TW201620181A - 用於生物可相容賦能元件的陽極 - Google Patents
用於生物可相容賦能元件的陽極 Download PDFInfo
- Publication number
- TW201620181A TW201620181A TW104126939A TW104126939A TW201620181A TW 201620181 A TW201620181 A TW 201620181A TW 104126939 A TW104126939 A TW 104126939A TW 104126939 A TW104126939 A TW 104126939A TW 201620181 A TW201620181 A TW 201620181A
- Authority
- TW
- Taiwan
- Prior art keywords
- anode
- metal foil
- battery
- cathode
- current collector
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/0074—Production of other optical elements not provided for in B29D11/00009- B29D11/0073
- B29D11/00807—Producing lenses combined with electronics, e.g. chips
- B29D11/00817—Producing electro-active lenses or lenses with energy receptors, e.g. batteries or antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0436—Small-sized flat cells or batteries for portable equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/00038—Production of contact lenses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C11/00—Non-optical adjuncts; Attachment thereof
- G02C11/10—Electronic devices other than hearing aids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1624—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
- B29L2011/0016—Lenses
- B29L2011/0041—Contact lenses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/04—Contact lenses for the eyes
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/08—Auxiliary lenses; Arrangements for varying focal length
- G02C7/081—Ophthalmic lenses with variable focal length
- G02C7/083—Electrooptic lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/40—Printed batteries, e.g. thin film batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Otolaryngology (AREA)
- Primary Cells (AREA)
- Battery Mounting, Suspending (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Eyeglasses (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
本文描述了使用於生物可相容賦能元件的陽極配方和設計。在一些實例中,該設備的使用領域可包括需要賦能元件的任何生物可相容裝置或產品。
Description
本專利申請案主張2014年8月21日申請之美國臨時專利申請案申請號62/040178之優先權。
本文描述使用於生物可相容電池的陽極。在一些實例中,使用於生物可相容電池的陽極配方的使用領域可包括需要能量的任何生物可相容裝置或產品。
近來,醫療裝置的數量及其功能性已開始迅速發展。這些醫療裝置可包括例如可植入心律調節器、用於監測及/或測試生物功能的電子藥丸、具有主動組件的手術裝置、隱形眼鏡、輸液泵及神經刺激器。已針對許多前述的醫療裝置之新增功能性及提高性能提出理論並進行研發。然而,為了實現理論上增加的功能,目前這些裝置中有許多的裝置需要與這些裝置的尺寸和形狀要求以及新的賦能組件之能量要求相容的自給式賦能工具。
一些醫療裝置可包括電氣組件(諸如半導體裝置),該等組件執行各種功能,並可被併入於許多生物可相容及/或可植入裝置中。然而,這樣的半導體組件需要能量,因此,賦能元件亦應較佳地被包括在這樣的生物可相容裝置中。生物可相容裝置的布局和相對小的尺寸對於各種功能性的實現形成了新穎的和挑戰性的環境。在許多實例中,可為重要的是提供安全、可靠、小型化及具成本效益的裝置來賦能給生物可相容裝置內的半導體組件。因此,存在形成用於植入在生物可相容裝置之內或之上的生物可相容賦能元件的需求,其中毫米或更小尺寸的賦能元件的結構在保持生物可相容性的同時也提供了賦能元件增強的功能。
用於供電給裝置的一個此賦能元件可為電池。電池中常用的元件是電池陽極。電池的功能可關鍵取決於結構的設計、材料以及與形成電池陽極相關的程序。因此,需要形成使用於生物可相容賦能元件的生物可相容陽極的新實例。
因此,揭示使用於生物可相容電池的陽極配方,其在維持生物賦能元件所需的結構和功能的同時提供生物可相容性和性能優勢。
一項一般性態樣包括生物可相容電池,該生物可相容電池包括一第一和第一二電流收集器和一陰極。該生物可相容電池還包括一陽極和一層狀結構。該生物可相容電池亦包括其中該層狀結構的至少一層的一體積被移除以形成一孔穴的實例。在一些實例中,該孔穴可含有一電解質溶液、一分隔件和該陰極。該生物可相容電池還包括其中該陽極包含鋅的實例。該生物可相容電池還包括其中該陽極在該第一電流收集器上的實例。該生物可相容電池還包括其中該第一電流收集器及該陽極經密封在該層狀結構上的實例。
實施方案可包括下列特徵之一或多者。實例可包括其中該陽極包括陽極材料的一金屬箔之該生物可相容電池。其他實例可包括其中將陽極材料的該金屬箔接合至包括該第一電流收集器的一金屬箔。在一些實例中,該陽極包含鋅和銦的一混合物,在進一步的實例中,該陽極可包括其中該混合物中該銦的濃度大約在10ppm和1000ppm之間的實例。
在一些實例中,該方法可進一步包括在一酸浴或溶液中清潔該未受保護側。
一項一般性態樣包括具有一插入件裝置的一生醫裝置。回應於控制電壓信號的一電活性元件可在該插入件裝置中。該生醫裝置設備亦可包括一第一和第二電流收集器。該生醫裝置設備亦可包括一陰極。該生醫裝置設備亦可包括一陽極。該生醫裝置設備亦可包括一層狀結構。該生醫裝置設備還可包括其中該層狀結構的至少一層的一體積被移除以形成一孔穴的實例,以及其中該孔穴含有一電解質溶液、一分隔件和該陰極的實例。該生醫裝置設備亦可包括其中該陽極包含鋅的實例。該生醫裝置設備亦可包括其中該陽極在該第一電流收集器上的實例。該生醫裝置設備亦
包括其中該陽極經密封在該層狀結構上的實例。該生醫裝置設備亦可包括其中電連接至該生物可相容電池的一電路提供了該控制電壓信號的實例。
一項一般性態樣包括形成一生物可相容電池的方法,其中該方法可包括以下步驟:獲得一金屬箔;清潔該金屬箔;保護該金屬箔的一側;將一黏著劑附接到一基材;將該金屬箔的該受保護側附接到與該基材附接的該黏著劑;製造一電連接至該金屬箔;在一鍍液中將一陽極電鍍到該金屬箔上;接收一第一絕緣材料的一第一基材膜;在該第一基材膜中切出一孔穴以形成一陰極間隔物層,其中該孔穴的一邊緣界定該孔穴的一側壁;以及將該陰極間隔物層的一第一表面黏附到電鍍在該金屬箔上的該陽極的一第一表面。
該方法亦可進一步包括在一酸浴或溶液中清潔該未受保護側。
一項一般性態樣包括形成一生物可相容電池的一方法,該方法包括:獲得一金屬箔,其中該金屬箔包含鋅;清潔該金屬箔;接收一第一絕緣材料的一第一基材膜;在該第一基材膜中切出一孔穴以形成一陰極間隔物層,其中該孔穴的一邊緣界定該孔穴的一側壁;以及將該陰極間隔物層的一第一表面黏附到該金屬箔的一第一表面。
一項一般性態樣包括形成一生物可相容電池的一方法,該方法包括以下步驟:獲得一第一金屬箔,其中該金屬箔包括陽極材料;清潔該第一金屬箔;獲得一第二金屬箔,其中該第二金屬箔包括黃銅;將該第一金屬箔的一第一表面黏附到該第二金屬箔的一第一表面;接收一第一絕緣材料的一第一基材膜;在該第一基材膜中切出一孔穴以形成一陰極間隔物層,其中該孔穴的一邊緣界定該孔穴的一側壁;以及將該陰極間隔物層的一第一表面黏附到該第一金屬箔的一第二表面。
100‧‧‧隱形眼鏡插件
105‧‧‧電路
110‧‧‧生物可相容電池元件;電池元件
111‧‧‧基材
114‧‧‧互連
120‧‧‧電活性元件
125‧‧‧互連特徵
150‧‧‧隱形眼鏡
155‧‧‧隱形眼鏡水凝膠之裙件
160‧‧‧電池化學元件
161‧‧‧電氣接觸
162‧‧‧實體接觸
163‧‧‧電路元件
164‧‧‧第二實體接觸
165‧‧‧電池組件
166‧‧‧第二電氣接觸
167‧‧‧主要電路區
180‧‧‧三維圓錐形結構
181‧‧‧實體與電氣接觸點
271‧‧‧圓形形狀
272‧‧‧正方形形狀
273‧‧‧小矩形形狀
274‧‧‧較大矩形形狀
275‧‧‧更大的矩形形狀
310‧‧‧矩形輪廓
311‧‧‧陽極連接
312‧‧‧陰極連接
330‧‧‧圓形輪廓
331‧‧‧陽極連接
332‧‧‧陰極連接
401‧‧‧PET陰極間隔物
402‧‧‧PVDF釋離層
403‧‧‧PET膜
404‧‧‧PET間隙間隔物;PET間隙間隔物層
405‧‧‧覆蓋PET層
406‧‧‧孔洞
408‧‧‧疊層
409‧‧‧PVDF層
410‧‧‧陰極間隔物孔洞
411‧‧‧載體
412‧‧‧Celgard層
420‧‧‧預切割分隔件
421‧‧‧取放工具
422‧‧‧Celgard片件
423‧‧‧PVDF釋離層
425‧‧‧陽極膜;陽極
430‧‧‧陰極漿料
431‧‧‧刮漿板
432‧‧‧PVDF釋離層
440‧‧‧陰極漿料
450‧‧‧陰極膜層
460‧‧‧測區域
470‧‧‧電池元件
510‧‧‧陰極化學物
520‧‧‧陰極收集器
530‧‧‧壓力敏感黏著劑層
540‧‧‧PET間隔物層
550‧‧‧PSA層
560‧‧‧PET間隙層
565‧‧‧PSA層
570‧‧‧鍍鋅層
580‧‧‧陽極電流收集器
590‧‧‧分隔件層
600‧‧‧層狀構造
602‧‧‧層狀構造釋離層
602a‧‧‧層狀構造釋離層
604‧‧‧層狀構造黏著劑層;黏著劑層
604a‧‧‧層狀構造黏著劑層;黏著劑層
606‧‧‧層狀構造核心
608‧‧‧陰極囊袋
610‧‧‧陽極連接箔
612‧‧‧遮蔽層
614‧‧‧連貫金屬
702‧‧‧層狀構造釋離層
702a‧‧‧層狀構造釋離層;釋離層
704‧‧‧層狀構造黏著劑層
704a‧‧‧層狀構造黏著劑層;黏著劑層
706‧‧‧層狀構造核心
708‧‧‧陰極囊袋
710‧‧‧陽極連接箔
712‧‧‧陽極保護遮蔽層;保護遮蔽層
714‧‧‧電鍍層;連貫金屬層
802‧‧‧釋離層;;層狀構造釋離層
804‧‧‧層狀構造黏著劑層
816‧‧‧連接箔;陰極連接箔
820‧‧‧水凝膠分隔件前驅物混合物;水凝膠前驅物混合物
822‧‧‧無水聚合化前驅物混合物濃縮物
830‧‧‧陰極漿料
832‧‧‧隔離的陰極填充物
840‧‧‧電解質配方
842‧‧‧陰極填充物
850‧‧‧裝置
910‧‧‧水凝膠分隔件
920‧‧‧阻隔特徵
1002‧‧‧底部左側象限
1004‧‧‧頂部右側象限
1006‧‧‧孔穴的中間
1008‧‧‧孔穴的底部
1010‧‧‧孔穴的頂部
1102‧‧‧固結
1201‧‧‧獲得金屬箔
1202‧‧‧清潔金屬箔
1203‧‧‧保護金屬箔的一側
1204‧‧‧切割金屬箔膠帶組合物
1205‧‧‧清潔切割件
1206‧‧‧用IPA清潔切割件
1207‧‧‧用水沖洗切割件
1208‧‧‧在金屬箔上進行電鍍
1209‧‧‧電連接至箔
1210‧‧‧將黏著膠帶施加到基材
1211‧‧‧獲得基材
1212‧‧‧乾燥切割件
1213‧‧‧用水沖洗切割件
1214‧‧‧在硫酸中清潔切割件
從以下對本發明較佳實施例之更詳細說明中,如附圖所繪示,將更清楚明白本發明之前述及其他特徵與優勢。
圖1A至圖1D繪示與隱形眼鏡之例示性應用合作之生物可相容賦能元件的例示性態樣。
圖2繪示例示性電池設計之個別單元的例示性尺寸及形狀。
圖3A繪示具有例示性陽極與陰極連接之一第一獨立式、已封裝的生物可相容賦能元件。
圖3B繪示具有例示性陽極與陰極連接之一第二獨立式、已封裝的生物可相容賦能元件。
圖4A至圖4N繪示形成用於生醫裝置的生物可相容賦能元件的例示性方法步驟。
圖5繪示例示性之完全成形的生物可相容賦能元件。
圖6A至圖6F繪示生物可相容賦能元件結構形成的例示性方法步驟。
圖7A至圖7F繪示採用一替代電鍍方法使生物可相容賦能元件結構形成的例示性方法步驟。
圖8A至圖8H繪示形成具有水凝膠分隔件的用於生醫裝置的生物可相容賦能元件的例示性方法步驟。
圖9A至圖9C繪示利用替代的水凝膠處理實例使生物可相容賦能元件結構形成的例示性方法步驟。
圖10A至圖10F繪示將陰極混合物沉積到孔穴中的優化及未優化的過程。
圖11繪示孔穴內陰極混合物的固結(agglomeration)。
圖12繪示處理陽極的例示性方法步驟。
在本申請中揭示了在製造生物可相容電池中形成及使用陽極的方法。在下列段落中,敘述各種實例之詳細說明。實例之說明僅為例示性實施例,且所屬技術領域中具有通常知識者將瞭解各種修改及變更。因此,實例並未限制本申請案之範圍。陽極配方及其所形成的結構可被設計使用於生物可相容電池。在一些實例中,這些生物可相容電池可被設計成在活有機體的體中或鄰近處。
在說明和以下的申請專利範圍中,可被使用的各式用語將應用如下定義:
本文中使用的「陽極」係指電流通過而流入偏振電子裝置的電極。電流的方向通常與電子流的方向相反。換句話說,電子從陽極流入例如電路。
本文中使用的「黏結劑」係指能夠對機械變形展現彈性回應並與其他的賦能元件組件化學性相容的聚合物。例如,黏結劑可包括電活性材料、電解質、聚合物,及類似物。
本文中使用的「生物可相容」係指在特定的應用中以適宜的宿主回應執行的材料或裝置。例如,生物可相容裝置對生物系統不具毒性或有害影響。
本文中使用的「陰極」係指電流通過而流出偏振電裝置的電極。電流的方向通常與電子流的方向相反。因此,電子流入偏振電裝置的陰極並從例如連接的電路流出。
本文中使用的「塗層」係指處於薄形式的材料沉積物。在一些使用中,該用語將指稱大致上覆蓋基材表面的薄沉積物,該薄沉積物係形成於該基材上。在其他更專用的用途中,該用語可被用於描述在較小表面區域中的小型薄沉積物。
本文中使用的「電極」可以指稱能量源中的有效質量。例如,其可包括陽極和陰極中之一者或兩者。
本文中使用的「賦能的」係指能夠供應電流或儲存電能於其中之狀態。
本文中使用的「能量」係指物理系統作工之能力。賦能元件的許多使用可能與能夠執行電行為的能力有關。
本文中使用的「能源」或「賦能元件」或「賦能裝置」係指任何能夠供能或使邏輯或電裝置處於賦能狀態的裝置或層。賦能元件可以包括電池。電池可以由鹼性類型電池化學所形成且可以是固態電池或濕電池。
本文中使用的「填料」係指一或更多個不與酸性或鹼性電解質反應的賦能元件分隔件。一般來講,填充物可包括基本上不溶於水的材料,諸如碳黑;煤粉;石墨;金屬氧化物和氫氧化物,諸如矽、鋁、鈣、鎂、鋇、鈦、鐵、鋅和錫的金屬氧化物和氫氧化物;金屬碳酸鹽,諸
如鈣和鎂的碳酸鹽;礦物質,諸如雲母、蒙脫石、高嶺土、厄帖浦土和滑石;合成和天然沸石,諸如波特蘭水泥;沉澱金屬矽酸鹽,諸如矽酸鈣;中空或固體聚合物或玻璃微球、碎片和纖維;等。
本文所使用的「功能化」係指使一層或裝置能夠執行一功能,包括例如賦能、啟動及/或控制。
本文所使用的「模具」係指可用來使未固化配方形成三維物體的剛性或半剛性物體。一些例示性模具包括兩個模具部件,當兩個模具部件彼此相對時界定出一三維物體的結構。
本文所使用的「功率」係指每單位時間所作的功或傳遞之能量。
本文所使用的「可再充電」或「可再賦能」係指恢復至可作工之更高容量狀態的能力。許多上述術語之使用可能與恢復之能力有關,該恢復之能力係以使電流在特定的重建期間內以特定的速率流動之能力來恢復。
本文中使用的「再賦能」或「再充電」係指回復到具有較高作功能力的狀態。許多用法可係關於使一裝置回復至具有使電流在某一重建期間內以某一速率流動之能力。
本文中所使用的「脫離」而且有時被稱為「從模具脫離」意指三維的物體係被從模具完全分離,或只是鬆散地附著於模具,以便其可以被以溫和的搖動去除。
本文所使用的「堆疊的」意指將至少兩個組件層彼此緊鄰放置,而使該些層之其中一者的一個表面之至少一部分接觸一第二層之一第一表面。在一些實例中,無論是用於黏著或其他的功能,一塗層可以位在彼此通過該塗層接觸的兩個層之間。
本文中使用的「跡線」係指能夠將電路組件連接在一起的賦能元件組件。例如,當基材是印刷電路板時,電路跡線可包括銅或金,且在一撓性電路中一般可為銅、金或印刷膜。一種特殊類型「跡線」係電流收集器(current collector)。電流收集器係具有電化學相容性的跡線,其電化學相容性使得電流收集器適於在電解質存在時用於傳導電子往返於陽極或陰極。
本文中所提出的方法與設備係關於形成用於包括於平坦或三維生物可相容裝置內或上的生物可相容賦能元件。一種特定類別之賦能元件可係以層製造之電池。該等層亦可分類為疊層式層。以此方式形成的電池可被分類為層狀電池。
可有其他實例說明如何根據本發明組裝及組態電池,且一些實例可在下列段落中說明。然而,對許多這些實例而言,電池有其本身可具有之選定的參數及特性。在下列段落中,將聚焦在一些特性及參數上。
可結合本發明之賦能元件「電池」之一生醫裝置的一實例可為電活性調焦隱形眼鏡。參照圖1A,此類隱形眼鏡插件之實例可描繪為隱形眼鏡插件100。在隱形眼鏡插件100中,可存在一電活性元件120,其可回應於控制電壓而調節焦距特性變化。可藉由一生物可相容電池元件110來供電給用以提供控制電壓訊號以及用以提供其他功能(例如,針對外部控制訊號控制環境感測)之一電路105。如圖1A所描繪,可發現電池元件110為多個主要片件,在此情況下為三個片件,且電池元件110可包括如已討論之各種組態的電池化學元件。電池元件110可具有各種互連特徵,以將片件接合在一起,如可描繪在互連114之區域下方者。電池元件110可連接至一電路元件,該電路元件可具有其自身的基材111,互連特徵125可定位在基材111上。可為積體電路形式之電路105可電氣且實體地連接至基材111以及其互連特徵125。
參照圖1B,一隱形眼鏡150之橫剖面形貌(cross sectional relief)可包含隱形眼鏡插件100以及其已討論之構成部分。隱形眼鏡插件100可囊封於隱形眼鏡水凝膠之一裙件155中,該裙件可囊封插件100,並在使用者的眼睛與隱形眼鏡150間提供一舒適介面。
參照本發明的概念,電池元件可如圖1C之另一實例中所描繪般地以二維形式形成。在此描繪中,可存在兩個電池單元之主要區域在電池組件165的區域中以及在電池化學元件160之區域中的第二電池組件。在圖1C中以平坦形式描繪之電池元件可連接至一電路元件163,其在圖1C之實例中可包含兩個主要電路區167。電路元件163可在一電氣接觸
161及一實體接觸162兩處連接至電池元件。平坦結構可經摺疊成為三維圓錐形結構,如已在本發明中敘述者。在該過程中,一第二電氣接觸166與一第二實體接觸164可用於連接且實體地穩定化該三維結構。參照圖1D,可發現此三維圓錐形結構180的示意圖。亦可發現實體與電氣接觸點181,且該圖可視為所得結構之三維圖。此結構可包括將與一鏡片插件一同併入一生物可相容裝置中之模組化的電氣與電池組件。
參照圖2,針對用於隱形眼鏡類型之實例的例示性電池元件描繪不同類型之分段式電池方案的實例。分段式組件可相對地為圓形形狀271、正方形形狀272、或矩形形狀。在矩形形狀的實例中,矩形可為小矩形形狀273、較大矩形形狀274、或甚至更大的矩形形狀275。
在生物可相容電池的一些實例中,電池可形成為平坦元件。參照圖3A,電池元件之一矩形輪廓310之一實例可描繪為具有一陽極連接311以及一陰極連接312。參照圖3B,一電池元件之一圓形輪廓330可描繪為具有一陽極連接331以及一陰極連接332。
在平坦成形電池的一些實例中,電池形式的輪廓可在空間上及幾何上經組態以適配於定制產品中。除了具有矩形或圓形輪廓的實例之外,可形成定制的「自由形式(free-form)」或「自由形狀(free shape)」的輪廓,其可允許電池組態被最佳化以適配於一給定產品內。
在具有一可變光學件之例示性生醫裝置情形中,具平坦輪廓之一「自由形式」實例可為弧形的形式。該自由形式可為此類幾何,當形成為三維形狀時,其可採取在一隱形眼鏡之受限邊界內適配的一圓錐形、環形裙件之形式。可清楚的是,在醫療裝置具有限制性2D或3D形狀需求處可形成類似的有利幾何形狀。
舉一實例而言,根據本發明之電池可具有與安全性及生物可相容性有關之重要的態樣。在一些實例中,用於生醫裝置的電池之需求可需要滿足高於且超出針對通常使用情境之需求。在一些實例中,可針對應力事件(stressing event)考慮設計態樣。例如,在使用者插入或移除鏡片
期間弄破鏡片的事件中,可能需要考慮電子隱形眼鏡的安全性。在另一實例中,設計態樣可考慮使用者被異物侵入眼睛的可能性。在開發設計參數與限制時可列入考慮的還有其他壓力狀況的實例,其可關於使用者在挑戰性環境中配戴鏡片的可能性,以非限制性實例來說,如水下環境、或高海拔環境。
此一類裝置的安全性可受到下列的影響:形成或以此形成裝置之材料、製造裝置之過程中所用的材料量、還有使裝置與周圍的人體或體內環境分離所應用之封裝。在一實例中,心律調節器可為可包括電池且可長期植入使用者體內之典型類型的生醫裝置。因此,在一些實例中,此類心律調節器一般可以焊接的密封式鈦外殼予以封裝,或在其他實例中,以多層封裝材料(encapsulation)予以封裝。新興的動力生醫裝置可對封裝,特別是電池封裝,帶來新的挑戰。這些新裝置可遠小於現存的生醫裝置,例如,電子隱形眼鏡或藥丸攝影機可顯著地小於心律調節器。在此類實例中,可用於封裝的體積與面積會大幅減少。
針對設計考量的另一方面可係關於裝置的電氣需求,其可由電池提供。為了運作為用於醫療裝置的電源,合適的電池在未連接或非外部供電的模式下進行操作時會需要滿足系統之完全的電氣需求。未連接或非外部供電之生醫裝置的新興領域可包括例如視力矯正隱形眼鏡、健康監控裝置、藥丸攝影機、及新穎裝置。積體電路(IC)技術近來的發展可允許以非常低的電流位準(例如,微微安培(picoamp)的待機電流、及微安培(microamp)的操作電流)進行有意義的電氣操作。IC亦可允許非常小型的裝置。
用於生醫應用之微電池會需要滿足許多同時、具挑戰性的需求。例如,微電池會需要具有輸送適當操作電壓至所併入電路的能力。此操作電壓可受到若干因素的影響,包括,IC製程「節點(node)」、從電路至另一裝置的輸出電壓、以及特定的電流消耗目標,其亦可關於所要的裝置壽命。
就IC製程而論,節點一般可藉由電晶體的最小特徵尺寸(例如,其「所謂的」電晶體通道)來判別。此實體特徵連同其他IC製
造的參數(例如,閘極氧化物厚度)可相關聯於以給定的製程節點製作之場效電晶體(FET)之用於「導通(turn-on)」電壓或「臨限(threshold)」電壓的所得額定標準(resulting rating standard)。例如,在具有0.5微米之最小特徵尺寸的節點中,通常可發現FET具有5.0V之導通電壓。然而,在最小特徵尺寸為90nm時,FET可以1.2、1.8、及2.5V導通。IC代工廠可供應數位塊(例如,反相器與正反器)之標準單元,該等標準單元已經特徵化,且係經額定用於某些電壓範圍內的使用。設計者基於若干因素選擇IC製程節點,該數個因素包括,數位裝置的密度、類比/數位混合訊號裝置、洩漏電流、布線層、以及特用裝置(例如,高壓FET)的可用性。給定可從一微電池汲取電力之電氣組件的這些參數態樣,對微電池電源而言,符合選定的製程節點與IC設計之需求可為重要的,特別在可用電壓與電流方面。
在一些實例中,由微電池供電的電路可連接至另一裝置。在非限制性實例中,以微電池供電的電路可連接至致動器或換能器。依據應用,這些可包括發光二極體(LED)、感測器、微機電系統(MEMS)泵、或眾多其他的此類裝置。在一些實例中,此類的連接裝置可需要比一般IC製程節點高的操作電壓條件。例如,變焦鏡片可需要35V來啟動。因此,在設計此一類系統時,電池所提供的操作電壓可成為關鍵考量。在此類型考量的一些實例中,用以產生35V之鏡片驅動器從1V電池之效率可明顯小於從2V電池進行操作時可能有的效率。進一步將微電池之操作參數列入考慮時,例如晶粒尺寸之進一步的需求可為大幅不同。
個別的電池單元一般可具有額定之開路電壓、有載電壓及截止電壓。開路電壓係由具有無限負載電阻之電池單元所產生的電位。有載電壓係由具有跨單元終端放置之合適的、且一般亦是指定的負載阻抗的單元所產生的電位。截止電壓一般係大多數電池已被放電的電壓。截止電壓可表示電壓或放電位準,低於此,則電池不應再被放電,以避免例如過量產氣之有害效應。截止電壓一般會受到電池所連接之電路的影響,而非僅受電池本身影響,例如,電子電路之最小操作電壓。在一個實例中,鹼性電池可具有1.6V的開路電壓、1.0至1.5V之範圍內的有載電壓、以及
1.0V的截止電壓。給定之微電池單元設計的電壓可取決於所用之電池化學的其他因素。而且,不同的電池化學可因此具有不同的電池電壓。
電池可經串聯連接來增加電壓;然而,此組合可伴隨著對尺寸、內部電阻、以及電池複雜度的折衷。電池亦可以並聯組態來組合,以減少電阻並增加容量;然而,此一類組合會折衷尺寸及儲放期限(shelf life)。
電池容量可為電池輸送電流、或作功達一段時期的能力。一般可依諸如微安培-小時之單位來指明電池容量。可輸送1微安培電流達1小時的電池具有1微安培-小時的容量。容量一般可藉由增加電池裝置內之反應物的質量(且因此體積)來增加,然而,可理解生醫裝置的可用體積明顯受限。電池容量亦可受到電極與電解質材料的影響。
依據電池所連接之電路系統的需求,電池可能需要作為各種不同值之電流源。在主動使用前的儲存期間,會有約為微微安培至奈安培的洩漏電流流過電路、互連、及絕緣體。在主動操作期間,電路系統會消耗靜態電流來對感測器進行取樣、運行計時器、以及執行此類低功耗的功能。靜態電流消耗可約為奈安培至毫安培。電路系統亦可具有甚至更高的峰值電流要求,例如,當寫入快閃記憶體、或透過射頻(RF)進行通訊時。此峰值電流可擴展至數十毫安培或更大。微電池裝置之電阻與阻抗亦可為重要的設計考量。
儲放期限一般係指電池在儲存中可保全,且仍維持可用的操作參數之時間週期。因為若干原因,儲放期限對生醫裝置而言可為特別重要。電子裝置可取代非動力裝置,這在例如引入電子隱形眼鏡時可屬實。由於客戶、供應鏈及其他要求,這些現有市場空間中的產品已制定儲放期限規定(例如,三年)。一般會希望新產品亦不變更此類規格。儲放期限規定亦可視內含微電池之裝置的經銷、庫存以及使用之方法來設定。因此,用於生醫裝置的微電池可具有特定的儲放期限規定,例如其可以年數來計算。
在一些實例中,三維生物可相容賦能元件可為可充電的。例如,還可將感應線圈製作在三維表面上。然後可以使用射頻(「RF」)便攜式終端將導電線圈賦能。可將感應線圈連接至三維生物可相容賦能元
件,以在施加RF至感應線圈時對賦能元件充電。在另一實例中,還可將光伏電池製作在三維表面上並連接至三維生物可相容賦能元件。當曝露於光或光子時,光伏電池將產生電子來對賦能元件充電。
在一些實例中,電池可作用以為電氣系統提供電能。在這些實例中,電池可電氣連接至電氣系統的電路。電路與電池間的連接可分類為互連。由於若干因素,這些互連對生醫微電池而言會逐漸變得具挑戰性。在一些實例中,動力生醫裝置可能非常小,從而只有很少的面積與體積能用於互連。尺寸與面積的限制會影響互連之電阻及可靠度。
在其他態樣中,電池可能含有液體電解質,其可在高溫下沸騰。此限制可能與使用焊料互連的期望直接地相抗,焊料互連可例如需要相對較高的溫度(例如,250度C)來熔化。雖然在一些實例中,包括電解質的電池化學物和用於形成焊料基互連的熱源可在空間上相互隔離。但就新興的生醫裝置而言,小尺寸可避免電解質與焊料接合點分開足夠的距離以減少熱傳導。
互連可允許電流流動往返於與外部電路連接的電池。此類互連可介接電池內部及外部的環境,並可越過彼等環境之間的邊界或密封。這些互連可視為跡線,從而連接至外部電路、通過電池密封、接著連接至電池內部的電流收集器。同樣地,這些互連可具有若干規定。在電池外部,互連可類似通常的印刷電路跡線。該等互連可被焊接至或以其他方式連接至其他跡線。在電池為與包含積體電路之電路板分開的實體元件之實例中,電池互連可允許至外部電路的連接。此連接可以焊料、導電膠帶、導電油墨或環氧樹脂、或其他手段形成。互連跡線會需要在電池外部環境中保全,例如,在氧存在的情況下不腐蝕。
由於互連通過電池密封,互連與密封共存並允許密封可為極其重要。除了在密封與電池封裝之間可能需要的黏著之外,在密封與互連之間亦可能需要黏著。在電池內部存在電解質與其他材料的情況下,會需要維持密封的完整性。一般可為金屬之互連可能已知為電池封裝中的故障點。電位及/或電流的流動可增加電解質沿著互連「潛行(creep)」的傾向。因此,互連可需要經工程設計,以維持密封的完整性。
在電池內部,互連可與電流收集器介接,或實際上可形成電流收集器。在這點上,互連會需要滿足如本文所述之電流收集器的要求,或會需要形成對此類電流收集器的電氣連接。
一種類型的候選互連與電流收集器係金屬箔。此類箔可有25微米或更小的厚度,這使得該等箔適用於非常薄型的電池。此類箔取得時亦可具有低表面粗糙度與污染,此兩因素對電池性能而言可為關鍵。箔可包括鋅、鎳、黃銅、銅、鈦、其他金屬、以及各種合金。
在一些實例中,可根據本發明之一些態樣及實例形成一模組化電池組件。在這些實例中,模組化電池總成可為與生醫裝置之其他部件分離的一組件。在眼用隱形眼鏡裝置之實例中,此一類設計可包括與一媒介插件之其餘部分分離的一模組化電池。形成一模組化電池組件可有許多優點。例如,在隱形眼鏡的實例中,模組化電池組件可在另一非整合的程序中形成,此可減少對處理剛性、三維成形之光學塑膠組件的需求。此外,製造來源可更為彈性,且其操作模式可與生醫裝置中其他組件的製造更為平行。而且,模組化電池組件的製作可與三維(3D)成形裝置的特性脫鈎。例如,在需要三維最終形式的應用中,模組化電池系統可以平坦或約略為二維(2D)的觀點(perspective)製作,且接著再成形為合適的三維形狀。模組化電池組件可獨立於生醫裝置之其餘部分而測試,且因電池組件所致之良率損失可在組裝之前檢出。所得之模組化電池組件可用在不具有其上可形成電池組件之合適剛性區域的各種媒介插件構造中,且在又一進一步實例中,模組化電池組件的使用可有助於使用與原本使用之製作技術不同的選項,例如基於卷材的技術(卷對卷(roll to roll))、基於片材的技術(片對片(sheet-to-sheet))、印刷、微影術、以及「刮塗(squeegee)」處理。在模組化電池的一些實例中,此一類裝置之離散的圍阻態樣可導致有額外的材料被添加至總體生醫裝置構造。當可用的空間參數需要最小化厚度或體積的解決方案時,此種效應會對模組化電池解決方案的使用造成限制。
電池形狀需求可至少部分受到該電池所被使用之應用的影響。傳統的電池形狀因數可為以金屬製成之圓柱形形式或矩形稜柱,並可視長期需要大量電力之產品的需求予以調整。這些應用可以是足夠大的,
以致該等應用可包含大形狀因數電池。在另一實例中,平面(2D)固態電池為薄矩形稜柱,一般是形成在無撓性的矽或玻璃之上。在一些實例中,可使用矽晶圓處理技術來形成這些平面固態電池。在另一類型電池形狀因數中,低功率的撓性電池可使用薄箔或塑膠形成為袋狀構造,以內含電池化學。這些電池可製成平面(2D)的,並可經設計為在被壓彎成適度的面外(3D)曲度時起作用。
在本發明中於可將電池用於可變光學鏡片中之電池應用的一些實例中,形狀因數會需要電池組件的三維曲度,其中該曲度的半徑可為約8.4mm。此類曲度的本質可視為相對陡峭,作為參考,其可接近在人體指尖上發現的曲度類型。相對陡峭曲度的本質為製造帶來具挑戰性的態樣。在本發明的一些實例中,模組化電池組件可設計為致使其可以平坦、二維的方式製作,且接著再形成為具有相對高曲度的三維形式。
在設計用於生醫應用之電池組件的過程中,可在各種參數之間作出權衡,以平衡技術、安全性、及功能之需求。電池組件的厚度可為重要且為限制性的參數。例如,在光學鏡片應用中,使用者是否能舒適地配戴裝置與跨生醫裝置之厚度間可具有關鍵的相依性。因此,在設計電池的過程中可存在對於更薄結果的關鍵致能態樣。在一些實例中,可由頂部及底部片材、間隔物片材、以及黏著層厚度的組合厚度來決定電池厚度。實際的製造態樣可驅使膜厚度的某些參數在可用的片材存料中達到標準值。此外,膜可具有最小厚度值,最小厚度值可基於與化學相容性、濕氣/氣體不滲透率、表面光度、以及與可能沉積至膜層上之塗層的相容性相關的技術考量而指定。
在一些實例中,成品電池組件之所要或目標厚度可為小於220μm之組件厚度。在這些實例中,在給定終端使用者舒適、生物可相容性、以及接受度限制之情況下,此所要厚度可受到例示性眼用鏡片裝置之三維幾何的驅使,其中電池組件可能需要裝配於由水凝膠鏡片形狀所界定的可用體積內部。此體積以及其對電池組件厚度需求的效應可依據總裝置厚度規格、以及與其寬度、圓錐角、及內徑相關之裝置規格而變化。針對所得之電池組件設計,另一重要的設計考量可係關於相對於可得自該設計
之所得的化學能,在給定的電池組件設計中,活性電池化學與材料可用的體積。接著,此所得的化學能可針對功能性生醫裝置之目標壽命與操作條件為其電氣需求達成平衡。
與電池設計以及利用基於電池之能量源的相關裝置之設計相關的另一方面係電池組件的撓性。撓性電池形式可提供眾多優點。例如,撓性電池模組可有助於先前提及之以二維(2D)平坦形式製作電池形式的能力。形式的撓性可允許二維電池接著被形成為合適的3D形狀,以裝配在例如隱形眼鏡之生醫裝置內。
在可由電池模組中之撓性提供的優勢之另一實例中,若電池與後續裝置係撓性的,則可存在與裝置使用相關的優點。在實例中,生醫裝置之隱形眼鏡形式可具有的優點在於基於媒介插件之隱形眼鏡的插入/移除可更接近標準的、未填充的水凝膠隱形眼鏡之插入/移除。
撓曲數目對電池工程設計可為重要的。例如,僅可從平面形式撓曲為適於隱形眼鏡之形狀一次的電池的設計可明顯不同於能夠多次撓曲之電池的設計。電池的撓曲亦可擴展超越在撓曲事件後仍機械地保全的能力。例如,電極可實體上能夠撓曲而不斷裂,但電極的機械與電化學性質可能因撓曲而改變。撓曲所引發的變化可立即出現(例如,阻抗的變化),或者撓曲可引入僅在長期的儲放期限測試中才明顯的變化。
可存在在其中可利用本發明之生物可相容賦能元件或電池的眾多應用。一般而言,電池的寬度需求很大程度上可依據將電池應用在其中之應用而變化。在例示性情況中,隱形眼鏡電池系統可具有針對模組化電池組件之寬度規格的受限需求。在其中裝置具有由電池組件供電之可變光學功能的眼用裝置之一些實例中,裝置的可變光學部分可佔據直徑約7.0mm之中央球狀區域。例示性的電池元件可視為三維物體,其作為環狀、圓錐形裙件適配於中央光學件周圍,並形成為截頭圓錐環。若剛性插件所需的最大直徑為8.50mm的直徑,並可鎖定目標為相切某一直徑的球狀物(如大略8.40mm的直徑),則幾何可規定可允許的電池寬度可能的
值。可有可用於計算用於所得幾何之所要規格的幾何模型,其在一些實例中可稱為圓錐形截錐體,其被平坦化成為環形物的扇區。
被平坦化的電池寬度可受到電池元件的兩個特徵(主動電池組件與密封寬度)的驅使。在關於眼用裝置的一些實例中,每一側的目標厚度可介於0.100mm與0.500mm之間,且主動電池組件可鎖定目標在大略0.800mm寬。其他生醫裝置可具有不同的設計限制,但用於撓性平坦電池元件的原理可以類似的方式應用。
在一些實例中,可以分割活性電池化學區域的方式來設計電池元件。將主動電池組件分割為離散區段可有眾多優點。在非限制性實例中,離散且較小元件的製作可有助於元件的生產。包括眾多較小元件之電池元件的功能可獲得改善。各種類的缺陷可經區段化,且非功能性元件在一些情況下可經隔離,以導致減少功能損失。在可發生電池電解質損失的實例中,此可為相關聯的。個別化組件的隔離可容許會導致電解質從電池的關鍵區域洩漏的缺陷,將功能損失限制在總電池元件的該小區段,而透過缺陷的電解質損失對經組態為單一單元的電池而言可清空明顯較大的區域。在總體觀點上,較小的單元可導致活性電池化學的體積降低,但環繞每一較小單元之材料網格可導致總體結構的增強。
在用於在生醫裝置中使用之電池元件的一些實例中,電池的化學作用涉及水溶液化學,其中水或濕氣是欲控制的重要構成部分。因此,可為重要的是結合密封機構,該等密封機構延緩或防止濕氣移動離開或進入電池主體。濕氣障壁可經設計成用以使內部濕氣位準在某一容差內保持在經設計的位準。在一些實例中,濕氣障壁可分割為兩個區段或組件;即,封裝與密封。
封裝可指外殼的主材料。在一些實例中,封裝可包含塊材。運用控制測試程序的ISO、ASTM標準(包括在測試期間的環境條件導致性(environmental conditions operant)),水蒸氣穿透率(WVTR)可為性能指標。理想上,用於良好電池封裝的WVTR可為「零」。具有接近零之WVTR的例示性材料可為玻璃及金屬箔。另一方面,塑膠可固有地為對濕
氣具多孔性的,並可針對不同類型塑膠明顯地改變。經工程設計的材料、疊層、或共擠出物通常可為常見的封裝材料的混成。
密封可為兩封裝表面間的介面。連接密封表面即完成外殼連同封裝。在許多實例中,由於在使用ISO或ASTM標準執行測量之過程中的困難,密封設計的本質可使得難以針對密封的WVTR進行特徵化,因為樣本的尺寸或表面面積可能與測量程序不相容。在一些實例中,測試密封完整性的實務方式可為針對一些已定義條件之實際密封設計的功能性測試。密封性能可依據密封材料、密封厚度、密封長度、密封寬度、以及密封對封裝基材之黏附性或緊密性而變化。
在一些實例中,密封可藉由焊接程序來形成,其可涉及熱、雷射、溶劑、摩擦、超音波、或電弧處理。在其他實例中,密封可透過使用黏著密封劑(例如,膠、環氧樹脂、丙烯酸酯、天然橡膠、及合成橡膠)來形成。其他實例可衍生自墊圈型材料的使用,墊圈型材料可由軟木、天然與合成橡膠、聚四氟乙烯(PTFE)、聚丙烯、以及聚矽氧形成,所提及者係一些非限制性實例。
在一些實例中,根據本發明之電池可經設計為具有指定的操作壽命。可藉由測定可使用特殊電池系統獲得的實際濕氣滲透量、且接著再估計此一類濕氣洩漏何時會導致電池壽命狀況的終止,來估計操作壽命。例如,若電池係儲存在潮濕環境中,則電池內部及外部之間的部分壓力差將是最小的,導致減少的濕氣損失率,且因此可延長電池壽命。儲存在特別乾且熱的環境中之相同的例示性電池可具有明顯減少的預期壽命,此歸因於對於濕氣損失之強驅動作用。
具有本發明中所述之類型的電池可利用實體地且電氣地將陽極及陽極電流收集器部分與陰極及陰極電流收集器部分分開的分隔件材料。分隔件可為水與已溶解之電解質組分可滲透的隔膜;然而,分隔件一般可為不導電的。雖然所屬技術領域中具有通常知識者可能已知曉無數市售的分隔件材料,但是本發明之新穎形狀因數可呈現對分隔件選擇、處理、及處置的獨特限制。
由於本發明的設計可具有超薄輪廓,選擇可受限於通常可得之最薄的分隔件材料。例如,厚度約25微米的分隔件可為所欲。可能有利的一些實例可為約12微米的厚度。可存在眾多可接受的市售分隔件,包括微纖維、微孔聚乙烯單層及/或聚丙烯-聚乙烯-聚丙烯(PP/PE/PP)三層分隔件隔膜,例如,由Celgard(Charlotte,NC)所生產者。所要之分隔件材料實例可為Celgard M824 PP/PE/PP三層隔膜,其具有12微米的厚度。可用於本發明之實例的分隔件材料之替代實例可包括分隔件隔膜,包括再生纖維素(例如,賽璐凡(cellophane))。
雖然PP/PE/PP三層分隔件隔膜可具有有利的厚度與機械性質,但是PP/PE/PP三層分隔件隔膜亦會由於其聚烯烴特性而具有一些可能需要加以克服才能使其可用於本發明之實例中的缺點。PP/PE/PP三層分隔件材料之卷或片存料可具有可能有害於可應用至本文所述之電池的微米級容差的眾多皺褶或其他形式的錯誤。此外,為了內含於本設計中,聚烯烴分隔件可能需要被切割至超精確的容差,其因此可牽涉到雷射切割作為以嚴格容差形成所要形狀之離散的電流收集器之例示性方法。由於這些分隔件的聚烯烴特性,可用於微製作之某些切割雷射可使用例如355nm的雷射波長,其將不會切割聚烯烴。聚烯烴不會明顯地吸收雷射能量,且因此為不可雷射削磨的。最後,聚烯烴分隔件在本質上可能無法由本文所述之電池中所用的水性電解質弄濕。
然而,可存在用於克服針對聚烯烴型隔膜之這些固有限制的方法。為了將微孔分隔件隔膜送交高精度切割雷射以用於將片件切割為弧片段或其他有利的分隔件設計,隔膜可能需要是平坦且無皺褶的。若無法滿足這兩個條件,則分隔件隔膜可能無法完全切割,此係因為切割光束可由於入射的雷射能量散焦或以其他方式使入射的雷射能量散射而受到抑制。此外,若分隔件隔膜非平坦且無皺褶的,則可能無法充分地達成分隔件隔膜之形式準確度與幾何容差。相對於特性長度及/或半徑,用於當前實例之分隔件的可允許容差可例如為+0微米以及-20微米。對+0微米與-10微米之較嚴格的容差、以及進一步地對+0微米與-5微米之容差而言,可存在優點。分隔件存料材料可藉由暫時以合適的低揮發性液體將材料疊層至浮動玻璃載具來使其平坦且無皺褶。由於分隔件隔膜的易碎性,以及由於
從黏著劑層釋離分隔件隔膜會需要的處理時間量,低揮發性液體可優於暫時的黏著劑。此外,在一些實例中,已觀察到使用液體在浮動玻璃上達成平坦且無皺褶的分隔件隔膜遠比使用黏著劑容易達成。在疊層之前,可使分隔件隔膜無微粒。此可藉由超音波清潔分隔件隔膜來去除任何黏著於表面的微粒而達成。在一些實例中,分隔件隔膜的處置可在適當的低粒子環境中完成,例如,至少10,000級的無菌層流操作台(laminar flow hood)或無塵室。此外,浮動玻璃基材可藉由以合適的溶劑沖洗、超音波清潔、及/或以無塵擦拭布擦淨來使其無微粒。
雖然為了將微孔聚烯烴分隔件隔膜疊層至浮動玻璃載具的機械目的可使用各式各樣的低揮發性液體,但是可在液體上加諸特定要求,以有助於後續的離散分隔件形狀之雷射切割。一個要求可為液體具有足夠低的表面張力,以浸透分隔件材料的孔洞,其可輕易地藉由目視檢查來查驗。在一些實例中,當液體填滿材料的微孔洞時,分隔件材料從白色的顏色轉為半透明的外觀。會期望液體之選擇對將曝露至分隔件之製備與切割操作之工作人員會是良性且「安全」的。會期望選擇蒸氣壓力可為足夠低的液體,以便在處理的時間尺度期間(1天的量級)不會發生可察覺的蒸發。最後,在一些實例中,液體可具有足夠的溶解能力,以溶解可有助於雷射切割操作之有利的UV吸收劑。在實例中,已觀察到在苯甲酸苄酯溶劑中亞佛苯酮UV吸收劑之12百分比(w/w)溶液可滿足前文提及的需求,並可適合於有助於在切割雷射光束無過量遍次數的情況下迅速地以高精度及容差進行聚烯烴分隔件之雷射切割。在一些實例中,分隔件可使用此方法以8W 355nm奈秒二極體激發固態雷射進行切割,其中雷射可具有針對低功率衰減(例如,3百分比功率)、1至10mm/s的中等速度、以及僅1至3遍次的雷射光束的設定。雖然已證實此UV吸收油狀組成物為有效的疊層及切割程序助劑,但是所屬技術領域中具有通常知識者可設想出其他油狀配方並使用而無限制。
在一些實例中,分隔件可在固定至浮動玻璃的同時進行切割。在固定至浮動玻璃載體的同時雷射切割分隔件的一個優點可在於可從一個分隔件存料片材切下非常高數量密度的分隔件:就像半導體晶粒可密集地排列於矽晶圓上。此一類方法可提供半導體製程中固有的規模經濟以
及平行處理的優點。此外,可最小化廢料分隔件隔膜的產生。一旦分隔件已經切割,便可藉由一連串的使用互溶溶劑的萃取步驟來移除油狀程序助劑流體,最終萃取可使用高揮發性溶劑來執行,例如,在一些實例中為異丙醇。一經萃取,離散的分隔件可不定地儲存在任何適當的低粒子環境中。
如先前所提及,聚烯烴分隔件隔膜可固有地為疏水性的,並可能需要使其可被本發明之電池中所用的水性界面活性劑弄濕。一種讓分隔件隔膜可濕的方法可為氧電漿處理。例如,可以各式各樣的功率設定以及氧流量率在100百分比的氧電漿中處理分隔件達1至5分鐘。雖然此方法可暫時改善可濕性,但可為眾所周知的是,電漿表面改質所提供的暫態效應可能無法為強健的電解質溶液濕潤持續足夠長時間。改善分隔件隔膜之可濕性的另一方法可為藉由在隔膜上併入適當的界面活性劑來處理表面。在一些情況中,界面活性劑可與餘留在分隔件隔膜之孔洞內的親水性聚合物塗層一併使用。
對由氧化電漿處理所施予之親水性提供更持久性的另一方法可為藉由使用適當的親水性有機矽烷進行後續的處理。以此方式,氧電漿可用於跨整個微孔分隔件的表面區域活化及施予官能基。有機矽烷接著可共價地鍵結至及/或非共價地黏附至經電漿處理的表面。在使用有機矽烷的實例中,微孔分隔件之固有的多孔性可能不會有可察覺的改變,單層表面覆蓋率亦可為可行且需要的。結合界面活性劑連同聚合物塗層之先前技術的方法可需要對施加至隔膜之實際的塗層量進行嚴密的控制,且接著可能受制於程序可變性。在極端情況中,分隔件的孔洞可變成被堵塞,從而在電化學電池的操作期間負面影響分隔件的功用。可用在本發明中之例示性的有機矽烷可為(3-胺基丙基)三乙氧矽烷。所屬技術領域中具有通常知識者可已知其他親水性有機矽烷,並可使用該等親水性有機矽烷而無限制。
還有另一用於使分隔件隔膜可被水性電解質弄濕的方法,其可為在電解質配方中併入適當的界面活性劑。在選擇用於使分隔件隔膜可濕之界面活性劑的過程中,一個考量可在於界面活性劑在電化學電池內之一或多個電極的活性上可能具有的效應,例如,藉由增加電池的電氣阻
抗。在一些情況中,界面活性劑可具有有利的抗腐蝕性質,具體而言,鋅陽極在水性電解質中的情況。鋅可為經歷與水之慢反應以釋放氫氣的已知材料實例,其可為非所要的。所屬技術領域中具有通常知識者可能已知用以將該反應的速率限制在有利位準的眾多界面活性劑。在其他情況中,界面活性劑可如此激烈地與鋅電極的表面起交互作用,以致電池性能可能受到妨礙。結果,在選擇合適的界面活性劑類型以及負載位準的過程中,可能需要更為小心,以確保可在不有害地影響電池的電化學性能的情況下獲得分隔件的可濕性。在一些情況中,可使用複數種界面活性劑,一種界面活性劑的存在用以對分隔件隔膜施予可濕性,而其他界面活性劑的存在用以有助於鋅電極的抗腐蝕性質。在一個實例中,對分隔件隔膜未作親水性處理,且一種界面活性劑或複數種界面活性劑被以足以使分隔件隔膜產生可濕性的量添加至電解質配方。
離散的分隔件可藉由直接放置於一儲存裝置中,其包括總成中之經設計的孔穴、囊袋、或結構來整合成為層狀微電池。所欲地,此儲存裝置可由具有切口的層狀結構形成,該層狀結構可為分隔件形狀的幾何學偏置,造成該總成內的孔穴、囊袋或結構。此外,該儲存裝置可具有凸耳或階,分隔件在組裝期間係擱放於其上。凸耳或階可視需要包括壓力敏感黏著劑,其固定離散的分隔件。有利地,壓力敏感黏著劑可相同於例示性層狀微電池之其他元件的建構與疊裝過程中所用者。
在一些實例中,可用亦充當密封劑之壓力敏感黏著劑(PSA)將包含本發明之層狀微電池的複數個組件固持在一起。雖然可存在無數的市售壓力敏感黏著劑配方,此類配方幾乎總是包括可使其不適於在生物可相容層狀微電池內使用的組分。壓力敏感黏著劑中之非所要的組分的實例可包括:低分子質量可溶出組分、抗氧化劑(例如,BHT及/或MEHQ)、塑化油、雜質、含有例如不飽和化學鍵結之氧化不穩定部分、殘留的溶劑及/或單體、聚合作用起始劑碎屑、極性增黏劑之類。
另一方面,適當的PSA可顯現下列性質。PSA可能夠被施加至層狀組件,以達成約2至20微米的薄層。還有,PSA可含有最小量(例如,零)之非所要的或非生物可相容的組分。此外,PSA可具有足夠
的黏著以及內聚性質,以便將層狀電池的組件黏結在一起。而且,PSA可能夠流入本構造之裝置中固有的微尺度特徵中,同時提供電池內之電解質的強健密封。在適當的PSA的一些實例中,PSA可具有對水蒸氣的低滲透率,以在電池內維持所要的水性電解質組成物,即使在電池可能持續長時期遭受濕度的極端情況時亦然。PSA對電解質組分(例如,酸類、界面活性劑、及鹽類)可具有良好的化學抗性。PSA對水浸的效應可為惰性的。適當的PSA對氧可具有低滲透率,以最小化鋅陽極之可為自放電形式之直接氧化的速率。而且,PSA可有助於對氫氣之有限的滲透率,氫氣可在水性電解質中從鋅陽極緩慢地釋出。此對氫氣之有限滲透率的性質可避免內部壓力的積聚。
考慮這些需求,聚異丁烯(PIB)可為可調配成滿足許多若非全部需要的需求之PSA組成物的市售材料。此外,PIB可為優良的障壁密封劑,其具有非常低的吸水率與低氧滲透率。可用在本發明的實例中之PIB的實例可為BASF Corporation之Oppanol® B15。Oppanol® B15可溶解於例如甲苯、庚烷、十二烷、礦油精之類的烴溶劑中。一種例示性PSA組成物可包括在溶劑混合物中之30百分比的Oppanol® B15(w/w),該溶劑混合物包括70百分比(w/w)的甲苯、及30百分比的十二烷。在一些實例中,可藉由摻合不同分子質量級的PIB來測定PIB基PSA的黏著及流變性質。常見的方法可為使用多數的低莫耳質量PIB(例如,Oppanol® B10),以產生濕潤、黏性及黏附性,並使用少數的高莫耳質量PIB,以產生韌性及流動阻力。結果,可設想並可在本發明的範圍內實行任何數量的PIB莫耳質量級的摻合物。此外,只要可滿足前文提及的需求,可添加增黏劑至PSA配方。藉由PSA特有的本質,增黏劑對PSA配方施予極性性質(polar property),因此PSA會需要謹慎使用,以便不會負面影響PSA的障壁性質。此外,增黏劑在一些情況中可為氧化不穩定的,並可包括抗氧化劑,其可從PSA溶出。出於這些原因,針對在用於生物可相容層狀微電池之PSA中使用的例示性增黏劑可包括完全或大部分氫化的烴樹脂增黏劑(例如,來自Eastman Chemical Corporation的Regalrez系列增黏劑)。
可存在眾多封裝及基材考量,其等可規定針對生物可相容層狀微電池中所用之封裝設計所要的特性。例如,封裝主要係基於箔及/或膜可為所要的,其中這些封裝層可盡可能的薄,例如,10至50微米。此外,封裝可在儲放期限期間為濕氣的增加與損失提供足夠的擴散障壁。在許多期望的實例中,封裝可提供對氧進入的足夠擴散障壁,以限制鋅陽極因直接氧化而降解。
在一些實例中,封裝可提供氫氣的有限滲透路徑,氫氣可由於水經由鋅的直接還原而釋出。並且,封裝可較佳地容納並可分離電池的內容物,使得最小化對使用者的可能曝露。
在本發明中,封裝構造可包括下列類型的功能性組件:亦即頂部及底部封裝層、PSA層、間隔物層、互連區、填充埠、及二次封裝。
在一些實例中,頂部及底部封裝層可包含金屬箔或聚合物箔膜。頂部及底部封裝層可包含多層膜構造,其含有複數個聚合物及/或障壁層。此類膜構造可稱為共擠製障壁疊層膜。在本發明中具有特殊功用之市售的共擠製障壁疊層膜之實例可為3M® Scotchpak 1109背襯,其由聚苯二甲酸乙二酯(PET)載體帶材、氣相沉積鋁障壁層、及聚乙烯層構成,包含33微米的總平均膜厚度。可購得眾多其他類似的多層障壁膜,並可使用在本發明之替代實例中。
在包括PSA的設計構造中,封裝層的表面粗糙度可具有特殊的重要性,此係因為PSA亦會需要與封裝層面相對的密封。表面粗糙度可源自於箔與膜生產中所用的製造程序,例如,利用輥壓、擠製、壓紋、及/或壓光等之程序。當所要的PSA厚度可為約表面粗糙度Ra(粗糙度特性的算術平均)時,若表面太過粗糙,則可能無法以均勻的厚度施加PSA。此外,若相對面所具有的粗糙度可為約PSA層厚度時,則PSA可能無法充分地緊靠相對面密封。在本發明中,具有小於10微米之表面粗糙度Ra的封裝材料可為可接受的實例。在一些實例中,表面粗糙度的值可為5微米或更小。而且,在還有進一步的實例中,表面粗糙度可為1微米或更小。可藉由各種方法來測量表面粗糙度的值,包括(但不限於)例如白光干涉、觸針式輪廓測繪儀(stylus profilometry)等測量技術。在表面計
量學技術中可存在許多實例,其中可藉由若干替代參數來描述表面粗糙度,且其中本文所討論之平均表面粗糙度Ra的值可意指前文提及之製造程序中固有之特徵類型的代表。
可參照4A至圖4N找到在處理生物可相容賦能元件過程中可涉及的步驟的實例。在一些例示性步驟的處理可在個別圖式中找到。在圖4A中,繪示出PET陰極間隔物401和PET間隙間隔物404的組合。PET陰極間隔物401可藉由施加PET膜403來形成,PET膜403例如可為大略3密耳厚。在PET層的任一側上可找到PSA層,或這些PET層可以厚度可為大略1密耳之PVDF釋離層402覆蓋。PET間隙間隔物404可由PVDF層409形成,PVDF層409的厚度可為大略3密耳。可存在覆蓋PET層405,其厚度可為大略0.5密耳。在一些實例中,在PVDF層409與覆蓋PET層405之間可為PSA層。
繼續進行至圖4B,可藉由雷射切割處理在PET間隙間隔物層404中切割出孔洞406。接下來,在圖4C,經切割的PET間隙間隔物層404可疊層408至PET陰極間隔物層401。繼續進行至圖4D,可藉由雷射切割處理來切割陰極間隔物孔洞410。此切割步驟的對準可被對位至PET間隙間隔物層404中之先前切割的特徵。在圖4E,可將用於最終分隔件層之Celgard層412接合至載體411。繼續進行至圖4F,Celgard材料可被切割為介於先前兩個經雷射切割之孔洞的尺寸之間、且接近PET間隙間隔物404中孔洞406之尺寸的圖形,從而形成預切割分隔件420。繼續進行至圖4G,取放工具421可用來將Celgard的離散片件取放至離散片件在生長裝置上的所要位置。在圖4H,所放置的Celgard片件422被固定在適當位置,接著可移除PVDF釋離層423。繼續進行至圖4I,可將生長裝置結構接合至陽極膜425。陽極425可包含陽極收集器膜,在其上已電沉積鋅陽極膜。
繼續進行至圖4J,可將陰極漿料430放入所形成的間隙中。在一些實例中,刮漿板431可用來跨工件塗敷陰極混合物,並在程序中填充所形成之電池裝置的間隙。在填充之後,可移除餘留的PVDF釋離層432,其可導致圖4K所繪示的結構。在圖4L,整個結構可接受乾燥程
序,其可使陰極漿料440收縮至亦為PET層頂部的高度。繼續進行至圖4M,可將在其上可已經具有陰極收集器膜之陰極膜層450接合至生長結構。在圖4N處之最後的圖中,可執行雷射切割程序來移除側區域460,並產出電池元件470。可存在在本發明之用意內為實用之材料及厚度目標之眾多修改、刪除、變化。
可在圖5描繪例示性處理結果的一些細節。在實例中,可界定下列參考特徵。陰極化學物510可定位成與陰極及陰極收集器520接觸。壓力敏感黏著劑層530可將陰極收集器520固持並密封至PET間隔物層540。在PET間隔物層540的另一側上可為另一PSA層550,其將PET間隔物層540密封並黏附至PET間隙層560。另一PSA層565可將PET間隙層560密封並黏附至陽極與陽極電流收集器層。鍍鋅層570可被電鍍至陽極電流收集器580上。分隔件層590可定位在結構內,以執行如本發明中已定義之相關聯的功能。在一些實例中,可在裝置處理期間添加電解質,在其他實例中,分隔件可已經包括電解質。
可在圖6A至圖6F中找到在處理生物可相容賦能元件的過程中可涉及之步驟的實例。在一些例示性步驟的處理可在個別圖式中找到。可存在在本發明之用意內為實用之材料及厚度目標之眾多修改、刪除、變化。
在圖6A中,繪示出了層狀構造600。層狀結構可包含兩個層狀構造釋離層602及602a;兩個層狀構造黏著劑層604及604a,其等定位在層狀構造釋離層602及602a之間;以及層狀構造核心606,其定位在兩個層狀構造黏著劑層604及604a之間。可生產或購買層狀構造釋離層602及602a、以及黏著劑層604及604a,例如,市售之具有主襯墊層的壓力敏感黏著劑轉移帶。層狀構造黏著劑層可為PVDF層,其厚度可約1至3毫米,並覆蓋於層狀構造核心606。層狀構造核心606可包含熱塑性塑膠聚合物樹脂,例如,聚苯二甲酸乙二酯,其例如可為大略3毫米厚。繼續進行至圖6B,可藉由雷射切割處理在層狀構造中切出用於儲存陰極混合物的裝置,諸如用於陰極囊袋608的孔穴。
接下來,在圖6C,可從層狀構造移除底部層狀構造釋離層602a,使層狀構造黏著劑層604a曝露。接著,層狀構造黏著劑層604a可用來黏附陽極連接箔610,以覆蓋陰極囊袋608的底部開口。繼續進行至圖6D,可藉由黏附遮蔽層612而在已曝露的底部層上保護陽極連接箔610。遮蔽層612可為市售之具有主襯墊的PSA轉移帶。接下來,在圖6E,可以連貫金屬614(例如,鋅)電鍍陽極連接箔610,連貫金屬614塗覆陰極囊袋內側之陽極連接箔610的曝露區段。繼續進行至6F,在電鍍之後,從陽極連接箔610底部移除陽極電氣收集遮蔽層612。
圖7A至圖7F可繪示圖6A至圖6F中所繪示之處理步驟的替代模式,該替代模式類似於圖6A至圖6B所描繪的過程。層狀結構可包括兩個層狀構造釋離層702和702a,一個層在另一端上;兩個層狀構造黏著劑層704和704a,其等定位在該層狀構造釋離層702和702a之間;以及層狀構造核心706,其定位在兩個層狀構造黏著劑層704和704a之間,如圖7A所繪示。可生產或購買層狀構造釋離層及黏著劑層,例如,市售之具有主襯墊層的壓力敏感黏著劑轉移帶。層狀構造黏著劑層可為聚二氟亞乙烯(PVDF)層,其厚度可約1至3毫米,並覆蓋於層狀構造核心706。層狀構造核心706可包含熱塑性塑膠聚合物樹脂,例如,聚苯二甲酸乙二酯,其例如可為大略3毫米厚。繼續進行至圖7B,用於陰極囊袋708之一儲存裝置,例如一孔穴,可藉由雷射切割處理在層狀構造中進行切割。在圖7C中,可獲得陽極連接箔710,且保護遮蔽層712被施加至一側。接下來,在圖7D,可以連貫金屬(例如,鋅)層714電鍍陽極連接箔710。繼續進行至圖7E,圖7B及圖7D的層狀構造,可藉由將圖7B的構造黏附至圖7D的電鍍層714來結合形成如圖7E所描繪之新的層狀構造。為了使圖7B的黏著劑層704a曝露,以用於黏附至圖7D的電鍍層714上,可移除圖7B的釋離層702a。接下來繼續進行至圖7F,可從陽極連接箔710底部移除陽極保護遮蔽層712。
圖8A至圖8H可繪示賦能元件至生物可相容層狀結構之實施方式,該生物可相容層狀結構在本文中有時被稱為層狀總成、或疊層總成,類似於例如圖6A至圖6F、及圖7A至圖7F中所繪示者。繼續進行至圖8A,可在疊層總成的表面上沉積水凝膠分隔件前驅物混合物820。在一
些實例中,如所描繪的,水凝膠前驅物混合物820可施加至釋離層802上。接下來,在圖8B,水凝膠分隔件前驅物混合物820可刮塗850成為陰極囊袋,同時從釋離層802被清除乾淨。「刮塗」一詞通常可指的是使用平坦化或刮削工具跨表面擦抹,並在表面各處移動流體材料,使其在孔穴存在時進入孔穴。刮塗程序可藉由類似通俗的「刮塗」型裝置或替代地及平坦化裝置(例如,刀口、剃刀刀口之類)的器械來執行,該等裝置可以眾多材料製成,如可為與欲移動的材料化學性一致者。
圖8B處所描繪的處理可執行若干次,以確保陰極囊袋的塗層、以及增量所得特徵的厚度。接下來,在圖8C,可允許水凝膠分隔件前驅物混合物乾燥,以使材料蒸發,該等材料一般可為來自水凝膠分隔件前驅物混合物之各種類型的溶劑或稀釋劑,且接著可固化所施配及施加的材料。在一些實例中,以組合方式重複圖8B及圖8C處所描繪的兩項程序可為可行的。在一些實例中,水凝膠分隔件前驅物混合物可藉由曝露至熱來固化,而在其他實例中,固化可藉由曝露至光子能來執行。在還有進一步實例中,固化可涉及曝露至光子能以及曝露至熱兩者。可存在眾多固化水凝膠分隔件前驅物混合物的方式。
固化的結果可為在孔穴壁與近接陽極或陰極特徵(在本實例中,其可為陽極特徵)之表面區域形成水凝膠分隔件前驅物材料。材料至孔穴側壁的黏附性可能可用於分隔件的分隔功能。固化的結果可為形成無水聚合化前驅物混合物濃縮物822,其可僅被視為電池的分隔件。繼續進行至圖8D,可將陰極漿料830沉積至層狀構造釋離層802的表面上。接下來,在圖8E,可藉由裝置850將陰極漿料830刮塗至陰極囊袋中、以及至無水聚合化前驅物混合物濃縮物822上。陰極漿料可被移動至其在孔穴中的所要位置,同時從層狀構造釋離層802被大程度地清除乾淨。圖8E的程序可執行若干次,以確保在無水聚合化前驅物混合物濃縮物822之頂部上的陰極漿料830塗層。接下來,在圖8F,可允許陰極漿料乾掉,以在無水聚合化前驅物混合物濃縮物822之頂部上形成隔離的陰極填充物832,其填入陰極囊袋的剩餘部分中。
繼續進行至圖8G,可將電解質配方840另添加至隔離的陰極填充物832,並允許其水合隔離的陰極填充物832、及無水聚合化前驅
物混合物濃縮物822。接下來,在圖8H,可藉由移除餘留的層狀構造釋離層802、以及將連接箔816壓入適當位置來將陰極連接箔816黏著至餘留的層狀構造黏著劑層804。所得之布局可導致覆蓋經水合的陰極填充物842、以及建立至陰極填充物842之電氣連接作為陰極電流收集器與連接手段。
圖9A至9C繪示從圖7D所得的疊層總成的替代實例。在圖9A中,可得到陽極連接箔710,且保護遮蔽層712被施加至一側。可以具有例如鋅之連貫金屬層714電鍍陽極連接箔710。以類似於先前圖式中所敘述的方式。繼續進行至圖9B,可不使用繪示於圖8E中的刮塗方法而施加水凝膠分隔件910。水凝膠分隔件前驅物混合物可以各種方式施加,例如,混合物的預成形膜可藉由實體黏附來黏附,且替代地,水凝膠分隔件前驅物混合物之經稀釋的混合物可藉由旋轉塗覆處理來施配,接著再調整為所要厚度。替代地,該材料可藉由噴霧塗覆或其他相等處理來施加。
接著,在圖9C,描繪用以建立可作用如環繞分隔件區域之圍阻的水凝膠分隔件片段之處理。該處理可建立限制材料(例如,電解質)流動或擴散至所形成之電池元件的內部結構外側的區域。因此,可形成各種類型之此一類阻隔特徵920。在一些實例中,該阻隔特徵可對應於該分隔件層之一高度交聯區域,該阻隔特徵在一些實例中可藉由在阻隔特徵920之所要區域中增加光子能量曝露而形成。在其他實例中,可在水凝膠分隔件材料固化之前,添加材料至該水凝膠分隔件材料,以建立固化後變成阻隔特徵920的區域性差異部分。在又進一步實例中,在固化前或後,可藉由包括例如使用界定區域範圍之遮蔽之層的化學蝕刻的各種技術來移除水凝膠分隔件材料之區域。移除材料的區域可憑藉其本身建立阻隔特徵,或者替代地,實質上可加回到空隙中,以建立阻隔特徵。不可滲透性片段之處理可透過數種方法發生,包括影像輸出(image out)處理、增加交聯、重光子劑量、回填、或省略水凝膠黏附性以建立空隙。在一些實例中,如圖9C之處理結果所描繪之類型的疊層構造或總成可形成為不具有阻隔特徵920。
在一些電池設計中,由於例如成本、材料可用性、材料品質、或針對作為非限制性實例之一些材料選項的處理複雜度之各種原因,可排除離散之分隔件(如先前段落中所述者)的使用。在此類情況中,舉例而言,在圖8A至圖8H的程序中繪示之澆鑄或就地成形分隔件可提供所要的優勢。雖然上漿或塗膏式分隔件已在市面上成功地用於AA、及其勒克朗社電池或碳鋅電池中,此類分隔件在某些方面可能不適於用在層狀微電池的某些實例中。針對任何用在本發明之電池中的分隔件,可需要特別關注均勻性與幾何一致性。可需要對分隔件體積的精確控制,以有助於已知的陰極體積之精確的後續結合、以及一致的放電容量與電池性能的後續實現。
達成均勻、機械上強健之就地成形分隔件的方法可為使用可UV固化之水凝膠配方。在例如隱形眼鏡工業之各種產業中,可已知眾多可透水的水凝膠配方。隱形眼鏡工業中常用的水凝膠之實例可為聚甲基丙烯酸-羥基乙酯(poly(hydroxyethylmethacrylate))交聯凝膠,或簡稱pHEMA。對本發明的眾多應用而言,pHEMA可擁有許多用於在勒克朗社及碳鋅電池中使用之具吸引力的性質。pHEMA一般可在水合狀態中維持約30百分比至40百分比的水含量,同時維持約100psi或更大的彈性模數。此外,所屬技術領域中具有通常知識者可藉由結合額外的親水性單體(例如,甲基丙烯酸)或聚合物(例如,聚乙烯吡咯啶酮)組分來調整交聯水凝膠之模數與水含量性質。以此方式,可藉由配方來調整水含量,或更具體而言,水凝膠之離子滲透率。
在一些實例中具有特殊優點,可澆鑄及可聚合化的水凝膠配方可包含一或多個稀釋劑,以有助於處理。可選擇揮發性的稀釋劑,以致可澆鑄之混合物可刮塗至孔穴中,接著容許足夠的乾燥時間,以移除揮發性溶劑組分。在乾燥之後,可藉由曝露至用於所選擇之光起始劑(例如,CGI 819)之具有適當波長(例如,420nm之藍UV光)的光化輻射來起始整體光聚合。揮發性稀釋劑可有助於提供所要的施加黏度,以便有助於在孔穴中澆鑄均勻的可聚合化材料層。揮發性稀釋劑亦可提供有利的表面張力降低效應,特別是在配方中結合強極性單體的情況中。對達成在孔穴中澆鑄均勻的可聚合化材料層可為重要的另一態樣可為施加黏度。常
見的小莫耳質量反應性單體一般不具有非常高的黏度,其一般可僅為幾厘泊。在努力提供可澆鑄及可聚合化分隔件材料之有利的黏度控制的過程中,可選擇已知與可聚合化材料相容之高莫耳質量的聚合組分來用於結合至配方中。可適於結合至例示性配方中之高莫耳質量聚合物的實例可包括聚乙烯吡咯啶酮、及聚氧化乙烯。
在一些實例中,可澆鑄、可聚合化的分隔件可有利地施加至經設計的孔穴中,如先前所述者。在替代實例中,在聚合的時候可能沒有孔穴。作為替代地,可將可澆鑄、可聚合化的分隔件配方塗覆至含電極的基材上(例如,經圖案化之鍍鋅黃銅),接著隨後使用光罩使其曝露至光化輻射,以選擇性地在目標區域中聚合分隔件材料。接著,可藉由曝露至合適的沖洗溶劑來移除未起反應的分隔件材料。在這些實例中,分隔件材料可特指為光可圖案化分隔件。
根據本發明之實例實用之分隔件可具有可對其功能重要的數項性質。在一些實例中,可期望形成分隔件以建立實體障壁之方式,能使得分隔件之任一側上的層不彼此實體接觸。因此,層可具有均勻厚度之重要特性,由於數項原因,一薄層可為所要的,因此無空隙或無間隙之層可為必要的。另外,可期望薄層具有高滲透率,以允許離子自由流動。亦,分隔件需要最佳水分吸收,以最佳化分隔件之機械性質。因此,該配方可包含交聯組分、親水性聚合物組分及溶劑組分。
交聯劑可係一具有兩或多個可聚合雙鍵之單體。適合之交聯劑可係具有兩或多個可聚合官能基之化合物。適合之親水性交聯劑之實例亦可包括具有兩或多個可聚合官能基以及親水性官能基(例如聚醚、醯胺或羥基)之化合物。特定實例可包括TEGDMA(四乙二醇雙甲基丙烯酸酯(tetraethyleneglycol dimethacrylate))、TrEGDMA(三乙二醇雙甲基丙烯酸酯(triethyleneglycol dimethacrylate))、乙二醇二甲基丙烯酸酯(ethyleneglycol dimethacylate,EGDMA)、乙二胺雙甲基丙烯醯胺(ethylenediamine dimethyacrylamide)、甘油二甲基丙烯酸酯(glycerol dimethacrylate)及/或其組合。
在一些實例中,反應混合物中可使用的交聯劑量之範圍可從例如每100克的反應性組分有約0.000415至約0.0156莫耳。使用之親水性交聯劑量大體上可係約0至約2重量百分比,且舉例而言自約0.5至約2重量百分比。能夠提高反應性混合物之黏度與/或增加氫與慢速反應親水性單體之鍵結程度的親水性聚合組分為理想者,例如高分子量親水性聚合物。
高分子量親水性聚合物提供改良之可濕性,且在一些實例中,可改良對本發明之分隔件之可濕性。在一些非限制性實例中,高分子量親水性聚合物可為氫鍵受體,其在水性環境中與水形成氫鍵,從而有效地變為更親水的。無水可有助於親水性聚合物組合於反應混合物中。除了特殊指定之高分子量親水性聚合物外,可預期本發明提供之任何高分子量聚合物在添加至一例示性聚矽氧水凝膠配方時皆可作用,該親水性聚合物(a)實質上不會從反應混合物發生相分離,且(b)給予所得固化聚合物可濕性。
在一些實例中,在處理溫度下,高分子量親水性聚合物可溶於稀釋劑中。使用水或水溶性稀釋劑(例如異丙醇(IPA))之製造程序由於其簡單性及降低之成本,所以可係所要之實例。在這些實例中,在處理溫度下為水溶性的高分子量親水性聚合物亦可係所要之實例。
高分子量親水性聚合物實例包含但不限於聚醯胺、聚內酯、聚醯亞胺、聚內醯胺及官能化之聚醯胺、聚內酯、聚醯亞胺、聚內醯胺,例如PVP及其共聚物,或替代地,藉由共聚合DMA與較小莫耳量(molar amount)之羥基官能化單體(例如HEMA)、且接著使該所得共聚物之羥基團與含有自由基可聚合基團之材料反應而官能化之DMA。高分子量親水性聚合物可包括但不限於聚-N-乙烯吡咯啶酮、聚-N-乙烯-2-六氫吡啶酮、聚-N-乙烯-2-己內醯胺、聚-N-乙烯-3-甲基-2-己內醯胺、聚-N-乙烯-3-甲基-2-六氫吡啶酮、聚-N-乙烯-4-甲基-2-六氫吡啶酮、聚-N-乙烯-4-甲基-2-己內醯胺、聚-N-乙烯-3-乙基-2-吡咯啶酮、及聚-N-乙烯-4,5-二甲基-2-吡咯啶酮、聚乙烯咪唑、聚-N--N-二甲基丙烯醯胺、聚乙烯醇、聚丙烯酸、聚氧化乙烯、聚2乙基唑啉、肝素多糖、多糖、混合物及彼等之共聚物(包括嵌段或無規、分支、多鏈、梳形或星形),其中聚-N-乙烯吡咯啶酮(PVP)
可係所要之實例,其中PVP已添加至水凝膠組成物,以形成呈現低表面摩擦度及低脫水率之互穿網。
亦可包括所屬技術領域中熟知之額外組分或添加劑。添加劑可包括但不限於紫外線吸收化合物、光起始劑(例如CGI 819)、反應性色料、抗微生物化合物、顏料、光致變色、離型劑、其等之組合及類似物。
與這類分隔件相關聯的方法亦可包括接收CGI 819,然後再將其與PVP、HEMA、EGDMA及IPA混合,以及接著用一熱源或一光子曝露固化該所得混合物。在一些實例中,該光子曝露可發生,其中該光子能量與電磁光譜之紫外線部分中發生之一波長一致。在聚合反應中大致上執行之起始聚合之其他方法係在本發明之範疇內。
在碳鋅電池與勒克朗社(Leclanché)電池的一些實例中,陰極電流收集器可為經燒結的碳棒。此類型材料可面臨針對本發明之薄型電化學電池的技術障礙。在一些實例中,印刷碳墨可用在薄型電化學電池中,以取代經燒結的碳棒作為陰極電流收集器,且在這些實例中,可在未明顯損傷所得之電化學電池的情況下形成所得之裝置。一般來說,碳墨可直接施加至封裝材料,其可包含聚合物膜,或在一些情況中包含金屬箔。在封裝膜可為金屬箔之實例中,碳墨可需要保護下方的金屬箔,使之免於由電解質帶來的化學降解及/或腐蝕。此外,在這些實例中,碳墨電流收集器可需要從電化學電池的內側提供導電性給電化學電池的外側,意味著環繞或通過碳墨的的密封。由於碳墨之多孔的本質,此可能無法在不具明顯挑戰性的情況下輕易地實現。碳墨亦可施加在具有有限的且相對小的厚度(例如,10至20微米)的層中。在總內部封裝厚度僅可為約100至150微米之薄型電化學電池的設計中,碳墨層的厚度可佔去電化學電池之總內部體積的明顯分額,從而負面影響電池的電氣性能。進一步地,總體電池且特別是電流收集器之薄型本質可意味著用於電流收集器之小橫剖面面積。由於跡線的電阻已會隨著跡線的長度增加,並隨著橫剖面面積減少,因此在電流收集器的厚度與電阻之間可存在直接的折衷。碳墨的體電阻率可能不足以滿足薄型電池的電阻需求。亦可考慮填以銀或其他導電金屬的
墨,以降低電阻及/或厚度,但銀或其他導電金屬的墨會帶來新的挑戰,例如,與新穎電解質的不相容性。在考慮這些因素的過程中,在一些實例中,會期望藉由使用薄金屬箔作為電流收集器、或者施加薄金屬膜至下方的聚合物封裝層作為電流收集器來實現本發明之有效率且高性能的薄型電化學電池。此類金屬箔可具有明顯較低的電阻率,從而允許此類金屬箔以遠小於印刷碳墨的厚度滿足電阻需求。
在一些實例中,頂部及/或底部封裝層的一或多者可充當用於濺鍍電流收集器金屬或金屬堆疊的基材。例如,3M® Scotchpak 1109背襯可使用可用作用於陰極之電流收集器的一或多個金屬層之物理氣相沉積(PVD)來使其金屬化。可用作陰極電流收集器的例示性金屬疊堆可為Ti-W(鈦-鎢)黏附層和Ti(鈦)導體層。可用作陽極電流收集器之例示性金屬堆疊可為Ti-W黏附層、Au(金)導體層、及In(銦)沉積層。PVD層的厚度較佳可為例如總計小於500nm。若使用多層金屬,則電化學及障壁性質會需要與電池相容。例如,銅可被電鍍在種晶層的頂部上,以生長厚層的導體。可電鍍額外層至銅上。然而,銅可能與某些電解質為電化學不相容的,尤其在鋅存在時。因此,若將銅用作電池中的一層,會需要將銅與電池的電解質充分地隔離。或者,可排除銅、或以另一金屬取代。
在一些其他實例中,頂部及/或底部封裝箔亦可作用如電流收集器。例如,25微米的黃銅箔可用作用於鋅陽極之陽極電流收集器。可選擇性地在以鋅進行電鍍之前,以銦電鍍黃銅箔。在一個實例中,陰極電流收集器封裝箔可包含鈦箔、赫史特合金(Hastelloy)C-276箔、鉻箔、及/或鉭箔。在某些設計中,一或多個封裝箔可經精細切料、壓紋、蝕刻、紋理化、雷射加工、或以其他方式處理,以提供所要的形式、表面粗糙度、及/或幾何給最終的電池封裝。
存在眾多可與本發明之概念一致的陰極化學混合物。在一些實例中,陰極混合物可為針對用來形成電池陰極之化學配方的用詞,其可施加作為膏、膠、懸浮或漿料,並且可包含過渡金屬氧化物諸如二氧化錳、一些形式的導電添加劑例如可為導電粉形式諸如碳黑或石墨,以及水溶性聚合物諸如聚乙烯吡咯啶酮(PVP)或一些其他黏結劑添加劑。在一些
實例中,其他組分可包括例如黏結劑、電解質鹽類、防蝕劑、水或其他溶劑、界面活性劑、流變改質劑、及其他導電添加劑(例如,導電聚合物)中的一或多者。一旦經調配及適當地混合,陰極混合物可具有所要的流變,其允許將陰極混合物施配至分隔件及/或陰極電流收集器的所要部分、或者以類似方式透過篩網或模板刮塗。在一些實例中,陰極混合物可在用於稍後的電池組裝步驟前先行乾燥,而在其他實例中,陰極可含有一些或全部的電解質組分,並可僅部分地乾燥達選定的濕氣含量。
過渡金屬氧化物可為例如二氧化錳。可用在陰極混合物中的二氧化錳可例如為電解二氧化錳(EMD),此係因為相對於其他形式(例如,天然二氧化錳(NMD)或化學二氧化錳(CMD)),此類型二氧化錳提供有利的額外的特定能量。此外,可用於本發明之電池中的EMD可需要具有可對可沉積或可印刷之陰極混合物膏/漿料之形成具傳導性的粒度及粒度分布。具體而言,EMD可經處理,以移除明顯大的微粒組分,相對於其他特徵(例如,電池內部尺寸、分隔件厚度、施配尖端直徑、模板開口大小、或篩網網格大小),明顯大的微粒組分可被視為大的。粒子大小優化也可用於改善電池性能,例如內部阻抗和放電容量。
研磨是透過壓碎、碾磨、切割、振動或其他程序將固體材料從一個平均粒子大小縮減至更小的平均粒子大小。研磨也可以用來將有用的材料從其可嵌入的基質材料中釋放,並濃縮礦物質。磨機是一種透過碾磨、壓碎、或切割將固體材料破碎成較小碎片的裝置。可有用於研磨的若干裝置,並且多種類型的材料在其中加工。此類研磨裝置可包括:球磨機、砂磨機、研缽和研杵、滾壓機、以及噴射研磨機以及其他研磨替代方式。可用於本發明的研磨的一個實例為噴射磨。研磨之後,固體狀態被改變,例如粒子大小、粒子大小排列和粒子形狀。聚集體研磨程序還可用於從聚集體去除或分離污染或濕氣以在運輸或結構填充之前生產「乾燥填充物」。一些設備可組合各種技術以將固體材料分類為其大小受最小粒子大小和最大粒子大小兩者限制的粒子混合物。此類處理可被稱為「分類器」或「分類」。
研磨可為用於陰極混合物成分的均勻粒子大小分布的陰極混合物生產的一態樣。陰極混合物中的均勻粒子大小可有利於陰極的黏
度、流變、導電性和其他特性。研磨可透過控制陰極混合物成分的固結或大量採集(mass collection)而有利於這些特性。固結(agglomeration)一不同元素的分群。就陰極混合物而言,不同元素可以是碳同素異形體和過渡金屬氧化物,如圖11所繪示及後文所描述,固結可藉由在所需的陰極孔穴中留下空隙而負面地影響填充過程。
此外,過濾可為去除固結的或不需要的粒子的另一個重要步驟。不需要的粒子可包括超大尺寸粒子、污染物或製備過程中未明確說明的其他粒子。可藉由諸如濾紙過濾、真空過濾、層析法、微濾以及其他過濾方式的方式完成過濾。
在一些實例中,EMD可具有7微米的平均粒度,其中大粒子含量可含有高達約70微米的微粒。在替代實例中,EMD可過篩、進一步碾磨、或以其他方式分開或處理,以限制大微粒含量至低於某一臨限,例如,25微米或更小。
陰極還可包含二氧化銀或氧(氫氧)化鎳。相對於二氧化錳,此類材料可提供增加的容量與放電期間之負載電壓中的較少減少,兩者均為電池中需要的性質。基於這些陰極的電池可具有存在於產業及文獻中的電流實例。利用二氧化銀陰極之新穎微電池可包括生物可相容電解質,舉例來說,包括氯化鋅及/或氯化銨而非氫氧化鉀者。
陰極混合物的一些實例可包括聚合物黏結劑。黏結劑可在陰極混合物中達到一些功能。黏結劑的主功能可為在EMD粒子與碳粒子之間建立足夠的粒子間電氣網路。黏結劑的次要功能可為有助於至陰極電流收集器的機械黏附與電氣接觸。黏結劑的第三功能可為影響陰極混合物的流變性質,以用於有利的施配及/或模板印刷/篩選。還有,黏結劑的第四功能可為增強陰極內的電解質吸收與分配。
黏結劑聚合物以及欲使用的量之選擇可對本發明之電化學電池中之陰極的功能為有利的。若黏結劑聚合物太過可溶於欲使用的電解質,則黏結劑的主功能(電氣導通(electrical continuity))可大幅受影響至電池無功能性的地步。反之,若黏結劑聚合物不溶於欲使用的電解質,部分的EMD可與電解質離子隔離,導致電池性能減小,例如,降低的容量、較低的開路電壓、及/或增加的內部電阻。
黏結劑可以是疏水性的,也可以是親水性的。可用於本發明之黏結劑聚合物的實例包括PVP、聚異丁烯(PIB)、包含苯乙烯末端嵌段之橡膠態三嵌段共聚物(例如,由Kraton Polymers所製造者)、苯乙烯丁二烯乳膠嵌段共聚物、聚丙烯酸、羥乙纖維素、羧甲基纖維素、例如聚四氟乙烯的氟碳固體,等等。
溶劑可為該陰極混合物的一個組分。溶劑可用於潤濕陰極混合物,這可有助於混合物的粒子分布。溶劑的一個實例可為甲苯。另外,表面活性劑也可用於潤濕,從而分散陰極混合物。表面活性劑的一個實例可為洗滌劑,諸如TritonTM QS-44。TritonTM QS-44可有助於離解陰極混合物中的聚集成分,允許陰極混合物成分更均勻地分布。
導電性碳一般可用於陰極的生產。碳能夠形成許多同素異形體,或不同的結構修改。不同的碳同素異形體具有不同的物理特性,允許導電性的改變。例如,碳黑的「彈性」(springiness)可有助於陰極混合物黏附到電流收集器。然而,在需要相對低能量的賦能元件中,導電性中的這些變化可能比其他有利特性較不重要,諸如密度、粒子大小、導熱性和相對均勻性等。碳同素異形體的實例包括:金剛石、石墨、石墨烯、無定形碳(俗稱碳黑)、巴克明斯特富勒烯(C60,buckminsterfullerenes)、玻璃石墨(也稱為玻璃碳)、碳氣凝膠以及能夠導電的其他可能形式的碳。碳同素異形體的一個實例可為石墨。
完整的陰極混合物配方的一個實例可在下表1中給出:
其中PIB為聚異丁烯,JMEMD為噴射磨的二氧化錳,KS6為由Timcal生產的石墨,以及PIB B10為分子量等級為B10的聚異丁烯。
一旦陰極混合物已被配製和處理,可將陰極混合物施配、施加和/或儲存到諸如水凝膠分隔件或陰極電流收集器的一表面上,或諸如層狀結構中的孔穴的一容積中。填充到表面上可導致容積隨時間而被填滿。為了施用、分配和/或儲存該混合物,可期望一定的流變以優化施配、施加和/或儲存過程。例如,較低黏度的流變可允許更好地填充孔穴,但同時可能犧牲粒子分布。較高黏度的流變可允許優化的粒子分布,同時可能降低填充孔穴的能力,並可能喪失導電性。
例如,圖10A至圖10F繪示優化及未優化的施配或施加至孔穴內。圖10A繪示施加、施配和/或儲存後,最佳填充陰極混合物的孔穴。圖10B繪示底部左側象限1002未充分填充的孔穴,這可為非所欲的陰極混合物流變的直接結果。圖10C繪示頂部右側象限1004未充分填充的孔穴,這可為非所欲的陰極混合物流變的直接結果。圖10D和圖10E分別繪示孔穴的中間1006或底部1008未充分填充的孔穴,這可為非所欲的陰極混合物流變直接結果導致的氣泡。圖10F繪示朝向孔穴的頂部1010未充分填充的孔穴,這可為非所欲的陰極混合物流變的直接結果。圖10B至圖10F繪示的缺陷可造成若干電池問題,例如容量減小、內部電阻增大及可靠性劣化。
另外,在圖11中,固結1102可由於非所欲的陰極混合物流變而發生。固結可導致陰極混合物性能降低,例如放電容量減小以及內部電阻增大。
在一個實例中,陰極混合物可具有類似於花生醬的稠度,該稠度經優化以用於刮塗填充層狀構造孔穴,同時保持導電性。在另一實施例中,混合物可為足夠黏以被印刷到孔穴中。而在另外一個實例中,陰極混合物可被乾燥,被放置並儲存在孔穴中。
用於本發明之層狀電池的陽極可例如包含鋅。在傳統的碳鋅電池中,鋅陽極可採取罐的實體形式,在其中可容納電化學電池的內容物。對本發明之電池而言,鋅罐可為實例,但可有可證明所要以實現超小型電池設計的其他實體形式之鋅。
鋅電鍍是可使用於許多工業的程序類型,例如,用於金屬部件的保護或美化塗層。在一些實例中,經電鍍的鋅可用來形成可用於本發明之電池之薄且保形的陽極。此外,依據設計意圖,經電鍍的鋅可以許多不同的組態圖案化。用於圖案化經電鍍的鋅之容易達成的手段可為在使用光罩或實體遮罩的情況下進行處理。在光罩的情況中,可將光阻施加到導電基材,隨後可在該基材上電鍍鋅。接著,可憑藉光罩將所要電鍍圖案投射至光阻,從而導致光阻之選定區域的固化。接著可以合適的溶劑及清潔技術移除未經固化的光阻。結果可為導電材料之經圖案化的區域可接受經電鍍鋅處理。雖然此方法可為欲電鍍之鋅的形狀或設計提供優勢,該方法可需要使用可得之光可圖案化材料,其可具有對總體電池封裝構造而言受限的性質。結果,可需要用於圖案化鋅之全新且新穎方法,以實現本發明之薄型微電池的一些設計。
圖案化鋅陽極之替代手段可為經由實體遮罩施加。可藉由在具有所要的障壁及/或封裝性質的膜中切割出所要的孔隙來製成實體遮罩。此外,膜可具有施加至一或兩側的壓力敏感黏著劑。最後,膜可具有施加至一或兩黏著劑的保護釋離襯墊。釋離襯墊可達到在孔隙切割期間保護黏著劑、以及在組裝電化學電池之特定處理步驟(具體而言,陰極填充步驟)期間保護黏著劑的雙重目的。在一些實例中,鋅遮罩可包含約100微米厚度的PET膜,壓力敏感黏著劑可以約10至20微米的層厚度施加至其兩側。兩PSA層皆可由PET釋離膜所覆蓋,其可具有低表面能表面處理,並可具有約50微米的厚度。在這些實例中,多層鋅遮罩可包含PSA及PET膜。如本文所述之PET膜及PET/PSA鋅遮罩構造可需要以精密奈秒雷射微加工器械(例如以Oxford Lasers E系列雷射微加工工作站)處理,以在遮罩中建立超精確的孔隙來有助於稍後的電鍍。本質上,一旦已製成鋅遮罩,便可移除一側的釋離襯墊,且具有孔隙的遮罩可被疊層至陽極電流收集器、及/或陽極側封裝膜/箔。以此方式,PSA在孔隙的內側邊緣處建立密封,有助於鋅在電鍍期間之清潔及精確遮蔽。
鋅遮罩可被放置,接著可執行一或多種金屬材料的電鍍。在一些實例中,鋅可被直接電鍍至電化學性相容的陽極電流收集器箔(例如,黃銅)上。一個替代設計實例可包括其中種晶金屬化已施加至聚合物
膜或多層聚合物膜的陽極側封裝。在此類實例中,鋅和/或用於沉積鋅的電鍍溶液可能與下方的種晶金屬化無法化學相容。缺乏相容性的表現可包括一旦與電池電解質接觸,膜隨即裂開、腐蝕、及/或加劇的H2釋出。在此一類情況中,可施加額外的金屬至種晶金屬,以影響系統中之較佳的總體化學相容性。在電化學電池構造中可有特殊功用的一種金屬可為銦。銦可廣泛地用作電池級鋅中的合金用劑,其主功能係在電解質存在時提供抗腐蝕性質給鋅。在一些實例中,銦可成功地沉積在各種種晶金屬化上(例如,Ti-W及Au)。在種晶金屬化層上所得之具有1至3微米銦的薄膜可為低應力且具黏著性的。以此方式,具有銦頂部層之陽極側封裝膜與附接的電流收集器可為保形且耐久的。在一些實例中,在經過銦處理的表面上沉積鋅可為可行的,所得之沉積物可為非常不均勻且為結節狀的。此效應可在較低的電流密度設定(例如,20安培/平方英呎(ASF))下發生。當在顯微鏡下觀看時,可觀察到鋅的結節形成在下方平滑的銦沉積物上。在某些電化學電池的設計中,用於鋅陽極層之垂直空間容許量可至多為約5至10微米厚,但在一些實例中,較低的電流密度可用於鋅電鍍,且所得之結節狀生長可生長得高於最大陽極垂直厚度。可能的是結節狀鋅生長主幹來自銦的高過電位以及銦的氧化物層存在的組合。
在一些實例中,較高電流密度的DC電鍍可克服鋅在銦表面上之相對大的結節狀生長圖案。例如,100 ASF的電鍍條件可導致結節狀的鋅,但與20 ASF的電鍍條件相比,鋅結節的尺寸可大幅減少。此外,在100 ASF的電鍍條件下,結節的數量可大量地變大。所得之鋅膜最終可聚結為只具有結節狀生長的一些殘留特徵之更均勻或更不均勻的層,同時滿足約5至10微米的垂直空間容許量。
在電化學電池中的銦之額外優勢可為減少H2形成,其可為發生在含有鋅之水性電化學電池中的緩慢程序。銦可有利地施加至陽極電流收集器、陽極本身的一或多個,以作為共電鍍的合金組分、或作為經電鍍的鋅上之表面塗層。對後一種情況而言,銦表面塗層可需要經由例如三氯化銦或醋酸銦之電解質添加劑來原地施加。當此類添加劑可以少量濃度添加至電解質時,銦可自發地電鍍在曝露的鋅表面、以及部分的曝露的陽極電流收集器上。
常用在市售的一次電池(primary battery)中之鋅、及類似的陽極一般可具有片材、棒、以及膏的形式。袖珍、生物可相容電池的陽極可具有類似形式(例如,薄箔),或可如先前提及般地予以電鍍。此陽極的性質可明顯不同於現存電池中者,例如,因為歸結於加工及電鍍程序之污染物或表面光度的差別。因此,電極與電解質可需要特別工程設計,以滿足容量、阻抗、及儲放期限的需求。例如,可需要特別的電鍍程序參數、電鍍槽組成物、表面處理、及電解質組成物,以最佳化電極性能。
參見圖12,展示了與目前框架一致的處理陽極的例示性方法步驟的圖解。在1201,獲得金屬箔。該金屬箔可包含許多導電、相對不反應的材料,例如黃銅、鋁、銅、銀、金、鉑及類似物。在一些實例中,可希望獲得厚度為10至50微米的該金屬箔。在一些特定的實例中,該金屬箔可包含黃銅,且該金屬箔厚度為約25微米。在1202,可清潔該金屬箔。可有多種溶劑、表面活性劑及皂類可用於清潔過程。在一個具體的實例中,可在異丙醇浴中清潔該金屬箔。在1203,可以基於黏著劑的膠帶保護金屬箔的一側。在一些實例中,膠帶可為黏著膠帶,例如3MTM Surface SaverTM膠帶1641。可將膠帶施加到箔的一側,且可將所得的組合在40磅每平方吋(PSI)的氮氣氛下加熱至攝氏50度。
接著,在1204,可將箔和膠帶組合根據最初產品尺寸性質與供進一步陽極處理所需的片切割成較小片。可有許多切割片的方式,包括:雷射切割、高壓水切割以及刀刃切割。在刀刃切割的簡化例子中,可藉由用剪刀切割來定片的大小。在其他例子中,有刀刃的衝壓機可切割成單個片。在一個實例中,尺寸為約75mm×25mm的矩形形狀片可代表用於製造小型生物可相容電池裝置的所欲的形狀因數。
在接下來的步驟中,可進行與製備用於陽極材料電鍍的該金屬箔相關的處理。在1205,接下來可清潔來自步驟1204具有膠帶背襯的金屬箔片。可藉由浸入1%的Liquinox水溶液中,加上超音波法進行約30分鐘來清潔。可使用其他的清潔溶液,目的為移除來自該金屬箔表面上來自先前處理的碎屑。接下來,在1206,可從清潔溶液中取出金屬箔與膠帶,並用異丙醇沖洗。接下來,在1207,可用水沖洗金屬箔和膠帶。接著
進行至下一步驟1208,接著可用稀釋的硫酸(H2SO4)浸泡該金屬箔和膠帶,預清潔黃銅以電鍍。在一些實例中,預清潔步驟可包含用稀釋的20%的硫酸溶液將金屬箔與膠帶浸泡約3分鐘。其中,預清潔的效用可為清潔黃銅表面的有機污染物及去除其他表面膜、銹色、銅綠及類似物。在1209,該金屬箔和膠帶可在去離子水(DI)中沖洗。在一些實例中,該DI水的特徵可為導電率大於14兆歐姆-釐米。在1210,可乾燥該金屬箔和膠帶。在1211,可獲得基材以在隨後處理中支撐該金屬膜。在一非限制性實例中,該基材可以是玻璃片。在一些進一步的實例中,該玻璃片可包含高純度硼矽玻璃。在1212,可將雙面黏著膠帶施加到該玻璃基材上。在一些實例中,金屬箔、膠帶和玻璃基材的組合物可再次受加熱處理和壓力處理。在一些其他例子中,可只將雙面膠帶壓貼在玻璃片和金屬箔/膠帶組合上進行黏著。所得結構現在可用於電鍍。
在1213,可與該金屬箔的該表面的一部分形成電連接。在一些實例中,可在玻璃板和金屬箔表面上閉合一夾子以產生電連接。在其他實例中,可將連接導線點焊到金屬箔上用於電連接。接下來在1214,可將玻璃板和金屬箔基材浸入到電鍍浴中,並可進行電鍍過程。如所提到的,可有電池的陽極可包含的多種材料,該材料包括鋅、鋰和鎂以及其他。在一個實例中,可將鋅膜電鍍到黃銅箔之上。為了電鍍鋅,可將電鍍浴調配成協助包含黃銅箔的一個電極,及包含高純度鋅金屬片的另一個電極。在一些實例中,鋅金屬可以球狀、片狀或平頂狀鋅陽極形式獲得。在其他實例中,可用鈦籃來固持高純度鋅片。在電鍍過程中,鋅金屬原子藉由電化學程序溶劑化成鋅離子,然後電鍍到在鋅膜中的黃銅金屬電極上。可將電鍍浴調配成具有其他物質,一般是以低濃度,這些物質也會被電鍍到「鋅」膜上或其中。在一個實例中,銦鹽可添加到電鍍浴中並可以少量共電鍍。電鍍溶液的例示性組合物可見於表2。
以上表2中的實例的電鍍浴組合物可有多種變型,包括其中不同組分數量為經調配的實例,或者其中特定添加物或電鍍鹽以替代物取代的實例。在表2的實例中,一電鍍浴可藉由將氯化鋅(ZnCl2)、氯化鉀(KCl)和醋酸銦的量溶解到該浴之總水體積的60-70%的量中備製。可對水加熱以促進氯化鋅和氯化鉀的溶解。接下來可以多種方式加入添加劑。在本例子中,可添加Electrochemical Products Inc.產品,諸如E-Brite Ultra-Chlor NA以及E-Brite Ultra-Chlor B的量以達到所欲濃度。這些添加劑可含有行業內眾所周知的「增亮劑」,其為幫助實現電鍍陽極中所需表面拋光特性的化學添加劑。可添加剩餘的水以達到所需體積。混合物可藉由用攪拌棒攪拌、通氣攪拌或其他攪拌方式進行持續混合。
在電鍍期間,可有若干控制和分析執行以將該浴保持在電鍍所需的條件下。例如,可測定該浴的pH並藉由向該浴添加酸鹽或鹼鹽來調整pH,其中該酸及鹼與該浴的化學性質一致,例如作為非限制性實例的HCl或ZnOH。該浴的溫度可藉由該浴中的加熱/冷卻線圈來維持。在一個實例中,該浴可維持在約攝氏27度。在一些實例中,可透過不同類型的過濾器連續過濾該浴,該過濾器可提取約5-15微米以及更大的粒子。一些諸如E-Brite Ultra-Chlor B的添加劑可能需要連續地添加到該浴中,其中其他添加劑只需要在開始時添加或者根據已發生的電鍍量週期性地添加到該浴中。
暴露的金屬箔可在各種電鍍電流密度控制機制下電鍍。在一個實例中,可通過調節電流來電鍍膜,其中設定值為約20ASF。電鍍可進行約10分鐘或者根據需要進行,以得到厚度為大約8-10微米的膜。以這種方式和以這種電鍍浴配方所電鍍的膜組合物中可造成約500ppm的銦併入。其他濃度的銦可基於陽極抗腐蝕的不同需求而用不同的條件進行電
鍍,其中陽極的抗腐蝕需求取決於電池中所採用的電解質性質以及操作條件。
如前面所提到的,電鍍可發生在基材上,其中黃銅或其他金屬材料的視窗暴露於電鍍溶液而不是整個金屬箔中。這些視窗可採用膜的光學微影、掩蔽層或層合結構形成,其中一孔穴暴露於電鍍浴中,該孔穴具有用於電鍍的金屬膜表面。
在電鍍陽極之後,各種膜可相互分離得到其上具有陽極沉積物的金屬箔。如果陽極膜不是在後續步驟中立即處理以形成電池,則可能需要控制儲存期間的環境條件以限制濕度和各種氣體組分諸如氧氣的存在,從而避免腐蝕。
可存在形成可使用於本文所述的生物可相容電池組的陽極的許多其他方式。例如,可將陽極材料蒸鍍或濺鍍到金屬箔上。可藉由將鋅源加熱到約攝氏550度而在降壓條件下將鋅蒸鍍到金屬箔上。此類沉積膜的形態可與藉由電鍍形成的膜的形態明顯不同。
在其他實例中,鋅金屬箔可為起點。在一些實例中,以上實例中所提到的金屬箔可只包含鋅。在這些例子中,可設計金屬箔的厚度,使得在電池組的化學物耗盡以後仍可保留結構完整的膜。在這些情況下,可設計化學物質的量使得陰極化學物質可成為限制試劑。
在鋅箔的其他實例中,鋅箔可附接到黃銅或其他金屬材料的第二箔。在壓力施加過程中,特別是如果要製作壓印圖案,可將這些箔壓到一起。例如鋅箔可包覆在鈦箔之上。在其他實例中,可採用點焊技術來將箔保持到一起。在類似的處理中,可將圖案化結構點焊到黃銅箔之上以界定陽極區域。另外還有許多透過使用箔來形成電池陽極膜的方式。
將陽極形成為膜得到如下特徵,其中電池的操作過程中只有其表面層才能接觸到電解質。在電池的操作過程中,鋅會進入溶液從而導致在膜體中形成點蝕。這種點蝕的結果可實際上增加接觸電解質的表面積的量。在一些實例中,陽極的接觸電解質的表面積可與電池組電池的內部電阻相關。藉由增加陽極的表面積可減小電池組電池的內部電阻,從而
改良一些應用中的操作參數。放電期間陽極內部電阻的這種減小可對於電池內部電組的其他組件(例如陰極電阻和電解質電阻)在放電期間增大的系統以及對高電流消耗條件下達到特定低截止電壓閾值的系統尤其有利。換言之,增加陽極表面積可減小內部電阻並延長執行時間。可有許多增加陽極材料的表面積的方式。例如,鋅沉積過程中的顆粒大小可導致電極有效表面積的改變。顆粒大小可藉由電鍍條件而改變,其中可改變的一個因素是電鍍過程中的電流密度。又如,可賦予黃銅膜布局以實體地改變電極的表面積。可藉由壓印過程將錐形或凹陷或其他形狀的圖案壓到黃銅箔中。結果是鋅可電鍍或沉積到其上的表面積增加,並且藉由這種方式形成的陽極可在電池組電池操作期間增加顯示於電解質的表面積。
在放電期間限制陽極表面積的可能增加也是可行的。如上所述,儘管增加陽極表面積會減少內部電組因而增加電池的電性能,但陽極表面積的增加也會增加電池自放電期間鋅的腐蝕。
電池架構及製作技術可緊密地交織在一起。如已在本發明較早之前的段落中所討論者,電池具有下列元件:陰極、陽極、分隔件、電解質、陰極電流收集器、陽極電流收集器、以及封裝。聰明的設計可嘗試在容易製作的次總成中結合這些元件。在其他實例中,最佳化設計可具有兩用型組件,例如使用金屬封裝來兼用作電流收集器。從相對體積與厚度的觀點看來,除了陰極之外,這些元件可為幾乎全部相同的體積。在一些實例中,電化學系統可需要陰極體積為陽極的約二(2)至十(10)倍,此係歸因於機械密度、能量密度、放電效率、材料純度、以及黏結劑、填料、及導電劑存在的明顯差別。在這些實例中,各種元件的相對尺度可為大約以下元件厚度:陽極電流收集器=1μm;陰極電流收集器=1μm;電解質=隙間液體(有效地0μm);分隔件=如期望那樣薄或厚,其中設計的最大厚度可為約15μm;陽極=5μm;以及陰極=50μm。針對這些元件實例,提供足夠保護以在使用環境中維持電池化學所需的封裝可具有約50μm之計劃的最大厚度。
在一些實例中,其基本上可不同於大的稜柱形構造(例如,圓柱形或矩形形式),且其可不同於晶圓基固態構造,此類實例可呈
現「袋狀」構造,使用卷材或片材製作成為各種組態,並具有配置在內側的電池元件。圍阻可具有兩膜、或摺疊至另一側上的一個膜,該等膜的任一組態可形成兩個大略成平面的表面,接著可在周長上將圍阻密封,以形成容器。此薄且寬的形狀因數可使電池元件本身薄且寬。此外,可適於透過塗層、凹版印刷、網版印刷、濺鍍、或其他類似的製作技術來應用這些實例。
在這些「袋狀」電池實例中,可存在眾多使用薄且寬之形狀因數之內部組件(例如,陽極、分隔件、及陰極)的配置。在由兩膜所形成的封閉區域內,這些基本元件可為「共平面(co-planar)」,也就是在相同的平面上並列;或者可為「共面(co-facial)」,其可在相對平面上面對面。在共平面配置中,陽極、分隔件、及陰極可沉積在相同的表面上。對於共面配置,陽極可沉積在表面1上,陰極可沉積在表面2上,且分隔件可放置在兩者之間,沉積在其中一側上、或者插入作為其自身的分隔元件。
另一類型的實例可分類為疊層總成,其可涉及使用為卷材或片材形式的膜,以一層一層地組建電池。片材可使用黏著劑(例如,壓力敏感黏著劑、熱活化黏著劑、或基於化學反應之黏著劑)彼此接合。在一些實例中,可藉由焊接技術(例如,熱焊接、超音波焊接之類)來接合片材。片材可適合於標準工業操作,如卷對卷(R2R)總成、或片對片總成。如較早之前所指出者,用於陰極的內部體積可需要實質上大於電池中的其他主動元件。電池構造的大半會必須建立此陰極材料的空間,並在電池撓曲的期間支撐其免於遷移。可佔據厚度預算的很大部分之電池構造的另一部分可為分隔件材料。在一些實例中,片材形式的分隔件可為疊層處理建立有利的解決方案。在其他實例中,可藉由將水凝膠材料施配至層中充當分隔件來形成分隔件。
在這些疊層電池總成實例中,成形產品可具有:陽極片材,其可為封裝層與陽極電流收集器的組合;以及用於陽極層的基材。成形產品亦可具有可選用的分隔件間隔物片材、陰極間隔物片材、及陰極片材。陰極片材可為封裝層與陰極電流收集器層的組合。
電極與電流收集器之間的緊密接觸對降低阻抗以及增加放電容量具有關鍵的重要性。若電極之部分未與電流收集器接觸,由於導電性接著通過電極(一般比電流收集器更不導電)或者電極之一部分會變成完全切斷連接,所以電阻會增加。在硬幣式電池與圓柱形電池中,緊密性係以機械力夾壓罐、將膏封入罐中、或透過類似手段實現。波形墊圈或類似的彈簧係用在市售電池中,以維持電池內的力;然而,這些可使袖珍電池的總體厚度增加。在典型的貼片式電池中,分隔件可浸透在電解質中、跨電極放置、以及藉由外部封裝下壓。在層狀、共面電池中,有若干用以增加電極緊密性的方法。陽極可直接電鍍至電流收集器上,而非使用膏。此程序固有地導致高位準的緊密性與導電性。然而,陰極一般為膏。雖然存在於陰極膏中的黏結劑材料可提供黏附性與內聚性,但會需要機械壓力來確保陰極膏保持與陰極電流收集器接觸。此可為特別重要的,因為封裝經過撓曲,且電池老化及放電,例如,由於濕氣透過薄且小的密封離開封裝。陰極的壓縮在層狀、共面電池中可藉由在陽極與陰極之間引入順應性分隔件及/或電解質來達成。例如,膠狀電解質或水凝膠分隔件可壓縮在總成上,且不會像液體電解質一樣可能輕易地從電池流出。一旦將電池密封,電解質及/或分隔件可接著向後推使其緊靠陰極。在層狀堆疊組裝之後,可執行壓紋步驟來將壓縮引入堆疊之中。
使用於生物可相容電池中的陰極混合物可以是使用於生物可相容裝置中,諸如,舉例來說可植入電子裝置,例如心律調節器與微能量採集器、用於監控及/或測試生物功能的電子藥丸、具有主動組件的手術裝置、眼用裝置、微小尺寸泵、除顫器、支架之類。
已描述了具體的實例來繪示在生物可相容電池中使用的陰極混合物的樣本實施例。這些實例係用於該說明,而且並無以任何方式限制申請專利範圍之範圍的意圖。因此,本說明的用意在於含括對於所屬技術領域中具有通常知識者顯而易見之所有實例。
510‧‧‧陰極化學物
520‧‧‧陰極收集器
530‧‧‧壓力敏感黏著劑層
540‧‧‧PET間隔物層
550‧‧‧PSA層
560‧‧‧PET間隙層
565‧‧‧PSA層
570‧‧‧鍍鋅層
580‧‧‧陽極電流收集器
590‧‧‧分隔件層
Claims (32)
- 一種生物可相容電池,其包含:一第一及一第二電流收集器;一陰極;一陽極;以及一層狀結構;其中該層狀結構的至少一層具有一體積被移除以形成一孔穴,其中該孔穴容納有一電解質溶液、一分隔件,以及該陰極;其中該陽極包含鋅;其中該陽極在該第一電流收集器上;且其中該第一電流收集器及該陽極經密封在該層狀結構上。
- 如申請專利範圍第1項所述之生物可相容電池,其中該陽極包含銦。
- 如申請專利範圍第1項所述之生物可相容電池,其中該陽極經電鍍到該第一電流收集器上。
- 如申請專利範圍第3項所述之生物可相容電池,其中該陽極經電鍍為一片,以覆蓋該第一電流收集器的一側。
- 如申請專利範圍第3項所述之生物可相容電池,其中該陽極透過一光罩被電鍍,其中僅該第一電流收集器的區域與該陽極一同經電鍍。
- 如申請專利範圍第3項所述之生物可相容電池,其中該陽極透過在該層狀結構中的該孔穴而被電鍍。
- 如申請專利範圍第1項所述之生物可相容電池,其中該陽極經真空沉積在該第一電流收集器上。
- 如申請專利範圍第1項所述之生物可相容電池,其中該陽極包含陽極材料的一金屬箔,其中陽極材料的該金屬箔經接合到包含該第一電流收集器的一金屬箔。
- 如申請專利範圍第1項所述之生物可相容電池:其中該陽極包含鋅和銦的一混合物;且其中在該混合物內的該銦的濃度大約在10百萬分點和1000百萬分點之間。
- 如申請專利範圍第1項所述之生物可相容電池,其中該陽極在該孔穴的一區域中是紋理化的。
- 如申請專利範圍第10項所述之生物可相容電池,其中該紋理包含壓印到該陽極中的凹陷。
- 如申請專利範圍第10項所述之生物可相容電池,其中該紋理包含壓印到該陽極和第一電流收集器中的凹陷。
- 一種生醫裝置設備,其包含:一插件裝置,其包含:一電活性元件,其回應於一控制電壓信號;一生物可相容電池其中該生物可相容電池包含:一第一和第二電流收集器;一陰極;一陽極;以及一層狀結構;其中該層狀結構之至少一層具有一體積被移除以形成一孔穴,其中該孔穴容納有一電解質溶液、一分隔件,以及該陰極;其中該陽極包含鋅;其中該陽極在該第一電流收集器上;且其中該陽極經密封在該層狀結構上;且其中電連接至該生物可相容電池的一電路提供該控制電壓信號。
- 如申請專利範圍第13項所述之設備,其中該生醫裝置是一隱形眼鏡。
- 一種用於形成一生物可相容電池的方法,該方法包含:獲得一金屬箔;清潔該金屬箔;保護該金屬箔的一側;將一黏著劑附接到一基材;將該金屬箔的受保護之該側附接到與該基材附接的該黏著劑; 製造一電連接至該金屬箔;在一電鍍浴中將一陽極電鍍到該金屬箔上;接收一第一絕緣材料之一第一基材膜;在該第一基材膜中切出一孔穴以形成一陰極間隔物層,其中該孔穴的一邊緣界定該孔穴的一側壁;以及將該陰極間隔物層的一第一表面黏附到電鍍在該金屬箔上的該陽極的一第一表面。
- 如申請專利範圍第15項所述之方法,其進一步包含在一酸清潔中來清潔該未受保護側。
- 如申請專利範圍第15項所述之方法,其進一步包含:將該生物可相容電池放置到一插入件中;以及將該插入件放置到一生醫裝置中。
- 如申請專利範圍第17項所述之方法,其中該生醫裝置是一眼用裝置。
- 如申請專利範圍第18項所述之方法,其中該眼用裝置是一隱形眼鏡。
- 如申請專利範圍第15項所述之方法,其中該電鍍浴包含氯化鋅。
- 如申請專利範圍第15項所述之方法,其中該電鍍浴另包含氯化鉀、硼酸和醋酸銦。
- 如申請專利範圍第15項所述之方法,其中該電鍍浴另包含E-Brite Ultra-Chlor NA及E-Brite Ultra-Chlor B。
- 如申請專利範圍第15項所述之方法,其中該電鍍浴包含:大約5-10重量%的ZnCl2;大約15-25重量%的KCl;大約2-5重量%的硼酸;大約3-5重量%的E-Brite Ultra-Chlor NA;大約0.01-0.10重量%的E-Brite Ultra-Chlor B;以及大約0.001重量%-0.01重量%的醋酸銦。
- 一種用於形成一生物可相容電池的方法,該方法包含:獲得一金屬箔,其中該金屬箔包含鋅;清潔該金屬箔;接收一第一絕緣材料之一第一基材膜; 在該第一基材膜中切出一孔穴以形成一陰極間隔物層,其中該孔穴的一邊緣界定該孔穴的一側壁;以及將該陰極間隔物層的一第一表面黏附到該金屬箔的一第一表面。
- 如申請專利範圍第24項所述之方法,其進一步包含:將該生物可相容電池放置到一插入件中;以及將該插入件放置到一生醫裝置中。
- 如申請專利範圍第25項所述之方法,其中該生醫裝置是一眼用裝置。
- 如申請專利範圍第26項所述之方法,其中該眼用裝置是一隱形眼鏡。
- 一種用於形成一生物可相容電池的方法,該方法包含:獲得一第一金屬箔,其中該金屬箔包含陽極材料;清潔該第一金屬箔;獲得一第二金屬箔,其中該第二金屬箔包含黃銅;將該第一金屬箔的一第一表面黏附到該第二金屬箔的一第一表面;接收一第一絕緣材料之一第一基材膜;在該第一基材膜中切出一孔穴以形成一陰極間隔物層,其中該孔穴的一邊緣界定該孔穴的一側壁;以及將該陰極間隔物層的一第一表面黏附到該第一金屬箔的一第二表面。
- 如申請專利範圍第28項所述之方法,其中將該第一金屬箔的一第一表面黏附到該第二金屬箔的一第一表面包含焊接。
- 如申請專利範圍第28項所述之方法,其中將該第一金屬箔的一第一表面黏附到該第二金屬箔的一第一表面包含用一黏著劑膠合,其中該黏著劑是導電的。
- 如申請專利範圍第28項所述之方法,其中將該第一金屬箔的一第一表面黏附到該第二金屬箔的一第一表面包含按壓該第一金屬箔和該第二金屬箔。
- 如申請專利範圍第28項所述之方法,其中將該第一金屬箔的一第一表面黏附到該第二金屬箔的一第一表面包括焊接該第一金屬箔和該第二金屬箔。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462040178P | 2014-08-21 | 2014-08-21 | |
US62/040,178 | 2014-08-21 | ||
US14/819,634 US10361404B2 (en) | 2014-08-21 | 2015-08-06 | Anodes for use in biocompatible energization elements |
US14/819,634 | 2015-08-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201620181A true TW201620181A (zh) | 2016-06-01 |
TWI653777B TWI653777B (zh) | 2019-03-11 |
Family
ID=53938220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104126939A TWI653777B (zh) | 2014-08-21 | 2015-08-19 | 生物可相容電池、其形成方法及生醫裝置設備 |
Country Status (12)
Country | Link |
---|---|
US (1) | US10361404B2 (zh) |
EP (1) | EP2988359A3 (zh) |
JP (1) | JP2016046257A (zh) |
KR (1) | KR20160023591A (zh) |
CN (1) | CN105390724A (zh) |
AU (1) | AU2015215929A1 (zh) |
BR (1) | BR102015019874A2 (zh) |
CA (1) | CA2901076A1 (zh) |
HK (1) | HK1219810A1 (zh) |
RU (1) | RU2015134506A (zh) |
SG (1) | SG10201506616PA (zh) |
TW (1) | TWI653777B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10135076B1 (en) * | 2015-05-05 | 2018-11-20 | Verily Life Sciences Llc | Tear-activated micro-battery for use on smart contact lenses |
US10686228B2 (en) | 2016-12-14 | 2020-06-16 | Pacesetter, Inc. | Pouch battery for use in implantable electronic devices |
CN110444830B (zh) * | 2019-07-02 | 2022-04-15 | 中南大学 | 一种废旧锂离子电池负极和隔膜的联合处理方法 |
CN113970677B (zh) * | 2021-10-09 | 2023-10-27 | 上海林海生态技术股份有限公司 | 生物电化学系统用电极板可靠性的检测方法 |
Family Cites Families (419)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US754804A (en) | 1903-12-07 | 1904-03-15 | Charles A Pratt | Speed-regulating magnetic clutch. |
US787657A (en) | 1904-12-13 | 1905-04-18 | Quimby S Backus | Gas fireplace-heater. |
US1390765A (en) | 1919-04-12 | 1921-09-13 | New Jersey Patent Co | Galvanic battery |
US1559562A (en) | 1923-05-25 | 1925-11-03 | Thomas A Edison | Storage battery |
DE1042681B (de) | 1953-03-21 | 1958-11-06 | Dr H C Hans Vogt | Staendig gasdicht verschlossener, alkalischer Akkumulator |
GB743731A (en) | 1953-05-19 | 1956-01-25 | Dunlop Rubber Co | Adhesive butyl rubber compositions |
BE562199A (zh) | 1956-11-16 | |||
US3306776A (en) | 1964-02-27 | 1967-02-28 | Pentti J Tamminen | Galvanic primary cell |
US3431327A (en) | 1964-08-31 | 1969-03-04 | George F Tsuetaki | Method of making a bifocal contact lens with an embedded metal weight |
US3291296A (en) | 1964-10-26 | 1966-12-13 | Lemkelde Russell | Pipe nipple holder |
US3353998A (en) | 1965-02-02 | 1967-11-21 | Sonotone Corp | Alkaline battery cells with silver-oxide or silver electrodes |
US3375136A (en) | 1965-05-24 | 1968-03-26 | Army Usa | Laminated thin film flexible alkaline battery |
DE2007518A1 (de) | 1969-02-20 | 1971-02-04 | Union Carbide Corp , New York,N Y (V St A) | Elektrolyt fur Pnmarzellen |
JPS485185B1 (zh) | 1969-05-16 | 1973-02-14 | ||
GB1583193A (en) | 1976-05-28 | 1981-01-21 | Poler S | Intra-ocular lens mounting assembly and method of making it |
US4254191A (en) | 1977-01-24 | 1981-03-03 | Polaroid Corporation | Method for manufacturing battery vents and vented batteries |
US4118860A (en) | 1977-01-27 | 1978-10-10 | Polaroid Corporation | Method of making a flat battery |
US4125686A (en) | 1977-06-30 | 1978-11-14 | Polaroid Corporation | Laminar cells and methods for making the same |
US4268132A (en) | 1979-09-24 | 1981-05-19 | Neefe Charles W | Oxygen generating contact lens |
US4294891A (en) | 1980-03-12 | 1981-10-13 | The Montefiore Hospital Association Of Western Pennsylvania | Intermittently refuelable implantable bio-oxidant fuel cell |
US4408023A (en) | 1980-11-12 | 1983-10-04 | Tyndale Plains-Hunter, Ltd. | Polyurethane diacrylate compositions useful for contact lenses and the like |
JPS57136774A (en) | 1981-02-17 | 1982-08-23 | Toshiba Battery Co Ltd | Alkaly cell |
JPS58116764A (ja) | 1981-12-30 | 1983-07-12 | Fujitsu Ltd | 半導体装置の製造方法 |
US4977046A (en) | 1982-04-26 | 1990-12-11 | Polaroid Corporation | Lithium batteries |
US4592944A (en) | 1982-05-24 | 1986-06-03 | International Business Machines Corporation | Method for providing a top seal coating on a substrate containing an electrically conductive pattern and coated article |
US4522897A (en) | 1983-10-14 | 1985-06-11 | Cape Cod Research, Inc. | Rope batteries |
US4783237A (en) | 1983-12-01 | 1988-11-08 | Harry E. Aine | Solid state transducer and method of making same |
US4601545A (en) | 1984-05-16 | 1986-07-22 | Kern Seymour P | Variable power lens system |
DE3506659A1 (de) | 1985-02-26 | 1986-08-28 | Basf Ag, 6700 Ludwigshafen | Verbundelektrode |
US4787903A (en) | 1985-07-24 | 1988-11-29 | Grendahl Dennis T | Intraocular lens |
DE3727945A1 (de) | 1986-08-22 | 1988-02-25 | Ricoh Kk | Fluessigkristallelement |
JPH0621218Y2 (ja) | 1986-12-26 | 1994-06-01 | ミドリ安全工業株式会社 | 変流器 |
US5219497A (en) | 1987-10-30 | 1993-06-15 | Innotech, Inc. | Method for manufacturing lenses using thin coatings |
US4873029A (en) | 1987-10-30 | 1989-10-10 | Blum Ronald D | Method for manufacturing lenses |
US4846031A (en) | 1987-11-04 | 1989-07-11 | Jl Tool And Machine Co. | Method and apparatus for blanking molded parts |
US4816031A (en) | 1988-01-29 | 1989-03-28 | Pfoff David S | Intraocular lens system |
US4939000A (en) | 1989-08-22 | 1990-07-03 | Sony Corporation | Carbon slurry regeneration method |
US5227805A (en) | 1989-10-26 | 1993-07-13 | Motorola, Inc. | Antenna loop/battery spring |
US5168018A (en) * | 1990-05-17 | 1992-12-01 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing zinc-alkaline batteries |
US5112703A (en) | 1990-07-03 | 1992-05-12 | Beta Power, Inc. | Electrochemical battery cell having a monolithic bipolar flat plate beta" al |
JPH05225989A (ja) | 1992-02-14 | 1993-09-03 | Yuasa Corp | 薄形電池の製造方法 |
US5358539A (en) | 1992-10-29 | 1994-10-25 | Valence Technology, Inc. | Method for making a battery assembly |
US6322589B1 (en) | 1995-10-06 | 2001-11-27 | J. Stuart Cumming | Intraocular lenses with fixated haptics |
US5540741A (en) | 1993-03-05 | 1996-07-30 | Bell Communications Research, Inc. | Lithium secondary battery extraction method |
US5418091A (en) | 1993-03-05 | 1995-05-23 | Bell Communications Research, Inc. | Polymeric electrolytic cell separator membrane |
WO1994023334A1 (en) | 1993-04-07 | 1994-10-13 | The Technology Partnership Plc | Switchable lens |
JPH0765817A (ja) | 1993-08-23 | 1995-03-10 | Matsushita Electric Ind Co Ltd | アルカリ電池 |
DE9315669U1 (de) | 1993-10-14 | 1995-02-09 | Junghans Uhren Gmbh, 78713 Schramberg | Kleine Funkuhr |
US5435874A (en) | 1993-11-01 | 1995-07-25 | Wilson Greatbatch Ltd. | Process for making cathode components for use in electrochemical cells |
JPH0837190A (ja) | 1994-07-22 | 1996-02-06 | Nec Corp | 半導体装置 |
US5478420A (en) | 1994-07-28 | 1995-12-26 | International Business Machines Corporation | Process for forming open-centered multilayer ceramic substrates |
US5492782A (en) | 1994-12-06 | 1996-02-20 | Hughes Aircraft Company | Battery having fiber electrodes |
JPH08162823A (ja) | 1994-12-08 | 1996-06-21 | Citizen Watch Co Ltd | ページャー受信機 |
US5549988A (en) | 1995-03-10 | 1996-08-27 | Motorola, Inc. | Polymer electrolytes and electrochemical cells using same |
US5596567A (en) | 1995-03-31 | 1997-01-21 | Motorola, Inc. | Wireless battery charging system |
US5568353A (en) | 1995-04-03 | 1996-10-22 | Motorola, Inc. | Electrochemical capacitor and method of making same |
US6004691A (en) | 1995-10-30 | 1999-12-21 | Eshraghi; Ray R. | Fibrous battery cells |
WO1997017737A1 (en) | 1995-11-06 | 1997-05-15 | Battery Technologies Inc. | Rechargeable alkaline cells containing zinc anodes without added mercury |
US5682210A (en) | 1995-12-08 | 1997-10-28 | Weirich; John | Eye contact lens video display system |
US5792574A (en) | 1996-03-04 | 1998-08-11 | Sharp Kabushiki Kaisha | Nonaqueous secondary battery |
JPH09266636A (ja) | 1996-03-28 | 1997-10-07 | Nippon Zeon Co Ltd | 医療機器用駆動装置のバッテリー装置 |
US6933331B2 (en) | 1998-05-22 | 2005-08-23 | Nanoproducts Corporation | Nanotechnology for drug delivery, contrast agents and biomedical implants |
JPH10209185A (ja) | 1997-01-24 | 1998-08-07 | Matsushita Electric Works Ltd | 半導体パッケージの搬送方法 |
JP3787208B2 (ja) | 1997-02-05 | 2006-06-21 | 新日鐵化学株式会社 | 塗料ベース剤及び重防食用塗料組成物 |
KR19980067735A (ko) | 1997-02-11 | 1998-10-15 | 문정환 | 반도체 패키지의 제조방법 |
DE19714937A1 (de) | 1997-04-10 | 1998-10-15 | Bayerische Motoren Werke Ag | Datenbussystem für Kraftfahrzeuge |
US6242132B1 (en) | 1997-04-16 | 2001-06-05 | Ut-Battelle, Llc | Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery |
DE29714185U1 (de) | 1997-08-08 | 1998-12-03 | Gebrüder Junghans GmbH, 78713 Schramberg | Funkarmbanduhr |
JP3001481B2 (ja) | 1997-10-27 | 2000-01-24 | 九州日本電気株式会社 | 半導体装置およびその製造方法 |
GB9727222D0 (en) | 1997-12-23 | 1998-02-25 | Aea Technology Plc | Cell recycling |
US6517974B1 (en) | 1998-01-30 | 2003-02-11 | Canon Kabushiki Kaisha | Lithium secondary battery and method of manufacturing the lithium secondary battery |
US6610440B1 (en) | 1998-03-10 | 2003-08-26 | Bipolar Technologies, Inc | Microscopic batteries for MEMS systems |
US6217171B1 (en) | 1998-05-26 | 2001-04-17 | Novartis Ag | Composite ophthamic lens |
WO2000004601A1 (en) | 1998-07-16 | 2000-01-27 | Koninklijke Philips Electronics N.V. | Lithium secondary battery |
DE19837912C1 (de) | 1998-08-20 | 1999-10-28 | Implex Hear Tech Ag | Energieversorgungsmodul für eine implantierbare Vorrichtung |
DE19844296A1 (de) | 1998-09-18 | 2000-03-23 | Biotronik Mess & Therapieg | Anordnung zur Patientenüberwachung |
US20070285385A1 (en) | 1998-11-02 | 2007-12-13 | E Ink Corporation | Broadcast system for electronic ink signs |
DE19858172A1 (de) | 1998-12-16 | 2000-06-21 | Campus Micro Technologies Gmbh | Implantat zur Messung des Augeninnendrucks |
US6379835B1 (en) | 1999-01-12 | 2002-04-30 | Morgan Adhesives Company | Method of making a thin film battery |
JP2000228213A (ja) | 1999-02-04 | 2000-08-15 | Fuji Electric Co Ltd | エネルギー貯蔵素子およびその製造方法 |
WO2000049452A1 (en) | 1999-02-17 | 2000-08-24 | Kent State University | Electrically controllable liquid crystal microstructures |
US6273904B1 (en) | 1999-03-02 | 2001-08-14 | Light Sciences Corporation | Polymer battery for internal light device |
US6477410B1 (en) | 2000-05-31 | 2002-11-05 | Biophoretic Therapeutic Systems, Llc | Electrokinetic delivery of medicaments |
US6277520B1 (en) | 1999-03-19 | 2001-08-21 | Ntk Powerdex, Inc. | Thin lithium battery with slurry cathode |
US6316142B1 (en) | 1999-03-31 | 2001-11-13 | Imra America, Inc. | Electrode containing a polymeric binder material, method of formation thereof and electrochemical cell |
US6168884B1 (en) | 1999-04-02 | 2001-01-02 | Lockheed Martin Energy Research Corporation | Battery with an in-situ activation plated lithium anode |
JP2000299542A (ja) | 1999-04-13 | 2000-10-24 | Mitsui High Tec Inc | 積層型回路基板およびその製造方法 |
US6619799B1 (en) | 1999-07-02 | 2003-09-16 | E-Vision, Llc | Optical lens system with electro-active lens having alterably different focal lengths |
US6986579B2 (en) | 1999-07-02 | 2006-01-17 | E-Vision, Llc | Method of manufacturing an electro-active lens |
DE19930262A1 (de) | 1999-06-25 | 2000-12-28 | Biotronik Mess & Therapieg | Sender für die Telemetrieeinrichtung eines Implantats |
DE19930240A1 (de) | 1999-06-25 | 2000-12-28 | Biotronik Mess & Therapieg | Verfahren zur Datenabfrage bei der Implantatsnachsorge |
DE19930256A1 (de) | 1999-06-25 | 2000-12-28 | Biotronik Mess & Therapieg | Implantat mit Nah- und Fernfeldtelemetrie |
DE19930263A1 (de) | 1999-06-25 | 2000-12-28 | Biotronik Mess & Therapieg | Verfahren und Vorrichtung zur Datenübertragung zwischen einem elektromedizinischen Implantat und einem externen Gerät |
DE19930241A1 (de) | 1999-06-25 | 2000-12-28 | Biotronik Mess & Therapieg | Verfahren zur Datenübertragung bei der Implantatsüberwachung |
DE19930250A1 (de) | 1999-06-25 | 2001-02-15 | Biotronik Mess & Therapieg | Vorrichtung zur Überwachung von Daten insbesondere aus einem elektromedizinischen Implantat |
US6851805B2 (en) | 1999-07-02 | 2005-02-08 | E-Vision, Llc | Stabilized electro-active contact lens |
US7404636B2 (en) | 1999-07-02 | 2008-07-29 | E-Vision, Llc | Electro-active spectacle employing modal liquid crystal lenses |
JP3557130B2 (ja) | 1999-07-14 | 2004-08-25 | 新光電気工業株式会社 | 半導体装置の製造方法 |
JP2001110445A (ja) | 1999-10-12 | 2001-04-20 | Sony Corp | コード型バッテリ |
US6364482B1 (en) | 1999-11-03 | 2002-04-02 | Johnson & Johnson Vision Care, Inc. | Contact lens useful for avoiding dry eye |
DE10008917A1 (de) | 2000-02-25 | 2001-08-30 | Biotronik Mess & Therapieg | Anordnung zur Überwachung und Lokalisierung von Patienten |
US6391069B1 (en) | 2000-03-29 | 2002-05-21 | Valence Technology (Nevada), Inc. | Method of making bonded-electrode rechargeable electrochemical cells |
SG103298A1 (en) | 2000-06-16 | 2004-04-29 | Nisshin Spinning | Polymer battery and method of manufacture |
US7462194B1 (en) | 2000-08-04 | 2008-12-09 | Blake Larry W | Two part “L”-shaped phakic IOL |
JP5103693B2 (ja) | 2000-09-19 | 2012-12-19 | 大日本印刷株式会社 | 電池用積層フィルムおよびそれを用いた電池用容器 |
US6355501B1 (en) | 2000-09-21 | 2002-03-12 | International Business Machines Corporation | Three-dimensional chip stacking assembly |
JP4172566B2 (ja) | 2000-09-21 | 2008-10-29 | Tdk株式会社 | セラミック多層基板の表面電極構造及び表面電極の製造方法 |
US6781817B2 (en) | 2000-10-02 | 2004-08-24 | Biosource, Inc. | Fringe-field capacitor electrode for electrochemical device |
JP3854054B2 (ja) | 2000-10-10 | 2006-12-06 | 株式会社東芝 | 半導体装置 |
US6795250B2 (en) | 2000-12-29 | 2004-09-21 | Lenticlear Lenticular Lens, Inc. | Lenticular lens array |
US7550230B2 (en) | 2001-03-15 | 2009-06-23 | Powergenix Systems, Inc. | Electrolyte composition for nickel-zinc batteries |
US6748994B2 (en) | 2001-04-11 | 2004-06-15 | Avery Dennison Corporation | Label applicator, method and label therefor |
US6769767B2 (en) | 2001-04-30 | 2004-08-03 | Qr Spex, Inc. | Eyewear with exchangeable temples housing a transceiver forming ad hoc networks with other devices |
US6811805B2 (en) | 2001-05-30 | 2004-11-02 | Novatis Ag | Method for applying a coating |
EP1408071A4 (en) | 2001-06-28 | 2008-09-03 | Hitoshi Kanazawa | METHOD OF MODIFYING POLYMERIC MATERIALS AND USE OF SAID MATERIALS |
US6638304B2 (en) | 2001-07-20 | 2003-10-28 | Massachusetts Eye & Ear Infirmary | Vision prosthesis |
US6885818B2 (en) | 2001-07-30 | 2005-04-26 | Hewlett-Packard Development Company, L.P. | System and method for controlling electronic devices |
DE10143898B4 (de) | 2001-09-07 | 2005-07-14 | Carl Freudenberg Kg | Alkalische Zelle oder Batterie |
TW560102B (en) | 2001-09-12 | 2003-11-01 | Itn Energy Systems Inc | Thin-film electrochemical devices on fibrous or ribbon-like substrates and methd for their manufacture and design |
US20030059526A1 (en) | 2001-09-12 | 2003-03-27 | Benson Martin H. | Apparatus and method for the design and manufacture of patterned multilayer thin films and devices on fibrous or ribbon-like substrates |
US20030068559A1 (en) | 2001-09-12 | 2003-04-10 | Armstrong Joseph H. | Apparatus and method for the design and manufacture of multifunctional composite materials with power integration |
EP1304193A3 (de) | 2001-10-10 | 2004-12-01 | imt robot AG | Verfahren zum automatisierten Auflegen von Objekten auf einen Träger |
AU2002347567B2 (en) | 2001-10-24 | 2008-07-17 | Power Paper Ltd. | Dermal patch |
US6727022B2 (en) | 2001-11-19 | 2004-04-27 | Wilson Greatbatch Ltd. | Powder process for double current collector screen cathode preparation |
EP1316419A3 (en) | 2001-11-30 | 2004-01-28 | General Electric Company | Weatherable multilayer articles and method for their preparation |
US6599778B2 (en) | 2001-12-19 | 2003-07-29 | International Business Machines Corporation | Chip and wafer integration process using vertical connections |
CA2470172A1 (en) | 2001-12-31 | 2003-08-21 | Carl B. Sunderman | Instrumented rock bolt, data logger and user interface system |
JP2003202525A (ja) | 2002-01-09 | 2003-07-18 | Sun-Lux Optical Co Ltd | レンズ、玉型、及び眼鏡 |
US7763069B2 (en) | 2002-01-14 | 2010-07-27 | Abbott Medical Optics Inc. | Accommodating intraocular lens with outer support structure |
DE10201936A1 (de) | 2002-01-19 | 2003-07-31 | Fortu Bat Batterien Gmbh | Wiederaufladbare elektrochemische Batteriezelle |
KR100878519B1 (ko) | 2002-01-19 | 2009-01-13 | 삼성전자주식회사 | 광디스크 제조 방법 |
KR20030065074A (ko) | 2002-01-29 | 2003-08-06 | 주식회사 뉴턴에너지 | 전기화학셀 및 이의 제조방법 |
US6780347B2 (en) | 2002-02-04 | 2004-08-24 | Rayovac Corporation | Manganese oxide based electrode for alkaline electrochemical system and method of its production |
JP5021889B2 (ja) | 2002-02-12 | 2012-09-12 | エバレデイ バツテリ カンパニー インコーポレーテツド | 可撓性の薄い印刷電池およびデバイス並びにその製造方法 |
ITMI20020403A1 (it) | 2002-02-28 | 2003-08-28 | Ausimont Spa | Dispersioni acquose a base di ptfe |
US20030164563A1 (en) | 2002-03-04 | 2003-09-04 | Olin Calvin | Use of microwave energy to disassemble, release, and hydrate contact lenses |
EP1736291A3 (en) | 2002-03-04 | 2007-03-07 | Johnson and Johnson Vision Care, Inc. | Use of a microwave energy to disassemble, release and hydrate contact lenses |
KR20030075815A (ko) | 2002-03-18 | 2003-09-26 | 이기방 | Mems용 마이크로배터리와 이를 이용한 시스템 |
AU2003231046B2 (en) | 2002-04-25 | 2008-04-03 | E-Vision, Llc | Electro-active multi-focal spectacle lens |
CA2389907A1 (en) | 2002-06-07 | 2003-12-07 | Battery Technologies Inc. | Small format, high current density flat plate rechargeable electrochemical cell |
US6852254B2 (en) | 2002-06-26 | 2005-02-08 | Johnson & Johnson Vision Care, Inc. | Methods for the production of tinted contact lenses |
US6770176B2 (en) | 2002-08-02 | 2004-08-03 | Itn Energy Systems. Inc. | Apparatus and method for fracture absorption layer |
AU2003263881A1 (en) | 2002-08-09 | 2004-02-25 | E-Vision, Llc | Electro-active contact lens system |
US8535396B2 (en) | 2002-08-09 | 2013-09-17 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US7062708B2 (en) | 2002-09-19 | 2006-06-13 | International Business Machines Corporation | Tree construction for XML to XML document transformation |
US20040062985A1 (en) | 2002-09-30 | 2004-04-01 | Aamodt Paul B. | Contoured battery for implantable medical devices and method of manufacture |
US20040081860A1 (en) | 2002-10-29 | 2004-04-29 | Stmicroelectronics, Inc. | Thin-film battery equipment |
US7205072B2 (en) | 2002-11-01 | 2007-04-17 | The University Of Chicago | Layered cathode materials for lithium ion rechargeable batteries |
US20040091613A1 (en) | 2002-11-13 | 2004-05-13 | Wood Joe M. | Methods for the extraction of contact lenses |
US6906436B2 (en) | 2003-01-02 | 2005-06-14 | Cymbet Corporation | Solid state activity-activated battery device and method |
WO2004061887A1 (en) | 2003-01-02 | 2004-07-22 | Cymbet Corporation | Solid-state battery-powered devices and manufacturing methods |
US8076031B1 (en) | 2003-09-10 | 2011-12-13 | West Robert C | Electrochemical device having electrolyte including disiloxane |
JP3981034B2 (ja) | 2003-03-25 | 2007-09-26 | 富士フイルム株式会社 | カラー画像取得装置およびカラー電子カメラ |
JP4379778B2 (ja) | 2003-04-03 | 2009-12-09 | 株式会社シード | 薬物徐放性眼用レンズ |
WO2004093786A2 (en) | 2003-04-16 | 2004-11-04 | Corium International | Covalent and non-covalent crosslinking of hydrophilic polymers and adhesive compositions prepared therewith |
WO2004095606A2 (en) | 2003-04-23 | 2004-11-04 | Rechargeable Battery Corporation | Battery employing an electrode pellet having an inner electrode embedded therein |
US7160637B2 (en) | 2003-05-27 | 2007-01-09 | The Regents Of The University Of California | Implantable, miniaturized microbial fuel cell |
US20040241550A1 (en) | 2003-05-28 | 2004-12-02 | Wensley C. Glen | Battery separator for lithium polymer battery |
US6869998B2 (en) | 2003-06-23 | 2005-03-22 | Geo Specialty Chemicals, Inc. | Concrete or cement dispersant and method of use |
JP2005056714A (ja) | 2003-08-05 | 2005-03-03 | Matsushita Electric Ind Co Ltd | 正極合剤およびそれを用いたアルカリ乾電池 |
CA2535905A1 (en) | 2003-08-15 | 2005-02-24 | E-Vision, Llc | Enhanced electro-active lens system |
US7581124B1 (en) | 2003-09-19 | 2009-08-25 | Xilinx, Inc. | Method and mechanism for controlling power consumption of an integrated circuit |
JP4404300B2 (ja) | 2003-09-30 | 2010-01-27 | 日立マクセル株式会社 | 密閉角形電池 |
EP1760515A3 (en) | 2003-10-03 | 2011-08-31 | Invisia Ltd. | Multifocal ophthalmic lens |
ATE352054T1 (de) | 2003-10-03 | 2007-02-15 | Invisia Ltd | Multifocal-linse |
US7557433B2 (en) | 2004-10-25 | 2009-07-07 | Mccain Joseph H | Microelectronic device with integrated energy source |
JP4848613B2 (ja) | 2003-11-07 | 2011-12-28 | 株式会社Gsユアサ | 電池用集電体及びこれを用いた非水電解質電池 |
JP4598001B2 (ja) | 2003-12-30 | 2010-12-15 | エルジー・ケム・リミテッド | イオン性液体によって改質された正極及びこれを含む電気化学素子 |
US7494742B2 (en) | 2004-01-06 | 2009-02-24 | Cymbet Corporation | Layered barrier structure having one or more definable layers and method |
WO2005088388A1 (en) | 2004-03-05 | 2005-09-22 | Koninklijke Philips Electronics N.V. | Variable focus lens |
US7776468B2 (en) | 2004-03-18 | 2010-08-17 | The Gillette Company | Wafer alkaline cell |
US7531271B2 (en) | 2004-03-18 | 2009-05-12 | The Gillette Company | Wafer alkaline cell |
KR100625892B1 (ko) | 2004-04-12 | 2006-09-20 | 경상대학교산학협력단 | 실형태의 가변형 전지 |
US20050231677A1 (en) | 2004-04-13 | 2005-10-20 | Gerald Meredith | Patterned electrodes for electroactive liquid-crystal ophthalmic devices |
US8187740B2 (en) | 2004-04-27 | 2012-05-29 | Tel Aviv University Future Technology Development L.P. | 3-D microbatteries based on interlaced micro-container structures |
CA2467321A1 (en) | 2004-05-14 | 2005-11-14 | Paul J. Santerre | Polymeric coupling agents and pharmaceutically-active polymers made therefrom |
FR2871586B1 (fr) | 2004-06-11 | 2006-09-29 | Essilor Int | Verre ophtalmique a fonction electro-optique |
WO2006012135A1 (en) | 2004-06-24 | 2006-02-02 | Janssen Pharmaceutica, N. V. | Quaternary salt ccr2 antagonists |
US8766435B2 (en) | 2004-06-30 | 2014-07-01 | Stmicroelectronics, Inc. | Integrated circuit package including embedded thin-film battery |
US8153344B2 (en) | 2004-07-16 | 2012-04-10 | Ppg Industries Ohio, Inc. | Methods for producing photosensitive microparticles, aqueous compositions thereof and articles prepared therewith |
EP1622009A1 (en) | 2004-07-27 | 2006-02-01 | Texas Instruments Incorporated | JSM architecture and systems |
US7846575B2 (en) * | 2004-07-30 | 2010-12-07 | Medtronic, Inc. | Anode cup and methods of fabrication for medical grade electrochemical cells |
JP4752369B2 (ja) | 2004-08-24 | 2011-08-17 | ソニー株式会社 | 半導体装置および基板 |
EP1796320B1 (en) | 2004-09-21 | 2013-10-16 | Hitachi, Ltd. | Node device |
US20060066808A1 (en) | 2004-09-27 | 2006-03-30 | Blum Ronald D | Ophthalmic lenses incorporating a diffractive element |
US20060065989A1 (en) | 2004-09-29 | 2006-03-30 | Thad Druffel | Lens forming systems and methods |
US7781758B2 (en) | 2004-10-22 | 2010-08-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US20060099496A1 (en) | 2004-10-29 | 2006-05-11 | Aamodt Paul B | Separator container |
MX2007005198A (es) | 2004-11-02 | 2007-06-20 | E Vision Llc | Anteojos electro-activos y metodos para fabricarlos. |
US8778022B2 (en) | 2004-11-02 | 2014-07-15 | E-Vision Smart Optics Inc. | Electro-active intraocular lenses |
CN101094626A (zh) | 2004-11-02 | 2007-12-26 | E-视觉有限公司 | 电激活眼内透镜 |
JP5065038B2 (ja) | 2004-11-02 | 2012-10-31 | イー・ビジョン・エルエルシー | 電気駆動眼内レンズ |
EP1811894A2 (en) | 2004-11-04 | 2007-08-01 | L & P 100 Limited | Medical devices |
US7959769B2 (en) | 2004-12-08 | 2011-06-14 | Infinite Power Solutions, Inc. | Deposition of LiCoO2 |
WO2006063836A1 (en) | 2004-12-17 | 2006-06-22 | Novartis Ag | Colored contact lenses for enhancing a wearer’s natural eye color |
US8368096B2 (en) | 2005-01-04 | 2013-02-05 | Aac Technologies Japan R&D Center Co., Ltd. | Solid state image pick-up device and method for manufacturing the same with increased structural integrity |
NZ556348A (en) | 2005-01-06 | 2011-01-28 | Univ Rutgers | Electrochemically self assembled batteries |
DE102005001148B3 (de) | 2005-01-10 | 2006-05-18 | Siemens Ag | Elektronikeinheit mit EMV-Schirmung |
ATE504095T1 (de) | 2005-01-20 | 2011-04-15 | Oticon As | Hörgerät mit wiederaufladbarer batterie und wiederaufladbare batterie |
KR100877816B1 (ko) | 2005-01-21 | 2009-01-12 | 주식회사 엘지화학 | 안전성이 향상된 전지팩 |
US20060166088A1 (en) | 2005-01-26 | 2006-07-27 | Hokanson Karl E | Electrode connector tabs |
US7928591B2 (en) | 2005-02-11 | 2011-04-19 | Wintec Industries, Inc. | Apparatus and method for predetermined component placement to a target platform |
US20060210877A1 (en) | 2005-03-15 | 2006-09-21 | Rechargable Battery Corporation | Flexible pasted anode, primary cell with pasted anode, and method for making same |
US7364945B2 (en) | 2005-03-31 | 2008-04-29 | Stats Chippac Ltd. | Method of mounting an integrated circuit package in an encapsulant cavity |
JP4790297B2 (ja) | 2005-04-06 | 2011-10-12 | ルネサスエレクトロニクス株式会社 | 半導体装置およびその製造方法 |
US7976577B2 (en) | 2005-04-14 | 2011-07-12 | Acufocus, Inc. | Corneal optic formed of degradation resistant polymer |
US7776471B2 (en) | 2005-04-15 | 2010-08-17 | Rocket Electric Co., Ltd. | Electrode of ultra thin manganese battery and manufacturing method therefor |
US7163839B2 (en) | 2005-04-27 | 2007-01-16 | Spansion Llc | Multi-chip module and method of manufacture |
JP4492432B2 (ja) | 2005-05-13 | 2010-06-30 | 株式会社デンソー | 物理量センサ装置の製造方法 |
US7500750B2 (en) | 2005-05-24 | 2009-03-10 | Anton Sabeta | Method and system for tracking the wearable life of an ophthalmic product |
KR100742739B1 (ko) | 2005-07-15 | 2007-07-25 | 경상대학교산학협력단 | 직조가 쉬운 실 형태의 가변형 전지 |
US7548040B2 (en) | 2005-07-28 | 2009-06-16 | Zerog Wireless, Inc. | Wireless battery charging of electronic devices such as wireless headsets/headphones |
DE102005038542A1 (de) | 2005-08-16 | 2007-02-22 | Forschungszentrum Karlsruhe Gmbh | Künstliches Akkommodationssystem |
US20070125644A1 (en) | 2005-09-15 | 2007-06-07 | Board Of Regents, The University Of Texas System | Reduction of the loss of zinc by its reaction with oxygen in galvanized steel and batteries |
WO2007037275A1 (ja) | 2005-09-28 | 2007-04-05 | Matsushita Electric Industrial Co., Ltd. | 電子回路接続構造体およびその製造方法 |
CN101351907B (zh) | 2005-10-11 | 2010-09-29 | 埃克塞勒特龙固体公司 | 制造锂电池的方法 |
US20070090869A1 (en) | 2005-10-26 | 2007-04-26 | Motorola, Inc. | Combined power source and printed transistor circuit apparatus and method |
US20070128420A1 (en) | 2005-12-07 | 2007-06-07 | Mariam Maghribi | Hybrid composite for biological tissue interface devices |
CN1808744A (zh) | 2005-12-09 | 2006-07-26 | 水新国 | 一种以铝合金为负极材料的化学电池 |
EP1973587B1 (en) | 2005-12-12 | 2019-02-06 | AllAccem, Inc. | Methods and systems for preparing antimicrobial films and coatings |
WO2007070717A2 (en) | 2005-12-15 | 2007-06-21 | Cardiac Pacemakers, Inc. | Method and apparatus for flexible battery for implantable device |
RU2310952C2 (ru) | 2005-12-16 | 2007-11-20 | Общество с ограниченной ответственностью "Национальная инновационная компания "Новые энергетические проекты" | Трубчатый элемент (его варианты), батарея трубчатых элементов с токопроходом по образующей и способ его изготовления |
JPWO2007072781A1 (ja) | 2005-12-20 | 2009-05-28 | 日本電気株式会社 | 蓄電装置 |
US20070141463A1 (en) | 2005-12-21 | 2007-06-21 | Maya Stevanovic | Cathode for battery |
US20080020874A1 (en) | 2006-01-09 | 2008-01-24 | Yao-Jen Huang | Structure of softball |
US20070159562A1 (en) | 2006-01-10 | 2007-07-12 | Haddock Joshua N | Device and method for manufacturing an electro-active spectacle lens involving a mechanically flexible integration insert |
CN101395520A (zh) | 2006-01-10 | 2009-03-25 | E-视觉有限公司 | 包含可机械弯曲集成插件的电激活眼镜镜片的改进制造装置和方法 |
CN101375075B (zh) | 2006-02-21 | 2011-05-18 | 博格华纳公司 | 分段式芯片和摩擦盘 |
EP1994585B1 (en) | 2006-03-08 | 2014-04-02 | LG Chem, Ltd. | Lithium secondary battery of improved performance |
US7794643B2 (en) | 2006-03-24 | 2010-09-14 | Ricoh Company, Ltd. | Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same |
FR2899388B1 (fr) | 2006-03-28 | 2008-12-05 | Saint Gobain | Substrat muni d'un element electroconducteur a fonction d'antenne |
CN100456274C (zh) | 2006-03-29 | 2009-01-28 | 深圳迈瑞生物医疗电子股份有限公司 | 易于扩展的多cpu系统 |
JP4171922B2 (ja) | 2006-04-12 | 2008-10-29 | 船井電機株式会社 | ミュート装置、液晶ディスプレイテレビ、及びミュート方法 |
RU2307429C1 (ru) | 2006-04-20 | 2007-09-27 | Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) | Способ получения поверхностно-модифицированного катодного материала со слоистой структурой для литиевых и литий-ионных аккумуляторов |
JP4923704B2 (ja) | 2006-04-28 | 2012-04-25 | ソニー株式会社 | 光学素子の成形装置および成形方法 |
JP4918373B2 (ja) | 2006-04-28 | 2012-04-18 | オリンパス株式会社 | 積層実装構造体 |
US8197539B2 (en) | 2006-05-05 | 2012-06-12 | University Of Southern California | Intraocular camera for retinal prostheses |
JP5011820B2 (ja) | 2006-05-24 | 2012-08-29 | オムロン株式会社 | 積層デバイス、およびその製造方法 |
CA2655293C (en) | 2006-06-12 | 2016-02-09 | Johnson & Johnson Vision Care, Inc. | Method to reduce power consumption with electro-optic lenses |
US7878650B2 (en) | 2006-06-29 | 2011-02-01 | Fritsch Michael H | Contact lens materials, designs, substances, and methods |
JP5014695B2 (ja) | 2006-07-19 | 2012-08-29 | カルソニックカンセイ株式会社 | エキゾーストマニホールドの集合部構造 |
JP2008033021A (ja) | 2006-07-28 | 2008-02-14 | Fuji Xerox Co Ltd | ホログラム記録方法及びホログラム記録装置 |
JP2008078119A (ja) | 2006-08-25 | 2008-04-03 | Ngk Insulators Ltd | 全固体蓄電素子 |
WO2008025061A1 (en) | 2006-08-28 | 2008-03-06 | Frankie James Lagudi | Online hosted customisable merchant directory with search function |
JP5352787B2 (ja) | 2006-08-28 | 2013-11-27 | 国立大学法人京都大学 | 2次元フォトニック結晶熱輻射光源 |
KR20090051111A (ko) | 2006-09-01 | 2009-05-20 | 존슨 앤드 존슨 비젼 케어, 인코포레이티드 | 저항성 전극을 탑재한 전기광학 렌즈 |
CN101542788A (zh) | 2006-09-25 | 2009-09-23 | 德克萨斯州立大学董事会 | 具有低不可逆容量损失的经表面和整体改性的高容量层状氧化物阴极 |
US7839124B2 (en) | 2006-09-29 | 2010-11-23 | Semiconductor Energy Laboratory Co., Ltd. | Wireless power storage device comprising battery, semiconductor device including battery, and method for operating the wireless power storage device |
JP2008088019A (ja) | 2006-10-02 | 2008-04-17 | Ohara Inc | ガラス組成物 |
EP2078263B1 (en) | 2006-10-31 | 2019-06-12 | Semiconductor Energy Laboratory Co, Ltd. | Semiconductor device |
US7324287B1 (en) | 2006-11-07 | 2008-01-29 | Corning Incorporated | Multi-fluid lenses and optical devices incorporating the same |
TWI324380B (en) | 2006-12-06 | 2010-05-01 | Princo Corp | Hybrid structure of multi-layer substrates and manufacture method thereof |
JP2008178226A (ja) | 2007-01-18 | 2008-07-31 | Fujitsu Ltd | 電源装置および負荷装置への電源電圧の供給方法 |
AR064985A1 (es) | 2007-01-22 | 2009-05-06 | E Vision Llc | Lente electroactivo flexible |
US7976976B2 (en) | 2007-02-07 | 2011-07-12 | Rosecreek Technologies Inc. | Composite current collector |
AU2008218240B2 (en) | 2007-02-23 | 2014-01-30 | E-Vision Smart Optics, Inc. | Ophthalmic dynamic aperture |
US8446341B2 (en) | 2007-03-07 | 2013-05-21 | University Of Washington | Contact lens with integrated light-emitting component |
WO2008109867A2 (en) | 2007-03-07 | 2008-09-12 | University Of Washington | Active contact lens |
US20090091818A1 (en) | 2007-10-05 | 2009-04-09 | Haddock Joshua N | Electro-active insert |
JP2008227068A (ja) | 2007-03-12 | 2008-09-25 | Toshiba Corp | 半導体装置およびその製造方法 |
CA2684196A1 (en) | 2007-03-12 | 2008-09-18 | Pixeloptics, Inc. | Electrical insulating layers, uv protection, and voltage spiking for electro-active diffractive optics |
US8586244B2 (en) | 2007-04-02 | 2013-11-19 | Eveready Battery Co., Inc. | Alkaline electrochemical cell having a negative electrode with solid zinc oxide and a surfactant |
TWI335652B (en) | 2007-04-04 | 2011-01-01 | Unimicron Technology Corp | Stacked packing module |
WO2008124167A1 (en) | 2007-04-10 | 2008-10-16 | The Regents Of The University Of California | Charge storage devices containing carbon nanotube films as electrodes and charge collectors |
TW200842996A (en) | 2007-04-17 | 2008-11-01 | Advanced Semiconductor Eng | Method for forming bumps on under bump metallurgy |
JP5181526B2 (ja) | 2007-05-08 | 2013-04-10 | ソニー株式会社 | 燃料電池、燃料電池の製造方法および電子機器 |
JP2008281095A (ja) | 2007-05-10 | 2008-11-20 | Nsk Ltd | シンクロナイザリングの製造方法 |
JP5219065B2 (ja) | 2007-06-28 | 2013-06-26 | 株式会社神戸製鋼所 | フェライト組織予測方法 |
US7818698B2 (en) | 2007-06-29 | 2010-10-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Accurate parasitic capacitance extraction for ultra large scale integrated circuits |
US8317321B2 (en) | 2007-07-03 | 2012-11-27 | Pixeloptics, Inc. | Multifocal lens with a diffractive optical power region |
EP2176814A4 (en) | 2007-07-18 | 2012-06-13 | Blue Spark Technologies Inc | INTEGRATED ELECTRONIC DEVICE AND METHODS OF PREPARATION |
WO2009018315A2 (en) | 2007-08-01 | 2009-02-05 | Blue Spark Technologies, Inc. | Integrated electronic device and methods of making the same |
WO2009020648A1 (en) | 2007-08-09 | 2009-02-12 | The Regents Of The University Of California | Electroactive polymer actuation of implants |
US7816031B2 (en) | 2007-08-10 | 2010-10-19 | The Board Of Trustees Of The Leland Stanford Junior University | Nanowire battery methods and arrangements |
US20090042066A1 (en) | 2007-08-10 | 2009-02-12 | Mphase Technologies, Inc. | Adjustable Barrier For Regulating Flow Of A Fluid |
US20090042065A1 (en) | 2007-08-10 | 2009-02-12 | Mphase Technologies, Inc. | Event Activated Micro Control Devices |
US20090050267A1 (en) | 2007-08-11 | 2009-02-26 | Maverick Enterprises, Inc. | Customizable item labeling system for use in manufacturing, packaging, product shipment-fulfillment, distribution, and on-site operations, adaptable for validation of variable-shaped items |
US10105441B2 (en) | 2007-08-16 | 2018-10-23 | The Schepens Eye Research Institute, Inc. | Method for inhibiting or reducing dry eye disease by IL-1Ra |
US20090092903A1 (en) | 2007-08-29 | 2009-04-09 | Johnson Lonnie G | Low Cost Solid State Rechargeable Battery and Method of Manufacturing Same |
US20090057289A1 (en) | 2007-09-05 | 2009-03-05 | Cole Williams | Electrically heated articles of apparel having variable heating characteristics and methods of making same |
JP2009087895A (ja) | 2007-10-03 | 2009-04-23 | Panasonic Corp | アルカリ乾電池 |
DE102007048859A1 (de) | 2007-10-11 | 2009-04-16 | Robert Bosch Gmbh | Intraokularlinse sowie System |
WO2009048647A1 (en) | 2007-10-11 | 2009-04-16 | Pixeloptics Inc. | Alignment of liquid crystalline materials to surface relief diffractive structures |
US8608310B2 (en) | 2007-11-07 | 2013-12-17 | University Of Washington Through Its Center For Commercialization | Wireless powered contact lens with biosensor |
EP2217290A2 (en) | 2007-11-28 | 2010-08-18 | DSM IP Assets B.V. | Silicone hydrogels for tissue adhesives and tissue dressing applications |
JP5439757B2 (ja) | 2007-12-07 | 2014-03-12 | ソニー株式会社 | 燃料電池および電子機器 |
KR20100097217A (ko) | 2007-12-19 | 2010-09-02 | 블루 스파크 테크놀러지스, 인크. | 고전류의 박형 전기화학적 셀 및 이의 제조 방법 |
US20090175016A1 (en) | 2008-01-04 | 2009-07-09 | Qimonda Ag | Clip for attaching panels |
CA3069576A1 (en) | 2008-01-09 | 2009-07-16 | The Schepens Eye Research Institute, Inc. | Therapeutic compositions for treatment of ocular inflammatory disorders |
WO2009091911A1 (en) | 2008-01-15 | 2009-07-23 | Cardiac Pacemakers, Inc. | Implantable medical device with antenna |
US20090202899A1 (en) | 2008-02-11 | 2009-08-13 | Pyszczek Michael F | Electrical apparatus with integral thin film solid state battery and methods of manufacture |
TWI511869B (zh) | 2008-02-20 | 2015-12-11 | Johnson & Johnson Vision Care | 激能生醫裝置 |
EP2099165A1 (en) | 2008-03-03 | 2009-09-09 | Thomson Licensing | Deterministic back-off method and apparatus for peer-to-peer communications |
JP2011513380A (ja) | 2008-03-04 | 2011-04-28 | ナトコ ファーマ リミテッド | フェニルアミノピリミジン誘導体の結晶型 |
WO2009113296A1 (ja) | 2008-03-14 | 2009-09-17 | 住友ベークライト株式会社 | 半導体素子接着フィルム形成用樹脂ワニス、半導体素子接着フィルム、および半導体装置 |
EP2271964A4 (en) | 2008-03-18 | 2017-09-20 | Mitsui Chemicals, Inc. | Advanced electro-active optic device |
US20090243125A1 (en) | 2008-03-26 | 2009-10-01 | Pugh Randall B | Methods and apparatus for ink jet provided energy receptor |
US7931832B2 (en) | 2008-03-31 | 2011-04-26 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens media insert |
US8523354B2 (en) | 2008-04-11 | 2013-09-03 | Pixeloptics Inc. | Electro-active diffractive lens and method for making the same |
US8361492B2 (en) | 2008-04-29 | 2013-01-29 | Ocugenics, LLC | Drug delivery system and methods of use |
JP4484936B2 (ja) | 2008-05-13 | 2010-06-16 | シャープ株式会社 | 燃料電池および燃料電池スタック |
FR2934056B1 (fr) | 2008-07-21 | 2011-01-07 | Essilor Int | Procede de transfert d'une portion de film fonctionnel |
JP2010034254A (ja) | 2008-07-29 | 2010-02-12 | Mitsubishi Chemicals Corp | 三次元lsi |
US8014166B2 (en) | 2008-09-06 | 2011-09-06 | Broadpak Corporation | Stacking integrated circuits containing serializer and deserializer blocks using through silicon via |
US20100062342A1 (en) | 2008-09-09 | 2010-03-11 | Lin-Feng Li | Polymer membrane utilized as a separator in rechargeable zinc cells |
JP2010073533A (ja) | 2008-09-19 | 2010-04-02 | National Institute Of Advanced Industrial Science & Technology | 充放電可能な電池 |
US9296158B2 (en) | 2008-09-22 | 2016-03-29 | Johnson & Johnson Vision Care, Inc. | Binder of energized components in an ophthalmic lens |
US20100076553A1 (en) | 2008-09-22 | 2010-03-25 | Pugh Randall B | Energized ophthalmic lens |
US9675443B2 (en) | 2009-09-10 | 2017-06-13 | Johnson & Johnson Vision Care, Inc. | Energized ophthalmic lens including stacked integrated components |
JP4764942B2 (ja) | 2008-09-25 | 2011-09-07 | シャープ株式会社 | 光学素子、光学素子ウエハ、光学素子ウエハモジュール、光学素子モジュール、光学素子モジュールの製造方法、電子素子ウエハモジュール、電子素子モジュールの製造方法、電子素子モジュールおよび電子情報機器 |
US20100078837A1 (en) | 2008-09-29 | 2010-04-01 | Pugh Randall B | Apparatus and method for formation of an energized ophthalmic device |
US8348424B2 (en) | 2008-09-30 | 2013-01-08 | Johnson & Johnson Vision Care, Inc. | Variable focus ophthalmic device |
US9427920B2 (en) | 2008-09-30 | 2016-08-30 | Johnson & Johnson Vision Care, Inc. | Energized media for an ophthalmic device |
RU2380794C1 (ru) | 2008-10-10 | 2010-01-27 | Эрика Александровна Алисова | Электрохимический элемент с твердым электролитом |
US8092013B2 (en) | 2008-10-28 | 2012-01-10 | Johnson & Johnson Vision Care, Inc. | Apparatus and method for activation of components of an energized ophthalmic lens |
US9375886B2 (en) | 2008-10-31 | 2016-06-28 | Johnson & Johnson Vision Care Inc. | Ophthalmic device with embedded microcontroller |
US9375885B2 (en) | 2008-10-31 | 2016-06-28 | Johnson & Johnson Vision Care, Inc. | Processor controlled ophthalmic device |
CN102217122A (zh) | 2008-11-19 | 2011-10-12 | 独立行政法人产业技术综合研究所 | 纤维电池用镍正极 |
EP2364127B1 (en) | 2008-11-20 | 2016-08-31 | Insight Innovations, Llc | Biocompatible biodegradable intraocular implant system |
JP5694947B2 (ja) | 2008-12-11 | 2015-04-01 | エムシー10 インコーポレイテッドMc10,Inc. | 医療用途のための伸張性電子部品を使用する装置 |
JP5056779B2 (ja) | 2009-03-11 | 2012-10-24 | 株式会社富士通ゼネラル | ロータリ圧縮機 |
KR20100102969A (ko) | 2009-03-12 | 2010-09-27 | 한전케이피에스 주식회사 | 터빈 설비의 윤활계통 오일여과 장치 |
JP2012523677A (ja) | 2009-04-13 | 2012-10-04 | アプライド マテリアルズ インコーポレイテッド | 金属化カーボンナノチューブおよびナノファイバを含む複合材料 |
JP2010251113A (ja) | 2009-04-15 | 2010-11-04 | Sony Corp | 固体電解質電池の製造方法および固体電解質電池 |
US8636358B2 (en) | 2009-05-17 | 2014-01-28 | Helmut Binder | Lens with variable refraction power for the human eye |
US8373235B2 (en) | 2009-05-22 | 2013-02-12 | Unisantis Electronics Singapore Pte Ltd. | Semiconductor memory device and production method therefor |
FR2946461B1 (fr) | 2009-06-09 | 2011-07-22 | Commissariat Energie Atomique | Dispositif d'encapsulation flexible d'une micro-batterie |
KR20170116207A (ko) | 2009-07-06 | 2017-10-18 | 하우징 앤드 디벨로프먼트 보드 | 식물 트레이 |
EP2455998B8 (en) | 2009-07-14 | 2017-10-18 | Kawasaki Jukogyo Kabushiki Kaisha | Electrical storage device provided with fiber electrodes, and method for producing same |
WO2011014743A2 (en) | 2009-07-31 | 2011-02-03 | North Carolina State University | Beam steering devices including stacked liquid crystal polarization gratings and related methods of operation |
LT2459220T (lt) | 2009-07-31 | 2020-12-28 | Ascendis Pharma A/S | Biologiškai suyrantys vandenyje netirpūs hidrogeliai polietilenglikolio pagrindu |
GB0913722D0 (en) | 2009-08-06 | 2009-09-16 | Bac2 Ltd | Electrical device |
US20110039150A1 (en) | 2009-08-14 | 2011-02-17 | Yichun Wang | Alkaline primary cells |
TW201108493A (en) | 2009-08-20 | 2011-03-01 | Battery Energy Technology Inc | Synthesizing method for manufacturing cathode material with high tap density olivine structure |
EP2299515B1 (fr) | 2009-08-28 | 2013-04-03 | STMicroelectronics (Tours) SAS | Procédé d'encapsulation d'une batterie de type lithium-ion en couches minces directement sur le substrat |
WO2011030139A1 (en) | 2009-09-11 | 2011-03-17 | Astrazeneca Ab | 4- (pyrimidin-2-yl) -piperazine and 4- (pyrimidin-2-yl) -piperidine derivatives as gpr119 modulators |
EP2485315A4 (en) | 2009-09-28 | 2015-01-28 | Univ Shizuoka Nat Univ Corp | SOLVENTS FOR ELECTROLYTIC SOLUTION, ELECTROLYTIC SOLUTION AND GEL ELECTROLYTE |
US8784511B2 (en) | 2009-09-28 | 2014-07-22 | Stmicroelectronics (Tours) Sas | Method for forming a thin-film lithium-ion battery |
EP2306579A1 (fr) | 2009-09-28 | 2011-04-06 | STMicroelectronics (Tours) SAS | Procédé de formation d'une batterie lithium-ion en couches minces |
PT104766A (pt) | 2009-09-29 | 2011-03-29 | Univ Nova De Lisboa | Dispositivo de produção e /ou armazenamento de energia baseado em fibras e filmes finos. |
US8137148B2 (en) | 2009-09-30 | 2012-03-20 | General Electric Company | Method of manufacturing monolithic parallel interconnect structure |
JPWO2011046006A1 (ja) | 2009-10-16 | 2013-03-04 | オリンパス株式会社 | 燃料電池、電池、および燃料電池用電極 |
KR101761432B1 (ko) | 2009-11-06 | 2017-07-25 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
WO2011083105A1 (en) | 2010-01-05 | 2011-07-14 | Sensimed Sa | Intraocular pressure monitoring device |
US8433409B2 (en) | 2010-01-29 | 2013-04-30 | Medtronic, Inc. | Implantable medical device battery |
US9172088B2 (en) | 2010-05-24 | 2015-10-27 | Amprius, Inc. | Multidimensional electrochemically active structures for battery electrodes |
JP5591567B2 (ja) | 2010-03-17 | 2014-09-17 | 富士フイルム株式会社 | インクセット、及びこれを用いた画像形成方法 |
JPWO2011135818A1 (ja) | 2010-04-28 | 2013-07-18 | パナソニック株式会社 | 二次電池 |
CN102959769A (zh) | 2010-04-28 | 2013-03-06 | 弗莱克赛尔有限责任公司 | 薄的柔性电化学能量电池 |
JP5209075B2 (ja) | 2010-05-21 | 2013-06-12 | 有限会社 ナプラ | 電子デバイス及びその製造方法 |
EP2577388A1 (en) | 2010-06-01 | 2013-04-10 | Elenza, Inc. | Implantable ophthalmic device with an aspheric lens |
JP2012003970A (ja) * | 2010-06-17 | 2012-01-05 | Finecs Kk | 二次電池用金属箔および二次電池 |
CA2803128C (en) | 2010-06-20 | 2018-08-14 | Elenza, Inc. | Ophthalmic devices and methods with application-specific integrated circuits |
AU2011286242A1 (en) | 2010-07-26 | 2013-03-07 | Elenza, Inc. | Hermetically sealed implantable ophthalmic devices and methods of making same |
DE102010032784A1 (de) | 2010-07-29 | 2012-02-02 | Robert Bosch Gmbh | Bedienvorrichtung |
US8634145B2 (en) | 2010-07-29 | 2014-01-21 | Johnson & Johnson Vision Care, Inc. | Liquid meniscus lens with concave torus-segment meniscus wall |
EP2412305A1 (en) | 2010-07-30 | 2012-02-01 | Ophtimalia | Integrated flexible passive sensor in a soft contact lens for IOP monitoring |
US20120024295A1 (en) | 2010-07-30 | 2012-02-02 | Mihin Chiropractic Clinic, LLC | Orthopedic device |
KR101072292B1 (ko) | 2010-08-14 | 2011-10-11 | 주식회사 샤인 | 섬유상의 구조체들을 포함하는 전극 조립체 및 이를 포함하는 전지 |
JP5777001B2 (ja) | 2010-08-23 | 2015-09-09 | セイコーインスツル株式会社 | 電子部品、電子装置、及び電子部品の製造方法 |
KR101322695B1 (ko) | 2010-08-25 | 2013-10-25 | 주식회사 엘지화학 | 케이블형 이차전지 |
WO2012033752A1 (en) | 2010-09-07 | 2012-03-15 | Elenza, Inc. | Installation and sealing of a battery on a thin glass wafer to supply power to an intraocular implant |
US8767309B2 (en) | 2010-09-08 | 2014-07-01 | Johnson & Johnson Vision Care, Inc. | Lens with multi-convex meniscus wall |
JP5664048B2 (ja) | 2010-09-13 | 2015-02-04 | セイコーエプソン株式会社 | 仕分装置 |
JP2012099470A (ja) | 2010-10-08 | 2012-05-24 | Sumitomo Chemical Co Ltd | リチウム二次電池用正極材料前駆体の製造方法およびリチウム二次電池用正極材料の製造方法 |
US9437856B2 (en) | 2010-10-28 | 2016-09-06 | Zeon Corporation | Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery |
CA2817017A1 (en) | 2010-11-15 | 2012-05-24 | Elenza, Inc. | Adaptive intraocular lens |
JP5788668B2 (ja) | 2010-12-03 | 2015-10-07 | 三栄源エフ・エフ・アイ株式会社 | コク味が増強されたコーヒー含有飲料又は茶飲料 |
US8950862B2 (en) | 2011-02-28 | 2015-02-10 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus for an ophthalmic lens with functional insert layers |
US9698129B2 (en) | 2011-03-18 | 2017-07-04 | Johnson & Johnson Vision Care, Inc. | Stacked integrated component devices with energization |
US10451897B2 (en) | 2011-03-18 | 2019-10-22 | Johnson & Johnson Vision Care, Inc. | Components with multiple energization elements for biomedical devices |
US9110310B2 (en) | 2011-03-18 | 2015-08-18 | Johnson & Johnson Vision Care, Inc. | Multiple energization elements in stacked integrated component devices |
US9233513B2 (en) | 2011-03-18 | 2016-01-12 | Johnson & Johnson Vision Care, Inc. | Apparatus for manufacturing stacked integrated component media inserts for ophthalmic devices |
US9804418B2 (en) | 2011-03-21 | 2017-10-31 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus for functional insert with power layer |
US9195075B2 (en) | 2011-03-21 | 2015-11-24 | Johnson & Johnson Vision Care, Inc. | Full rings for a functionalized layer insert of an ophthalmic lens |
US9102111B2 (en) | 2011-03-21 | 2015-08-11 | Johnson & Johnson Vision Care, Inc. | Method of forming a functionalized insert with segmented ring layers for an ophthalmic lens |
EP2508935A1 (en) | 2011-04-08 | 2012-10-10 | Nxp B.V. | Flexible eye insert and glucose measuring system |
US20120282519A1 (en) | 2011-05-06 | 2012-11-08 | Greatbatch Ltd. | Dissimilar Material Battery Enclosure for Improved Weld Structure |
US9601780B2 (en) | 2011-05-23 | 2017-03-21 | Kaneka Corporation | Multilayer conductive film, current collector using same, battery and bipolar battery |
CN103748709B (zh) * | 2011-06-01 | 2017-05-31 | 凯斯西储大学 | 基于铁的液流电池 |
US9900351B2 (en) | 2011-07-20 | 2018-02-20 | Genband Us Llc | Methods, systems, and computer readable media for providing legacy devices access to a session initiation protocol (SIP) based network |
US8648297B2 (en) | 2011-07-21 | 2014-02-11 | Ohio University | Coupling of liquid chromatography with mass spectrometry by liquid sample desorption electrospray ionization (DESI) |
WO2013016050A2 (en) | 2011-07-22 | 2013-01-31 | Irwin Seating Company | Nosemount seating system |
US20170229730A1 (en) | 2011-08-02 | 2017-08-10 | Johnson & Johnson Vision Care, Inc. | Method for manufacturing a biocompatible cathode slurry for use in biocompatible batteries for a contact lens |
US9812730B2 (en) | 2011-08-02 | 2017-11-07 | Johnson & Johnson Vision Care, Inc. | Biocompatible wire battery |
EP2631962B1 (en) | 2011-08-29 | 2017-04-26 | Panasonic Intellectual Property Management Co., Ltd. | Thin battery |
CN104040764B (zh) | 2011-09-07 | 2018-02-27 | 24M技术公司 | 具有多孔集流体的半固体电极电池及其制造方法 |
AU2012352003B2 (en) | 2011-12-14 | 2015-10-01 | Arrow International, Inc. | Redox processes for contact lens modification |
SG11201404172TA (en) | 2012-01-26 | 2014-10-30 | Johnson & Johnson Vision Care | Energized ophthalmic lens including stacked integrated components |
US8857983B2 (en) | 2012-01-26 | 2014-10-14 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens assembly having an integrated antenna structure |
US9059435B2 (en) | 2012-01-27 | 2015-06-16 | Medtronic, Inc. | Medical device battery enclosure |
IL224797A (en) | 2012-02-22 | 2017-03-30 | Johnson & Johnson Vision Care | An eyepiece lens with annular layers divided by a functional implant |
US20130215380A1 (en) | 2012-02-22 | 2013-08-22 | Randall B. Pugh | Method of using full rings for a functionalized layer insert of an ophthalmic device |
US9134546B2 (en) | 2012-02-22 | 2015-09-15 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens with segmented ring layers in a functionalized insert |
GB201203713D0 (en) | 2012-03-02 | 2012-04-18 | Energy Diagnostic Ltd | Energy storage battery |
KR101328585B1 (ko) | 2012-04-06 | 2013-11-12 | 한국과학기술연구원 | 양극활물질의 재활용을 통한 리튬이온 이차전지용 양극의 제조 방법 및 이에 따라 제조된 리튬이온 이차전지 |
JP5441279B2 (ja) | 2012-05-11 | 2014-03-12 | レーザーテック株式会社 | リチウムイオン電池の観察方法、試験用リチウムイオン電池及びその製造方法 |
US9178200B2 (en) | 2012-05-18 | 2015-11-03 | 24M Technologies, Inc. | Electrochemical cells and methods of manufacturing the same |
US20140000101A1 (en) | 2012-06-29 | 2014-01-02 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus to form printed batteries on ophthalmic devices |
JP2015167065A (ja) | 2012-07-11 | 2015-09-24 | シャープ株式会社 | 非水電解質二次電池 |
US20140017558A1 (en) | 2012-07-16 | 2014-01-16 | Nthdegree Technologies Worldwide Inc. | Diatomaceous Ionic Gel Separation Layer for Energy Storage Devices and Printable Composition Therefor |
US20140047742A1 (en) | 2012-08-14 | 2014-02-20 | Ben Schloss | Edge Lit Magnetic Sign |
WO2014049089A1 (en) | 2012-09-28 | 2014-04-03 | Csem Centre Suisse D'electronique Et De Microtechnique Sa - Recherche Et Developpement | Implantable devices |
KR101759806B1 (ko) | 2012-11-01 | 2017-07-19 | 블루 스파크 테크놀러지스, 인크. | 체온 기록 패치 |
US20150228986A1 (en) | 2012-11-07 | 2015-08-13 | James Y. Wang | Liquid-activated hydrogel battery |
US10033029B2 (en) | 2012-11-27 | 2018-07-24 | Apple Inc. | Battery with increased energy density and method of manufacturing the same |
AU2014201529A1 (en) | 2013-03-15 | 2014-10-02 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus to form three-dimensional biocompatible energization elements |
US9406969B2 (en) | 2013-03-15 | 2016-08-02 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus to form three-dimensional biocompatible energization elements |
WO2014169218A2 (en) | 2013-04-12 | 2014-10-16 | The Board Of Trustees Of The University Of Illinois | Materials, electronic systems and modes for active and passive transience |
US10297835B2 (en) | 2013-05-17 | 2019-05-21 | Massachusetts Institute Of Technology | Flexible and implantable glucose fuel cell |
JP2016524800A (ja) | 2013-06-05 | 2016-08-18 | イー ヘン パーシバル チャン | 無細胞の合成酵素経路を用いることによる、電気への糖の完全酸化の方法 |
CN203300756U (zh) | 2013-06-07 | 2013-11-20 | 广东国光电子有限公司 | 一种软包装聚合物锂离子电池手工封装装置 |
CN203733888U (zh) | 2013-11-27 | 2014-07-23 | 中科宇图天下科技有限公司 | 应用于微生物燃料电池的控制装置 |
US9455423B2 (en) | 2014-01-24 | 2016-09-27 | Verily Life Sciences Llc | Battery |
US9806299B2 (en) | 2014-04-08 | 2017-10-31 | International Business Machines Corporation | Cathode for thin film microbattery |
US9577259B2 (en) | 2014-08-21 | 2017-02-21 | Johnson & Johnson Vision Care, Inc. | Cathode mixture for use in a biocompatible battery |
US10381687B2 (en) | 2014-08-21 | 2019-08-13 | Johnson & Johnson Vision Care, Inc. | Methods of forming biocompatible rechargable energization elements for biomedical devices |
US9715130B2 (en) | 2014-08-21 | 2017-07-25 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus to form separators for biocompatible energization elements for biomedical devices |
US9383593B2 (en) | 2014-08-21 | 2016-07-05 | Johnson & Johnson Vision Care, Inc. | Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators |
-
2015
- 2015-08-06 US US14/819,634 patent/US10361404B2/en not_active Expired - Fee Related
- 2015-08-17 RU RU2015134506A patent/RU2015134506A/ru not_active Application Discontinuation
- 2015-08-18 BR BR102015019874A patent/BR102015019874A2/pt not_active Application Discontinuation
- 2015-08-19 TW TW104126939A patent/TWI653777B/zh not_active IP Right Cessation
- 2015-08-19 CA CA2901076A patent/CA2901076A1/en active Pending
- 2015-08-20 EP EP15181865.5A patent/EP2988359A3/en not_active Withdrawn
- 2015-08-20 JP JP2015162558A patent/JP2016046257A/ja active Pending
- 2015-08-20 SG SG10201506616PA patent/SG10201506616PA/en unknown
- 2015-08-20 KR KR1020150117536A patent/KR20160023591A/ko unknown
- 2015-08-21 AU AU2015215929A patent/AU2015215929A1/en not_active Abandoned
- 2015-08-21 CN CN201510518397.8A patent/CN105390724A/zh active Pending
-
2016
- 2016-07-04 HK HK16107718.8A patent/HK1219810A1/zh unknown
Also Published As
Publication number | Publication date |
---|---|
KR20160023591A (ko) | 2016-03-03 |
US20160056416A1 (en) | 2016-02-25 |
EP2988359A2 (en) | 2016-02-24 |
TWI653777B (zh) | 2019-03-11 |
CA2901076A1 (en) | 2016-02-21 |
SG10201506616PA (en) | 2016-03-30 |
US10361404B2 (en) | 2019-07-23 |
HK1219810A1 (zh) | 2017-04-13 |
BR102015019874A2 (pt) | 2016-02-23 |
AU2015215929A1 (en) | 2016-03-10 |
EP2988359A3 (en) | 2016-08-31 |
RU2015134506A (ru) | 2017-02-20 |
JP2016046257A (ja) | 2016-04-04 |
CN105390724A (zh) | 2016-03-09 |
RU2015134506A3 (zh) | 2019-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI656683B (zh) | 使用於生物可相容電池的陰極混合物 | |
TWI659556B (zh) | 製造用於生物相容電池中之生物相容陰極漿料之方法 | |
TWI656677B (zh) | 用於生物可相容賦能元件之密封及封裝的裝置及方法 | |
TWI656679B (zh) | 生醫裝置用賦能元件及其生物相容性改良的方法 | |
EP2996182B1 (en) | Electrolyte formulations for use in biocompatible energization elements | |
TW201620191A (zh) | 形成用於生醫裝置之生物可相容賦能元件之分隔件的方法及設備 | |
JP2016046253A (ja) | 生物医学的装置のための再充電可能な生体適合性通電素子を形成する方法 | |
US10374216B2 (en) | Pellet form cathode for use in a biocompatible battery | |
TW201622230A (zh) | 形成用於包含疊層及沉積分隔件之生醫裝置之生物相容性賦能元件的方法 | |
TW201907604A (zh) | 一種用於隱形眼鏡之使用於生物可相容電池中之生物可相容陰極漿料的製造方法 | |
TWI653777B (zh) | 生物可相容電池、其形成方法及生醫裝置設備 | |
JP2019009120A (ja) | 無電解密閉層を有する生物医学的装置のための生体適合性通電一次素子を形成するための方法及び器具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |