CN101094626A - 电激活眼内透镜 - Google Patents

电激活眼内透镜 Download PDF

Info

Publication number
CN101094626A
CN101094626A CN 200580045707 CN200580045707A CN101094626A CN 101094626 A CN101094626 A CN 101094626A CN 200580045707 CN200580045707 CN 200580045707 CN 200580045707 A CN200580045707 A CN 200580045707A CN 101094626 A CN101094626 A CN 101094626A
Authority
CN
China
Prior art keywords
electro
intraocular lens
lens system
lens
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200580045707
Other languages
English (en)
Inventor
R·D·布卢姆
W·科科纳斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Vision LLC
Original Assignee
E Vision LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Vision LLC filed Critical E Vision LLC
Priority to CN201310009498.3A priority Critical patent/CN103083113B/zh
Publication of CN101094626A publication Critical patent/CN101094626A/zh
Pending legal-status Critical Current

Links

Images

Abstract

提供一种眼内透镜系统,其包括:电激活透镜,包括多个独立可控的区域或像素;和控制器,能够远程地编程。

Description

电激活眼内透镜
相关专利和申请
本申请要求2004年11月2日提交的临时申请60/623,946和2004年12月17日提交的60/636,490的优先权,两者均全部通过引用结合于本文中。
以下申请、临时申请和专利均全部通过引用结合于本文中:2005年9月22日提交的美国申请No.11/232,551;2005年7月19日发布的美国专利No.6,918,670;2005年7月18日提交的美国申请No.11/183,454;2005年7月21日提交的美国临时申请No.60/692,270;2005年6月6日提交的美国临时申请No.60/687,342;2005年6月6日提交的美国临时申请No.60/687,341;2005年5月31日提交的美国临时申请No.60/685,407;2005年5月10日提交的美国临时申请No.60/679,241;2005年4月26日提交的美国临时申请No.60/674,702;2005年4月22日提交的美国临时申请No.60/673,758;2005年4月19日提交的美国申请No.11/109,360;2005年4月8日提交的美国临时申请No.60/669,403;2005年4月1日提交的美国临时申请No.60/667,094;2005年3月30日提交的美国临时申请No.60/666,167;2005年3月29日发布的美国专利No.6,871,951;2005年3月28日提交的美国申请No.11/091,104;2005年3月16日提交的美国临时申请No.60/661,925;2005年3月9日提交的美国临时申请No.60/659,431;2005年2月22日提交的美国申请No.11/063,323;2005年2月22日发布的美国专利No.6,857,741;2005年2月8日发布的美国专利No.6,851,805;2005年1月14日提交的美国申请No.11/036,501;2005年1月6日提交的美国申请No.11/030,690;2004年11月24日提交的美国申请No.10/996,781;2004年11月2日提交的美国临时申请No.60/623,947;2004年8月24日提交的美国申请No.10/924,619;2004年8月13日提交的美国申请No.10/918,496;2004年6月9日提交的美国申请No.10/863,949;2004年5月11日发布的美国专利No.6,733,130;2004年2月5日提交的美国申请No.10/772,917;2003年9月16日发布的美国专利No.6,619,799;2003年8月20日提交的美国申请No.10/664,112;2003年7月25日提交的美国申请No.10/627,828;2003年3月12日提交的美国申请No.10/387,143;2003年2月11日发布的美国专利No.6,517,203;2002年12月10日发布的美国专利No.6,491,391;2002年12月10日发布的美国专利No.6,491,394;以及2002年10月4日提交的美国申请No.10/263,707。
技术领域
本发明涉及眼内透镜(IOL)的领域。具体地说,本发明涉及眼内透镜,其中电激活元件提供IOL屈光能力或棱镜能力的至少一部分,或着色的至少一部分。
背景技术
眼内透镜(IOL)一般是永久性的塑料透镜,用外科手术植入眼球内,以代替或补充眼的天然晶状体。它们自从上个世纪60年代后期便已经在美国使用,以便恢复白内障患者的视觉,而最近正在用于几种类型的屈光眼外科手术。
天然晶状体是复杂的眼光学系统的关键性部件。晶状体提供健康眼睛屈光能力总共60屈光度中的约17屈光度。另外,受在圆周上包围晶状体的肌肉睫状体的作用而变形时,健康的晶状体提供可调的聚焦。随着眼睛的老化,晶状体的柔韧性下降,这个可调的聚焦减弱。因而,这个关键性的晶状体随着年龄几乎总是要损失柔韧性的,而且往往由于白内障或其它疾病而随着年龄损失透明度。
用于白内障外科手术的大部分眼内透镜可折叠,并通过用于摘除天然晶状体的同一个微小开口插入。一旦进入眼里,透镜便可展开到它的实际大小。眼里的开口是如此细小以致不用缝线它本身便会迅速愈合。眼内透镜可以用不会触发人体排异反应的惰性材料制成。
在大部分情况下,IOL是永久性的。它们很少需要更换,除非在外科手术之前眼测量没有准确确定IOL所要求的聚焦能力的情况下。另外,外科手术本身会改变眼的光学特性。在大部分情况下,在白内障外科手术过程中植入的眼内透镜是单焦点透镜,而IOL的光学能力选定成使眼的能力是针对远视觉设置的。因此,在大部分情况下,患者在外科手术之后将仍需要读数放大镜。植入的眼内透镜可以是静态多焦点透镜,试图通过在一定距离上提供清晰的视觉和用于近距离范围,对于老花眼患者的合理的焦点,起更类似于眼的天然透镜的作用。不是所有的患者都是多焦点透镜的良好候选人;但是,那些可以使用透镜的人对于该结果在某些程度上感到高兴。
最近,已经引入了适应性的IOL。这些适应性的IOL作为肌肉睫状体对来自大脑的适应性刺激而作出的反应,实际上通过运动(在眼眶内在物理上的变形和/或平移)改变焦点,类似于天然晶状体聚焦的方法。尽管这些提供了有希望的适应性的IOL,但是仍不完美。尽管取得了这些有限的成功,但与健康的天然晶状体对比时,多焦点IOL和目前的适应性IOL在性能上仍旧显著下降。
另一种在矫正老花眼上很有希望的目镜是小直径角膜镶嵌(SDCI)。小直径角膜镶嵌(SDCI)是一种处方透镜,它插入角膜组织中,以便建立一个类似于双焦点隐形眼镜效应。角膜镶嵌(SDCI)仍处于它们的开发早期,要了解它们的作用会有多好,和它们还会变得多么有效,为时尚早。
尽管所有这些新兴的外科操作具有它们的优点,但与年轻健康的天然晶状体对比时,它们全都在相当大程度上降低了性能。本发明通过提供一种其行为类似于天然晶状体的眼内透镜,克服这些缺点。
发明内容
本发明的一个示例性方面提供一种眼内透镜系统,其包括:电激活透镜,包括多个独立可控的区域或像素;和控制器,能够被远程地编程。
结合以下附图,从下面的描述,本发明的其它方面将变得明显,尽管在不脱离本发明所公开的新颖概念的精神和范围的情况下可以进行改变和修改。
附图说明
连同附图一起阅读以下详细说明,可以更充分理解本发明,其中类似的引用号标示类似的元件。
图1显示人眼主要的解剖学部件。
图2A显示带有电激活透镜和作为电源的压电材料的眼内透镜实施例的正视图。
图2B显示带有电激活透镜和作为电源的压电材料的眼内透镜实施例的侧视图。
图3A显示带有衍射电激活透镜和可再充电的电池组环的眼内透镜实施例的正视图。
图3B显示带有衍射电激活透镜和可再充电的电池组环的眼内透镜实施例的侧视图。
图4A显示带有像素化电激活透镜和可再充电的电池组环的眼内透镜实施例的正视图。
图4B显示带有像素化电激活透镜和可再充电的电池组环的眼内透镜实施例的侧视图。
图5显示带有枕垫内感应充电元件的外部电源实施例。
图6显示带有电激活透镜和具有无线编程单元用的天线的控制芯片的眼内透镜实施例。
图7A是健康视网膜的图像,示出视网膜上斑点和小凹的位置。
图7B举例说明由于″湿″斑点退化而已经损坏的斑点区域。
图7C举例说明由于″干″斑点退化而已经损坏的斑点区域。
图8举例说明糖尿病视网膜病的各种不同表现;
图9举例说明带有线性电极以便产生视网膜上图像的垂直和水平位移任何组合的两个棱柱透镜的堆叠。
图10示出与非电激活适应性IOL进行光学通信的电激活IOL。
具体实施方式
在下文中,将描述本发明不同的实施例。正如在这里使用的,任何单数的术语可用复数解释,或者任何复数的术语可可用单数解释。
电激活材料包括可以通过电学控制改变的光学特性。例如,可以控制光的透射来产生着色或太阳镜效应。另外,可在电学上控制折射指数来产生聚焦和/或棱镜效应。一类电激活材料是液晶。液晶包括处于结晶固体和非晶液体之间的中间的聚集状态。可以在电学上、热学上或化学上控制液晶的特性。许多液晶是由棒状分子组成的,并广义地分类为:向列型、胆甾型和近晶型。
有几个电激活材料特性在IOL中有用。第一,可以通过薄层(而不是通过常规透镜的曲率,这可要求厚的透镜)产生光学特性。这些薄层可以放入常规透镜可能难以放入的位置,例如眼的前房内(在虹膜和晶状体之间)。另外,有可能堆叠电激活层(在光学上串联放置),方式为以可放入眼的前房或后房的薄结构,获得对所建立的总光学能力相加效应,包括棱镜,常规的屈光异常或较高阶像差校正。
第二,可以主动地控制光学特性。例如,电激活透镜可以设计成在光线明亮的条件下变得较暗(着色更深,并较少透射光线)。这种着色可以通过测量亮度例如利用光电二极管或太阳能电池自动产生。或者,着色可以由用户决策进行远程地控制。
类似地,可以在电学上控制电激活透镜的焦点。该焦点可以利用例如测距仪、倾斜计或基于两眼方向的三角测量、眼肌作用在透镜上的力自动进行控制。或者,焦点可以由用户决策进行远程控制。
第三,电学控制创造了校正复杂的和高阶视觉缺陷的可能性。常规的眼内透镜针对各种不同的制造原因限于对付某些视觉缺陷。但是,带有大量可单独寻址的受控小元件(例如一个非常小像素的阵列)的电激活透镜可以对付非常复杂的和高阶视觉缺陷。另外,可以任意配置,诸如一系列同心圆、或一系列大致同心的椭圆、或无论什么定制的配置,建立可单独寻址的元件来简化控制,有效地校正视觉缺陷。一个小像素的阵列的设计、制造和控制与液晶显示器(LCD)的制造具有相似性。校正复杂的视觉缺陷,诸如眼的较高阶像差,创造了″超人″视敏度的可能性,其中视力不受透镜的限制(生物的或矫正的),而是受视网膜内感光细胞固有的解剖学和物理学的限制。甚至在考虑额外的放大倍数以前,20/10视力或更好的是可能的。另外,电激活透镜有可能起望远镜或显微镜的作用。
第四,电学控制创造了根据需要改变电激活IOL光学特性的可能性。例如,用外科手术植入IOL之后,可以确定要求的光学特性,以便补偿在外科手术过程中出现的任何变化,或补偿外科手术后屈光异常计算或估计中的误差。类似地,IOL的光学特性可以随时间而变,以补偿用户眼的变化。例如,若用户具有退化疾病,影响一部分视网膜,则有可能远程地使植入的电激活IOL建立棱镜能力,或甚至改变它的棱镜能力,以便将图像移位到视网膜的未受损的部分。仅举例来说,可以每个月(或根据需要)使图像移位到视网膜其余的未受损的、受体细胞浓度最高的部分。这个改变可以在外科手术后和远程地(意味着无需额外的外科手术)完成。
第五,电学控制为用户创造了自动或本能地控制焦点的可能性。例如,可以通过压电元件(作为应变计)测量肌肉睫状体的收缩,然后可以用这些收缩作为控制输入,以便在电学上调节IOL的焦点,类似于睫状体通过物理变形使天然晶状体聚焦的方式。另外,在理论上,焦点可以用直接来自大脑的电信号控制。目前的人工肢体的开发使用这一技术。
第六,电学控制创造了使视野移位的可能性,并因而补偿妨碍眼球运动的疾病。可以截获、翻译送往患病肌肉的神经信号(那样能使眼睛不再运动),并在电学上用来使视野移位。
第七,有许多种类型的电激活元件配置。这些配置包括:像素化(一般是二维阵列像素,类似于计算机上的液晶监视器)、旋转对称像素化(例如一组同心圆)和衍射。电激活可单独寻址的像素化衍射透镜可以使用同心环形电极,以便产生衍射透镜能力,其中改变折射指数,而不必在物理上将衍射元件机械加工、模压或蚀刻到透镜的表面。
电激活元件可与常规的透镜结合使用,其中常规的透镜可以提供基本的屈光能力。电激活元件可与具有机械加工的、模压的或蚀刻的表面或几何形状的衍射透镜结合使用。电激活元件可与第二电激活元件结合使用,其中每个都可以完成不同的功能。例如,第一电激活元件可提供焦点,而第二可提供着色,或可以用作在电学上控制的孔径,或第二可以使图像棱柱移位到患病眼睛视网膜健康区域。
第八,如上面讨论的,有可能在电学上代替天然眼的许多光学功能:着色可以代替或增大虹膜收缩的光减少效应,聚焦可以代替晶状体的天然变形,聚焦和棱柱移位可以代替眼球的运动等等。在其中,本发明解决:定位IOL、储能、能量再充、发电、控制、使视线转向视网膜的目标区域、改变眼的屈光能力、增大或代替晶状体的适应性能力、电激活IOL外科手术后的远程调整。调整包括改变IOL的能力,和/或改变IOL视网膜上的焦点位置。
图1显示人眼的主要解剖学部件。主要解剖学部件是:结膜110、睫状体112、虹膜114、房水116、瞳孔118、前房120、晶状体122、角膜124、眼外肌126、巩膜128、脉络膜130、黄斑132、视神经134、视网膜136和玻璃体138。尽管描述了人眼,但是本发明还可以应用于非人类的眼,诸如马眼或狗眼。
作为背景,将详细描述眼的光学部件。进入眼的光首先进入角膜124。角膜124是透明的,并提供眼的总屈光能力大约60屈光度中的大约40屈光度。然后光穿过瞳孔118。瞳孔118是一个孔径,而且直径可以从1mm变化到至少8mm。这给出超过f20-f2.5的孔径范围和允许进入眼睛的光量的比率32∶1。虹膜114用作可调的光阑,建立瞳孔118。然后光穿过晶状体122。晶状体122是一个透明的、包封的、双凸体,它在圆周上附在睫状体112上。晶状体122贡献放松的眼睛的总屈光能力的大约17屈光度。晶状体122的屈光能力可以通过睫状体112内睫状肌的收缩改变,它使晶状体122变形,并改变它的屈光能力。然后光穿过玻璃体138,最后接触视网膜136。视网膜136是眼球的感觉神经层,并可以看作是大脑的一个旁支,并通过视神经134连接到大脑。在视网膜136的中心附近,黄斑132包含一个视觉灵敏度最高的中央区域,称为正中凹或小凹(见图7),直径大约0.4mm,这里视觉分辨率最高。小凹的直径小是光轴必须以高准确度定向才能达到良好视力的原因之一。
因而,人眼具有可调的光阑(虹膜114)和可调的屈光能力(由于睫状体112使晶状体124变形)。
IOL可以放入以下3个位置中的一个:角膜124和虹膜114之间的前房120内;或虹膜114和晶状体122之间的后房(未示出)内;或代替晶状体122。
一般说来,若晶状体患病或损坏,则可用IOL代替晶状体。这种IOL代替晶状体可以是适应性的或非适应性的。代替晶状体允许IOL方便地定位在以前保存天然晶状体的清晰袋状囊内,还允许通过与在圆周上包围清晰袋状囊的肌肉睫状体的相互作用来保持某些可变聚焦能力的可能性。在其它情况下,IOL放在囊外(而没有袋状囊)。
但若晶状体仍有功能,则最好可保留晶状体使之不受干扰,并将电激活IOL放入眼的后房或前房120,或放入类似于上面讨论的小直径角膜镶嵌(SDCI)的角膜组织内。在这些实施例中,电激活IOL例如可以提供光学能力来校正常规的屈光异常、校正非常规的屈光异常、建立棱柱图像移位效应,将焦点位置移到视网膜比较健康的区域、并加上色调,与代替不然是健康的晶状体的光学能力相反。
常规的屈光异常定义为以下的一个或多个:近视、远视、老花眼和正常的散光。非常规的(或较高阶)屈光异常定义为不是常规的屈光异常的所有其它的屈光异常或像差。
在许多情况下,电激活IOL可以在白内障外科手术过程中当现有晶状体有缺陷时使用。在这种情况下,电激活IOL将实际上代替被摘除的有缺陷的现有晶状体,并可提供一个范围的电激活光学校正,包括常规的和/或非常规的屈光异常,以及提供屈光能力来弥补因摘除晶状体造成的损失的光学能力。另外,电激活IOL可以在没有任何运动、平移或表面几何形状改变的情况下提供适应能力。这是通过定位编程改变电激活IOL的屈光指数来完成的。
最普通和先进的白内障外科手术技术是晶状体乳化法或″phaco.″。外科医生首先在角膜的边缘切一个小切口,然后在包围白内障损坏的晶状体的隔膜上建立一个开口。这个薄隔膜称为囊。接着,通过开口将一个小超声探头插入角膜和囊。探头的振动尖端将混浊的晶状体捣碎或″乳化″为微小的碎片,通过探头尖端上的附件抽吸出囊。在完全摘除晶状体之后,收回探头,只留下清晰(现在是空的)袋状囊,它可以起支撑眼内透镜(IOL)的作用。
晶状体乳化法允许白内障外科手术通过角膜内一个非常小的切口完成。很少需要缝线来使这个微小入口闭合,这意味着与其它外科技术相比较少不舒服,而且较快恢复视力。小切口一般不改变角膜的曲率(不像旧的外科技术所要求的较大切口)。小切口对于更迅速康复视力有益,并可能较少依赖眼镜获得好的远距离视力。
摘除白内障损坏的晶状体之后,可以植入人工眼内透镜(IOL)。IOL可以从软的丙烯酸或固态医疗等级的硅酮产生。IOL可以折叠,以使它们可以使用手术开始时插入晶状体乳化探头所通过的同一切口用小注射器植入。植入IOL时,可以让它展开,并通过留下的清晰囊将它本身锚固在眼瞳孔后面。要植入的IOL可以根据外科手术前所做的能力计算选定。在本发明的情况下,电激活IOL也可以根据所要求的电激活校正范围、正在治疗的任何其它眼科疾病的类型和患者的任何特殊需要选定。
在大部分情况下,电激活元件一般会贡献+2.5屈光度、+2.75屈光度、+3.0屈光度或+3.25屈光度的光学能力。基本透镜部分(与电激活元件处于光学通信中)会贡献晶状体一般提供的大约17屈光度的大部分,若不是全部的话,会在外科手术之前测量和选定。但是,不像常规的IOL,电激活IOL允许远程地调整它的光学能力(例如,在外科手术之前所做的计算在外科手术之后不是最佳的情况下)。
图2A和2B举例说明按照本发明一个实施例的IOL组件200。图2A显示IOL组件的正视图,它包括电激活透镜元件218,由布置在电激活透镜元件218的圆周周围的薄环形电荷存储电容器216供电。电荷存储电容器216用压电薄膜212充电。作为睫状体(未示出)施加的机械力的结果,压电薄膜212产生该电荷。压电薄膜212用睫状体附件接头210附在睫状体上。
在眼睛试图从近到远和从远到近聚焦时,睫状体膨胀和收缩。睫状体运动可以产生压电薄膜212的拉伸和/或压缩而产生电力。电力可以通过充电导线220传输,并用来给电荷存储电容器216(或可再充电的电池组)充电。电荷存储电容器216可以向电激活透镜元件218和任何有关的控制电路(未示出)供电。一般电激活透镜元件218要求大约1.0到5.0伏,优选范围为1.5到2.5伏。这些相对较低的电压减少了涉及电学装置外科放置的风险。
拉伸或压缩下的压电薄膜212的电学特性可以用作计器,以确定所要求的视距,并可以用来使电激活透镜聚焦。因而,用户有可能利用肌肉睫状体本能地和自动地控制电激活IOL 200的焦点。肌肉睫状体的收缩以前通过在物理上使之变形,使受检者的晶状体聚焦。利用电激活IOL 200,肌肉睫状体的本能的和自动收缩将改变压电薄膜212的电学特性,而这些电学变化可以由设置在例如芯片(未示出)上的处理器监控,并用来在电学上可变地使电激活IOL 200聚焦。作为另一方案,压电薄膜212可以仅仅用作聚焦的计器,在这种情况下,电激活IOL 200将设有不同的电源。
在某些实施例中,压电薄膜可通过多个(两个以上)附件接头附在睫状体的圆周上,以便利用周围睫状体的天然的圆周收缩和膨胀。
可以用一个或多个透镜锚凹214将电激活透镜稳定在所要求的位置上。例如,透镜锚凹214可以用来使以前包含天然晶状体(建立囊内IOL)的囊或″袋″或隔膜内的电激活透镜居中。或者,透镜锚凹214可直接附在睫状肌上,因而处于囊的外面(建立囊外IOL)。
可以使用多个透镜锚凹214。例如,可以使用3或4个透镜锚凹214。透镜锚凹214可以有不同的形状,针对特定的应用定制。
一个任选的基本透镜252可以利用常规的透镜配置提供基本屈光能力,并且当无需适应时,可等效于晶状体的屈光能力。基本透镜252也可以用作包封电激活元件的构件,将其包封入一个由类似于目前用来制造IOL的那些材料,仅举例来说,软丙烯酸或医疗等级的固态硅酮等生物相容的材料构成的气密密封的封套内。
图2B显示眼内透镜实施例的侧视图,带有电激活透镜和作为电源的压电材料。具体地说,图2B举例说明任选的基本透镜252,它可以包围电激活透镜元件218并可提供固定的或基本的屈光能力。在一个具体实施例中,固定的或基本的屈光能力可以适配成当电激活元件不激活时,使眼睛聚焦在近距离。在另一个实施例中,固定的或基本的透镜可以适配成当电激活元件不激活时,使眼睛聚焦在远距离。任选的基本透镜252可以有多个焦点,和/或可以被着色。
其它电源可以包括:太阳能电池、感应充电、导体充电、激光器、热电和利用机械能发电。电容器216(或任选地电池组)可以用一对特殊的眼镜重新进行感应充电,该对眼镜也可以在电池组再充电的同时远程地关断电激活透镜。特殊的眼镜也可以配置成在电池组正在进行再充电的同时,提供视力校正。
在某些实施例中,电激活IOL 200中的电容器216可以用一个特殊的枕垫充电,该枕垫具有其中流过电流的非常轻型的导线。因而,枕垫可以在晚上患者睡眠的同时给电激活IOL 200内的电池组充电。在图5中举例说明这种类型的示例性布置,并将在下面更详细地讨论。用一个功率调节电路来降低电压,并将电流限制到安全水平,用以进行小功率充电,并为更有效地充电而调节频率。
或者,电激活IOL可以没有电容器216或电池组,但是可以通过定位在外部的电池组传导地连续供电,或者可以由定位在外部的感应耦合的电源、或太阳能电池、或耦合到适当调整的激光器的太阳能电池、或通过将人体的热(一般98)卸入相对较冷的周围空气(一般70)而发电的热电电源,感应地连续供电。
图3A和3B显示眼内透镜系统300,具有衍射电激活透镜元件326和可再充电电池组环324。图3A提供衍射电激活透镜元件326的正视图,所述衍射透镜元件可以用同心圆形电极电学衍射,或者用电激活的蚀刻表面机械衍射,由电源连接端322连接到可再充电电池组环324,通过指数匹配和不匹配进行控制。透镜锚凹314可用来将衍射电激活透镜元件326稳定和定位在所要求的位置和方向。可再充电电池组环324可以用类似于图2A和2B的眼内透镜系统200的电容器供电。另外,可再充电电池组324可以不同地成形,并定位在透镜锚凹314内或其附近,并因而从这些光学元件移开。
图3B显示眼内透镜300的侧视图。具体地说,图3B举例说明任选的基本透镜352,它类似于图2A和2B眼内透镜系统200的基本透镜252。该基本透镜352可具有基本的或固定的光学能力,或者可以没有光学能力,而仅仅用作保护囊或基底。
图4A和4B显示眼内透镜系统400,它具有像素化的电激活透镜元件430和可再充电电池组环424。图4A显示像素化的电激活透镜元件430的正视图,它通过电源连接端422连接到可再充电电池组环424。透镜锚凹414可以用来将衍射电激活透镜元件430稳定和定位在所要求的位置和方向。可再充电电池组环424可以与图2电容器216一样的方式供电。
图4B显示眼内透镜400的侧视图,显示类似于以前实施例的基本透镜的基本透镜452。
图5显示按照本发明一些实施例的IOL内部电源充电用的外部电源500。在电源500中,功率调节器532电连接到墙上插座530。功率调节器532连接到枕垫536内的轻型导线感应线圈534,用以对可再充电的电激活IOL的电容器或电池组进行感应充电。功率调节器532可以配置成降低电压并将电流限制到安全水平,以进行小功率充电,并为更有效地充电而调节频率。电源500可以配置成当受检者将他的头靠在枕垫536上或其附近时,可以向电激活IOL充电。应明白,感应线圈534可以备选地放入受检者的被褥或头靠、靠背内或受检者头部紧靠足够长时段的其它位置上。
图6显示眼内透镜组件600,带有电激活透镜元件618、控制芯片640和与无线编程单元660配合使用的天线622。无线编程单元660配置成通过无线电波与控制芯片640通信。无线电波被与控制芯片640通信的微型天线642拾取。控制芯片640可以通过使用这些无线电波远程地调整。这样的调整可以包括设置或调节电激活透镜元件618的光学特性。控制芯片640控制电激活透镜元件618,并可与无线编程单元660进行双向通信。例如,控制芯片640可以配置成警告无线编程单元660,电池组624电压低。或者,与控制芯片640的编程通信可以通过激光器(光波)代替通过无线电波进行。
电激活透镜元件618可以通过电源连接端622连接到可再充电电池组环624或电容器(未示出),并可以通过感应线圈或通过压电元件像在以前描述的实施例那样充电。
在某些实施例中,电激活IOL所提供的校正可以根据患者需要和所要求的结果改变。在某些实施例中,电激活元件只可以提供老花眼校正。在某些实施例中,电激活IOL可以对常规的校正提供远程微调。在某些实施例中,电激活IOL可以提供较高阶(非常规的)像差校正,仅举例来说,彗形象差、球面像差、三叶形像差以及其它较高阶像差。在某些实施例中,电激活元件也可以电子方式通过建立图像的棱柱移位来调整图像在视网膜上的位置。当校正较高阶像差或校正图像定位在视网膜上的棱柱移位时,电激活IOL可以利用多个像素。图像的棱柱移位对具有例如视网膜斑点退化(其可包括由于疾病或黄斑的特定退化而引起的颜色变化)、斑点孔、视网膜脱落和导致盲点或视觉径路特定部位视力损失(诸如在视力范围内盲点或暗点和模糊视力)的神经异常的状况的患者是非常有用的。应指出,在上面每一个使用实施例中,本发明的电激活IOL可以在外科手术后进行远程调整,以便实现所要求的优化效应。
图7举例说明带有健康小凹720和健康斑点710的健康视网膜的图像。图7B举例说明斑点730由″湿″斑点退化已经损坏的区域,该退化一般是由从视网膜后面穿越视网膜的隔膜的出血引起的。图7C举例说明斑点740由″干″斑点退化已经损坏的区域,该退化是由斑点区域内视网膜上脉络膜小疣的出现引起的。对于患有斑点退化的人们,将图像移到视网膜上的另一个位置即可改善视力。在斑点或视网膜患病或损坏的情况下,图像位置改变0.25毫米到3.00毫米可以使人的视力获得重大改进。优选的范围是0.50毫米到2.00毫米。
图8举例说明糖尿病视网膜病对眼的影响。再者,通过用棱柱IOL在视网膜上重定向图像,可减轻这种疾病的一些视觉清晰度影响。
图9示意地举例说明一个实施例,其中带有线性电极的电激活透镜可以堆叠,以便产生图像在视网膜上垂直和水平位移的任何结合。第一透镜910具有水平电极,用来产生垂直棱镜能力。第二透镜920具有垂直电极,用来产生水平棱镜能力。组合透镜930将能够产生垂直和水平图像位移的结合。通过改变每个电极上的电压并调用一种称为相位缠绕的技术,用这样的透镜可以产生各种各样棱镜能力。另外,可以堆叠多个透镜以产生值较大的棱镜能力。所需的棱镜能力量和所得到的图像移位量将随着疾病的程度而变。图像运动的优选范围在0.1mm和3.0mm之间,优选范围为0.5mm到2.0mm。
图10举例说明与非电激活适应性IOL进行光通信的电激活IOL。元件1010是一个与非电激活适应性IOL元件1020进行光通信的电激活透镜。请注意,元件1010和1020在光学上串联,但是它们在物理上彼此不接触。
尽管对电激活透镜供电已经做了许多考虑,但是某些电激活材料在不存在所加电力的情况下维持其光学能力(诸如仅举例来说,双稳态液晶)。利用这些类型的电激活材料、棱镜能力、相加或相减的能力,即加上或减去IOL的基本光学能力,和/或较高阶校正,可以在向装置供电时设置,并然后在去除电源之后仍保留设置。这可以否定在IOL中电源再充电的必要性。若患者的视力改变,并要求新的校正,则他可以回去找眼科治疗专业人员,并将IOL调到棱镜和/或较高阶校正的新结合。这些改变可以在外部远程地供电。例如,外部电力可以是类似于今天RFID标签工作方式的RF能量,其中读出装置通过感应向RFID标签供电,使得RFID可以将其信息发射到RFID阅读器。
用与RFID标签相同的方式,改变IOL能力的调整仪器可以向电激活IOL上的控制器供电,使得控制器可以改变IOL电极上的电压,因而设置确定电激活IOL光学特性的局部屈光指数。
或者,也可通过照射明亮光线或对眼睛安全的激光进入眼睛和嵌入在电激活IOL中的光电池上,然后这会提供调节电激活IOL的光学能力所需的临时电力,来以光学方式供电。除供电以外,该系统还可以用于通信。
双稳态扭转向列型、胆甾型和铁电液晶已经用于低成本柔性LCD显示器,而类似的材料可以用在IOL的电激活元件上。这种类型的电学调节后(但在别的方面却不供电)的棱镜调整、相加或相减,对于视网膜疾病调整或较高阶像差校正可以加到(即与其光学串联放入)校正老花眼的任何适应性非电激活IOL。例如,电激活元件可与非电学的或不供电的IOL,诸如通过改变一个或多个表面曲率和/或IOL在眼内的位置而机械改变它们的光学能力的非电激活IOL,光学串联放置。
加上电激活透镜或电激活元件可以用至少3个方法完成:第一,单独的电激活IOL可与非电激活适应IOL非接触光通信(光学串联)放置;第二,电激活元件可嵌入在适应过程中不改变轮廓的IOL表面之一;以及第三,电激活元件可以放置在分层非电激活内部。
例如,电激活元件可以加入前房,并用于与各自功能晶状体光学串联。在这种情况下,晶状体将提供天然的适应,而电激活IOL可以将图像转向视网膜一个比较健康的部分,或者可以调整非电激活IOL,或可以校正较高阶像差。
正如上面指出的,在某些实施例中,远程地调节或调整电激活IOL可能是一个主要优点。将电激活IOL插入眼内之后,可以远程地微调光学能力和棱镜能力,来完成最优的视力校正,以便校正常规的屈光异常或较高阶像差、或图像在视网膜上的精确位置。另外,IOL可以在随后的日子再次调整,以补偿眼睛由于疾病或老化随时间的变化。在仅仅校正常规的屈光异常的情况下,电激活IOL可以利用衍射或像素化,或两者。电激活元件还可以根据病人状况的需要和眼科治疗专业人员的判断,完成任何数目的这些功能的结合。
在某些实施例中,尽管电激活透镜可以用来提供视力校正,正如在本发明所描述的,但是电激活透镜还可以用来电激活地提供太阳镜或着色效应。当环境中的光级变得高得不舒服,或达到一个可能对眼睛危险的水平时,通过利用特殊的液晶层或其它电致变色材料,本发明的电激活IOL可以降低打在视网膜上的光量。当嵌入IOL中的光传感器接收一个超出某个阈值水平的光强度时,可以自动触发太阳镜效应。或者,太阳镜效应可以由用户利用耦合到IOL中控制电路的无线电通信装置远程地开关。这种电激活太阳镜效应可能在数毫秒或者更短的时间出现,与常规透镜的商业光敏化学色调的数秒(或更长)的相对缓慢的反应时间形成对照。确定电激活透镜的反应时间的一个因素是液晶层的厚度。例如,5微米液晶层可以在数毫秒内作出反应。
类似地,电激活元件的聚焦可以利用测距仪或倾斜计(向下看时近距离,直看时远距离)自动完成,或可以由用户利用无线通信装置远程地控制。
有若干种电致变色材料。一种类型由导电薄膜透明的外侧层构成,它具有允许离子交换的内层。在外导电层两侧施加电压时,离子从一个内层移动到另一个,导致电致变色材料着色的改变。翻转电压会使该层再次变得清晰。电致变色层在操作过程中可以具有从约5%到80%的可变透光率。这种类型的电致变色釉具有″记忆″,并且在已经引发改变之后不需要恒定电压。另外,它可以调整成阻断某些波长,诸如红外线(热)能量。
另一种电致变色技术称为悬浮粒子显示器(SPD)。这种材料包含悬浮在玻璃板之间溶液中的分子粒子。在它们的天然状态下,粒子随机运动和碰撞,隔断光的直接通道。当接通时,这些粒子再次迅速对齐,并且釉变为透明。这种类型的可开关的釉可以阻断高达约90%的光。另外,液晶已经用来在太阳镜中提供电致变色效应。
该系统和方法,正如这里公开的,针对在常规技术中存在的上述问题以及其它问题。在″背景技术″中描述的各种产品、方法或装置和它们随之而来的缺点的任何描述决不是要限制本发明的范围,或意味着本发明以这种或那种形式不包括已知产品、方法和装置的某些或全部各种要素。确实,本发明的各种实施例能够克服在″背景技术″中指出的一些缺点,尽管仍然保留了已知产品、方法和装置的某些或全部各种要素。

Claims (21)

1.一种眼内透镜系统,包括:
电激活透镜,包括多个独立可控的区域或像素;以及
控制器,能够被远程地编程。
2.如权利要求1所述的眼内透镜系统,还包括:
电源,与所述电激活透镜电通信。
3.如权利要求2所述的眼内透镜系统,其中所述电源包括定位在所述电激活透镜附近的储能元件。
4.如权利要求3所述的眼内透镜系统,其中所述储能元件包括由电池组和电容器构成的组中的至少一个。
5.如权利要求3所述的眼内透镜系统,还包括:
充电布置,适合于选择性地向所述储能元件提供电力。
6.如权利要求5所述的眼内透镜系统,其中所述充电布置包括与所述储能元件电通信的压电元件。
7.如权利要求6所述的眼内透镜系统,其中所述压电元件适合于附在受检者眼睫状体上,并适合于响应所述睫状体的运动而发电。
8.如权利要求5所述的眼内透镜系统,其中所述充电布置包括:外部感应元件,适合于当保持在所述受检者眼睛外部时通过感应向所述储能元件充电。
9.如权利要求8所述的眼内透镜系统,其中所述外部感应元件至少部分设置在枕垫内。
10.如权利要求7所述的眼内透镜系统,其中所述外部感应元件附在眼镜组件上。
11.如权利要求4所述的眼内透镜系统,其中所述充电布置包括太阳能电池。
12.如权利要求4所述的眼内透镜系统,其中所述充电布置包括:外部电源,通过电总线导电地链接到所述储能元件。
13.如权利要求1所述的眼内透镜系统,还包括:
天线,连接到所述控制器;以及
无线编程单元,适合于通过所述天线与所述控制器无线通信。
14.如权利要求1所述的眼内透镜系统,其中所述电激活透镜包括附在所述电激活透镜上的基本透镜元件。
15.如权利要求14所述的眼内透镜系统,其中所述基本透镜元件配置成提供固定的基本屈光能力。
16.如权利要求1所述的眼内透镜系统,其中所述电激活透镜适合于选择性地校正至少一种常规的屈光异常。
17.如权利要求1所述的眼内透镜系统,其中所述电激活透镜适合于选择性地校正至少一种非常规的屈光异常。
18.如权利要求1所述的眼内透镜系统,还包括:
至少一个锚凹,附在所述电激活透镜上,并适合于将所述眼内透镜定位和稳定在受检者眼的隔膜内。
19.一种包括电激活透镜元件的眼内透镜系统,其中所述电激活元件包含双稳态液体分子。
20.一种包括电激活透镜元件的眼内透镜系统,其中所述电激活透镜元件由能够被远程地再充电的电源供电。
21.一种既包括电激活透镜又包括非电激活适应透镜的眼内透镜系统,其中所述电激活透镜和非电激活适应透镜进行光通信。
CN 200580045707 2004-11-02 2005-10-31 电激活眼内透镜 Pending CN101094626A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310009498.3A CN103083113B (zh) 2004-11-02 2005-10-31 电激活眼内透镜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US62393504P 2004-11-02 2004-11-02
US60/623,935 2004-11-02
US60/636,490 2004-12-17
US11/261,035 2005-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201310009498.3A Division CN103083113B (zh) 2004-11-02 2005-10-31 电激活眼内透镜

Publications (1)

Publication Number Publication Date
CN101094626A true CN101094626A (zh) 2007-12-26

Family

ID=38992518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200580045707 Pending CN101094626A (zh) 2004-11-02 2005-10-31 电激活眼内透镜

Country Status (1)

Country Link
CN (1) CN101094626A (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804032A (zh) * 2009-12-04 2012-11-28 派诺特公司 电控聚焦眼科装置
CN103124920A (zh) * 2010-09-27 2013-05-29 庄臣及庄臣视力保护公司 包括梯度厚度电介质涂层的液体弯月形透镜
CN103257457A (zh) * 2012-01-26 2013-08-21 庄臣及庄臣视力保护公司 具有集成天线结构的眼科镜片组件
CN104020580A (zh) * 2013-02-28 2014-09-03 庄臣及庄臣视力保护公司 具有瞳孔会聚传感器的电子式眼科透镜
CN104205329A (zh) * 2012-01-26 2014-12-10 庄臣及庄臣视力保护公司 堆叠的集成部件装置中的多个通电元件
CN105229519A (zh) * 2013-05-17 2016-01-06 庄臣及庄臣视力保护公司 对通电眼科镜片进行编程的系统和方法
CN105229522A (zh) * 2013-05-30 2016-01-06 庄臣及庄臣视力保护公司 用于对具有可编程介质插入物的通电眼科镜片编程的设备
CN105247407A (zh) * 2013-05-30 2016-01-13 庄臣及庄臣视力保护公司 用于具有可编程介质插入物的可通电眼科镜片的制造和编程的方法
EP2582313A4 (en) * 2010-06-20 2017-07-12 Elenza, Inc. Ophthalmic devices and methods with application specific integrated circuits
CN108541219A (zh) * 2015-12-30 2018-09-14 威里利生命科学有限责任公司 具有铰接式壳体结构的眼内装置
CN109069266A (zh) * 2016-05-02 2018-12-21 G·巴尔齐莱 人工晶状体和与之相关的方法和/或组件
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
CN110063817A (zh) * 2012-04-23 2019-07-30 E-视觉智能光学公司 用于管理可植入的装置的系统、装置和/或方法
US10367233B2 (en) 2014-08-21 2019-07-30 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10374216B2 (en) 2014-08-21 2019-08-06 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US10386656B2 (en) 2014-08-21 2019-08-20 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US10558062B2 (en) 2014-08-21 2020-02-11 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical device
US10598958B2 (en) 2014-08-21 2020-03-24 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804032A (zh) * 2009-12-04 2012-11-28 派诺特公司 电控聚焦眼科装置
CN102804032B (zh) * 2009-12-04 2015-09-09 派诺特公司 电控聚焦眼科装置
EP2582313A4 (en) * 2010-06-20 2017-07-12 Elenza, Inc. Ophthalmic devices and methods with application specific integrated circuits
CN103124920A (zh) * 2010-09-27 2013-05-29 庄臣及庄臣视力保护公司 包括梯度厚度电介质涂层的液体弯月形透镜
CN103124920B (zh) * 2010-09-27 2016-04-20 庄臣及庄臣视力保护公司 包括梯度厚度电介质涂层的液体弯月形透镜
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
CN104205329A (zh) * 2012-01-26 2014-12-10 庄臣及庄臣视力保护公司 堆叠的集成部件装置中的多个通电元件
US10775644B2 (en) 2012-01-26 2020-09-15 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
CN103257457A (zh) * 2012-01-26 2013-08-21 庄臣及庄臣视力保护公司 具有集成天线结构的眼科镜片组件
US11793625B2 (en) 2012-04-23 2023-10-24 E-Vision Smart Optics, Inc. Systems, devices, and/or methods for managing implantable devices
CN110063817A (zh) * 2012-04-23 2019-07-30 E-视觉智能光学公司 用于管理可植入的装置的系统、装置和/或方法
US11007051B2 (en) 2012-04-23 2021-05-18 E-Vision Smart Optics, Inc. Systems, devices, and/or methods for managing implantable devices
CN104020580A (zh) * 2013-02-28 2014-09-03 庄臣及庄臣视力保护公司 具有瞳孔会聚传感器的电子式眼科透镜
CN104020580B (zh) * 2013-02-28 2018-09-28 庄臣及庄臣视力保护公司 具有瞳孔会聚传感器的电子式眼科透镜
CN105229519A (zh) * 2013-05-17 2016-01-06 庄臣及庄臣视力保护公司 对通电眼科镜片进行编程的系统和方法
CN105229519B (zh) * 2013-05-17 2018-03-30 庄臣及庄臣视力保护公司 对通电眼科镜片进行编程的系统和方法
CN105247407A (zh) * 2013-05-30 2016-01-13 庄臣及庄臣视力保护公司 用于具有可编程介质插入物的可通电眼科镜片的制造和编程的方法
CN105229522B (zh) * 2013-05-30 2019-06-21 庄臣及庄臣视力保护公司 用于对具有可编程介质插入物的通电眼科镜片编程的设备
CN105229522A (zh) * 2013-05-30 2016-01-06 庄臣及庄臣视力保护公司 用于对具有可编程介质插入物的通电眼科镜片编程的设备
US10558062B2 (en) 2014-08-21 2020-02-11 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical device
US10598958B2 (en) 2014-08-21 2020-03-24 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10374216B2 (en) 2014-08-21 2019-08-06 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US10386656B2 (en) 2014-08-21 2019-08-20 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10367233B2 (en) 2014-08-21 2019-07-30 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
CN108541219B (zh) * 2015-12-30 2020-11-27 威里利生命科学有限责任公司 具有铰接式壳体结构的眼内装置
CN108541219A (zh) * 2015-12-30 2018-09-14 威里利生命科学有限责任公司 具有铰接式壳体结构的眼内装置
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
CN109069266A (zh) * 2016-05-02 2018-12-21 G·巴尔齐莱 人工晶状体和与之相关的方法和/或组件
CN109069266B (zh) * 2016-05-02 2021-09-21 G·巴尔齐莱 人工晶状体和与之相关的方法和/或组件

Similar Documents

Publication Publication Date Title
CN103083113B (zh) 电激活眼内透镜
CN101094626A (zh) 电激活眼内透镜
US10729539B2 (en) Electro-chromic ophthalmic devices
US8778022B2 (en) Electro-active intraocular lenses
US10918476B2 (en) Electrowetting intraocular lens with isotonic aqueous phase
AU2012245172B2 (en) Electro-active intraocular lenses
AU2016202715B2 (en) Electro-active intraocular lenses
MX2007005197A (es) Lentes intraoculares electro-activos.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1122719

Country of ref document: HK

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20071226

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1122719

Country of ref document: HK