US20070228608A1 - Preserving Filled Features when Vacuum Wiping - Google Patents

Preserving Filled Features when Vacuum Wiping Download PDF

Info

Publication number
US20070228608A1
US20070228608A1 US11/694,193 US69419307A US2007228608A1 US 20070228608 A1 US20070228608 A1 US 20070228608A1 US 69419307 A US69419307 A US 69419307A US 2007228608 A1 US2007228608 A1 US 2007228608A1
Authority
US
United States
Prior art keywords
monomer
template
curing
recited
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/694,193
Inventor
Steven Shackleton
Pankaj Lad
Ian McMackin
Frank Xu
Sidlgata Sreenivasan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Nanotechnologies Inc
Original Assignee
Canon Nanotechnologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US78877806P priority Critical
Application filed by Canon Nanotechnologies Inc filed Critical Canon Nanotechnologies Inc
Priority to US11/694,193 priority patent/US20070228608A1/en
Assigned to MOLECULAR IMPRINTS, INC. reassignment MOLECULAR IMPRINTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHACKLETON, STEVEN C., MR., SREENIVASAN, SIDLGATA V., DR., XU, FRANK Y., DR., MCMACKIN, IAN M., DR., LAD, PANKAJ B., MR.
Publication of US20070228608A1 publication Critical patent/US20070228608A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • B29C2043/141Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making single layer articles
    • B29C2043/142Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making single layer articles by moving a single mould or the article progressively, i.e. portionwise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3433Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • B29C2043/3438Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds moving during dispensing over the moulds, e.g. laying up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers

Abstract

A method/process for curing imprint on a template prior to contact with a substrate. A curing process is used to adhere the imprint to a wafer or substrate. Monomer is deposited on a template and then partially cured using a UV exposure. The exposure is controlled so that the imprint is cured past the gel point, but still retains a thin liquid layer of uncured monomer at the surface that will bond with the wafer. Further, this partially cured layer enables the alignment adjustments between the template and the substrate to be performed after contact between the two without pulling any monomer out of the features.

Description

  • This application for patent claims priority to U.S. Provisional Patent Application Ser. No. 60/788,778, which is hereby incorporated by reference herein.
  • BACKGROUND INFORMATION
  • The field of the invention relates generally to nano-fabrication of structures. More particularly, the present invention is directed to a method of curing imprint material on the template.
  • Nano-fabrication involves the fabrication of very small structures, e.g., having features on the order of nanometers or smaller. One area in which nano-fabrication has had a sizeable impact is in the processing of integrated circuits. As the semiconductor processing industry continues to strive for larger production yields while increasing the circuits per unit area formed on a substrate, nano-fabrication becomes increasingly important. Nano-fabrication provides greater process control while allowing increased reduction of the minimum feature dimension of the structures formed. Other areas of development in which nano-fabrication has been employed include biotechnology, optical technology, mechanical systems and the like.
  • An exemplary nano-fabrication technique is commonly referred to as imprint lithography. Exemplary imprint lithography processes are described in detail in numerous publications, such as United States patent application publication 2004/0065976 filed as U.S. patent application Ser. No. 10/264,960, entitled, “Method and a Mold to Arrange Features on a Substrate to Replicate Features having Minimal Dimensional Variability”; United States patent application publication 2004/0065252 filed as U.S. patent application Ser. No. 10/264,926, entitled “Method of Forming a Layer on a Substrate to Facilitate Fabrication of Metrology Standards”; and U.S. Pat. No. 6,936,194, entitled “Functional Patterning Material for Imprint Lithography Processes,” all of which are assigned to the assignee of the present invention and all of which are incorporated by reference herein.
  • The fundamental imprint lithography technique disclosed in each of the aforementioned United States patent application publications and United States patent includes formation of a relief pattern in a polymerizable layer and transferring a pattern corresponding to the relief pattern into an underlying substrate. The substrate may be positioned upon a motion stage to obtain a desired position to facilitate patterning thereof. To that end, a template is employed spaced-apart from the substrate with a formable liquid present between the template and the substrate. The liquid is solidified to form a solidified layer that has a pattern recorded therein that is conforming to a shape of the surface of the template in contact with the liquid. The template is then separated from the solidified layer such that the template and the substrate are spaced-apart. The substrate and the solidified layer are then subjected to processes to transfer, into the substrate, a relief image that corresponds to the pattern in the solidified layer.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a simplified side view of a lithographic system having a template spaced-apart from a substrate;
  • FIG. 2 illustrates methods or steps of curing to form a partially cured film;
  • FIG. 3 illustrates methods or steps for forming a thin, gelled monomer film; and
  • FIG. 4 illustrates a process of curing to preserve features before vacuum wiping.
  • DETAILED DESCRIPTION
  • Referring to FIG. 1, a system 8 to form a relief pattern on a substrate 12 includes a stage 10 upon which substrate 12 is supported, and a template 14 having a patterning surface 18 thereon. In a further embodiment, substrate 12 may be coupled to a substrate chuck (not shown), the substrate chuck (not shown) being any chuck including, but not limited to, vacuum and electromagnetic.
  • Template 14 and/or mold 16 may be formed from materials including, but not limited to, fused-silica, quartz, silicon, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, metal, and hardened sapphire. As shown, patterning surface 18 comprises features defined by a plurality of spaced-apart recesses 17 and protrusions 19. However, in a further embodiment, patterning surface 18 may be substantially smooth and/or planar. Patterning surface 18 may define an original pattern that forms the basis of a pattern to be formed on substrate 12.
  • Template 14 may be coupled to an imprint head 20 to facilitate movement of template 14, and therefore, mold 16. In a further embodiment, template 14 may be coupled to a template chuck (not shown), the template chuck (not shown) being any chuck including, but not limited to, vacuum and electromagnetic. A fluid dispense system 22 is coupled to be selectively placed in fluid communication with substrate 12 so as to deposit polymeric material 24 thereon. It should be understood that polymeric material 24 may be deposited using any known technique, e.g., drop dispense, spin-coating, dip coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), and the like.
  • A source 26 of energy 28 is coupled to direct energy 28 along a path 30. Imprint head 20 and stage 10 are configured to arrange mold 16 and substrate 12, respectively, to be in superimposition and disposed in path 30. Either imprint head 20, stage 10, or both vary a distance between mold 16 and substrate 12 to define a desired volume therebetween that is filled by polymeric material 24.
  • Referring to FIG. 1, typically, polymeric material 24 is disposed upon substrate 12 before the desired volume is defined between mold 16 and substrate 12. However, polymeric material 24 may fill the volume after the desired volume has been obtained. After the desired volume is filled with polymeric material 24, source 26 produces energy 28, e.g., broadband energy that causes polymeric material 24 to solidify and/or cross-link conforming to the shape of a surface 25 of substrate 12 and patterning surface 18, defining a patterned layer 50 on substrate 12.
  • The broadband energy may comprise an actinic component including, but not limited to, ultraviolet wavelengths, thermal energy, electromagnetic energy, visible light and the like. The actinic component employed is known to one skilled in the art and typically depends on the material from which imprinting layer 12 is formed. Control of this process may be regulated by a processor 32 that is in data communication with stage 10, imprint head 20, fluid dispense system 22, source 26, operating on a computer readable program stored in memory 34.
  • In imprinting, a monomer can flow out of the active area and create monomer extrusions. The extrusions can impede subsequent imprinting, become a source of particle contamination, and cause comets to form in subsequent spin coating process steps.
  • Further, when attempting to create thin fluid films by a vacuum wiping monomer dispensed on the surface of a template, fluid may be extracted from some features. Also, it has been observed that when a template with a contiguous monomer film was brought into contact with a wafer to form an imprint, some of the monomer contained within the features was drawn out of the features and into the formation of the residual layer. Once the residual layer of fluid surrounding the features had reached equilibrium, fluid began to fill the features that had been evacuated.
  • Disclosed herein is a method/process for curing imprint on a template prior to contact with a substrate. A curing process is used to adhere the imprint to a wafer or substrate. Monomer is deposited on a template and then partially cured using a UV exposure. The exposure is controlled so that the imprint is cured past the gel point, but still retains a thin liquid layer of uncured monomer at the surface that will bond with the wafer. Further, this partially cured layer enables the alignment adjustments between the template and the substrate to be performed after contact between the two without pulling any monomer out of the features.
  • The retention of a thin liquid monomer layer is aided by oxygen poisoning that inhibits curing of monomer exposed to air. The viscosity of the bulk of the monomer is increased by the partial cure slowing any further flow. After the partial cure is complete, the liquid monomer surface is brought into contact with the wafer, and the imprint is fully cured by a second exposure of UV light. The imprint is adhered to the wafer by this curing step.
  • Imprinting in this manner may be achieved in the following ways:
  • Referring to FIG. 2A, a contiguous film of monomer 201 is deposited on the template 202 filling all the features. A blanket UV light exposure 203 may be used to achieve the partial cure. Alternatively, referring to FIG. 2B, a scanning UV light 206 that follows behind the monomer 204 dispenser 207 may be employed to partially cure the monomer shortly after it is deposited on the template 205.
  • Referring to FIG. 3, a contiguous film of monomer 301 is deposited on the template 302 filling all the features. A vacuum wipe 303 may be used to remove excess monomer. A blanket UV light exposure 305 may be used to achieve the partial cure, such as in FIG. 2A. Alternatively, similar to FIG. 2B, a scanning UV light that follows behind the vacuum wipe may be employed to partially cure the monomer shortly after the wipe passes over the template.
  • Referring to FIG. 4, a contiguous film of monomer 401 is deposited on the template 402 filling all the features. A short blanket UV light exposure (not shown) is used to achieve the partial cure (similar to FIG. 2A), such that only the monomer 401 in the template features is gelled. A vacuum wipe 404 is used to remove excess monomer 401.
  • Alternatively, two initiators, A and B, may be incorporated into the monomer (e.g., any of monomers 201, 301, 401). Initiators A and B are sensitive to different wavelengths of UV light. Initiator A is used to achieve the full cure of the imprint in the standard manner, while initiator B is incorporated at a much lower concentration than A, and the partial cure of the imprint is achieved by exposing the monomer with UV light at the wavelength for which initiator B is sensitive. This method may give increased control over the partial cure of the monomer.
  • The material (e.g., any of monomers 201, 301, 401) employed in embodiments of the present invention may be composed of a variety of polymerizable materials. Generally, any photopolymerizable material may be used. Photopolymerizable materials may include a mixture of monomers and a photoinitiator. In some embodiments, the curable liquid may include one or more commercially available negative photoresist materials. Viscosity of the photoresist material may be reduced by diluting the liquid photoresist with a suitable solvent.
  • In an embodiment, a suitable curable liquid (e.g., any of monomers 201, 301, 401) comprises a monomer, a silylated monomer, and an initiator. A crosslinking agent and a dimethyl siloxane derivative may also be included. Monomers (e.g., any of monomers 201, 301, 401) include, but are not limited to, acrylate and methacylate monomers. Examples of monomers (e.g., any of monomers 201, 301, 401) include, but are not limited to, butyl acrylate, methyl acrylate, methyl methacrylate, or mixtures thereof. The monomer makes up approximately 25 to 50% by weight of the curable liquid. The monomer may ensure adequate solubility of the photoinitiator in the curable liquid. The monomer may provide adhesion to an underlying organic transfer layer, when used.
  • The curable liquid may also comprise a silylated monomer. Silylated monomers in general are polymerizable compounds that include a silicon group. Classes of silylated monomers include, but are not limited to, silane acrylyl and silane methacrylyl derivatives. Specific examples include methacryloxypropyl tris(tri-methylsiloxy)silane and (3-acryloxypropyl)tris(tri-methoxysiloxy)-silane. Silylated monomers may be present in amounts from 25 to 50% by weight. The curable liquid may also include a dimethyl siloxane derivative. Examples of dimethyl siloxane derivatives include, but are not limited to, (acryloxypropyl)methylsiloxane dimethylsiloxane copolymer, acryloxypropyl methylsiloxane homopolymer, and acryloxy terminated polydimethylsiloxane. Dimethyl siloxane derivatives are present in amounts from about 0 to 50% by weight. The silylated monomers and the dimethyl siloxane derivatives may impart a high oxygen etch resistance to the cured liquid. Additionally, both the silylated monomers and the dimethyl siloxane derivatives may reduce the surface energy of the cured liquid, therefore increasing the ability of the template to release from the surface. The silylated monomers and dimethyl siloxane derivatives listed herein are all commercially available from Gelest, Inc.
  • Any material that may initiate a free radical reaction may be used as the initiator. For activating light curing of the curable material, the initiator may be a photoinitiator. Examples of initiators include, but are not limited to, alpha-hydroxyketones (e.g., 1-hydroxycyclohexyl phenyl ketone, sold by Ciba-Geigy Specialty Chemical Division as Irgacure 184), and acylphosphine oxide initiators (e.g., 1-henylbis(2,4,6-trimethyl benzoyl) phosphine oxide, sold by Ciba-Geigy Specialty Chemical Division as Irgacure 819.
  • The curable liquid may also comprise a crosslinking agent. Crosslinking agents are monomers that include two or more polymerizable groups. In one embodiment, polyfunctional siloxane derivatives may be used as a crosslinking agent. An example of a polyfunctional siloxane derivative is 1,3-bis(3-methacryloxypropyl)-tetramethyl disiloxane.
  • In one example, a curable liquid may comprise a mixture of 50% by weight of n-butyl acrylate and 50% (3-acryloxypropyl)tris-trimethylsiloxane-silane. To this mixture 3% by weight mixture of a 1:1 Irgacure 819 and Irgacure 184 and 5% of the crosslinker 1,3-bis(3-methacryloxypropyl)-tetramethyl disiloxane may be added. The viscosity of this mixture is less than 30 cps measured at about 25° C.
  • The material may also be the material as described in BAILEY ET AL., Step and Flash Imprint Lithography: Template Surface Treatment and Defect Analysis, Journal of Vacuum Science, B 18(6), pp. 3572-3577 Nov. 1, 2000, which is incorporated by reference herein.
  • The present invention provides a means of preventing material from flowing out of the active area and the features when imprinting. The capillary force exerted on the monomer when it is laminated between the template and wafer is not present in an open film on the template. Hence, the monomer is retained, where it was deposited, within the active area of the template. By partially curing, further flow of the monomer is greatly restricted. The fill time may be reduced to the amount of time required to dispense the monomer and partially cure. The only time-limiting step in imprinting would then be the duration of time required to form a uniform residual layer free of trapped air. Furthermore, previous experiments have shown that rapid, uniform imprints may be created by featureless blank mesa templates and thin fluid residual layers. The process proposed above may transform any template, regardless of features density and size, into a featureless template.
  • Embodiments of the present invention described above are exemplary. Many changes and modifications may be made to the disclosure recited above, while remaining within the scope of the invention. Therefore, the scope of the invention should not be limited by the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.

Claims (19)

1. In a nano-imprint lithography system, a method comprising:
depositing a monomer on a template having a pattern of nano-dimensional features to imprint into the monomer;
curing the monomer with UV light in a manner that leaves a thin layer of the monomer not fully cured, resulting in a partially cured monomer;
contacting a substrate to the partially cured monomer so that the thin layer of the monomer not fully cured bonds to the substrate; and
performing a second curing of the monomer to complete curing of the partially cured monomer.
2. The method as recited in claim 1, further comprising vacuum wiping the monomer after it is deposited on the template to remove excess monomer.
3. The method as recited in claim 1, wherein the monomer is deposited on the template in a scanning manner from one end of the template to the other end, and the UV light is scanned over the monomer as it is deposited in order to cure the monomer.
4. The method as recited in claim 2, wherein the vacuum wiping is performed in a scanning manner from one end of the template to the other end, and the curing step is performed by scanning the UV light over the monomer by following the scanning of the vacuum wiping.
5. The method as recited in claim 1, wherein the monomer is deposited on the template so that all of the nano-dimensional features are filled with the monomer.
6. The method as recited in claim 1, wherein the monomer comprises two separate initiators, whereby a first of the two separate initiators cures at a faster rate than a second of the two separate initiators.
7. The method as recited in claim 6, wherein the first curing process partially cures the monomer by curing a portion of the monomer containing the first of the two separate initiators.
8. A nano-imprint lithography system, comprising:
a template having a pattern of nano-dimensional features;
a dispensor for depositing a monomer on the template, wherein the pattern is to be imprinted into the monomer;
a UV light source for curing the monomer with UV light in a manner that leaves a thin layer of the monomer not fully cured, resulting in a partially cured monomer;
means for contacting a substrate to the partially cured monomer so that the thin layer of the monomer not fully cured bonds to the substrate; and
means for performing a second curing of the monomer to complete curing of the partially cured monomer.
9. The system as recited in claim 8, further comprising a vacuum wiper for removing excess monomer after it is deposited on the template.
10. The system as recited in claim 8, wherein the monomer is deposited on the template in a scanning manner from one end of the template to the other end, and the UV light is scanned over the monomer as it is deposited in order to cure the monomer.
11. The system as recited in claim 8, wherein the monomer comprises two separate initiators, whereby a first of the two separate initiators cures at a faster rate than a second of the two separate initiators.
12. The system as recited in claim 11, wherein the first curing process partially cures the monomer by curing a portion of the monomer containing the first of the two separate initiators.
13. In a nano-imprint lithography system, a method comprising:
depositing a monomer on a template having a pattern of nano-dimensional features to imprint into the monomer, wherein the monomer comprises two separate initiators, whereby a first of the two separate initiators cures at a faster rate than a second of the two separate initiators;
curing the monomer with UV light in a manner that cures a portion of the monomer containing the first of the two separate initiators leaving a thin layer of the monomer not fully cured, resulting in a partially cured monomer;
contacting a substrate to the partially cured monomer so that the thin layer of the monomer not fully cured bonds to the substrate; and
performing a second curing of the monomer with the UV light in a manner that cures a portion of the monomer containing the second of the two separate initiators, resulting in a fully cured monomer.
14. The method as recited in claim 13, further comprising vacuum wiping the monomer after it is deposited on the template to remove excess monomer.
15. The method as recited in claim 13, wherein the monomer is deposited on the template in a scanning manner from one end of the template to the other end, and the UV light is scanned over the monomer as it is deposited in order to cure the monomer.
16. The method as recited in claim 14, wherein the vacuum wiping is performed in a scanning manner from one end of the template to the other end, and the curing step is performed by scanning the UV light over the monomer by following the scanning of the vacuum wiping.
17. A nano-imprint lithography system, comprising:
a template having a pattern of nano-dimensional features;
a monomer comprising two separate initiators, whereby a first of the two separate initiators cures at a faster rate than a second of the two separate initiators;
a dispenser for depositing the monomer on the template, wherein the pattern is to be imprinted into the monomer;
a UV light source for curing the monomer with UV light in a manner that cures a portion of the monomer containing the first of the two separate initiators leaving a thin layer of the monomer not fully cured, resulting in a partially cured monomer;
means for contacting a substrate to the partially cured monomer so that the thin layer of the monomer not fully cured bonds to the substrate; and
means for performing a second curing of the monomer with the UV light in a manner that cures a portion of the monomer containing the second of the two separate initiators, resulting in a fully cured monomer.
18. The system as recited in claim 17, further comprising a vacuum wiper for removing excess monomer after it is deposited on the template.
19. The system as recited in claim 17, wherein the monomer is deposited on the template in a scanning manner from one end of the template to the other end, and the UV light is scanned over the monomer as it is deposited in order to cure the monomer.
US11/694,193 2006-04-03 2007-03-30 Preserving Filled Features when Vacuum Wiping Abandoned US20070228608A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US78877806P true 2006-04-03 2006-04-03
US11/694,193 US20070228608A1 (en) 2006-04-03 2007-03-30 Preserving Filled Features when Vacuum Wiping

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/694,193 US20070228608A1 (en) 2006-04-03 2007-03-30 Preserving Filled Features when Vacuum Wiping
US12/488,642 US8021594B2 (en) 2005-05-11 2009-06-22 Preserving filled features when vacuum wiping

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/127,041 Continuation-In-Part US7727453B2 (en) 2002-07-11 2005-05-11 Step and repeat imprint lithography processes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/488,642 Continuation US8021594B2 (en) 2002-07-11 2009-06-22 Preserving filled features when vacuum wiping

Publications (1)

Publication Number Publication Date
US20070228608A1 true US20070228608A1 (en) 2007-10-04

Family

ID=39402150

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/694,193 Abandoned US20070228608A1 (en) 2006-04-03 2007-03-30 Preserving Filled Features when Vacuum Wiping
US12/488,642 Active US8021594B2 (en) 2002-07-11 2009-06-22 Preserving filled features when vacuum wiping

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/488,642 Active US8021594B2 (en) 2002-07-11 2009-06-22 Preserving filled features when vacuum wiping

Country Status (3)

Country Link
US (2) US20070228608A1 (en)
TW (1) TW200745744A (en)
WO (1) WO2008060322A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080174046A1 (en) * 2002-07-11 2008-07-24 Molecular Imprints Inc. Capillary Imprinting Technique
US20080303187A1 (en) * 2006-12-29 2008-12-11 Molecular Imprints, Inc. Imprint Fluid Control
US20090014917A1 (en) * 2007-07-10 2009-01-15 Molecular Imprints, Inc. Drop Pattern Generation for Imprint Lithography
US20090115110A1 (en) * 2007-11-02 2009-05-07 Molecular Imprints, Inc. Drop Pattern Generation for Imprint Lithography
US20090148619A1 (en) * 2007-12-05 2009-06-11 Molecular Imprints, Inc. Controlling Thickness of Residual Layer
US20090200710A1 (en) * 2008-02-08 2009-08-13 Molecular Imprints, Inc. Extrusion reduction in imprint lithography
WO2009136861A1 (en) * 2008-05-05 2009-11-12 Metalform Asia Pte Ltd Apparatus and method for depositing and curing flowable material
US7691313B2 (en) 2002-11-13 2010-04-06 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
US20100096764A1 (en) * 2008-10-20 2010-04-22 Molecular Imprints, Inc. Gas Environment for Imprint Lithography
US20100098859A1 (en) * 2008-10-21 2010-04-22 Molecular Imprints, Inc. Drop Pattern Generation with Edge Weighting
US7981481B2 (en) 2004-09-23 2011-07-19 Molecular Imprints, Inc. Method for controlling distribution of fluid components on a body
US8215946B2 (en) 2006-05-18 2012-07-10 Molecular Imprints, Inc. Imprint lithography system and method
EP2556532A1 (en) * 2010-04-07 2013-02-13 FUJIFILM Corporation Curable composition for imprints and producing method of polymerizable monomer for imprints
CN102944976A (en) * 2012-11-02 2013-02-27 清华大学 Ultraviolet nano imprinting system
US8586126B2 (en) 2008-10-21 2013-11-19 Molecular Imprints, Inc. Robust optimization to generate drop patterns in imprint lithography which are tolerant of variations in drop volume and drop placement
WO2015078637A1 (en) * 2013-11-29 2015-06-04 Ev Group E. Thallner Gmbh Method and device for embossing structures
US20150240015A1 (en) * 2012-10-22 2015-08-27 Soken Chemical & Engineering Co., Ltd. Photocurable Resin Composition for Imprinting, Method for Producing Imprinting, Mold and Imprinting Mold

Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US504793A (en) * 1893-09-12 Frederick henry sprang
US3783520A (en) * 1970-09-28 1974-01-08 Bell Telephone Labor Inc High accuracy alignment procedure utilizing moire patterns
US4326805A (en) * 1980-04-11 1982-04-27 Bell Telephone Laboratories, Incorporated Method and apparatus for aligning mask and wafer members
US4512848A (en) * 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
US4600309A (en) * 1982-12-30 1986-07-15 Thomson-Csf Process and apparatus for theoptical alignment of patterns in two close-up planes in an exposure means incorporating a divergent radiation source
US4731155A (en) * 1987-04-15 1988-03-15 General Electric Company Process for forming a lithographic mask
US4848911A (en) * 1986-06-11 1989-07-18 Kabushiki Kaisha Toshiba Method for aligning first and second objects, relative to each other, and apparatus for practicing this method
US4929083A (en) * 1986-06-19 1990-05-29 Xerox Corporation Focus and overlay characterization and optimization for photolithographic exposure
US4959252A (en) * 1986-09-29 1990-09-25 Rhone-Poulenc Chimie Highly oriented thermotropic optical disc member
US5028366A (en) * 1988-01-12 1991-07-02 Air Products And Chemicals, Inc. Water based mold release compositions for making molded polyurethane foam
US5110514A (en) * 1989-05-01 1992-05-05 Soane Technologies, Inc. Controlled casting of a shrinkable material
US5148037A (en) * 1988-09-09 1992-09-15 Canon Kabushiki Kaisha Position detecting method and apparatus
US5148036A (en) * 1989-07-18 1992-09-15 Canon Kabushiki Kaisha Multi-axis wafer position detecting system using a mark having optical power
US5151754A (en) * 1989-10-06 1992-09-29 Kabushiki Kaisha Toshiba Method and an apparatus for measuring a displacement between two objects and a method and an apparatus for measuring a gap distance between two objects
US5204739A (en) * 1992-02-07 1993-04-20 Karl Suss America, Inc. Proximity mask alignment using a stored video image
US5218193A (en) * 1991-02-16 1993-06-08 Sumitomo Heavy Industries Co., Ltd. Double-focus measurement apparatus utilizing chromatic aberration by having first and second bodies illuminated respectively by a single wavelength ray and a ray having a plurality of wavelengths
US5240550A (en) * 1990-09-21 1993-08-31 U.S. Philips Corp. Method of forming at least one groove in a substrate layer
US5331371A (en) * 1990-09-26 1994-07-19 Canon Kabushiki Kaisha Alignment and exposure method
US5414514A (en) * 1993-06-01 1995-05-09 Massachusetts Institute Of Technology On-axis interferometric alignment of plates using the spatial phase of interference patterns
US5425848A (en) * 1993-03-16 1995-06-20 U.S. Philips Corporation Method of providing a patterned relief of cured photoresist on a flat substrate surface and device for carrying out such a method
US5452090A (en) * 1992-04-29 1995-09-19 International Business Machines Corporation CCD based confocal filtering for improved accuracy in x-ray proximity alignment
US5480047A (en) * 1993-06-04 1996-01-02 Sharp Kabushiki Kaisha Method for forming a fine resist pattern
US5508527A (en) * 1992-01-31 1996-04-16 Canon Kabushiki Kaisha Method of detecting positional displacement between mask and wafer, and exposure apparatus adopting the method
US5512131A (en) * 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US5545367A (en) * 1992-04-15 1996-08-13 Soane Technologies, Inc. Rapid prototype three dimensional stereolithography
US5601641A (en) * 1992-07-21 1997-02-11 Tse Industries, Inc. Mold release composition with polybutadiene and method of coating a mold core
US5633505A (en) * 1995-09-29 1997-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor wafer incorporating marks for inspecting first layer overlay shift in global alignment process
US5669303A (en) * 1996-03-04 1997-09-23 Motorola Apparatus and method for stamping a surface
US5737064A (en) * 1994-03-15 1998-04-07 Matsushita Electric Industrial Co., Ltd. Exposure apparatus for transferring a mask pattern onto a substrate
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US5776748A (en) * 1993-10-04 1998-07-07 President And Fellows Of Harvard College Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor
US5858580A (en) * 1997-09-17 1999-01-12 Numerical Technologies, Inc. Phase shifting circuit manufacture method and apparatus
US5877861A (en) * 1997-11-14 1999-03-02 International Business Machines Corporation Method for overlay control system
US5877036A (en) * 1996-02-29 1999-03-02 Nec Corporation Overlay measuring method using correlation function
US5888650A (en) * 1996-06-03 1999-03-30 Minnesota Mining And Manufacturing Company Temperature-responsive adhesive article
US6046056A (en) * 1996-06-28 2000-04-04 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US6049373A (en) * 1997-02-28 2000-04-11 Sumitomo Heavy Industries, Ltd. Position detection technique applied to proximity exposure
US6074827A (en) * 1996-07-30 2000-06-13 Aclara Biosciences, Inc. Microfluidic method for nucleic acid purification and processing
US6088103A (en) * 1995-05-31 2000-07-11 Massachusetts Institute Of Technology Optical interference alignment and gapping apparatus
US6218316B1 (en) * 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6274294B1 (en) * 1999-02-03 2001-08-14 Electroformed Stents, Inc. Cylindrical photolithography exposure process and apparatus
US6334960B1 (en) * 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US6348999B1 (en) * 1995-05-10 2002-02-19 Epigem Limited Micro relief element and preparation thereof
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
US20020042027A1 (en) * 1998-10-09 2002-04-11 Chou Stephen Y. Microscale patterning and articles formed thereby
US6383888B1 (en) * 2001-04-18 2002-05-07 Advanced Micro Devices, Inc. Method and apparatus for selecting wafer alignment marks based on film thickness variation
US6388755B1 (en) * 1998-12-03 2002-05-14 Advanced Optical Technologies, Inc. Wireless position and orientation detecting system
US6391217B2 (en) * 1999-12-23 2002-05-21 University Of Massachusetts Methods and apparatus for forming submicron patterns on films
US6420892B1 (en) * 1998-05-26 2002-07-16 Micron Technology, Inc. Calibration target for calibrating semiconductor wafer test systems
US20030025895A1 (en) * 2001-08-03 2003-02-06 Michael Binnard Apparatus and methods for detecting tool-induced shift in microlithography apparatus
US6518189B1 (en) * 1995-11-15 2003-02-11 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US6517977B2 (en) * 2001-03-28 2003-02-11 Motorola, Inc. Lithographic template and method of formation and use
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6522411B1 (en) * 1999-05-25 2003-02-18 Massachusetts Institute Of Technology Optical gap measuring apparatus and method having two-dimensional grating mark with chirp in one direction
US20030034329A1 (en) * 1998-06-30 2003-02-20 Chou Stephen Y. Lithographic method for molding pattern with nanoscale depth
US20030062334A1 (en) * 2001-09-25 2003-04-03 Lee Hong Hie Method for forming a micro-pattern on a substrate by using capillary force
US20030080472A1 (en) * 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method with bonded release layer for molding small patterns
US20030081193A1 (en) * 2001-06-01 2003-05-01 White Donald L. Holder, system, and process for improving overlay in lithography
US6580172B2 (en) * 2001-03-02 2003-06-17 Motorola, Inc. Lithographic template and method of formation and use
US6580505B1 (en) * 2000-06-22 2003-06-17 Kla-Tencor Corporation Overlay alignment mark design
US20030112421A1 (en) * 1999-07-01 2003-06-19 Asml Netherlands B.V. Apparatus and method of image enhancement through spatial filtering
US20030137494A1 (en) * 2000-05-01 2003-07-24 Tulbert David J. Human-machine interface
US20040008334A1 (en) * 2002-07-11 2004-01-15 Sreenivasan Sidlgata V. Step and repeat imprint lithography systems
US20040033515A1 (en) * 2002-04-16 2004-02-19 Han Cao Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof
US6696220B2 (en) * 2000-10-12 2004-02-24 Board Of Regents, The University Of Texas System Template for room temperature, low pressure micro-and nano-imprint lithography
US20040036201A1 (en) * 2000-07-18 2004-02-26 Princeton University Methods and apparatus of field-induced pressure imprint lithography
US20040046288A1 (en) * 2000-07-18 2004-03-11 Chou Stephen Y. Laset assisted direct imprint lithography
US20040110856A1 (en) * 2002-12-04 2004-06-10 Young Jung Gun Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure
US20040131718A1 (en) * 2000-07-18 2004-07-08 Princeton University Lithographic apparatus for fluid pressure imprint lithography
US20040137734A1 (en) * 1995-11-15 2004-07-15 Princeton University Compositions and processes for nanoimprinting
US20040156108A1 (en) * 2001-10-29 2004-08-12 Chou Stephen Y. Articles comprising nanoscale patterns with reduced edge roughness and methods of making same
US6776094B1 (en) * 1993-10-04 2004-08-17 President & Fellows Of Harvard College Kit For Microcontact Printing
US6849558B2 (en) * 2002-05-22 2005-02-01 The Board Of Trustees Of The Leland Stanford Junior University Replication and transfer of microstructures and nanostructures
US20050037143A1 (en) * 2000-07-18 2005-02-17 Chou Stephen Y. Imprint lithography with improved monitoring and control and apparatus therefor
US20050051742A1 (en) * 1995-02-01 2005-03-10 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
US6873087B1 (en) * 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
US20050084613A1 (en) * 2003-08-19 2005-04-21 Jian Wang Sub-micron-scale patterning method and system
US6902853B2 (en) * 2000-07-16 2005-06-07 Board Of Regents, The University Of Texas System Dual wavelength method of determining a relative position of a substrate and a template
US6908861B2 (en) * 2002-07-11 2005-06-21 Molecular Imprints, Inc. Method for imprint lithography using an electric field
US6916584B2 (en) * 2002-08-01 2005-07-12 Molecular Imprints, Inc. Alignment methods for imprint lithography
US6932934B2 (en) * 2002-07-11 2005-08-23 Molecular Imprints, Inc. Formation of discontinuous films during an imprint lithography process
US20060019183A1 (en) * 2004-07-20 2006-01-26 Molecular Imprints, Inc. Imprint alignment method, system, and template
US20060035086A1 (en) * 2002-10-17 2006-02-16 Qinetiq Limited Liquid crystal alignment layer
US7027156B2 (en) * 2002-08-01 2006-04-11 Molecular Imprints, Inc. Scatterometry alignment for imprint lithography
US20060115999A1 (en) * 2004-12-01 2006-06-01 Molecular Imprints, Inc. Methods of exposure for the purpose of thermal management for imprint lithography processes
US20060114450A1 (en) * 2004-11-30 2006-06-01 Molecular Imprints, Inc. Interferometric analysis method for the manufacture of nano-scale devices
US7077992B2 (en) * 2002-07-11 2006-07-18 Molecular Imprints, Inc. Step and repeat imprint lithography processes
US20090027603A1 (en) * 2005-02-03 2009-01-29 Samulski Edward T Low Surface Energy Polymeric Material for Use in Liquid Crystal Displays

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644396A (en) * 1968-06-27 1972-02-22 Cpc International Inc Chrysanthemum acid esters of 1-substituted pyrrolidinols
US5096401A (en) * 1989-06-26 1992-03-17 Canon Kabushiki Kaisha Apparatus for producing a substrate sheet for optical recording media
US5217654A (en) * 1992-01-30 1993-06-08 The C. A. Lawton Company Two-stage mat forming preforming and molding process
JPH08187927A (en) * 1994-11-09 1996-07-23 Nippon Oil Co Ltd Transfer method by printing
US6964793B2 (en) * 2002-05-16 2005-11-15 Board Of Regents, The University Of Texas System Method for fabricating nanoscale patterns in light curable compositions using an electric field
US7641840B2 (en) * 2002-11-13 2010-01-05 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
KR20140100980A (en) * 2003-12-19 2014-08-18 더 유니버시티 오브 노쓰 캐롤라이나 엣 채플 힐 Methods for fabricating isolated micro- and nano- structures using soft or imprint lithography
KR20070001956A (en) * 2004-01-23 2007-01-04 유니버시티 오브 매사추세츠 Structured materials and methods
US7927090B2 (en) * 2004-08-10 2011-04-19 Asml Netherlands B.V. Imprint lithographic apparatus, device manufacturing method and device manufactured thereby
US7654816B2 (en) * 2004-10-07 2010-02-02 Hewlett-Packard Development Company, L.P. Lithographic mask alignment
EP1959299B1 (en) * 2005-06-10 2012-12-26 Obducat AB Pattern replication with intermediate stamp
US7789503B2 (en) * 2005-08-17 2010-09-07 Fujifilm Corporation Image forming apparatus and image forming method
US7641467B2 (en) * 2007-05-02 2010-01-05 Asml Netherlands B.V. Imprint lithography
JP4406452B2 (en) * 2007-09-27 2010-01-27 株式会社日立製作所 Belt-shaped mold and nanoimprint apparatus using the same
US20100140850A1 (en) * 2008-12-04 2010-06-10 Objet Geometries Ltd. Compositions for 3D printing
US8342669B2 (en) * 2009-09-18 2013-01-01 Xerox Corporation Reactive ink components and methods for forming images using reactive inks

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US504793A (en) * 1893-09-12 Frederick henry sprang
US3783520A (en) * 1970-09-28 1974-01-08 Bell Telephone Labor Inc High accuracy alignment procedure utilizing moire patterns
US4326805A (en) * 1980-04-11 1982-04-27 Bell Telephone Laboratories, Incorporated Method and apparatus for aligning mask and wafer members
US4600309A (en) * 1982-12-30 1986-07-15 Thomson-Csf Process and apparatus for theoptical alignment of patterns in two close-up planes in an exposure means incorporating a divergent radiation source
US4512848A (en) * 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
US4848911A (en) * 1986-06-11 1989-07-18 Kabushiki Kaisha Toshiba Method for aligning first and second objects, relative to each other, and apparatus for practicing this method
US4929083A (en) * 1986-06-19 1990-05-29 Xerox Corporation Focus and overlay characterization and optimization for photolithographic exposure
US4959252A (en) * 1986-09-29 1990-09-25 Rhone-Poulenc Chimie Highly oriented thermotropic optical disc member
US4731155A (en) * 1987-04-15 1988-03-15 General Electric Company Process for forming a lithographic mask
US5028366A (en) * 1988-01-12 1991-07-02 Air Products And Chemicals, Inc. Water based mold release compositions for making molded polyurethane foam
US5148037A (en) * 1988-09-09 1992-09-15 Canon Kabushiki Kaisha Position detecting method and apparatus
US5110514A (en) * 1989-05-01 1992-05-05 Soane Technologies, Inc. Controlled casting of a shrinkable material
US5148036A (en) * 1989-07-18 1992-09-15 Canon Kabushiki Kaisha Multi-axis wafer position detecting system using a mark having optical power
US5151754A (en) * 1989-10-06 1992-09-29 Kabushiki Kaisha Toshiba Method and an apparatus for measuring a displacement between two objects and a method and an apparatus for measuring a gap distance between two objects
US5240550A (en) * 1990-09-21 1993-08-31 U.S. Philips Corp. Method of forming at least one groove in a substrate layer
US5331371A (en) * 1990-09-26 1994-07-19 Canon Kabushiki Kaisha Alignment and exposure method
US5218193A (en) * 1991-02-16 1993-06-08 Sumitomo Heavy Industries Co., Ltd. Double-focus measurement apparatus utilizing chromatic aberration by having first and second bodies illuminated respectively by a single wavelength ray and a ray having a plurality of wavelengths
US5508527A (en) * 1992-01-31 1996-04-16 Canon Kabushiki Kaisha Method of detecting positional displacement between mask and wafer, and exposure apparatus adopting the method
US5204739A (en) * 1992-02-07 1993-04-20 Karl Suss America, Inc. Proximity mask alignment using a stored video image
US5545367A (en) * 1992-04-15 1996-08-13 Soane Technologies, Inc. Rapid prototype three dimensional stereolithography
US5452090A (en) * 1992-04-29 1995-09-19 International Business Machines Corporation CCD based confocal filtering for improved accuracy in x-ray proximity alignment
US5601641A (en) * 1992-07-21 1997-02-11 Tse Industries, Inc. Mold release composition with polybutadiene and method of coating a mold core
US5425848A (en) * 1993-03-16 1995-06-20 U.S. Philips Corporation Method of providing a patterned relief of cured photoresist on a flat substrate surface and device for carrying out such a method
US5414514A (en) * 1993-06-01 1995-05-09 Massachusetts Institute Of Technology On-axis interferometric alignment of plates using the spatial phase of interference patterns
US5480047A (en) * 1993-06-04 1996-01-02 Sharp Kabushiki Kaisha Method for forming a fine resist pattern
US5776748A (en) * 1993-10-04 1998-07-07 President And Fellows Of Harvard College Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor
US5512131A (en) * 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US6776094B1 (en) * 1993-10-04 2004-08-17 President & Fellows Of Harvard College Kit For Microcontact Printing
US5737064A (en) * 1994-03-15 1998-04-07 Matsushita Electric Industrial Co., Ltd. Exposure apparatus for transferring a mask pattern onto a substrate
US20050051742A1 (en) * 1995-02-01 2005-03-10 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
US6348999B1 (en) * 1995-05-10 2002-02-19 Epigem Limited Micro relief element and preparation thereof
US6088103A (en) * 1995-05-31 2000-07-11 Massachusetts Institute Of Technology Optical interference alignment and gapping apparatus
US5633505A (en) * 1995-09-29 1997-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor wafer incorporating marks for inspecting first layer overlay shift in global alignment process
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US6518189B1 (en) * 1995-11-15 2003-02-11 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US20040137734A1 (en) * 1995-11-15 2004-07-15 Princeton University Compositions and processes for nanoimprinting
US5877036A (en) * 1996-02-29 1999-03-02 Nec Corporation Overlay measuring method using correlation function
US5669303A (en) * 1996-03-04 1997-09-23 Motorola Apparatus and method for stamping a surface
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
US5888650A (en) * 1996-06-03 1999-03-30 Minnesota Mining And Manufacturing Company Temperature-responsive adhesive article
US6046056A (en) * 1996-06-28 2000-04-04 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US6074827A (en) * 1996-07-30 2000-06-13 Aclara Biosciences, Inc. Microfluidic method for nucleic acid purification and processing
US6049373A (en) * 1997-02-28 2000-04-11 Sumitomo Heavy Industries, Ltd. Position detection technique applied to proximity exposure
US5858580A (en) * 1997-09-17 1999-01-12 Numerical Technologies, Inc. Phase shifting circuit manufacture method and apparatus
US5877861A (en) * 1997-11-14 1999-03-02 International Business Machines Corporation Method for overlay control system
US6420892B1 (en) * 1998-05-26 2002-07-16 Micron Technology, Inc. Calibration target for calibrating semiconductor wafer test systems
US20030034329A1 (en) * 1998-06-30 2003-02-20 Chou Stephen Y. Lithographic method for molding pattern with nanoscale depth
US20020042027A1 (en) * 1998-10-09 2002-04-11 Chou Stephen Y. Microscale patterning and articles formed thereby
US6713238B1 (en) * 1998-10-09 2004-03-30 Stephen Y. Chou Microscale patterning and articles formed thereby
US20040118809A1 (en) * 1998-10-09 2004-06-24 Chou Stephen Y. Microscale patterning and articles formed thereby
US6218316B1 (en) * 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6388755B1 (en) * 1998-12-03 2002-05-14 Advanced Optical Technologies, Inc. Wireless position and orientation detecting system
US6274294B1 (en) * 1999-02-03 2001-08-14 Electroformed Stents, Inc. Cylindrical photolithography exposure process and apparatus
US6334960B1 (en) * 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US6522411B1 (en) * 1999-05-25 2003-02-18 Massachusetts Institute Of Technology Optical gap measuring apparatus and method having two-dimensional grating mark with chirp in one direction
US20030112421A1 (en) * 1999-07-01 2003-06-19 Asml Netherlands B.V. Apparatus and method of image enhancement through spatial filtering
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6873087B1 (en) * 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
US6391217B2 (en) * 1999-12-23 2002-05-21 University Of Massachusetts Methods and apparatus for forming submicron patterns on films
US20030137494A1 (en) * 2000-05-01 2003-07-24 Tulbert David J. Human-machine interface
US6580505B1 (en) * 2000-06-22 2003-06-17 Kla-Tencor Corporation Overlay alignment mark design
US7186483B2 (en) * 2000-07-16 2007-03-06 Board Of Regents, The University Of Texas System Method of determining alignment of a template and a substrate having a liquid disposed therebetween
US6921615B2 (en) * 2000-07-16 2005-07-26 Board Of Regents, The University Of Texas System High-resolution overlay alignment methods for imprint lithography
US6902853B2 (en) * 2000-07-16 2005-06-07 Board Of Regents, The University Of Texas System Dual wavelength method of determining a relative position of a substrate and a template
US6986975B2 (en) * 2000-07-16 2006-01-17 Board Of Regents, The University Of Texas System Method of aligning a template with a substrate employing moire patterns
US6916585B2 (en) * 2000-07-16 2005-07-12 Board Of Regents, The University Of Texas Systems Method of varying template dimensions to achieve alignment during imprint lithography
US20040036201A1 (en) * 2000-07-18 2004-02-26 Princeton University Methods and apparatus of field-induced pressure imprint lithography
US20040046288A1 (en) * 2000-07-18 2004-03-11 Chou Stephen Y. Laset assisted direct imprint lithography
US20050037143A1 (en) * 2000-07-18 2005-02-17 Chou Stephen Y. Imprint lithography with improved monitoring and control and apparatus therefor
US20040131718A1 (en) * 2000-07-18 2004-07-08 Princeton University Lithographic apparatus for fluid pressure imprint lithography
US6696220B2 (en) * 2000-10-12 2004-02-24 Board Of Regents, The University Of Texas System Template for room temperature, low pressure micro-and nano-imprint lithography
US6580172B2 (en) * 2001-03-02 2003-06-17 Motorola, Inc. Lithographic template and method of formation and use
US6517977B2 (en) * 2001-03-28 2003-02-11 Motorola, Inc. Lithographic template and method of formation and use
US6383888B1 (en) * 2001-04-18 2002-05-07 Advanced Micro Devices, Inc. Method and apparatus for selecting wafer alignment marks based on film thickness variation
US20030081193A1 (en) * 2001-06-01 2003-05-01 White Donald L. Holder, system, and process for improving overlay in lithography
US6678038B2 (en) * 2001-08-03 2004-01-13 Nikon Corporation Apparatus and methods for detecting tool-induced shift in microlithography apparatus
US20030025895A1 (en) * 2001-08-03 2003-02-06 Michael Binnard Apparatus and methods for detecting tool-induced shift in microlithography apparatus
US20030062334A1 (en) * 2001-09-25 2003-04-03 Lee Hong Hie Method for forming a micro-pattern on a substrate by using capillary force
US20030080471A1 (en) * 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method for molding pattern with nanoscale features
US20040156108A1 (en) * 2001-10-29 2004-08-12 Chou Stephen Y. Articles comprising nanoscale patterns with reduced edge roughness and methods of making same
US20030080472A1 (en) * 2001-10-29 2003-05-01 Chou Stephen Y. Lithographic method with bonded release layer for molding small patterns
US20040033515A1 (en) * 2002-04-16 2004-02-19 Han Cao Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof
US6849558B2 (en) * 2002-05-22 2005-02-01 The Board Of Trustees Of The Leland Stanford Junior University Replication and transfer of microstructures and nanostructures
US20060062867A1 (en) * 2002-07-11 2006-03-23 Molecular Imprints, Inc. Formation of discontinuous films during an imprint lithography process
US6900881B2 (en) * 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US7077992B2 (en) * 2002-07-11 2006-07-18 Molecular Imprints, Inc. Step and repeat imprint lithography processes
US20040008334A1 (en) * 2002-07-11 2004-01-15 Sreenivasan Sidlgata V. Step and repeat imprint lithography systems
US6932934B2 (en) * 2002-07-11 2005-08-23 Molecular Imprints, Inc. Formation of discontinuous films during an imprint lithography process
US6908861B2 (en) * 2002-07-11 2005-06-21 Molecular Imprints, Inc. Method for imprint lithography using an electric field
US20060077374A1 (en) * 2002-07-11 2006-04-13 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US6916584B2 (en) * 2002-08-01 2005-07-12 Molecular Imprints, Inc. Alignment methods for imprint lithography
US7027156B2 (en) * 2002-08-01 2006-04-11 Molecular Imprints, Inc. Scatterometry alignment for imprint lithography
US20060035086A1 (en) * 2002-10-17 2006-02-16 Qinetiq Limited Liquid crystal alignment layer
US20040110856A1 (en) * 2002-12-04 2004-06-10 Young Jung Gun Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure
US20050084613A1 (en) * 2003-08-19 2005-04-21 Jian Wang Sub-micron-scale patterning method and system
US20060019183A1 (en) * 2004-07-20 2006-01-26 Molecular Imprints, Inc. Imprint alignment method, system, and template
US20060114450A1 (en) * 2004-11-30 2006-06-01 Molecular Imprints, Inc. Interferometric analysis method for the manufacture of nano-scale devices
US20060115999A1 (en) * 2004-12-01 2006-06-01 Molecular Imprints, Inc. Methods of exposure for the purpose of thermal management for imprint lithography processes
US20090027603A1 (en) * 2005-02-03 2009-01-29 Samulski Edward T Low Surface Energy Polymeric Material for Use in Liquid Crystal Displays

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7708926B2 (en) 2002-07-11 2010-05-04 Molecular Imprints, Inc. Capillary imprinting technique
US20080174046A1 (en) * 2002-07-11 2008-07-24 Molecular Imprints Inc. Capillary Imprinting Technique
US7691313B2 (en) 2002-11-13 2010-04-06 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
US7981481B2 (en) 2004-09-23 2011-07-19 Molecular Imprints, Inc. Method for controlling distribution of fluid components on a body
US8215946B2 (en) 2006-05-18 2012-07-10 Molecular Imprints, Inc. Imprint lithography system and method
US20080303187A1 (en) * 2006-12-29 2008-12-11 Molecular Imprints, Inc. Imprint Fluid Control
US20090014917A1 (en) * 2007-07-10 2009-01-15 Molecular Imprints, Inc. Drop Pattern Generation for Imprint Lithography
US20090115110A1 (en) * 2007-11-02 2009-05-07 Molecular Imprints, Inc. Drop Pattern Generation for Imprint Lithography
US8119052B2 (en) 2007-11-02 2012-02-21 Molecular Imprints, Inc. Drop pattern generation for imprint lithography
US20090148619A1 (en) * 2007-12-05 2009-06-11 Molecular Imprints, Inc. Controlling Thickness of Residual Layer
US8361371B2 (en) 2008-02-08 2013-01-29 Molecular Imprints, Inc. Extrusion reduction in imprint lithography
US20090200710A1 (en) * 2008-02-08 2009-08-13 Molecular Imprints, Inc. Extrusion reduction in imprint lithography
US20110135841A1 (en) * 2008-05-05 2011-06-09 Gslbu Singapore Pte Ltd. Apparatus and method for depositing and curing flowable material
WO2009136861A1 (en) * 2008-05-05 2009-11-12 Metalform Asia Pte Ltd Apparatus and method for depositing and curing flowable material
US20100096764A1 (en) * 2008-10-20 2010-04-22 Molecular Imprints, Inc. Gas Environment for Imprint Lithography
US8512797B2 (en) 2008-10-21 2013-08-20 Molecular Imprints, Inc. Drop pattern generation with edge weighting
US8586126B2 (en) 2008-10-21 2013-11-19 Molecular Imprints, Inc. Robust optimization to generate drop patterns in imprint lithography which are tolerant of variations in drop volume and drop placement
US20100098859A1 (en) * 2008-10-21 2010-04-22 Molecular Imprints, Inc. Drop Pattern Generation with Edge Weighting
EP2556532A1 (en) * 2010-04-07 2013-02-13 FUJIFILM Corporation Curable composition for imprints and producing method of polymerizable monomer for imprints
EP2556532A4 (en) * 2010-04-07 2014-08-13 Fujifilm Corp Curable composition for imprints and producing method of polymerizable monomer for imprints
US20150240015A1 (en) * 2012-10-22 2015-08-27 Soken Chemical & Engineering Co., Ltd. Photocurable Resin Composition for Imprinting, Method for Producing Imprinting, Mold and Imprinting Mold
CN102944976A (en) * 2012-11-02 2013-02-27 清华大学 Ultraviolet nano imprinting system
WO2015078637A1 (en) * 2013-11-29 2015-06-04 Ev Group E. Thallner Gmbh Method and device for embossing structures
CN105745575A (en) * 2013-11-29 2016-07-06 Ev 集团 E·索尔纳有限责任公司 Method and device for embossing structures
JP2017500738A (en) * 2013-11-29 2017-01-05 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method and apparatus for embossing a structure
US10088746B2 (en) 2013-11-29 2018-10-02 Ev Group E. Thallner Gmbh Method and device for embossing structures
DE102013113241B4 (en) 2013-11-29 2019-02-21 Ev Group E. Thallner Gmbh A method for embossing structures

Also Published As

Publication number Publication date
WO2008060322A2 (en) 2008-05-22
TW200745744A (en) 2007-12-16
US20090256289A1 (en) 2009-10-15
WO2008060322A3 (en) 2008-11-13
US8021594B2 (en) 2011-09-20

Similar Documents

Publication Publication Date Title
US7435074B2 (en) Method for fabricating dual damascence structures using photo-imprint lithography, methods for fabricating imprint lithography molds for dual damascene structures, materials for imprintable dielectrics and equipment for photo-imprint lithography used in dual damascence patterning
US6900881B2 (en) Step and repeat imprint lithography systems
Kooy et al. A review of roll-to-roll nanoimprint lithography
CN101258018B (en) Film forming composition for nanoimprinting and method for pattern formation
US6964793B2 (en) Method for fabricating nanoscale patterns in light curable compositions using an electric field
KR101178432B1 (en) Single phase fluid imprint lithography method
KR100963510B1 (en) Imprint lithography processes and systems
US7997890B2 (en) Device and method for lithography
Resnick et al. Imprint lithography for integrated circuit fabrication
US6908861B2 (en) Method for imprint lithography using an electric field
KR100700238B1 (en) Replication and transfer of microstructures and nanostructures
US7927541B2 (en) Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography
US8282383B2 (en) Method for expelling gas positioned between a substrate and a mold
EP1228401B1 (en) Step and flash imprint lithography
US7363854B2 (en) System and method for patterning both sides of a substrate utilizing imprint lithography
US20070138699A1 (en) Imprint lithography
US20040110856A1 (en) Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure
US7442316B2 (en) Microcontact printing method using imprinted nanostructure and nanostructure thereof
US20140034229A1 (en) Method for Adhering Materials Together
Komuro et al. Imprint characteristics by photo-induced solidification of liquid polymer
KR100568581B1 (en) Composition for mold used in forming micropattern, and mold prepared therefrom
US20050084613A1 (en) Sub-micron-scale patterning method and system
CN1262883C (en) Method and system of automatic fluid dispensing for imprint lithography processes
TC et al. Step and flash imprint lithography: an efficient nanoscale printing technology
JP5399374B2 (en) Methods for imprint lithography that uses an adhesive primer layer

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOLECULAR IMPRINTS, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHACKLETON, STEVEN C., MR.;LAD, PANKAJ B., MR.;MCMACKIN,IAN M., DR.;AND OTHERS;REEL/FRAME:019443/0697;SIGNING DATES FROM 20070418 TO 20070618