JP2005325401A - Surface treatment method for zinc or zinc alloy coated steel - Google Patents

Surface treatment method for zinc or zinc alloy coated steel Download PDF

Info

Publication number
JP2005325401A
JP2005325401A JP2004144036A JP2004144036A JP2005325401A JP 2005325401 A JP2005325401 A JP 2005325401A JP 2004144036 A JP2004144036 A JP 2004144036A JP 2004144036 A JP2004144036 A JP 2004144036A JP 2005325401 A JP2005325401 A JP 2005325401A
Authority
JP
Japan
Prior art keywords
zinc
chemical conversion
plated steel
based alloy
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004144036A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Yasuda
光宏 安田
Katsuyoshi Yamazoe
勝芳 山添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2004144036A priority Critical patent/JP2005325401A/en
Publication of JP2005325401A publication Critical patent/JP2005325401A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment method for zinc or zinc alloy coated steel where excellent corrosion resistance, coating adhesion or the like can be imparted to a zinc or zinc alloy coated steel component after chemical conversion treatment, and to provide zinc or zinc alloy coated steel obtained thereby. <P>SOLUTION: The surface treatment method for zinc or zinc alloy coated steel is composed of a process where a chemical film is formed on the surface of the metallic object to be treated by chemical conversion treatment reaction with a chemical conversion treatment agent comprising a zirconium-containing compound, a fluorine-containing compound, and at least one kind selected from the group consisting of aluminum ion, vanadium ion and magnesium ion. The chemical conversion treatment reaction is performed by cathode electrolytic treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法、及び、それにより得られる亜鉛又は亜鉛系合金メッキ鋼材に関する。 The present invention relates to a surface treatment method for zinc or zinc-based alloy plated steel material, and to a zinc or zinc-based alloy plated steel material obtained thereby.

亜鉛メッキ鋼材、亜鉛系合金メッキ鋼材は、従来から、6価クロム酸塩等を用いたクロメート処理による防錆処理が広く行われ、必要に応じて耐有機溶剤性、耐指紋性、耐傷つき性、潤滑性等を付与すべく、クロメート処理皮膜の上に有機樹脂による被覆層が形成されてきた。 Zinc-plated steel materials and zinc-based alloy-plated steel materials have conventionally been widely rust-proofed by chromate treatment using hexavalent chromate, etc., and are resistant to organic solvents, fingerprints, and scratches as needed. In order to impart lubricity and the like, a coating layer made of an organic resin has been formed on a chromate-treated film.

近年、環境問題の高まりを背景に、従来から亜鉛メッキ鋼材、亜鉛系合金メッキ鋼材に施されていたクロメート処理を省略する動きがある。クロメート処理皮膜は、それ自身で高度の耐食性及び塗装密着性を有するものであるため、このクロメート処理を行わない場合には、これらの性能が著しく低下することが予想される。このため、亜鉛メッキ鋼材、亜鉛系合金メッキ鋼材の表面に、クロメート処理に替わる防錆処理を施し、良好な耐食性及び塗装密着性を有する防錆皮膜を形成することが要求されることとなってきた。 In recent years, against the background of increasing environmental problems, there has been a movement to omit chromate treatment that has been conventionally applied to galvanized steel materials and zinc-based alloy plated steel materials. Since the chromate-treated film itself has a high degree of corrosion resistance and paint adhesion, if the chromate treatment is not performed, these performances are expected to be significantly reduced. For this reason, it has been required that the surface of galvanized steel materials and zinc-based alloy plated steel materials be subjected to rust prevention treatment instead of chromate treatment to form a rust prevention film having good corrosion resistance and paint adhesion. It was.

また、化成処理によって得られた化成皮膜を有する亜鉛メッキ鋼材、亜鉛系合金メッキ鋼材を成形する際に、鋼材上の化成皮膜の割れ、剥がれ等が発生してしまうことがあり、割れ、剥がれ等が発生した化成皮膜を有する成形品を使用した場合、耐食性、塗膜密着性等の性能が低下する場合がある。このため、成形をした場合に割れ、剥がれ等が生じることを抑制し、成形品であっても優れた耐食性、塗膜密着性等の性能を有する表面処理方法を開発されることが望まれている。 In addition, when forming a galvanized steel material having a chemical conversion film obtained by chemical conversion treatment or a zinc-based alloy plated steel material, cracking or peeling of the chemical conversion film on the steel material may occur, such as cracking or peeling. When using a molded product having a chemical conversion film in which corrosion occurs, performance such as corrosion resistance and coating film adhesion may deteriorate. For this reason, it is desired to develop a surface treatment method that suppresses the occurrence of cracking, peeling, etc. when molded, and has performance such as excellent corrosion resistance and coating film adhesion even for molded products. Yes.

金属表面処理方法として、特許文献1、2には、リン酸塩化合物やチタン系の処理剤を使用した電解反応による表面処理方法が開示されている。しかし、これらの技術は、ジルコニウム処理剤を使用する表面処理方法ではない。また、耐食性、塗膜密着性等の向上を目的とする表面処理方法を提供するものでもない。 As a metal surface treatment method, Patent Documents 1 and 2 disclose a surface treatment method by an electrolytic reaction using a phosphate compound or a titanium-based treatment agent. However, these techniques are not surface treatment methods using a zirconium treating agent. Moreover, it does not provide a surface treatment method for the purpose of improving the corrosion resistance, coating film adhesion and the like.

特許文献3には、(A)Ti、Zr、Hf及びSiの少なくとも1種を含む化合物、(B)HFの供給源としてのフッ素含有化合物を含有し、成分(A)の化合物中のTi、Zr、Hf及びSiの金属元素の合計モル重量Aと、成分(B)のフッ素含有化合物中の全フッ素原子をHFに換算したときのモル重量Bとの比K=A/Bが0.06≦K≦0.18の範囲内の表面処理用組成物と金属表面を接触させる金属の表面処理方法が開示されている。 Patent Document 3 contains (A) a compound containing at least one of Ti, Zr, Hf and Si, (B) a fluorine-containing compound as a source of HF, and Ti in the compound of component (A), The ratio K = A / B of the total molar weight A of the metal elements of Zr, Hf and Si to the molar weight B when all fluorine atoms in the fluorine-containing compound of the component (B) are converted to HF is 0.06. There is disclosed a metal surface treatment method in which a surface treatment composition in the range of ≦ K ≦ 0.18 is brought into contact with a metal surface.

しかし、ここで開示されている表面処理方法によって化成処理を行った場合、溶液中に多量で過剰なフッ素及びアルカリ金属が存在するため、被処理素材に対して電解電圧を印加しても、カソード保護効果が得られにくく、比較的多量のフッ化物が含まれる化成皮膜が形成されるため、耐食性が充分満足できない。 However, when the chemical conversion treatment is performed by the surface treatment method disclosed herein, a large amount of excess fluorine and alkali metal are present in the solution. Therefore, even if an electrolytic voltage is applied to the material to be treated, the cathode Since the protective effect is difficult to obtain and a chemical conversion film containing a relatively large amount of fluoride is formed, the corrosion resistance cannot be sufficiently satisfied.

従って、クロメート処理に替わる表面処理として、環境面で好ましい防錆処理であり、良好な耐食性及び塗装密着性を有する防錆皮膜を形成することができる亜鉛メッキ鋼材又は亜鉛系合金メッキ鋼材の表面処理方法の開発が望まれていた。 Therefore, as a surface treatment that replaces the chromate treatment, it is an environmentally preferable rust prevention treatment, and a surface treatment of a galvanized steel material or a zinc-based alloy plated steel material that can form a rust-proof film having good corrosion resistance and paint adhesion Development of a method was desired.

特開2000−234200号公報JP 2000-234200 A 特開2002−194589号公報JP 2002-194589 A 国際公開第02/103080号パンフレットInternational Publication No. 02/103080 Pamphlet

本発明は、上記現状に鑑み、化成処理後の亜鉛又は亜鉛系合金メッキ鋼材に高い耐食性、塗装密着性を付与することができる亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法及びそれにより得られる亜鉛又は亜鉛系合金メッキ鋼材を提供することを目的とするものである。 In view of the above situation, the present invention provides a surface treatment method for zinc or zinc-based alloy plated steel that can impart high corrosion resistance and coating adhesion to the zinc or zinc-based alloy plated steel after chemical conversion treatment, and zinc obtained thereby. Or it aims at providing a zinc system alloy plating steel material.

本発明は、ジルコニウム含有化合物と、フッ素含有化合物と、アルミニウムイオン、バナジウムイオン及びマグネシウムイオンからなる群より選択される少なくとも1種とを含む化成処理剤による化成処理反応によって金属被処理物表面に化成皮膜を形成させる工程からなる亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法であって、上記化成処理反応は、カソード電解処理によって行うことを特徴とする亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法である。 The present invention provides a chemical conversion treatment on a metal workpiece surface by a chemical conversion treatment with a chemical conversion treatment agent comprising a zirconium-containing compound, a fluorine-containing compound, and at least one selected from the group consisting of aluminum ions, vanadium ions, and magnesium ions. A surface treatment method for zinc or zinc-based alloy-plated steel material comprising a step of forming a film, wherein the chemical conversion treatment reaction is performed by cathode electrolytic treatment. is there.

上記カソード電解処理は、化成処理剤中のジルコニウム含有化合物の濃度がジルコニウム金属換算で100〜10000ppm、全ジルコニウム金属としての質量と全フッ素の質量との比(ジルコニウム量/フッ素量)が0.2〜1.0、pHが1〜6に調整されて行われるものであることが好ましい。 In the cathode electrolysis treatment, the concentration of the zirconium-containing compound in the chemical conversion treatment agent is 100 to 10,000 ppm in terms of zirconium metal, and the ratio of the mass as the total zirconium metal to the mass of the total fluorine (zirconium amount / fluorine amount) is 0.2. It is preferable that the pH is adjusted to 1 to 6 and adjusted to 1 to 1.0.

上記カソード電解処理は、化成処理剤中のアルミニウムイオン、バナジウムイオン及びマグネシウムイオンからなる群より選択される少なくとも1種の濃度が金属換算で50〜500ppmに調整されて行われるものであることが好ましい。 The cathode electrolytic treatment is preferably performed by adjusting the concentration of at least one selected from the group consisting of aluminum ions, vanadium ions, and magnesium ions in the chemical conversion treatment agent to 50 to 500 ppm in terms of metal. .

上記化成処理剤は、更に、リン酸イオンを含有するものであり、上記カソード電解処理は、上記リン酸イオンの濃度が五酸化二リン換算で10〜1000ppmに調整されて行われるものであることが好ましい。 The chemical conversion treatment agent further contains phosphate ions, and the cathode electrolytic treatment is performed by adjusting the concentration of the phosphate ions to 10 to 1000 ppm in terms of diphosphorus pentoxide. Is preferred.

上記化成皮膜を形成させる工程を行った後、有機皮膜を形成させる工程を行うものであることが好ましい。
本発明はまた、上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法によって得られた化成処理皮膜を有することを特徴とする亜鉛又は亜鉛系合金メッキ鋼材でもある。
以下、本発明を詳細に説明する。
It is preferable to perform the step of forming an organic film after the step of forming the chemical conversion film.
The present invention is also a zinc or zinc-based alloy plated steel material having a chemical conversion treatment film obtained by the surface treatment method for zinc or zinc-based alloy plated steel material.
Hereinafter, the present invention will be described in detail.

本発明の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法は、ジルコニウム含有化合物と、フッ素含有化合物と、アルミニウムイオン、バナジウムイオン及びマグネシウムイオンからなる群より選択される少なくとも1種とを含む化成処理剤によって金属被処理物表面をカソード電解処理することによって化成皮膜を形成するものである。電解処理によって反応させると、無電解処理による化成処理皮膜に比べて緻密で均一性に優れた皮膜となるものである。このため、上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法により得られた亜鉛又は亜鉛系合金めっき鋼材を成形することによって得られた成形品にも、優れた耐食性、塗装密着性等の性能を付与することができる。 The surface treatment method for zinc or zinc-based alloy plated steel according to the present invention includes a chemical conversion treatment agent comprising a zirconium-containing compound, a fluorine-containing compound, and at least one selected from the group consisting of aluminum ions, vanadium ions, and magnesium ions. The chemical conversion film is formed by cathodic electrolytic treatment of the surface of the metal workpiece. When reacted by electrolytic treatment, it becomes a dense and uniform film as compared with a chemical conversion film by electroless treatment. For this reason, the molded product obtained by molding the zinc or zinc-based alloy-plated steel obtained by the surface treatment method of zinc or zinc-based alloy-plated steel has excellent performance such as corrosion resistance and paint adhesion. Can be granted.

上記化成処理剤によって電解反応を行うと、極めて優れた耐食性を有する防食性の化成皮膜が得られ、従来の化成処理剤の電解反応によって得られる化成皮膜よりも優れた耐食性が得られる。このため、広範な範囲での使用が期待され、好ましいものである。 When an electrolytic reaction is performed with the chemical conversion treatment agent, a corrosion-resistant chemical conversion film having extremely excellent corrosion resistance is obtained, and a corrosion resistance superior to that obtained by an electrolytic reaction of a conventional chemical conversion treatment agent is obtained. For this reason, use in a wide range is expected and preferable.

無電解処理によって皮膜を形成する場合には、フッ素を比較的多く含むジルコニウム系化成皮膜が形成されることになり、耐食性に劣る皮膜が形成されてしまう。これに対し、ジルコニウム含有化合物と、フッ素含有化合物と、アルミニウムイオン、バナジウムイオン及びマグネシウムイオンからなる群より選択される少なくとも1種とを含む化成処理剤を電解処理する場合には、金属表面では主に水素発生反応が起こり、素材金属はカソード的に保護されるため、エッチングされず、被処理金属のフッ化物の発生はない。従って、金属表面近傍ではジルコニウム錯イオンの加水分解により、比較的安定な酸化ジルコニウムを含む皮膜の析出が起き、フッ素含有率の少ない緻密で安定な保護皮膜が形成されるため、耐食性、塗装密着性を向上させることができるものと推察される。 When a film is formed by electroless treatment, a zirconium-based chemical film containing a relatively large amount of fluorine is formed, and a film having poor corrosion resistance is formed. On the other hand, when electrolytically treating a chemical conversion treatment agent containing a zirconium-containing compound, a fluorine-containing compound, and at least one selected from the group consisting of aluminum ions, vanadium ions, and magnesium ions, the main surface is a metal surface. In this case, a hydrogen generation reaction occurs and the material metal is protected like a cathode, so that it is not etched and no fluoride of the metal to be processed is generated. Therefore, in the vicinity of the metal surface, deposition of a relatively stable zirconium oxide film occurs due to the hydrolysis of zirconium complex ions, and a dense and stable protective film with a low fluorine content is formed. It is presumed that this can be improved.

本発明の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法は、ジルコニウム含有化合物と、フッ素含有化合物と、アルミニウムイオン、バナジウムイオン及びマグネシウムイオンからなる群より選択される少なくとも1種とを含む化成処理剤による化成処理反応によって亜鉛又は亜鉛系合金メッキ鋼材の表面に化成皮膜を形成させる工程からなり、上記化成処理反応は、カソード電解処理によって行うものである。これにより、上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法により得られた鋼材を成形することによって得られた成形品にも、優れた耐食性、塗装密着性等の性能を付与することができる。 The surface treatment method for zinc or zinc-based alloy plated steel according to the present invention includes a chemical conversion treatment agent comprising a zirconium-containing compound, a fluorine-containing compound, and at least one selected from the group consisting of aluminum ions, vanadium ions, and magnesium ions. The chemical conversion treatment reaction comprises a step of forming a chemical conversion film on the surface of the zinc or zinc-based alloy plated steel material, and the chemical conversion treatment reaction is carried out by cathode electrolytic treatment. Thereby, excellent performances such as corrosion resistance and paint adhesion can be imparted to a molded product obtained by molding the steel obtained by the surface treatment method for zinc or zinc-based alloy plated steel.

上記ジルコニウム含有化合物としては、ジルコニウムを含有する化合物であれば特に限定されず、例えば、フルオロジルコニウム酸又はそのリチウム、ナトリウム、カリウム、アンモニウム塩、フッ化ジルコニウム、酸化ジルコニウム等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。 The zirconium-containing compound is not particularly limited as long as it is a compound containing zirconium, and examples thereof include fluorozirconic acid or its lithium, sodium, potassium, ammonium salt, zirconium fluoride, and zirconium oxide. These may be used alone or in combination of two or more.

上記フッ素含有化合物としては、フッ素を含有する化合物であれば特に限定されず、上記フッ化ジルコニウム等の他に、フッ化水素酸、フッ化アンモニウム、フッ化水素酸アンモニウム、フッ化ナトリウム、フッ化水素酸ナトリウム等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。 The fluorine-containing compound is not particularly limited as long as it is a fluorine-containing compound. Besides the above-mentioned zirconium fluoride, etc., hydrofluoric acid, ammonium fluoride, ammonium hydrofluoride, sodium fluoride, fluoride A sodium hydrate etc. can be mentioned. These may be used alone or in combination of two or more.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法において、上記化成処理剤は、アルミニウムイオン、バナジウムイオン及びマグネシウムイオンからなる群より選択される少なくとも1種とを含有するものである。これにより、化成処理後の鋼材を成形することによって得られる成形品の耐食性、塗膜密着性等の性能をより向上させることができる。 In the surface treatment method for zinc or zinc-based alloy-plated steel material, the chemical conversion treatment agent contains at least one selected from the group consisting of aluminum ions, vanadium ions, and magnesium ions. Thereby, performance, such as corrosion resistance of a molded product obtained by shape | molding the steel material after a chemical conversion process, and coating-film adhesiveness, can be improved more.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法で使用される化成処理剤中に含まれるアルミニウムイオンの供給源となる化合物としては特に限定されず、例えば、フッ化アルミニウム、酸化アルミニウム、硫酸アルミニウム、珪酸アルミニウム、アルミン酸ナトリウム等のアルミン酸塩等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。 The compound serving as a source of aluminum ions contained in the chemical conversion treatment agent used in the surface treatment method for zinc or zinc-based alloy plated steel is not particularly limited. For example, aluminum fluoride, aluminum oxide, aluminum sulfate, Examples thereof include aluminates such as aluminum silicate and sodium aluminate. These may be used alone or in combination of two or more.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法で使用される化成処理剤中に含まれるバナジウムイオンの供給源となる化合物としては特に限定されず、例えば、メタバナジン酸アンモニウム、バナジン酸アンモニウム、五酸化二バナジウム、ヘキサフルオロバナジウム酸カリウム、ヘキサフルオロバナジウム酸アンモニウム等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。 The compound that is a source of vanadium ions contained in the chemical conversion treatment agent used in the surface treatment method for zinc or zinc-based alloy plated steel is not particularly limited. For example, ammonium metavanadate, ammonium vanadate, pentoxide Examples thereof include divanadium, potassium hexafluorovanadate, ammonium hexafluorovanadate, and the like. These may be used alone or in combination of two or more.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法で使用される化成処理剤中に含まれるマグネシウムイオンの供給源としては特に限定されず、例えば、リン酸水素マグネシウム、炭酸マグネシウム、酸化マグネシウム、水酸化マグネシウム等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。 The source of magnesium ions contained in the chemical conversion treatment agent used in the surface treatment method for zinc or zinc-based alloy plated steel is not particularly limited. For example, magnesium hydrogen phosphate, magnesium carbonate, magnesium oxide, hydroxide A magnesium etc. can be mentioned. These may be used alone or in combination of two or more.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法で使用される化成処理剤は、アルミニウムイオンを含有するものであることが好ましい。これにより、化成処理後の鋼材を成形することによって得られる成形品の耐食性、塗膜密着性等の性能をより向上させることができる。 It is preferable that the chemical conversion treatment agent used by the surface treatment method of the said zinc or zinc type alloy plating steel materials contains an aluminum ion. Thereby, performance, such as corrosion resistance of a molded product obtained by shape | molding the steel material after a chemical conversion process, and coating-film adhesiveness, can be improved more.

本発明におけるカソード電解処理において、処理浴中の化成処理剤は、アルミニウムイオン、バナジウムイオン及びマグネシウムイオンからなる群より選択される少なくとも1種の濃度が金属換算で、下限50ppm、上限500ppmに調整されて行われるものであることが好ましい。50ppm未満であると、化成処理後の鋼材を成形した場合に、成形品の耐食性、塗装密着性等の性能の向上が見られないおそれがある。5000ppmを超えても、これらの性能向上は見られないおそれがある。上記下限は、100ppmであることがより好ましく、上記上限は、400ppmであることがより好ましい。なお、上記金属換算の濃度は、アルミニウムイオン、バナジウムイオン及びマグネシウムイオンの合計量の濃度である。 In the cathode electrolytic treatment in the present invention, the chemical conversion treatment agent in the treatment bath is adjusted to have a lower limit of 50 ppm and an upper limit of 500 ppm in terms of metal, at least one concentration selected from the group consisting of aluminum ions, vanadium ions, and magnesium ions. Is preferably performed. When it is less than 50 ppm, when the steel material after the chemical conversion treatment is molded, there is a possibility that performance such as corrosion resistance and paint adhesion of the molded product may not be improved. Even if it exceeds 5000 ppm, these performance improvements may not be observed. The lower limit is more preferably 100 ppm, and the upper limit is more preferably 400 ppm. In addition, the said metal conversion density | concentration is a density | concentration of the total amount of aluminum ion, vanadium ion, and magnesium ion.

本発明の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法において、上記カソード電解処理は、化成処理剤中のジルコニウム含有化合物の濃度がジルコニウム金属換算で下限100ppm、上限10000ppm、全ジルコニウム金属としての質量と全フッ素の質量との比(ジルコニウム量/フッ素量)が下限0.2、上限1.0、pHが下限1、上限6となるように調整されて行われるものであることが好ましい。このように調整してカソード電解処理を行うことによって、フッ素含有量の比較的少ない化成皮膜を形成することができるため、成形品の耐食性をより向上させることができる。 In the surface treatment method for zinc or zinc-based alloy-plated steel material of the present invention, the cathode electrolytic treatment has a concentration of the zirconium-containing compound in the chemical conversion treatment agent as a lower limit of 100 ppm in terms of zirconium metal, an upper limit of 10000 ppm, The total fluorine content (zirconium amount / fluorine amount) is preferably adjusted so that the lower limit is 0.2, the upper limit is 1.0, and the pH is lower limit 1 and upper limit 6. By performing the cathode electrolytic treatment with such adjustment, a chemical conversion film having a relatively small fluorine content can be formed, and therefore the corrosion resistance of the molded product can be further improved.

上記カソード電解処理において、上記ジルコニウム含有化合物の濃度及び上記ジルコニウム量/フッ素量を上記規定範囲に調整する方法としては、例えば、化成処理剤中の全ジルコニウム濃度は原子吸光分析装置を、全フッ素濃度はイオンクロマトグラフを使用して測定しながら、上記ジルコニウム含有化合物、上記フッ素含有化合物を処理浴中に補給することによって調整することができる。また、上記pHを上記規定範囲に調整する方法としては、例えば、pHメーターを使用して測定しながら、硝酸又は水酸化アンモニウムを処理浴中に補給することによって調整することができる。 In the cathode electrolytic treatment, as a method for adjusting the concentration of the zirconium-containing compound and the amount of zirconium / fluorine to the specified range, for example, the total zirconium concentration in the chemical conversion treatment agent is determined by using an atomic absorption analyzer. Can be adjusted by supplying the zirconium-containing compound and the fluorine-containing compound into the treatment bath while measuring using an ion chromatograph. Moreover, as a method of adjusting the said pH to the said regulation range, it can adjust, for example by supplying nitric acid or ammonium hydroxide in a processing bath, measuring using a pH meter.

本発明におけるカソード電解処理において、処理浴中の化成処理剤は、上記ジルコニウム含有化合物の濃度が、ジルコニウム金属換算で、下限100ppm、上限10000ppmの範囲内に調整されることが好ましい。100ppm未満であると、化成処理後の鋼材を成形した場合に、成形品の耐食性、塗装密着性等の性能が低下するおそれがある。また、10000ppmを超えて配合すると、それ以上の効果は望めず不経済である。上記下限は、500ppmであることがより好ましく、上記上限は、5000ppmであることがより好ましい。 In the cathode electrolytic treatment in the present invention, the chemical conversion treatment agent in the treatment bath is preferably adjusted such that the concentration of the zirconium-containing compound is in the range of a lower limit of 100 ppm and an upper limit of 10,000 ppm in terms of zirconium metal. When it is less than 100 ppm, when the steel material after the chemical conversion treatment is formed, the performance of the molded product such as corrosion resistance and paint adhesion may be deteriorated. Moreover, when it mixes exceeding 10,000 ppm, the effect beyond it cannot be expected and it is uneconomical. The lower limit is more preferably 500 ppm, and the upper limit is more preferably 5000 ppm.

本発明におけるカソード電解処理において、処理浴中の上記化成処理剤は、全ジルコニウム金属としての質量(化成処理剤中に含まれるジルコニウム金属としての全ジルコニウムの合計質量)と全フッ素の質量(化成処理剤中に含まれる全フッ素の合計質量)との比(ジルコニウム量/フッ素量)が、下限0.2、上限1.0に調整されることが好ましい。0.2未満であると、フッ素量が過剰になり、カソード電解処理による化成皮膜の形成が妨げられるおそれがある。また、比較的フッ素量が多い化成皮膜が形成されるため、成形品の耐食性、塗膜密着性が低下するおそれがある。1.0を超えると、全フッ素量が不充分になり、金属塩の沈殿が発生するおそれがある。上記下限は、0.25であることがより好ましく、上記上限は、0.8であることがより好ましい。 In the cathode electrolytic treatment in the present invention, the chemical conversion treatment agent in the treatment bath is composed of the mass as total zirconium metal (total mass of all zirconium as zirconium metal contained in the chemical conversion treatment agent) and the mass of total fluorine (chemical conversion treatment). The ratio (zirconium amount / fluorine amount) to the total mass of all fluorine contained in the agent is preferably adjusted to a lower limit of 0.2 and an upper limit of 1.0. If it is less than 0.2, the amount of fluorine becomes excessive, and the formation of a chemical conversion film by the cathode electrolytic treatment may be hindered. Moreover, since a chemical conversion film having a relatively large amount of fluorine is formed, the corrosion resistance and coating film adhesion of the molded product may be deteriorated. If it exceeds 1.0, the amount of total fluorine becomes insufficient, and precipitation of the metal salt may occur. The lower limit is more preferably 0.25, and the upper limit is more preferably 0.8.

本発明におけるカソード電解処理において、処理浴中の上記化成処理剤は、pHが下限1、上限6の範囲内に調整されることが好ましい。pHが1未満であると、化成処理後の鋼材を成形することによって得られる成形品の耐食性、塗膜密着性等の性能の向上が見られないおそれがある。pHが6を超えると、充分な皮膜量が得られないため好ましくない。上記下限は、2であることが好ましく、上記上限は、5であることがより好ましい。 In the cathode electrolytic treatment in the present invention, the chemical conversion treatment agent in the treatment bath is preferably adjusted to have a pH within a range of a lower limit of 1 and an upper limit of 6. When the pH is less than 1, there is a possibility that performance such as corrosion resistance and coating film adhesion of a molded product obtained by molding the steel after the chemical conversion treatment may not be observed. A pH exceeding 6 is not preferable because a sufficient amount of film cannot be obtained. The lower limit is preferably 2, and the upper limit is more preferably 5.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法で使用される化成処理剤は、上記ジルコニウム含有化合物、上記フッ素含有化合物及び上記アルミニウムイオン、バナジウムイオン及びマグネシウムイオンからなる群より選択される少なくとも1種以外に、更に、リン酸イオンを含有するものであることが好ましい。これにより、化成処理後の鋼材を成形することによって得られる成形品の耐食性、塗膜密着性等の性能をより向上させることができる。 The chemical conversion treatment agent used in the surface treatment method of the zinc or zinc-based alloy plated steel material is at least one selected from the group consisting of the zirconium-containing compound, the fluorine-containing compound, the aluminum ion, vanadium ion, and magnesium ion. In addition, it is preferable that the phosphor further contains a phosphate ion. Thereby, performance, such as corrosion resistance of a molded product obtained by shape | molding the steel material after chemical conversion treatment, and coating-film adhesiveness, can be improved more.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法で使用される化成処理剤において、リン酸イオンの供給源としては特に限定されず、例えば、リン酸、リン酸アンモニウム、リン酸ナトリウムやリン酸カリウム等のリン酸アルカリ金属塩、リン酸カルシウム、リン酸マグネシウム等のリン酸アルカリ土類金属塩、縮合リン酸等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。 In the chemical conversion treatment agent used in the surface treatment method of the zinc or zinc-based alloy plated steel material, the source of phosphate ions is not particularly limited. For example, phosphoric acid, ammonium phosphate, sodium phosphate or potassium phosphate And alkali metal phosphates such as alkali phosphates such as calcium phosphate and magnesium phosphate, and condensed phosphates. These may be used alone or in combination of two or more.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法で使用される化成処理剤がリン酸イオンを含有するものである場合、上記カソード電解処理は、上記リン酸イオンの濃度が五酸化二リン換算で下限10ppm、上限1000ppmに調整されて行われるものであることが好ましい。10ppm未満であると、成形品の耐食性、塗膜密着性等の性能の向上がみられないおそれがある。1000ppmを超えても、これらの性能の向上はみられないおそれがある。上記下限は、50ppmであることがより好ましく、上記上限は、700ppmであることがより好ましい。 When the chemical conversion treatment agent used in the surface treatment method of the zinc or zinc-based alloy plated steel material contains phosphate ions, the concentration of the phosphate ions is calculated in terms of diphosphorus pentoxide. It is preferable to adjust the lower limit to 10 ppm and the upper limit to 1000 ppm. If it is less than 10 ppm, there is a possibility that performance such as corrosion resistance and coating film adhesion of the molded product will not be improved. Even if it exceeds 1000 ppm, there is a possibility that these performances are not improved. The lower limit is more preferably 50 ppm, and the upper limit is more preferably 700 ppm.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法において、上記化成処理剤を使用して電解処理によって化成皮膜を形成するに際し、特に、上記化成処理剤がジルコニウム含有化合物とフッ素含有化合物とアルミニウムイオンとリン酸イオンとを含むものである場合には、これらを含むことの相乗効果として、化成処理後の鋼材を成形することによって得られる成形品の耐食性、塗膜密着性等の性能を著しく向上させることができる。 In the surface treatment method of the zinc or zinc-based alloy plated steel material, when the chemical conversion film is formed by electrolytic treatment using the chemical conversion treatment agent, in particular, the chemical conversion treatment agent contains a zirconium-containing compound, a fluorine-containing compound, and aluminum ions. In the case of containing phosphate ions, as a synergistic effect of including these, it is possible to remarkably improve performance such as corrosion resistance and coating film adhesion of a molded product obtained by molding the steel material after chemical conversion treatment. it can.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法で使用される化成処理剤は、上記成分の他に、チタン、マンガン、ケイ素、亜鉛、鉄、モリブデン、3価クロム等の金属イオン;タンニン酸、イミダゾール類、トリアジン類、グアニン類、ヒドラジン類、ビグアニド、フェノール樹脂、シランカップリング剤、コロイダルシリカ、アミン類、リン酸等の他の防錆剤;界面活性剤;キレート剤;樹脂等を含有するものであってもよい。 In addition to the above components, the chemical conversion treatment agent used in the surface treatment method for zinc or zinc-based alloy-plated steel is a metal ion such as titanium, manganese, silicon, zinc, iron, molybdenum, and trivalent chromium; tannic acid, Contains other rust inhibitors such as imidazoles, triazines, guanines, hydrazines, biguanides, phenolic resins, silane coupling agents, colloidal silica, amines, phosphoric acid; surfactants; chelating agents; resins, etc. It may be a thing.

本発明の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法において、上記カソード電解処理は、陰極として被処理物を使用することによって電解処理するものである。 In the surface treatment method for zinc or zinc-based alloy plated steel material of the present invention, the cathode electrolytic treatment is an electrolytic treatment by using an object to be treated as a cathode.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法において、上記カソード電解処理は、電圧が、下限0.1V、上限40Vであることが好ましい。0.1V未満であると、充分な保護化成皮膜が得られず、部品の耐食性、塗膜密着性等の性能の向上が見られないおそれがある。40Vを超えると、皮膜量の増加が飽和し、エネルギー的に不利となり、また、部品のやけが起こる等の不具合が発生するおそれがある。上記下限は、1Vであることがより好ましく、上記上限は、30Vであることがより好ましい。 In the surface treatment method for zinc or zinc-based alloy plated steel material, the cathode electrolytic treatment preferably has a voltage of a lower limit of 0.1V and an upper limit of 40V. If it is less than 0.1 V, a sufficient protective chemical conversion film cannot be obtained, and there is a possibility that performance such as corrosion resistance and coating film adhesion of parts cannot be improved. If it exceeds 40V, the increase in the coating amount is saturated, which is disadvantageous in terms of energy, and there is a risk that problems such as burnout of parts may occur. The lower limit is more preferably 1V, and the upper limit is more preferably 30V.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法において、上記カソード電解処理は、電流が、下限0.01A/dm、上限100A/dmであることが好ましい。0.01A/dm未満であると、充分な保護化成皮膜が得られず、部品の耐食性、塗膜密着性等の性能の向上が見られないおそれがある。100A/dmを超えると、皮膜量の増大効果が飽和し、エネルギー的に不利となり、また、部品のやけが起こる等の不具合が発生するおそれがある。上記下限は、0.1A/dmであることがより好ましく、上記上限は、80A/dmであることがより好ましい。 In the surface treatment method for zinc or zinc-based alloy plated steel material, the cathode electrolytic treatment preferably has a current of 0.01 A / dm 2 as a lower limit and 100 A / dm 2 as an upper limit. If it is less than 0.01 A / dm 2 , a sufficient protective chemical conversion film cannot be obtained, and there is a possibility that performance such as corrosion resistance and coating film adhesion of parts will not be improved. If it exceeds 100 A / dm 2 , the effect of increasing the coating amount is saturated, which is disadvantageous in terms of energy, and there is a risk that problems such as burnout of parts may occur. The lower limit is more preferably 0.1 A / dm 2 , and the upper limit is more preferably 80 A / dm 2 .

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法において、上記カソード電解処理の処理時間は、下限0.5秒間、上限60秒間であることが好ましい。0.5秒間未満であると、充分な保護化成皮膜が得られず、部品の耐食性、塗膜密着性等の性能の向上が見られないおそれがある。60秒間を超えると、皮膜量の増大効果が飽和し、エネルギー的に不利となるおそれがある。 In the surface treatment method for zinc or zinc-based alloy plated steel, the treatment time for the cathode electrolytic treatment is preferably a lower limit of 0.5 seconds and an upper limit of 60 seconds. If the time is less than 0.5 seconds, a sufficient protective chemical conversion film cannot be obtained, and there is a possibility that performance such as corrosion resistance and coating film adhesion of parts cannot be improved. If it exceeds 60 seconds, the effect of increasing the coating amount is saturated, which may be disadvantageous in terms of energy.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法において、上記カソード電解処理の処理温度は、下限20℃、上限80℃であることが好ましい。20℃未満であると、充分な保護化成皮膜が得られず、部品の耐食性、塗膜密着性等の性能の向上が見られないおそれがある。80℃を超えると、皮膜量の増大効果が飽和し、エネルギー的に不利となるおそれがある。なお、処理温度の下限は、特に制御せず、常温で処理することができる。 In the surface treatment method for zinc or zinc-based alloy plated steel material, the treatment temperature of the cathode electrolytic treatment is preferably a lower limit of 20 ° C. and an upper limit of 80 ° C. If it is less than 20 ° C., a sufficient protective chemical conversion film cannot be obtained, and there is a possibility that performance such as corrosion resistance and coating film adhesion of parts cannot be improved. If it exceeds 80 ° C., the effect of increasing the coating amount is saturated, which may be disadvantageous in terms of energy. The lower limit of the treatment temperature is not particularly controlled, and the treatment can be performed at room temperature.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法におけるカソード電解処理において、対極として使用する電極は、上記化成処理剤に溶解しない電極であれば特に限定されず、例えば、ステンレス、ニッケル、白金めっきチタン、白金めっきニオブ、酸化物電極、カーボン等を挙げることができる。 In the cathode electrolytic treatment in the zinc or zinc-based alloy plated steel surface treatment method, the electrode used as the counter electrode is not particularly limited as long as it is an electrode that does not dissolve in the chemical conversion treatment agent. For example, stainless steel, nickel, platinum-plated titanium , Platinum plated niobium, oxide electrode, carbon and the like.

本発明の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法は、上述した化成皮膜を形成させる工程を行った後、有機皮膜を形成させる工程を行うものであってもよい。上記有機皮膜を形成させる工程を行う場合には、化成処理後の鋼材を成形することによって得られる成形品の耐食性、塗膜密着性等の性能をより向上させることができる。 The surface treatment method for zinc or zinc-based alloy-plated steel material of the present invention may perform a step of forming an organic coating after performing the above-described step of forming a chemical conversion coating. When performing the process of forming the said organic membrane | film | coat, performance, such as corrosion resistance of a molded article obtained by shape | molding the steel material after chemical conversion treatment, and coating-film adhesiveness, can be improved more.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法において、上記有機皮膜を形成させる工程で使用される処理剤としては特に限定されず、例えば、水性樹脂等を挙げることができる。上記水性樹脂は、水溶性樹脂又は水分散性樹脂を意味する。上記水性樹脂としては特に限定されず、例えば、水性アクリル樹脂、水性ウレタン樹脂、水性ポリエステル樹脂、水性エポキシ樹脂、水性フェノール樹脂、水性オレフィン樹脂、水性アイオノマー樹脂等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。 In the surface treatment method of the zinc or zinc-based alloy plated steel material, the treatment agent used in the step of forming the organic film is not particularly limited, and examples thereof include an aqueous resin. The aqueous resin means a water-soluble resin or a water-dispersible resin. The aqueous resin is not particularly limited, and examples thereof include an aqueous acrylic resin, an aqueous urethane resin, an aqueous polyester resin, an aqueous epoxy resin, an aqueous phenol resin, an aqueous olefin resin, and an aqueous ionomer resin. These may be used alone or in combination of two or more.

本発明の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法を適用する金属被処理物は、亜鉛又は亜鉛系合金めっき鋼材である。亜鉛又は亜鉛系合金めっき鋼材に対して適用することにより、化成処理後の鋼材を成形することによって得られる成形品の耐食性、塗膜密着性等の性能をより向上させることができる。 The metal workpiece to which the surface treatment method for zinc or zinc-based alloy plated steel of the present invention is applied is zinc or zinc-based alloy plated steel. By applying it to zinc or zinc-based alloy-plated steel materials, it is possible to further improve performances such as corrosion resistance and coating film adhesion of molded products obtained by molding the steel materials after chemical conversion treatment.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法において、上記亜鉛又は亜鉛系合金めっき鋼材としては、例えば、亜鉛めっき鋼板、亜鉛−ニッケルめっき鋼板、亜鉛−鉄めっき鋼板、亜鉛−クロムめっき鋼板、亜鉛−アルミニウムめっき鋼板、亜鉛−チタンめっき鋼板、亜鉛−マグネシウムめっき鋼板、亜鉛−マンガンめっき鋼板等の亜鉛系の電気めっき、溶融めっき、蒸着めっき鋼板等を挙げることができる。 In the surface treatment method of the zinc or zinc-based alloy plated steel material, examples of the zinc or zinc-based alloy plated steel material include galvanized steel sheet, zinc-nickel plated steel sheet, zinc-iron plated steel sheet, zinc-chromium plated steel sheet, zinc -Zinc-type electroplating such as an aluminum-plated steel plate, a zinc-titanium-plated steel plate, a zinc-magnesium-plated steel plate, a zinc-manganese-plated steel plate, hot-dip plated steel plate, and the like.

上記亜鉛又は亜鉛系合金メッキ鋼材の表面は、上記化成処理剤によってカソード電解処理する前に脱脂処理、脱脂後水洗処理、酸洗処理、酸洗後水洗処理等を行うことができる。 The surface of the zinc or zinc-based alloy plated steel material can be subjected to degreasing treatment, post-degreasing water washing treatment, pickling treatment, pickling water washing treatment and the like before the cathode electrolytic treatment with the chemical conversion treatment agent.

上記脱脂処理は、基材表面に付着している油分や汚れを除去するために行われるものであり、無リン・無窒素脱脂洗浄液等の脱脂剤により、通常30〜55℃において数分間程度の浸漬処理がなされる。所望により、脱脂処理の前に、予備脱脂処理を行うことも可能である。 The degreasing treatment is performed to remove oil and dirt adhering to the surface of the base material, and usually with a degreasing agent such as phosphorus-free and nitrogen-free degreasing cleaning liquid at about 30 to 55 ° C. for about several minutes. Immersion treatment is performed. If desired, a preliminary degreasing process can be performed before the degreasing process.

上記脱脂後水洗処理は、脱脂処理後の脱脂剤を水洗するために、大量の水洗水によって1回又はそれ以上スプレー処理を行うことにより行われるものである。 The post-degreasing rinsing treatment is performed by spraying once or more with a large amount of rinsing water in order to wash the degreasing agent after the degreasing treatment.

上記酸洗処理として、例えば酸化剤を含んだフッ酸、塩酸、硫酸、硝酸又はこれらの混合酸溶液等の酸洗剤により、通常30〜60℃において数分間程度の浸漬処理がされる。上記酸化剤としては、例えば、硝酸、亜硝酸、塩素酸、過マンガン酸カリウム、二酸化マンガン、硫酸鉄等を挙げることができる。上記酸洗後水洗処理は、従来公知の方法により行うことができる。また、カソード電解処理後に、水洗処理を行ってもよい。 As the pickling treatment, for example, immersion treatment is usually performed for several minutes at 30 to 60 ° C. with an acid detergent such as hydrofluoric acid, hydrochloric acid, sulfuric acid, nitric acid containing these oxidizing agents, or a mixed acid solution thereof. Examples of the oxidizing agent include nitric acid, nitrous acid, chloric acid, potassium permanganate, manganese dioxide, and iron sulfate. The water washing treatment after the pickling can be performed by a conventionally known method. Moreover, you may perform a water washing process after a cathode electrolytic process.

本発明は、上記亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法によって得られた化成処理皮膜を有する亜鉛又は亜鉛系合金メッキ鋼材でもある。本発明の亜鉛又は亜鉛系合金メッキ鋼材は、更にカチオン電着塗装、粉体塗装、熱硬化性樹脂等の耐食プライマー塗装を上記化成皮膜上に形成した際に、耐食性、塗装密着性に優れるものである。本発明の亜鉛又は亜鉛系合金メッキ鋼材に対して行うことができる塗装としては特に限定されず、カチオン電着塗装、粉体塗装、ロールコーティング等を挙げることができる。上記カチオン電着塗装としては特に限定されず、アミノ化エポキシ樹脂、アミノ化アクリル樹脂、スルホニウム化エポキシ樹脂等からなる従来公知のカチオン電着塗料を塗布することができる。 The present invention is also a zinc or zinc-based alloy plated steel material having a chemical conversion treatment film obtained by the surface treatment method for zinc or zinc-based alloy plated steel material. The zinc or zinc-based alloy-plated steel material of the present invention has excellent corrosion resistance and coating adhesion when a corrosion-resistant primer coating such as cationic electrodeposition coating, powder coating, and thermosetting resin is further formed on the chemical conversion film. It is. The coating that can be performed on the zinc or zinc-based alloy plated steel of the present invention is not particularly limited, and examples thereof include cationic electrodeposition coating, powder coating, and roll coating. The cationic electrodeposition coating is not particularly limited, and a conventionally known cationic electrodeposition coating made of an aminated epoxy resin, an aminated acrylic resin, a sulfoniumated epoxy resin, or the like can be applied.

本発明の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法は、ジルコニウム含有化合物と、フッ素含有化合物と、アルミニウムイオン、バナジウムイオン及びマグネシウムイオンからなる群より選択される少なくとも1種とを含む化成処理剤をカソード電解処理することによって化成皮膜を形成する工程からなる方法である。よって、化成処理後の鋼材を成形することによって得られる成形品の耐食性、塗膜密着性等の性能を向上させることができる。また、6価クロム等の金属を使用するものでないため、環境面で好ましい方法でもある。特に、化成処理剤として、ジルコニウム含有化合物とフッ素含有化合物とアルミニウムイオンとリン酸イオンとを含有するものを使用する場合には、これらによって発揮される相乗効果によって、成形品の耐食性、塗膜密着性等の性能を特に向上させることができる。 The surface treatment method for zinc or zinc-based alloy plated steel according to the present invention includes a chemical conversion treatment agent comprising a zirconium-containing compound, a fluorine-containing compound, and at least one selected from the group consisting of aluminum ions, vanadium ions, and magnesium ions. Is a method comprising a step of forming a chemical conversion film by cathodic electrolytic treatment. Therefore, performance, such as corrosion resistance of a molded product obtained by shaping | molding the steel material after chemical conversion treatment, and coating-film adhesiveness, can be improved. In addition, since a metal such as hexavalent chromium is not used, it is also a preferable method in terms of environment. In particular, when a chemical conversion treatment agent containing a zirconium-containing compound, a fluorine-containing compound, aluminum ions, and phosphate ions is used, the synergistic effect exerted by these compounds improves the corrosion resistance of the molded article and the coating film adhesion. In particular, performance such as property can be improved.

本発明の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法は、上述した構成よりなるものであるため、化成処理後の亜鉛又は亜鉛系合金メッキ鋼材を成形することによって得られる成形品の耐食性、塗膜密着性等の性能を向上させることができる。 Since the surface treatment method of the zinc or zinc-based alloy plated steel material of the present invention has the above-described configuration, the corrosion resistance and coating of the molded product obtained by molding the zinc or zinc-based alloy plated steel material after the chemical conversion treatment are performed. Performances such as film adhesion can be improved.

以下本発明について実施例を掲げて更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。また実施例中、「部」、「%」は特に断りのない限り「質量部」、「質量%」を意味する。 EXAMPLES Hereinafter, although an Example is hung up and demonstrated in more detail, this invention is not limited only to these Examples. In the examples, “parts” and “%” mean “parts by mass” and “% by mass” unless otherwise specified.

実施例1〜8、比較例1〜2
〔化成処理剤の調製〕
ジルコニウム含有化合物、フッ素含有化合物として、ジルコンフッ酸、ジルコンフッ化アンモニウム、硝酸アルミニウム、ヘキサフルオロバナジウム酸アンモニウム、硝酸マグネシウム、リン酸を配合し、イオン交換水を加えて、表1に示すような化成処理剤を調製した。
Examples 1-8, Comparative Examples 1-2
(Preparation of chemical conversion treatment agent)
As a zirconium-containing compound and a fluorine-containing compound, zirconic hydrofluoric acid, zircon ammonium fluoride, aluminum nitrate, ammonium hexafluorovanadate, magnesium nitrate, phosphoric acid are added, ion-exchanged water is added, and a chemical conversion treatment agent as shown in Table 1 Was prepared.

〔試験板の作成〕
70mm×150mm×0.8mmのEGボンデ鋼材(日本テストパネル製)をアルカリ脱脂剤(サーフクリーナー322N8、日本ペイント製)3%水溶液を用いて、70℃で30秒間浸漬処理して脱脂した。水道水で30秒間スプレー処理を行って水洗した後、酸洗処理剤(NPコンディションナー2000、日本ペイント製)25%水溶液を用いて、70℃で30秒間浸漬処理して酸洗した。水道水で30秒スプレー処理を行って水洗した後、調製した化成処理剤を表1に示した条件で、対極にSUS304を使用し、カソード電解処理した。
[Preparation of test plate]
A 70 mm × 150 mm × 0.8 mm EG bonde steel material (manufactured by Nippon Test Panel) was degreased by immersion for 30 seconds at 70 ° C. using a 3% aqueous solution of an alkaline degreasing agent (Surf Cleaner 322N8, Nippon Paint). After spraying with tap water for 30 seconds and washing with water, a pickling treatment agent (NP Conditioner 2000, Nippon Paint) 25% aqueous solution was used for immersion at 70 ° C. for 30 seconds for pickling. After spraying with tap water for 30 seconds and washing with water, the prepared chemical conversion treatment agent was subjected to cathodic electrolysis using SUS304 as a counter electrode under the conditions shown in Table 1.

なお、比較例1は、表1に示した条件で浸漬処理した。比較例2の下地層塗布型クロメート処理は(NRC300の60%水溶液、日本ペイント社製)を所定の付着量になるように塗布し、5秒で鋼材到達温度が60℃になるように乾燥して試験板を作成した。 In Comparative Example 1, immersion treatment was performed under the conditions shown in Table 1. In the base layer coating type chromate treatment of Comparative Example 2, 60% aqueous solution of NRC300 (manufactured by Nippon Paint Co., Ltd.) is applied so as to have a predetermined adhesion amount and dried so that the steel material arrival temperature becomes 60 ° C. in 5 seconds. A test plate was prepared.

皮膜中のジルコニウム量(mg/m)及び皮膜中のF/Zr質量比は、「XRF1700」(島津製作所製蛍光X線分析装置)を用いて分析した。 The amount of zirconium in the coating (mg / m 2 ) and the mass ratio of F / Zr in the coating were analyzed using “XRF1700” (Shimadzu X-ray fluorescence analyzer).

なお、カソード電解処理において、以下のようにして、処理浴中の化成処理剤のジルコニウム金属としての濃度、ジルコニウム/フッ素の質量比、pHが表1に示したような値となるように調整した。
処理浴中の化成処理剤における全ジルコニウム濃度は理学製原子吸光分析装置NOVA-A330を、全フッ素濃度は日本ダイオネクス株式会社製イオンクロマトグラフDX−120を使用して測定しながら、フッ化ジルコニウムアンモニウム、フッ酸を処理浴中に補給することによって調整した。また、処理浴中の化成処理剤のpHは堀場製作所製pHメーターD−24を使用して測定しながら、硝酸又は水酸化アンモニウムを処理浴中に補給することによって調整した。
In the cathode electrolytic treatment, the concentration of the chemical conversion treatment agent in the treatment bath as zirconium metal, the mass ratio of zirconium / fluorine, and the pH were adjusted to the values shown in Table 1 as follows. .
The total zirconium concentration in the chemical conversion treatment agent in the treatment bath was measured using an atomic absorption spectrometer NOVA-A330 manufactured by Rigaku, and the total fluorine concentration was measured using an ion chromatograph DX-120 manufactured by Nippon Dionex Co., Ltd. It was adjusted by replenishing hydrofluoric acid into the treatment bath. Moreover, the pH of the chemical conversion treatment agent in the treatment bath was adjusted by supplying nitric acid or ammonium hydroxide to the treatment bath while measuring using a pH meter D-24 manufactured by Horiba.

〔試験板の物性評価〕
上記試験板について、以下に示した評価方法によって耐食性を評価し、結果を表1に示した。
<耐食性>
JIS Z 2371に基づき、5%塩水噴霧試験(24、48、72、120、167、215時間)を行い、試験後に処理板の錆発生率を調べた。処理板表面の錆発生面積を下記の評価基準により目視で評価した。
10:白錆発生なし
9:白錆発生面積が10%未満
8:同20%未満
7:同30%未満
6:同40%未満
5:同50%未満
4:同60%未満
3:同70%未満
2:同80%未満
1:同90%未満
[Evaluation of physical properties of test plate]
The test plate was evaluated for corrosion resistance by the following evaluation method, and the results are shown in Table 1.
<Corrosion resistance>
Based on JIS Z 2371, a 5% salt spray test (24, 48, 72, 120, 167, 215 hours) was performed, and the rust generation rate of the treated plate was examined after the test. The rust generation area on the surface of the treated plate was visually evaluated according to the following evaluation criteria.
10: No white rust generation 9: White rust generation area less than 10% 8: Less than 20% 7: Less than 30% 6: Less than 40% 5: Less than 50% 4: Less than 60% 3: 3: 70 Less than% 2: Less than 80% 1: Less than 90%

Figure 2005325401
Figure 2005325401

表1から、実施例で得られた試験板は比較例で得られた試験板に比べて、耐食性に優れるものであった。 From Table 1, the test plate obtained in the example was excellent in corrosion resistance as compared with the test plate obtained in the comparative example.

実施例9〜16、比較例3〜4
〔試験板の作成〕
上記のように作成した電解化成処理済みのそれぞれの鋼材に、有機系皮膜被覆剤(SC7510(固形分18%、日本ペイント社製)をバーコーターで、所定の付着量になるように塗布し、20秒で鋼材到達温度が150℃になるように焼き付けて試験板を作成した。なお、有機皮膜の皮膜量(mg/m)は、「RC142型」(LECO社製全炭素分析装置)を用いて分析した。
Examples 9-16, Comparative Examples 3-4
[Preparation of test plate]
An organic film coating agent (SC7510 (solid content: 18%, manufactured by Nippon Paint Co., Ltd.)) is applied to each steel material that has been subjected to the electrolytic conversion treatment as described above with a bar coater so as to have a predetermined adhesion amount, A test plate was prepared by baking so that the steel material temperature reached 150 ° C. in 20 seconds, and the coating amount (mg / m 2 ) of the organic coating was “RC142 type” (LECO total carbon analyzer). And analyzed.

〔試験板の物性評価〕
上記試験板について、耐酸性、耐食性、耐アルカリ性、塗装密着性、皮膜密着性を評価した。その結果を表2の実施例11〜20、比較例3〜4に示した。評価は下記の方法にしたがって行った。
[Evaluation of physical properties of test plate]
The test plate was evaluated for acid resistance, corrosion resistance, alkali resistance, paint adhesion, and film adhesion. The results are shown in Examples 11 to 20 and Comparative Examples 3 to 4 in Table 2. Evaluation was performed according to the following method.

<耐酸性>
試験板の上に1%酢酸水溶液をスポイトで0.5ml滴下し、55℃、90%湿度雰囲気下で48時間放置後、塗膜の外観を下記の評価基準で評価した。
◎:変化なし
○:黒変面積が10%未満
△:同10%以上30%未満
×:同30%以上
<Acid resistance>
0.5 ml of a 1% aqueous acetic acid solution was dropped on the test plate with a dropper and allowed to stand at 55 ° C. in a 90% humidity atmosphere for 48 hours, and the appearance of the coating film was evaluated according to the following evaluation criteria.
◎: No change ○: Blackening area is less than 10% △: 10% or more and less than 30% ×: 30% or more

<耐食性>
試験板の平面部、並びに、エリクセンテスターで7mm押し出した加工部の端面部及び裏面部をテープでシールし、5%の食塩水を35℃で噴霧し、240時間後の白錆発生面積率を下記の評価基準で評価した。
◎:白錆発生なし
○:白錆発生面積が10%未満
△:同10%以上30%未満
×:同30%以上
<Corrosion resistance>
The flat part of the test plate, and the end face part and the back face part of the processed part extruded 7 mm by the Erik Sentester are sealed with tape, sprayed with 5% saline at 35 ° C, and the white rust occurrence area ratio after 240 hours is determined. Evaluation was performed according to the following evaluation criteria.
◎: No white rust occurrence ○: White rust occurrence area is less than 10% △: 10% or more and less than 30% ×: 30% or more

<耐アルカリ性>
試験板を55℃のアルカリ脱脂剤(サーフクリーナー53、日本ペイント製)2%水溶液に撹拌しながら2分間浸漬した後、テープでシールし、5%の食塩水を35℃で噴霧し、120時間後の白錆発生面積率を下記の評価基準で評価した。
◎:白錆発生なし
○:白錆発生面積が10%未満
△:同10%以上30%未満
×:同30%以上
<Alkali resistance>
The test plate was immersed in a 2% aqueous solution of 55 ° C alkaline degreasing agent (Surf Cleaner 53, Nippon Paint) for 2 minutes with stirring, then sealed with tape, and sprayed with 5% saline at 35 ° C for 120 hours. The subsequent white rust generation area ratio was evaluated according to the following evaluation criteria.
◎: No white rust occurrence ○: White rust occurrence area is less than 10% △: 10% or more and less than 30% ×: 30% or more

<皮膜密着性>
試験板にフィラメンテープ(スリオン社製)を貼り、40℃、湿度80%の条件下で3日間放置後、テープを強制剥離して、塗膜状態を下記の評価基準で評価した。
◎:剥離なし
○:剥離面積率が10%未満
△:剥離面積率が10%以上50%未満
×:剥離面積率が50%以上
<Film adhesion>
Filament tape (manufactured by Slion Co., Ltd.) was applied to the test plate, and after standing for 3 days under the conditions of 40 ° C. and humidity 80%, the tape was forcibly peeled off, and the coating state was evaluated according to the following evaluation criteria.
◎: No peeling ○: Peeling area ratio is less than 10% Δ: Peeling area ratio is 10% or more and less than 50% ×: Peeling area ratio is 50% or more

<塗装密着性>
試験板表面にメラミンアルキッド塗料(スーパーラック100、日本ペイント製)をバーコーターで乾燥膜厚20μmとなるように塗布し、120℃で25分間焼き付けて塗装板を作成した。次に塗膜板を沸騰水中に30分間浸漬し、24時間放置後、エリクセンテスターにて塗膜板を7mm押し出し、その押し出し部に市販の粘着テープを貼り、強制剥離した後の塗膜状態を下記の評価基準で評価した。
◎:剥離なし
○:剥離面積率が10%未満
△:剥離面積率が10%以上50%未満
×:剥離面積率が50%以上
<Coating adhesion>
A melamine alkyd paint (Super Rack 100, manufactured by Nippon Paint Co., Ltd.) was applied to the test plate surface with a bar coater to a dry film thickness of 20 μm, and baked at 120 ° C. for 25 minutes to prepare a coated plate. Next, immerse the coating plate in boiling water for 30 minutes, leave it for 24 hours, then extrude the coating plate with an elixir tester for 7 mm, apply a commercially available adhesive tape to the extrusion, and forcibly peel the coating state. Evaluation was performed according to the following evaluation criteria.
◎: No peeling ○: Peeling area ratio is less than 10% Δ: Peeling area ratio is 10% or more and less than 50% ×: Peeling area ratio is 50% or more

Figure 2005325401
Figure 2005325401

表2から、実施例の結果から明らかなように,本発明の方法で皮膜を形成した被覆亜鉛又は亜鉛系合金めっき鋼材は、一次耐食性、アルカリ脱脂後の耐食性、皮膜密着性、塗装密着性に優れていた。 As is clear from the results of the examples from Table 2, the coated zinc or zinc-based alloy-plated steel material on which the film is formed by the method of the present invention has primary corrosion resistance, corrosion resistance after alkaline degreasing, film adhesion, and coating adhesion. It was excellent.

本発明の亜鉛又は亜鉛系合金めっき鋼材の表面処理法は、クロムを使用せずに塗装密着性、耐食性、耐酸性、耐アルカリ性、耐溶剤性に優れた皮膜を形成することができる。亜鉛又は亜鉛系合金めっき鋼材に好適に適用することができる。 The surface treatment method for zinc or zinc-based alloy-plated steel material of the present invention can form a film excellent in coating adhesion, corrosion resistance, acid resistance, alkali resistance, and solvent resistance without using chromium. It can be suitably applied to zinc or zinc-based alloy plated steel.

Claims (6)

ジルコニウム含有化合物と、フッ素含有化合物と、アルミニウムイオン、バナジウムイオン及びマグネシウムイオンからなる群より選択される少なくとも1種とを含む化成処理剤による化成処理反応によって金属被処理物表面に化成皮膜を形成させる工程からなる亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法であって、
前記化成処理反応は、カソード電解処理によって行うことを特徴とする亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法。
A chemical conversion film is formed on the surface of the metal object by a chemical conversion treatment with a chemical conversion treatment agent containing a zirconium-containing compound, a fluorine-containing compound, and at least one selected from the group consisting of aluminum ions, vanadium ions, and magnesium ions. A surface treatment method of zinc or zinc-based alloy plated steel material comprising a process,
The chemical conversion treatment reaction is performed by cathodic electrolytic treatment, and the surface treatment method of zinc or zinc-based alloy plated steel material.
カソード電解処理は、化成処理剤中のジルコニウム含有化合物の濃度がジルコニウム金属換算で100〜10000ppm、全ジルコニウム金属としての質量と全フッ素の質量との比(ジルコニウム量/フッ素量)が0.2〜1.0、pHが1〜6に調整されて行われるものである請求項1記載の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法。 In the cathode electrolysis treatment, the concentration of the zirconium-containing compound in the chemical conversion treatment agent is 100 to 10,000 ppm in terms of zirconium metal, and the ratio of the mass as the total zirconium metal to the mass of the total fluorine (zirconium amount / fluorine amount) is 0.2 to The method for surface treatment of zinc or zinc-based alloy plated steel according to claim 1, wherein the surface treatment is performed at 1.0 and pH is adjusted to 1-6. カソード電解処理は、化成処理剤中のアルミニウムイオン、バナジウムイオン及びマグネシウムイオンからなる群より選択される少なくとも1種の濃度が金属換算で50〜500ppmに調整されて行われるものである請求項1又は2記載の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法。 The cathode electrolytic treatment is performed by adjusting at least one concentration selected from the group consisting of aluminum ions, vanadium ions, and magnesium ions in the chemical conversion treatment agent to 50 to 500 ppm in terms of metal. 2. The surface treatment method for zinc or zinc-based alloy plated steel according to 2. 化成処理剤は、更に、リン酸イオンを含有するものであり、
カソード電解処理は、前記リン酸イオンの濃度が五酸化二リン換算で10〜1000ppmに調整されて行われるものである請求項1、2又は3記載の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法。
The chemical conversion treatment agent further contains phosphate ions,
The surface treatment method for zinc or zinc-based alloy-plated steel material according to claim 1, 2 or 3, wherein the cathode electrolytic treatment is performed by adjusting the concentration of the phosphate ions to 10 to 1000 ppm in terms of diphosphorus pentoxide. .
化成皮膜を形成させる工程を行った後、有機皮膜を形成させる工程を行うものである請求項1、2、3又は4記載の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法。 The method for surface treatment of zinc or zinc-based alloy plated steel according to claim 1, 2, 3, or 4, wherein the step of forming an organic coating is performed after the step of forming a chemical conversion coating. 請求項1、2、3、4又は5記載の亜鉛又は亜鉛系合金メッキ鋼材の表面処理方法によって得られた化成処理皮膜を有することを特徴とする亜鉛又は亜鉛系合金メッキ鋼材。 A zinc or zinc-based alloy-plated steel material having a chemical conversion coating obtained by the surface treatment method for zinc or zinc-based alloy-plated steel material according to claim 1, 2, 3, 4 or 5.
JP2004144036A 2004-05-13 2004-05-13 Surface treatment method for zinc or zinc alloy coated steel Pending JP2005325401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004144036A JP2005325401A (en) 2004-05-13 2004-05-13 Surface treatment method for zinc or zinc alloy coated steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004144036A JP2005325401A (en) 2004-05-13 2004-05-13 Surface treatment method for zinc or zinc alloy coated steel

Publications (1)

Publication Number Publication Date
JP2005325401A true JP2005325401A (en) 2005-11-24

Family

ID=35471967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004144036A Pending JP2005325401A (en) 2004-05-13 2004-05-13 Surface treatment method for zinc or zinc alloy coated steel

Country Status (1)

Country Link
JP (1) JP2005325401A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100065A1 (en) 2006-03-01 2007-09-07 Nippon Paint Co., Ltd. Composition for metal surface treatment, metal surface treatment method, and metal material
WO2007100018A1 (en) * 2006-03-01 2007-09-07 Nippon Paint Co., Ltd. Composition for metal surface treatment, metal surface treatment method, and metal material
WO2007100017A1 (en) 2006-03-01 2007-09-07 Nippon Paint Co., Ltd. Composition for metal surface treatment, metal surface treatment method, and metal material
JP2007262577A (en) * 2006-03-01 2007-10-11 Nippon Paint Co Ltd Composition for metal surface treatment, metal surface treatment method, and metallic material
JP2008138254A (en) * 2006-12-01 2008-06-19 Nippon Steel Corp Surface-treated metal sheet, surface treatment agent for metal, and method for manufacturing surface-treated metal sheet
EP2067881A1 (en) * 2006-09-08 2009-06-10 Nippon Paint Co., Ltd. Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
JP2010110812A (en) * 2008-11-10 2010-05-20 Calsonic Kansei Corp Member to be welded used for friction stir welding method
JP2010202740A (en) * 2009-03-02 2010-09-16 Nippon Parkerizing Co Ltd Electrodeposition coating composition and electrodeposition coating method
JP2013526656A (en) * 2010-05-26 2013-06-24 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for forming a corrosion protection layer on a metal surface
US8702954B2 (en) 2007-12-21 2014-04-22 Kansai Paint Co., Ltd. Manufacturing method for surface-treated metallic substrate and surface-treated metallic substrate obtained by said manufacturing method, and metallic substrate treatment method and metallic substrate treated by said method
WO2016167357A1 (en) * 2015-04-16 2016-10-20 新日鐵住金株式会社 Steel sheet for container and method for producing steel sheet for container
KR20170121281A (en) * 2015-04-16 2017-11-01 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287662B2 (en) 2006-03-01 2012-10-16 Nippon Paint Co., Ltd. Composition for metal surface treatment, metal surface treatment method and metal material
US8262809B2 (en) 2006-03-01 2012-09-11 Chemetall Gmbh Composition for metal surface treatment, metal surface treatment method and metal material
WO2007100017A1 (en) 2006-03-01 2007-09-07 Nippon Paint Co., Ltd. Composition for metal surface treatment, metal surface treatment method, and metal material
JP2007262577A (en) * 2006-03-01 2007-10-11 Nippon Paint Co Ltd Composition for metal surface treatment, metal surface treatment method, and metallic material
WO2007100065A1 (en) 2006-03-01 2007-09-07 Nippon Paint Co., Ltd. Composition for metal surface treatment, metal surface treatment method, and metal material
EP1997936A1 (en) * 2006-03-01 2008-12-03 Chemetall GmbH Composition for metal surface treatment, metal surface treatment method, and metal material
WO2007100018A1 (en) * 2006-03-01 2007-09-07 Nippon Paint Co., Ltd. Composition for metal surface treatment, metal surface treatment method, and metal material
EP1997936A4 (en) * 2006-03-01 2010-05-05 Chemetall Gmbh Composition for metal surface treatment, metal surface treatment method, and metal material
US8828151B2 (en) 2006-03-01 2014-09-09 Chemetall Gmbh Composition for metal surface treatment, metal surface treatment method and metal material
US9028667B2 (en) 2006-03-01 2015-05-12 Nippon Paint Co., Ltd. Composition for metal surface treatment, metal surface treatment method, and metal material
EP2067881A1 (en) * 2006-09-08 2009-06-10 Nippon Paint Co., Ltd. Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
EP2067881A4 (en) * 2006-09-08 2010-12-29 Nippon Paint Co Ltd Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
US8916006B2 (en) 2006-09-08 2014-12-23 Nippon Paint Co., Ltd. Method of treating surface of metal base metallic material treated by the surface treatment method and method of coating the metallic material
US9394621B2 (en) 2006-09-08 2016-07-19 Chemetall Gmbh Method of treating surface of metal base metallic material treated by the surface treatment method and method of coating the metallic material
JP2008138254A (en) * 2006-12-01 2008-06-19 Nippon Steel Corp Surface-treated metal sheet, surface treatment agent for metal, and method for manufacturing surface-treated metal sheet
US8702954B2 (en) 2007-12-21 2014-04-22 Kansai Paint Co., Ltd. Manufacturing method for surface-treated metallic substrate and surface-treated metallic substrate obtained by said manufacturing method, and metallic substrate treatment method and metallic substrate treated by said method
JP2010110812A (en) * 2008-11-10 2010-05-20 Calsonic Kansei Corp Member to be welded used for friction stir welding method
JP2010202740A (en) * 2009-03-02 2010-09-16 Nippon Parkerizing Co Ltd Electrodeposition coating composition and electrodeposition coating method
JP2013526656A (en) * 2010-05-26 2013-06-24 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for forming a corrosion protection layer on a metal surface
EP3260580A4 (en) * 2015-04-16 2018-08-22 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container and method for producing steel sheet for container
US20180282877A1 (en) * 2015-04-16 2018-10-04 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container and method for producing steel sheet for container
KR20170121281A (en) * 2015-04-16 2017-11-01 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
CN107407001A (en) * 2015-04-16 2017-11-28 新日铁住金株式会社 The manufacture method of steel plate for container and steel plate for container
CN107429419A (en) * 2015-04-16 2017-12-01 新日铁住金株式会社 The manufacture method of steel plate for container and steel plate for container
US20180087172A1 (en) * 2015-04-16 2018-03-29 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container and method for producing steel sheet for container
WO2016167357A1 (en) * 2015-04-16 2016-10-20 新日鐵住金株式会社 Steel sheet for container and method for producing steel sheet for container
KR20170116079A (en) * 2015-04-16 2017-10-18 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
CN107407001B (en) * 2015-04-16 2019-04-26 新日铁住金株式会社 The manufacturing method of steel plate for container and steel plate for container
KR101982426B1 (en) * 2015-04-16 2019-05-27 닛폰세이테츠 가부시키가이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
KR101986034B1 (en) * 2015-04-16 2019-06-04 닛폰세이테츠 가부시키가이샤 METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
CN107429419B (en) * 2015-04-16 2019-06-07 新日铁住金株式会社 The manufacturing method of steel plate for container and steel plate for container
US10563311B2 (en) 2015-04-16 2020-02-18 Nippon Steel Corporation Steel sheet for container and method for producing steel sheet for container
US10577705B2 (en) 2015-04-16 2020-03-03 Nippon Steel Corporation Steel sheet for container and method for producing steel sheet for container

Similar Documents

Publication Publication Date Title
EP1486585B1 (en) Method of treating metal surfaces
JP4373778B2 (en) Metal surface treatment liquid and surface treatment method
EP0664348B1 (en) Method and composition for treatment of metals
JP5571277B2 (en) Surface treatment liquid for zinc-based metal material and surface treatment method for zinc-based metal material
US20040163735A1 (en) Chemical conversion coating agent and surface-treated metal
MXPA05006156A (en) Treating fluid for surface treatment of metal and method for surface treatment.
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
JP4276530B2 (en) Chemical conversion treatment agent and surface treatment metal
MXPA04008513A (en) Treating liquid for surface treatment of aluminum or magnesium based metal and method of surface treatment.
JP4344222B2 (en) Chemical conversion metal plate
EP1859930B1 (en) Surface-treated metallic material
EP3456865B1 (en) Trivalent chromium chemical conversion treatment liquid for zinc or zinc alloy base and chemical conversion treatment method using the same
EP2649219B1 (en) Metal pretreatment composition containing zirconium, copper, and metal chelating agents and related coatings on metal substrates
JP5215043B2 (en) Metal surface treatment liquid and surface treatment method
JP4187162B2 (en) Chemical conversion treatment agent and surface treatment metal
JP2005325402A (en) Surface treatment method for tin or tin based alloy plated steel
JPH11335865A (en) Processing agent for forming protective coating film on metal and its formation
JP2005325401A (en) Surface treatment method for zinc or zinc alloy coated steel
JP2006241579A (en) Chemical conversion treatment agent and surface-treated metal
JP2003155578A (en) Chemical conversion treatment agent for iron and/or zinc
JP3737168B2 (en) Manufacturing method of electrogalvanized steel sheet with high whiteness and excellent paintability
JP2005325403A (en) Surface treatment method for aluminum die-cast material
JP3330423B2 (en) Cathode electrolytic resin chromate type metal surface treatment method
JP2004043913A (en) Metal chemical conversion method
JP3241170B2 (en) Pretreatment method for cationic electrodeposition coating of aluminum-based metal materials