KR20140100980A - 소프트 또는 임프린트 리소그래피를 이용하여 분리된 마이크로- 및 나노- 구조를 제작하는 방법 - Google Patents

소프트 또는 임프린트 리소그래피를 이용하여 분리된 마이크로- 및 나노- 구조를 제작하는 방법 Download PDF

Info

Publication number
KR20140100980A
KR20140100980A KR20147018396A KR20147018396A KR20140100980A KR 20140100980 A KR20140100980 A KR 20140100980A KR 20147018396 A KR20147018396 A KR 20147018396A KR 20147018396 A KR20147018396 A KR 20147018396A KR 20140100980 A KR20140100980 A KR 20140100980A
Authority
KR
Grant status
Application
Patent type
Prior art keywords
particles
mold
method
material
pfpe
Prior art date
Application number
KR20147018396A
Other languages
English (en)
Inventor
조셉 엠. 데지몬
제이슨 피. 롤랜드
앤슬리 이. 엑스너
에드워드 티. 사물스키
알. 주드 사물스키
벤자민 더블유. 메이너
라켄 이. 율리스
진저 엠. 데니슨
Original Assignee
더 유니버시티 오브 노쓰 캐롤라이나 엣 채플 힐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0097Micromachined devices; Microelectromechanical systems [MEMS]; Devices obtained by lithographic treatment of silicon; Devices comprising chips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0085Manufacture of substrate-free structures using moulds and master templates, e.g. for hot-embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0001Processes specially adapted for the manufacture or treatment of devices or of parts thereof
    • H01L51/0002Deposition of organic semiconductor materials on a substrate
    • H01L51/0003Deposition of organic semiconductor materials on a substrate using liquid deposition, e.g. spin coating
    • H01L51/0004Deposition of organic semiconductor materials on a substrate using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing, screen printing
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0001Processes specially adapted for the manufacture or treatment of devices or of parts thereof
    • H01L51/0021Formation of conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers

Abstract

본 발명은 마이크로- 및 나노 스케일 레플리카 몰딩과 같은 고해상도의 소프트 혹은 임프린트 리소그래피에 적용에 있어서, 플루오로화된 탄성 중합체에 기반한 물질, 특히 퍼플루오로폴리에테르(PFPE)에 기반한 물질의 용도 및 탄성 중합체 몰드를 이용하여 고충실도의 특징을 생성하는 유기물질의 제1 나노-접촉 몰딩을 기술한다. 따라서, 본 발명은 소프트 혹은 임프린트 리소그래피 기술을 이용하여 모양을 가지는 프리-스탠딩의 분리된 나노 구조를 생산하는 방법을 기술한다.

Description

소프트 또는 임프린트 리소그래피를 이용하여 분리된 마이크로- 및 나노- 구조를 제작하는 방법 {Methods for fabricating isolated micro- and nano- structures using soft or imprint lithography}

본 발명은 소프트 또는 임프린트 리소그래피를 이용하여 마이크로- 및/또는 나노 스케일 입자를 제조하는 방법에 관한 것이다. 또한 본 발명은 치료제를 타겟으로 전달하는 방법 및 소프트 또는 임프린트 리소그래피를 이용하여 기판 위에 마이크로- 또는 나노-스케일 패턴을 형성하는 방법에 관한 것이다.

나노 기술의 잠재력을 실현하는데 있어, 성장가능한 나노 제조 공정의 이용가능성은 핵심 요소가 된다. 특히, 성장가능한 나노제조 공정의 이용가능성은 광자학(photonics), 전자공학(electronics) 및 단백질체학(proteomics)에 중요하다. 일반적인 임프린트 리소그래피(IL) 기술은 집적회로, 마이크로- 및 나노- 유체 장치 및 마이크로미터 및/또는 나노미터 크기 요소를 가지는 다른 장치를 제조하기 위한 포토리소그래피의 하나의 대안이다. 그러나 당해 기술 분야에서 IL 기술을 진일보시킬 수 있는 새로운 물질에 대한 요구가 있다. Xia, Y., et al., Angew. Chem. Int. Ed., 1998, 37, 550-575; Xia, Y., et al.. Chem. Rev., 1999, 99, 1823-1848; Resnick, D. J., et al.. Semiconductor International, 2002, June, 71-78; Choi. K. M.. et al.. J. Am. Chem. Soc, 2003, 125, 4060-4061 : McClelland. G. M.. et aL, Appl. Phys. Lett, 2002, 81, 1483; Chou. S. Y.. et al., J. Vac. ScL Technol. B, 1996, 14, 4129; Otto. M.. et al.. Microelectron. Eng., 2001, 57, 361 ; and Bailey. T.. et al.. J. Vac. Sci. Technol., B, 2000, 18, 3571를 참조할 것.

임프린트 리소그래피는 적어도 다음의 두 영역을 포함한다.

(1) 소프트 리소그래피 기술: Xia. Y. et al., Angew. Chem. Int. Ed., 1998, 37, 550-575, such as solvent-assisted micro-molding (SAMIM); micro-molding in capillaries (MIMIC); and microcontact printing (MCP) 참조할 것.

(2) 나노-접촉 몰딩(nano-contact molding, NCM)과 같은 단단한 임프린트 리소그래피 기술: McClelland. G. M., et aL, Appl. Phys. Lett, 2002, 81, 1483; Otto. M.. et al.. Microelectron. Eng., 2001 , 57, 361 ; "step and flash" imprint lithographic (S-FIL), see Bailey. T.. et al., J. Vac. Sci. Technol., B, 2000, 18, 3571 ; and nanoimprint lithography (NIL), see Chou. S. Y.. et al.. J. Vac. ScL Technol. B, 1996, 14, 4129를 참조할 것.

네트워크에 기초한 폴리디메틸실옥산(PDMS)은 소프트 리소그래피에서 많은 작업을 위해 선호되는 물질이다. Quake, S. R., et al.. Science, 2000, 290, 1536; Y. N. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. Engl. 1998, 37, 551 ; and Y. N. Xia, et al., Chem. Rev. 1999, 99, 1823을 참조할 것.

PDMS와 같은 소프트, 탄성중합체 물질을 이용하면 리소그래피 기술에 몇 가지 이점이 있다. 예를 들어, PDMS는 자외선(UV) 방사에 대하여 매우 투명하고 매우 낮은 영의 모듈러스(Young's modulus)(약 750 kPa)를 가지는데, 이것은 표면 불균일성(surface irregularities)에도 불구하고 쪼개짐(craking) 가능성 없이 컨포멀한 접촉에 요구되는 유동성을 부여한다. 대조적으로, 쪼개짐은 에칭된 실리콘 및 유리와 같이 깨지기 쉬운, 높은 모듈러스 물질로부터 만들어지는 몰드에 발생할 수 있다. Bietsch, A., et al., J. Appl. Phys., 2000, 88, 4310-4318를 참조할 것. 나아가, 몰드의 유동성은 마스터로부터 몰드가 쉽게 방출되고 쪼개짐 없이 복제되는 것을 도우며 약한 요소에 몰드가 손상을 가하지 않고 여러 임프린팅 단계를 견디어낼 수 있도록 한다. 부가적으로, 많은 소프트 탄성 중합체 물질은 가스 투과성으로, 이는 소프트 리소그래피 적용에 유익한 특성이다.

비록 PDMS가 소프트 리소그래피 적용에 몇몇 이점을 부여하지만, PDMS에 고유한 몇 가지 특성은 소프트 리소그래피에 있어서 이의 역량을 제한한다.

첫째로, PDMS-기반한 탄성 중합체는 대부분의 유기용성(organic soluble) 화합물에 노출될 경우 팽창된다. Lee, J. N., et al., Anal. Chem., 2003, 75, 6544-6554 참조할 것. 이러한 특성이 몰드가 유기 잉크에 흡착되도록 하기 때문에(Xia, Y., et al., Angew. Chem. Int. Ed., 1998, 37, 550-575 참조) 마이크로컨택 프린팅(MCP) 적용에 유익함에도 불구하고, 팽창 저항성은 다른 소프트 리소그래피 기술의 다수, 특히, SAMIM 및 MIMIC과 몰드가 소량의 경화가능한 유기 모노머 또는 레진과 접촉하는 IL 기술에 매우 중요하다. 그렇지 않으면, 몰드 상의 상기 특성의 충실도가 사라지고, 경화가능한 액체 물질이 몰드로 침투하기 때문에 해결할 수 없는 점착 문제가 발생한다. 이러한 문제점은 대부분의 유기 액체가 PDMS를 팽창시키기 때문에 PDMS-기반한 몰드에 보통 일어난다. 유기 물질은 그러나, 가장 몰딩하기에 바람직한 물질이다. 부가적으로, 산성 또는 염기성 수용액은 PDMS와 반응하여 폴리머 사슬의 절단을 유발한다.

둘째로, PDMS의 표면 에너지(약 25 mN/m)는 고충실도를 요구하는 소프트 리소그래피 공정을 위해 충분히 낮지 않다. 이러한 이유로 상기 PDMS-기반한 몰드의 패터닝된 표면은 플라즈마 처리에 이은 플루오로알킬트리클로로실란의 증착(vapor deposition)에 의해 자주 플루오로화 된다. Xia, Y., et al. Angew. Chem. Int. Ed., 1998, 37, 550-575를 참조할 것. 그러나 이렇게 플루오로-처리된 실리콘은 유기 용매에 노출될 경우 팽창된다.

셋째로, PDMS 몰드에서 사용되는 가장 일반적으로 사용, 시판되는 물질 형태-예를 들어 Sylgard 184®(Dow Corning Corporation, Midland, Michigan, United States of America)-는 많은 적용을 위해 너무 낮은 모듈러스(약 1.5MPa)를 갖는다. 이렇게 일반적으로 사용되는 PDMS 물질의 낮은 모듈러스는 요소(feature)들이 축 처지고 휘도록 하며 그 자체로 정확한 패턴 위치 및 정렬을 요구하는 공정에 잘 맞지 않는다. 비록 연구자들이 상기 마지막 문제점을 다루고자 시도하였지만(Qdom, T. W., et a!.. J. Am. Chem. Soc, 2002, 124, 12112-12113; Odom, T. W. et a!.. Langmuir, 2002, 18, 5314-5320; Schmid. H., et a!.. Macromolecules, 2000, 33, 3042-3049; Csucs, G., et al.. Langmuir, 2003, 19, 6104-6109; Trimbach, P., et al., Langmuir, 2003, 19, 10957-10961 참조할 것), 선택된 물질들은 여전히 좋지 않은 용매 저항성을 나타내었고, 몰드의 방출을 위해 플루오로화 단계를 요구한다.

석영, 유리 및 실리콘과 같은 단단한 물질들도 임프린트 리소그래피에 사용되어 왔다. Xia, Y., et al., Angew. Chem. Int. Ed., 1998, 37, 550-575; Resnick, D. J., et al., Semiconductor International, 2002, June, 71- 78; McClelland, G. M., et al., Appl. Phys. Lett., 2002, 81, 1483; Chou, S. Y., et al.. J. Vac. Sci. Technol. B, 1996, 14, 4129; Otto, M., et al.. Microelectron. Eng., 2001 , 57, 361 ; and Bailey, T., et al.. J. Vac. Sci. Technol., B, 2000, 18, 3571 ; Chou, S. Y.. et al.. Science, 1996, 272, 85-87; Von Werne, T. A., et al.. J. Am. Chem. Soc, 2003, 125, 3831-3838; Resnick, D. J., et al., J. Vac. Sci. Technol. B, 2003, 21, 2624-2631를 참조할 것. 이들 물질들은 모듈러스 및 팽창 저항성에 있어서 PDMS보다 뛰어나지만 유동성(flexibility)을 결여한다. 상기 유동성의 결여는 기판과의 컨포멀한 접촉을 억제하여 분리과정 동안 마스크 및/또는 복제에서의 결함을 유발한다.

단단한 물질의 또 다른 단점은 비싸고 제조하기 어려운 하드 몰드를 사용해야 할 필요가 있다는 것인데, 이것은 일반적인 포토리소그래피 혹은 전자빔(e-beam) 리소그래피를 이용하여 전형적으로 만들어지고 있다. Chou, S. Y., et al, J. Vac. Sci. Technol. S1 1996, 14, 4129를 참조할 것. 좀더 최근에는 실리콘 마스터에 대하여 광중합할 수 있는(photopolymerizable) 모노머 혼합물을 캐스팅하여 생성되는 아크릴레이트-기반 몰드를 사용함으로써 NCM 공정에서 반복적으로 값비싼 석영 유리 또는 실리콘 몰드를 사용해야 할 필요가 없어졌다. McClelland, G. M., et al., Appl. Phys. Lett, 2002, 81, 1483, and Jung, G. Y., et al., Nanoletters, 2004, ASAP를 참조할 것. 이러한 접근 역시 유기 용매에서의 몰드의 팽창에 의해 제한될 수 있다.

상기한 진보에도 불구하고, 단단한 물질로부터 몰드를 제조하는 다른 단점들은 상기 몰드의 표면 에너지를 낮추기 위해 플루오로화 단계를 이용(Resnick, D. J., et al., Semiconductor International, 2002, June, 71-78)해야 할 필요가 있으며 몰드나 기판을 손상하거나 파괴함이 없이 단단한 기판로부터 단단한 몰드를 방출해야 한다는 내재적 문제를 포함한다. Resnick, D. J., et al., Semiconductor International, 2002, June, 71-78; Bietsch, A.. J. Appl. Phys., 2000, 88, 4310-4318를 참조할 것. Khanq, D. Y.. et al., Langmuir, 2004, 20, 2445-2448은 상기 표면 에너지 문제를 다루기 위하여 열형성된(thermoformed) Teflon AF®(DuPont, Wilmington, Delaware, United States of America)로 구성되는 단단한 몰드의 사용을 보고하였다. 그러나 이러한 몰드의 제조는 멜트 프레스-실리콘 와퍼 마스터 위의 섬세한 특징에 해를 입힐 수 있는 공정-에서 높은 온도 및 압력을 요구한다. 부가적으로, 이러한 몰드는 상기에 아우트라인 된 것처럼, 다른 단단한 물질의 본질적인 단점들을 여전히 가지고 있다.

나아가, 하드 물질로부터 만들어지는 몰드 또는 주형을 이용하여 반도체 장치 위에 구조물을 제조하는 명확하고 중요한 한계는 단단한 주형이 기판과 접촉할 때 형성되는 찌꺼기 혹은 "스컴" 층이 일반적으로 형성된다는 것이다. 적용되는 압력을 높이는 경우에도 몰딩되는 액체의 젖음 행동(wetting behavior) 때문에 이 공정에서 액체를 완전히 제거하기는 매우 어렵고, 이것이 스컴 층이 형성되도록 한다. 그러므로, 당해 기술분야에서 반도체 장치와 같이, 스컴 층이 형성되지 않는, 기판 위에 패턴 혹은 구조물을 제조하는 방법이 필요하다.

광경화 가능한(photocurable) 퍼플루오로폴리에테르(PFPE)로부터 수백 마이크론 규모의 요소를 가지는 미세유체 장치(microfluidic devices)인 용매 레지스턴트의 제조가 보고되었다. Rolland, J. P., et al., J. Am. Chem. Soc, 2004, 126, 2322-2323를 참조할 것. PFPE 기반 물질은 상온에서 액체이며 광화학적으로 상호 연결되어 질기고 지속가능한 탄성중합체를 만들 수 있다. 더욱이, PFPE 기반 물질은 플루오로화 정도가 높으며, 탄성중합체 미세유체 장치에 기초하여 미세화학 플랫폼에 사용되기에 바람직한 다른 것들 중 메틸렌클로라이드, 테트라하이드로푸란, 톨루엔, 헥산 및 아세토니트릴과 같은 유기 용매에 의해 팽창되지 않는다. 그러나 당해 기술 분야에는 관련된 이유로 나노 규모 장치의 제조에 PFPE- 기반 물질을 적용할 필요가 있다.

나아가, 당해 기술 분야에는 패터닝된 마스크를 채택하는 방법과 같이 기판 위에 패턴을 형성하기 위한 개선된 방법에 대한 요구가 있다. U. S. Patent No. 4,735,890 to Nakane et al.; U. S. Patent No. 5,147,763 to Kamitakahara et al.; U.S. Patent No. 5,259,926 to Kuwabara et al.: and International PCT Publication No. WO 99/54786 to Jackson et al.를 참조할 것. 이들 각각은 본 명세서 내에 전체로 삽입되어 있다.

또한, 입자, 모양 및 부분을 포함하나 이에 한정되지 않는 "엔지니어링된(engineered)" 구조로 판단될 수 있는 분리된 구조물을 형성하기 위한 개선된 방법에 대한 요구가 있다. 일반적인 IL 방법을 이용하여, 거의 항상 구조물 사이에 형성되는 스컴 층은 구조물들을 서로 연결하거나 링크하도록 작용하고 이에 의하여 분리된 구조물들을 제조 및/또는 회수하는 것을 불가능하게는 아니지만 어렵게 만든다.

또한, 당해 기술 분야에서 특정 폴리머 일렉트렛(polymer electrets)에서 마이크로- 및 나노 규모의 대전된 입자들을 형성하기 위한 개선된 방법에 대한 요구가 있다. 용어 "폴리머 일렉트렛"은 저장된 전하를 표면 위에 또는 벌크로 가지는 유전체 및 방향성을 가진 쌍극자, 프로즌-인(frozen-in), 페리유전성 또는 페로유전성을 가지는 유전체를 가리킨다. 매크로 규모에서, 상기한 물질들은 예를 들어, 마이크로폰 등과 같은 전자 패키징 및 전하 일렉트렛 장치에 사용된다. Kressman, R., et al., Space-Charge Electrets, Vol. 2, Laplacian Press, 1999; and Harrison, J. S., et al.. Piezoelectic Polymers, NASA/CR-2001-211422, ICASE Report No. 2001-43를 참조할 것. 폴리(비닐리덴플루오라이드)(PVDF)은 폴리머 일렉트렛 물질의 한 예이다. PVDF에 더불어 폴리프로필렌(PP), 테플론-플루오로화된 에틸렌 플로필렌(FEP) 및 폴리테트라플루오로에틸렌(PTFE)와 같은 전하 일렉트렛 물질은 또한, 폴리머 일렉트렛으로 여겨진다.

나아가, 약물, 비-바이러스 유전자 벡터, DNA, RNA, RNAi, 및 바이러스 입자를 타겟에 전달하기 위한 개선된 방법에 대한 요구가 당해 기술 분야에 있다. Biomedical Polymers, Shalaby, S. W., ed., Harner/Gardner Publications, Inc., Cincinnati, Ohio, 1994; Polymeric Biomaterials, Dumitrin, S., ed., Marcel Dekkar, Inc., New York, New York, 1994; Park, K., et al.. Biodegradable Hydrogels for Drug Delivery, Technomic Publishing Company, Inc., Lancaster, Pennsylvania, 1 993; Gumargalieva, et aU , Biodegradation and Biodeterioration of Polymers: Kinetic Aspects, Nova Science Publishers, Inc., Commack, New York, 1 998; Controlled Drug Delivery, American Chemical Society Symposium Series 752, Park, K., and Mrsny, R. J., eds., Washington, D. C, 2000; Cellular Drug Delivery: Principles and Practices, Lu, D. R., and Oie, S., eds., Humana Press, Totowa, New Jersey, 2004; and Bioreversible Carriers in Drug Design: Theory and Applications, Roche, E. B., ed., Pergamon Press, New York, New York, 1987를 참조할 것. 상기한 전달 방법에서 사용하기 위한 대표적인 치료제의 설명을 위하여 U.S. Patent No. 6,159,443 내지 Hallahan을 참조할 것. 이것은 모두 본 명세서 내에 전체로 참조로써 삽입되어 있다.

통틀어, 당해 기술 분야에는 임프린트 리소그래피 기술에 사용하기 위한 새로운 물질을 확인하는 것이 필요하다. 좀더 상세하게는, 당해 기술 분야에는 수십 마이크론 수준에서 100 nm 이하의 요소 크기까지의 구조를 제조하기 위한 방법이 요구된다.

본 발명의 목적은 마이크로-, 나노- 및 서브-나노 구조를 만드는 새로운 방법을 제공하는 것이다. 상기 및 다른 목적들은 본 명세서 내에 개시된 발명의 주제에 의하여 전체적으로 혹은 부분적으로 달성된다.

어떤 실시예에서는 본 발명은 하나 이상의 입자들을 형성하는 방법을 기술하며, 상기 방법은

(a) 패터닝된 주형 및 기판을 제공하는 단계-여기서, 상기 패터닝된 주형은 거기에 형성된 복수의 오목한 영역을 가지는, 패터닝된 주형 표면을 포함한다;

(b) 액체 물질 볼륨(a volume of liquid material)을 i) 상기 패터닝된 주형 표면, 및 ii) 상기 복수의 오목 영역 중 적어도 하나의 내부 또는 위에 배치하는 단계; 및

(c) i) 상기 패터닝된 주형 표면과 상기 기판을 접촉시키고 상기 액체 물질을 처리함 및 ii) 상기 액체 물질을 처리함 중의 하나에 의하여 하나 이상의 입자를 형성하는 단계를 포함한다.

하나 이상의 입자를 형성하기 위한 방법의 어떤 실시예에서는, 상기 패터닝된 주형은 패터닝된 주형을 생산하기 위하여 낮은 점성 액체 물질을 마스터 주형 위에 캐스팅하고 상기 낮은 점성 액체 물질을 경화하여 유도되는, 낮은 표면 에너지 폴리머 물질인, 용매 레지스턴트(solvent resistant)를 포함한다. 어떤 실시예에서는 상기 패터닝된 주형은 용매 레지스턴트 탄성중합체 물질을 포함한다.

어떤 실시예에서는, 적어도 하나의 패터닝된 주형 및 기판은 퍼플루오로폴리에테르 물질, 플루오로올레핀 물질, 아크릴레이트 물질, 실리콘 물질, 스티렌 물질, 플루오로화 된 열가소성 탄성 중합체(TPE), 트리아진 플루오로폴리머, 퍼플루오로시클로부틸 물질, 플루오로화된 에폭시 레진 및 복분해 폴리머화 반응에 의하여 폴리머화 혹은 상호연결될 수 있는 플루오로화된 모노머 또는 플루오로화된 올리고머로 구성되는 군으로부터 선택되는 물질을 포함할 수 있다.

어떤 실시예에서는 본 발명은 치료제(therapeutic agent)를 타겟에 전달하는 방법을 포함하며, 상기 방법은

(a) 상기 기술된 방법에 의하여 형성되는 입자를 제공하는 단계;

(b) 상기 치료제를 상기 입자와 혼합하는 단계; 및

(c) 상기 치료제를 포함하는 입자를 타겟에 전달하는 단계를 포함한다. 치료제를 타겟에 전달하는 방법의 어떤 실시예에서는, 상기 치료제는 약물 및 유전 물질 중 하나로부터 선택된다. 어떤 실시예에서는 상기 유전 물질은 비-바이러스 유전자 벡터, DNA, RNA, RNAi 및 바이러스 입자로 구성되는 군으로부터 선택된다. 어떤 실시예에서는 상기 입자는 생분해될 수 있는 폴리머-여기서, 상기 생분해될 수 있는 폴리머는 폴리에스테르, 폴리언하이드라이드, 폴리아미드, 인-기반 폴리머, 폴리(시아노아크릴레이트), 폴리우레탄, 폴리오르소에스테르, 폴리디하이드로피란 및 폴리아세탈로 구성되는 군으로부터 선택된다.

어떤 실시예에서는, 본 발명은 기판 위에 패턴을 형성하는 방법을 기술하며, 상기 방법은

(a) 패터닝된 주형 및 기판을 제공하는 단계-여기서, 상기 패터닝된 주형은 그 안에 형성된 복수의 오목한 영역을 가지는, 패터닝된 주형 표면을 포함한다;

(b) 액체 물질 볼륨(a volume of liquid material)을 i) 상기 패터닝된 주형 표면, 및 ii) 상기 복수의 오목 영역 중 적어도 하나의 내부 또는 위에 배치하는 단계;

(c) 상기 패터닝된 주형 표면을 상기 기판과 접촉시키는 단계; 및

(d) 상기 액체 물질을 상기 기판 위에 패턴을 형성하도록 처리하는 단계를 포함한다.

기판 위에 패턴을 형성하는 방법의 어떤 실시예에서는 상기 패터닝된 주형은 패터닝된 주형을 생산하기 위하여 낮은 점성 액체 물질을 마스터 주형 위에 캐스팅하고 상기 낮은 점성 액체 물질을 경화하여 유도되는, 낮은 표면 에너지 폴리머 물질인, 용매 레지스턴트(solvent resistant)를 포함한다. 어떤 실시예에서는 상기 패터닝된 주형은 용매 레지스턴트 탄성중합체 물질을 포함한다.

어떤 실시예에서는, 적어도 하나의 패터닝된 주형 및 기판은 퍼플루오로폴리에테르 물질, 플루오로올레핀 물질, 아크릴레이트 물질, 실리콘 물질, 스티렌 물질, 플루오로화 된 열가소성 탄성 중합체(TPE), 트리아진 플루오로폴리머, 퍼플루오로시클로부틸 물질, 플루오로화된 에폭시 레진 및 복분해 폴리머화 반응에 의하여 폴리머화 혹은 상호연결될 수 있는 플루오로화된 모노머 또는 플루오로화된 올리고머로 구성되는 군으로부터 선택되는 물질을 포함할 수 있다.

따라서, 본 발명의 목적은 마이크로-, 나노- 및 서브-나노 구조를 만드는 새로운 방법을 제공하는 것이다. 상기 및 다른 목적들은 본 명세서 내에 개시된 발명의 주제에 의하여 전체적으로 혹은 부분적으로 달성된다.

본 명세서에 개시된 발명의 목적은 상기에서 언급되었으며 다른 측면 및 목적은 최적으로 기술된 첨부 도면 및 실시예와 연결되어 기술이 진행됨에 따라 명백해질 것이다.

본 발명은 소프트 혹은 임프린트 리소그래피 기술을 이용하여 모양을 가지는 프리-스탠딩의 분리된 나노 구조를 생산하는 방법을 제공한다.

도 1a 내지 1d는 패터닝된 주형을 제조하기 위하여 본원에 개시된 방법의 일 실시예의 개략도이고,
도 2a 내지 2e는 하나 이상의 마이크로- 및/또는 나노 스케일 입자를 형성하기 위하여 본원에 개시된 방법의 개략도이고,
도 3a 내지 3f는 하나 이상의 구형 입자를 제조하기 위하여 본원에 개시된 방법의 개략도이고,
도 4a 내지 4d는 대전된 폴리머 입자를 제조하기 위하여 본원에 개시된 방법의 개략도로서,
도 4a는 폴리머화 혹은 결정화 동안에 몰딩된 입자의 정전기적 대전(charging)을 나타내고,
도 4b는 대전된 나노-디스크를 나타내고,
도 4c는 대전되지 않은 나노-디스크의 전형적인 무작위 병치(justaposition)를 나타내고,
도 4d는 대전된 나노-디스크가 사슬 유사 구조로 자발적인 집합체를 형성한 것을 나타내고,
도 5a 내지 도 5d는 본원에 개시된 소프트 리소그래피 방법을 이용하여 형성된 다중막 입자의 개략도이고,
도 6a 내지 6c는 소프트 리소그래피 기술을 이용하여 3차원 나노 구조를 만들기 위해 본원에 개시된 방법의 개략도이고,
도 7a 내지 도 7f는 다차원 복합 구조를 제조하기 위하여 본원에 개시된 방법의 일 실시예를 나타내는 개략도이고,
도 8a 내지 8e는 "스컴 층"을 생성하는, 본원에 개시된 임프린트 리소그래피 공정의 개략도이고,
도 9a 내지 도 9e는 기능화된, 젖지 않는(non-wetting) 패터닝된 주형 및 젖지 않는 기판을 이용하여 "스컴 층"을 제거하는, 본원에 개시된 임프린트 리소그래피 방법의 개략도이고,
도 10a 내지 도 10e는 기판 상에 패턴을 형성하기 위하여 본원에 개시된 용매-도움미세몰딩 (solvent-assisted micro-molding, SAMIM)방법의 개략도이고,
도 11은 3 μm 화살표-모양 패턴을 포함하는 실리콘 마스터의 주사전자현미경상이고,
도 12는 끝에 50 nm 이하의 원뿔형 패턴을 포함하는 실리콘 마스터의 주사전자현미경상이고,
도 13은 200 nm 사다리꼴 패턴을 포함하는 실리콘 마스터의 주사전자현미경상이고,
도 14는 폴리(에틸렌글리콜)(PEG)디아크릴레이트의 200 nm 분리된 사다리꼴입자의 주사전자현미경상이고,
도 15는 PEG 디아크릴레이트의 500 nm 분리된 원뿔형 입자의 주사전자현미경상이고,
도 16은 PEG 디아크릴레이트의 3 μm 분리된 화살표 모양 입자의 주사전자현미경상이고,
도 17은 PEG 디아크릴레이트의 200-nm x 750-nm x 250-nm 직사각형 모양 입자의 주사전자현미경상이고,
도 18은 트리메틸로프로판트리아클릴레이트(TMPTA)의 200-nm 분리된 사다리꼴 입자의 주사전자현미경상이고,
도 19는 TMPTA의 500-nm 분리된 원뿔형 입자의 주사전자현미경상이고,
도 20은 본원에 개시된 젖지 않는(비습식) 임프린트 리소그래피 방법을 이용하여 프린트되고, 닥터 블레이드를 이용하여 기계적으로 회수된 TMPTA의 500-nm 분리된 원뿔형 입자의 주사전자현미경상이고,
도 21은 200 nm 분리된 사다리꼴 폴리(락틱산)(PLA) 입자의 주사전자현미경상이고,
도 22는 본원에 개시된 비습식 임프린트 리소그래피 방법을 이용하여 프린트되고, 닥터 블레이드를 이용하여 기계적으로 회수된 200-nm 분리된 사다리꼴 폴리(락틱산)(PLA) 입자의 주사전자현미경상이고,
도 23은 3 μm 분리된 화살표 모양 PLA 입자의 주사전자현미경상이고,
도 24는 500-nm 분리된 원뿔형 PLA 입자의 주사전자현미경상이고,
도 25는 200 nm 분리된 사다리꼴 폴리(피롤)(Ppy) 입자의 주사전자현미경상이고,
도 26은 3μm 분리된 화살표 모양 Ppy 입자의 주사전자현미경상이고,
도 27은 500-nm 원뿔형 Ppy 입자의 주사전자현미경상이고,
도 28a 내지 28c는 형광 태그된 DNA를 포함하는 200-nm 분리된 사다리꼴 PEG 디아크릴레이트 입자의 형광 공촛점 현미경상으로서, 도 28a는 CY-3으로 태그된 24-mer DNA 사슬을 포함하는 200 nm 사다리꼴 PEG 나노입자의 형광 공촛점 현미경 상이고, 도 28b는 형광 태그된 DNA를 포함하는 200-nm 분리된 사다리꼴 PEG 디아크릴레이트 입자의 주사전자현미경상이고, 도 28c는 도 28a 및 도 28b에서 제공된 상의 겹침상(overlay)으로써, DNA를 포함하는 모든 입자를 나타낸다.
도 29는 "이중-스탬핑"을 이용하여 200-nm PEG-디아크릴레이트 나노입자를 제조한 주사전자현미경 상이고,
도 30은 PFPE 몰드를 이용하여 제조된, 70 nm 간격으로 분리된 TMPTA의 140-nm 라인의 원자력현미경 상이고,
도 31a 및 도 31b는 전자빔 리소그래피로 생성된 마스터로부터 몰드 제조의 주사전자현미경 상으로서, 도 31a는 3 마이크론 화살표의 실리콘/실리콘 산화물의 주사전자현미경 상이고, 도 31b는 200-nm x 800-nm 바(bar)의 실리콘/실리콘 산화물의 주사전자현미경 상이고,
도 32a 내지 32b는 포토레지스트 마스터로부터 몰드 제조의 광학현미경 상으로서, 도 32a는 SU-8 마스터, 도 32b는 포토리소그래피 마스터로부터 본 떠진 PFPE-DMA 몰드이고,
도 33a 및 33b는 담배 모자이크 바이러스 주형으로부터 몰드 제조된 원자력현미경 상으로서, 도 33a는 마스터이고, 도 33b는 바이러스 마스터로부터 본 떠진 PFPE-DMA 몰드이고,
도 34a 및 34b는 블록 코폴리머 미셀 마스터로부터 몰드 제조된 원자력현미경 상으로서, 도 34a는 폴리스티렌-폴리이소프렌 블록 코폴리머 미셀이고, 도 34b는 미셀 마스터로부터 본 떠진 PFPE-DMA 몰드이고,
도 35a 및 35b는 브러시 폴리머 마스터로부터 몰드 제조된 원자력현미경 상으로서, 도 35a는 브러시 폴리머 마스터이고, 도 35b는 브러시 폴리머 마스터로부터 본 떠진 PFPE-DMA 몰드이다.

관련 출원

본 출원은 2003년 12월 19일에 출원된 미국 가특허출원 제60/531,531호, 2004년 6월 25일에 출원된 미국 가특허출원 제60/583,170호, 2004년 8월 27일에 출원된 미국 가특허출원 제60/604,970호에 기초하며 이의 우선권을 주장한다. 이들 각 출원은 본 명세서 내에 전체로 참조로써 삽입되어 있다.

정부 권리

본 발명은 합의서 No. CHE-9876674 하에서 해군연구청 기금(Office of Naval Research Grant) No. N00014210185 및 국립과학재단 (National Science Foundation)의 과학 기술 센터 프로그램(Sience and Technology Center program)의 지원으로 완성되었다. 미국 정부는 본 발명에 대하여 어떤 권리를 가진다.

약어

℃ = degrees Celsius

cm = centimeter

DBTDA = dibutyltin diacetate

DMA = dimethylacrylate

DMPA = 2,2-dimethoxy-2-phenylacetophenone

EIM = 2-isocyanatoethyl rnethacrylate

FEP = fluorinated ethylene propylene

Freon 113 = 1 ,1 ,2-trichlorotrifluoroethane

g = grams

h = hours

Hz = hertz

IL = imprint lithography

kg = kilograms

kHz = kilohertz

kPa = kilopascal

MCP = microcontact printing

MEMS = micro-electro-mechanical system

MHz = megahertz

MIMIC = micro-molding in capillaries

ml_ = milliliters

mm = millimeters

mmol = millimoles

mN = milli-Newton

m.p. = melting point

mW = milliwatts

NCM = nano-contact molding

NIL = nanoimprint lithography

nm = nanometers

PDMS = polydimethylsiloxane

PEG poly(ethylene glycol)

PFPE = perfluoropolyether PLA poly(lactic acid)

PP = polypropylene

Ppy = poly(pyrrole)

psi = pounds per square inch

PVDF = poly(vinylidene fluoride)

PTFE = polytetrafluoroethylene

SAMIM = solvent-assisted micro-molding

SEM = scanning electron microscopy

S-FIL = "step and flash" imprint lithography

Si = silicon

TMPTA = trimethylopropane triacrylate

μm = micrometers

UV = ultraviolet

W = watts

ZDOL = poly(tetrafluoroethylene oxide-co-difluoromethylene oxide)α,ωdiol

본원에 개시된 본 발명의 주제는 지금부터 대표적인 실시예이 나타난 하기 실시예를 참조하여 이하에서 좀더 상세하게 기술될 것이다. 본 명세서에 개시된 발명은 여러 형태로 구현될 수 있으며 본 명세서의 실시예으로 제한되는 것으로 이해되어서는 안된다. 오히려, 이러한 실시예들은 이러한 개시가 철저하며 완전한 것이 되기 위해 제공된 것이며, 당업자에게 실시가능한 태양의 범위를 포함한다.

달리 정의되지 않았다면, 본 명세서에 사용된 모든 기술적 과학적 용어는 현재 기재된 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 보통 이해되는 의미와 같은 의미를 가진다. 본 명세서에 언급된 모든 공개물, 특허 출원, 특허 및 다른 참조들은 전체로서 참조로 본 명세서에 삽입되어 있다. 명세서 및 청구항을 통하여 주어진 화학식 또는 명칭은 모든 광학 및 입체이성질체-상기 이성질체 및 그 혼합물로 존재하는 라세미 혼합물 만이 아니라-를 포함할 수 있다.

I. 재료

본 명세서에 개시된 발명은 마이크로 및 나노 스케일 레플리카 몰딩과 같은 고해상도 소프트 혹은 임프린트 리소그래피에 적용하기 위한 패터닝된 주형을 생산하기 위하여, 낮은 점성 액체 물질을 마스터 주형 위에 캐스팅하고 상기 낮은 점성 액체 물질을 경화하여 유도되는, 낮은 표면 에너지 폴리머 물질인, 용매 레지스턴트(solvent resistant)를 널리 기술한다. 몇 가지 실시예에서는 상기 패터닝된 주형은 플루오로화된 탄성 중합체 기반 물질과 같은-그러나 이에 한정되지 않는다- 용매 레지스턴트, 탄성 중합체-기반 물질을 포함한다.

나아가, 본 발명은 탄성 중합체 몰드를 이용하여 충실도가 높은 특성을 낳기 위하여 유기 물질의 첫번째 나노-접촉 몰딩을 기술한다. 따라서, 본 발명은 소프트 혹은 임프린트 리소그래피 기술을 이용하여 모양을 가지는 분리된 마이크로 및 나노 구조인 프리-스탠딩(free-standing)을 생산하는 방법을 기술한다. 대표적인 마이크로 및 나노 구조는 마이크로 및 나노 입자와 마이크로 및 나노 패터닝된 기판을 포함하나 이에 제한되지 않는다.

본 발명에 의하여 개시된 나노 구조는 반도체 장치; 크리스탈; 디스플레이 재료; 광전지(photovoltaics); 태양전지소자(solar cell device); 광전소자(optoelectronic devices); 루터(router); 그래프팅; 라디오 주파수 확인 장치(radio frequency identification devices); 촉매(catalysts), 충진재(fillers) 및 첨가제(additives); 해독제(detoxifying agents); 에칭 배리어(etch barriers); 원자력현미경 팁(atomic force microscope tips); 나노 기계를 위한 부품; 약물이나 유전 물질과 같은 치료제의 전달; 화장품; 화학 기계적 평탄화 입자(chemical mechanical planarization particles); 및 다공성 입자(porous particles) 및 나노 기술 산업을 가능케 할 어떤 종류의 모양의 제조를 위한 스컴 층이 없는 몰드 에칭 배리어(molding etch barriers)와 같은 반도체 제조를 포함-그러나 이에 한정되지 않는다-하여 몇 가지에 적용할 수 있다.

대표적인 용매 레지스턴드 탄성 중합체 기반 물질은 플루오로화된 탄성 중합체 기반 물질을 포함하나 이에 한정되지 않는다. 본 명세서에 사용된 바와 같이, 용어 "용매 레지스턴트" 는 일반적인 탄화수소에 기초한 유기 용매 혹은 산성의 또는 염기성 용액에 용해되지 않고 팽창하지 않는 탄성 중합체 물질과 같은 물질을 가리킨다. 대표적인 플루오로화된 탄성 중합체 기반 물질은 PFPE(perfluoro- polyether)-기반 물질을 포함하나 이에 한정되지 않는다. 광경화 가능한 액체 PFPE는 소프트 리소그래피를 위한 바람직한 특성을 나타낸다. 기능적 PFPE의 합성 및 광경화를 위한 대표적인 개요는 반응식 1에 제시되어 있다.

<반응식 1> 기능적인 퍼플루오로폴리에테르의 합성 및 광경화

Figure pat00001

기능적인 퍼플루오로폴리에테르의 합성을 위한 부가적인 개요는 실시예 7.1 내지 7.6에 있다.

이 PFPE 물질은 낮은 표면 에너지(예, 약 12 mN/m); 무독성; UV 투명성; 및 높은 가스 투과성; 및 매우 좋은 방출 성질 및 팽창하지 않는 성질을 가지는 질기며 지속적이고 플루오로화가 많이 된 탄성중합체로 경화된다. 이러한 물질의 특성은 첨가제, 충진재, 반응성 코-모노머 및 기능화제(functionalization agents)의 적절한 선택을 통하여 광범위하게 턴-오버될 수 있다. 개선하기에 바람직한 성질은 모듈러스, 찢김 강도(tear strength), 표면 에너지, 투과성, 기능성, 경화 모드, 용해도 및 팽창 특성 등을 포함하나 이에 한정되지 않는다. 본 명세서에 개시된 PFTF 물질의 비팽창 특성 및 쉽게 방출되는 특성은 어떠한 물질로부터도 나노 구조가 만들어질 수 있게 한다. 나아가 본 발명은 큰 규모의 롤러 또는 컨베이어 벨트 기술 또는 산업적 규모로 나노 구조를 제조하도록 허여하는 신속한 스탬핑까지 확장될 수 있다.

어떤 실시예에서는, 상기 패터닝된 주형은 패터닝된 주형을 생산하기 위하여 낮은 점성 액체 물질을 마스터 주형 위에 캐스팅하고 상기 낮은 점성 액체 물질을 경화하여 유도되는, 낮은 표면 에너지 폴리머 물질인, 용매 레지스턴트를 포함한다. 어떤 실시예에서는, 상기 패터닝된 주형은 용매 레지스턴트 탄성 중합체 물질을 포함한다.

어떤 실시예에서는, 적어도 하나의 패터닝된 주형 및 기판은 퍼플루오로폴리에테르 물질, 플루오로올레핀 물질, 아크릴레이트 물질, 실리콘 물질, 스티렌 물질, 플루오로화 된 열가소성 탄성 중합체(TPE), 트리아진 플루오로폴리머, 퍼플루오로시클로부틸 물질, 플루오로화된 에폭시 레진 및 복분해 폴리머화 반응에 의하여 폴리머화 혹은 상호연결될 수 있는 플루오로화된 모노머 또는 플루오로화된 올리고머로 구성되는 군으로부터 선택되는 물질을 포함할 수 있다.

어떤 실시예에서는 상기 퍼플루오로폴리에테르 물질은,

Figure pat00002

로 구성되는 군으로부터 선택되는 백본(backbone)을 포함하며, 여기서, X는 없거나 있어도 되고 있을 경우에는 말단캡핑 그룹을 포함한다.

어떤 실시예에서는 상기 플루오로올레핀 물질은

Figure pat00003

로 구성되는 군으로부터 선택되며 여기서, CSM은 경화 부위 모노머이다.

어떤 실시예에서는 상기 플로오로올레핀 물질은 테트라플루오로에틸렌, 비닐리덴 플루오라이드 혹은 헥사플루오로프로필렌, 2,2-비스(트리플루오로메틸)-4,5-디플루오로-1,3-디옥솔, 기능적 플루오로올레핀, 기능적 아크릴릭 모노머, 기능적 메타크릴릭 모노머를 포함하는 모노머로부터 만들어진다.

어떤 실시예에서는 상기 실리콘 물질은 하기 구조를 가지는 플루오로알킬 기능화된 폴리디메틸실옥산(fluoroalkyl functionalized polydimethylsiloxane , PDMS)를 포함한다.

Figure pat00004

여기서 R은 아크릴레이트, 메타크릴레이트 및 비닐 그룹으로 구성되는 군으로부터 선택되고;

Rf는 플루오로알킬 사슬을 포함한다.

어떤 실시예에서는, 상기 스티렌 물질은

Figure pat00005

로 구성되는 군으로부터 선택되는 플루오로화된 스티렌 모노머를 포함하며 여기서, Rf는 플로오로알킬 사슬을 포함한다.

어떤 실시예에서는, 상기 아크릴레이트 물질은 하기 구조를 가지는 플루오로화된 아크릴레이트 혹은 플루오로화된 메타크릴레이트를 포함하며

Figure pat00006

여기서, R은 H, 알킬, 치환된 알킬, 아릴, 및 치환된 아릴로 구성되는 군으로부터 선택되고;

Rf는 플루오로알킬 사슬을 포함한다.

어떤 실시예에서는, 상기 트리아진 플루오로폴리머는 플루오로화된 모노머를 포함한다. 어떤 실시예에서는 복분해 폴리머화 반응에 의하여 폴리머화 혹은 상호연결될 수 있는 상기 플루오로화된 모노머 혹은 플루오로화된 올리고머는 기능화된 올레핀을 포함한다. 어떤 실시예에서는 상기 기능화된 올레핀은 기능화된 환상 올레핀을 포함한다.

어떤 실시예에서는 적어도 하나의 패터닝된 주형 및 그 기판은 18 mN/m 이하의 표면 에너지를 가진다. 어떤 실시예에서는 적어도 하나의 패터닝된 주형 및 그 기판은 15 mN/m 이하의 표면 에너지를 가진다.

특성학적 관점에서 보면 이러한 몰딩 물질의 정확한 특성은 상기 물질을 만드는데 사용되는 상기 성분들의 조성을 조절함으로써 조절된다. 특히, 모듈러스는 낮은 값(약 1MPa)부터 멀티플 GPa까지 조절될 수 있다.

II . 분리된 마이크로 및/또는 나노 입자의 형성

어떤 실시예에서는 본 발명은 분리된 마이크로 및/또는 나노 입자를 만드는 방법을 제시한다. 어떤 실시예에서는 상기 공정은 패터닝된 기판을 초기에 형성하는 것을 포함한다. 도 1a로 돌아가면 패터닝된 마스터 (100)이 제시되어 있다.

패터닝된 마스터 (100)은 복수의 비-오목한 표면 영역 (102) 및 복수의 오목한 영역 104를 포함한다. 어떤 실시예에서는 패터닝된 마스터 (100)은 실리콘 와퍼와 같은, 패터닝된 마스터 (100)을 형성하는데 바람직한 패턴으로 에칭된 기판을 포함한다.

도 1b를 참조하면, 액체 물질 (106)-예를 들어, PFPE에 기반한 전구체와 같은 액체 플루오로폴리머 조성물-은 패터닝된 마스터 (100)에 부어진다. 액체 물질 (106)은 처리 공정 Tr-예를 들어, UV에 노출하여 바람직한 패턴으로 처리된 액체 물질 (108)을 형성하는-에 의해 처리된다.

도 1c 및 도 1d를 참조하면, 힘 Fr은 패터닝된 마스터 (100)으로부터 처리된 액체 물질(108)을 제거하기 위하여 처리된 액체 물질 (108)에 가해진다. 도 1c 및 도 1d에 나타난 바와 같이, 처리된 액체 물질 (108)은 복수의 오목 영역 (110)-이것은 패터닝된 마스터 (100)의 비-오목 표면 영역 (102)의 거울 이미지이다-을 포함한다. 도 1c 및 도 1d에 계속해서, 처리된 액체 물질 (108)은 복수의 제1 패터닝된 표면 영역 (112)-이것은 패터닝된 마스터 (100)의 복수의 오목 영역 (104)의 거울 이미지이다-를 포함한다. 처리된 액체 물질 (108)은 이제 소프트 리소그래피 및 임프린트 리소그래피 적용을 위한 패터닝된 주형으로 사용될 수 있다. 따라서, 처리된 액체 물질 (108)은 분리된 마이크로 및 나노 입자의 형성을 위한 패터닝된 주형으로 사용될 수 있다. 도 1a-1d, 2a-2e 및 3a-3f에서 유사 구조에 대한 숫자 매김은 통틀어 유지되었다.

이제 도 2a를 참조하면, 어떤 실시예에서는 기판 (200)-예를 들어, 실리콘 와퍼-은 비-젖음 물질 (202)로 처리되거나 코팅된다. 어떤 실시예에서는 비-젖음 물질 (202)는 UV에 노출되어 얇고 젖지 않는 막을 기판 (200)의 표면 위에 형성하게끔 경화되는 탄성 중합체(PFPE 탄성 중합체를 포함하나 이에 한정되지 않는 용매 레지스턴트 탄성 중합체와 같은 것)를 포함한다. 기판 (200)은 기판 (200)을 비-젖음 물질 202-예를 들어 알킬- 또는 플루오로알킬-실란 또는 다른 표면 처리제와 같은 작은 분자-로 처리함으로써 젖지 않도록 할 수도 있다. 도 2a에서 모노머인 경화 가능한 레진 액적 (204), 또는 원하는 입자가 형성될 용액이 코팅된 기판 200 위에 놓여진다.

도 2a 및 도 2b에서, 패터닝된 주형 (108)(도 1d에 나타남)은 이어 액적 (204)와 접촉하여 액적 (204)는 패터닝된 주형 (108)의 복수의 오목 영역 (110)을 채우게 된다.

도 2c 및 도 2d에서 힘 Fa는 패터닝된 주형 (108)에 가해진다. 어떠한 특정 이론에 의하여 제한하고 싶지 않지만, 일단 힘 F3이 가해지면 패터닝된 주형 (108)의 비-젖음 코팅 혹은 기판 (200) 상의 표면 처리 (202)에 대한 친화성은 패터닝된 주형 (108)의 비-젖음 성향 및 표면 처리 혹은 코팅된 기판 (200)과 조합하여 액적 (204)가 오목 영역 (110)을 제외한 모든 영역으로부터 제외되도록 한다. 나아가, 액적 (204)를 샌드위칭 하는 비-젖음 혹은 낮은 젖음 물질 (202)가 본질적으로 없는 실시예에서는 눌러 찌그러진(stamped) 대상들을 연결하는 "스컴" 층이 형성된다.

도 2c 및 2d에서 계속하여, 오목 영역 (110)을 채우는 물질-예를 들어 레진, 모노머, 용매 및 이들의 조합-은 이어 Tr과 같은 처리 공정-예를 들어 패터닝된 주형 (108)을 통한 광경화 혹은 압력하에서 열 경화-로 처리되어 복수의 마이크로- 및/또는 나노 입자 (206)을 형성한다. 어떤 실시예에서는 폴리머, 유기 화합물 혹은 무기 화합물을 포함하나 이에 한정되지 않는 물질을 용매에 녹여 패터닝된 주형 (108)을 이용하여 패터닝하고 이어 용매를 제거할 수 있다.

도 2c 및 2d에서 일단 오목 영역 (110)을 채우는 물질을 처리하면 패터닝된 주형 (108)은 기판 (200)으로부터 제거된다. 마이크로- 및/또는 나노 입자 (206)은 패터닝된 주형 (108)의 오목 영역 (110)에 가둬진다. 어떤 실시예에서는, 마이크로- 및/또는 나노 입자 (206)은 일단 패터닝된 주형 (108)이 제거되면, 기판 (200) 상의 정의된 영역에 유지될 수 있다. 이러한 실시예은 실질적으로 스컴-막이 없는 특성이 에칭 배리어, 혹은 도전성, 반도전성 또는 절연성 막으로 직접적으로 사용될 수 있는 반도체 장치의 제조에서 일반적이며 비싼 포토리소그래피 공정을 사용할 필요를 절감시키면서 이용될 수 있다.

도 2d 및 2e를 참조하면, 마이크로- 및/혹은 나노 입자 (206)은 패터닝된 주형 (108)로부터 프리스탠딩 입자를 제공하기 위하여 다음의 방법을 포함하나 이에 한정되지 않는 다양한 방법에 의하여 제거될 수 있다.

(1) 패터닝된 주형 (108)을 입자 (206)에 대한 친화성을 가지는 표면에 적용함;

(2) 입자 206이 자연적으로 패터닝된 주형 (108)로부터 방출되도록 패터닝된 주형 (108)을 변형시키거나 초음파를 포함하는 다른 기계적 방법을 사용함;

(3) 패터닝된 주형 (108)을 초임계 이산화탄소 또는 입자 (206)을 사출하는 또 다른 용매와 가역적으로 팽창시킴;

(4) 패터닝된 주형 (108)을 입자 (206)에 친화성을 가지는 용매로 세척하고 패터닝된 주형 (108)로부터 씻겨 나오게 함;

어떤 실시예에서는, 상기 방법은 배치 공정을 포함한다. 어떤 실시예에서는, 상기 배치 공정은 세미-배치 공정 및 연속 배치 공정 중의 하나로부터 선택된다. 도 2f에서 입자 (206)이 연속 공정에서 생산되는 본 발명의 일 실시예이 개략적으로 제시된다. 장치 (199)는 상기 공정을 수행하기 위해 제시되어 있다. 실제로, 도 2f가 입자를 위한 연속 공정을 개략 제시하고 있는 반면, 장치 (199)는 본 발명의 사상과 합치하여 및 당업자에 의한 본 발명의 리뷰에 근거하여 배치 공정 및 연속적으로 혹은 배치에서 기판 상에 패턴을 제공하기 위하여 적용할 수 있다.

계속해서, 도 2f에서 액체 물질의 액적 (204)는 저장부 (203)을 경유하여 기판 (200')에 적용된다. 기판 (202')는 비-젖음 물질로 코팅되거나 코팅되지 않을 수 있다. 기판 (200') 및 패터닝된 주형 (108')은 서로 공간 관계적으로 위치되며 또한, 기판 (200') 및 패터닝된 주형 (108')사이에 액적 (204)의 수송을 위해 제공되도록 서로 작동가능하게 배치된다. 수송은 도르래 (208)을 통하여 촉진되고, 이것은 제어부 (201)를 통하여 작동이 소통된다. 대표적인 비한정 실시예로서 제어부 (201)는 컴퓨팅 시스템, 적절한 소프트웨어, 파워 소스, 방사 소스(radiation source) 및/또는 장치 (199)의 작용을 조절하기 위한 다른 적절한 장치를 포함할 수 있다. 그러므로, 제어부 (201)은 기판 (200') 및 패터닝된 주형 (108') 사이에서 액적 (204)를 수송할 수 있도록 도르래 (208)의 작동을 위한 전력 및 도르래 (208)의 작동의 다른 조절을 제공한다. 입자 (206)이 형성되고 제어부 (201)에 의하여 역시 조절되는 처리 공정 Tr에 의하여 기판 (200') 및 패터닝된 주형 (108') 사이에서 처리된다. 입자 (206)은 조사 장치 (210)-이것 역시 제어부 (201)에 의해 조절된다-에서 수집된다. 조사 장치 (210)은 입자 (206)의 하나 이상의 특징을 조사, 측정 및 조사와 측정 모두 중 어느 하나를 목적으로 제공된다. 조사 장치 (210)의 대표적인 예는 본 명세서에 개시되어 있다.

그러므로, 어떤 실시예에서는 하나 이상의 입자를 형성하기 위한 방법은,

(a) 패터닝된 주형 및 기판을 제공하는 단계-여기서, 패터닝된 주형은 그 안에 형성된 복수의 오목한 영역을 가지는, 제1의 패터닝된 주형 표면을 포함한다-;

(b) 액체 물질 볼륨을 i) 제1의 패터닝된 주형 표면, 및 ii) 상기 복수의 오목 영역 중 적어도 하나의 내부 또는 위에 배치하는 단계; 및

(c) i) 상기 패터닝된 주형 표면과 상기 기판을 접촉시키고 상기 액체 물질을 처리함, 및 ii) 상기 액체 물질을 처리함 중의 어느 하나에 의하여 하나 이상의 입자를 형성하는 단계를 포함한다.

하나 이상의 입자를 형성하기 위한 방법의 어떤 실시예에서는 상기 패터닝된 주형은 패터닝된 주형을 생산하기 위하여 낮은 점성 액체 물질을 마스터 주형 위에 캐스팅하고 상기 낮은 점성 액체 물질을 경화하여 유도되는, 낮은 표면 에너지 폴리머 물질인, 용매 레지스턴트를 포함한다. 어떤 실시예에서는, 상기 패터닝된 주형은 용매 레지스턴트 탄성 중합체 물질을 포함한다.

어떤 실시예에서는 상기 패터닝된 주형 및 기판의 적어도 하나는 퍼플루오로폴리에테르 물질, 플루오로올레핀 물질, 아크릴레이트 물질, 실리콘 물질, 스티렌 물질, 플루오로화 된 열가소성 탄성 중합체(TPE), 트리아진 플루오로폴리머, 퍼플루오로시클로부틸 물질, 플루오로화된 에폭시 레진 및 복분해 폴리머화 반응에 의하여 폴리머화 혹은 상호연결될 수 있는 플루오로화된 모노머 또는 플루오로화된 올리고머로 구성되는 군으로부터 선택된다.

어떤 실시예에서는 상기 퍼플루오로폴리에테르 물질은

Figure pat00007

로 구성되는 군으로부터 선택되는 백본(backbone)을 포함하며, 여기서, X는 없거나 있어도 되고 있을 경우에는 말단 캡핑 그룹을 포함한다.

어떤 실시예에서는 상기 플루오로올레핀 물질은

Figure pat00008

로 구성되는 군으로부터 선택되며 여기서, CSM은 경화 부위 모노머이다.

어떤 실시예에서는 상기 플로오로올레핀 물질은 테트라플루오로에틸렌, 비닐리덴 플루오라이드 혹은 헥사플루오로프로필렌, 2,2-비스(트리플루오로메틸)-4,5-디플루오로-1,3-디옥솔, 기능적 플루오로올레핀, 기능적 아크릴 모노머, 기능적 메타크릴 모노머를 포함하는 모노머로부터 만들어진다.

어떤 실시예에서는 상기 실리콘 물질은 하기 구조를 가지는 플루오로알킬 기능화된 폴리디메틸실옥산(fluoroalkyl functionalized polydimethylsiloxane, PDMS)를 포함한다.

Figure pat00009

여기서 R은 아크릴레이트, 메타크릴레이트 및 비닐 그룹으로 구성되는 군으로부터 선택되고;

Rf는 플루오로알킬 사슬을 포함한다.

어떤 실시예에서는, 상기 스티렌 물질은

Figure pat00010

로 구성되는 군으로부터 선택되는 플루오로화된 스티렌 모노머를 포함하며 여기서, Rf는 플루오로알킬 사슬을 포함한다.

어떤 실시예에서는, 상기 아크릴레이트 물질은 하기 구조를 가지는 플루오로화된 아크릴레이트 혹은 플루오로화된 메타크릴레이트를 포함하며

Figure pat00011

여기서, R은 H, 알킬, 치환된 알킬, 아릴, 및 치환된 아릴로 구성되는 군으로부터 선택되고;

Rf는 플루오로알킬 사슬을 포함한다.

어떤 실시예에서는, 상기 트리아진 플루오로폴리머는 플루오로화된 모노머를 포함한다. 어떤 실시예에서는 복분해 폴리머화 반응에 의하여 폴리머화 혹은 상호연결될 수 있는 상기 플루오로화된 모노머 혹은 플루오로화된 올리고머는 기능화된 올레핀을 포함한다. 어떤 실시예에서는 상기 기능화된 올레핀은 기능화된 환상 올레핀을 포함한다.

*어떤 실시예에서는 적어도 하나의 패터닝된 주형 및 그 기판은 18 mN/m 이하의 표면 에너지를 가진다. 어떤 실시예에서는 적어도 하나의 패터닝된 주형 및 그 기판은 15 mN/m 이하의 표면 에너지를 가진다.

어떤 실시예에서는 상기 기판은 폴리머 물질, 무기 물질, 실리콘 물질, 석영 물질, 유리 물질 및 표면 처리된 이들의 변형체로 구성되는 군으로부터 선택될 수 있다. 어떤 실시예에서는 상기 기판은 패터닝된 영역을 포함한다. 어떤 실시예에서는 상기 복수의 오목 영역은 복수의 구멍(cavity)을 포함한다. 어떤 실시예에서는 상기 복수의 구멍은 복수의 구조적 요소(feature)를 포함한다. 어떤 실시예에서는 상기 복수의 구조적 요소는 크기가 약 10 마이크론 내지 약 1 나노미터의 디멘션을 갖는다. 어떤 실시예에서는 상기 복수의 구조적 요소는 크기가 약 10 마이크론 내지 약 1 마이크론의 디멘션을 갖는다. 어떤 실시예에서는 상기 복수의 구조적 요소는 크기가 약 1 마이크론 내지 약 100 nm의 디멘션을 갖는다. 어떤 실시예에서는 상기 복수의 구조적 요소는 크기가 약 100nm 내지 약 1nm의 디멘션을 갖는다.

어떤 실시예에서는 상기 패터닝된 주형은 레플리카 몰딩 공정에 의하여 형성되는 패터닝된 주형을 포함한다. 어떤 실시예에서는 상기 레플리카 몰딩 공정은 마스터 주형을 제공하는 단계; 액체 물질을 상기 마스터 주형과 접촉시키는 단계; 및 상기 액체 물질을 패터닝된 주형을 형성하도록 경화하는 단계를 포함한다.

어떤 실시예에서는, 상기 마스터 주형은 리소그래피 공정으로부터 형성된 주형; 자연적으로 발생하는 주형; 및 이들의 조합으로 구성되는 군으로부터 선택된다. 어떤 실시예에서는 상기 자연적인 주형은 생물학적 구조 및 자가 조립되는 구조 중의 하나로부터 선택된다. 어떤 실시예에서는 생물학적 구조 및 자가 조립되는 구조 중의 하나는 자연적으로 발생하는 결정, 효소, 바이러스, 단백질, 미셀 및 조직 표면으로 구성되는 군으로부터 선택된다.

어떤 실시예에서는 상기 방법은 상기 패터닝된 주형 표면을 표면 개변(modifying) 단계에 의하여 개변하는 것을 포함한다. 어떤 실시예에서는 상기 표면 개변 단계는 플라즈마 처리, 화학적 처리 및 흡착 공정으로 구성되는 군으로부터 선택된다. 어떤 실시예에서는 상기 흡착 공정은 폴리일렉트롤라이트, 폴리(비닐알콜), 알킬할로실란 및 리간드로 구성되는 군으로부터 선택되는 분자를 흡착하는 것을 포함한다.

어떤 실시예에서는 상기 방법은 상기 패터닝된 주형 및 상기 기판을 미리 결정된 정렬로 서로 면하도록 상기 패터닝된 주형 및 기판을 공간 관계적으로 위치시키는 것을 포함한다.

어떤 실시예에서는 상기 액체 물질은 폴리머, 용액, 모노머, 복수의 모노머, 폴리머화 개시자, 폴리머화 촉매, 무기 전구체, 금속 전구체, 의약(pharmaceutical agent), 태그, 마그네틱 물질, 파라마그네틱 물질, 수퍼파라마그네틱 물질, 리간드, 세포 관통 펩티드, 포로젠(porogen), 표면활성제, 복수의 불혼화성 액체(immiscible liquids), 용매, 대전된 종(a charged species) 및 이들의 조합으로 구성되는 군으로부터 선택된다.

어떤 실시예에서는, 상기 의약은 약물, 펩티드, RNAi, 및 DNA로 구성되는 군으로부터 선택된다. 어떤 실시예에서는 상기 태그는 형광 태그, 방사 표지된 태그, 및 대조 물질(contrast agent)로 구성되는 군으로부터 선택된다. 어떤 실시예에서는 상기 리간드는 세포 타겟팅 펩티드를 포함한다.

어떤 실시예에서는 상기 액체 물질은 비-젖음 물질(non-wetting agent)을 포함한다. 어떤 실시예에서는 상기 액체 물질은 하나의 상(phase)을 포함한다. 어떤 실시예에서는 상기 액체 물질은 복수의 상을 포함한다. 어떤 실시예에서는 상기 액체 물질은 멀티플 액체, 멀티플 불혼화성 액체, 표면활성제, 분산액, 에멀젼, 마이크로-에멀젼, 미셀, 미립자, 콜로이드, 포로젠, 활성 성분 및 이들의 조합으로 구성되는 군으로부터 선택된다.

어떤 실시예에서는 액체 물질 볼륨을 상기 패터닝된 주형 및 상기 기판 상에 배치하는 것은 스프레딩 공정에 의해 조절된다.

어떤 실시예에서는 상기 스프레딩 공정은,

(a) 제1 볼륨의 액체 물질을 상기 패터닝된 주형 및 상기 기판 상에 배치하여 그 위에 액체 물질 막을 형성하는 단계; 및

(b) (i) 상기 패터닝된 주형 및 상기 기판 중의 하나 위의 상기 액체 물질막으로부터 제2 볼륨의 액체 물질을 제거; 및 (ii) 상기 패터닝된 주형 및 상기 기판 중의 하나 위에 제3 볼륨의 액체 물질을 남겨두기 위하여, 상기 액체 물질 막을 가로질러 도구(implement)를 끌어당기는 단계를 포함한다.

어떤 실시예에서는 제품(article)이 액체 물질 막과 접촉하고 힘이 상기 제품에 가해져 이에 의해 상기 액체 물질이 상기 패터닝된 물질 및 상기 기판 중 하나로부터 제거된다. 어떤 실시예에서는 상기 제품은 롤러 및 "스퀴지(squeegee)" 블레이드로 구성되는 군으로부터 선택된다.

어떤 실시예에서는 상기 물질은 몇몇 다른 기계적 수단에 의해 제거된다. 어떤 실시예에서는 상기 패터닝된 주형 표면과 상기 기판을 접촉시키는 것은 상기 패터닝된 주형 표면과 상기 기판 사이에 배치된 액체 물질의 실질적으로 모두에 힘을 가하게 된다.

어떤 실시예에서는, 상기 액체 물질을 처리하는 것은 열공정(thermal process), 광화학 공정 및 화학 공정으로 구성되는 군으로부터 선택되는 공정을 포함한다.

하기에 상세히 기술된 바와 같이 어떤 실시예에서는 상기 방법은,

(a)(i) 접촉 압력을 상기 패터닝된 주형 표면에 적용함; 및 (ii) 상기 액체 물질의 제2 볼륨을 증발시키거나 주형을 통하여 침투하게 함; 중 하나에 의하여 상기 복수의 오목 영역에 배치된 액체 물질의 볼륨을 감소시키는 단계;

(b) 상기 패터닝된 주형 표면에 적용된 접촉 압력을 제거하는 단계;

(c) 상기 패터닝된 주형 표면의 오목 영역 내에 가스를 도입하는 단계;

(d) 상기 패터닝된 주형 표면의 오목 영역 내에 하나 이상의 입자를 형성하도록 상기 액체물질을 처리하는 단계; 및

(e) 하나 이상의 입자를 방출하는 단계를 추가로 포함한다.

어떤 실시예에서는 하나 이상의 입자의 방출은,

(a) 상기 패터닝된 주형을 기판에 적용하는 단계-여기서, 상기 기판은 하나 이상의 입자에 대한 친화성을 가진다-;

(b) 상기 패터닝된 주형을 변형하여 하나 이상의 입자가 상기 패터닝된 주형으로부터 방출되도록 하는 단계;

(c) 상기 패터닝된 주형을 제1용매로 팽창시켜 상기 하나 이상의 입자를 사출하도록 하는 단계;

(d) 상기 패터닝된 주형을 제2용매로 세척하는 단계-여기서 상기 제2용매는 상기 하나 이상의 입자에 대한 친화성을 가진다;- 및,

(e) 기계적 힘을 상기 하나 이상의 입자에 적용하는 단계 중 하나에 의해 수행된다.

어떤 실시예에서는 상기 기계적 힘은 닥터 블레이드(Doctor blade) 및 브러시를 상기 하나 이상의 입자와 접촉함으로써 적용된다. 어떤 실시예에서는 상기 기계적 힘은 초음파, 메가소닉, 정전기 또는 마그네틱 수단에 의하여 적용된다.

어떤 실시예에서는 상기 방법은 상기 입자들을 수거 혹은 수집하는 것을 포함한다. 어떤 실시예에서는 상기 입자의 수거 혹은 수집은 닥터 블레이드로 스크래핑, 브러싱 공정, 용해 공정, 울트라사운드 공정, 메가소닉 공정, 정전기적 공정 및 마그네틱 공정으로 구성되는 군으로부터 선택되는 공정을 포함한다. 어떤 실시예에서는 본 발명은 본원에 기술된 방법에 의하여 형성된 하나의 입자 혹은 복수의 입자를 기술한다. 어떤 실시예에서는 상기 복수의 입자는 복수의 단분산 입자를 포함한다.

어떤 실시예에서는 상기 입자 혹은 복수의 입자들은 반도체 장치, 크리스탈, 의약 전달벡터, 유전자 전달벡터, 질병탐지 장치, 질병 위치장치(disease locating device), 광전지 장치, 포로젠, 화장품, 일렉트렛, 첨가제, 촉매, 센서, 해독제, CMP와 같은 연마제, 미세전자기계 시스템(micro-electro-mechanical system (MEMS), 세포 스캐폴드, 타갓트(taggart), 의약 및 바이오 마커로 구성되는 군으로부터 선택된다. 어떤 실시예에서는 상기 입자 혹은 복수의 입자는 프리스탠딩 구조를 포함한다.

나아가, 어떤 실시예에서는 본 발명은 분리된 액체 물체(object)를 제조하는 방법을 기술하는데, 상기 방법은

(a) 액체 물질을 제1 낮은 표면 에너지 물질과 접촉하는 단계;

(b) 제2 낮은 표면 에너지 물질을 상기 액체와 접촉시키는 단계-여기서, 상기 제1 혹은 제2 낮은 표면 에너지 물질 중 적어도 어느 하나의 표면은 패터닝되어 있다-;

(c) 상기 제1 및 제2 낮은 표면 에너지 물질의 표면을 함께 씰링하는 단계; 및

(d) 상기 두 개의 낮은 표면 에너지 물질을 분리하여 액적을 포함하는 레플리카 패턴을 생성하는 단계를 포함한다.

어떤 실시예에서는 상기 액체 물질은 폴리(에틸렌글리콜)-디아크릴레이트를 포함한다. 어떤 실시예에서는 상기 낮은 표면 에너지 물질은 퍼플루오로폴리에테르-디아크릴레이트를 포함한다. 어떤 실시예에서는 화학 공정이 상기 제1 및 제2 낮은 표면 에너지 물질의 표면을 씰링하는데 사용된다. 어떤 실시예에서는 물리적 공정이 상기 제1 및 제2 낮은 표면 에너지 물질의 표면을 씰링하는데 사용된다. 어떤 실시예에서는, 상기 낮은 표면 에너지 물질의 표면 중 하나가 패터닝된다. 어떤 실시예에서는, 상기 낮은 표면 에너지 물질의 표면 중 하나가 패터닝되지 않는다.

어떤 실시예에서는, 상기 방법은 다른 물체(object)를 제조하기 위하여 액적으로 구성되는 레플리카 패턴을 이용하는 것을 추가로 포함한다. 어떤 실시예에서는, 상기 액적의 레플리카 패턴은 패터닝되지 않은 낮은 표면 에너지 물질의 표면 위에 형성된다. 어떤 실시예에서는, 상기 액적은 직접적 혹은 부분적 고형화(solidification)를 수행한다. 어떤 실시예에서는, 상기 액적은 화학적 변형(chemical transformation)을 수행한다. 어떤 실시예에서는, 상기 액적의 고형화 혹은 액적의 화학적 변형은 프리스탠딩 물체(free standing object)를 생산한다. 어떤 실시예에서는, 상기 프리스탠딩 물체는 회수된다. 어떤 실시예에서는, 상기 프리스탠딩 물체는 그 자리에서 결합된다. 어떤 실시예에서는, 상기 프리스탠딩 물체는 직접적으로 고형화 되거나 부분적으로 고형화 되거나 화학적으로 변형된다.

어떤 실시예에서는, 상기 액적은 상기 패터닝된 주형의 오목 영역에 내장된 물체를 생산하기 위하여 패터닝된 주형 위에서 혹은 내부에서 직접적으로 고형화되거나 부분적으로 고형화 되거나 화학적으로 변형된다. 어떤 실시예에서는, 상기 내장된 물체는 수거된다. 어떤 실시예에서는, 상기 내장된 물체는 그 자리에서 결합된다. 어떤 실시예에서는, 상기 내장된 물체들은 다른 제조 공정에서 사용된다.

어떤 실시예에서는, 액적의 레플리카 패턴은 다른 표면에 전사(transfer)된다. 어떤 실시예에서는, 상기 전사는 고형화 혹은 화학적 변형 공정 이전에 일어난다. 어떤 실시예에서는 상기 전사는 상기 고형과 혹은 화학적 변형 공정 이후에 일어난다. 어떤 실시예에서는 액적의 상기 레플리카 패턴이 전사되는 표면은 비-낮은 표면 에너지 표면, 낮은 에너지 표면, 기능화된 표면 및 새크리피셜 표면(sacrificial surface)으로 구성되는 군으로부터 선택된다. 어떤 실시예에서는 상기 방법은 하나 이상의 스컴 층이 실질적으로 없는 표면 위에 패턴을 생성한다. 어떤 실시예에서는, 상기 방법은 반도체 및 다른 전자 및 광자 장치 혹은 어레이를 제조하는데 사용된다. 어떤 실시예에서는 상기 방법은 프리스탠딩 물체를 만드는데 사용된다. 어떤 실시예에서는 상기 방법은 멀티플 패터닝 단계를 이용하여 3차원 대상을 만드는데 사용된다. 어떤 실시예에서는 상기 분리되거나 패터닝된 대상은 유기, 무기, 폴리머 및 바이오 물질로 구성되는 군으로부터 선택되는 물질을 포함한다. 어떤 실시예에서는 표면 접착제가 표면상에 상기 분리된 구조를 고정(anchor)하는데 사용될 수 있다.

어떤 실시예에서는 패터닝 되거나 되지 않은 표면 상에 상기 액적 어레이 또는 고형 어레이가 레지오 특이적 전달 장치 (regiospecific delivery devices) 혹은 부가적인 화학 공정 단계를 위한 반응기로 사용된다. 어떤 실시예에서는, 상기 부가적인 화학 공정 단계는 유기, 무기, 폴리머, 바이오 및 촉매계를 표면상에 프린팅 하는 단계; 유기, 무기, 폴리머, 바이오 물질의 합성; 및 표면에 물질의 국소적 전달이 요구되는 다른 적용으로 구성되는 군으로부터 선택된다. 본 발명은 물질의 마이크로 및 나노 스케일의 패터닝 혹은 프린팅을 포함하여 적용할 수 있으나 이에 한정되지 않는다. 어떤 실시예에서는, 패터닝 되거나 프린팅 되는 물질은 표면-결합 분자, 무기 화합물, 유기 화합물, 폴리머, 바이오 분자, 나노 입자, 바이러스, 바이오 어레이 등으로 구성되는 군으로부터 선택된다.

어떤 실시예에서는 본 발명은 폴리머 브러시의 합성, CVD 탄소 나노튜브 성장을 위한 촉매 패터닝, 세포 스캐폴드 제작, 에칭 레지스트와 같은 패터닝된 새크리피셜 막의 적용 및 유기, 무기, 폴리머 및 바이오 어레이의 조합 제작을 포함하여 적용할 수 있으나 이에 한정되지 않는다.

어떤 실시예에서는 비습식 임프린트 리소그래피, 및 관련 기술이 개개의 대상 내에 화학적 성분의 위치 및 오리엔테이션을 조절하는 방법과 결합된다. 어떤 실시예에서는 상기 방법이 상기 대상을 합리적으로 구조화하여 대상의 수행을 개선하고, 그 결과 특이적 적용을 위해 최적화된다. 어떤 실시예에서는 상기 방법은 의약 전달, 백신화(vaccination) 및 다른 적용을 위해 입자 안에 바이오 타겟팅 물질을 끼워넣는 것을 포함한다. 어떤 실시예에서는 상기 방법은 입자가 특이적 바이오 인식 모티프(biological recognition motif)를 포함하도록 디자인하는 것을 포함한다. 어떤 실시예에서는 상기 바이오 인식 모티프는 비오틴/아비딘 및/또는 다른 단백질을 포함한다.

어떤 실시예에서는 상기 방법은 이들 물질의 화학적 조성을 맞추고 상기 반응 조건을 조절-이에 의하여 상기 입자의 효율이 최적화되도록 바이오 인식 모티프를 조직화할 수 있다-하는 것을 포함한다. 어떤 실시예에서는 상기 입자들은 인식 요소가 상기 입자의 표면에 세포 결합 부위에 접근가능한 방식으로 위치-여기서, 상기 입자의 코어는 치료 분자와 같은 바이오 활성 물질을 포함하도록 보존된다-되도록 디자인 및 합성된다. 어떤 실시예에서는 비습식 임프린팅 리소그래피 방법은 상기 물체를 제조-여기서, 상기 물체는 바이오인식 물질(biorecognition agents)과 같은 기능적 모티프를 상기 대상 조성물에 삽입함으로써 특이적 적용을 위해 최적화된다-하는데 사용된다. 어떤 실시예에서는 상기 방법은 자가조립, 단계별 제작 과정, 반응 조건, 화학 조성, 상호-연결, 가지화, 수소 결합, 이온 결합, 공유 결합 등으로 구성되는 군으로부터 선택되는 방법에 의하여 상기 물체의 마이크로 및 나노 스케일 구조를 조절하는 것을 포함한다. 어떤 실시예에서는 상기 방법은 상기 물체에 화학적으로 조직화된 전구체를 삽입함으로써 상기 물체의 마이크로 및 나노 스케일 구조를 조절하는 것을 포함한다. 어떤 실시예에서는 상기 화학적으로 조직화된 전구체는 블록 코폴리머 및 코어쉘(core-shell) 구조로 구성되는 군으로부터 선택된다.

통틀어, 본 발명은 자가 조립되고 제조하기 어려운 블록 코폴리머 및 다른 시스템을 사용하지 않고 상기 입자들에 간단하고 직접적인 루트를 제공하며 스케일을 조절할 수 있는(scalable) 비습식 임프린트 리소그래피 기술을 설명한다.

III . "액체 환원( liquid reduction )"을 통한 동그란 입자의 형성

도 3a 내지 도 3f를 참조하면, 본 발명은 구형 마이크로- 및 나노 입자를 포함하여 주형의 모양과 같지 않은(not conformal) 모양을 가지는 입자를 형성하기 위하여 "액체 환원(liquid reduction)" 공정을 제공한다. 예를 들어, "입방체-모양" 주형은 구형 입자가 만들어지게 할 수 있고, "블록 화살표 모양" 주형은 "롤리-팝" 모양 입자 또는 물체가 만들어지게 할 수 있으며, 여기서 가스의 도입은 표면장력이 그것을 처리하기 전에 존재하는 액체의 모양을 다시 잡도록 한다. 어떤 특정한 이론에 의하여 한정하고 싶지 않지만 본원에 개시된 패터닝된 주형 및/또는 처리된 혹은 코팅된 기판의 어떤 실시예에서 제공될 수 있는 비-젖음 특성은 구형 등의 동그란 입자가 생성되게 한다.

도 3a를 참조하면, 액체 물질의 액적 (302)은 기판 (300)-어떤 실시예에서는 이것은 비-젖음 물질 (304)로 코팅 혹은 처리되어 있다-위에 배치된다. 패터닝된 주형 (108)-이것은 복수의 오목 영역 (110) 및 패터닝된 표면 영역 (112)를 포함한다-이 또한 제시되어 있다.

도 3b를 참조하면, 패터닝된 주형 (108)은 액적 (302)와 접촉된다. 액적 (302)를 포함하는 상기 액체 물질은 이어 패터닝된 주형 (108)의 오목 영역 (110) 내로 들어간다. 어떤 실시예에서는 액적 (302)을 포함하는 상기 액체 물질의 찌꺼기의 혹은 "스컴" 층이 패터닝된 주형 (108)과 기판 (300) 사이에 남아 있다.

도 3c를 참조하면, 제1 힘 Fa1이 패터닝된 주형 (108)에 적용된다. 컨택 포인트 CP가 패터닝된 주형 (108)과 기판 사이에 형성되어 찌꺼기 막 RL을 대체한다. 입자 (306)은 패터닝된 주형 (108)의 오목 영역 (110)에 형성된다.

도 3d를 참조하면, 제2 힘 Fa2-여기서, Fa2에 의하여 적용되는 힘은 Fa1에 의하여 적용되는 힘보다 크다-가 이어 패터닝된 주형 (108)에 적용되어 이에 의하여 오목 영역 (112) 내에 더 작은 액적 (308)을 형성하고 액적 (302)를 포함하는 액체 물질 부분에 힘을 가하여 오목 영역 (112)로부터 나오도록 한다.

도 3e를 참조하면, 상기 제2 힘 Fa2는 느슨해지고, 이에 의하여 상기 접촉 압력이 제1 힘 Fa1에 의하여 적용되는 오리지날 접촉 압력으로 돌아오도록 한다. 어떤 실시예에서는 패터닝된 주형 (108)은 가스 투과성 물질-이것은 오목영역 (112)을 가지는 공간부가 질소와 같은 가스로 채워지도록 한다-을 포함하며, 이에 의하여 복수의 액체 구형 방울 (310)이 형성된다. 일단, 이러한 액체 환원이 일어나면, 상기 복수의 액체 구형 방울 (310)은 처리 공정 Tr에 의하여 처리된다.

도 3f를 참조하면, 처리된 액체 구형 방울 (310)은 패터닝된 주형 (108)로부터 방출되어 복수의 프리스탠딩 구형 입자 (312)가 만들어진다.

IV . 폴리머 나노- 내지 마이크로- 일렉트렛(electret)의 형성

도 4a 및 4b를 참조하면, 본 발명은 어떤 실시예에서는 대전된 폴리머 입자(도 4b)를 생산하기 위하여 몰딩(도 4a) 동안 폴리머화 및/혹은 결정화 단계 동안 전기장을 적용함으로써 폴리머 나노 내지 마이크로 일렉트렛을 제조하는 방법을 기술한다. 어떤 실시예에서는, 상기 대전된 폴리머 입자는 도 4c에 나타난 랜덤 배열 대신에 사슬 유사 구조(도 4d)로 자발적으로 집합한다.

어떤 실시예에서는, 상기 대전된 폴리머 입자는 폴리머 일렉트렛을 포함한다. 어떤 실시예에서는, 상기 폴리머 일렉트렛은 폴리머 나노-일렉트렛을 포함한다. 어떤 실시예에서는, 상기 대전된 폴리머 입자는 사슬-유사 구조로 집합한다.

어떤 실시예에서는, 상기 대전된 폴리머 입자는 전자-유동학적 장치(electro-rheological device)를 위한 부가물을 포함한다. 어떤 실시예에서는, 상기 전자-유동학적 장치는 클러치 및 활성 댐프닝 장치(active dampening devices)로 구성되는 군으로부터 선택된다. 어떤 실시예에서는, 상기 대전된 폴리머 입자는 나노-압전 장치를 포함한다. 어떤 실시예에서는, 상기 나노-압전 장치는 엑츄에이터, 스위치 및 기계적 센서로 구성되는 군으로부터 선택된다.

V. 다중막 구조의 형성

어떤 실시예에서는 본 발명은 다중막 입자를 포함하는 다중막 구조를 형성하기 위한 방법을 제공한다. 어떤 실시예에서는 상기 다중막 구조는 다중막 입자를 포함하여 나노 스케일 다중막 구조를 포함한다. 어떤 실시예에서는 다중막 구조는 상기한 방법 중 어느 하나에 의하여 기술되는 것과 같이, 다중의 얇은 불혼화성 액체 및/또는 용액을 기판 위에 두고 입자를 형성함으로써 다중막 구조가 형성된다. 상기 액체의 불혼화성(immiscibility)은 밀도, 극성 및 휘발성을 포함하나 이들에 한정되지 않는 어떠한 물리적 성질에 근거할 수 있다. 본 발명의 가능한 형태적 실시예는 도 5a 내지 5c에 나타나 있고, 다중 상 샌드위치 구조(multi-phase sandwich stuctures), 코어-쉘 입자 (core-shell particles) 및 내부 에멀젼(internal emulsions), 마이크로에멀젼 및/또는 나노 크기 에멀젼을 포함하나 이에 한정되지 않는다.

도 5a를 참조하면, 본 발명의 다중 상 샌드위치 구조 (500)이 나타나 있으며, 예를 들어 이것은 제1 액체 물질 (502) 및 제2 액체 물질 (504)을 포함한다.

도 5b를 참조하면, 본 발명의 코어-쉘 입자 (506)이 나타나 있으며, 예를 들어 이것은 제1 액체 물질 (502) 및 제2 액체 물질 (504)을 포함한다.

도 5c를 참조하면, 본 발명의 내부 에멀젼 입자 (508)이 나타나 있으며, 예를 들어 이것은 제1 액체 물질 (502) 및 제2 액체 물질 (504)을 포함한다.

좀더 상세하게는 어떤 실시예에서는, 상기 방법은 복수의 불혼화성 액체를 상기 패터닝된 주형 및 기판 사이에 배치하여 다중막 나노 구조와 같은 다중막 구조를 형성하는 것을 포함한다. 어떤 실시예에서는 상기 다중막 구조는 다중막 입자를 포함한다. 어떤 실시예에서는 상기 다중막 구조는 다중 상 샌드위치 구조, 코어-쉘 입자, 내부 에멀젼, 마이크로 에멀젼 및 나노 크기 에멀젼으로 구성되는 군으로부터 선택된다.

VI . 복잡한 다차원 구조의 제조

어떤 실시예에서는 본 발명은 복잡한 다차원 구조의 제조 공정을 제공한다. 어떤 실시예에서는 복잡한 다차원 구조는 도 2a 내지 2e에 도시된 단계를 수행하여 형성될 수 있다. 어떤 실시예에서는 상기 방법은 본원에 기술된 바와 같이, 경화되어 방출되는 분리된 다차원 구조를 생성하기 위하여 (부드러운 기판 위에 임프린팅 하는 대신) 제2 패터닝된 주형과 정렬된 패터닝된 주형 위에 임프린팅 하는 것을 포함한다. 복잡한 다차원 구조의 형성 공정의 일 실시예의 개략도 및 상기 구조의 예가 도 6a 내지 6c에 제시되어 있다.

도 6a를 참조하면, 제1 패터닝된 주형 (600)이 제시되어 있다. 제1 패터닝된 주형 (600)은 복수의 오목 영역 (602) 및 복수의 비-오목 영역 표면 (604)를 포함한다.

또한, 제2 패터닝된 주형 (606)이 제시되어 있다. 제2 패터닝된 주형 (606)은 복수의 오목 영역 (608) 및 복수의 비-오목 영역 표면 (610)을 포함한다. 도 6a에 나타난 바와 같이, 제1 패터닝된 주형 (600) 및 제2 패터닝된 주형 (606)은 미리 결정된 공간적 관계에서 정렬되어 있다. 액체 물질 (612)의 방울(액적)이 제1 패터닝된 주형 (600) 및 제2 패터닝된 주형 (606) 사이에 배치된다.

도 6b를 참조하면, 패터닝된 주형 (600)은 패터닝된 주형 (606)과 접촉되어 있다. 힘 F3은 액적 (612)을 포함하는 상기 액체 물질이 복수의 오목 영역 (602) 및 (608)로 이동하도록 하면서 패터닝된 주형 (600)에 적용된다. 액적 (612)을 포함하는 상기 액체 물질은 이어 처리 공정 Tr에 의하여 처리되어 패터닝되고, 처리된 액체 물질 (614)을 형성한다.

도 6c를 참조하면, 도 6b의 패터닝되고, 처리된 액체 물질 (614)는 복수의 다차원으로 패터닝된 구조 (616)을 제공하기 위하여 본 명세서에 기술된 방출 방법 중 어느 하나에 의하여 방출된다.

어떤 실시예에서는, 패터닝된 구조 (616)은 나노 스케일의 패터닝된 구조를 포함한다. 어떤 실시예에서는, 패터닝된 구조 (616)는 다차원 구조를 포함한다.

어떤 실시예에서는, 상기 다차원 구조는 나노 스케일의 다차원 구조를 포함한다. 어떤 실시예에서는, 상기 다차원 구조는 복수의 구조적 요소를 포함한다. 어떤 실시예에서는, 상기 구조적 요소는 복수의 높이를 포함한다.

어떤 실시예에서는, 패터닝된 구조 (616)을 포함하는 마이크로전자장치(microelectronics)가 제시되어 있다. 실제로, 패터닝된 구조 (616)은 마이크로전자공학을 위한 "이중 다마신(dual damascene)"을 포함하여 생각할 수 있는 어떠한 구조도 될 수 있다. 어떤 실시예에서는, 상기 마이크로전자공학 장치는 집적회로, 반도체 입자, 양자점 및 이중 다마신 구조로 구성되는 군으로부터 선택된다. 어떤 실시예에서는, 상기 마이크로전자공학 장치는 에칭 레지스턴스, 낮은 유전 상수, 높은 유전 상수, 도전성, 반도전성, 절연성, 기공성 및 비-기공성으로 구성되는 군으로부터 선택되는 어떤 물리적 성질을 나타낸다.

어떤 실시예에서는, 본 발명은 다차원의 복잡한 구조를 제조하는 방법을 개시한다. 도 7a 내지 7f를 참조하면, 어떤 실시예에서는 제1 패터닝된 주형 (700)이 제시되어 있다. 제1 패터닝된 주형 (700)은 복수의 비-오목 표면 영역 (702) 및 복수의 오목한 표면 (704)을 포함한다. 도 7a에 계속해서, 기판 (706)이 또한 제시되어 있다. 어떤 실시예에서는 기판 (706)은 비-젖음 물질 (708)로 코팅되어 있다. 제1 액체 물질 (710)의 방울(액적)이 기판 (706) 위에 배치된다.

도 7b 및 7c를 참조하면, 제1 패터닝된 주형 (700)은 기판 (706)과 접촉한다. 힘 Fa가 패터닝된 주형 (700)에 가해져 상기 제1 액체 물질 방울 (710)이 오목 영역 (704)에 들어가게 한다. 제1 액체 물질 방울 (710)을 포함하는 상기 액체 물질은 제1 처리 공정 Tr1에 의해 처리되어 복수의 오목 영역 (704) 내에, 처리된 제1 액체 물질을 형성한다. 어떤 실시예에서는 제1 처리공정 Tr1은 상기 처리된 제1 액체 물질이 기판 (706)에 부착되도록 하는 부분적 경화 공정을 포함한다. 도 7을 특히 참조하면, 제1 패터닝된 주형 (700)은 복수의 구조적 요소 (712)를 기판 (706) 위에 제공하기 위해 제거된다.

도 7d 내지 7f를 참조하면, 제2 패터닝된 주형 (714)이 제시되어 있다. 제2 패터닝된 기판 (714)은 복수의 오목 영역 (716)-이것은 제2 액체 물질 (718)로 채워져 있다-을 포함한다. 오목 영역 (704)에 대해서 도 7a 및 도 7b에 기술된 것과 비슷한 방식으로 오목부 (716)가 채워질 수 있다. 도 7e를 특히 참조하면 제2 패터닝된 주형 (714)은 구조적 요소 (712)와 접촉한다. 제2 액체 물질 (718)은 제2 처리 공정 Tr2로 처리되어 상기 제2 액체물질 (718)이 상기 복수의 구조적 요소 (712)에 부착되도록 한다. 그럼으로써 다차원적 구조인 (720)이 형성된다. 도 7f를 특히 참조하면, 제2 패터닝된 주형 (714) 및 기판 (706)이 제거되어 복수의 프리스탠딩 다차원 구조 (722)가 제공된다. 어떤 실시예에서는 도 7a 내지 7f에 개략적으로 제시된 공정은 복잡한 나노 구조를 형성하기 위해 요구되는 것처럼 여러 번 수행될 수 있다.

따라서, 어떤 실시예에서는 다차원 구조를 형성하는 방법이 제시되고, 상기 방법은 다음을 포함한다.

(a) 도 **에 기술된 공정에 의해 제조되는 입자를 제공하는 단계;

(b) 제2 패터닝된 주형을 제공하는 단계;

(c) 상기 제2 패터닝된 주형에 제2 액체 물질을 배치하는 단계;

(d) 단계 (a)의 입자와 상기 제2 패터닝된 주형을 접촉하는 단계; 및

(e) 상기 제2 액체물질을 처리하여 다차원 구조를 형성하는 단계.

VII . 임프린트 리소그래피

도 8a 내지 8d를 참조하면, 기판 위에 패턴을 형성하는 방법이 나타나 있다. 도 8에 나타난 실시예에서는 임프린트 리소그래피 기술이 기판 위에 패턴을 형성하는데 사용될 수 있다.

도 8a를 참조하면, 패터닝된 주형 (810)이 제시되어 있다. 어떤 실시예에서는 패터닝된 주형 (810)은 위에서 정의된 패터닝된 주형을 생산하기 위하여 낮은 점성 액체 물질을 마스터 주형 위에 캐스팅하고 상기 낮은 점성 액체 물질을 경화하여 유도되는, 낮은 표면 에너지 폴리머 물질인, 용매 레지스턴트를 포함한다. 패터닝된 주형 (810)은 나아가 제1 패터닝된 주형 표면 (812) 및 제2 주형 표면 (814)를 포함한다. 상기 제1 패터닝된 주형 표면 (812)은 나아가 복수의 오목 영역 (816)을 포함한다. 낮은 표면 에너지 폴리머 물질인 용매 레지스턴트로부터 유도된 상기 패터닝된 주형은 상기 패터닝된 주형의 정렬을 촉진하거나 컨베이어 벨트와 같은 연속 공정을 촉진하기 위해 또 다른 물질 위에 올려질 수 있다. 이것은 복잡한 장치나 반도체, 전자 또는 광자 장치의 제조에서와 같이, 표면 위에 정확히 위치된 구조의 제조를 위해 특히 유용할 수 있다.

도 8a를 다시 참조하면, 기판 (820)이 제시되어 있다. 기판 (820)은 기판 표면 (822)를 포함한다. 어떤 실시예에서, 기판 (820)은 폴리머 물질, 무기 물질, 실리콘 물질, 석영 물질, 유리 물질 및 표면 처리된 이들의 변형체로 구성되는 군으로부터 선택된다. 어떤 실시예에서는 적어도 하나의 패터닝된 주형 (810) 및 기판 (820)은 18 mN/m 이하의 표면 에너지를 가진다. 어떤 실시예에서는 적어도 하나의 패터닝된 주형 (810) 및 기판 (820)은 15 mN/m 이하의 표면 에너지를 가진다.

어떤 실시예에서는 도 8a에 나타난 바와 같이, 패터닝된 주형 (810) 및 기판 (820)이 서로 공간 관계로 위치되어 제1 패터닝된 주형 표면 (812)가 기판 표면 (822)와 서로 면하고 갭 (830)이 제1 패터닝된 주형 표면 (812)와 기판 표면 (822) 사이에 형성되도록 되어 있다. 이것은 미리 결정된 관계의 예이다.

도 8b를 참조하면, 액체 물질 볼륨(a volume of liquid material)(840)가 제1 패터닝된 주형 표면 (812)와 기판 표면 (822) 사이의 갭 (830)에 배치되어 있다. 어떤 실시예에서는 상기 액체 물질 볼륨(840)이 비-젖음 물질(제시되어 있지 않음) -이것은 제1 패터닝된 주형 표면 (812)위에 배치되어 있다-위에 직접적으로 배치되어 있다.

도 8c를 참조하면, 어떤 실시예에서는, 제1 패터닝된 주형 (812)는 액체 물질 볼륨 (840)과 접촉한다. 힘 Fa가 제2 주형 표면 (814)에 적용되고 이에 의하여 액체 물질 볼륨 (840)이 복수의 오목 영역 (816) 안으로 들어가게 된다. 어떤 실시예에서는 도 8c에 나타난 바와 같이, 액체 물질 볼륨 부분 (840)이 힘 Fa 적용 후 제1 패터닝된 주형 표면 (812) 및 기판 표면 (820) 사이에 남아 있다.

도 8c를 다시 참조하면, 어떤 실시예에서는 힘 Fa가 처리된 액체 물질 (842)를 형성하도록 적용되고 상기 액체 물질 볼륨 (840)이 처리 공정 T에 의하여 처리된다. 어떤 실시예에서는 처리 공정 Tr은 열처리 공정(thermal process), 광화학 공정 및 화학 공정으로 구성되는 군으로부터 선택되는 공정을 포함한다.

도 8d를 참조하면, 힘 Fr은 패터닝된 주형 (810)에 적용되어 처리된 액체 물질 (842)로부터 패터닝된 주형 (810)을 제거하여 도 8e에 나타난 바와 같이 기판 (820) 위에 패턴 (850)을 노출하도록 한다. 어떤 실시예에서는 처리된 액체 물질 (842)의 찌꺼기 혹은 "스컴" 층 (852)가 기판 (820) 위에 남아 있다.

좀더 상세하게는, 기판 위에 패턴을 형성하는 방법은,

(a) 기판 상에 패터닝된 주형을 제공하는 단계-여기서, 상기 패터닝된 주형은 거기에 형성된 복수의 오목 영역을 가지는 패터닝된 주형 표면을 가지는, 패터닝된 주형 표면을 포함한다;

(b) 액체 물질 볼륨을 i) 상기 패터닝된 주형 표면, 및 ii) 상기 복수의 오목 영역 중 적어도 하나의 내부 또는 위에 배치하는 단계; 및

(c) 상기 패터닝된 주형 표면과 상기 기판을 접촉시키는 단계; 및

(d) 상기 액체 물질을 처리하여 기판 상에 패턴을 형성시키는 단계를 포함한다.

어떤 실시예에서, 상기 패터닝된 주형은 패터닝된 주형을 생산하기 위하여 낮은 점성 액체 물질을 마스터 주형 위에 캐스팅하고 상기 낮은 점성 액체 물질을 경화하여 유도되는, 낮은 표면 에너지 폴리머 물질인, 용매 레지스턴트를 포함한다.

어떤 실시예에서는, 상기 패터닝된 주형은 용매 레지스턴트 탄성 중합체 물질을 포함한다. 어떤 실시예에서는 상기 패터닝된 주형 및 기판의 적어도 하나는 퍼플루오로폴리에테르 물질, 플루오로올레핀 물질, 아크릴레이트 물질, 실리콘 물질, 스티렌 물질, 플루오로화 된 열가소성 탄성 중합체(TPE), 트리아진 플루오로폴리머, 퍼플루오로시클로부틸 물질, 플루오로화된 에폭시 레진, 및 복분해 폴리머화 반응에 의하여 폴리머화 혹은 상호연결될 수 있는 플루오로화된 모노머 또는 플루오로화된 올리고머로 구성되는 군으로부터 선택된다.

어떤 실시예에서는 상기 퍼플루오로폴리에테르 물질은

Figure pat00012

로 구성되는 군으로부터 선택되는 백본(backbone)을 포함하며, 여기서, X는 없거나 있어도 되고 있을 경우에는 말단 캡핑 그룹을 포함한다.

어떤 실시예에서는 상기 플루오로올레핀 물질은

Figure pat00013

로 구성되는 군으로부터 선택되며 여기서, CSM은 경화 부위 모노머이다.

어떤 실시예에서는 상기 플로오로올레핀 물질은 테트라플루오로에틸렌, 비닐리덴 플루오라이드 혹은 헥사플루오로프로필렌, 2,2-비스(트리플루오로메틸)-4,5-디플루오로-1,3-디옥솔, 기능적 플루오로올레핀, 기능적 아크릴릭 모노머, 기능적 메타크릴릭 모노머를 포함하는 모노머로부터 만들어진다.

어떤 실시예에서는 상기 실리콘 물질은 하기 구조를 가지는 플루오로알킬 기능화된 폴리디메틸실옥산(fluoroalkyl functionalized polydimethylsiloxane, PDMS)를 포함한다.

Figure pat00014

여기서 R은 아크릴레이트, 메타크릴레이트, 및 비닐 그룹으로 구성되는 군으로부터 선택되고;

*Rf는 플루오로알킬 사슬을 포함한다.

어떤 실시예에서는, 상기 스티렌 물질은

Figure pat00015

로 구성되는 군으로부터 선택되는 플루오로화된 스티렌 모노머를 포함하며

여기서, Rf는 플로오로알킬 사슬을 포함한다.

어떤 실시예에서는, 상기 아크릴레이트 물질은 하기 구조를 가지는 플루오로화된 아크릴레이트 혹은 플루오로화된 메타크릴레이트를 포함하며,

Figure pat00016

여기서, R은 H, 알킬, 치환된 알킬, 아릴 및 치환된 아릴로 구성되는 군으로부터 선택되고;

*Rf는 플루오로알킬 사슬을 포함한다.

어떤 실시예에서는, 상기 트리아진 플루오로폴리머는 플루오로화된 모노머를 포함한다.

어떤 실시예에서는 복분해 폴리머화 반응에 의하여 폴리머화 혹은 상호연결될 수 있는 상기 플루오로화된 모노머 혹은 플루오로화된 올리고머는 기능화된 올레핀을 포함한다. 어떤 실시예에서는 상기 기능화된 올레핀은 기능화된 환상 올레핀을 포함한다.

어떤 실시예에서는 적어도 하나의 패터닝된 주형 및 그 기판은 18 mN/m 이하의 표면 에너지를 가진다. 어떤 실시예에서는 적어도 하나의 패터닝된 주형 및 그 기판은 15 mN/m 이하의 표면 에너지를 가진다.

어떤 실시예에서는 상기 기판은 폴리머 물질, 무기 물질, 실리콘 물질, 석영 물질, 유리 물질 및 표면 처리된 이들의 변형체로 구성되는 군으로부터 선택될 수 있다. 어떤 실시예에서는 상기 기판은 제조 공정에서 전자 장치 및 제조 공정에서의 광자 장치(photonic device) 중 하나로부터 선택된다. 어떤 실시예에서는 상기 기판은 패터닝된 영역을 포함한다.

어떤 실시예에서는 상기 복수의 오목 영역은 복수의 구멍(cavity)을 포함한다. 어떤 실시예에서는 상기 복수의 구멍은 복수의 구조적 요소(feature)를 포함한다. 어떤 실시예에서는 상기 복수의 구조적 요소는 크기가 약 10 마이크론 내지 약 1 나노미터의 디멘션을 갖는다. 어떤 실시예에서는 상기 복수의 구조적 요소는 크기가 약 10 마이크론 내지 약 1 마이크론의 디멘션을 갖는다. 어떤 실시예에서는 상기 복수의 구조적 요소는 크기가 약 1 마이크론 내지 약 100 nm의 디멘션을 갖는다. 어떤 실시예에서는 상기 복수의 구조적 요소는 크기가 약 100 nm 내지 약 1 nm의 디멘션을 갖는다.

어떤 실시예에서는 상기 액체 물질은 폴리머, 용액, 모노머, 복수의 모노머, 폴리머화 개시자, 폴리머화 촉매, 무기 전구체, 금속 전구체, 의약(pharmaceutical agent), 태그, 마그네틱 물질, 파라마그네틱 물질, 수퍼파라마그네틱 물질, 리간드, 세포 관통 펩티드, 포로젠(porogen), 표면활성제, 복수의 불혼화성 액체(immiscible liquids), 용매, 대전된 종(charged species)으로 구성되는 군으로부터 선택된다. 어떤 실시예에서는, 상기 의약은 약물, 펩티드, RNAi 및 DNA로 구성되는 군으로부터 선택된다. 어떤 실시예에서는 상기 태그는 형광 태그, 방사 표지된 태그 및 대조 물질(contrast agent)로 구성되는 군으로부터 선택된다. 어떤 실시예에서는 상기 리간드는 세포 타겟팅 펩티드를 포함한다.

대표적인 수퍼파라마그네틱 또는 파라마그네틱 물질은 자기-광학 적용을 위해서는 Mn으로 도핑된 Fe2O3, Fe3O4, FePt, Co, MnFe2O4, CoFe2O4, CuFe2O4, NiFe2O4 및 ZnS, 광학 적용을 위해서는 CdSe, 붕소 중성자 포획 처리(boron neutron capture treatment)를 위해서는 붕산염을 포함하나 이에 한정되지 않는다.

어떤 실시예에서는, 상기 액체 물질은 레지스트 폴리머 및 낮은 k 유전체 중 하나로부터 선택된다. 어떤 실시예에서는 상기 액체 물질은 비-젖음 물질(non-wetting agent)을 포함한다.

어떤 실시예에서는 상기 액체 물질 볼륨을 배치하는 것은 스프레딩 공정에 의하여 조절된다. 어떤 실시예에서는 상기 스프레딩 공정은

(a) 제1 볼륨의 액체 물질을 상기 패터닝된 주형 위에 배치하여 상기 패터닝된 주형 위에 액체 물질 막을 형성하는 단계; 및

(b) (i) 상기 패터닝된 주형 위의 상기 액체 물질 막으로부터 제2 볼륨의 액체 물질을 제거; 및 (ii) 상기 패터닝된 주형 위에 제3 볼륨의 액체 물질을 남겨두기 위하여,

상기 액체 물질막을 가로질러 도구(implement)를 끌어당기는 단계를 포함한다. 어떤 실시예에서는 상기 제1 주형 표면과 상기 기판을 접촉하는 것은 상기 배치된 액체 물질 볼륨의 실질적으로 모두를 제거한다.

어떤 실시예에서는, 상기 액체 물질을 처리하는 것은 열공정(thermal process), 광화학 공정 및 화학 공정으로 구성되는 군으로부터 선택되는 공정을 포함한다.

어떤 실시예에서는, 상기 방법은 배치 공정을 포함한다. 어떤 실시예에서는 상기 배치 공정은 세미-배치 공정 및 연속 배치 공정 중 하나로부터 선택된다.

어떤 실시예에서는 본 발명은 본 발명의 방법에 의해 형성된 패터닝된 기판을 기술한다.

VIII . 잔여‘ 스컴 층’이 없는 임프린트 리소그래피

임프린트 리소그래피의 잠재력을 제한해왔던 한 가지 특징은 액상 재료, 즉 레진이 패터닝되면 생성되는 스컴 층의 형성이었다. 이 스컴 층은 스탬프와 기판 사이에 남아있는 잔여 액상재료로 이루어진다. 실시예를 통해 현재 공개된 주제는 본질적으로 스컴 층이 없는 패턴형성의 과정을 제시한다.

도 9a 내지 9d를 참조하면, 몇몇 실시예에서 기판 위에 패턴을 형성하는 방법이 제시되어 있는데, 여기서 본질적으로 스컴 층은 패턴에서 배제된다. 도 9a를 참조하면, 패터닝된 주형 (910)이 제시되어 있다. 패터닝된 주형 (910)은 1차로 패터닝된 주형 표면 (912)와 2차의 주형 표면 (914)를 더 포함한다. 1차 패터닝된 주형 표면 (912)는 복수의 오목 영역 (916)으로 더 포함한다. 실시예에서, 비-젖음 물질 (960)이 1차 패터닝된 주형 표면 (912)에 처리된다.

도 9a를 참조하면, 기판 (920)이 제시되어 있다. 기판 (920)은 기판 표면 (922)를 포함한다. 실시예에서, 비-젖음 물질 (960)이 기판 표면 (920)에 처리된다.

실시예에서, 도 9a 도면에 제시되어 있듯이 패터닝된 주형 (910)과 기판 (920)은, 1차 패터닝된 주형 표면 (912)가 기판 표면 (922)를 마주 대하고 간격 (930)이 1차 패터닝된 주형 표면 (912)와 기판 표면 (922) 사이에 형성되도록 하는 공간적 관계가 되도록 상호 배치된다.

도 9b를 참조하면, 일정 부피의 액상재료(940)가 1차 패터닝된 주형 표면(912)과 기판 표면(922) 사이의 간격(930)에 처리된다. 실시예에서, 일정 부피의 액상재료(940)은 1차 패터닝된 주형 표면(912) 위에 직접 처리(dispose)된다. 실시예에서, 일정 부피의 액상재료(940)는 1차 패턴된 주형 표면(912) 위에 분산된 비-젖음 물질(960) 위에 직접 처리된다. 실시예에서는 일정 부피의 액상재료(940)는 기판 표면(920) 위에 직접 처리된다. 실시예에서는 일정 부피의 액상 재료(940)는 기판 표면 위에 분산된 비-젖음 물질(960) 위에 직접 처리된다.

도 9c를 참조하면, 실시예에서, 1차 패터닝된 주형 (912)는 일정부피의 액상 재료 (940)과 접촉한다. 힘 Fa는 2차 주형 표면 (914)에 적용되며, 그럼으로써 일정부피의 액상재료 (940)이 복수의 (916) 오목 영역으로 인입되도록 한다. 도 9에 예시된 실시예와 대조적으로, 액상 재료 (940)의 일부는 힘 Fa가 작용했을 때 힘 Fo에 의해 간격(gap) (930)을 빠져나온다.

도 9c를 다시 참조하면, 실시예에서 힘 Fa가 작용하여 처리된 액상재료 (942)를 형성할 동안, 일정부피의 액상 재료 (940)은 처리공정 T를 통해 처리된다.

도 9d를 참조하면, 힘 Fr은 패턴화된 주형 (910)에 작용하여 패터닝된 주형 (910)을 처리된 액상재료 (942)로부터 제거하여, 도 9e에서와 같은 패턴 (950)을 기판 (920) 위에 형성한다. 이 실시예에서, 기판 (920)은 처리된 액상재료 (942)의 잔류물, 또는 '찌꺼기(scum)’층으로부터 본질적으로 배제된다.

실시예에서, 주형 표면과 기판 중 최소한 하나는 기능화(functionalized)된 표면 요소를 포함한다. 실시예에서, 상기 기능화된 표면 요소는 비-젖음 물질에 의해 기능화된다. 실시예에서, 상기 비-젖음 물질은 상기 액상재료에 결합하는 작용기성(functional) 그룹을 포함한다. 실시예에서, 상기 비-젖음 물질은 트리클로로 실란(trichloro silane), 트리알콕시 실란(trialkoxy silane), 젖지 않는 반응성 작용기성그룹으로 구성된 트리클로로 실란, 젖지 않는 작용기성그룹으로 구성된 트리알콕시 실란과 그들의 혼합물을 포함하는 그룹에서 선택된다.

실시예에서, 상기 두 표면 요소간의 접촉점에서 액상 재료는 배제된다. 실시예에서, 상기 두 표면 요소 간의 접촉점은 잔여 액상재료를 포함한다. 실시예에서, 잔여 액상재료의 높이는 상기 구조 높이의 30% 미만이다. 실시예에서, 잔여 액상 재료의 높이는 상기 구조 높이의 20% 미만이다. 실시예에서, 잔여 액상 재료의 높이는 상기 구조 높이의 10% 미만이다. 실시예에서, 잔여 액상 재료의 높이는 상기 구조 높이의 5% 미만이다. 실시예에서, 액상 재료의 부피는 패터닝된 주형의 부피보다 적다. 실시예에서, 실제적으로 액상재료의 총 부피는 표면 요소 중 적어도 하나의 패터닝된 주형에 의해 제한된다. 실시예에서, 두 표면 요소의 사이에 액상 재료가 배제된 접촉점을 가짐으로써 두 표면 요소의 미끄러짐을 늦춘다.

IX . 용매- 보조된 미세주형 ( SAMIM , solvent - assisted micro - molding )

실시예에서, 본 발명에 공개된 주제는 기판 위에 패턴을 형성하기 위한 용매-보조된 미세 주형법을 기술한다.

도 10a를 참조하면, 패터닝된 주형 (1010)이 제시된다. 더욱이 패턴화된 주형 (1010)은 1차로 패턴화된 주형 표면 (1012)와 2차 주형 표면 (1014)를 포함한다. 1차 패터닝된 주형 표면 (1012)는 또한 복수의 오목 영역 (1016)을 포함한다.

도 10a를 다시 참조하면, 기판 (1020)이 제시된다. 기판 (1020)은 기판표면 (1022)를 포함한다. 실시예에서, 폴리머 물질 (1070)이 기판 표면 (1022)에 처리된다. 실시예에서, 폴리머 물질 (1070)은 레지스트(regist) 폴리머를 포함한다.

도 10a를 다시 참조하면, 패터닝된 주형 (1010)과 기판 (1020)은 1차 패터닝된 주형 표면 (1012)이 기판 표면 (1022)를 마주 대하고, 간격 (1030)이 1차 패터닝된 주형 표면 (1012)과 기판 표면 (1022) 사이에 형성되는 공간적 관계가 되도록 상호 배치된다. 도 10a에 나타나듯이, 용매 S는 폴리머 물질 (1070)과 접촉하여 팽창한 중합체 물질 (1072)를 형성하도록 간격 (1030) 내에 처리된다.

도 10b와 10c를 참조하면, 1차 패터닝된 주형 (1012)는 팽창한 폴리머 물질 (1072)와 접촉한다. 힘 Fa 는 두 번째 주형 표면 (1014)에 작용하여 팽창한 폴리머 물질 (1072)의 일부를 복수의 오목 영역 (1016)에 인입하게 하고 팽창한 폴리머 물질 (1072)의 일부를 1차 패터닝된 주형 표면 (1012)와 기판 표면 (1020) 사이에 남도록 한다. 팽창한 폴리머 물질 (1072)는 그 후 압력하에서 처리공정 Tr을 통해 처리된다.

도 10d를 참조하면, 힘 Fr이 패터닝된 주형 (1010)에 작용하여 패터닝된 주형 (1010)을 처리된 팽창한 폴리머 물질 (1072)로부터 제거하고, 도 10e에 보이듯 기판 (1020) 위의 폴리머 패턴 (1074)을 노출시킨다.

X. 패터닝된 주형과/또는 기판으로부터 패터닝된 구조 제거

실시예에서, 패터닝된 구조 (즉, 패터닝된 마이크로구조 또는 나노구조)는 패터닝된 주형 및/또는 기판 중 적어도 하나로부터 제거된다. 이는 많은 방법으로 수행될 수 있는데, 이는 패터닝된 구조에 친화력을 가지는 표면에 패터닝된 구조를 포함하는 표면 요소를 적용하는 것으로만 제한되는 것은 아니다; 패터닝된 구조가 표면 요소로부터 이탈되도록 하는 식으로 패터닝된 구조를 포함하는 표면 요소를 변형시키는 것; 1차 용매를 이용하여 패터닝된 구조를 포함하는 표면 요소를 부풀어 오르게 하여 패터닝된 구조를 사출성형(extrude)하는 것; 그리고 패터닝된 구조에 친화력을 가지는 2차 용매를 이용하여 패터닝된 구조를 포함하는 표면 요소를 세척하는 방식을 사용할 수 있다.

실시예에서, 상기 1차 용매는 초임계 유체(supercritical fluid) 이산화탄소를 포함한다. 실시예에서, 상기 1차 용매는 물을 포함한다. 실시예에서, 상기 1차 용매는 물과 계면활성제(detergent)를 포함하는 수용액을 포함한다. 실시예에서, 상기 표면 요소의 변형은 표면 요소에 기계적 힘을 가함으로써 수행된다. 실시예에서, 상기 패터닝된 구조를 제거하는 방법은 또한 초음파 쇄절법(sonication method)을 포함한다.

XI . 분자의 제조 및 표적으로의 치료제 전달 방법

실시예에서, 본 발명은 약물발견과 약물 치료를 위한 '분자' 제조방법과 공정, 그리고 공정에 의한 생산물을 기술한다. 실시예에서, 분자 제조를 위한 방법 또는 공정은 조합적 방법 또는 공정을 포함한다. 실시예에서, 분자 제조방법은 비습식 임프린트 리소그래피 방법을 포함한다.

XI .A 분자 제조 방법

실시예에서, 상기 비습식 임프린트 리소그래피 방법은, 낮은 점도의 액상재료를 마스터 주형(master template) 상에 주조한 다음, 낮은 점도의 액상재료를 경화시켜 패터닝된 주형을 제조하도록 함으로써 얻어지거나 용매 저항(solvent resistant)성을 가지는 낮은 표면 에너지 중합체 물질(low surface energy polymeric material)로부터 유래하거나 이것을 포함하는 표면을 포함한다.

실시예에서, 상기 비습식 임프린트 리소그래피 방법은 분리된 (isolated) 구조를 만드는데 사용된다. 실시예에서, 상기 분리된 구조는 분리된 마이크로구조를 포함한다. 실시예에서, 상기 분리된 구조는 분리된 나노-구조를 포함한다. 실시예에서, 상기 분리된 구조는 생분해성 물질 (biodegradable material)을 포함한다. 실시예에서 , 상기 분리된 구조는 친수성의 물질을 포함한다. 실시예에서, 상기 분리된 구조는 소수성의 물질을 포함한다. 실시예에서 상기 분리된 구조는 특정 모양을 포함한다. 실시예에서 상기 분리된 구조는 또한 “카르고(cargo)”를 포함한다.

실시예에서, 상기 비습식 임프린트 리소그래피 방법은 또한 분자의 모듈, 단편이나 도메인을 주조(mold)될 용액에 첨가하는 것을 포함한다. 실시예에서, 상기 분자의 모듈, 단편 또는 도메인은 분리된 구조에 활성을 부여한다. 실시예에서, 상기 분리된 구조에 부여된 활성은 약물학적 활성을 포함한다.

실시예에서, 의약과 같은 치료제는 상기 분리된 구조로 인입된다. 실시예에서, 상기 생리학적 활성 의약은 링커 부위에 속박되어(tethered) 스스로 분리된 구조로의 인입을 촉진한다. 실시예에서, 효소나 촉매의 도메인이 상기 분리된 구조에 첨가된다. 실시예에서, 리간드(ligand)나 올리고펩타이드(oligopeptide)가 상기 분리된 구조에 첨가된다. 실시예에서 상기 올리고펩타이드는 기능성을 가진다. 실시예에서 상기 올리고펩타이드는 세포 타겟팅(targeting) 펩타이드를 포함한다. 실시예에서, 상기 기능성의 올리고 펩타이드는 세포 관통(penetrating) 펩타이드를 포함한다. 실시예에서 항체나 그들 항체의 활성부위가 분리된 구조에 첨가된다.

실시예에서, 상기 분리된 구조에 결합제(binder)가 첨가된다. 실시예에서, 상기 결합제를 포함하는 분리된 구조는 동일한(identical) 구조를 제조하는데 사용된다. 실시예에서, 상기 결합제를 포함하는 분리된 구조는 다양한 구조를 제조하는데 사용된다. 실시예에서, 상기 다양한 구조는 치료제로서의 효능을 가지는 분자를 탐색하는데 사용된다. 실시예에서 상기 분리된 구조의 모양은 생물학적 제재를 모방한다. 실시예에서 상기 방법은 또한 약물 검색의 방법을 포함한다.

XIB . 타겟으로의 치료제 전달 방법

실시예에서 치료제를 타겟으로 운송하는 방법이 공개되며, 상기 방법은: 본 발명에 명시된 바와 같이 제조된 입자를 제공하는 단계; 상기 입자와 상기 치료제를 혼합하는 단계; 그리고 상기 치료제를 포함하는 입자를 타겟에 전달하는 단계를 포함한다.

실시예에서 상기 치료제는 약물을 포함한다. 실시예에서, 상기 치료제는 유전물질을 포함한다. 실시예에서 상기 유전물질은 비-바이러스성 유전자 벡터, DNA, RNA, RNAi와 바이러스 입자로 구성된 그룹에서 선택된다.

실시예에서, 상기 입자는 100 μm 미만의 직경을 가진다. 실시예에서, 상기 입자는 10 μm 미만의 직경을 가진다. 실시예에서, 상기 입자는 1μm 미만의 직경을 가진다. 실시예에서, 상기 입자는 100 nm 미만의 직경을 가진다. 실시예에서, 상기 입자는 10 nm 미만의 직경을 가진다.

실시예에서, 상기 입자는 생분해성 폴리머를 포함한다. 실시예에서, 상기 생분해성 중합체는 폴리에스테르(polyester), 폴리언하이드라이드(polyanhydrid), 폴리아미드(polyamide), 인-기반 폴리머(phosphorous-based polymer), 폴리(시아노아크릴레이트)(poly(cyanoacrylate)), 폴리우레탄(polyurethane), 폴리오르소에스테르(polyorthoester), 폴리다이하드로피란(polydihydropyran), 그리고 폴리아세탈(polyacetal)로 구성된 그룹에서 선택된다. 실시예에서, 상기 폴리에스테르는 폴리락틱산(polylactic acid), 폴리글리콜 산(polyglycolic acid), 폴리(하이드록시부티레이트)(poly(hydroxybutyrate)), 폴리(ε-카프로락톤)(poly(ε-caprolactone)), 폴리(β-말릭산)(poly(β-malic acid)), 그리고 폴리(디옥산온)(poly(dioxanones))으로 구성된 그룹에서 선택된다. 실시예에서, 상기 폴리 언하이드라이드(polyanhydride)는 폴리(세바신 산)(poly(sebacic acid)), 폴리(아디프 산)(poly(adipic acid)), 그리고 폴리(테르프탈 산)(poly(terpthalic acid))으로 구성된 그룹에서 선택된다. 실시예에서 상기 폴리아미드는 폴리(이미노 카보네이트)(poly(imino carbonates))와 폴리아미노산((polyaminoacids))로 구성된 그룹에서 선택된다. 실시예에서, 상기 인-기반 폴리머는 폴리포스페이트(polyphosphates), 폴리포스포네이트(polyphosphonates), 그리고 폴리포스포스파젠(polyphosphosphazenes)로 구성된 그룹에서 선택된다. 실시예에서, 상기 폴리머는 pH, 방사선, 이온력, 온도, 그리고 교류의 자기장 혹은 전기장 등의 자극에 감응한다.

이러한 자극에 대한 감응은 팽창 및/또는 발열을 포함하며, 이는 그들의 카르고(cargo)의 방출 또는 퇴화를 촉진할 수 있다.

실시예에서, 본 발명은 고열처리(hyperthermia), 암과 유전자 치료, 약물 운송, 자기 공명 이미징 대비(contrast) 시약들, 백신 보조제(vaccine adjuvants), 메모리 디바이스들, 그리고 스핀트로닉스(spintronics)에 적용될 자성(magneto) 함유 입자를 기술한다.

특정 이론에 의거하지 않더라도, 상기 자성함유입자, 즉 자성 나노입자는 고열처리(41-46℃)이나 열 소작(ablation)(46℃ 이상)에 의해 열을 발생하는데, 그것은 교류자기장에 노출된 나노입자의 조절된 발열이다. 상기 열은 (i) v폴리머 구성체에 있어서의 상변화를 유발하거나(예를 들어 용융과 캡슐화된 물질의 방출)그리고/또는 (ii) 특정세포의 고열처리 그리고/또는 (iii) 캡슐화된 물질의 효과를 증진 시키기 위해 사용된다. 상기 전자기적 가열을 통한 자성 나노입자의 촉발 기전은 (iv) 개개 입자의 퇴화율을 높이고; (v) 팽창(swelling)을 유발할 수 있고; 그리고/또는 (vi) 더 큰 표면적을 가지도록 분해/상 변화를 유발할 수 있어, 다양한 질병을 다루는데 있어서 유리할 수 있다.

실시예에서, 본 발명에 공개된 주제는 또 다른 치료제 운송방법을 제시하는데, 이는 약물 전달 시스템에 사용할 개별 분산 자성 나노입자를 제조하기 위해 비습식 임프린트 리소그래피를 이용하는 것이다. 그러한 입자들은 아래와 같이 사용될 수 있는데: (1)암세포의 고열 처리; (2)MRI 대비(contrast)시약; (3) 상기 입자의 유도된 전달; 그리고 (4)약물 전달 벡터의 퇴화를 유발하는데 사용될 수 있다.

실시예에서, 상기 치료제 전달 체계는 생물학적 적합성의 물질과 자성 나노입자를 포함한다. 실시예에서, 상기 생물학적 적합 물질은 100℃미만의 녹는점을 가진다. 실시예에서, 상기 생물학적 적합물질은 폴리락티드(polylactide), 폴리글리콜라이드(polyglycolide), 하이드록시프로필셀룰로오즈(hydroxypropylcellulose)와 왁스(wax)로 구성되는 그룹에서 선택되며 이들로 제한되지는 않는다.

실시예에서, 자성 나노입자가 타겟에 전달되거나, 타겟에 가까워지면 상기 자성 나노입자는 교류자기장에 노출된다. 교류자기장에 대한 노출은 자성 나노입자가 조절된 발열을 하도록 한다. 특별한 이론에 의거하지 않더라도, 상기 조절된 발열은 열 소작(ablation) 과정의 결과이다. 실시예에서, 상기 열은 나노입자의 폴리머 구성체의 상변화를 유발하도록 사용된다. 실시예에서, 상기의 상변화는 용융과정을 포함한다. 실시예에서, 상기 상변화는 캡슐화된 물질이 방출되게 한다. 실시예에서, 상기 캡슐화된 물질의 방출은 조절된 방출을 포함한다. 실시예에서, 상기 캡슐화된 물질의 조절된 방출은 치료제의 농축된 투약을 유발한다. 실시예에서, 상기 가열은 표적 즉, 특정세포의 발열 처리를 초래한다. 실시예에서, 상기 발열은 캡슐화된 물질의 효능을 증가시킨다. 실시예에서, 상기 전자기적 가열에 의해 유도된 자성 나노입자의 유발 기전은 상기 입자의 퇴화를 촉진하고, 팽창 및/또는 보다 높은 표면적을 갖도록 분해/상변화를 유발할 수 있어 다양한 질병을 다루는데 있어서 유익할 수 있다.

실시예에서, 부가적인 요소들은, 항암제와 같은 의약, 질소 머스타드(mustard), 시스플라틴(cisplatin), 그리고 독소루비신(doxorubicin); 세포 타겟팅(targeting) 펩타이드, 세포 관통(penetrating) 펩타이드, 인테그린 수용체 펩타이드(integrin receptor peptide)(GRGDSP),멜라닌 세포 자극 호르몬(melanocyte stimulating hormone), 혈관작용소장 펩타이드(vasoactive intestional peptide), 항Her2 마우스항체(anti-Her2 mouse antibodies)와 같은 타겟팅 리간드(ligand), 그리고 다양한 비타민들; 바이러스, 다당류(polysaccharides), 사이클로덱스트린(clodextrins), 단백질, 리포좀(liposomes), 광학상의 적용을 위한 CdSe, 그리고 붕소 중성자 포획 치료법(boron neutron capture therapy, BNCT)을 돕기 위한 붕산염 나노입자 등의 광나노입자를 포함한다.

본 발명에 기술된 자성포함물질들은 다른 응용에도 차용될 수 있다. 상기 자성 입자들은 그들의 모양에 따라 잘 구축된 어레이로 투입되어 조립되거나, 표면의 활성화와/또는 검사를 위한 자기장에의 노출 그리고 자성 분석장비, 메모리 디바이스, 스핀트로닉스(spintronics) 응용들, 그리고 용액의 분리에 적용될 수 있으며, 이들에만 국한되지 않는다.

따라서, 본 발명은 타겟으로의 치료제 전달 방법을 제시하며, 그 방법은 다음을 포함한다:

(a) 본 발명에 공개된 방법에 의해 생산된 입자를 제공하는 단계;

(b) 치료제와 상기 입자를 혼합하는 단계; 그리고

(c) 타겟에 상기 치료제를 포함하는 입자를 전달하는 단계.

실시예에서, 상기 치료제는 약물이나 유전 물질중 하나에서 선택된다. 실시예에서, 상기 유전 물질은 비-바이러스성 벡터, DNA, RNA, RNAi 그리고 바이러스 입자로 구성된 그룹에서 선택된다.

실시예에서, 상기 입자는 생분해성 폴리머를 포함한다. 실시예에서, 상기 생분해성 폴리머는 폴리에스테르(polyester), 폴리언하이드라이드(polyanhydrid), 폴리아미드(polyamide), 인-기반 폴리머(phosphorous-based polymer), 폴리(시아노아크릴레이트)(poly(cyanoacrylate)), 폴리우레탄(polyurethane), 폴리오르소에스테르(polyorthoester), 폴리디하이드로피란(polydihydropyran), 그리고 폴리아세탈(polyacetal)로 구성된 그룹에서 선택된다.

실시예에서, 상기 폴리에스테르는 폴리락틱산(polylactic acid), 폴리글리콜산(polyglycolic acid), 폴리(하이드록시부티레이트)(poly(hydroxybutyrate)), 폴리(ε-카프로락톤)(poly(ε-caprolactone)), 폴리(β-말릭산)(poly(β-malic acid)), 그리고 폴리(디옥산온)(poly(dioxanones))로 구성된 그룹에서 선택된다.

실시예에서, 상기 폴리 언하이드라이드(polyanhydride)는 폴리(세바신 산)(poly(sebacic acid)), 폴리(아디프 산)(poly(adipic acid)), 그리고 폴리(테르프탈 산)(poly(terpthalic acid))으로 구성된 그룹에서 선택된다.

실시예에서 상기 폴리아미드는 폴리(이미노 카보네이트)(poly(imino carbonates))와 폴리아미노산((polyaminoacids))로 구성된 그룹에서 선택된다.

*실시예에서, 상기 인-기반 폴리머는 폴리포스페이트(polyphosphates), 폴리포스포네이트(polyphosphonates), 그리고 폴리포스포스파젠(polyphosphosphazenes)로 구성된 그룹에서 선택된다.

실시예에서, 상기 생분해성 중합체는 또한 자극에 반응하는 폴리머를 포함한다. 실시예에서, 상기 자극은 pH, 방사선, 이온력, 온도, 그리고 교류 자기장, 그리고 교류 전기장으로 구성된 그룹에서 선택된다. 실시예에서, 상기 자극은 교류 자기장을 포함한다.

실시예에서, 상기 방법은 상기입자가 표적물에 도달하면 교류의 자기장에 노출시키는 것을 포함한다. 실시예에서, 상기 입자의 교류자기장에의 노출은 입자가 온도저하 과정이나 열소작 과정 중 한 가지를 통해 열을 발생하도록 한다.

실시예에서, 상기 입자에 의해 발생된 열은 입자의 폴리머의 성분에 상변화를 유발하고 타겟의 고열처리를 유발한다. 실시예에서, 상기 입자의 폴리머의 상변화는 고체상에서 액체상으로의 변화를 포함한다. 실시예에서, 상기 고체상에서 액체상으로의 상변화는 치료제가 입자로부터 방출되도록 한다. 실시예에서, 상기 입자로부터 치료제의 방출은 조절된 방출을 포함한다.

실시예에서, 상기 표적물은 세포 타겟팅(targeting) 펩타이드, 세포 통과(penetrating) 펩타이드, 인테그린 수용체 펩타이드(integrin receptor peptide)(GRGDSP),멜라닌 세포 자극 호르몬(melanocyte stimulating hormone), 혈관작용소장 펩타이드(vasoactive intestional peptide), 항Her2 마우스항체(anti-Her2 mouse antibodies)와 비타민으로 구성된 그룹에서 선택된다.

본 발명의 방법에 따라, 어떤 동물 주체도 치료될 수 있다. 본 발명에 언급된 '주체'란 용어는 모든 척추동물을 포함한다. 본 발명에 청구된 주체는 특히 온혈 척추동물의 진단에 유용하다. 따라서, 본 발명에 청구된 주체는 포유류와 관계있다. 제시된 몇몇 실시예에는 멸종 위기에 처해 중요한 포유류(시베리안 호랑이), 경제적으로 중요한 동물(식용을 목적으로 농장에서 사육되는 동물들)과(또는) 사회적으로 중요한 동물(애완용이나 동물원에서 길러지는 동물들), 예를 들어 인간을 제외한 육식동물 (고양이, 개), 돼지류(swine)(돼지, 멧돼지),그리고/또는 반추동물(소, 수소, 양, 기린, 사슴, 염소, 들소, 그리고 낙타)과 말 뿐만 아니라 사람과 같은 포유동물의 진단과(또는) 치료가 제시되어 있다. 또한 길들여진 돼지류(swine)(pig와 hog), 반추동물, 말, 가금, 그리고 그와 유사한 동물을 포함하며 이들에만 국한되지 않는 가축의 진단과/또는 치료가 제시되어 있다.

아래 참조들은 본 발명에 온전히 삽입되어 있다.

Published International PCT Application No. WO2004081666 to DeSimone et al.: U.S. Patent No. 6,528,080 to Dunn et al.; U.S. Patent No. 6,592,579 to Arndt et al., Published International PCT Application No. WO0066192 to Jordan; Hilqer, I. et al.. Radiology 570-575 (2001 ); Mornet. S. et al., J. Mat. Chem., 2161-2175 (2004); Berry, CC. et al., J. Phys. D: Applied Physics 36, R198-R206 (2003); Babincova. M. et al., Bioelectrochemistry 55, 17-19 (2002); Wolf. SA et al., Science 16, 1488- 1495 (2001 ); and Sun. S. et al., Science 287, 1989-1992 (2000); United States Patent No. 6,159,443 to Hallahan; and Published PCT Application No. WO 03/066066 to Hallahan et al.

XII . 천연구조 및 합성구조를 패터닝하는 방법

실시예에서, 본 발명은 천연구조들, 단일 분자체들, 또는 자가결합(self assembled)구조로부터 유래된 표면과 몰드방법 및 공정, 그리고 공정에 의한 결과물을 기술한다. 이에 따라서, 실시예에서는 본 발명은 천연구조, 단일분자, 그리고 (또는) 자가결합구조를 패터닝하는 방법을 기술한다. 실시예에서 상기 방법은 천연구조, 단일 분자, 그리고 (또는) 자가완성 구조를 복제하는 것을 포함한다. 실시예에서, 상기 방법은 천연물질, 단일분자, 그리고/또는 자가조립 구조의 기능성을 복제하는 것을 더 포함한다.

더욱 바람직하게는, 실시예에서 상기 방법은 천연구조, 단일분자, 그리고/또는 자가 조립구조의 각인(impression)이나 몰드를 얻는 것을 포함한다. 실시예에서, 상기 각인 또는 몰드는 낮은 표면 에너지 폴리머 전구체에 의해 얻어진다. 실시예에서, 상기 낮은 표면에너지 폴리머 전구체는 기능적으로 종료된 다이아크릴레이트(diacrylate), 퍼플루오로폴리에테르(PFPE)를 포함한다. 실시예에서 상기 천연구조, 단일분자, 그리고(또는) 자가결합구조는 효소, 바이러스, 항체, 마이셀(micells), 그리고 조직 표면으로 구성된 그룹으로부터 선택된다.

실시예에서, 상기 각인이나 몰드는 상기 천연구조, 단일분자, 그리고/또는 자가결합구조의 형상을 분리된 대상물이나 표면으로 복제하는데 사용된다. 실시예에서, 비습식 임프린트 리소그래피 방법은 몰드된 부위나 표면으로 형상을 전하는데 사용된다. 실시예에서 이러한 방법으로 몰드된 부위 또는 표면은 많은 곳에 적용될 수 있는데, 이는 약물전달, 의료장비, 코팅, 촉매, 또는 원래로부터 유래된 천연구조의 모양을 포함하며, 여기에 국한되지는 않는다. 실시예에서, 상기 천연구조는 생물조직을 포함한다. 실시예에서 상기 생물조직(tissue)은 신체로부터 유래한 심장과 같은 장기를 포함한다. 실시예에서, 상기 생물조직은 혈관과 뼈를 포함한다. 실시예에서, 상기 생물조직은 힘줄과 연골을 포함한다. 예를 들면, 실시예에서, 본 발명에 공개된 주제는 힘줄과 연골재생을 위한 표면의 패터닝을 위해 사용될 수 있다. 그러한 재생은 일반적으로 콜라겐 조직의 사용을 필요로 하며, 이는 시체로부터 유래하며 대체용으로 사용되기 위해 반드시 가공되어야 한다. 대부분의 이러한 대체는 실패하는데, 이는 대체에 필요한 초기 패터닝을 각인(lay down)할 수 없기 때문이다. 여기 기술된 소프트 리소그래피 방법은 이러한 문제점을 경감시키고 있다.

실시예에서 본 발명은 줄기세포를 이용한 조직 재생에 적용될 수 있다. 현재 알려져 있는 거의 대부분의 모든 줄기세포 방법은 세포가 접종(seed)된 다음 자라기 위해 분자수준의 패터닝을 필요로 하는데, 그럼으로써 간, 신장, 또는 그와 유사한 장기의 모양을 얻는다. 실시예에서, 분자의 골격이 주조(cast)되어 이식치료의 형태로 장기를 심기 위한 결정(crystal)으로 사용된다. 실시예에서, 상기 줄기세포와 나노-기판(nano-substrate)은 간 조직 등의 죽어가는 조직에 접종되어 생장과 조직재생을 촉진한다. 실시예에서, 몰드 내에서 복제될 물질은 그 물질이 고유하게 몰드되었던 물질과 유사하거나 같은 것을 포함한다. 실시예에서, 몰드 내에서 복제될 물질은 고유하게 주조되었던 물질과 다른 속성을 가지고(거나) 다른 물질을 포함한다. 이런 방법은 장기 이식의 단점을 다루는데 중요한 역할을 한다.

실시예에서, 본 발명에 공개된 주제는 효소, 박테리아 그리고 바이러스 중 하나의 각인을 얻는데 사용된다. 실시예에서, 상기 효소, 박테리아 또는 바이러스는 그 후 상이한 대상물 또는 표면으로 복제되어 바로 그 효소, 박테리아 또는 바이러스가 새겨진 모양의 흔적을 갖게 된다. 실시예에서, 상기 몰드 그 자체는 표면에 복제되는데, 그곳의 표면에 부착되어 복제된 몰드는 효소, 박테리아 또는 바이러스 입자의 수신자로 작용한다. 실시예에서, 상기 복제된 몰드는 촉매, 진단시의 센서(sensors), 치료제, 백신, 그리고 그와 유사한 물질로 유용하게 작용한다. 실시예에서, 상기 표면-부착 복제 몰드는 새로운 치료제의 발견을 촉진하는데 사용된다.

실시예에서, 거대분자, 즉 효소, 박테리아의 또는 바이러스의 몰드된 '모방체'는 고유의 거대분자, 박테리아 또는 바이러스와 똑같은 표면 형상을 가지는 비자가복제적 실체로서 작용한다. 실시예에서, 상기 몰드된 모방체는 그들의 존재에 대한 생물학적 반응들, 즉, 알레르기 반응을 형성하는데 사용될 수 있는데, 이에 의해 항체나 활성화 리셉터를 생성하게 된다. 실시예에서, 상기 몰드된 모방체는 백신으로 작용한다. 실시예에서, 생물학적으로 활성을 가지는 몰드된 모방체의 효능은 표면 조작기술에 의해 촉진된다.

XIII . 표면 특성을 주조된 결과물에 전이하기 위한 임프린트 리소그래피몰드 표면을 조작하는 방법

실시예에서, 본 발명은 임프린트 리소그래피 몰드의 표면을 조작하는 방법을 기술한다. 실시예에서, 상기 방법은 또한 표면 특성을 몰드된 결과물에 전이하는 것을 포함한다. 실시예에서, 상기 몰드된 결과물은 분리된 몰드 결과물을 포함한다. 실시예에서, 상기 몰드된 결과물은 비습식 임프린트 리소그래피 기술을 이용하여 형성된다. 실시예에서, 상기 주조된 결과물은 콘택트 렌즈, 의료장비 그리고 그와 유사한 것을 포함한다.

더욱 자세하게는, 용매에 저항성을 가지며, 낮은 표면 에너지를 지닌 중합물질, 또는 더 자세하게는 PFPE 주형이 표면 조작 과정을 통해 조작되는데, 여기서 표면조작과정은 플라즈마 처리, 화학약품 처리, 그리고 분자의 흡착으로 이루어진 그룹에서 선택된다. 실시예에서, 상기 표면 조작 과정에서 흡착된 분자들은 폴리엘렉트로라이츠(polyelectrolytes), 폴리(비닐알콜)(poly(vinylalcohol)), 알킬할로실란(alkylhalosilanes), 그리고 리간드들(ligands)로 구성된 그룹에서 선택된다. 실시예에서, 표면처리된 몰드로부터 얻어지는 구조, 입자 또는 대상물들은 몰드 내의 표면 처리에 의해 조작될 수 있다. 실시예에서, 상기 조작은 분자의 프리오리엔테이션(pre-orientation) 또는 몰드된 결과물을 포함하는 분자들을 가진 일부(moiety)를 포함한다. 실시예에서, 주조된 결과물이 다른 환경에 접하게 되면 상기 분자들의 프리오리엔테이션(pre-orientation) 또는 일부(moiety)는 특정 속성을 주조된 결과물에 전하게 되는데, 이는 촉매적(catalytic), 가용성(wettable), 부착성, 비점착성(non-stick), 상호작용 또는 비상호작용성의 속성을 포함한다. 실시예에서, 그러한 속성은 생물조직과의 상호작용을 촉진하거나 방해하도록 사용된다. 본 발명에 공개된 주제는 센서(sensors), 어레이(array), 의학적 이식, 의학적 진단, 질병의 검출, 그리고 분리 매질(separation media)로 적용되는 것을 포함한다.

XIV . 대상물의 표면을 선택적으로 시약에 노출시키는 방법

선택적으로 대상물의 표면을 시약에 노출시키는 방법도 여기에 기술된다. 실시예에서 상기 방법은 다음을 포함한다:

(a) 마스킹 시스템으로 대상물 표면의 1차 부위를 보호하는데, 여기서 마스킹 시스템은 대상물의 표면에 구조적으로 접지된 탄성의 마스크를 포함한다; 그리고

(b) 마스킹 시스템에 보호되는 1차 부위에 시약이 처리되지 않도록 방지하면서 마스킹 시스템의 내에서 패터닝 되도록 상기 대상물 표면의 2차 부위에 시약을 처리한다.

* 실시예에서 상기 탄성 마스크는 복수의 채널을 포함한다. 실시예에서, 각각의 채널은 대략 1 mm 미만의 횡단면 직경을 가진다. 실시예에서, 각각의 채널은 대략 1 μm 미만의 횡단면 직경을 가진다. 실시예에서, 각각의 채널은 대략 100 nm 미만의 횡단면 직경을 가진다. 실시예에서, 각각의 채널은 대략 1 nm 정도의 횡단면 직경을 가진다. 실시예에서, 시약은 탄성의 마스크를 25% 보다 미만으로 부풀린다.

실시예에서, 상기 시약은 유기성의 전기적 발광 물질 또는 그들의 전구체를 포함한다. 실시예에서, 상기 방법은 또한 시약으로부터 표면의 2차 부위에서 유기성의 전기적 발광 물질이 형성되도록 하는 것과, 유기성의 전기적 발광물질과 전기회로 사이에 전기적 소통을 이루도록 하는 것을 포함한다.

실시예에서, 상기 시약은 액체 또는 액상내에 유지되는 시약을 포함한다. 실시예에서, 상기 시약은 화학적 증착(chemical vapor deposition)의 결과물을 포함한다. 실시예에서, 상기 시약은 기체상태에서의 침착(deposition)된 결과물을 포함한다. 실시예에서, 상기 시약은 e-beam 침착, 증발, 또는 스푸터링(sputtering)의 결과물을 포함한다. 실시예에서, 상기 시약은 전기화학적 침착의 결과물을 포함한다. 실시예에서, 상기 시약은 비전기적 침착의 결과물을 포함한다. 실시예에서, 상기 시약은 유체 전구체로부터 적용된다. 실시예에서, 상기의 경우 용액 또는 무기 화합물의 현탁액을 포함한다. 실시예에서, 상기 무기성의 화합물은 대상물 표면의 2차 부위 상에서 고형화된다.

실시예에서, 상기 유체 전구체는 유체 캐리어(Fluid carrier) 내의 입자의 현탁액을 포함한다. 실시예에서, 상기 방법은 또한 상기 유체 캐리어가 흩어지게 함으로써 대상물 표면의 1차 부위에서 침착(deposit)되도록 하는 것을 포함한다. 실시예에서, 상기 유체 전구물질은 유체 캐리어 내에서 화학적으로 활성을 가지는 시약을 포함한다. 실시예에서, 상기 방법은 또한 상기 유체 캐리어가 흩어지게 함으로써 화학적으로 활성을 가지는 시약을 대상물 표면의 1차 부위에서 침착되도록 하는 것을 포함한다.

실시예에서, 상기 화학적으로 활성을 가지는 시약은 폴리머 전구물질을 포함한다. 실시예에서, 상기 방법은 또한 폴리머의 전구물질로부터 폴리머의 대상물을 형성하는 것을 포함한다. 실시예에서, 상기 화학적으로 활성을 가지는 시약은 물질의 침착을 촉진할 수 있는 시약을 포함한다. 실시예에서, 상기 화학적으로 활성을 가지는 시약은 부식액을 포함한다. 몇몇 실시예에서, 상기 방법은 대상물 표면의 2차 부위가 식각(etch)되도록 하는 것을 포함한다. 실시예에서, 상기 방법은 상기 시약이 대상물 표면의 2차 부위에 잔존하도록 하면서 마스킹 시스템의 탄성체의 마스크를 대상물 표면의 1차 부위로부터 제거하는 것을 포함한다.

XV . 엔지니어링된 막의 형성 방법

본 발명에 공개된 주제는 또한 엔지니어링 된 막의 형성방법을 기술한다. 실시예에서, 패터닝된 비습식 주형은 PFEF 물질과 같은 1차 액상 재료와 패터닝된 기판을 접합하여 형성되며, 1차 액상 재료의 처리는 예를 들어, 패터닝된 비습식 주형을 이루도록 자외선 조사를 통해 고형화함으로써 이루어진다. 상기 패터닝된 기판은 복수의 오목 영역 또는 특정 모양으로 조형된 공동을 포함하여 패터닝된 비습식 주형이 복수의 돌출부 모양을 갖도록 한다. 상기 패터닝된 비습식 주형은 광경화(photocurable) 레진의 예와 같은 2차 액상재료와 접촉한다. 그 후 힘이 과량의 2차 액상재료 또는 스컴층을 제거하기 위해 패터닝된 비습식 주형에 가해지게 된다. 그 후 2차 액상재료가 처리되는데, 예를 들어 자외선조사를 통해 고형화하여 모양과 크기에 특이적인 복수의 홀을 포함하는 서로 연결된 구조를 형성하도록 한다. 상기의 서로 연결된 구조는 그 후 비습식 주형으로부터 제거된다. 실시예에서, 상기 연결된 구조는 분리를 위한 막으로 사용된다.

XVI . 공정 및 공정에 의한 결과물 검수방법

여기에 기술된 대상물/구조/입자들의 모양, 배치, 용도에 따른 검수를 하는 것은 중요할 것이다. 그런 검수를 통해 장차 취해질 교정작업이나 제거 또는 감경해야할 단점을 재고할 수 있다. 그러한 검수에 유용한 의견 개진과 모니터링 장비의 범위는 다음을 포함한다: 에어 게이지(air gages), 이것은 공기압과 흐름을 이용하여 치수 속성(dimensional attributes)을 측정 또는 분류한다; 밸런싱 기기와 시스템, 이들은 기기나 성분 밸런스를 역동적으로 측정하고/하거나 수정한다; 생물학적 현미경, 이는 일반적으로 생명체들을 연구하거나 그들의 생체활성의 과정을 연구하는데 사용된다; 보어(bore)와 ID 게이지, 이는 내부 직경의 수치 측정 또는 평가를 위해 고안되었다; 공업용 내시경(boroscope), 이는 단단하거나 연성이 있는 광튜브로서 천공, 보어(bores), 공동(cavity), 그리고 그와 유사한 것을 관찰하는 도구이다; 캘리퍼(califers), 이는 보통 정밀한 슬라이드의 움직임을 통해, 내부, 외부, 또는 깊이나 스텝의 측정을 위해 사용되며, 그 중 몇몇은 수치를 비교하거나 전이하는데 사용된다; CMM 프루브(probe), 물리적 측정치를 전기적 신호로 변환해 준다; 컬러 영상 기기(color and appearance instruments), 이는 예를 들어 보통 도료나 색깔, 광택, 흐림, 투명함을 가지는 코팅의 특징을 측정한다; 컬러 감지기(color sensors), 이는 아이템들을 컨트라스트, 실제 색깔, 또는 반투명 지수에 따라 표시하며, 컬러 모델 중의 하나에 기초하는데, 대부분은 RGB모델(빨강, 초록, 파랑)에 기초한다; 좌표 측정 장비(coordinate measuring machines), 이들은 작동 부위 표면상의 좌표를 결정하기위해 측정 탐침자를 움직이도록 고안된 기계적 장비이다; 깊이 게이지(depth gage), 이는 홀, 공동 또는 다른 형상적 요소를 측정하도록 사용된다; 디지털/비디오 현미경, 이는 확대된 이미지를 디스플레이 하는데 디지털 기술을 이용한다; 디지털 판독기(digital readouts), 이는 기기상의 검침 게이지와 선형 스케일, 또는 회전 인코더로부터 판독된 치수와 위치를 특화된 방식으로 디스플레이한다; 치수(dimensional) 게이지와 장비들, 이들은 벽면의 두께, 깊이, 높이, 길이, 내경, 외경 테이퍼나 보어(bore) 등의 성분의 치수적 형태적 속성이나 결과물의 양적 측정 결과를 제공한다; 차원 프로필 스케너(dimensional gages and instruments), 이는 대상물의 2차원과 3차원의 정보를 모으며, 다양한 구성과 기술에 유용하다; 전자현미경, 이는 빛 대신 포커스된 전자빔과 이용하여 시료의 구조와 구성에 대한 게인 정보와 시료를 “이미지화”한다; 내시경(fiberscope), 이는 홀, 보어, 공동 등의 내부관찰을 위한 유연한 광큐브를 가지는 검사 도구이다; 고정 게이지(fixed gages), 이는 비교 게이징에 기초하여 특정 속성에 접근하도록 고안된 것이며, 앵글 게이지(Angle Gages), 볼 게이지(Ball Gages), 센터 게이지(Center Gages), 드릴 사이즈 게이지(Drill Size Gages), 휠러 게이지(Feeler Gages), 필렛 게이지(Fillet Gages), 기어 투스 게이지(Gear Tooth Gages), 게이지 또는 심스톡 (Gage or Shim Stock), 파이프 게이지(Pipe Gages), 라디우스 게이지(Radius Gages), 스크류 또는 스레드 피치 게이지(Screw or Thread Pitch Gages), 테이퍼 게이지(Taper Gages), 튜브 게이지(Tube Gages), U.S. Standard Gages (Sheet / Plate), 웰드 게이지(Weld Gages)와 와이어 게이지(Wire Gages)를 포함한다; 특성/형태 게이지(specialty/form gages), 이들은 진원도(roundness), 뾰족성(angularity), 스퀘어네스(Squareness), 직활도(straightness), 편평도(flatness), 런아웃(runout), 테이퍼(taper), 그리고 동심원성(concentricity) 등의 파라메터를 측정하는데 사용된다; 게이지 블록(gage block), 이들은 고정된 비교 게이지를 설정, 기초화, 체크 하기위한 게이지 생성기의 허용한계를 특정하도록 제작되었다; 높이 게이지(height gages), 생산물의 형태, 부속의 높이를 측정하는데 사용된다; 인디케이터와 컴퍼레이터(indicators and comparators), 이들은 어디서 정밀주축(precision spindle) 또는 탐침자의 선형 운동이 증폭되는지를 측정한다; 측정 게이지 부속물(inspection and gaging accessories), 이들은 레이아웃과 마킹 톨 (marking tolls) 같은 것으로서, 치수측정, 마킹, 레이아웃, 또는 화성기(scribes), 트렌스퍼 펀치, 분획기(dividers)와 레이아웃 유체(fluid)와 같은 다른 기계 작업장 어플리케이션에 필요한 손도구와 물품들, 악세서리들(supplies and accessories)을 포함한다; 간섭계(interferometers), 이들은 파장을 이용하여 거리를 측정하고 특정 광원의 파장을 결정하는데 사용된다; 레버(levels), 이들은 지표면에 대하여 얼마나 표면이 기울었는지를 기계적 혹은 전기적으로 측정한다; 기기 정렬 장비(amchine alignment equipment), 이는 기기 부속의 회전 또는 이동 부분을 정렬하는데 사용된다; 증폭기(magnifier), 이들은 렌즈 시스템을 통해서 대상물이나 그 상세한 일부를 확대하는데 사용되는 관측장비이다; 주게이지와 설정게이지(master & setting gages), 이들은 다른 게이지를 초기화하는 치수상의 기준을 제공한다; 측정 현미경(meassuring microscopes), 이들은 도구들의 속성을 측정하기 위해 도구제작에 사용되며, 상대적으로 낮은 확대력으로 치수측정에 사용되어 이미지를 더 밝고, 샤프하며 동시에 넓은 영역의 시야를 가능하게 한다; 야금 현미경(metallurgical microscope), 이들은 야금을 위한 관찰에 사용된다; 마이크로미터, 이들은 그라운드 스핀들(ground spindle)과 C자형 철제 프레임에 장착된 모루(anvil)로 구성되며 정확한 치수 측정을 위한 장비이다. 비접촉 레이져 마이크로미터 또한 사용된다; 모든 타입의 현미경, 이들은 작은 대상물의 확대된 이미지를 생성할 수 있는 장비이다; 광학현미경, 이들은 가시광선 또는 가시영역에 근접한 전자기적 스펙트럼을 이용한다; 옵티컬 컴퍼레이터(optical comparators), 이들은 표준 오버레이 프로필 또는 스케일에 비교하기 위해 확대된 특정부위의 이미지나 프로필을 스크린 상에 조사하는 장치이다; 플러그/핀 게이지(plug/pin gages), 이들은 특정화된 허용한계와 비교하여 홀이나, 홈, 또는 위치상 “진행/불진행”의 결정에 사용된다; 링 게이지(ring gages), 이들은 특정화된 치수적 허용한계 또는 핀이나 샤프트(shaft), 또는 스레디드 스터드(threaded stud)의 속성에 따라 “진행/불진행”의 결정에 사용된다; 자와 눈금scales), 이들은 편평하고, 점증하는 눈금들은 길이 측정에 사용되며, OEM 어플리케이션, 디지털 또는 전기적인 선형 눈금은 길이를 잴 때 종종 사용된다; 스냅 게이지(snap gages), 이들은 특수한 직경 또는 두께의 측정이 정확성과 정밀도를 가지고 빈번하게 재현되어야 할 경우에 필요한 세팅을 제조할 때 사용된다; 특수 현미경, 이들은 야금(metallurgy), 보석학(gemology) 또는 음향학 또는 극초단파와 같은 특수기술에 이용될 때 사용된다; 스퀘어(squares), 이들은 일부 또는 조합의 두 개의 표면이 직각일 때 지시하도록 사용된다; 스타일리, 탐침자, 그리고 켄티레버(styli, probe and cantilevers), 이들은 홀쭉한 박대기모양의 기둥과 접촉팁 도는 점으로써, 조도계, SPMs, CMMS, gages and 디멘셔널 스케너(dimensional scanner)와 관련하여 표면을 탐침할 때 사용된다; 표면 조도계(surface profilometers), 이들은 기계적 철침(stylus)을 샘플을 가로질러 스켄하거나 비접촉 방식에 의해 표면의 속성, 거칠음, 굴곡성, 그리고 다른 마감 파라메터를 측정한다; 스레드 게이지(thread gages), 이들은 스레드의 크기, 피치(pitch) 또는 다른 파라메터를 측정하는 장비이다; 그리고 비디오스코프(videoscope), 이들은 홀이나, 보어(bore) 또는 공동으로부터의 이미지를 촬상하는 검침장비이다.

아래의 실시예들은 본 발명에 공개된 주제의 대표적 실시예를 구현하기 위한 통상의 현행기술 중 한 가지에 대한 지침을 제시하도록 첨부되었다. 본 발명의 공개와 통상 수준의 기술을 비추어 볼 때, 그 기술들은 아래의 실시예들이 본보기에 지나지 않으며, 본 발명에 공개된 주제의 관점에서 동떨어지지 않는 범위 내에서 다수의 변화와 수정, 그리고 변경이 가해질 수 있는 것으로 판단될 수 있다.

실시예 1 광경화형 퍼플루오로폴리에테르( Perfluoropoluethers )의 경화와 합성의 대표적 공정

실시예에서, 본 발명에 공개된 주제 PFPE 물질의 경화와 합성은 Rolland. J. P., et al., J. Am . Chem . Soc., 2004, 126, 2322-2323.에 의해 기술된 방법에 따라 수행된다. 간략하게는, 이 방법은 이소사이아나토에틸 메타크릴레이트(isocyanatoethyl methacrylate)를 이용하여, 시판되는 PFEF diol (Mn = 3800 g/mol)의 메타크릴레이트-기능화를 포함한다. 상기 물질의 결과적인 광경화는 1 wt%의 2,2-다이메톡시-2-페닐아세토페톤 (2,2-dimethoxy-2-phenylacetophenone)과의 혼합과 자외선 조사(파장=365nm)를 통해 수행된다.

더욱 자세하게는, 일반적인 퍼플루오로폴리에테르(Perfluoropoluethers)(PFPE DMA)의 제조에 있어서, 폴리(테트라플루오로에틸렌)(poly(tetrafluoroethylene oxide-co-difluoromethylene oxide)α,ω, diol (ZDOL, average Mn ca. 3,800 g/mol, 95%, Aldrich Chemical Company, Milwaukee, Wisconsin, United States of America) (5.7227g, 1.5 mmol))을 건조된 50ml의 구형(round) 플라스크에 첨가된 다음 아르곤으로 15분간 세척(purge)하였다. 그 후 2-isocyanatoethyl methacrylate (EIM, 99%, Aldrich)(0.43 mL, 3.0 mmol)가 주사기를 통해 1 ,1 ,2- trichlorotrifluoroethane (Freon 113 99%, Aldrich) (2 ml_)과 다이부틸틴 다이아세테이트(dibutyltin diacetate (DBTDA, 99%, Aldrich)) (50 μL)와 함께 첨가되었다. 상기 용액은 기름 욕조에 담아 50℃에서 24시간 동안 교반하였다. 상기 용액은 그 후 크로마토그래피 컬럼(alumina, Freon 113, 2 x 5 cm)을 통과하도록 하였다. 상기 용매의 증발 후 맑은 무색의 점성 오일이 생성되며, 이는 0.22-μm 폴리에테르술폰(polyethersulfone) 필터를 통과시킴으로써 더 순화되었다.

PFEF DMA의 대표적인 경화 공정에 있어서 1 wt%의 2,2- dimethoxy-2-phenyl acetophenone (DMPA, 99% Aldrich),(0.05g, 2.0 mmol)이 PFPE DMA (5g, 1.2 mmol)에 2mL 프레온 113과 함께 맑은 용액이 형성될 때까지 첨가되었다. 상기 용매를 제거한 후, 탁한 점성의 기름은 0.22-μm 폴리에테르술폰 필터를 통과하여 PFEF DMA속으로 분산되지 않은 DMPA가 제거되도록 하였다. 상기 필터에 걸러진 PFEF DMA는 그 후 질소에서 10분간 세정(purge)되는 동안 자외선(Electro-Lite Corporation, Danbury, Connecticut, United States of America, UV curing chamber model no. 81432-ELC-500, 파장- 365 nm)에 조사되었다. 이것으로 맑고 약간의 노란기를 띄며 탄성있는 물질이 생성되었다.

실시예 2 PFEF DMA 장치의 대표적 제작법

실시예에서, 스탬프와 같은 PFPE DMA 장치가 Rolland. J. P., et al., J. Am. Chem. Soc., 2004, 126, 2322-2323.에 의해 기술된 방법과 같이 제작되었다. 간략하게는, DMPA와 같은 광기폭제를 포함하는 상기 PFPE DMA가 원하는 광저항(photoresist) 패턴을 가지는 실리콘(Si) 웨이퍼상에 20um의 두께로 스핀 코트(spin coated)(800 rpm)되었다. 이렇게 코팅된 웨이퍼는 다시 자외선 고형화 상자에 넣어져 6 초 동안 조사되었다. 이와는 독립적으로, PFPE DMA를 포함하는 광기폭제(photoinitiator)를 원하는 광저항 패턴을 가지는 Si 웨이퍼 주위를 둘러싸는 주형에 부어 넣어 두꺼운 층(대략 5 mm)의 물질을 생성하였다. 상기 웨이퍼는 자외선에 1 분간 조사되었다. 이후에 상기 두꺼운 층은 제거되었다. 상기 두꺼운 층은 그 후 얇은 막 위에 배치되어 두 층간의 패턴이 정확히 배열되도록 하였고, 그리고 모든 장치들이 10분간 조사되었다. 일단 완료되면, 상기 접착된 두 개의 층을 가지는 장치 전체의 Si 웨이퍼를 벗겨내었다.

실시예 3 비습식 리소그래피를 이용한 분리된 입자의 제작

3.1 200 nm 사다리꼴 PEG 입자의 제작

*패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm 사다리꼴 모양으로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 13 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거된다. 이와 별개로, 폴리(에틸렌 글리콜)(poly(ethylene glycol)(PEG) 다이아크릴레이트 (diacrylate)(n=9)는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30% 과산화수소용액)과 트리클로로(1H,1H,2H,2H-퍼플루오로옥틸)실란 (trichlolro(1H,1H,2H,2H-perfluorooctyl)silane)으로 건조기에서 20분간 증기 침착(vapor rdeposition)을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작한다. 그 후, 50 μL의 PEG 다이아크릴레이트(PEG diacrylate)는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치된다. 상기 기판은 그 후 주형 장치 내에 위치되고 과다한 PEG 다이아크릴레이트를 밀어내기 위해 낮은 압력이 가해진다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사된다. 입자들은 PFPE 주형과 처리된 실리콘 웨이퍼로가 분리된 이후에 주사 전자 현미경(Scanning Electron Microscope, SEM)을 통해 관찰된다(도 14 참조).

3.2 500 nm 원뿔형의 PEG 입자의 제작

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 500-nm 사다리꼴 모양으로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 12 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사된다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거된다. 독립적으로, 폴리(에틸렌 글리콜)(poly(ethylene glycol)(PEG) 다이아크릴레이트 (diacrylate)(n=9)는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합되었다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30% 과산화수소 용액)과 트리클로로 실란(trichloro(1H,1H,2H,2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작한다. 그 후, 50 μL의 PEG 다이아크릴레이트(PEG diacrylate)는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치된다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 PEG 다이아크릴레이트를 밀어내기 위해 가해졌다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사된다. 입자들은 PFPE 주형과 처리된 실리콘 웨이퍼로가 분리된 이후에 주사 전자 현미경(Scanning Electron Microscope, SEM)을 통해 관찰된다(도 15 참조).

3.3 3μm 화살모양의 PEG 입자의 제작

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 3-μm의 화살표 모양으로 패터닝한 실리콘 기판위에 부어서 제작된다(도 11 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사된다. 완전히 고형화된 PFPE-DMA 주형은 그 후 실리콘 원판으로부터 제거된다. 이와 독립적으로, 폴리(에틸렌 글리콜)(poly(ethylene glycol)(PEG) 다이아크릴레이트 (diacrylate)(n=9)는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30% 과산화수소용액)과 트리클로로 실란(trichloro(1H,1H,2H,2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작한다. 그 후, 50 μL의 PEG 다이아크릴레이트(PEG diacrylate)는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 PEG 다이아크릴레이트를 밀어내기 위해 가해졌다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사된다. 입자들은 PFPE 주형과 처리된 실리콘 웨이퍼로가 분리된 이후에 주사 전자 현미경(Scanning Electron Microscope, SEM)을 통해 관찰된다(도 16 참조).

3.4 200- nm x 750- nm x 250- nm 직사각형 모양 PEG 입자의 제작

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm x 750-nm x 250-nm 직사각형 모양으로 패터닝한 실리콘 기판위에 부어서 제작된다. 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사된다. 완전히 고형화된 PFPE-DMA 주형은 그 후 실리콘 원판으로부터 제거된다. 이것과 독립적으로, 폴리(에틸렌 글리콜)(poly(ethylene glycol)(PEG) 다이아크릴레이트 (diacrylate)(n=9)는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합되었다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30%과산화수소용액)과 트리클로로 실란(trichloro(1H,1H,2H,2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작된다. 그 후, 50 μL의 PEG-다이아크릴레이트(PEG diacrylate)는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 PEG-다이아크릴레이트를 밀어내기 위해 가해졌다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사되었다. 입자들은 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 주사 전자 현미경(Scanning Electron Microscope, SEM)을 통해 관찰된다(도 17 참조).

3.5 200- nm 사다리꼴 트리에틸로프로판 트리아크릴레이트 ((trimethylopropane triacrylate, TMPTA) 입자의 제작

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm 사다리꼴(trapezoidal) 모양으로 패터닝한 실리콘 기판위에 부어서 제작된다(도 13 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사하였다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거되었다. 이것과 독립적으로, 폴리(에틸렌 글리콜)(poly(ethylene glycol)(PEG) 다이아크릴레이트 (diacrylate)(n=9)는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합되었다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30% 과산화수소용액)과 트리클로로 실란(trichloro(1H,1H,2H,2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작된다. 그 후, 50 μL의 TMPTA는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 TMPTA를 밀어내기 위해 가해졌다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사된다. 입자들은 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 주사 전자 현미경(Scanning Electron Microscope, SEM)을 통해 관찰된다(도 18 참조).

3.6 500- nm 원뿔모양 트리메틸로프로판 트리아크릴레이트 ( TMPTA ) 입자의 제

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 500-nm 원뿔모양으로 패터닝한 실리콘 기판위에 부어서 제작된다(도 12 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사된다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거되었다. 이와 독립적으로, TMPTA는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합되었다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30%과산화수소용액)과 트리클로로 실란(trichloro(1H,1H,2H,2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작하였다. 그 후, 50 μL의 TMPTA는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 TMPTA를 밀어내기 위해 가해졌다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사된다. 입자들은 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 주사 전자 현미경(Scanning Electron Microscope, SEM)을 통해 관찰된다(도 19 참조). 더욱이, 도 20은 분리된 500-nm 원뿔형 TMPTA 입자의 주사전자현미경 사진을 보여주는데, 이는 본 발명에 기술된 비습식 임프린트 리소나노 그래피 방법의 실시예를 이용하여 각인하고, 의료용 블레이드를 이용하여 기계적으로 수확한 것이다. 그러한 방법으로 입자들을 수득할 수 있다는 것은 “스컴 층”이 없음을 결론적으로 보여주는 것이다.

3.7 3- um 화살표모양 TMPTA 입자의 제작

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 3-um 화살표모양으로 패터닝한 실리콘 기판위에 부어서 제작된다(도 11 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거된다. 이와 독립적으로, TMPTA는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30% 과산화수소용액)과 트리클로로 실란(trichloro(1H,1H,2H,2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작한다. 그 후, 50 μL의 TMPTA는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치된다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 TMPTA를 밀어내기 위해 가해진다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사된다. 입자들은 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 주사 전자 현미경(Scanning Electron Microscope, SEM)을 통해 관찰된다.

3.8 200- nm 사다리꼴 폴리(락틱산)(PLA)입자의 제조

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm 사다리꼴 모양으로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 13 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그 후 실리콘 원판으로부터 제거된다. 이와 독립적으로, 1그램의 (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione(LA)가 용융점(92℃)이상 인 110℃까지 가열되고 대략 20 μL의 옥토에이트 제1주석(stannous actoate) 촉매/기폭제가 상기 액상 단량체에 첨가된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30% 과산화수소용액)과 트리클로로 실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작한다. 그 후, 50 μL의 촉매를 포함하는 용융된 LA는 미리 110℃로 가열된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치된다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 단량체를 밀어내기 위해 가해진다. 전체 장치는 다시 오븐에 넣어져 110℃에서 15시간동안 가열된다. 입자들은 실온으로 냉각되고 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 주사 전자 현미경(Scanning Electron Microscope, SEM)을 통해 관찰된다.(도 21 참조). 더욱이 도 22는 분리된 폴리(락틱산)(PLA)의 200-nm 사다리꼴 입자들의 주사전자현미경 사진으로서, 이는 본 발명에 기술된 비습식 임프린트 리소나노 그래피 방법의 실시예를 이용하여 각인하고, 의료용 블레이드를 이용하여 기계적으로 수확한 것이다. 그러한 방법으로 입자들을 수득할 수 있다는 것은 “스컴 층”이 없음을 결론적으로 보여주는 것이다.

3.9 3-μm 화살표모양의 ( PLA ) 입자의 제조

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 3-μm 화살표모양으로 패터닝한 실리콘 기판위에 부어서 제작된다(도 11 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거된다. 이와 독립적으로, 1그램의 (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione(LA)가 용융점(92℃)이상 인 110℃까지 가열되고 대략 20 μL의 옥토에이트 제1주석(stannous actoate) 촉매/기폭제가 상기 액상 단량체에 첨가된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30%과산화수소용액)과 트리클로로 실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작한다. 그 후, 50 μL의 촉매를 포함하는 용융된 LA는 미리 110℃로 가열된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치된다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 단량체를 밀어내기 위해 가해진다. 전체 장치는 다시 오븐에 넣어져 110℃에서 15시간 동안 가열된다. 입자들은 실온으로 냉각되고 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 주사 전자 현미경(Scanning Electron Microscope, SEM)을 통해 관찰된다.(도 23 참조).

3.10 500- nm 원뿔모양 ( PLA ) 입자의 제조

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 500-nm 원뿔모양으로 패터닝한 실리콘 기판위에 부어서 제작된다(도 12 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거된다. 이와 독립적으로, 1그램의 (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione(LA)가 용융점(92℃)이상 인 110℃까지 가열되고 대략 20 μL의 옥토에이트 제1주석(stannous actoate) 촉매/기폭제가 상기 액상 단량체에 첨가된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30%과산화수소용액)과 트리클로로 실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작한다. 그 후, 50 μL의 촉매를 포함하는 용융된 LA는 미리 110℃로 가열된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치된다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 단량체를 밀어내기 위해 가해진다. 전체 장치는 다시 오븐에 넣어져 110℃에서 15시간 동안 가열된다. 입자들은 실온으로 냉각되고 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 주사 전자 현미경(Scanning Electron Microscope, SEM)을 통해 관찰된다.(도 24 참조).

3.11 200- nm 사다리꼴 폴리 ( 파이롤 ) ( poly ( pyrorole )( Ppy )) 입자의 제조

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm 사다리꼴로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 13 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작한다. 이와 독립적으로, 50 μL의 1:1 v:v 테트라하이드로퓨란:파이롤 (tetrahydrofuran:pyrrole) 이 50 μL의 70% 퍼클로릭 산(perchloric acid)(aq)에 첨가된다. 맑고 균질하며 갈색의 용액이 급격히 형성되며, 15분 내에 검고, 딱딱한 폴리파이롤(polypyrrole)이 형성된다. 이 맑은 갈색의 용액(완전한 중합이 일어나기 전)방울은 처리된 실리콘 웨이퍼 위와 스탬핑 장치 내로 위치시키고 과도한 용액을 제거하기 위해 압력이 가해진다. 상기 장치는 그 후 진공오븐에 15시간 동안 넣어 THF와 수분을 제거한다. 입자들은 진공상태에서 해제되고 PFPE 주형과 처리된 실리콘 웨이퍼가 분리되면 SEM을 통해 관찰한다. (도 25 참조).

3.12 3-μm 화살표모양 ( Ppy )입자의 제조

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 3-μm 화살표모양으로 패터닝한 실리콘 기판위에 부어서 제작된다(도 11 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그 후 실리콘 원판으로부터 제거된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30%과산화수소용액)과 트리클로로 실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작한다. 이와 독립적으로, 50 μL의 1:1 v:v 테트라하이드로퓨란:파이롤 (tetrahydrofuran:pyrrole) 이 50 μL의 70% 퍼클로릭 산(perchloric acid)(aq)에 첨가된다. 맑고 균질하며 갈색의 용액이 급격히 형성되며 15분 내에 검고, 딱딱한 폴리파이롤(polypyrrole)이 형성된다. 이 맑은 갈색의 용액(완전한 중합이 일어나기 전)방울은 처리된 실리콘 웨이퍼 위와 스탬핑 장치 내로 위치시키고 과도한 용액을 제거하기 위해 압력이 가해진다. 상기 장치는 그 후 진공오븐에 15시간 동안 넣어 THF와 수분을 제거한다. 입자들은 진공상태에서 해제되고 PFPE 주형과 처리된 실리콘 웨이퍼가 분리되면 SEM을 통해 관찰한다. (도 26 참조).

3.13 500- nm 원뿔모양 ( Ppy ) 입자의 제조

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 500-nm 원뿔모양으로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 12 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30% 과산화수소용액)과 트리클로로 실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작한다. 이와 독립적으로, 50 μL의 1:1 v:v 테트라하이드로퓨란:파이롤 (tetrahydrofuran:pyrrole) 이 50 μL의 70% 퍼클로릭 산(perchloric acid)(aq)에 첨가된다. 맑고 균질하며 갈색의 용액이 급격히 형성되며 15분내에 검고, 딱딱한 폴리파이롤(polypyrrole)이 형성된다. 이 맑은 갈색의 용액(완전한 중합이 일어나기 전)방울은 처리된 실리콘 웨이퍼 위와 스탬핑 장치 내로 위치시키고 과도한 용액을 제거하기 위해 압력이 가해진다. 상기 장치는 그 후 진공오븐에 15시간 동안 넣어 THF와 수분을 제거한다. 입자들은 진공상태에서 해제되고 PFPE 주형과 처리된 실리콘 웨이퍼가 분리되면 SEM을 통해 관찰한다. (도 27 참조).

3.14 형광으로 표지된 DNA 를 200- nm 사다리꼴 PEG 입자 내부에 캡슐화

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm 사다리꼴로 패터닝한 실리콘 기판위에 부어서 제작된다(도 13 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거된다. 이와 별개로, 폴리(에틸렌 글리콜)(poly(ethylene glycol)(PEG) 다이아크릴레이트 (diacrylate)(n=9)는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합된다. 20 μL의 물과 20 μL의 PEG 다이아크릴레이트(diacrylate) 단량체가 형광염색물질 CY-3로 표지된 8 나노몰의 24bp DNA 올리고뉴클레오타이드에 첨가된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30%과산화수소용액)과 트리클로로 실란(trichloro(1H,1H,2H,2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작하였다. 그 후, 50 μL의 PEG-다이아크릴레이트(PEG diacrylate)는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 PEG-다이아크릴레이트를 밀어내기 위해 가해졌다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사되었다. 입자들은 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 주사 전자 현미경(Scanning Electron Microscope, SEM)을 통해 관찰된다(도 28 참조). 더욱이, 도 28a는 CY-3로 표지된 24-mer DNA 가닥을 포함하는 200nm 사다리꼴 PEG 나노입자의 공초점 현미경 (confocal microcopy)의 사진이다. 도 28B는 형광물질로 표지된 DNA를 포함하는 PEG 다이아크릴레이트(diacrylate)의 분리된 200-nm 사다리꼴 입자의 광학현미경 사진이다. 도 28c는 도 28a와 28b에 제시된 사진의 중첩된 이미지이며, 모든 입자들이 DNA를 포함함을 보여준다.

3.15 500- nm 원뿔모양 PEG 입자내부에 자성 나노입자를 캡슐화

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 500-nm 원뿔모양으로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 12 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30% 과산화수소용액)과 트리클로로 실란(trichloro(1H,1H,2H,2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작하였다. 이와 별개로, 염화 제2철 (ferric chloride)(40 mL 의 1M 수용액)과 암모니아(500 mL의 0.7M 수용액)에 첨가된 염화 제1철(ferrous chloride)(10 mL 의 2M 수용성 염산용액)의 반응을 통해 시트레이트 (citrate)가 캡핑된 마그네타이트(자철광) 나노입자가 생성되었다. 그로 인한 침전물은 원심분리를 통해 수집되고 2M 펄클로릭산(perchloric acid)에서 교반되었다. 마지막 고형물은 원심분리에 의해 수집된다. 0.290g의 이들 펄글로레이트(perchlorate)-안정화 나노입자들은 50 mL의 물에 현탁되고, 교반되는 동안 90℃까지 가열된다. 다음으로, 0.106g의 소듐 시트레이트(sodium citrate)가 첨가된다. 상기 용액은 90℃에서 30분간 교반되어 수용액의 시트레이트-안정화 철 산화물 나노입자 (citrate-stabilized iron oxide)를 생성한다. 50 μL의 이 용액은 마이크로튜브 내에서 50 μL의 PEG-다이아크릴레이트에 첨가된다. 상기 마이크로 튜브는 10초간 와동(vortex)된다. 그 후, 50 μL의 PEG-다이아크릴레이트(PEG diacrylate)는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 PEG-다이아크릴레이트/입자 용액을 밀어내기 위해 가해졌다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사된다. PEG-diacrylate 입자를 포함하는 나노입자들은 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 광학현미경을 통해 관찰된다.

3.16 “더블 스탬핑 ”을 이용하여 유리표면에 분리된 입자의 제조

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm 사다리꼴로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 13 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그 후 실리콘 원판으로부터 제거된다. 패터닝된 PFPE-DMA 주형의 제조를 위해 개략화된 공정에 따라, 유리 슬라이드 위에 PFPE-DMA의 필름을 광경화함으로써 편평하고, 비습식의 표면이 생성된다. 5 μL의 상기 PEG-다이아크릴레이트/광기폭제 용액은 PFPE-DMA 주형과 편평한 PFPE-DMA 표면 사이에서 눌러지고, 압력은 과도한 PEG-다이아크릴레이트 단량체를 밀어 짜는데 사용된다. 상기 PFPE-DMA 주형은 그 후 편평한 PFPE-DMA 표면에서 제거되고, 깨끗한 현미경용 유리슬라이드에 압착되고 자외선 (파장=365nm)을 질소 세정 상태에서 10분간 조사함으로써 광경화된다. 입자들은 상온으로 냉각되고, PFPE 주형과 상기 유리슬라이드가 분리되면 주사전자현미경(SEM)을 통해 관찰된다.(도 29 참조)

실시예 3.17 PEG - 다이아크릴레이트 내에 바이러스의 캡슐화

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm 사다리꼴로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 13 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그 후 실리콘 원판으로부터 제거된다. 이와 별개로, 폴리(에틸렌 글리콜)(poly(ethylene glycol)(PEG) 다이아크릴레이트 (diacrylate)(n=9)는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합된다. 형광물질로 표지되거나 표지되지 않은 아데노 바이러스 혹은 아데노계열 바이러스 현탁액이 이 PEG-다이아크릴레이트 단량체 용액에 첨가되고 완전히 혼합된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30% 과산화수소용액)과 트리클로로 실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작하였다. 그 후, 50 μL의 PEG-다이아크릴레이트(PEG diacrylate)는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 PEG-다이아크릴레이트를 밀어내기 위해 가해졌다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사되었다. 바이러스를 포함한 입자들은 PFPE 주형과 처리된 실리된 웨이퍼를 분리해 낸후 투과전자현미경으로 관찰되며, 형광물질로 표지된 바이러스의 경우, 공초점 형광현미경(Confocal fluorescence microscopy)으로 관찰된다.

3.18 PEG - 다이아크릴레이트 나노입자내 단백질의 캡슐화

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm 사다리꼴로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 13 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거된다. 이와 별개로, 폴리(에틸렌 글리콜)(poly(ethylene glycol)(PEG) 다이아크릴레이트 (diacrylate)(n=9)는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합된다. 형광물질로 표지되거나 표지되지 않은 단백질 용액이 이 PEG-다이아크릴레이트 단량체 용액에 첨가되고 완전히 혼합된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30% 과산화수소용액)과 트리클로로 실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작하였다. 그 후, 50 μL의 PEG-다이아크릴레이트(PEG diacrylate)는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 PEG-다이아크릴레이트를 밀어내기 위해 가해졌다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사되었다. 단백질을 포함한 입자들은 PFPE 주형과 처리된 실리콘 웨이퍼를 분리해 낸 후 투과전자현미경으로 관찰되며, 형광물질로 표지된 단백질의 경우, 공초점 형광현미경으로 관찰된다.

3.19 200- nm 티타니아(titania)입자의 제조

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm 사다리꼴로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 13 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그 후 실리콘 원판으로부터 제거된다. 이와 별개로, 1g의 플루로닉 (pluronic) P123이 12g의 순정 에탄올에 용해된다. 이 용액은 농축된 염산 2.7 mL과 3.88 mL의 티타늄(IV) 에톡사이드(ethoxide)에 첨가된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30%과산화수소용액)과 트리클로로 실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작하였다. 그 후, 50 μL의 상기 액상-젤 상태의 용액은 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 액상-젤을 밀어내기 위해 가해졌다. 전체 장치는 다시 액상-젤 전구물질이 고형화될 때까지 사용이 보류된다 입자들은 PFPE 주형과 처리된 실리된 웨이퍼를 분리해낸 후 주사전자현미경(SEM)으로 관찰된다.

실시예 3.20 200- nm 실리카입자의 제조

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤(1-hydroxycyclohexyl phenyl ketone)을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm 사다리꼴로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 13 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그 후 실리콘 원판으로부터 제거된다. 이와 별개로, 2g의 플루로닉 (pluronic) P123이 30g의 물에 용해되고 35℃에서 교반되는 동안 120g의 2M 염산이 첨가된다. 이 용액에 8.50g 의 TEOS가 첨가되고 35℃에서 20시간 교반된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30%과산화수소용액)과 트리클로로 실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작하였다. 그 후, 50 μL의 상기 액상-젤 상태의 용액은 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 액상-젤을 밀어내기 위해 가해졌다. 전체 장치는 다시 액상-젤 전구물질이 고형화될 때까지 사용이 보류된다 입자들은 PFPE 주형과 처리된 실리된 웨이퍼를 분리해낸 후 주사전자현미경으로 관찰된다.

3.21 유로피움(europium)이 도포된 200- nm 티타니아 ( titania ) 입자의 제조

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm 사다리꼴로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 13 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거된다. 이와 별개로, 1g의 플루로닉 (pluronic) P123와 0.51g의 EuCl3·6H2O가 12g의 순정 에탄올에 용해된다. 이 용액은 농축된 염산 2.7 mL과 3.88 mL의 티타늄(IV) 에톡사이드에 첨가된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30% 과산화수소용액)과 트리클로로 실란(trichloro(1H,1H,2H,2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작하였다. 그 후, 50 μL의 상기 액상-젤 상태의 용액은 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 액상-젤을 밀어내기 위해 가해졌다. 전체 장치는 다시 액상-젤 전구물질이 고형화될 때까지 사용이 보류된다. 입자들은 PFPE 주형과 처리된 실리된 웨이퍼를 분리해낸 후 주사전자현미경으로 관찰된다.

실시예 3.22 200- nm PEG입자내에 CdSe 나노입자의 캡슐화

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 200-nm 사다리꼴로 패터닝한 실리콘 기판 위에 부어서 제작된다(도 13 참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30%과산화수소용액)과 트리클로로 실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작하였다. 이와 별개로, 0.5g의 소듐 시트레이트와 2 mL의 0.04M 카드뮴 펄콜레이트(cadmium percholate)가 45 mL의 물에 용해되고, pH는 0.1M NaOH로 9까지 조정한다. 상기 용액은 15분간 질소로 기포(bubble) 처리한다. 2 mL의 1M N,N-dimethylselenourea 가 상기 용액에 첨가되고 고주파 오븐에서 60초간 가열한다. 50 μL의 이 용액은 마이크로튜브 내에서 50 μL의 PEG-다이아크릴레이트에 첨가된다. 상기 마이크로 튜브는 10초간 와동(vortex)된다. 그 후, 50 μL의 PEG-다이아크릴레이트/CdSe (PEG diacrylate/CdSe)입자 용액은 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 PEG-다이아크릴레이트/입자 용액을 밀어내기 위해 가해졌다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사되었다. 캡슐화된 CdSe를 포함하는 PEG-diacrylate 입자들은 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 TEM 또는 형광현미경을 통해 관찰된다.

실시예 3.23 비습식 임프린트 리소그래피를 이용한 아데노바이러스 입자의 합성적 복제

PFPE-DMA 주형제조를 위한 주형, 또는 “원판”은 실리콘 웨이퍼 상에 아데노 바이러스 입자를 분산시켜 제조한다. 1-하이드록시싸이클로헥실 페닐케톤을 포함하는 PFEF-DMA를 원판의 패터닝된 영역위로 부음으로써, 이 원판은 패터닝된 몰드의 주형(template)으로 사용될 수 있다. 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 몰드는 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 주형은 그 후 실리콘 원판으로부터 제거된다. 이와 독립적으로, TMPTA는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30%과산화수소용액)과 트리클로로 실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작한다. 그 후, 50 μL의 TMPTA는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치된다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 TMPTA를 밀어내기 위해 가해진다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사된다. 합성된 바이러스 복제물들은 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 주사 전자 현미경(SEM) 또는 투과전자현미경(TEM)을 통해 관찰된다.

실시예 3.24 비습식 임프린트 리소그래피를 이용한 지렁이 헤모글로빈 단백질의 합성적 복제

PFPE-DMA 주형제조를 위한 주형, 또는 “원판”은 실리콘 웨이퍼 상에 지렁이 헤모글로빈 단백질을 분산시켜 제조한다. 1-하이드록시싸이클로헥실 페닐케톤을 포함하는 PFEF-DMA를 원판의 패터닝된 영역위로 부음으로써, 이 원판은 패터닝된 몰드의 주형(template)으로 사용될 수 있다. 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 몰드는 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사한다. 완전히 고형화된 PFPE-DMA 몰드는 그 후 실리콘 원판으로부터 제거된다. 이와 독립적으로, TMPTA는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30%과산화수소용액)과 트리클로로 실란(trichloro(1H,1H,2H,2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작한다. 그 후, 50 μL의 TMPTA는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 몰드는 맨 위에 배치된다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 TMPTA를 밀어내기 위해 가해진다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사된다. 합성된 단백질 복제물들은 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 주사 전자 현미경(SEM) 또는 투과전자현미경(TEM)을 통해 관찰된다.

실시예 3.25 100- nm 나노입자 치료의 조합적 기술

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 100-nm 육방체 모양으로 패터닝한 실리콘 기판 위에 부어서 제작된다. 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 몰드는 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사하였다. 완전히 고형화된 PFPE-DMA 주형은 그 후 실리콘 원판으로부터 제거되었다. 이와는 독립적으로, 폴리(에틸렌 글리콜)(poly(ethylene glycol)(PEG) 다이아크릴레이트 (diacrylate)(n=9)는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합되었다. 다른 치료 시약 (즉, 저분자 약물들, 단백질, 다당체, DNA 등), 조직 타게팅 시약들 (세포 관통 펩타이드와 리간드, 호르몬, 항체 등), 치료용 방출/트랜스펙션 시약들(다른 조절적 방출 단량체 제재, 양이온성의 지질 등), 그리고 혼합성 증가 물질(공용매(cosolvent), 하전된 단량체 등)들은 폴리머 전구물질 용액에 조합적 방법으로 첨가된다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30%과산화수소용액)과 트리클로로 실란(trichloro(1H,1H,2H,2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작하였다. 그 후, 50 μL의 조합적으로 생성된 입자의 전구물질 용액이 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 용액을 밀어내기 위해 가해졌다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사되었다. PFPE-DMA 주형은 이 후 상기 처리된 물로부터 분리되고 입자들은 수득되며, 각각의 조합적으로 생성된 나노입자의 치료적 효능이 구축된다. 상이한 입자 제재들(formulations)로 이 방법을 반복함으로써, 많은 치료제의 조합들, 조직 타겟팅 시약, 방출 시약, 그리고 다른 중요한 화합물들이 신속하게 검색될 수 있어 바람직한 치료적 적용에 있어서의 최적의 조합을 결정하도록 할 수 있다.

실시예 3.26 모양에 특이적인 PEG 막의 제조

패터닝된 퍼플루오로폴리에테르 (PFPE)주형은 1-하이드록시싸이클로헥실 페닐케톤을 포함하는 PFPE-다이메틸아크릴레이트(PFEF-DMA)를 5μm 깊이의 3-μm 원통형 구멍모양으로 패터닝된 실리콘 기판 위에 부어서 제작하였다(도 13참조). 폴리(다이메틸실록산)(poly(dimethylsiloxane)) 주형은 액상의 PFPE-DMA를 원하는 부위 내로 제한하는데 사용된다. 상기 장치는 그 후 질소로 세정(purge)하면서 자외선(파장=365nm)에 10분간 조사하였다. 완전히 고형화된 PFPE-DMA 주형은 그후 실리콘 원판으로부터 제거되었다. 독립적으로, 폴리(에틸렌 글리콜)(poly(ethylene glycol)(PEG) 다이아크릴레이트 (diacrylate)(n=9)는 1 wt%의 광기폭제 1-하이드록시싸이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone)과 혼합되었다. 실리콘 웨이퍼를 “피란하(piranha)” 용액 (1:1 농도의 황산 : 30% 과산화수소용액)과 트리클로로 실란(trichloro(1H,1H,2H,2H-perfluorooctyl) silane)으로 건조기에서 20분간 증기 침착을 통해 세정하여 편평하고, 균일하며, 비습식의 표면을 제작하였다. 그 후, 50 μL의 PEG 다이아크릴레이트(PEG diacrylate)는 처리된 실리콘 웨이퍼 위에 위치되고, 패터닝된 PFPE 주형은 맨 위에 배치되었다. 상기 기판은 그 후 주형 장치 내에 위치되고 낮은 압력이 과다한 PEG 다이아크릴레이트를 밀어내기 위해 가해졌다. 전체 장치는 다시 질소로 세정하면서 자외선(파장=365nm)에 10분간 조사되었다. 상호연결된 막은 PFPE 주형과 처리된 실리콘 웨이퍼가 분리된 이후에 주사전자현미경 (SEM)을 통해 관찰된다. 상기 막은 물에 담가져서 표면으로부터 들어 올릴 수 있게 하여 분리된다.

실시예 4 반도체 적용을 위한 몰딩 요소

4.1 TMPTA 에서 70 nm 분리된 140 nm 라인의 제조

1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-디메타크릴레이트 (PFPE-DMA)를 70 nm 분리된 140 nm 라인을 가지는 패터닝된 실리콘 기판 위에 부어 패터닝된 퍼플루오로폴리에테르 (PFPE) 몰드가 생성된다. 폴리(디메틸실옥산) 몰드는 원하는 영역에 상기 액체 PFPE-DMA를 가두는데 사용된다. 이어, 상기 장치에 질소 퍼즈(purge)하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 실리콘 마스터로부터 방출된다. 별개로, TMPTA가 광개시자(photoinitiator)인 1-하이드록시사이클로헥실페닐케톤 1wt%와 혼합된다. "피란하" 용액(1:1 concentrated sulfuric acid:30% hydrogen peroxide (aq) solution)으로 소제된 실리콘 와퍼를 처리하고 상기 와퍼를 점착 프로모터(adhesion promoter)(트리메톡시실릴프로필메타크릴레이트)로 처리하여 편평하고 균일한 표면이 만들어진다.

이후 50 μl의 TMPTA를 상기 처리된 실리콘 와퍼에 올려놓고 상기 패터닝된 PFPE 몰드를 그 위에 놓는다. 그리고나서 상기 기판을 몰딩 장치 안에 놓고 작은 압력을 가하여 컨포멀한 접촉이 이루어지도록 한다. 전 장치에 질소 퍼즈(purge)하에서 UV 광(λ= 365 nm)을 10분간 조사한다. PFPE 몰드와 상기 처리된 실리콘 와퍼를 분리한 후 원자력현미경(atomic force microscopy, AFM)을 이용하여 특징을 관찰하였다(도 30 참조).

실시예 4.1 폴리스티렌 용액의 몰딩

1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-디메타크릴레이트 (PFPE-DMA)를 70 nm 분리된 140 nm 라인을 가지는 패터닝된 실리콘 기판 위에 부어 패터닝된 퍼플루오로폴리에테르 (PFPE) 몰드가 생성된다. 폴리(디메틸실옥산) 몰드는 원하는 영역에 상기 액체 PFPE-DMA를 가두는데 사용된다.

이어, 상기 장치에 질소 퍼즈(purge)하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 실리콘 마스터로부터 방출된다. 별개로, 폴리스티렌이 톨루엔 1 내지 99 wt% 에 용해된다. "피란하(piranha)" 용액(1:1 concentrated sulfuric acid:30% hydrogen peroxide (aq) solution)으로 소제된 실리콘 와퍼를 처리하고 상기 와퍼를 점착 프로모터로 처리하여 편평하고 균일한 표면이 만들어진다.

이후 50 μl의 폴리스티렌 용액을 상기 처리된 실리콘 와퍼에 올려놓고 상기 패터닝된 PFPE 몰드를 그 위에 놓는다. 그리고나서 상기 기판을 몰딩 장치 안에 놓고 작은 압력을 가하여 컨포멀한 접촉이 이루어지도록 한다. 상기 용매를 제거하기 위하여 전 장치를 일정 시간 동안 진공 하에 둔다. PFPE 몰드와 상기 처리된 실리콘 와퍼를 분리한 후 원자력현미경(atomic force microscopy, AFM) 및 주사전자현미경(scanning electron microscopy, SEM)을 이용하여 특징을 관찰하였다(도 30 참조).

실시예 4.2 "더블 스탬핑 ( double stamping )"을 이용하여 마이크로전자공학에 적합한 분리된 요소를 몰딩하기

1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-디메타크릴레이트 (PFPE-DMA)를 70 nm 분리된 140 nm 라인을 가지는 패터닝된 실리콘 기판 위에 부어 패터닝된 퍼플루오로폴리에테르 (PFPE) 몰드가 생성된다. 폴리(디메틸실옥산) 몰드는 원하는 영역에 상기 액체 PFPE-DMA를 가두는데 사용된다.

이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 실리콘 마스터로부터 방출된다. 별개로, TMPTA가 광개시자(photoinitiator)인 1-하이드록시사이클로헥실페닐케톤 1wt%와 혼합된다. 패터닝된 PFPE-DMA 몰드를 생성하기 위하여 아우트라인된 공정에 따라 PFPE-DMA 필름을 유리 슬라이드 위에 광경화하여 편평하고 젖지 않는 표면이 만들어진다.

이후 50 μl의 TMPTA/광개시자 용액이 PMPTA-DMA 몰드와 상기 편평한 PFPE-DMA 표면 사이에서 눌러지고, 압력이 과량의 TMPTA 모노머를 짜내도록 가해진다.

이어 상기 PFPE-DMA 몰드가 상기 편평한 PFPE-DMA 표면으로부터 제거되고, 깨끗하고 편평한 실리콘/실리콘 산화물 와퍼에 대하여 눌러지며 질소 퍼지하에서 10분 동안의 UV 방사(λ= 365 nm)를 이용하여 광경화된다. PFPE 몰드 및 실리콘/실리콘 산화물 와퍼를 분리한 후, SEM을 이용하여 분리된, 폴리(TMPTA) 특성을 관찰하였다.

실시예 4.3 마이크로전자공학을 위한 200- nm 티타니아 구조의 제작

1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-디메타크릴레이트 (PFPE-DMA)를 70 nm 분리된 140 nm 라인을 가지는 패터닝된 실리콘 기판 위에 부어 패터닝된 퍼플루오로폴리에테르 (PFPE) 몰드가 생성된다. 폴리(디메틸실옥산) 몰드는 원하는 영역에 상기 액체 PFPE-DMA를 가두는데 사용된다.

이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 실리콘 마스터로부터 방출된다. 별개로, 1 g의 플루로닉 P1 23을 12 g의 앱솔루트 에탄올에 용해하고 이 용액을 2.7ml의 농축된 염산 및 3.88 ml의 티타늄(IV) 에톡사이드에 첨가한다.

실리콘/실리콘 옥사이드 와퍼를 "피란하" 용액(1 :1 concentrated sulfuric acid:30% hydrogen peroxide (aq) solution)으로 처리 및 건조함으로써 편평하고 균질한 표면이 생성된다. 이후 50 μl의 졸-젤 용액(sol- gel solution)을 상기 처리된 실리콘 와퍼에 올려놓고 상기 패터닝된 PFPE 몰드를 그 위에 놓는다. 상기 기판을 몰딩 장치에 넣고 작은 압력을 가하여 과량의 졸-젤 전구체가 밀려 나가도록 한다. 상기 졸-젤 전구체가 고형화 될 때까지 전 장치를 놔둔다. PFPE 몰드 및 상기 처리된 실리콘 와퍼를 분리한 후 SEM을 이용하여 산화물 구조를 관찰한다.

실시예 4.4 마이크로전자공학을 위한 200 nm 실리카 구조물의 제작

1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-디메타크릴레이트 (PFPE-DMA)를 70 nm 분리된 140 nm 라인을 가지는 패터닝된 실리콘 기판 위에 부어 패터닝된 퍼플루오로폴리에테르 (PFPE) 몰드가 생성된다. 폴리(디메틸실옥산) 몰드는 원하는 영역에 상기 액체 PFPE-DMA를 가두는데 사용된다.

이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 실리콘 마스터로부터 방출된다.

별개로, 2 g의 플루로닉 P1 23을 30 g의 물에 용해하고 35℃에서 교반하면서 120 g의 2M HCl을 첨가한다. 상기 용액에 8.50g의 TEOS를 35℃에서 20 시간 동안 교반하면서 첨가한다. 실리콘/실리콘 옥사이드 와퍼를 "피란하" 용액 (1 : 1 concentrated sulfuric acid : 30% hydrogen peroxide (aq) solution)으로 처리 및 건조함으로써 편평하고 균질한 표면이 생성된다.

이후 50 μl의 졸-젤 용액(sol- gel solution)을 상기 처리된 실리콘 와퍼에 올려놓고 상기 패터닝된 PFPE 몰드를 그 위에 놓는다. 상기 기판을 몰딩 장치에 넣고 작은 압력을 가하여 과량의 졸-젤 전구체가 밀려 나가도록 한다. 상기 졸-젤 전구체가 고형화 될 때까지 전 장치를 놔둔다. PFPE 몰드 및 상기 처리된 실리콘 와퍼를 분리한 후 SEM을 이용하여 산화물 구조를 관찰한다.

실시예 4.5 마이크로전자공학을 위한 유러퓸 도핑된 200 nm 티타니아 구조의 제작

1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-디메타크릴레이트 (PFPE-DMA)를 70 nm 분리된 140 nm 라인을 가지는 패터닝된 실리콘 기판 위에 부어 패터닝된 퍼플루오로폴리에테르 (PFPE) 몰드가 생성된다. 폴리(디메틸실옥산) 몰드는 원하는 영역에 상기 액체 PFPE-DMA를 가두는데 사용된다.

이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 실리콘 마스터로부터 방출된다.

별개로, 1 g의 플루로닉 P1 23 및 0.51 g의 EuCb·6H2O을 12 g의 앱솔루트 에탄올에 용해하고 이 용액을 2.7ml의 농축된 염산 및 3.88 ml의 티타늄(IV) 에톡사이드에 첨가한다.

실리콘/실리콘 옥사이드 와퍼를 "피란하" 용액(1 :1 concentrated sulfuric acid:30% hydrogen peroxide (aq) solution)으로 처리 및 건조함으로써 편평하고 균질한 표면이 생성된다. 이후 50 μl의 졸-젤 용액(sol- gel solution)을 상기 처리된 실리콘 와퍼에 올려놓고 상기 패터닝된 PFPE 몰드를 그 위에 놓는다. 상기 기판을 몰딩 장치에 넣고 작은 압력을 가하여 과량의 졸-젤 전구체가 밀려 나가도록 한다. 상기 졸-젤 전구체가 고형화 될 때까지 전 장치를 놔둔다. PFPE 몰드 및 상기 처리된 실리콘 와퍼를 분리한 후 SEM을 이용하여 산화물 구조를 관찰한다.

실시예 4.6 마이크로전자공학을 위한 분리된, " 스컴이 없는" 요소의 제작

1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-디메타크릴레이트 (PFPE-DMA)를 70 nm 분리된 140 nm 라인을 가지는 패터닝된 실리콘 기판 위에 부어 패터닝된 퍼플루오로폴리에테르 (PFPE) 몰드가 생성된다. 폴리(디메틸실옥산) 몰드는 원하는 영역에 상기 액체 PFPE-DMA를 가두는데 사용된다.

이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 실리콘 마스터로부터 방출된다. 별개로, TMPTA가 광개시자(photoinitiator)인 1-하이드록시사이클로헥실페닐케톤 1wt%와 혼합된다. 소제된 실리콘 와퍼를 "피란하" 용액(1 : 1 concentrated sulfuric acid:30% hydrogen peroxide (aq) solution)으로 처리하고 상기 와퍼를 점착 프로모터(trimethoxysilyl propyl methacryalte) 및 비-젖음 실란제(non-wetting silane agent)(1 H, 1 H, 2H, 2H-perfluorooctyl trimethoxysilane)의 혼합물로 처리함으로써 상기 레지스트 물질에 부착할 수 있는, 편평하고 균일하며 젖지 않는 표면이 만들어진다. 상기 혼합물은 100%의 점착 프로모터로부터 100%의 비-젖음 실란에 이를 수 있다. 이후 50 μl의 TMPTA 용액을 상기 처리된 실리콘 와퍼에 올려놓고 상기 패터닝된 PFPE 몰드를 그 위에 놓는다. 그리고 나서 상기 기판을 몰딩 장치 안에 놓고 작은 압력을 가하여 컨포멀한 접촉이 이루어지도록 하여 과량의 TMPTA를 밀어 내게 한다. 이어, 전 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. PFPE 몰드와 상기 처리된 실리콘 와퍼를 분리한 후 원자력현미경(atomic force microscopy, AFM) 및 주사전자현미경(scanning electron microscopy, SEM)을 이용하여 특징을 관찰하였다.

실시예 5 자연 및 엔지니어링 된 주형의 몰딩

5.1 전자-빔 리소그래피를 이용하여 만들어지는 주형으로부터 퍼플루오로폴리에테르-디메타크릴레이트(PFPE-DMA) 몰드의 제조

퍼플루오로폴리에테르-디메타크릴레이트 (PFPE-DMA) 몰드 제작을 위한 주형 혹은 "마스터"는, 전자 빔 리소그래피를 이용하여 200,000 MW PMMA 및 900,000 MW PMM의 이중 막(bilayer) 레지스트를 50-nm 열 산화물(thermal oxide)을 가지는 실리콘 와퍼 위에 스핀코팅하고, 상기 레지스트 막을 미리 프로그램된 패턴으로 번역하는 전자 빔에 노출시킴으로써 제조된다. 상기 레지스트는 상기 레지스트의 노출된 영역을 제거하기 위하여 3:1 이소프로판올: 메틸이소부틸케톤 용액 내에서 현상된다. 5 nm Cr 및 15 nm Au를 상기 레지스트 커버된 표면 위에 증착시키고 환류 아세톤 내에서 상기 나머지 PMMA/Cr/Au 필름을 들어 올림으로써 상응하는 금속 패턴이 상기 실리콘 산화물 표면에 형성된다. 이러한 패턴은 CF4/O2 플라즈마로 반응성 이온 에칭을 행하고 왕수 내에서 상기 Cr/Au 필름을 제거함으로써 그 아래에 있는 실리콘 산화물 표면에 전사된다(도 31 참조). 이러한 마스터는 1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-DMA를 상기 마스터의 패터닝된 영역 위에 부어 패터닝된 몰드를 본뜨기 위해 주형으로 사용될 수 있다. 폴리(디메틸실록산) 몰드가 상기 액체 PFPE-DMA를 원하는 영역에 가두기 위해 사용된다. 이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 마스터로부터 방출된다. 상기 몰드는 입자 제조의 실시예 3.3 및 3.4에서 구체화된 것처럼, 비습식 임프린트 리소그래피를 이용하여 입자의 제조에 사용될 수 있다.

5.2 포토리소그래피를 이용하여 만들어지는 주형으로부터 퍼플루오로폴리에테르-디메타크릴레이트(PFPE-DMA) 몰드의 제조

퍼플루오로폴리에테르-디메타크릴레이트 (PFPE-DMA) 몰드 제작을 위한 주형 혹은 "마스터"는, 포토리소그래피를 이용하여 SU-8 포토레지스트 필름을 실리콘 와퍼 위에 스핀코팅함으로써 제조된다. 이 레지스트는 95℃에서 핫플레이트 상에서 구워지고 미리 패터닝된 포토마스크를 통하여 노출된다. 상기 와퍼는 다시 95℃ 에서 구워지고 노출되지 않은 SU-8 레지스트를 제거하기 위하여 상업적인 현상 용액을 이용하여 현상된다. 그 결과, 패터닝된 표면은 175℃에서 완전히 경화된다. 상기 마스터는 1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-DMA를 상기 마스터의 패터닝된 영역 위에 부어 패터닝된 몰드를 본뜨기 위해 주형으로 사용될 수 있다. 폴리(디메틸실옥산) 몰드가 상기 액체 PFPE-DMA를 원하는 영역에 가두기 위해 사용된다. 이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 마스터로부터 방출되고, 상기 패터닝된 PFPE-DMA 몰드를 노출시키기 위해 광학현미경에 의하여 이미지가 나타날 수 있다(도 32 참조).

5.3 분산된 담배 모자이크 바이러스 입자로부터 만들어지는 주형으로부터 플루오로폴리에테르-디메타크릴레이트(PFPE-DMA) 몰드의 제조

퍼플루오로폴리에테르-디메타크릴레이트 (PFPE-DMA) 몰드 제작을 위한 주형 혹은 "마스터"는, 담배 모자이크 바이러스(TMV) 입자를 실리콘 와퍼 위에 분산함으로써 제조된다(도 33a). 상기 마스터는 1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-DMA를 상기 마스터의 패터닝된 영역 위에 부어 패터닝된 몰드를 본뜨기 위해 주형으로 사용될 수 있다. 폴리(디메틸실옥산) 몰드가 상기 액체 PFPE-DMA를 원하는 영역에 가두기 위해 사용된다. 이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 마스터로부터 방출된다. 상기 몰드의 형태는 원자력현미경(Atomic Force Microscopy)을 이용하여 확인될 수 있다(도 33b 참조).

5.4 블록- 코폴리머 미셀로부터 만들어지는 주형으로부터 퍼플루오로폴리에테르-디메타크릴레이트(PFPE-DMA) 몰드의 제조

퍼플루오로폴리에테르-디메타크릴레이트 (PFPE-DMA) 몰드 제작을 위한 주형 혹은 "마스터"는, 폴리스티렌-폴리이소프렌 블록 코폴리머 미셀을 새로이 절단된 미카 표면(freshly-cleaved mica surface) 위에 분산함으로써 제조된다. 상기 마스터는 1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-DMA를 상기 마스터의 패터닝된 영역 위에 부어 패터닝된 몰드를 본뜨기 위해 주형으로 사용될 수 있다. 폴리(디메틸실옥산) 몰드가 상기 액체 PFPE-DMA를 원하는 영역에 가두기 위해 사용된다. 이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 마스터로부터 방출된다. 상기 몰드의 형태는 원자력현미경(Atomic Force Microscopy)을 이용하여 확인될 수 있다(도 34 참조).

5.5 브러시 폴리머부터 만들어지는 주형으로부터 퍼플루오로폴리에테르 -디메타크릴레이트(PFPE-DMA) 몰드의 제조

퍼플루오로폴리에테르-디메타크릴레이트 (PFPE-DMA) 몰드 제작을 위한 주형 혹은 "마스터"는, 폴리(부틸아크릴레이트)브러시 폴리머를 새로이 절단된 미카 표면(freshly-cleaved mica surface) 위에 분산함으로써 제조된다. 상기 마스터는 1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-DMA를 상기 마스터의 패터닝된 영역 위에 부어 패터닝된 몰드를 본뜨기 위해 주형으로 사용될 수 있다. 폴리(디메틸실옥산) 몰드가 상기 액체 PFPE-DMA를 원하는 영역에 가두기 위해 사용된다. 이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 마스터로부터 방출된다. 상기 몰드의 형태는 원자력현미경(Atomic Force Microscopy)을 이용하여 확인될 수 있다(도 35 참조).

5.6 지렁이 헤모글로빈 단백질부터 만들어지는 주형으로부터 퍼플루오로폴리에테르-디메타크릴레이트(PFPE-DMA) 몰드의 제조

퍼플루오로폴리에테르-디메타크릴레이트 (PFPE-DMA) 몰드 제작을 위한 주형 혹은 "마스터"는, 지렁이 헤모글로빈 단백질을 새로이 절단된 미카 표면(freshly-cleaved mica surface) 위에 분산함으로써 제조된다. 상기 마스터는 1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-DMA를 상기 마스터의 패터닝된 영역 위에 부어 패터닝된 몰드를 본뜨기 위해 주형으로 사용될 수 있다. 폴리(디메틸실옥산) 몰드가 상기 액체 PFPE-DMA를 원하는 영역에 가두기 위해 사용된다. 이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 마스터로부터 방출된다. 상기 몰드의 형태는 원자력현미경(Atomic Force Microscopy)을 이용하여 확인될 수 있다.

5.7 패터닝된 DNA 나노 구조물부터 만들어지는 주형으로부터 퍼플루오로폴리에테르-디메타크릴레이트(PFPE-DMA) 몰드의 제조

퍼플루오로폴리에테르-디메타크릴레이트 (PFPE-DMA) 몰드 제작을 위한 주형 혹은 "마스터"는, DNA 나노 구조물을 새로이 절단된 미카 표면(freshly-cleaved mica surface) 위에 분산함으로써 제조된다. 상기 마스터는 1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-DMA를 상기 마스터의 패터닝된 영역 위에 부어 패터닝된 몰드를 본뜨기 위해 주형으로 사용될 수 있다. 폴리(디메틸실옥산) 몰드가 상기 액체 PFPE-DMA를 원하는 영역에 가두기 위해 사용된다. 이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 마스터로부터 방출된다. 상기 몰드의 형태는 원자력현미경(Atomic Force Microscopy)을 이용하여 확인될 수 있다.

5.8 탄소 나노 튜브로부터 만들어지는 주형으로부터 퍼플루오로폴리에테르 -디메타크릴레이트(PFPE-DMA) 몰드의 제조

퍼플루오로폴리에테르-디메타크릴레이트 (PFPE-DMA) 몰드 제작을 위한 주형 혹은 "마스터"는, 탄소 나노 튜브를 실리콘 산화물 와퍼 위에 분산 또는 성장시킴으로써 제조된다. 상기 마스터는 1-하이드록시사이클로헥실페닐케톤을 포함하는 PFPE-DMA를 상기 마스터의 패터닝된 영역 위에 부어 패터닝된 몰드를 본뜨기 위해 주형으로 사용될 수 있다. 폴리(디메틸실옥산) 몰드가 상기 액체 PFPE-DMA를 원하는 영역에 가두기 위해 사용된다. 이어, 상기 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사한다. 완전히 경화된 PFPE-DMA 몰드가 상기 마스터로부터 방출된다. 상기 몰드의 형태는 원자력현미경(Atomic Force Microscopy)을 이용하여 확인될 수 있다.

실시예 6 복수의 모양 및 크기를 가지는 단분산 나노 구조를 만드는 방법

어떤 실시예에서는 본 발명은 신규한 "탑 다운(top down)" 소프트 리소그래피 기술; 고유한 낮은 표면 에너지의 이점을 가지고 경화된 PFPE-기반 물질의 팽창 저항성에 의하여 완전히 분리된 나노 구조가 생기도록 하는 비-젖음 임프린트 리소그래피(NoWIL)를 기술한다.

본 발명은 신규한 "탑 다운(top down)" 소프트 리소그래피 기술; 고유한 낮은 표면 에너지의 이점을 가지고 경화된 PFPE-기반 물질의 팽창 저항성에 의하여 완전히 분리된 나노 구조가 생기도록 하는 비습식 임프린트 리소그래피(NoWIL)를 제공한다.

어떠한 특정 이론에 구속되고 싶지 않지만, NoWIL의 핵심 측면은 탄성 중합체 몰드 및 모노머 혹은 레진 방울(액적)의 아래에 있는 그 표면 양자 모두가 상기 액적에 젖지 않는다는 것이다. 만일 상기 액적이 상기 표면을 적신다면 높은 압력이 상기 몰드에 가해지더라도 얇은 스컴 층이 불가피하게 생길 것이다. 상기 탄성 중합체 몰드와 상기 표면이 모두 젖지 않는 경우(예, PFPE 몰드 및 플루오로화된 표면) 상기 액체는 상기 몰드의 요소에만 가두어지며, 상기 스컴 층은 작은 압력 하에서 씰(seal)이 탄성 중합체 몰드와 상기 표면 상이에 형성됨에 따라 제거된다.

그러므로, 본 발명은 처음으로, 상기 몰드를 제조하기 위해서 사용되는 오리지날 마스터에 의해서만 제한되는, 거의 어떠한 물질, 크기 및 모양(이라도)의 나노 입자를 생산하는, 간단하고 일반적인 소프트 리소그래피 방법을 제시한다.

NoWIL을 이용하여 3 가지 다른 폴리머로 구성되는 나노 입자들은 여러 엔지니어링된 실리콘 마스터로부터 제조된다. 대표적인 패턴은 3 μm 화살표(도 11 참조), 바닥에서는 500 nm이고 끝에서는 50 nm 이하로 모아지는 원뿔 모양(도 12 참조) 및 200 nm의 사다리꼴 구조 (도 13 참조)를 포함하나 이에 한정되지 않는다.

모든 입자들이 실제로 "스컴이 없음"에 대한 명확한 증거가 이러한 입자들을 그 표면을 가로질러 닥터 블레이드를 단순히 밀어 넣음으로써 기계적으로 회수할 수 있음에 의해 나타난다. 도 20 및 도 22를 참조할 것.

폴리에틸렌글리콜(PEG)은 쉽게 이용가능하고, 무독성이며, 생체적합성이 있으므로 의약 전달을 위한 적용에서 관심 대상이 되는 물질이다. 역 마이크로에멀젼(inverse microemulsions)에 의해 제조되는 PEG 나노 입자를 유전자 전달 벡터로 사용하는 것은 이전에 보고되었다. K. McAllister et al., Journal of the American Chemical Society 124, 15198-15207 (Dec 25, 2002). 본 발명에서 NoWIL은 시판되는 PEG-디아크릴레이트를 이용하고 이것을 1wt%의 광개시자인 1-하이드록시사이클로헥실페닐케톤과 섞어 수행되었다. PFPE 몰드는 이전에 기술된 바와 같이 디메타크릴레이트 기능화된 PFPE 올리고머(PFPE DMA)를 이용하여 여러 패터닝된 실리콘 기판로부터 제조되었다. J. P. Rolland, E. C. Hagberg, G. M. Denison, K. R. Carter, J. M. DeSimone, Angewandte Chemie-lnternational Edition 43, 5796-5799 (2004)를 참조할 것.

플루오로알킬 트리클로로실란으로 처리된 실리콘을 이용하거나 유리 기판 위에 PFPE-DMA의 작은 액적을 가로질러 닥터 블레이드(doctor's blade)로 끌어 광경화함에 의해서 편평하고 균일하며 젖지 않는 표면이 생성되었다. PEG 디아크릴레이트의 작은 액적을 상기 젖지 않는 표면 위에 두고 상기 패터닝된 PFPE 몰드를 그 위에 놓았다. 상기 기판을 몰딩 장치에 넣고 작은 압력을 가하여 과량의 PEG-디아크릴레이트가 밀려 나가도록 하였다. 전 장치에 질소 퍼즈(purge) 하에서 UV 광(λ= 365 nm)을 10분간 조사하였다. 상기 PFPE 몰드와 편평하고 젖지 않는 기판을 분리한 후 광학현미경, 주사전자현미경(scanning electron microscopy, SEM) 및 원자력현미경(atomic force microscopy,AFM)을 이용하여 입자들을 관찰하였다.

폴리(락틱산)(PLA) 및 폴리(락티드-코-글리콜리드)(PLGA)와 같은 이의 유도체는 생분해될 수 있으므로, 약물 전달 및 의약 디바이스 집단에 상당한 영향을 미쳐 왔다. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff, Chemical Reviews 99, 3181-3198 (Nov, 1999); A. C. Albertsson, I. K. Varma, Biomacromolecules 4, 1466-1486 (Nov-Dec, 2003)를 참조할 것. PEG-기반한 시스템에서와 같이, 크기 분포를 낳고 구형 모양에 엄격히 한정되는 다양한 분산 기술을 통하여 PLGA 입자를 제작하려는 방향으로 진보가 이루어졌다. C. Cui, S. P. Schwendeman, Langmuir 34, 8426 (2001)를 참조할 것.

본 발명은 전체적으로 모양 및 크기 분포를 아우르며 통제하면서, 구별되는 PLA 입자를 생성하기 위해서 NoWIL을 사용하는 것을 보여주고 있다.

예를 들어, 일 실시예에서 1 그램의 (3S)-시스-3,6-디메틸-1,4-디옥산-2,5-디온을 녹는 점 이상으로 110℃ 까지 가열하고 ~20μl의 주석 옥테이트(stannous octoate) 촉매/개시자를 상기 액체 모노머에 첨가하였다. 상기 PLA 모노머 용액의 액적을 젖지 않는 편평한 기판 및 몰드를 포함하는, 미리 가열된 몰딩 장치 안에 넣고 이전에 기술된 것 처럼 작은 압력을 가하여 과량의 PLA 모노머가 밀려 나오도록 하였다. 상기 장치를 110℃에서 15시간 가열하여 폴리머화가 완전히 일어나도록 한다. 이어 PLA 입자를 노출하도록 상기 PFPE-DMA 몰드 및 상기 편평한 젖지 않는 기판을 분리하였다.

NoWIL의 다양성을 더 보여주기 위해서 전도성 폴리머 폴리피롤(PPy)로 구성되는 입자를 제조하였다. PPy 입자는 분산 방법을 이용하여 형성되었다. M. R. Simmons, P. A. Chaloner, S. P. Armes, Langmuir 11, 4222 (1995), as well as "lost-wax" techniques, see P. Jiang, J. F. Bertone, V. L. Colvin, Science 291 , 453 (2001)를 참조할 것.

본 발명은 처음으로, PPy 입자의 모양과 크기 분포를 아우르는 완전한 통제가 가능함을 보여준다. 피롤은 과염소산과 같은 산화제와 접촉하면, 즉시 폴리머화하는 것으로 알려져 있다. Dravid et al.은 이러한 폴리머화가 테트라하이드로푸란(THF)을 피롤에 첨가함으로써 늦춰진다는 것을 보였다. M. Su, M. Aslam, L. Fu, N. Q. Wu, V. P. Dravid, Applied Physics Letters 84, 4200- 4202 (May 24, 2004) 를 참조할 것.

본 발명은 NoWIL에 의하여 PPy 입자를 형성하는데 있어, 상기한 성질의 이점을 갖는다. 예를 들어, THF : 피롤의 1:1 v/v 용액 50 μl를 70% 과염소산 50 μl에 첨가하였다. 이 클리어한 갈색 용액(완전한 폴리머화 이전) 액적을 몰딩 장치 안에 넣고 과량의 용액을 제거하기 위하여 압력을 가하였다. THF 및 물을 제거하기 위하여 상기 장치를 진공 하에 밤새 두었다. PPy 입자들은 이전에 기술된 것과 같은 마스터를 이용하여 충실도가 좋게 만들어졌다.

중요한 것은, PLA, PEG, 및 PPy의 물질 특성과 폴리머화 기작이 완전히 다르다는 것이다. 예를 들어, PLA가 고온에서 금속-촉매된 개환 폴리머화를 이용하여 형성되는 높은 모듈러스의 세미크리스탈린 폴리머인 반면, PEG는 자유 래디칼하게 광경화되는 전성이 있는 밀랍의 고체이고, PPy는 강한 산화제를 이용하여 폴리머화되는 전도성 폴리머이다. 매우 다른 반응 조건을 필요로 하는 상기 다양한 종류의 폴리머 물질로부터 입자를 제조하기 위해 NoWIL이 사용될 수 있다는 사실은 이것이 일반적으로 사용될 수 있으며 중요하다는 사실을 부각시킨다.

입자의 크기와 모양을 정확하게 조절할 수 있는 능력에 더하여, NoWIL은 어떤 물질을 나노 입자로 손쉽게 캡슐화 하는데 많은 기회를 제공한다. 실시예 3-14에 기술된 바와 같이, NoWIL은 CY-3이 형광 태그된 24-mer DNA 사슬을 이전에 기술된 200 nm 사다리꼴 PEG 입자 안에 캡슐화 하는데 사용될 수 있다. 이것은 상기 DNA를 상기 모노머/물 용액에 간단히 첨가하고 기술된 것처럼 이것을 몰딩함으로써 완수된다. 본 발명자 등은 공촛점형광현미경(confocal fluorescence microscopy)을 이용하여 상기 입자들을 관찰함으로써 상기 캡슐화를 확인할 수 있었다(도 28 참조). 본 명세서에 개시된 접근 방식은 표면활성제(surfactant), 농축제(condensation agent) 등이 요구되지 않는다는 점에서 다른 캡슐화 방법에 비해 명확한 이점을 제공한다.

더욱이, DNA를 포함하는 200 nm의 단분산 입자를 제조하는 것은 인공 바이러스 방향으로 어떤 돌파구를 제시한다. 따라서, 유전자 단편, 의약, 올리고뉴클레오티드 및 바이러스와 같은 많은 생물학적으로 중요한 물질들이 상기 방법에 의해 캡슐화 될 수 있다.

상기 방법은 또한 금속 나노 입자, 크리스탈, 또는 촉매와 같이 비-생물학적인 물질에도 적용할 수 있다. 나아가, 상기 시스템의 단순성은 다른 코모노머를 첨가하고, 특이적 적용을 위해 맞추어질 수 있는 입자 형식화를 조합하여 생성함으로써 상호 연결 밀도(crosslink density), 전하, 및 조성(composition)과 같은 입자 성질을 간단히 조절할 수 있게 한다.

따라서, NoWIL은 거의 모든 크기 및 모양을 가지는, 분리되고 구별되는 나노 구조물을 제조하기 위한 다양성이 매우 높은 방법이다. 여기에 제시된 모양들은 비-임의적인 모양으로 엔지니어링 되어 있다. NoWIL은 바이러스, 크리스탈, 단백질 등과 같이 자연에서 발견되는, 엔지니어링 되지 않은 모양을 몰딩하고 복제하는데 용이하게 사용될 수 있다. 나아가, 이 기술은 거의 모든 내용물을 포함하는 매우 다양한 유기 및 무기 물질로부터 입자를 제조할 수 있다. 또한 상기 방법은 나노 입자를 제조하기 위해 복잡한 표면활성제나 반응 조건을 필요로 하지 않는다는 점에서 극히 간단하고 세련된 것이다. 마지막으로, 상기 공정은 현재의 소프트 리소그래피 롤러 기술을 이용함으로써 산업적 규모로 확대될 수 있다. Y. N. Xia, D. Qin, G. M. Whitesides, Advanced Materials 8, 1015-1017 (Dec, 1996) 이나 ㅅ실크 스크린 프린팅 방법을 참조할 것.

실시예 7 기능적인 퍼플루오로폴리에테르의 합성

실시예 7.1 기능적인 PFPE 로 사용되는 디올 Krytox ®( DuPont , Wilmington , Delaware, United States of America) 의 합성

Figure pat00017

실시예 7.2 기능적인 PFPE 로 사용되는 디올 Krytox ®( DuPont , Wilmington , Delaware, United States of America) 의 합성

Figure pat00018

실시예 7.3 기능적인 PFPE 로 사용되는 디올 Krytox ®( DuPont , Wilmington , Delaware, United States of America) 의 합성

*

Figure pat00019

실시예 7.4 기능적인 PFPE 로 사용되는 디올 Krytox ®( DuPont , Wilmington , Delaware, United States of America) 의 예

Figure pat00020

실시예 7.5 다중 팔( multi - arm )을 가지는 PFPE 전구체의 합성

Figure pat00021

여기서, X는 이소시아네이트, 에시드 클로라이드, 에폭시 및 할로겐을 포함하나 이에 한정되지 않으며; R은 아크릴레이트, 메타크릴레이트, 스티렌, 에폭시 및 아민을 포함하나 이에 한정되지 않으며; 상기 서클은 환상 화합물 같은 다기능적인 분자를 나타낸다. PFPE는 본 명세서에 기재된 퍼플루오로폴리에테르 물질로서, 하기와 같은 백본 구조를 포함하는 퍼플루오로폴리에테르 물질을 포함하나 이에 한정되지 않는다:

Figure pat00022

실시예 7.6 가지가 많이 달린( hyperbranched ) PFPE 전구체의 합성

Figure pat00023

여기서, PFPE는 본 명세서에 기재된 퍼플루오로폴리에테르 물질로서, 하기와 같은 백본 구조를 포함하는 퍼플루오로폴리에테르 물질을 포함하나 이에 한정되지 않는다:

Figure pat00024

본 발명의 권리범위로부터 벗어나지 않고 본 발명에 개시된 주제의 다양하고 세세한 점을 변화시킬 수 있음이 이해될 것이다. 나아가, 앞의 기술은 본 발명을 제한하기 위한 것이 아니라 단지 설명하기 위한 것이다.

SEQUENCE LISTING <110> THE UNIVERSITY OF NORTH CAROLINA AT CHAPELHILL <120> Method for fabricating isolated micro- and nano- structures using <130> IPF-20414 <160> 1 <170> PatentIn version 3.2 <210> 1 <211> 6 <212> PRT <213> Homo sapiens <400> 1 Gly Arg Gly Asp Ser Pro 1 5

Claims (34)

  1. 평단면(planar cross-section) 상 실질적으로 편평한 측면들 및 실질적으로 편평한 상부 및 하부 표면을 가지며, 가장 큰 부분의 치수가 100 마이크로미터 이하인 비구형(non-sperical shape)으로 가공된 물질을 포함하는 마이크로- 또는 나노-크기 입자.
  2. 제1항에 있어서, 상기 평단면(planar cross-section) 상 실질적으로 편평한 측면들은 평행하고, 상기 실질적으로 편평한 상부 및 하부 표면이 평행한 입자.
  3. 제1항에 있어서, 상기 입자는 분해성 물질(degradable material)로부터 제조된 것인 입자.
  4. 제1항에 있어서, 상기 입자는 생분해성 물질(biodegradable material)로부터 제조된 것인 입자.
  5. 제1항에 있어서, 상기 입자는 가장 큰 부분의 치수가 10 마이크로미터 이하인 입자.
  6. 제1항에 있어서, 상기 입자는 가장 큰 부분의 치수가 1 마이크로미터 이하인 입자.
  7. 제1항에 있어서, 상기 입자는 가장 큰 부분의 치수가 500 나노미터 이하인 입자.
  8. 제1항에 있어서, 상기 입자는 가장 큰 부분의 치수가 250 나노미터 이하인 입자.
  9. 제1항에 있어서, 상기 입자는 가장 큰 부분의 치수가 100 나노미터 이하인 입자.
  10. 제1항에 있어서, 상기 입자는 가장 큰 부분의 치수가 50 나노미터 이하인 입자.
  11. 약학적 또는 치료법상의 활성물질을 포함하는 복수의 마이크로- 또는 나노-크기 입자로서, 각각의 입자는 적어도 하나의 실질적인 평면을 갖는 실질적으로 균일한 3차원의 가공된 형상을 가지며, 각각의 입자의 크기는 가장 큰 부분의 치수가 100 마이크로미터 이하인 복수의 마이크로- 또는 나노-크기 입자.
  12. 제11항에 있어서, 상기 복수의 입자 각각은 실질적으로 평행한 적어도 두 개의 실질적인 평면(substantially flat surface)을 포함하는 입자.
  13. 제11항에 있어서, 상기 약학적 또는 치료법상의 활성물질은 상기 복수의 입자 중 적어도 하나의 입자 속에 캡슐화되거나, 상기 복수의 입자 중 적어도 하나의 입자의 표면과 연계(associated)되거나, 및/또는 상기 복수의 입자 중 적어도 하나의 입자 전체에 분산(dispersed)되는 입자.
  14. 제11항에 있어서, 상기 약학적 또는 치료법상의 활성물질은 유전물질(genetic material), 약물(drug), 펩티드, 효소, 단백질 및 바이러스로 이루어진 군으로부터 선택되는 입자.
  15. 제11항에 있어서, 상기 복수의 입자 각각은 생분해성 물질(biodegradable material)로 이루어진 것인 입자.
  16. 제15항에 있어서, 상기 생분해성 물질은 폴리에스테르, 폴리언하이드라이드, 폴리아미드, 인-기반 폴리머, 폴리(시아노아크릴레이트), 폴리우레탄, 폴리오르소에스테르, 폴리디하이드로피란 또는 폴리아세탈인 입자.
  17. 제11항에 있어서, 상기 입자는 가장 큰 부분의 치수가 10 마이크로미터 이하인 입자.
  18. 제11항에 있어서, 상기 입자는 가장 큰 부분의 치수가 1 마이크로미터 이하인 입자.
  19. 제11항에 있어서, 상기 입자는 가장 큰 부분의 치수가 500 나노미터 이하인 입자.
  20. 제11항에 있어서, 상기 입자는 가장 큰 부분의 치수가 250 나노미터 이하인 입자.
  21. 제11항에 있어서, 상기 입자는 가장 큰 부분의 치수가 100 나노미터 이하인 입자.
  22. 제11항에 있어서, 상기 입자는 가장 큰 부분의 치수가 50 나노미터 이하인 입자.
  23. 약학적 또는 치료법상의 활성물질을 포함하는 2개 이상의 입자를 포함하는 복수의 마이크로- 또는 나노-크기 입자로서, 여기서 각각의 입자는 실질적으로 균일한 3차원의 가공된 형상을 가지며, 가장 큰 부분의 치수가 100 마이크로미터 이하인 복수의 마이크로- 또는 나노-크기 입자.
  24. 제23항에 있어서, 상기 복수의 입자 각각은 실질적으로 평행한 적어도 두 개의 실질적인 평면(substantially flat surface)을 포함하는 입자.
  25. 제23항에 있어서, 상기 약학적 또는 치료법상의 활성물질은 상기 복수의 입자 중 적어도 하나의 입자 속에 캡슐화되거나, 상기 복수의 입자 중 적어도 하나의 입자의 표면과 연계(associated)되거나, 및/또는 상기 복수의 입자 중 적어도 하나의 입자 전체에 분산(dispersed)되는 입자.
  26. 제23항에 있어서, 상기 약학적 또는 치료법상의 활성물질은 유전물질(genetic material), 약물(drug), 펩티드, 효소, 단백질 및 바이러스로 이루어진 군으로부터 선택되는 입자.
  27. 제23항에 있어서, 상기 복수의 입자 각각은 생분해성 물질(biodegradable material)로 이루어진 것인 입자.
  28. 제27항에 있어서, 상기 생분해성 물질은 폴리에스테르, 폴리언하이드라이드, 폴리아미드, 인-기반 폴리머, 폴리(시아노아크릴레이트), 폴리우레탄, 폴리오르소에스테르, 폴리디하이드로피란 또는 폴리아세탈인 입자.
  29. 제23항에 있어서, 상기 입자는 가장 큰 부분의 치수가 10 마이크로미터 이하인 입자.
  30. 제23항에 있어서, 상기 입자는 가장 큰 부분의 치수가 1 마이크로미터 이하인 입자.
  31. 제23항에 있어서, 상기 입자는 가장 큰 부분의 치수가 500 나노미터 이하인 입자.
  32. 제23항에 있어서, 상기 입자는 가장 큰 부분의 치수가 250 나노미터 이하인 입자.
  33. 제23항에 있어서, 상기 입자는 가장 큰 부분의 치수가 100 나노미터 이하인 입자.
  34. 제23항에 있어서, 상기 입자는 가장 큰 부분의 치수가 50 나노미터 이하인 입자.
KR20147018396A 2003-12-19 2004-12-20 소프트 또는 임프린트 리소그래피를 이용하여 분리된 마이크로- 및 나노- 구조를 제작하는 방법 KR20140100980A (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US53153103 true 2003-12-19 2003-12-19
US60/531,531 2003-12-19
US58317004 true 2004-06-25 2004-06-25
US60/583,170 2004-06-25
US60497004 true 2004-08-27 2004-08-27
US60/604,970 2004-08-27
PCT/US2004/042706 WO2005101466A3 (en) 2003-12-19 2004-12-20 Methods for fabricating isolated micro- and nano- structures using soft or imprint lithography

Publications (1)

Publication Number Publication Date
KR20140100980A true true KR20140100980A (ko) 2014-08-18

Family

ID=35150638

Family Applications (4)

Application Number Title Priority Date Filing Date
KR20147018396A KR20140100980A (ko) 2003-12-19 2004-12-20 소프트 또는 임프린트 리소그래피를 이용하여 분리된 마이크로- 및 나노- 구조를 제작하는 방법
KR20127023665A KR20120105062A (ko) 2003-12-19 2004-12-20 소프트 또는 임프린트 리소그래피를 이용하여 분리된 마이크로- 및 나노- 구조를 제작하는 방법
KR20117020441A KR101376715B1 (ko) 2003-12-19 2004-12-20 소프트 또는 임프린트 리소그래피를 이용하여 분리된 마이크로- 및 나노- 구조를 제작하는 방법
KR20067012179A KR101281775B1 (ko) 2003-12-19 2004-12-20 소프트 또는 임프린트 리소그래피를 이용하여 분리된마이크로- 및 나노- 구조를 제작하는 방법

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR20127023665A KR20120105062A (ko) 2003-12-19 2004-12-20 소프트 또는 임프린트 리소그래피를 이용하여 분리된 마이크로- 및 나노- 구조를 제작하는 방법
KR20117020441A KR101376715B1 (ko) 2003-12-19 2004-12-20 소프트 또는 임프린트 리소그래피를 이용하여 분리된 마이크로- 및 나노- 구조를 제작하는 방법
KR20067012179A KR101281775B1 (ko) 2003-12-19 2004-12-20 소프트 또는 임프린트 리소그래피를 이용하여 분리된마이크로- 및 나노- 구조를 제작하는 방법

Country Status (8)

Country Link
US (5) US8263129B2 (ko)
EP (2) EP3242318A1 (ko)
JP (2) JP6067954B2 (ko)
KR (4) KR20140100980A (ko)
CA (2) CA2847260C (ko)
DK (1) DK1704585T3 (ko)
ES (1) ES2625345T3 (ko)
WO (1) WO2005101466A3 (ko)

Families Citing this family (201)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801690B2 (en) * 2002-02-14 2014-08-12 Gholam A. Peyman Method and composition for hyperthermally treating cells
US9214590B2 (en) * 2003-12-19 2015-12-15 The University Of North Carolina At Chapel Hill High fidelity nano-structures and arrays for photovoltaics and methods of making the same
US9040090B2 (en) 2003-12-19 2015-05-26 The University Of North Carolina At Chapel Hill Isolated and fixed micro and nano structures and methods thereof
KR101504579B1 (ko) 2004-06-04 2015-03-23 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 인쇄가능한 반도체소자들의 제조 및 조립방법과 장치
US9492400B2 (en) * 2004-11-04 2016-11-15 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
US7161056B2 (en) * 2005-01-28 2007-01-09 Ossur Hf Wound dressing and method for manufacturing the same
JP4742665B2 (ja) * 2005-04-28 2011-08-10 旭硝子株式会社 エッチング処理された処理基板の製造方法
JP4736522B2 (ja) * 2005-04-28 2011-07-27 旭硝子株式会社 エッチング処理された処理基板の製造方法
WO2006135258A1 (en) * 2005-06-13 2006-12-21 Advanced Nano Imaging Limited Moulding
US20080181958A1 (en) * 2006-06-19 2008-07-31 Rothrock Ginger D Nanoparticle fabrication methods, systems, and materials
WO2007024323A3 (en) * 2005-06-17 2010-12-16 The University Of North Carolina At Chapel Hill Nanoparticle fabrication methods, systems, and materials
WO2007021762A3 (en) 2005-08-09 2007-08-30 Univ North Carolina Methods and materials for fabricating microfluidic devices
US7662299B2 (en) * 2005-08-30 2010-02-16 Micron Technology, Inc. Nanoimprint lithography template techniques for use during the fabrication of a semiconductor device and systems including same
WO2007120193A3 (en) * 2005-11-01 2007-12-13 Univ South Carolina Bionanomaterials and their synthesis
US7677877B2 (en) * 2005-11-04 2010-03-16 Asml Netherlands B.V. Imprint lithography
WO2007070682A3 (en) * 2005-12-15 2008-12-11 Omid C Farokhzad System for screening particles
US8944804B2 (en) * 2006-01-04 2015-02-03 Liquidia Technologies, Inc. Nanostructured surfaces for biomedical/biomaterial applications and processes thereof
GB0605360D0 (en) * 2006-03-16 2006-04-26 Dupont Teijin Films Us Ltd Method of manufacture
CN101410753A (zh) * 2006-03-29 2009-04-15 陶氏康宁公司 使用软光刻法形成纳米级特征的方法
WO2008105773A3 (en) 2006-03-31 2008-11-06 Massachusetts Inst Technology System for targeted delivery of therapeutic agents
US20070228608A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Preserving Filled Features when Vacuum Wiping
JP5162578B2 (ja) * 2006-05-09 2013-03-13 ザ ユニバーシティー オブ ノースカロライナ アット チャペル ヒル 光起電力技術のための高忠実度ナノ構造およびアレイならびにそれらを作製する方法
WO2007133807A3 (en) 2006-05-15 2008-12-04 Massachusetts Inst Technology Polymers for functional particles
WO2007137117A3 (en) * 2006-05-17 2008-12-11 Vaishali Bagalkot Aptamer-directed drug delivery
KR100857521B1 (ko) * 2006-06-13 2008-09-08 엘지디스플레이 주식회사 박막트랜지스터 제조용 몰드의 제조방법 및 그 제조장비
WO2007150030A3 (en) 2006-06-23 2008-07-17 Pamela Basto Microfluidic synthesis of organic nanoparticles
US8192795B2 (en) 2006-06-28 2012-06-05 Northwestern University Etching and hole arrays
KR100832298B1 (ko) * 2006-06-29 2008-05-26 엘지디스플레이 주식회사 패턴 형성용 레지스트와 이를 이용한 소프트몰드 제조방법
US7947211B2 (en) * 2006-06-29 2011-05-24 Cabot Security Materials Inc. Catalytic nanotemplates
US20080000373A1 (en) * 2006-06-30 2008-01-03 Maria Petrucci-Samija Printing form precursor and process for preparing a stamp from the precursor
US20100055459A1 (en) * 2006-08-30 2010-03-04 Liquidia Technologies, Inc. Nanoparticles Having Functional Additives for Self and Directed Assembly and Methods of Fabricating Same
JP5309436B2 (ja) * 2006-10-16 2013-10-09 日立化成株式会社 樹脂製微細構造物、その製造方法及び重合性樹脂組成物
WO2008053418A3 (en) 2006-11-01 2008-11-13 Koninkl Philips Electronics Nv Relief layer and imprint method for making the same
US8574461B2 (en) * 2006-11-03 2013-11-05 Tufts University Electroactive biopolymer optical and electro-optical devices and method of manufacturing the same
WO2008127404A3 (en) 2006-11-03 2008-12-24 Tufts College Nanopatterned biopolymer optical device and method of manufacturing the same
WO2008118211A3 (en) 2006-11-03 2008-12-24 Tufts College Biopolymer photonic crystals and method of manufacturing the same
WO2008127402A3 (en) * 2006-11-03 2009-02-05 Tufts College Biopolymer sensor and method of manufacturing the same
US20100303723A1 (en) * 2006-11-20 2010-12-02 Massachusetts Institute Of Technology Drug delivery systems using fc fragments
US9440254B2 (en) 2006-12-04 2016-09-13 Koninklijke Philips N.V. Method and apparatus for applying a sheet to a substrate
US8128393B2 (en) 2006-12-04 2012-03-06 Liquidia Technologies, Inc. Methods and materials for fabricating laminate nanomolds and nanoparticles therefrom
US20100190654A1 (en) * 2006-12-05 2010-07-29 Liquidia Technologies , Inc. Nanoarrays and methods and materials for fabricating same
US7710269B2 (en) * 2007-01-11 2010-05-04 University Of Southern California Systems and methods to prevent counterfeit, grey and black market proliferation of pharmaceutical, medical and other products
US9217129B2 (en) * 2007-02-09 2015-12-22 Massachusetts Institute Of Technology Oscillating cell culture bioreactor
WO2008106245A8 (en) * 2007-02-12 2009-11-12 Dow Corning Corporation Method of forming soft lithographic molds with fluorine modified elastomers
WO2008106503A8 (en) * 2007-02-27 2009-04-16 Univ North Carolina Discrete size and shape specific pharmaceutical organic nanoparticles
US8802024B2 (en) * 2007-03-07 2014-08-12 National Tsing Hua University Biochip and manufacturing method thereof
WO2008124634A1 (en) 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Polymer-encapsulated reverse micelles
EP2144600A4 (en) 2007-04-04 2011-03-16 Massachusetts Inst Technology Poly (amino acid) targeting moieties
US7875313B2 (en) 2007-04-05 2011-01-25 E. I. Du Pont De Nemours And Company Method to form a pattern of functional material on a substrate using a mask material
US7777631B2 (en) * 2007-04-29 2010-08-17 James Neil Rodgers Body chip
US9440231B2 (en) 2007-08-14 2016-09-13 Fluidigm Corporation Polymer microfluidic biochip fabrication
US9102083B2 (en) 2007-09-06 2015-08-11 3M Innovative Properties Company Methods of forming molds and methods of forming articles using said molds
CN101896337B (zh) 2007-10-12 2013-10-30 流体科技公司 用于生产颗粒和图案化膜的系统和方法
US8591905B2 (en) 2008-10-12 2013-11-26 The Brigham And Women's Hospital, Inc. Nicotine immunonanotherapeutics
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
US8343498B2 (en) * 2008-10-12 2013-01-01 Massachusetts Institute Of Technology Adjuvant incorporation in immunonanotherapeutics
ES2627233T3 (es) 2007-10-12 2017-07-27 Massachusetts Institute Of Technology Nanotecnología de vacunas
US8343497B2 (en) 2008-10-12 2013-01-01 The Brigham And Women's Hospital, Inc. Targeting of antigen presenting cells with immunonanotherapeutics
EP2206017A1 (en) 2007-11-05 2010-07-14 Trustees of Tufts College Fabrication of silk fibroin photonic structures by nanocontact imprinting
US8605256B2 (en) 2008-02-26 2013-12-10 3M Innovative Properties Company Multi-photon exposure system
WO2009111588A1 (en) 2008-03-04 2009-09-11 Liquidia Technologies, Inc. Immunomodulator particles and methods of treating
JP5198117B2 (ja) * 2008-03-28 2013-05-15 富士フイルム株式会社 ナノインプリント用硬化性組成物、微細パターンとその製造方法、カラーフィルタ、表示装置、および処理基板の製造方法
WO2009151977A8 (en) * 2008-06-13 2010-03-04 Arkema Inc. Biodegradable impact-modified polymer compositions
JP5149083B2 (ja) * 2008-06-16 2013-02-20 富士フイルム株式会社 パターン形成方法、並びに基板加工方法、モールド構造体の複製方法、及びモールド構造体
JP2011525254A (ja) * 2008-06-18 2011-09-15 トラスティーズ オブ タフツ カレッジ 食用のホログラフィック絹製品
US20110215045A1 (en) * 2008-06-24 2011-09-08 Zhilian Zhou High fidelity through hole film, and associated method
JP2010037541A (ja) * 2008-07-10 2010-02-18 Fujifilm Corp インプリント用硬化性組成物、パターン形成方法およびパターン
US8232136B2 (en) * 2008-08-07 2012-07-31 Massachusetts Institute Of Technology Method and apparatus for simultaneous lateral and vertical patterning of molecular organic films
WO2010021291A1 (ja) * 2008-08-22 2010-02-25 コニカミノルタオプト株式会社 基板の製造方法、その製造方法により製造された基板、及びその基板を用いた磁気記録媒体
US8614189B2 (en) * 2008-09-24 2013-12-24 University Of Connecticut Carbon nanotube composite scaffolds for bone tissue engineering
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8372726B2 (en) * 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
EP2349440A4 (en) * 2008-10-07 2014-03-19 Mc10 Inc Catheter balloon having stretchable integrated circuitry and sensor array
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8886334B2 (en) * 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
KR101880582B1 (ko) * 2008-12-05 2018-07-20 리퀴디아 테크놀로지스 인코포레이티드 패턴 재료 제조 방법
EP2370269B1 (en) * 2008-12-11 2015-08-05 3M Innovative Properties Company Patterning process
EP2199854B1 (en) * 2008-12-19 2015-12-16 Obducat AB Hybrid polymer mold for nano-imprinting and method for making the same
EP2199855B1 (en) 2008-12-19 2016-07-20 Obducat Methods and processes for modifying polymer material surface interactions
CA2789009C (en) 2009-02-12 2017-03-21 Trustees Of Tufts College Nanoimprinting of silk fibroin structures for biomedical and biophotonic applications
JP5327743B2 (ja) * 2009-02-18 2013-10-30 国立大学法人信州大学 凹凸パターン形成方法
EP2221664A1 (en) 2009-02-19 2010-08-25 Solvay Solexis S.p.A. Nanolithography process
ES2655714T3 (es) 2009-02-26 2018-02-21 The University Of North Carolina At Chapel Hill Sistema intervencionista de administración de fármacos
EP2411129A4 (en) * 2009-03-25 2013-04-10 Univ Nanyang Tech A filter
EP2421561A2 (en) * 2009-04-21 2012-02-29 Selecta Biosciences, Inc. Immunonanotherapeutics providing a th1-biased response
US8697985B2 (en) 2009-05-25 2014-04-15 Solvay Solexis, S.PA. Protective film for a solar cell module
US20100303850A1 (en) 2009-05-27 2010-12-02 Selecta Biosciences, Inc. Nanocarriers possessing components with different rates of release
US20120088072A1 (en) * 2009-06-12 2012-04-12 Pawloski Adam R Microfabricated Particles in Composite Materials and Methods for Producing the Same
US8283840B2 (en) * 2009-06-15 2012-10-09 Farrokh Mohamadi High-efficiency compact miniaturized energy harvesting and storage device
US8309489B2 (en) * 2009-06-18 2012-11-13 University Of Central Florida Research Foundation, Inc. Thermally stable nanoparticles on supports
US20110008446A1 (en) * 2009-07-07 2011-01-13 Yu Chris C Method of Drug Delivery
US20120114554A1 (en) 2009-07-13 2012-05-10 Liquidia Technologies, Inc. Engineered Aerosol Particles, And Associated Methods
WO2011046652A3 (en) 2009-07-20 2011-07-21 Trustees Of Tufts College All-protein implantable, resorbable reflectors
EP2520414B1 (de) 2009-08-22 2014-03-19 EV Group E. Thallner GmbH Vorrichtung zum Heißprägen einer Polymerschicht
US8961800B2 (en) * 2009-08-26 2015-02-24 Board Of Regents, The University Of Texas System Functional nanoparticles
CN107617110A (zh) 2009-08-26 2018-01-23 西莱克塔生物科技公司 诱导t细胞辅助的组合物
EP2474054A4 (en) 2009-08-31 2013-03-13 Tufts University Trustees Of Tufts College Silk transistor devices
US8228575B2 (en) * 2009-09-17 2012-07-24 Verizon Patent And Licensing Inc. System, method, and device for producing, transmitting and displaying images in holographic form of up to three dimensions
US8899957B2 (en) 2009-09-25 2014-12-02 HGST Netherlands B.V. System, method and apparatus for manufacturing magnetic recording media
WO2011041727A1 (en) 2009-10-01 2011-04-07 Mc10, Inc. Protective cases with integrated electronics
US20110218756A1 (en) * 2009-10-01 2011-09-08 Mc10, Inc. Methods and apparatus for conformal sensing of force and/or acceleration at a person's head
KR101296684B1 (ko) * 2009-11-18 2013-08-19 한국전자통신연구원 상 분리 현상을 이용한 유기 발광 다이오드 및 그 제조 방법
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
KR100974288B1 (ko) 2010-01-13 2010-08-05 한국기계연구원 나노임프린트를 이용한 금속 산화박막 패턴 형성방법 및 이를 이용한 led 소자의 제조방법
JP2013517943A (ja) * 2010-01-29 2013-05-20 モレキュラー・インプリンツ・インコーポレーテッド ナノ粒子を形成するためのナノインプリントリソグラフィプロセス
JP2011163766A (ja) * 2010-02-04 2011-08-25 Omron Corp 画像処理方法および画像処理システム
JP5762686B2 (ja) * 2010-02-15 2015-08-12 公益財団法人神奈川科学技術アカデミー 微粒子の製造方法
US8828246B2 (en) * 2010-02-18 2014-09-09 Anpac Bio-Medical Science Co., Ltd. Method of fabricating micro-devices
US20130209564A1 (en) * 2010-02-22 2013-08-15 Shyam M. Rele Polysaccharide Particle Vaccines
WO2011115643A1 (en) * 2010-03-17 2011-09-22 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
FR2959833B1 (fr) * 2010-05-07 2015-06-12 Inst Nat Sciences Appliq Procede de nano-structure topographique et electrique d'un film mince de polymere electret et film mince de polymere electret obtenu
EP2569004A4 (en) 2010-05-10 2016-01-20 Univ Connecticut Lactoferrin -based biomaterials for tissue regeneration and drug delivery
JP6324067B2 (ja) 2010-05-26 2018-05-16 セレクタ バイオサイエンシーズ インコーポレーテッドSelecta Biosciences,Inc. 多価合成ナノキャリアワクチン
US20130157360A1 (en) * 2010-06-25 2013-06-20 Cornell University Biomimetic tissue scaffold and methods of making and using same
US20120003539A1 (en) * 2010-06-30 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing ultra small particle, positive electrode active material of second battery using the method for manufacturing ultra small particle and method for manufacturing the same, and secondary battery using the positive electrode active material and method for manufacturing the same
GB201300311D0 (en) * 2010-07-02 2013-02-20 Tokuyama Corp Composition for photocurable imprint, and method for formation of pattern using the composition
JP5722445B2 (ja) * 2010-08-16 2015-05-20 エーエスエムエル ネザーランズ ビー.ブイ. インプリントリソグラフィのための検査方法及びそのための装置
US20130203675A1 (en) 2010-09-16 2013-08-08 Joseph M. DeSimone Asymmetric biofunctional silyl monomers and particles thereof as prodrugs and delivery vehicles for pharmaceutical, chemical and biological agents
US20120074097A1 (en) * 2010-09-27 2012-03-29 Chung Yuan Christian University Method for fabricating submicron patterned sapphire substrate
JP2014505018A (ja) 2010-11-05 2014-02-27 モレキュラー・インプリンツ・インコーポレーテッド 二重剥離層を用いる機能性ナノ粒子のナノインプリントリソグラフィ形成
JP2012121173A (ja) 2010-12-06 2012-06-28 Dainippon Printing Co Ltd タガント粒子群、ならびにそれを有する偽造防止用インク、偽造防止用トナー、偽造防止用シートおよび偽造防止媒体
EP2686154A4 (en) 2011-03-15 2014-08-27 Nat Res Council Canada Microfluidic system having monolithic nanoplasmonic structures
WO2012149259A1 (en) 2011-04-29 2012-11-01 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers to reduce antibody responses
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
US9159635B2 (en) 2011-05-27 2015-10-13 Mc10, Inc. Flexible electronic structure
WO2012166053A1 (en) * 2011-05-31 2012-12-06 National University Of Singapore A filtering membrane
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
CN106896422A (zh) 2011-06-09 2017-06-27 诺华股份有限公司 具有纳米纹理化表面的硅氧烷水凝胶透镜
EP2766179A4 (en) * 2011-10-14 2015-06-17 Digital Sensing Ltd Arrays and methods of manufacture
WO2013082111A3 (en) 2011-11-29 2013-07-25 The University Of North Carolina At Chapel Hill Geometrically engineered particles and methods for modulating macrophage or immune responses
JP6231489B2 (ja) 2011-12-01 2017-11-15 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ プログラム可能な変化を被るように設計された遷移デバイス
EP2830492A4 (en) 2012-03-30 2015-11-18 Univ Illinois Appendage mountable electronic devices conformable to surfaces
KR101151220B1 (ko) * 2012-04-10 2012-06-11 서울과학기술대학교 산학협력단 초음파를 이용한 선택적 미세 패턴 성형 장치 및 방법
EP2844375A1 (en) 2012-05-02 2015-03-11 Solvay Specialty Polymers Italy S.p.A. Composite membrane comprising layer of perfluoropolyether on hydrophilic substrate
US20150079351A1 (en) * 2012-05-25 2015-03-19 Micro Resist Technology Gesellschaft Für Chemische Materialien Spezieller Photoresistsysteme Mbh Composition suitable for use as a release-optimized material for nanoimprint processes and uses thereof
US8842910B2 (en) 2012-08-17 2014-09-23 Tandent Vision Science, Inc. Spatially varying log-chromaticity normals for use in an image process
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US8986596B2 (en) * 2012-11-18 2015-03-24 International Business Machines Corporation Methods of forming nanoparticles using semiconductor manufacturing infrastructure
US20150380824A1 (en) * 2013-01-31 2015-12-31 University Of Saskatchewan Meta-material resonator antennas
EP2956821B8 (en) 2013-02-12 2018-06-27 Carbon, Inc. Method and apparatus for three-dimensional fabrication
CN105452958A (zh) 2013-02-12 2016-03-30 卡本桑迪有限公司 通过承载体利用进料的三维制造的方法和设备
US20160017074A1 (en) * 2013-03-04 2016-01-21 Toyo Gosei Co., Ltd. Composition, resin mold, photo imprinting method, method for manufacturing optical element, and method for manufacturing electronic element
US9572815B2 (en) 2013-03-15 2017-02-21 St. Jude Children's Research Hospital Methods and compositions of p27KIP1 transcriptional modulators
US9840038B2 (en) * 2013-04-11 2017-12-12 Toyo Gosei Co., Ltd. Resin mold
CN103268966B (zh) * 2013-05-07 2015-09-16 杭州储蕴丰科技有限公司 大幅延长铅钙电池寿命的电解液添加剂及制备、使用方法
US9025863B2 (en) * 2013-06-27 2015-05-05 Intel Corporation Depth camera system with machine learning for recognition of patches within a structured light pattern
US20150069667A1 (en) * 2013-09-12 2015-03-12 Yi Li Nano-parts fabrication method
US9255779B2 (en) 2013-10-09 2016-02-09 General Electric Company Wireless taper gauge and method of using same
US9513543B2 (en) 2013-11-20 2016-12-06 Eastman Kodak Company Method for forming a non-deformable patterned template
US9329026B2 (en) * 2013-12-06 2016-05-03 Mitutoyo Corporation Hole-measurement systems and methods using a non-rotating chromatic point sensor (CPS) pen
WO2015142546A1 (en) 2014-03-21 2015-09-24 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication with gas injection through carrier
WO2015150110A1 (en) 2014-03-31 2015-10-08 Koninklijke Philips N.V. Imprinting method, computer program product and apparatus for the same
US9190285B1 (en) 2014-05-06 2015-11-17 International Business Machines Corporation Rework and stripping of complex patterning layers using chemical mechanical polishing
WO2015176025A9 (en) 2014-05-15 2015-12-30 The Methodist Hospital Discoidal polymeric nanoconstructs and methods of use in cancer theranostics
WO2015195920A1 (en) 2014-06-20 2015-12-23 Carbon3D, Inc. Three-dimensional printing method using increased light intensity and apparatus therefore
WO2015195924A1 (en) 2014-06-20 2015-12-23 Carbon3D, Inc. Three-dimensional printing with reciprocal feeding of polymerizable liquid
WO2015195909A1 (en) 2014-06-20 2015-12-23 Carbon3D, Inc. Three-dimensional printing using tiled light engines
CA2950215A1 (en) 2014-06-23 2015-12-30 Carbon, Inc. Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects
US20150374815A1 (en) 2014-06-25 2015-12-31 Selecta Biosciences, Inc. Methods and compositions for treatment with synthetic nanocarriers and immune checkpoint inhibitors
JP2015005760A (ja) * 2014-07-31 2015-01-08 キヤノン株式会社 インプリント装置、および物品の製造方法
US20160046075A1 (en) 2014-08-12 2016-02-18 Carbon3D, Inc. Three-dimensional printing with supported build plates
CA2957737A1 (en) 2014-09-07 2016-03-10 Selecta Biosciences, Inc. Methods and compositions for attenuating gene expression modulating anti-viral transfer vector immune responses
WO2016061095A1 (en) * 2014-10-14 2016-04-21 President And Fellows Of Harvard College Microcapsules and uses thereof
US20160148631A1 (en) * 2014-11-26 2016-05-26 Seagate Technology Llc Slider with micro-patterned coating
DE102014119470A1 (de) * 2014-12-22 2016-06-23 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Strukturierte Oberfläche mit stufenweise schaltbarer Adhäsion
WO2016109550A1 (en) 2014-12-31 2016-07-07 Carbon3D, Inc. Three-dimensional printing of objects with breathing orifices
US20160193786A1 (en) 2015-01-06 2016-07-07 Carbon3D, Inc. Three-dimensional printing with build plates having a rough or patterned surface and related methods
WO2016112090A1 (en) 2015-01-07 2016-07-14 Carbon3D, Inc. Microfluidic devices and methods of making the same
EP3245044A1 (en) 2015-01-13 2017-11-22 Carbon, Inc. Three-dimensional printing with build plates having surface topologies for increasing permeability and related methods
KR101636450B1 (ko) * 2015-01-23 2016-07-06 인하대학교 산학협력단 전도성 접착제 필름의 제조방법 및 이에 따라 제조되는 전도성 접착제 필름
US20180015669A1 (en) 2015-01-30 2018-01-18 Carbon, Inc. Build plates for continuous liquid interface printing having permeable base and adhesive for increasing permeability and related methods, systems and devices
EP3250368A1 (en) 2015-01-30 2017-12-06 Carbon, Inc. Build plates for continuous liquid interface printing having permeable sheets and related methods, systems and devices
EP3253558A1 (en) 2015-02-05 2017-12-13 Carbon, Inc. Method of additive manufacturing by fabrication through multiple zones
KR101649557B1 (ko) * 2015-02-10 2016-08-22 인하대학교 산학협력단 전도성 패턴의 제조방법 및 이에 따라 제조되는 전도성 패턴
KR101586331B1 (ko) * 2015-02-10 2016-01-20 인하대학교 산학협력단 터치스크린 패널의 제조방법 및 이에 따라 제조되는 터치스크린 패널
WO2016140888A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Fabrication of three dimensional objects with variable slice thickness
WO2016140891A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Continuous liquid interface production with sequential patterned exposure
WO2016140886A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Fabrication of three dimensional objects with multiple operating modes
WO2016145050A1 (en) 2015-03-10 2016-09-15 Carbon3D, Inc. Microfluidic devices having flexible features and methods of making the same
WO2016149151A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with concurrent delivery of different polymerizable liquids
WO2016149097A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with reduced pressure build plate unit
WO2016149104A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with flexible build plates
JP5989177B2 (ja) * 2015-04-20 2016-09-07 キヤノン株式会社 インプリント装置、および物品の製造方法
US20160355691A1 (en) * 2015-06-04 2016-12-08 Thomas Kim Process for protecting an electronic device with a hydrophobic coating
CN108137616A (zh) 2015-08-16 2018-06-08 葛兰素史克知识产权开发有限公司 包含吡嗪并[2,3-b][1,4]噁嗪-3-酮或相关环系的抗菌剂
CN108367495A (zh) 2015-09-25 2018-08-03 卡本有限公司 用于连续液体相间打印的具有发光面板的构造板组合件和相关方法、系统及装置
KR101730802B1 (ko) * 2015-10-21 2017-04-28 (주)켐옵틱스 광경화형 레진 조성물 및 이를 이용한 패턴의 형성방법
CA3004492A1 (en) 2015-11-18 2017-05-26 Glaxosmithkline Intellectual Property (No.2) Limited Pharmaceutical compositions of ribavirin
EP3377205A1 (en) 2015-11-19 2018-09-26 Sofia University "St. Kliment Ohridski" A method for the preparation of particles with controlled shape and/or size
WO2017112521A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Production of flexible products by additive manufacturing with dual cure resins
WO2017112571A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products
WO2017112682A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Fabrication of compound products from multiple intermediates by additive manufacturing with dual cure resins
WO2017112653A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
WO2017112483A3 (en) 2015-12-22 2017-11-09 Carbon, Inc. Accelerants for additive manufacturing with dual cure resins
WO2017171972A3 (en) * 2016-01-12 2018-01-04 Massachusetts Institute Of Technology Techniques for fluid control in additive fabrication and related systems and methods
CA3016860A1 (en) 2016-03-07 2017-09-14 Glaxosmithkline Biologicals Sa Drug delivery particles
CA3017365A1 (en) 2016-03-11 2017-09-14 Selecta Biosciences, Inc. Formulations and doses of pegylated uricase
WO2018006029A1 (en) 2016-07-01 2018-01-04 Carbon, Inc. Three-dimensional printing with build plates having reduced pressure and/or channels for increased fluid flow
RU2629135C1 (ru) * 2016-09-16 2017-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ сухой электронно-лучевой литографии
US20180085319A1 (en) 2016-09-27 2018-03-29 Takashi Kei Kishimoto Methods and compositions for treating cancer
US20180194080A1 (en) * 2017-01-12 2018-07-12 Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. Method of making three-dimensional objects using both continuous and discontinuous solidification

Family Cites Families (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2128179A (en) 1937-07-22 1938-08-23 Blanche E Bouchard Dispensing machine
US4697514A (en) 1965-10-07 1987-10-06 Gravure Association Of America Method and apparatus for transferring ink in gravure printing
US3997376A (en) 1974-06-19 1976-12-14 Midland-Ross Corporation Spray mist cooling method
US4191321A (en) 1978-12-29 1980-03-04 Samsing Rolf A Container having paper-board end cap and oval sleeve
CA1160880A (en) 1979-02-02 1984-01-24 Keith E. Whitmore Imaging with nonplanar support elements
JPH0129819B2 (ko) * 1979-06-14 1989-06-14 Montedison Spa
JPS6144048B2 (ko) * 1980-07-22 1986-10-01 Sony Corp
US4332887A (en) 1980-10-06 1982-06-01 Polaroid Corporation Method for preparing photosensitive silver halide emulsions
US4366235A (en) 1981-02-17 1982-12-28 Polaroid Corporation Photosensitive element and method of preparing same
US4359526A (en) 1981-09-02 1982-11-16 Polaroid Corporation Method for forming a photosensitive silver halide element
US4356257A (en) 1981-09-02 1982-10-26 Polaroid Corporation Photosensitive silver halide element and method of preparing same
US4352874A (en) 1981-09-02 1982-10-05 Polaroid Corporation Method for forming a photosensitive silver halide element
US4353977A (en) 1981-09-02 1982-10-12 Polaroid Corporation Method for forming a photosensitive silver halide element
US4359525A (en) 1981-11-23 1982-11-16 Polaroid Corporation Method of preparing a photosensitive silver halide element
US4818801A (en) * 1982-01-18 1989-04-04 Minnesota Mining And Manufacturing Company Ophthalmic device comprising a polymer of a telechelic perfluoropolyether
US4614667A (en) 1984-05-21 1986-09-30 Minnesota Mining And Manufacturing Company Composite low surface energy liner of perfluoropolyether
JPS5950444A (en) 1982-09-16 1984-03-23 Tokyo Ohka Kogyo Co Ltd Photomask for microfabrication
US4512848A (en) 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
US4681925A (en) 1985-02-22 1987-07-21 Ausimont S.P.A. Fluorinated polyacrylates and polyacrylamides having a controlled cross-linking degree, and process for preparing same
US4663274A (en) 1985-04-01 1987-05-05 Polaroid Corporation Method for forming a photosensitive silver halide element
NL8500992A (nl) 1985-04-03 1986-11-03 Stork Screens Bv Werkwijze voor het vormen van een gedessineerde fotopolymeerbekleding op een drukwals alsmede drukwals met gedessineerde fotopolymeerbekleding.
US4830910A (en) 1987-11-18 1989-05-16 Minnesota Mining And Manufacturing Company Low adhesion compositions of perfluoropolyethers
US5147763A (en) 1988-10-19 1992-09-15 Canon Kabushiki Kaisha Process for producing molding stamper for data recording medium substrate
US4964945A (en) 1988-12-09 1990-10-23 Minnesota Mining And Manufacturing Company Lift off patterning process on a flexible substrate
EP0374532B1 (en) * 1988-12-22 1994-09-21 American Cyanamid Company Improved phase separation-microencapsulated pharmaceutical compositions useful for alleviating dental disease
US5175030A (en) 1989-02-10 1992-12-29 Minnesota Mining And Manufacturing Company Microstructure-bearing composite plastic articles and method of making
US5279689A (en) 1989-06-30 1994-01-18 E. I. Du Pont De Nemours And Company Method for replicating holographic optical elements
CA2316052C (en) * 1989-07-07 2008-09-02 David Bodmer Sustained release formulations of water soluble peptides
US5368789A (en) 1990-09-28 1994-11-29 Canon Kabushiki Kaisha Method for forming substrate sheet for optical recording medium
JPH0580530A (ja) 1991-09-24 1993-04-02 Hitachi Ltd 薄膜パターン製造方法
DE4307869C2 (de) 1993-03-12 1996-04-04 Microparts Gmbh Mikrostrukturkörper und Verfahren zu deren Herstellung
DE69405451T2 (de) 1993-03-16 1998-03-12 Koninkl Philips Electronics Nv Verfahren und Vorrichtung zur Herstellung eines strukturierten Reliefbildes aus vernetztem Photoresist auf einer flachen Substratoberfläche
US5457895A (en) 1993-10-01 1995-10-17 R. P. Scherer Corporation Method of identifying freeze-dried dosage forms
US5512131A (en) 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
GB9412273D0 (en) 1994-06-18 1994-08-10 Univ Nottingham Administration means
JP3133899B2 (ja) 1994-07-07 2001-02-13 エーザイ株式会社 錠剤製造方法およびその装置
US5575878A (en) 1994-11-30 1996-11-19 Honeywell Inc. Method for making surface relief profilers
US5630902A (en) 1994-12-30 1997-05-20 Honeywell Inc. Apparatus for use in high fidelty replication of diffractive optical elements
CA2207961A1 (en) 1995-01-05 1996-07-11 Robert J. Levy Surface-modified nanoparticles and method of making and using same
JPH11503079A (ja) * 1995-03-31 1999-03-23 フォルシュングスゼントラム・カールスルーエ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 成形技術による二層光導通性微細構造体の製造のための方法及び装置
WO1996031548A1 (en) 1995-04-04 1996-10-10 Novartis Ag Cell growth substrate polymer
EP0784542B1 (en) 1995-08-04 2001-11-28 International Business Machines Corporation Stamp for a lithographic process
US5834025A (en) 1995-09-29 1998-11-10 Nanosystems L.L.C. Reduction of intravenously administered nanoparticulate-formulation-induced adverse physiological reactions
US20040137734A1 (en) 1995-11-15 2004-07-15 Princeton University Compositions and processes for nanoimprinting
US5772905A (en) 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US6518189B1 (en) 1995-11-15 2003-02-11 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US6355198B1 (en) 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
US6289249B1 (en) 1996-04-17 2001-09-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Transcatheter microwave antenna
US6753131B1 (en) 1996-07-22 2004-06-22 President And Fellows Of Harvard College Transparent elastomeric, contact-mode photolithography mask, sensor, and wavefront engineering element
US6402876B1 (en) 1997-08-01 2002-06-11 Loctite (R&D) Ireland Method of forming a monolayer of particles, and products formed thereby
GB9623185D0 (en) 1996-11-09 1997-01-08 Epigem Limited Improved micro relief element and preparation thereof
US6507989B1 (en) 1997-03-13 2003-01-21 President And Fellows Of Harvard College Self-assembly of mesoscale objects
US6027630A (en) 1997-04-04 2000-02-22 University Of Southern California Method for electrochemical fabrication
US6000603A (en) 1997-05-23 1999-12-14 3M Innovative Properties Company Patterned array of metal balls and methods of making
US6284345B1 (en) 1997-12-08 2001-09-04 Washington University Designer particles of micron and submicron dimension
WO1999034831A1 (en) 1998-01-05 1999-07-15 University Of Washington Enhanced transport using membrane disruptive agents
US6719868B1 (en) 1998-03-23 2004-04-13 President And Fellows Of Harvard College Methods for fabricating microfluidic structures
CA2329412C (en) 1998-04-21 2010-09-21 President And Fellows Of Harvard College Elastomeric mask and use in fabrication of devices, including pixelated electroluminescent displays
US6027595A (en) 1998-07-02 2000-02-22 Samsung Electronics Co., Ltd. Method of making optical replicas by stamping in photoresist and replicas formed thereby
US6607683B1 (en) 1998-09-04 2003-08-19 Bruce E. Harrington Methods and apparatus for producing manufactured articles having natural characteristics
JP3015883B1 (ja) 1998-10-26 2000-03-06 東京大学長 超微粒子構造の作製方法
EP1003078A3 (en) 1998-11-17 2001-11-07 Corning Incorporated Replicating a nanoscale pattern
US6300042B1 (en) 1998-11-24 2001-10-09 Motorola, Inc. Lithographic printing method using a low surface energy layer
US6247986B1 (en) 1998-12-23 2001-06-19 3M Innovative Properties Company Method for precise molding and alignment of structures on a substrate using a stretchable mold
CA2356684A1 (en) * 1998-12-23 2000-07-06 Ryan S. Raz In situ manufacture of membrane microfilters
US20030114366A1 (en) * 1999-01-11 2003-06-19 Francis J. Martin Microfabricated particles and method for treating solid tumors
US6334960B1 (en) 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
JP4304754B2 (ja) 1999-03-24 2009-07-29 住友電気工業株式会社 微細構造を有するセラミックス部品の製造方法
KR100335070B1 (ko) 1999-04-21 2002-05-03 백승준 압축 성형 기법을 이용한 미세 패턴 형성 방법
US6159443A (en) 1999-04-29 2000-12-12 Vanderbilt University X-ray guided drug delivery
DE19921088C2 (de) 1999-04-30 2003-08-07 Magforce Applic Gmbh Stent zur Offenhaltung gangartiger Strukturen
US6245849B1 (en) 1999-06-02 2001-06-12 Sandia Corporation Fabrication of ceramic microstructures from polymer compositions containing ceramic nanoparticles
US6306563B1 (en) 1999-06-21 2001-10-23 Corning Inc. Optical devices made from radiation curable fluorinated compositions
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6331266B1 (en) 1999-09-29 2001-12-18 Becton Dickinson And Company Process of making a molded device
US6461631B1 (en) 1999-11-16 2002-10-08 Atrix Laboratories, Inc. Biodegradable polymer composition
US20030205552A1 (en) 1999-11-17 2003-11-06 The Regents Of The University Of California Method of forming a membrane with nanometer scale pores and application to biofiltration
US6602932B2 (en) * 1999-12-15 2003-08-05 North Carolina State University Nanoparticle composites and nanocapsules for guest encapsulation and methods for synthesizing same
US6993655B1 (en) 1999-12-20 2006-01-31 Xerox Corporation Record and related method for storing encoded information using overt code characteristics to identify covert code characteristics
KR100379324B1 (ko) 1999-12-31 2003-04-08 인터내셔널 비지네스 머신즈 코포레이션 기판의 표면 상에 패턴을 프린팅하기 위한 스탬프 장치
DE60121302D1 (de) 2000-01-21 2006-08-17 Obducat Ab Form zur nanobedruckung
US6294450B1 (en) 2000-03-01 2001-09-25 Hewlett-Packard Company Nanoscale patterning for the formation of extensive wires
US20010037455A1 (en) 2000-03-09 2001-11-01 Lawandy Nabil M. Authentication using a digital watermark
FR2808704B1 (fr) 2000-05-10 2002-08-16 Rhodia Chimie Sa Agents tensioactifs formes par des particules minerales de dimension nanometrique de surface modifiee
US6686184B1 (en) 2000-05-25 2004-02-03 President And Fellows Of Harvard College Patterning of surfaces utilizing microfluidic stamps including three-dimensionally arrayed channel networks
US6645432B1 (en) * 2000-05-25 2003-11-11 President & Fellows Of Harvard College Microfluidic systems including three-dimensionally arrayed channel networks
US6649715B1 (en) 2000-06-27 2003-11-18 Clemson University Fluoropolymers and methods of applying fluoropolymers in molding processes
US7476523B2 (en) 2000-08-14 2009-01-13 Surface Logix, Inc. Method of patterning a surface using a deformable stamp
EP1355630B1 (en) 2000-08-15 2009-11-25 The Board Of Trustees Of The University Of Illinois Method of forming microparticles
US8054416B2 (en) 2000-08-15 2011-11-08 Reflexite Corporation Light polarizer
US6589629B1 (en) 2000-09-11 2003-07-08 Lucent Technologies Inc. Process for fabricating patterned, functionalized particles and article formed from particles
US6673519B2 (en) 2000-09-14 2004-01-06 Alcoa Inc. Printing plate having printing layer with changeable affinity for printing fluid
KR100568383B1 (ko) * 2000-09-14 2006-04-05 알코아 인코포레이티드 인쇄 평판
US7198747B2 (en) 2000-09-18 2007-04-03 President And Fellows Of Harvard College Fabrication of ceramic microstructures
JP2004517304A (ja) 2000-10-05 2004-06-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 紫外線検出に好適なポリマー微細加工流体素子
JP2004523906A (ja) * 2000-10-12 2004-08-05 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 室温かつ低圧マイクロおよびナノ転写リソグラフィのためのテンプレート
WO2002033461A3 (en) 2000-10-16 2002-09-06 Ozin Geoffrey A Method of self-assembly and optical applications of crystalline colloidal patterns on substrates
US7294294B1 (en) 2000-10-17 2007-11-13 Seagate Technology Llc Surface modified stamper for imprint lithography
US6770721B1 (en) 2000-11-02 2004-08-03 Surface Logix, Inc. Polymer gel contact masks and methods and molds for making same
US6422528B1 (en) 2001-01-17 2002-07-23 Sandia National Laboratories Sacrificial plastic mold with electroplatable base
JP2002214414A (ja) 2001-01-22 2002-07-31 Omron Corp マイクロ凹凸パターンを有する樹脂薄膜を備えた光学素子、該光学素子の製造方法及び装置
JP2002268057A (ja) 2001-03-06 2002-09-18 Omron Corp マイクロ凹凸パターンを有する樹脂薄膜を備えた光学素子、反射板の製造方法及び装置
US6663820B2 (en) 2001-03-14 2003-12-16 The Procter & Gamble Company Method of manufacturing microneedle structures using soft lithography and photolithography
JP4524943B2 (ja) * 2001-03-27 2010-08-18 ダイキン工業株式会社 半導体素子のパターン形成方法及びインプリント加工用モールドの製造方法
US20050120902A1 (en) 2001-04-25 2005-06-09 David Adams Edge transfer lithography
US6673287B2 (en) * 2001-05-16 2004-01-06 International Business Machines Corporation Vapor phase surface modification of composite substrates to form a molecularly thin release layer
US6656398B2 (en) 2001-06-19 2003-12-02 Corning Incorporated Process of making a pattern in a film
US20030006527A1 (en) 2001-06-22 2003-01-09 Rabolt John F. Method of fabricating micron-and submicron-scale elastomeric templates for surface patterning
US7137336B2 (en) 2001-07-05 2006-11-21 Obducat Ab Stamp having an antisticking layer and a method of forming of repairing such a stamp
WO2003035932A1 (en) 2001-09-25 2003-05-01 Minuta Technology Co., Ltd. Method for forming a micro-pattern on a substrate by using capillary force
US20030071016A1 (en) * 2001-10-11 2003-04-17 Wu-Sheng Shih Patterned structure reproduction using nonsticking mold
US6936181B2 (en) 2001-10-11 2005-08-30 Kovio, Inc. Methods for patterning using liquid embossing
US6855202B2 (en) 2001-11-30 2005-02-15 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
US7117790B2 (en) 2002-01-11 2006-10-10 Massachusetts Institute Of Technology Microcontact printing
EP1333680A3 (fr) 2002-01-16 2007-06-13 Philips Electronics N.V. Procédé de traitement d'une image numérique
KR100422763B1 (ko) 2002-01-17 2004-03-12 주식회사 태평양 경피흡수 촉진 능력이 우수한 식물성 나노입자의 제조 및이를 함유하는 화장료 및 의약용 외용제 조성물
US6653030B2 (en) 2002-01-23 2003-11-25 Hewlett-Packard Development Company, L.P. Optical-mechanical feature fabrication during manufacture of semiconductors and other micro-devices and nano-devices that include micron and sub-micron features
WO2003066066A1 (en) 2002-02-01 2003-08-14 Vanderbilt University Targeted drug delivery methods
KR20030075971A (ko) * 2002-03-22 2003-09-26 이홍희 유기 전자 소자의 박막 패턴 형성 방법
US6869557B1 (en) 2002-03-29 2005-03-22 Seagate Technology Llc Multi-level stamper for improved thermal imprint lithography
US6872645B2 (en) 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US6783717B2 (en) 2002-04-22 2004-08-31 International Business Machines Corporation Process of fabricating a precision microcontact printing stamp
US6656308B2 (en) 2002-04-22 2003-12-02 International Business Machines Corporation Process of fabricating a precision microcontact printing stamp
US20040115239A1 (en) * 2002-09-20 2004-06-17 Shastri Venkatram P. Engineering of material surfaces
US6964793B2 (en) 2002-05-16 2005-11-15 Board Of Regents, The University Of Texas System Method for fabricating nanoscale patterns in light curable compositions using an electric field
WO2003098188A3 (en) 2002-05-17 2003-12-24 Nanoventions Inc Microstructured taggant particles, applications and methods of making the same
US6699347B2 (en) 2002-05-20 2004-03-02 The Procter & Gamble Company High speed embossing and adhesive printing process
US6849558B2 (en) 2002-05-22 2005-02-01 The Board Of Trustees Of The Leland Stanford Junior University Replication and transfer of microstructures and nanostructures
US7235464B2 (en) 2002-05-30 2007-06-26 International Business Machines Corporation Patterning method
US6900881B2 (en) 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US6932934B2 (en) 2002-07-11 2005-08-23 Molecular Imprints, Inc. Formation of discontinuous films during an imprint lithography process
US20040028804A1 (en) 2002-08-07 2004-02-12 Anderson Daniel G. Production of polymeric microarrays
US6936194B2 (en) 2002-09-05 2005-08-30 Molecular Imprints, Inc. Functional patterning material for imprint lithography processes
US20040115279A1 (en) * 2002-09-06 2004-06-17 The Ohio State University Microfabrication of polymer microparticles
US7434512B2 (en) 2002-09-09 2008-10-14 International Business Machines Corporation Printing in a medium
US20060159849A1 (en) 2002-09-19 2006-07-20 Daikin Industries Ltd. Material with pattern surface for use as template and process for producing the same
US20040065252A1 (en) 2002-10-04 2004-04-08 Sreenivasan Sidlgata V. Method of forming a layer on a substrate to facilitate fabrication of metrology standards
KR100537722B1 (ko) 2002-10-11 2005-12-20 강신일 미세형상 구조물의 연속 성형장치 및 방법 그리고 그 미세형상의 성형을 위한 스탬퍼 제작방법
US6755984B2 (en) 2002-10-24 2004-06-29 Hewlett-Packard Development Company, L.P. Micro-casted silicon carbide nano-imprinting stamp
US20040097371A1 (en) 2002-11-19 2004-05-20 Juzer Jangbarwala Application of conductive adsorbents, activated carbon granules and carbon fibers as substrates in catalysis
US7750059B2 (en) 2002-12-04 2010-07-06 Hewlett-Packard Development Company, L.P. Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure
US20040115270A1 (en) 2002-12-13 2004-06-17 Dharmendra Jani Absorption and controlled release of polyethers from hydrogel biomaterials
US7029832B2 (en) 2003-03-11 2006-04-18 Samsung Electronics Co., Ltd. Immersion lithography methods using carbon dioxide
JP4317375B2 (ja) 2003-03-20 2009-08-19 株式会社日立製作所 ナノプリント装置、及び微細構造転写方法
US20040202865A1 (en) 2003-04-08 2004-10-14 Andrew Homola Release coating for stamper
KR100568581B1 (ko) 2003-04-14 2006-04-07 주식회사 미뉴타텍 미세패턴 형성 몰드용 조성물 및 이로부터 제작된 몰드
US7056409B2 (en) 2003-04-17 2006-06-06 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US20050064452A1 (en) 2003-04-25 2005-03-24 Schmid Matthew J. System and method for the detection of analytes
US6808646B1 (en) 2003-04-29 2004-10-26 Hewlett-Packard Development Company, L.P. Method of replicating a high resolution three-dimensional imprint pattern on a compliant media of arbitrary size
US7070406B2 (en) 2003-04-29 2006-07-04 Hewlett-Packard Development Company, L.P. Apparatus for embossing a flexible substrate with a pattern carried by an optically transparent compliant media
JP2004351608A (ja) * 2003-05-07 2004-12-16 Institute Of Physical & Chemical Research ナノ材料の製造方法およびナノ材料
US6860956B2 (en) 2003-05-23 2005-03-01 Agency For Science, Technology & Research Methods of creating patterns on substrates and articles of manufacture resulting therefrom
KR100508337B1 (ko) 2003-06-27 2005-08-17 한국과학기술원 나노미터 수준으로 패턴화된 고분자 박막의 제조 방법
WO2005059952A3 (en) 2003-07-28 2006-03-02 Univ California Langmuir-blodgett nanostructure monolayers
US20050038180A1 (en) 2003-08-13 2005-02-17 Jeans Albert H. Silicone elastomer material for high-resolution lithography
US7442336B2 (en) 2003-08-21 2008-10-28 Molecular Imprints, Inc. Capillary imprinting technique
US20050046209A1 (en) * 2003-08-26 2005-03-03 Howard Bessette Arrow remover
US7166418B2 (en) 2003-09-03 2007-01-23 Matsushita Electric Industrial Co., Ltd. Sulfonamide compound, polymer compound, resist material and pattern formation method
JP4450596B2 (ja) * 2003-09-22 2010-04-14 独立行政法人科学技術振興機構 微粒子の製造方法
US7122482B2 (en) * 2003-10-27 2006-10-17 Molecular Imprints, Inc. Methods for fabricating patterned features utilizing imprint lithography
WO2005047575A1 (en) 2003-11-12 2005-05-26 National University Of Singapore Colloidal structure and method of forming
US6940433B2 (en) 2003-11-14 2005-09-06 Northrop Grumman Corporation Modulation method for signal crosstalk mitigation in electrostatically driven devices
EP1533657B1 (en) 2003-11-21 2011-03-09 Obducat AB Multilayer nano imprint lithography
JP4808385B2 (ja) * 2003-11-27 2011-11-02 東京応化工業株式会社 ナノ材料の製造方法
JP2005181662A (ja) 2003-12-19 2005-07-07 Fuji Xerox Co Ltd 高分子光導波路の製造方法
US7052618B2 (en) 2004-01-28 2006-05-30 Agilent Technologies, Inc. Nanostructures and methods of making the same
US7056834B2 (en) 2004-02-10 2006-06-06 Hewlett-Packard Development Company, L.P. Forming a plurality of thin-film devices using imprint lithography
US20050064209A1 (en) 2004-02-17 2005-03-24 Daniel Haines Low-fluorescent, chemically durable hydrophobic patterned substrates for the attachment of biomolecules
US7192693B2 (en) 2004-02-24 2007-03-20 University Of Washington Methods for photopatterning hydrogels
US7168939B2 (en) 2004-02-26 2007-01-30 Hitachi Global Storage Technologies Netherlands Bv System, method, and apparatus for multilevel UV molding lithography for air bearing surface patterning
US20050196343A1 (en) 2004-02-27 2005-09-08 Molecular Therapeutics, Inc. Degradable nanoparticles
US7435074B2 (en) 2004-03-13 2008-10-14 International Business Machines Corporation Method for fabricating dual damascence structures using photo-imprint lithography, methods for fabricating imprint lithography molds for dual damascene structures, materials for imprintable dielectrics and equipment for photo-imprint lithography used in dual damascence patterning
US7597814B2 (en) 2004-03-23 2009-10-06 Hewlett Packard Development Company, L.P. Structure formed with template having nanoscale features
US7140861B2 (en) 2004-04-27 2006-11-28 Molecular Imprints, Inc. Compliant hard template for UV imprinting
JP2008507114A (ja) 2004-04-27 2008-03-06 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ ソフトリソグラフィ用複合パターニングデバイス
US7141275B2 (en) 2004-06-16 2006-11-28 Hewlett-Packard Development Company, L.P. Imprinting lithography using the liquid/solid transition of metals and their alloys
US7148142B1 (en) 2004-06-23 2006-12-12 Advanced Micro Devices, Inc. System and method for imprint lithography to facilitate dual damascene integration in a single imprint act
US20060021533A1 (en) 2004-07-30 2006-02-02 Jeans Albert H Imprint stamp
EP1778462B1 (en) 2004-08-05 2008-02-20 Pirelli &amp; C. S.p.A. Method for manufacturing optical devices
JP2008512281A (ja) 2004-09-13 2008-04-24 ダウ・コーニング・コーポレイション シリコーン型を使用するリソグラフィ技法
US20060068128A1 (en) 2004-09-30 2006-03-30 Eastman Kodak Company Optical films and process for making them
JP4704434B2 (ja) 2004-10-08 2011-06-15 ダウ・コーニング・コーポレイション 相変化組成物を使用するリトグラフィープロセス及びパターン
WO2006071470A3 (en) 2004-12-03 2008-11-20 California Inst Of Techn Microfluidic devices with chemical reaction circuits

Also Published As

Publication number Publication date Type
US8420124B2 (en) 2013-04-16 grant
CA2847260A1 (en) 2005-10-27 application
EP1704585A2 (en) 2006-09-27 application
KR20070011253A (ko) 2007-01-24 application
KR20120105062A (ko) 2012-09-24 application
KR101376715B1 (ko) 2014-03-27 grant
CA2847260C (en) 2016-06-21 grant
US20090028910A1 (en) 2009-01-29 application
JP2007526820A (ja) 2007-09-20 application
EP1704585A4 (en) 2010-08-18 application
JP6232352B2 (ja) 2017-11-15 grant
JP2011223009A (ja) 2011-11-04 application
US20140072632A1 (en) 2014-03-13 application
EP3242318A1 (en) 2017-11-08 application
CA2549341A1 (en) 2005-10-27 application
DK1704585T3 (da) 2017-05-22 grant
US20180116959A1 (en) 2018-05-03 application
JP2015008308A (ja) 2015-01-15 application
JP2014168777A (ja) 2014-09-18 application
US20150283079A1 (en) 2015-10-08 application
KR20110114695A (ko) 2011-10-19 application
JP6232320B2 (ja) 2017-11-15 grant
ES2625345T3 (es) 2017-07-19 grant
US8263129B2 (en) 2012-09-11 grant
KR101281775B1 (ko) 2013-07-15 grant
WO2005101466A3 (en) 2007-04-05 application
US20090061152A1 (en) 2009-03-05 application
CA2549341C (en) 2014-06-10 grant
WO2005101466A2 (en) 2005-10-27 application
US9877920B2 (en) 2018-01-30 grant
JP6067954B2 (ja) 2017-01-25 grant
US8992992B2 (en) 2015-03-31 grant
EP1704585B1 (en) 2017-03-15 grant
JP5956116B2 (ja) 2016-07-20 grant

Similar Documents

Publication Publication Date Title
Sanson et al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy
Yang et al. Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy
Fischer et al. Biomimetic nanowire coatings for next generation adhesive drug delivery systems
van Tilborg et al. Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells
Norman et al. Methods for fabrication of nanoscale topography for tissue engineering scaffolds
Geng et al. Hydrolytic degradation of poly (ethylene oxide)-block-polycaprolactone worm micelles
Glangchai et al. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles
Dixit et al. Quantum dot encapsulation in viral capsids
Kobayashi et al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots
Maysinger et al. Real-time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles
Song et al. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery
Christman et al. Positioning multiple proteins at the nanoscale with electron beam cross-linked functional polymers
Liu et al. The shape of things to come: importance of design in nanotechnology for drug delivery
Perennes et al. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol
Lu et al. Micro and nano-fabrication of biodegradable polymers for drug delivery
Richardson et al. Innovation in layer-by-layer assembly
Nie et al. Patterning surfaces with functional polymers
Riehemann et al. Nanomedicine—challenge and perspectives
Kim et al. Biomimetic nanopatterns as enabling tools for analysis and control of live cells
Chatterjee et al. Core/shell nanoparticles in biomedical applications
Doh et al. Photogenerated polyelectrolyte bilayers from an aqueous-processible photoresist for multicomponent protein patterning
Perry et al. PRINT: a novel platform toward shape and size specific nanoparticle theranostics
Ojea-Jiménez et al. Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions
Grodzinski et al. Nanotechnology for cancer diagnostics: promises and challenges
Mendes et al. Bio-nanopatterning of surfaces

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2016101000801; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20160211

Effective date: 20180509

S901 Examination by remand of revocation