of 2 to 4 kinds thereof. Relates to a surface treatment treatment liquid and a surface treatment method capable of precipitating a surface treatment film having excellent corrosion resistance after coating two to four kinds at the same time.
[0002]
[Prior art]
As a technique for depositing a surface treatment film having excellent corrosion resistance after coating on a metal surface, a zinc phosphate treatment method and a chromate treatment method are generally used. The zinc phosphate treatment method can deposit a film having excellent corrosion resistance on the surface of steel such as cold-rolled steel sheets, galvanized steel sheets and some aluminum alloys. However, when the zinc phosphate treatment is performed, the generation of sludge as a by-product of the reaction is inevitable, and depending on the type of aluminum alloy, the yarn rust resistance after coating cannot be sufficiently ensured. For aluminum alloys, sufficient post-painting performance can be ensured by applying chromate treatment. However, due to recent environmental regulations, chromate treatment containing hexavalent chromium harmful to the treatment liquid is in a direction to be avoided. Therefore, the following invention has been proposed as a surface treatment method that does not contain harmful components in the treatment liquid.
[0003]
For example, a compound containing a nitrogen atom having a lone electron pair and a non-chromium coating agent for a metal surface containing the compound and a zirconium compound have been proposed (see Patent Document 1). This method makes it possible to obtain a surface-treated film excellent in corrosion resistance and adhesion after coating without applying hexavalent chromium, which is a harmful component, by applying the composition. However, since the target metal material is limited to aluminum alloy and a surface treatment film is formed by coating and drying, it is difficult to apply to a complicated structure such as an automobile body.
[0004]
Then, many methods are proposed as a method of depositing the surface treatment film | membrane which is excellent in the adhesiveness and corrosion resistance after coating by chemical conversion reaction (for example, refer patent document 2, patent document 3, patent document 4, and patent document 5). . However, the metal materials targeted by either method are limited to aluminum alloys that are excellent in corrosion resistance of the materials themselves, and it was impossible to deposit a surface treatment film on the surface of iron-based materials or zinc-based materials. .
[0005]
Further, a method for depositing a surface treatment film having excellent corrosion resistance and adhesion after coating with a surface treatment composition comprising a metal acetylacetonate and a water-soluble inorganic titanium compound or a water-soluble inorganic zirconium compound has been proposed ( (See Patent Document 6). By using this method, the metal material applied was expanded to magnesium, magnesium alloy, zinc, and galvanized alloy in addition to aluminum alloy. However, in this method, it is impossible to deposit a surface treatment film on the surface of an iron-based material such as a cold-rolled steel sheet, and the iron-based material cannot be treated simultaneously.
[0006]
Further, a metal surface treatment method using a chromium-free coating-type acidic composition, for example, an aqueous solution of a component that can be a film having excellent corrosion resistance is applied to the metal surface, and then the film is fixed by baking and drying without performing a water washing step. A metal surface treatment method has been proposed (see Patent Document 7). Since this method does not involve a chemical reaction in the formation of the film, it is possible to perform a film treatment on metal surfaces such as galvanized steel sheets, cold-rolled steel sheets, and aluminum alloys. However, similarly to the invention disclosed in Patent Document 1, since a film is generated by coating and drying, it is difficult to perform a uniform film treatment on a complicated structure such as an automobile body.
[0007]
Therefore, in the prior art, it is a treatment liquid that does not contain environmentally harmful components and does not generate sludge as waste, such as ferrous materials such as cold-rolled steel sheets and zinc-based materials such as galvanized steel sheets, It has been impossible to treat two or four types of aluminum and magnesium materials at the same time and perform surface treatment with excellent corrosion resistance and adhesion.
[0008]
[Patent Document 1]
JP 2000-204485 A
[Patent Document 2]
JP-A-56-136978
[Patent Document 3]
JP-A-8-176841
[Patent Document 4]
Japanese Patent Laid-Open No. 9-25436
[Patent Document 5]
JP-A-9-31404
[Patent Document 6]
JP 2000-199077 A
[Patent Document 7]
JP-A-5-195244
[0009]
[Problems to be solved by the invention]
The present invention does not contain components harmful to the environment, which is impossible with the prior art, and does not generate waste sludge, and is coated on the surface of iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials. Provided is a treatment liquid for surface treatment that makes it possible to deposit a surface treatment film having excellent corrosion resistance later, and two to four types of iron-based material, zinc-based material, aluminum-based material, and magnesium-based material as in an automobile body. Provided with a surface treatment solution that allows a surface treatment film with excellent corrosion resistance after coating to be deposited on the metal surface of a structure with a combination of seeds at the same composition and under the same conditions. It is an object of the present invention to provide a surface treatment method using a treatment liquid.
[0010]
[Means for Solving the Problems]
As a result of intensive studies on means for solving the above problems, the present inventors have completed a surface treatment solution and a surface treatment method that are not present in the prior art.
That is, the present invention is a water-based surface treatment liquid for surface-treating a metal material selected from iron-based material, zinc-based material, aluminum-based material and magnesium-based material alone or two or more of them simultaneously, One or more compounds selected from a zirconium compound and a titanium compound are contained as the metal element in an amount of 5 to 5000 ppm, free fluorine ions are contained in an amount of 0.1 to 100 ppm, and the pH is 2 to 6. This is a treatment liquid for surface treatment.
[0011]
This surface treatment liquid may further contain one or more compounds selected from the group consisting of calcium compounds, magnesium compounds and strontium compounds. The concentration of these compounds at that time is preferably 5 to 100 ppm in the case of calcium compounds and 10 to 5000 ppm in the case of magnesium compounds or strontium compounds as these metal elements. This treatment liquid preferably further contains 1000 to 50000 ppm of nitrate radical. In addition, HClO Three , HBrO Three , HNO 2 , HNO Three , HMnO Four , HVO Three , H 2 O 2 , H 2 WO Four And H 2 MoO Four In addition, it is preferable to contain at least one oxygen acid and / or oxyacid salt selected from these salts. These surface treatment liquids may further contain at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound, a nonionic surfactant, an anionic interface. You may contain the at least 1 sort (s) of surfactant chosen from an activator and a cationic surfactant.
[0012]
In the present invention, each of metal materials selected from iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials may be brought into contact with the above-mentioned surface treatment solution at the same time or two or more of them simultaneously. This is a metal surface treatment method. In this surface treatment method, at least one selected from the group consisting of cobalt, nickel, tin, copper, titanium, and zirconium, after being brought into contact with the treatment liquid for surface treatment, without being washed with water or with water. It may be contacted with an acidic aqueous solution of a compound containing any of these elements, or may be contacted with a treatment liquid containing at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound.
[0013]
In addition, the present invention provides the above-described surface treatment using a metal material selected from iron-based material, zinc-based material, aluminum-based material, and magnesium-based material alone or two or more of them simultaneously and using the metal material as a cathode. It is the metal surface treatment method characterized by carrying out the electrolytic treatment in the process liquid. In this surface treatment method, at least selected from the group consisting of cobalt, nickel, tin, copper, titanium, and zirconium, after the electrolytic treatment of the metal material in the surface treatment solution, without being washed with water or with water. You may make it contact with the acidic aqueous solution of the compound containing 1 type of elements, and you may make it contact with the process liquid containing at least 1 sort (s) of high molecular compound chosen from a water-soluble high molecular compound and a water-dispersible high molecular compound. .
[0014]
In addition, the present invention provides a metal material selected from iron-based material, zinc-based material, aluminum-based material, and magnesium-based material that has not been degreased and cleaned, or two or more of them simultaneously. A surface treatment solution containing at least one surfactant selected from nonionic surfactants, anionic surfactants and cationic surfactants, to perform degreasing treatment and film formation treatment on the metal surface. This is a method that can be performed simultaneously.
[0015]
Further, the present invention provides at least one metal element selected from titanium and zirconium formed on the surface of a metal material selected from iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials by the surface treatment method described above. In the case of the surface of the iron-based metal material in terms of the metal element, the amount of the surface treatment film is 30 mg / m. 2 In the case of a zinc-based metallic material surface, 20 mg / m 2 In the case of the surface of the aluminum-based metal material, 10 mg / m 2 In the case of the surface of the magnesium-based metal material, 10 mg / m 2 It is a metal material characterized by the above.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a surface-treated film excellent in corrosion resistance after coating by individually or individually treating metal materials selected from iron-based materials, zinc-based materials, aluminum-based materials and magnesium-based materials. It is related to the technique of depositing. Here, the iron-based material refers to a steel plate such as a cold-rolled steel plate and a hot-rolled steel plate, and iron-based metal such as cast iron and a sintered material. The zinc-based material refers to zinc die-casting or zinc-containing plating. This zinc-containing plating is plated with zinc or an alloy of zinc and another metal (for example, at least one metal such as nickel, iron, aluminum, manganese, chromium, magnesium, cobalt, lead and antimony) and inevitable impurities. The plating method is not limited by, for example, hot dipping, electroplating, and vapor deposition plating. The aluminum-based material refers to an aluminum alloy plate material such as a 5000-series aluminum alloy or a 6000-series aluminum alloy, an aluminum alloy die-cast represented by ADC-12, or the like. Further, the magnesium-based material refers to a plate material, die-cast, or the like using a magnesium alloy.
[0017]
The present invention is applied to a structure including a single metallic material as a constituent member, or a structure including two to four metallic materials as a constituent member. And when applying to the structure which contains 2 to 4 types of said metal materials in a structural member, the surface of 2 to 4 types of metal materials can be surface-treated simultaneously. Here, when the surface treatment of two to four kinds of metal materials is performed simultaneously, the dissimilar metals may not be in contact with each other, and the dissimilar metals are joined and contacted by a joining method such as welding, adhesion, riveting or the like. It does not matter even if it is in the state.
[0018]
The treatment liquid for surface treatment of the present invention contains 5 to 5000 ppm of one or more compounds selected from a zirconium compound and a titanium compound as the metal element, contains 0.1 to 100 ppm of free fluorine ions, and has a pH of 2 to 2. 6 treatment liquid. Here, as a zirconium compound used in the present invention, ZrCl Four , ZrOCl 2 , Zr (SO Four ) 2 , ZrOSO Four , Zr (NO Three ) Four , ZrO (NO Three ) 2 , H 2 ZrF 6 , H 2 ZrF 6 Salt of ZrO 2 , ZrOBr 2 , And ZrF Four Etc. Further, as the titanium compound, TiCl Four , Ti (SO Four ) 2 , TiOSO Four , Ti (NO Three ) Four , TiO (NO Three ) 2 TiO 2 OC 2 O Four , H 2 TiF 6 , H 2 TiF 6 Salt of TiO 2 , And TiF Four Etc. In the present invention, a zirconium compound is preferably used.
[0019]
The concentration of one or more compounds selected from the zirconium compound and titanium compound used in the present invention is preferably 5 to 5000 ppm as the metal element (that is, as zirconium and / or titanium), more preferably 10 to 10 ppm. 3000 ppm. Since the film obtained using the surface treatment solution and the surface treatment method of the present invention is an oxide or hydroxide of zirconium or titanium, the concentration of one or more compounds selected from the zirconium compound or titanium compound is high. If it is less than 5 ppm as zirconium and / or titanium, it is difficult to obtain a sufficient amount of adhesion in a practical treatment time for obtaining corrosion resistance because the concentration of the main component of the film is small. Further, when the concentration is higher than 5000 ppm, a sufficient amount of adhesion can be obtained, but there is no further effect of improving the corrosion resistance, which is only economically disadvantageous.
[0020]
A zirconium compound or a titanium compound is relatively soluble in an acidic solution, but is unstable in an alkaline solution and easily precipitates as an oxide or hydroxide of zirconium or titanium. The surface treatment solution of the present invention has a pH of 2 to 6, more preferably 3 to 6. When the metal material to be treated is brought into contact with the treatment liquid for surface treatment of the present invention at this pH, a dissolution reaction of the metal material to be treated occurs. Then, when the metal material to be treated is dissolved, the pH rises at the metal material interface, and zirconium and titanium oxides or hydroxides are deposited on the surface of the metal material as a film.
[0021]
In the treatment liquid for surface treatment of the present invention, free fluorine ions are present therein. In order to make free fluorine ions exist, a fluorine compound is added to the surface treatment solution. As a source of this free fluorine ion, hydrofluoric acid, H 2 ZrF 6 , H 2 ZrF 6 Salt of H 2 TiF 6 , H 2 TiF 6 Salt of H 2 SiF 6 , H 2 SiF 6 Salt of HBF Four , HBF Four Salt of NaHF 2 , KHF 2 , NH Four HF 2 , NaF, KF, and NH Four F etc. are mentioned. Free fluorine ions have the effect of improving the stability of the zirconium compound and the titanium compound in the surface treatment solution. Furthermore, free fluorine ions are dissolved in an acidic solution with respect to any of iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials, which are metal materials to be subjected to the surface treatment of the present invention. Has the effect of promoting Therefore, by adding a fluorine compound and allowing free fluorine ions to be present, it is possible to improve the reactivity of the metal material to be treated while improving the stability of the treatment liquid for surface treatment of the present invention.
[0022]
The present applicant previously used a titanium compound, a zirconium compound, and a fluorine-containing compound for a surface treatment composition and a surface treatment solution for treating the surface of a metal containing at least one of iron or zinc. The ratio A / B between the total molar weight A of the metal elements in the surface treatment composition and the surface treatment liquid and the molar weight B when all fluorine atoms in the fluorine-containing compound are converted to HF is a specific range, Proposed to be 0.06 to 0.18 (PCT / JP02 / 05860). According to the present invention, by defining the concentration, pH, and free fluorine ion concentration of the metal element of the titanium compound or zirconium compound, the iron-based material, the zinc-based material, the aluminum can be used even outside the above specific range. A metal material selected from a base material and a magnesium base material can be surface-treated alone or in combination of two or more thereof.
[0023]
Iron-based materials, zinc-based materials, aluminum-based materials, and magnesium-based materials have different reactivities. Therefore, in the prior art, it has been impossible to simultaneously treat two or more of the metal materials. In the present invention, the balance between the stability and reactivity of the treatment liquid for surface treatment can be freely changed by adjusting the concentration of free fluorine ions. Therefore, the iron-based material, zinc-based material having different reactivity, Two or more types of aluminum-based and magnesium-based materials can be subjected to surface treatment simultaneously or independently.
[0024]
The density | concentration of the free fluorine ion said here shows the fluorine ion concentration measured using a commercially available ion electrode. It is preferable that the density | concentration of the free fluorine ion in the processing liquid for surface treatment of this invention is 0.1-100 ppm, More preferably, it is 2-70 ppm. When the concentration of free fluorine ions is higher than 100 ppm, the dissolution reaction of the metal material to be treated is promoted, but the zirconium compound and the titanium compound in the surface treatment solution are very stable. Even if the pH rises at the material interface, it is difficult to deposit as a film. On the other hand, when the concentration is less than 0.1 ppm, the effect of improving the stability and reactivity of the surface treatment solution is small, and the meaning of containing free fluorine ions is lost.
[0025]
The free fluorine ions in the present invention have the effect of keeping the components eluted by dissolution of the metal material to be treated stably in the surface treatment liquid in addition to the action of improving the stability and reactivity of the surface treatment liquid. . In the case of zinc phosphate treatment, which is one of the prior arts, sludge is generated because, for example, iron ions eluted from an iron-based metal material form iron phosphate which is an insoluble salt with phosphoric acid. In the surface treatment liquid of the present invention, phosphate radicals can be contained in the treatment liquid, but sludge may be generated when the concentration of phosphate radicals exceeds 1.0 g / L. In addition, when the amount of the metal material to be treated is remarkably large with respect to the volume of the treatment bath, for example, inorganic acids such as sulfuric acid and hydrochloric acid; acetic acid, oxalic acid, tartaric acid, citric acid, etc. are used to solubilize the eluted components. Organic acids such as oxalic acid, gluconic acid, phthalic acid, etc .; one or more chelating agents capable of chelating elution components may be added.
[0026]
The surface treatment solution of the present invention may contain at least one selected from the group consisting of calcium compounds, magnesium compounds and strontium compounds. In the present invention, the concentration of free fluorine ions in an aqueous solution containing a specific concentration of a zirconium compound and a titanium compound is set within a certain range, whereby two to four types of iron-based material, zinc-based material, aluminum-based material, and magnesium-based material are used. It is possible to perform the surface treatment on the seeds simultaneously or individually. Here, the metal element (calcium, magnesium or strontium) contained in the calcium compound, magnesium compound or strontium compound generates a salt of fluorine and fluoride in the aqueous solution, so that the concentration of free fluorine ions in the aqueous solution is constant. It has the effect of trying to keep the value of. Because of this action, even if various types of metal materials to be processed are surface-treated at the same time, a constant free fluorine ion concentration is always maintained regardless of the ratio of use, so the optimum film for each metal material to be processed Amount of adhesion can be obtained.
[0027]
Examples of the calcium compound, magnesium compound or strontium compound that can be used in the present invention include oxides, hydroxides, chlorides, sulfates, nitrates and carbonates of these metal elements. In addition to calcium compounds, magnesium compounds, and strontium compounds, any compound that has an action of keeping the free fluorine ion concentration in the fluorine-containing aqueous solution constant can be used in the present invention regardless of whether it is an inorganic substance or an organic substance. it can.
[0028]
The concentration of the magnesium compound or strontium compound used in the present invention is preferably 10 to 5000 ppm, more preferably 100 to 3000 ppm as the metal element. In the case of a calcium compound, since the solubility of calcium fluoride is remarkably small, 5 to 100 ppm is preferable as calcium, and more preferably 5 to 50 ppm. Here, when the concentration of the compound is larger than the upper limit value, the stability of the treatment liquid for surface treatment may be impaired, and there may be a problem in continuous operation. In addition, when the concentration of the compound is smaller than the lower limit value, the amount of the coating of the present invention on the iron-based material may be reduced.
[0029]
Moreover, 1000 to 50000 ppm, more preferably 1000 to 30000 ppm of nitrate radicals can be added to the surface treatment solution of the present invention. The nitrate radical acts as an oxidant and has an action of promoting the film deposition reaction in the present invention and an action of increasing the solubility of the calcium compound, magnesium compound or strontium compound in the surface treatment solution. Therefore, even when the concentration of nitrate radicals is less than 1000 ppm, a film having excellent corrosion resistance can be deposited. There is a risk that the sex will be impaired. Further, the concentration of nitrate radicals is sufficient at 50,000 ppm, and adding more nitrate radicals is only economically disadvantageous.
[0030]
Further, the surface treatment solution of the present invention includes HClO. Three , HBrO Three , HNO Three , HNO 2 , HMnO Four , HVO Three , H 2 O 2 , H 2 WO Four And H 2 MoO Four At least one oxygen acid selected from the group consisting of: and / or salts of these oxygen acids can be added. Oxygen acid or a salt thereof acts as an oxidizing agent for the material to be treated, and accelerates the film forming reaction in the present invention. The addition concentration of the above-mentioned oxygen acid or salts of these oxygen acids is not particularly limited, but the effect as an oxidizing agent is sufficiently exhibited with an addition amount of about 10 to 5000 ppm.
[0031]
Furthermore, at least one polymer compound selected from water-soluble polymer compounds and water-dispersible polymer compounds may be added to the surface treatment treatment liquid of the present invention. The metal material surface-treated with the treatment liquid for surface treatment of the present invention has sufficient corrosion resistance. However, when a further function such as lubricity is required, the polymer compound is selected according to the desired function. May be selected and added to modify the physical properties of the film. Examples of the water-soluble polymer compound and the water-dispersible polymer compound include polyvinyl alcohol, poly (meth) acrylic acid, a copolymer of acrylic acid and methacrylic acid, ethylene and (meth) acrylic acid, and (meth). Polymer compounds commonly used for metal surface treatment, such as copolymers with acrylic monomers such as acrylates, copolymers of ethylene and vinyl acetate, polyurethane, amino-modified phenolic resins, polyester resins, and epoxy resins Can be used.
[0032]
In order to treat the surface of a metal using the surface treatment liquid of the present invention, it is only necessary to degrease the surface by a conventional method and bring the cleaned metal material into contact with the surface treatment liquid. As a result, a film made of an oxide and / or hydroxide of a metal element selected from zirconium and titanium is deposited on the surface of the metal material, and a surface-treated film layer having good adhesion and corrosion resistance is formed. For this contact treatment, any method such as spray treatment, dipping treatment and pouring treatment can be used, and this contact method does not affect the performance. It is chemically difficult to obtain the metal hydroxide as a pure hydroxide. In general, a form in which the metal oxide has hydrated water is also included in the category of hydroxide. . Therefore, the metal hydroxide eventually becomes an oxide when heated. The structure of the surface treatment film layer in the present invention is a state in which an oxide and a hydroxide are mixed when dried at room temperature or low temperature after the surface treatment, and further when oxidized at a high temperature after surface treatment. It is considered that only the object or the oxide is in a large state.
[0033]
There are no particular limitations on the use conditions of the surface treatment solution in the present invention. The reactivity of the surface treatment liquid of the present invention can be freely controlled by changing the concentration of the zirconium compound or the titanium compound and the free fluorine ion concentration in the surface treatment liquid. Therefore, the treatment temperature and treatment time can be changed in any way in combination with the reactivity of the treatment bath.
[0034]
In addition, at least one surfactant selected from the group of nonionic surfactants, anionic surfactants and cationic surfactants is added to the above-described surface treatment treatment solution and used for the surface treatment. be able to. When a metal material is surface-treated using the surface treatment liquid, a good film can be formed without degreasing the metal material to be treated in advance and cleaning it. That is, this surface treatment liquid can be used as a degreasing chemical treatment surface treatment agent.
[0035]
Further, in order to treat the surface of a metal using the surface treatment solution of the present invention, a method of performing electrolysis in the surface treatment solution using a metal material to be treated as a cathode may be employed. Here, when electrolytic treatment is performed using the metal material to be treated as a cathode, a reduction reaction of hydrogen occurs at the cathode interface and the pH rises. As the pH increases, the stability of the zirconium compound and / or titanium compound at the cathode interface decreases, and the surface-treated film is deposited as an oxide or a hydroxide containing water.
[0036]
In addition, after contacting the metal material to be treated with the surface treatment liquid or after electrolytic treatment in the surface treatment liquid, from cobalt, nickel, tin, copper, titanium and zirconium without washing with water. By contacting with an acidic aqueous solution of a compound containing at least one element selected from the group consisting of, or a treatment liquid containing at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound, Furthermore, the effect of the present invention can be enhanced.
[0037]
The surface-treated film layer obtained by the present invention is a thin film and exhibits excellent coating performance. However, depending on the surface state of the metal material to be treated, there may be a fine defect in the surface-treated film layer. Therefore, an acidic aqueous solution of a compound containing at least one element selected from the group consisting of cobalt, nickel, tin, copper, titanium and zirconium, or at least one selected from a water-soluble polymer compound and a water-dispersible polymer compound By contacting with a treatment liquid containing the above polymer compound, the fine defects are covered and the corrosion resistance is further enhanced.
[0038]
The compound containing at least one element selected from the group consisting of cobalt, nickel, tin, copper, titanium and zirconium is not particularly limited, but is easily available as an oxide or hydroxide of the metal element. , Fluoride, complex fluoride, chloride, nitrate, oxynitrate, sulfate, oxysulfate, carbonate, oxycarbonate, phosphate, oxyphosphate, oxalate, oxyoxalate, organometallic compounds, etc. Can be used. Further, the pH of the acidic aqueous solution containing the metal element is preferably 2 to 6, and acids such as phosphoric acid, nitric acid, sulfuric acid, hydrofluoric acid, hydrochloric acid and organic acids, sodium hydroxide, hydroxide It can adjust with alkalis, such as potassium, lithium hydroxide, an alkali metal salt, an ammonium salt, and amines.
[0039]
Examples of at least one polymer compound selected from the water-soluble polymer compound and the water-dispersible polymer compound include polyvinyl alcohol, poly (meth) acrylic acid, and a copolymer of acrylic acid and methacrylic acid. , Copolymers of ethylene and acrylic monomers such as (meth) acrylic acid and (meth) acrylate, copolymers of ethylene and vinyl acetate, polyurethane, amino-modified phenolic resins, polyester resins, epoxy resins, Tannin, tannic acid and its salt, phytic acid and the like can be used.
[0040]
The present invention dramatically increases the corrosion resistance of a metal material by providing a surface treatment film layer made of an oxide and / or hydroxide of a metal element selected from zirconium and / or titanium on the surface of the metal material to be treated. It is possible. Here, the oxide and hydroxide of the metal element have a chemically stable property that is hardly affected by acid or alkali. In an actual metal corrosive environment, a decrease in pH occurs at the anode portion where metal elution occurs, and a pH increase occurs at the cathode portion where the reduction reaction occurs. Therefore, the surface treatment film inferior in acid resistance and alkali resistance dissolves in a corrosive environment and loses its effect. Since the main component of the surface treatment film layer in the present invention is not easily affected by acid or alkali, excellent effects are maintained even in a corrosive environment.
[0041]
In addition, the metal element oxides and hydroxides form a network structure through the metal and oxygen, so that a very good barrier film is obtained. Although the corrosion of a metal material differs depending on the environment in which it is used, it is generally an oxygen demand type corrosion in the presence of water and oxygen, and the corrosion speed is accelerated by the presence of components such as chloride. Here, since the surface treatment film layer of the present invention has a barrier effect against water, oxygen and corrosion promoting components, it can exhibit excellent corrosion resistance.
[0042]
Here, in order to improve the corrosion resistance of ferrous materials such as cold rolled steel sheets, hot rolled steel sheets, cast iron and sintered materials using the barrier effect, 30 mg / m in terms of the metal element. 2 The above adhesion amount is necessary, preferably 40 mg / m 2 Or more, more preferably 50 mg / m 2 It is the above adhesion amount. Moreover, in order to improve the corrosion resistance of zinc-based materials such as zinc or galvanized steel sheet, galvannealed steel sheet, 20 mg / m in terms of the metal element 2 The above adhesion amount is required, preferably 30 mg / m 2 It is the above adhesion amount. Furthermore, in order to enhance the corrosion resistance of aluminum-based materials such as aluminum castings and aluminum alloy plates, 10 mg / m in terms of the metal element. 2 The above adhesion amount is necessary, preferably 20 mg / m 2 It is the above adhesion amount. Moreover, in order to improve the corrosion resistance of magnesium-based materials such as magnesium alloy plates and magnesium castings, 10 mg / m in terms of the metal element. 2 The above adhesion amount is necessary, preferably 20 mg / m 2 It is the above adhesion amount. There is no particular limitation on the upper limit of the adhesion amount, but the adhesion amount is 1 g / m. 2 If it exceeds 1, cracks are likely to occur in the surface-treated film layer, making it difficult to obtain a uniform film. Therefore, the upper limit of the adhesion amount is 1 g / m for both iron-based materials, zinc-based materials, and aluminum-based materials. 2 More preferably 800 mg / m 2 It is.
[0043]
【Example】
Examples are given below together with comparative examples to specifically describe the effects of the surface treatment liquid and the surface treatment method of the present invention. In addition, the to-be-processed material used in the Example, a degreasing agent, and a coating material are arbitrarily selected from commercially available materials, and limit the actual use of the surface treatment liquid and the surface treatment method of the present invention. Not what you want.
[0044]
[Test plate]
Cold rolled steel plates, hot dip galvanized steel plates, aluminum alloy plates and magnesium alloy plates were used for the test plates of the examples and comparative examples. The abbreviations and breakdown of this test plate are shown below. For evaluation of the appearance after the surface treatment, a test plate in which three kinds of metal materials of SPC, GA and Al were joined by spot welding was used. For the evaluation of the adhesion amount of the surface treatment film layer, each test plate of SPC, GA, Al, and Mg, and a test plate in which three kinds of metal materials of SPC, GA, and Al are joined by spot welding, Was used. For the evaluation of coating performance, a series of tests from surface treatment, coating, and coating performance evaluation were carried out using test plates in which three kinds of metal materials of SPC, GA and Al were joined by spot welding. FIG. 1 is a plan view of a test plate spot welded with three kinds of metal materials of SPC, GA, and Al, and FIG. 2 is a front view thereof. Reference numeral 1 denotes a spot weld.
・ SPC (Cold rolled steel sheet: JIS-G-3141)
GA (double-sided alloyed hot-dip galvanized steel sheet: plating weight 45 g / m 2 )
・ Al (aluminum alloy plate: 6000 series aluminum alloy)
・ Mg (magnesium alloy plate: JIS-H-4201)
[0045]
[Processing process]
The processing steps of the examples and comparative examples are as follows.
Examples 1-4, Example 7 and Comparative Examples 1-4: Alkaline degreasing → Washing → Film conversion treatment → Washing → Pure water washing → Drying
Example 5: Alkaline degreasing → Washing → Electrochemical conversion treatment → Washing → Pure water washing → Drying
Example 6: Film chemical conversion treatment (also used for degreasing chemical conversion) → water washing → pure water washing → drying
Example 8: Alkaline degreasing → Washing → Film conversion treatment → Water washing → Post-treatment → Pure water washing → Drying
Example 9: Film chemical conversion treatment (also used for degreasing chemical conversion) → water washing → post treatment → pure water washing → drying
Comparative Example 5: Alkaline degreasing → Washing → Surface adjustment → Zinc phosphate treatment → Washing → Pure water washing → Drying
In the above, alkaline degreasing is performed by diluting 2% of fine cleaner L4460 (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.) with tap water in both the examples and comparative examples, and spraying on the plate to be treated at 40 ° C. for 120 seconds used. The washing with water and the washing with pure water after the film treatment were sprayed on the plate to be treated for 30 seconds at room temperature in both the examples and the comparative examples.
[0046]
Example 1
An aqueous solution having a zirconium concentration of 200 ppm was prepared using a zirconium oxynitrate reagent and nitric acid. After heating this aqueous solution to 45 ° C, the pH is adjusted to 3.0 using a sodium hydroxide reagent and hydrofluoric acid, and a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.) The surface treatment solution was prepared by adjusting the free fluorine ion concentration measured at 1 to 1 ppm. The total fluorine concentration in the treatment liquid for surface treatment after adjusting the free fluorine ion concentration was 50 ppm.
The test plate that had been degreased and washed with water was immersed in the surface treatment solution for 120 seconds for surface treatment.
[0047]
Example 2
Using a zirconium oxynitrate reagent, a magnesium nitrate reagent, and a strontium nitrate reagent, an aqueous solution having a zirconium concentration of 100 ppm, a magnesium concentration of 5000 ppm, a strontium concentration of 2000 ppm, and a nitrate radical of 28470 ppm was prepared. After heating this aqueous solution to 50 ° C, the pH is adjusted to 4.0 using an aqueous ammonia reagent and hydrofluoric acid, and measurement is performed with a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.). The free fluorine ion concentration to be adjusted to 80 ppm was used as a surface treatment solution. The total fluorine concentration in the treatment liquid for surface treatment after adjusting the free fluorine ion concentration was 2000 ppm.
The test plate that had been degreased and washed with water was immersed in the surface treatment solution for 60 seconds to perform surface treatment.
[0048]
Example 3
Using an aqueous hexafluorozirconate (IV) solution, an aqueous titanium (IV) sulfate solution, a calcium sulfate reagent, and nitric acid, an aqueous solution having a zirconium concentration of 1000 ppm, a titanium concentration of 2000 ppm, a calcium concentration of 5 ppm, and a nitrate radical of 1000 ppm was prepared. After heating this aqueous solution to 40 ° C., the pH is adjusted to 5.0 using a potassium hydroxide reagent and hydrofluoric acid, and a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.) The surface treatment solution was prepared by adjusting the free fluorine ion concentration measured in step 1 to 25 ppm. The total fluorine concentration in the surface treatment solution after adjusting the free fluorine ion concentration was 2250 ppm.
The test plate that had been degreased and washed with water was immersed in the surface treatment solution for 90 seconds for surface treatment.
[0049]
Example 4
Using an aqueous hexafluorotitanate (IV) solution, a strontium nitrate reagent and a sodium nitrite reagent, an aqueous solution having a titanium concentration of 5000 ppm, a strontium concentration of 5000 ppm, a nitrate radical of 7080 ppm, and a nitrite radical of 40 ppm was prepared. After heating this aqueous solution to 35 ° C., the pH is adjusted to 4.0 using a triethanolamine reagent and hydrofluoric acid, and a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.) The surface treatment solution was prepared by adjusting the free fluorine ion concentration measured in step 1 to 10 ppm. The total fluorine concentration in the surface treatment solution after adjusting the free fluorine ion concentration was 11900 ppm.
The surface treatment was carried out by spraying the above-mentioned surface treatment solution on a test plate that had been washed with water after degreasing for 120 seconds.
[0050]
Example 5
Using zirconium oxynitrate reagent, hexafluorotitanate (IV) aqueous solution, magnesium nitrate reagent, nitric acid and sodium chlorate reagent, zirconium concentration is 5 ppm, titanium concentration is 5 ppm, magnesium concentration is 100 ppm, nitrate radical is 30520 ppm, chlorate radical An aqueous solution with 100 ppm was prepared. After heating this aqueous solution to 30 ° C, the pH is adjusted to 6.0 using ammonia water reagent and hydrofluoric acid, and measured with a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.). The surface treatment solution was adjusted to a free fluorine ion concentration of 0.5 ppm. The total fluorine concentration in the treatment liquid for surface treatment after adjusting the free fluorine ion concentration was 12 ppm.
A test plate that has been degreased and washed with water is used as a cathode, and a carbon electrode is used as an anode, and 5 A / dm in the surface treatment solution. 2 The surface treatment was performed by electrolysis for 5 seconds under the above electrolysis conditions.
[0051]
Example 6
Using a zirconium oxynitrate reagent, a magnesium oxide reagent, nitric acid, and a hydrogen peroxide reagent, an aqueous solution having a zirconium concentration of 150 ppm, a magnesium concentration of 10 ppm, a nitrate radical of 5200 ppm, and hydrogen peroxide of 10 ppm was prepared. After heating this aqueous solution to 50 ° C., the pH is adjusted to 5.0 using an aqueous ammonia reagent and hydrofluoric acid, and with a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.). The concentration of free fluorine ions to be measured was adjusted to 50 ppm, and 2 g / L of polyoxyethylene nonyl phenyl ether (number of moles of ethylene oxide added: 12 mol), which is a nonionic surfactant, was added to the surface treatment treatment liquid. did. The total fluorine concentration in the treatment liquid for surface treatment after adjusting the free fluorine ion concentration was 170 ppm.
The surface treatment was performed simultaneously with the degreasing by spraying the above-mentioned surface treatment treatment liquid on the test plate as it was without being degreased and sprayed for 90 seconds.
[0052]
Example 7
Using titanium (IV) sulfate aqueous solution, calcium nitrate reagent, magnesium nitrate reagent and potassium permanganate reagent, titanium concentration is 100 ppm, calcium concentration is 50 ppm, magnesium concentration is 5000 ppm, nitrate radical is 25660 ppm, and permanganate is 10 ppm. An aqueous solution was prepared. Further, a water-soluble acrylic polymer compound (Jurimer AC-10L: manufactured by Nippon Pure Chemical Co., Ltd.) was added to this aqueous solution so that the solid content concentration would be 1% and heated to 50 ° C., and then a sodium hydroxide reagent. PH adjusted to 3.0 with HF and hydrofluoric acid, and free fluorine ion concentration measured with a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.) is adjusted to 95 ppm to treat the surface treatment It was. The total fluorine concentration in the treatment liquid for surface treatment after adjusting the free fluorine ion concentration was 2000 ppm.
The test plate that had been washed with water after the degreasing treatment was immersed in the surface treatment solution for 60 seconds for surface treatment.
[0053]
Example 8
An aqueous solution in which a water-soluble acrylic polymer compound (Julimer AC-10L: manufactured by Nippon Pure Chemical Co., Ltd.) was 1% in terms of solid content and a phosphate reagent was 2 g / L as a phosphate group was prepared. This aqueous solution was heated to 40 ° C., and then adjusted to pH 4.5 with an aqueous ammonia reagent to prepare a post-treatment liquid. The test plate that had been subjected to film formation and water washing in the surface treatment of Example 5 was immersed in the post-treatment liquid for 30 seconds to perform post-treatment.
[0054]
Example 9
Using an aqueous hexafluorozirconate (IV) solution and a cobalt nitrate reagent, an aqueous solution having a zirconium concentration of 50 ppm and a cobalt concentration of 50 ppm was prepared, and the aqueous solution was further heated to 40 ° C. Was adjusted to 5.0 to prepare a post-treatment liquid. The test plate that had been subjected to film formation and water washing in the surface treatment of Example 6 was immersed in the above-described post-treatment liquid for 30 seconds for post-treatment.
[0055]
Comparative Example 1
Using a zirconium oxynitrate reagent, a magnesium nitrate reagent, and nitric acid, an aqueous solution having a zirconium concentration of 500 ppm, a magnesium concentration of 1000 ppm, and a nitrate radical of 6780 ppm was prepared. This aqueous solution was heated to 45 ° C., and then adjusted to pH 4.0 with a sodium hydroxide reagent to obtain a surface treatment solution. The free fluorine ion concentration in the surface treatment solution was measured with a commercially available fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.) and found to be 0 ppm.
The test plate that had been degreased and washed with water was immersed in the surface treatment solution for 120 seconds for surface treatment.
[0056]
Comparative Example 2
An aqueous solution having a titanium concentration of 2000 ppm was prepared using an aqueous solution of titanium (IV) sulfate. After the aqueous solution is heated to 50 ° C., the pH is adjusted to 3.5 with an aqueous ammonia reagent and hydrofluoric acid, and measured by a fluorine ion meter (IM-55G; manufactured by Toa Denpa Kogyo Co., Ltd.) The surface treatment liquid was prepared by adjusting the fluorine ion concentration to 400 ppm.
The test plate that had been degreased and washed with water was immersed in the surface treatment solution for 90 seconds for surface treatment.
[0057]
Comparative Example 3
Alchrome 713 (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.), which is a commercially available chromic chromate treatment agent, was diluted to 3.6% with tap water, and the total acidity and free acidity were adjusted to the center of the catalog value.
The test plate that had been degreased and washed with water was immersed in the chromate treatment solution heated to 35 ° C. for 60 seconds for chromate treatment.
[0058]
Comparative Example 4
Palcoat 3756 (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.), a commercially available non-chromate treatment agent, was diluted to 2% with tap water, and the total acidity and free acidity were adjusted to the center of the catalog value. The test plate that had been degreased and washed with water was immersed in the non-chromate treatment solution heated to 40 ° C. for 60 seconds to perform non-chromate treatment.
[0059]
Comparative Example 5
A test plate that has been degreased and washed with water is sprayed with a solution prepared by diluting Preparen ZN (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.) 0.1% with tap water at room temperature for 30 seconds. After that, Palbond L3020 (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.) was diluted to 4.8% with tap water, and after adding 200 ppm of sodium hydrogen fluoride reagent as fluorine, the total acidity and free acidity were cataloged. A zinc phosphate coating was deposited by dipping in a 42 ° C. zinc phosphate conversion solution adjusted to the center of the value.
[0060]
[Evaluation of surface treatment film]
The appearance of the test plates after the surface treatment of the examples and comparative examples was visually evaluated. The results are shown in Table 1. Moreover, the adhesion amount of the surface treatment film layer was measured with a fluorescent X-ray analyzer (system 3270; manufactured by Rigaku Denki Kogyo Co., Ltd.). The results are shown in Tables 2 and 3. In addition, the adhesion amount of the surface treatment film layer was measured when each metal material was treated individually without joining (no joining) and when treated by spot welding (joined).
[0061]
[Table 1]
Figure 0004205939
[0062]
Table 1 shows the appearance evaluation results of the surface treatment films obtained in Examples and Comparative Examples. In the example, a uniform film could be obtained for all the metal material types of all the test plates. Furthermore, it was observed that the surface treatment film was deposited also on the spot welds of the test plates used in the examples. On the other hand, in the comparative example, a uniform film could not be deposited on all the test plates. In particular, in Comparative Examples 3, 4, and 5, no film was deposited on the spot welds. Moreover, although the comparative example 5 is a zinc phosphate processing liquid used when processing a cold-rolled steel plate, a galvanized steel plate, and an aluminum alloy simultaneously, each test piece was joined by welding like this test. Under the conditions, a portion where a metal material base called Suke was exposed appeared on the cold-rolled steel sheet.
[0063]
[Table 2]
Figure 0004205939
[0064]
[Table 3]
Figure 0004205939
[0065]
Tables 2 and 3 show the measurement results of the adhesion amount of the surface treatment film obtained in Examples and Comparative Examples. In the examples, target adhesion amounts could be obtained for all metal material types of all test plates. Moreover, the adhesion amount of the surface treatment film layer in an Example was constant irrespective of the presence or absence of joining of a test plate. On the other hand, in the comparative example, a uniform film could not be deposited on all the test plates, as is apparent from the film appearance evaluation results.
[0066]
[Evaluation of coating performance]
(Preparation of paint performance evaluation board)
In order to evaluate the coating performance of the surface-treated plates of Examples and Comparative Examples,
Cationic electrodeposition coating → pure water washing → baking → intermediate coating → baking → top coating → baking
The coating was performed in the process. Cationic electrodeposition coating, intermediate coating, and top coating are as follows.
Cationic electrodeposition coating: Epoxy-based cationic electrodeposition paint (Electron 9400: manufactured by Kansai Paint Co., Ltd.), voltage 200 V, film thickness 20 μm, baked at 175 ° C. for 20 minutes
Intermediate coating: Aminoalkyd paint (Amirac TP-37 Gray: manufactured by Kansai Paint Co., Ltd.), spray coating, film thickness 35 μm, baking at 140 ° C. for 20 minutes
Top coating: Aminoalkyd paint (Amirac TM-13 white: manufactured by Kansai Paint Co., Ltd.), spray coating, film thickness 35 μm, baking at 140 ° C. for 20 minutes
[0067]
(Painting performance evaluation)
The coating performance of Examples and Comparative Examples was evaluated. The results are shown in Tables 4 and 5. Evaluation items and abbreviations are shown below. The coating film at the time of completion of electrodeposition coating is referred to as an electrodeposition coating film, and the coating film at the time of completion of top coating is referred to as a 3 coats coating film.
(1) SST: Salt spray test (electrodeposition coating)
(2) SDT: salt warm water test (electrodeposition coating)
▲ 3 ▼ 1st ADH: Primary adhesion (3coats coating film)
▲ 4 ▼ 2nd ADH: Water resistant secondary adhesion (3coats coating film)
[0068]
SST: 5% salt water was sprayed for 840 hours (according to JIS-Z-2371) onto an electrodeposition coated plate with a crosscut cut with a sharp cutter. After spraying, the maximum swollen width on both sides from the crosscut part was measured.
SDT: The electrodeposition coated plate was immersed in a 5 wt% NaCl aqueous solution heated to 50 ° C. for 840 hours. After the immersion, the entire surface of the test piece washed with tap water and dried at room temperature was peeled off with a gum tape, and the peeled area of the coating film on each metal material was visually determined.
[0069]
1st ADH: 100 coats of 2 mm intervals were cut with a sharp cutter on the 3 coats coating. The cellophane tape was peeled off from the grid area, and the number of peeled grids was counted.
The 2nd ADH: 3coats coating plate was immersed in deionized water at 40 ° C. for 240 hours. After dipping, 100 grids at intervals of 2 mm were cut with a sharp cutter. The cellophane tape was peeled off from the grid area, and the number of peeled grids was counted.
[0070]
[Table 4]
Figure 0004205939
[0071]
Table 4 shows the coating performance evaluation results of the electrodeposition coating film. The examples showed good corrosion resistance for all the test plates. On the other hand, in Comparative Example 1, since the surface treatment liquid did not contain any free fluorine ions, the surface treatment film did not sufficiently precipitate and the corrosion resistance was poor. Moreover, in the comparative example 2, since the free fluorine ion density | concentration in the processing liquid for surface treatment was high, it was a result in particular that the coating amount on SPC was small and it was inferior to corrosion resistance. Examples 5 and 6 showed coating performance superior to that of the comparative example, but were slightly inferior in corrosion resistance after electrodeposition coating as compared with other examples. However, as shown in Examples 8 and 9, the corrosion resistance was further improved by the post-treatment.
[0072]
Since Comparative Example 3 is a chromate treatment agent for aluminum alloys and Comparative Example 4 is a non-chromate treatment agent for aluminum alloys, the corrosion resistance of Al was excellent, but the corrosion resistance of other test plates is clearly in the examples. It was inferior. Comparative Example 5 is a zinc phosphate treatment generally used as a cationic electrodeposition coating base. However, in Comparative Example 5 as well, the test pieces were inferior to the Examples in the conditions in which the test pieces were joined by welding as in this test.
[0073]
[Table 5]
Figure 0004205939
[0074]
Table 5 shows the adhesion evaluation results of the 3coats plate. The examples showed good adhesion to all the test plates. As for 1st ADH, good results were obtained in the comparative examples. However, in 2nd ADH, there was no level showing good adhesion to all the test plates as well as the corrosion resistance of the electrodeposition coating film. In Comparative Example 5, sludge, which is a by-product during the zinc phosphate treatment, was generated in the treatment bath after the surface treatment. However, in the examples, no sludge was observed at any level.
[0075]
From the above results, by using the treatment liquid for surface treatment and the surface treatment method according to the present invention, it is possible to simultaneously treat SPC, GA and Al without changing the treatment bath and treatment conditions, and to have a surface with excellent adhesion and corrosion resistance. It is clear that a treatment film can be deposited. Furthermore, by using the present invention, it becomes possible to deposit a surface treatment film having excellent corrosion resistance on the welded portion. In addition, since the surface treatment method of the present invention only needs to contact the metal material to be treated and the treatment liquid for surface treatment, the surface treatment film is deposited even on the portion where the stirring effect cannot be expected, such as inside the bag structure. It is possible to improve the corrosion resistance.
[0076]
【The invention's effect】
According to the treatment liquid for surface treatment of the present invention and the surface treatment method using this treatment liquid, without generating sludge in a treatment bath that does not contain components harmful to the environment, which is impossible with the prior art, A surface treatment film having excellent corrosion resistance after coating can be deposited on a metal surface composed of two or four of iron-based material, zinc-based material, aluminum-based material and magnesium-based material simultaneously or individually. Further, the surface treatment film can be deposited without performing the surface adjustment step of the metal material to be treated. In this case, the treatment step can be shortened and the space can be saved.
[Brief description of the drawings]
[Fig. 1] Plan view of the test plate
[Figure 2] Front view of the test plate
[Explanation of symbols]
1 Spot weld, SPC cold-rolled steel sheet, GA hot-dip galvanized steel sheet, Al aluminum alloy sheet

Claims (8)

鉄系材料、亜鉛系材料、アルミニウム系材料及びマグネシウム系材料から選ばれる金属材料のそれぞれ単独を或はその2種以上を同時に、該金属材料を陰極として、ジルコニウム化合物及びチタニウム化合物から選ばれる1種以上の化合物を上記金属元素として5〜5000ppm含み、また遊離フッ素イオンを0.1〜100ppm含み、且つpHが2〜6である水系表面処理液中にて電解処理することを特徴とする金属の表面処理方法。A metal material selected from iron-based material, zinc-based material, aluminum-based material, and magnesium-based material alone or two or more of them simultaneously, and one metal material selected from a zirconium compound and a titanium compound using the metal material as a cathode The metal compound is characterized by being subjected to electrolytic treatment in an aqueous surface treatment solution containing 5 to 5000 ppm of the above-mentioned metal element, 0.1 to 100 ppm of free fluorine ions, and having a pH of 2 to 6. Surface treatment method. 前記水系表面処理液が、更にカルシウム化合物、マグネシウム化合物及びストロンチウム化合物からなる群から選ばれる1種以上の化合物を含み、前記化合物の濃度が、前記金属元素として、カルシウム化合物の場合は5〜100ppm、マグネシウム化合物又はストロンチウム化合物の場合は10〜5000ppmである請求項に記載の金属の表面処理方法。The aqueous surface treatment liquid further contains one or more compounds selected from the group consisting of calcium compounds, magnesium compounds and strontium compounds, and the concentration of the compounds is 5 to 100 ppm in the case of calcium compounds as the metal elements, The metal surface treatment method according to claim 1 , wherein in the case of a magnesium compound or a strontium compound, the content is 10 to 5000 ppm. 前記水系表面処理液が、更に硝酸根を1000〜50000ppm含む請求項又は項に記載の金属の表面処理方法。The aqueous surface-treating liquid, further surface treatment method for a metal according to claim 1 or 2, wherein including 1000~50000ppm a nitrate. 前記水系表面処理液が、更にHClO3、HBrO3、HNO2、HNO3、HMnO4、HVO3、H22、H2WO4及びH2MoO4並びにこれらの塩類の中から選ばれる少なくとも1種の酸素酸及び/又は酸素酸塩を含む請求項1〜3のいずれか1項に記載の金属の表面処理方法。The aqueous surface treatment liquid is further selected from HClO 3 , HBrO 3 , HNO 2 , HNO 3 , HMnO 4 , HVO 3 , H 2 O 2 , H 2 WO 4 and H 2 MoO 4 and salts thereof. The metal surface treatment method according to claim 1, comprising one kind of oxygen acid and / or oxyacid salt. 前記水系表面処理液が、更に水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含む請求項1〜4のいずれか1項に記載の金属の表面処理方法。The metal surface treatment method according to any one of claims 1 to 4 , wherein the aqueous surface treatment liquid further contains at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound. . 前記水系表面処理液が、更にノニオン系界面活性剤、アニオン系界面活性剤及びカチオン系界面活性剤から選ばれる少なくとも1種の界面活性剤を含む請求項1〜5のいずれか1項に記載の金属の表面処理方法。The aqueous surface-treatment liquid further nonionic surfactant according to claim 1 comprising at least one surfactant selected from anionic surfactants and cationic surfactants Metal surface treatment method. 金属材料を表面処理用処理液中にて電解処理した後に、水洗し或いは水洗せずに、更にコバルト、ニッケル、すず、銅、チタニウム及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物の酸性水溶液と接触させることを特徴とする請求項1〜6のいずれかに記載の金属の表面処理方法。A compound containing at least one element selected from the group consisting of cobalt, nickel, tin, copper, titanium, and zirconium after electrolytic treatment of a metal material in a surface treatment solution and then with or without washing with water The metal surface treatment method according to claim 1 , wherein the metal surface treatment method is brought into contact with an acidic aqueous solution. 金属材料を表面処理用処理液中にて電解処理した後に、水洗し或いは水洗せずに、更に水溶性高分子化合物及び水分散性高分子化合物から選ばれる少なくとも1種の高分子化合物を含む処理液と接触させることを特徴とする請求項1〜6のいずれかに記載の金属の表面処理方法。A treatment containing at least one polymer compound selected from a water-soluble polymer compound and a water-dispersible polymer compound, with or without being washed with water after electrolytic treatment of the metal material in the surface treatment solution. The metal surface treatment method according to claim 1 , wherein the metal surface treatment method is performed by contacting with a liquid.
JP2002362640A 2002-12-13 2002-12-13 Metal surface treatment method Expired - Lifetime JP4205939B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2002362640A JP4205939B2 (en) 2002-12-13 2002-12-13 Metal surface treatment method
TW092133808A TW200416300A (en) 2002-12-13 2003-12-03 Treating solution for surface treatment of metal and a method for surface treatment
US10/537,329 US20060185769A1 (en) 2002-12-13 2003-12-11 Treating solution for surface treatment of metal and a method for surface treatment
CA002509772A CA2509772A1 (en) 2002-12-13 2003-12-11 Treating solution for surface treatment of metal and a method for surface treatment
KR1020057010530A KR100674778B1 (en) 2002-12-13 2003-12-11 Treating solution for surface treatment of metal, a method for surface treatment and metal material
MXPA05006156A MXPA05006156A (en) 2002-12-13 2003-12-11 Treating fluid for surface treatment of metal and method for surface treatment.
CNB2003801059479A CN100537845C (en) 2002-12-13 2003-12-11 Metal finishing treatment solution and surface treatment method
PCT/JP2003/015868 WO2004055237A1 (en) 2002-12-13 2003-12-11 Treating fluid for surface treatment of metal and method for surface treatment
EP03780727.8A EP1571237B1 (en) 2002-12-13 2003-12-11 Treating fluid for surface treatment of metal and method for surface treatment
ES03780727T ES2730576T3 (en) 2002-12-13 2003-12-11 Treatment fluid for metal surface treatment and surface treatment procedure
CN2008101849496A CN101487115B (en) 2002-12-13 2003-12-11 Treating fluid for surface treatment of metal and method for surface treatment
AU2003289323A AU2003289323A1 (en) 2002-12-13 2003-12-11 Treating fluid for surface treatment of metal and method for surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362640A JP4205939B2 (en) 2002-12-13 2002-12-13 Metal surface treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008144555A Division JP5215043B2 (en) 2008-06-02 2008-06-02 Metal surface treatment liquid and surface treatment method

Publications (2)

Publication Number Publication Date
JP2004190121A JP2004190121A (en) 2004-07-08
JP4205939B2 true JP4205939B2 (en) 2009-01-07

Family

ID=32588165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362640A Expired - Lifetime JP4205939B2 (en) 2002-12-13 2002-12-13 Metal surface treatment method

Country Status (11)

Country Link
US (1) US20060185769A1 (en)
EP (1) EP1571237B1 (en)
JP (1) JP4205939B2 (en)
KR (1) KR100674778B1 (en)
CN (2) CN101487115B (en)
AU (1) AU2003289323A1 (en)
CA (1) CA2509772A1 (en)
ES (1) ES2730576T3 (en)
MX (1) MXPA05006156A (en)
TW (1) TW200416300A (en)
WO (1) WO2004055237A1 (en)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578921B2 (en) 2001-10-02 2009-08-25 Henkel Kgaa Process for anodically coating aluminum and/or titanium with ceramic oxides
US7452454B2 (en) * 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
US7569132B2 (en) 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
JP4205939B2 (en) * 2002-12-13 2009-01-07 日本パーカライジング株式会社 Metal surface treatment method
EP1433875B1 (en) * 2002-12-24 2013-11-27 Chemetall GmbH Chemical conversion coating agent and surface-treated metal
JP4067103B2 (en) * 2002-12-24 2008-03-26 日本ペイント株式会社 Degreasing and chemical conversion treatment agent and surface-treated metal
ITMO20040169A1 (en) * 2004-07-02 2004-10-02 Italtecno S R L 'BATHROOM FOR THE CONVERSION COVERING OF ALUMINUM AND ITS ALLOYS AND ITS PROCEDURES'.
KR20070094655A (en) * 2005-01-14 2007-09-20 헨켈 코만디트게젤샤프트 아우프 악티엔 Stable, non-chrome, thin-film organic passivates
DE102005005858A1 (en) * 2005-02-08 2006-08-17 Henkel Kgaa Process for coating metal sheet, in particular zinc sheet
JP2006241579A (en) * 2005-03-07 2006-09-14 Nippon Paint Co Ltd Chemical conversion treatment agent and surface-treated metal
EP1859930B1 (en) * 2005-03-16 2015-12-30 Nihon Parkerizing Co., Ltd. Surface-treated metallic material
DE102005023728A1 (en) 2005-05-23 2006-11-30 Basf Coatings Ag Lacquer-layer-forming corrosion inhibitor and method for its current-free application
DE102005059314B4 (en) 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Acid, chromium-free aqueous solution, its concentrate, and a process for the corrosion protection treatment of metal surfaces
JP4748384B2 (en) * 2005-09-21 2011-08-17 日立金属株式会社 Saddle type fitting
US7815751B2 (en) * 2005-09-28 2010-10-19 Coral Chemical Company Zirconium-vanadium conversion coating compositions for ferrous metals and a method for providing conversion coatings
JP5023468B2 (en) * 2005-10-28 2012-09-12 Jfeスチール株式会社 Surface treatment metal plate for can or can lid and method for producing the same, resin-coated metal plate for can or can lid, metal can and can lid
WO2007061011A1 (en) * 2005-11-22 2007-05-31 Nihon Parkerizing Co., Ltd. Chemical conversion coated metal plate and method for producing same
JP2007182626A (en) * 2005-12-06 2007-07-19 Nippon Steel Corp Composite coated metal sheet, treatment agent for composite coating, and method of manufacturing composite coated metal sheet
TWI340770B (en) 2005-12-06 2011-04-21 Nippon Steel Corp Composite coated metal sheet, treatment agent and method of manufacturing composite coated metal sheet
JP2007262577A (en) * 2006-03-01 2007-10-11 Nippon Paint Co Ltd Composition for metal surface treatment, metal surface treatment method, and metallic material
JP5092332B2 (en) * 2006-03-22 2012-12-05 Jfeスチール株式会社 Surface-treated steel sheet and manufacturing method thereof
MX2008013860A (en) * 2006-05-02 2008-11-14 Jfe Steel Corp Process for producing alloyed hot-dip zinc-plated steel sheet and alloyed hot-dip zinc-plated steel sheet.
MY148014A (en) * 2006-09-07 2013-02-28 Jfe Steel Corp Surface-treated steel shee t
ES2659926T3 (en) 2006-09-08 2018-03-20 Chemetall Gmbh Base metal surface treatment method, metallic material treated by surface treatment method and metal material coating method
CA2662865C (en) 2006-09-08 2016-07-05 Nippon Paint Co., Ltd. Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
DE102006053291A1 (en) 2006-11-13 2008-05-15 Basf Coatings Ag Lacquer-layer-forming corrosion protection agent with good adhesion and method for its current-free application
WO2008100476A1 (en) * 2007-02-12 2008-08-21 Henkel Ag & Co. Kgaa Process for treating metal surfaces
DE102007012406A1 (en) * 2007-03-15 2008-09-18 Basf Coatings Ag Process for corrosion protection equipment of metallic substrates
EP1978131B2 (en) * 2007-03-29 2019-03-06 ATOTECH Deutschland GmbH Means for manufacturing corrosion protection coats on metal surfaces
JP5571277B2 (en) 2007-04-13 2014-08-13 日本パーカライジング株式会社 Surface treatment liquid for zinc-based metal material and surface treatment method for zinc-based metal material
US8673091B2 (en) * 2007-08-03 2014-03-18 Ppg Industries Ohio, Inc Pretreatment compositions and methods for coating a metal substrate
US8097093B2 (en) 2007-09-28 2012-01-17 Ppg Industries Ohio, Inc Methods for treating a ferrous metal substrate
US9428410B2 (en) 2007-09-28 2016-08-30 Ppg Industries Ohio, Inc. Methods for treating a ferrous metal substrate
US9574093B2 (en) * 2007-09-28 2017-02-21 Ppg Industries Ohio, Inc. Methods for coating a metal substrate and related coated metal substrates
JP5470751B2 (en) * 2008-02-13 2014-04-16 Tdk株式会社 Active material and electrode manufacturing method, active material and electrode
HUE032760T2 (en) * 2008-03-17 2017-11-28 Henkel Ag & Co Kgaa Method of treating metals with a coating composition
DE102008014465B4 (en) 2008-03-17 2010-05-12 Henkel Ag & Co. Kgaa Optimized Ti / Zr passivation agent for metal surfaces and conversion treatment method
CN102066611B (en) * 2008-04-25 2013-09-18 汉高股份及两合公司 Trichrome passivates for treating galvanized steel
CN101629299B (en) * 2008-07-16 2011-03-30 宝山钢铁股份有限公司 Electroplating degreasing agent for secondary cold rolled material
JP5338195B2 (en) * 2008-08-20 2013-11-13 新日鐵住金株式会社 Surface-treated galvanized steel sheet and method for producing the same
JP5463652B2 (en) * 2008-11-14 2014-04-09 Tdk株式会社 Active material and electrode manufacturing method
EP2186928A1 (en) * 2008-11-14 2010-05-19 Enthone, Inc. Method for the post-treatment of metal layers
JP5407062B2 (en) 2008-11-17 2014-02-05 Tdk株式会社 Active material and electrode manufacturing method, active material, electrode and lithium ion secondary battery
US8282801B2 (en) * 2008-12-18 2012-10-09 Ppg Industries Ohio, Inc. Methods for passivating a metal substrate and related coated metal substrates
JP5347522B2 (en) * 2009-01-20 2013-11-20 Tdk株式会社 Active material and electrode manufacturing method, active material and electrode
DE102009007632A1 (en) 2009-02-05 2010-08-12 Basf Coatings Ag Coating agent for corrosion-resistant coatings
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
JP5434278B2 (en) * 2009-05-29 2014-03-05 Tdk株式会社 Active material and electrode manufacturing method, active material and electrode
US20100316881A1 (en) * 2009-06-16 2010-12-16 Kaylo Alan J Method of reducing mapping of an electrodepositable coating layer
WO2011002040A1 (en) * 2009-07-02 2011-01-06 日本パーカライジング株式会社 Chromium- and fluorine-free chemical conversion treatment solution for metal surfaces, metal surface treatment method, and metal surface coating method
DE102009028025A1 (en) 2009-07-27 2011-02-03 Henkel Ag & Co. Kgaa Multi-stage process for the treatment of metal surfaces prior to dip coating
CN101603174B (en) * 2009-07-28 2010-12-08 武汉钢铁(集团)公司 Non-chromium pretreating agent for color coated steel plate
FR2948690B1 (en) * 2009-07-30 2013-03-08 Snecma PIECE COMPRISING A SUBSTRATE CARRYING A CERAMIC COATING LAYER
CN102686776A (en) * 2009-12-28 2012-09-19 汉高股份有限及两合公司 Metal pretreatment composition containing zirconium, copper, zinc, and nitrate and related coatings on metal substrates
US20130034745A1 (en) * 2010-03-23 2013-02-07 Nippon Steel Corporation Steel sheet for container and method of manufacturing the same
TW201139736A (en) * 2010-05-13 2011-11-16 Zen Material Technologies Inc Color whitening processing method for stainless steel surface and processing liquid used thereby
US8822037B2 (en) 2010-05-28 2014-09-02 Toyo Seikan Group Holdings, Ltd. Surface-treated steel plate
JP5861249B2 (en) * 2010-09-15 2016-02-16 Jfeスチール株式会社 Manufacturing method of steel plate for containers
ES2764414T3 (en) * 2011-02-08 2020-06-03 Henkel Ag & Co Kgaa Processes and compositions to improve the corrosion performance of zinc surfaces pretreated with zirconium oxide
US20140377581A1 (en) 2011-03-25 2014-12-25 Nippon Paint Co., Ltd. Surface treatment agent composition for tin-plated steel, and tin-plated steel subjected to surface treatment
JP5892619B2 (en) 2011-03-25 2016-03-23 日本ペイント・サーフケミカルズ株式会社 Surface treatment agent composition, method for producing surface-treated steel sheet, surface-treated steel sheet, organic-coated surface-treated steel sheet, can lid, can body and seamless can
JP5750013B2 (en) * 2011-09-07 2015-07-15 日本ペイント株式会社 Electrodeposition coating composition and method for forming an electrocoating film on an object to be coated
JP6055263B2 (en) * 2011-10-14 2016-12-27 日本ペイント・サーフケミカルズ株式会社 Manufacturing method of automobile parts
CA2857436C (en) * 2011-11-30 2015-02-24 Nihon Parkerizing Co., Ltd. Replenisher and method for producing surface-treated steel sheet
WO2013089292A1 (en) * 2011-12-15 2013-06-20 대영엔지니어링 주식회사 Electro-deposition coating method for magnesium steel material
KR102181792B1 (en) 2012-08-29 2020-11-24 피피지 인더스트리즈 오하이오 인코포레이티드 Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates
BR112015004358B1 (en) 2012-08-29 2021-05-25 Ppg Industries Ohio, Inc method for coating a metal substrate and pretreatment composition for treating a metal substrate
US9273399B2 (en) 2013-03-15 2016-03-01 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a battery electrode
US20160230301A1 (en) 2013-09-25 2016-08-11 Toyo Kohan Co., Ltd. Surface-Treated Steel Sheet, Organic Resin Coated Metal Container, and Method for Producing Surface-Treated Steel Sheet
CN103540919A (en) * 2013-09-27 2014-01-29 宁波金恒机械制造有限公司 Cast iron surface anti-corrosion treatment agent and cast iron surface anti-corrosion treatment method
CN103540918A (en) * 2013-09-27 2014-01-29 宁波金恒机械制造有限公司 Cast iron surface anti-corrosion treatment agent
CN103526250A (en) * 2013-09-27 2014-01-22 宁波金恒机械制造有限公司 Cast iron surface treatment agent and treatment method
EP2862957B1 (en) 2013-10-16 2019-08-07 Coatings Foreign IP Co. LLC Process for producing a multilayer coating
JP6220226B2 (en) 2013-10-31 2017-10-25 東洋鋼鈑株式会社 Method for producing surface-treated steel sheet, surface-treated steel sheet, and organic resin-coated metal container
KR20150058859A (en) * 2013-11-21 2015-05-29 삼성전자주식회사 a composition for being coated on metal object, a coating layer using the same and a preparation method thereof
JP6530885B2 (en) 2013-12-18 2019-06-12 東洋製罐株式会社 Surface-treated steel sheet, organic resin-coated metal container, and method for producing surface-treated steel sheet
JP5886919B1 (en) 2014-09-12 2016-03-16 東洋製罐株式会社 Surface-treated steel sheet, method for producing the same, and resin-coated surface-treated steel sheet
US9631281B2 (en) 2014-12-04 2017-04-25 Axalta Coating Systems Ip Co., Llc Processes for producing a multilayer coating
DE102014225237B3 (en) * 2014-12-09 2016-04-28 Henkel Ag & Co. Kgaa Process for the wet-chemical pretreatment of a large number of iron and aluminum components in series
EP3031951B1 (en) * 2014-12-12 2017-10-04 Henkel AG & Co. KGaA Optimized process control in the pretreatment of metals to protect against corrosion on the basis of baths containing fluoride
CN104532224A (en) * 2014-12-15 2015-04-22 镁联科技(芜湖)有限公司 Chromium-free aluminum alloy passivator, preparation method thereof and aluminum alloy passivating method
CN104532225A (en) * 2014-12-15 2015-04-22 镁联科技(芜湖)有限公司 Aluminum alloy passivator, preparation method thereof and aluminum alloy passivating method
CN104532221B (en) * 2014-12-15 2017-10-17 镁联科技(芜湖)有限公司 Passivating method without Cr-Al alloy passivator and preparation method thereof He aluminium alloy
JP6495702B2 (en) * 2015-03-19 2019-04-03 株式会社神戸製鋼所 Surface treatment method and surface treatment apparatus
CA3034712C (en) 2016-08-24 2021-10-12 Ppg Industries Ohio, Inc. Alkaline composition for treating metal substartes
CN111373074B (en) * 2017-11-24 2021-12-21 日本制铁株式会社 Method for producing chemical conversion treated alloy material and chemical conversion treatment liquid regeneration device used in method for producing chemical conversion treated alloy material
US20210047737A1 (en) * 2018-02-09 2021-02-18 Ppg Industries Ohio, Inc. System for Treating A Metal Substrate
CN108796578A (en) * 2018-05-30 2018-11-13 江苏寅凯照明科技有限公司 A kind of formula and technique substituting aluminium alloy light pole anodic oxidation
CN113631759B (en) * 2019-02-11 2023-10-20 Ppg工业俄亥俄公司 System for processing metal substrates
CN110424039B (en) * 2019-09-16 2021-08-10 东北大学 Preparation method of magnesium alloy corrosion-resistant self-repairing micro-arc oxidation coating based on hydrotalcite nano corrosion-inhibiting microcapsule
TW202134364A (en) * 2020-01-31 2021-09-16 美商恩特葛瑞斯股份有限公司 Cmp composition for polishing hard materials
KR102176895B1 (en) * 2020-07-28 2020-11-10 주식회사 성진케미칼 Chemical composition for forming metal oxide layer wiht excellent paint adhesion on metal surface and using method thereof
JP7438078B2 (en) 2020-10-20 2024-02-26 日本ペイント・サーフケミカルズ株式会社 Water-based coating agent for steel materials, film, coating method for steel materials, and steel materials
CN112899664B (en) * 2021-01-27 2022-08-02 太原科技大学 Magnesium alloy surface zirconia-based film and preparation method thereof
CN113046813B (en) * 2021-02-19 2022-04-19 赣州有色冶金研究所有限公司 Magnesium alloy material, preparation method and welding method thereof
KR20230052550A (en) 2021-10-13 2023-04-20 주식회사 성진케미칼 Chemical composition for forming metal oxide layer wiht excellent paint adhesion on metal surface and using method thereof
TWI812437B (en) * 2022-08-30 2023-08-11 中國鋼鐵股份有限公司 Method for rapidly evaluating surface discoloration of hot-dip galvanized steel
CN116791072B (en) * 2023-08-14 2024-02-23 广东宏泰节能环保工程有限公司 Metal surface treatment passivating agent and preparation method and application thereof

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1586975A (en) * 1976-07-05 1981-03-25 Kansai Paint Co Ltd Surface treatment of metals
FR2417537A1 (en) * 1978-02-21 1979-09-14 Parker Ste Continentale COMPOSITION BASED ON HAFNIUM TO INHIBIT CORROSION OF METALS
US4313769A (en) * 1980-07-03 1982-02-02 Amchem Products, Inc. Coating solution for metal surfaces
US4273592A (en) * 1979-12-26 1981-06-16 Amchem Products, Inc. Coating solution for metal surfaces
US4457790A (en) * 1983-05-09 1984-07-03 Parker Chemical Company Treatment of metal with group IV B metal ion and derivative of polyalkenylphenol
AU4751885A (en) * 1984-10-09 1986-04-17 Parker Chemical Company Treating extruded aluminium metal surfaces
CA1333043C (en) * 1988-02-15 1994-11-15 Nippon Paint Co., Ltd. Surface treatment chemical and bath for aluminium and its alloy
JPH0364485A (en) * 1989-08-01 1991-03-19 Nippon Paint Co Ltd Surface treating agent and treating bath for aluminum or aluminum alloy
JPH0364484A (en) * 1989-08-01 1991-03-19 Nippon Paint Co Ltd Surface treating agent and treating bath for aluminum or aluminum alloy
KR100292447B1 (en) * 1991-08-30 2001-06-01 웨인 씨. 제쉬크 Method of forming protective modified coating on metal substrate surface
US5143562A (en) * 1991-11-01 1992-09-01 Henkel Corporation Broadly applicable phosphate conversion coating composition and process
JP3105322B2 (en) * 1991-12-27 2000-10-30 日産自動車株式会社 Method for forming colorless chromate film on glittering aluminum wheels
DE4317217A1 (en) * 1993-05-24 1994-12-01 Henkel Kgaa Chrome-free conversion treatment of aluminum
US5380374A (en) * 1993-10-15 1995-01-10 Circle-Prosco, Inc. Conversion coatings for metal surfaces
DE4401566A1 (en) * 1994-01-20 1995-07-27 Henkel Kgaa Process for the common pretreatment of steel, galvanized steel, magnesium and aluminum before joining with rubber
US6059896A (en) * 1995-07-21 2000-05-09 Henkel Corporation Composition and process for treating the surface of aluminiferous metals
JPH0982495A (en) * 1995-09-18 1997-03-28 Toshiba Corp Plasma producing device and method
US5935348A (en) * 1995-11-14 1999-08-10 Henkel Kommanditgesellschaft Auf Aktien Composition and process for preventing corrosion and reducing friction on metallic surfaces
JP3437023B2 (en) * 1995-11-20 2003-08-18 日本ペイント株式会社 Aluminum-based metal surface treatment bath and treatment method
US6361833B1 (en) * 1998-10-28 2002-03-26 Henkel Corporation Composition and process for treating metal surfaces
DE19857799A1 (en) * 1998-12-15 2000-06-21 Henkel Kgaa Method of controlling a treatment line
JP4099307B2 (en) * 2000-04-20 2008-06-11 日本ペイント株式会社 Non-chromium anti-rust treatment agent for aluminum, anti-rust treatment method and anti-rust treated aluminum products
US20030185990A1 (en) * 2000-09-25 2003-10-02 Klaus Bittner Method for pretreating and coating metal surfaces prior to forming, with a paint-like coating and use of substrates so coated
TWI268965B (en) * 2001-06-15 2006-12-21 Nihon Parkerizing Treating solution for surface treatment of metal and surface treatment method
JP3820165B2 (en) * 2002-03-04 2006-09-13 日本ペイント株式会社 Metal surface treatment composition
JP2003313678A (en) * 2002-04-23 2003-11-06 Nippon Paint Co Ltd Chromium-free surface treatment agent for metal, chromium-free surface treatment method for metal, and aluminum or aluminum alloy
JP4205939B2 (en) * 2002-12-13 2009-01-07 日本パーカライジング株式会社 Metal surface treatment method

Also Published As

Publication number Publication date
ES2730576T3 (en) 2019-11-12
EP1571237A1 (en) 2005-09-07
CN101487115B (en) 2013-05-22
CN101487115A (en) 2009-07-22
EP1571237B1 (en) 2019-03-20
KR20050097916A (en) 2005-10-10
CN1726304A (en) 2006-01-25
AU2003289323A8 (en) 2004-07-09
US20060185769A1 (en) 2006-08-24
CA2509772A1 (en) 2004-07-01
CN100537845C (en) 2009-09-09
EP1571237A4 (en) 2007-11-21
WO2004055237A1 (en) 2004-07-01
KR100674778B1 (en) 2007-01-25
JP2004190121A (en) 2004-07-08
AU2003289323A1 (en) 2004-07-09
MXPA05006156A (en) 2005-12-05
TW200416300A (en) 2004-09-01

Similar Documents

Publication Publication Date Title
JP4205939B2 (en) Metal surface treatment method
JP4373778B2 (en) Metal surface treatment liquid and surface treatment method
JP4402991B2 (en) Metal surface treatment composition, metal surface treatment liquid, metal surface treatment method and metal material
JP4242827B2 (en) Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
JP4427332B2 (en) Treatment liquid for surface treatment of aluminum or magnesium metal and surface treatment method
JP5215043B2 (en) Metal surface treatment liquid and surface treatment method
JP3992173B2 (en) Metal surface treatment composition, surface treatment liquid, and surface treatment method
JP4510079B2 (en) Surface-treated metal material
JPH01240671A (en) Zinc phosphate treatment for metallic surface for coating
MX2007011230A (en) Surface-treated metallic material.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4205939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term