KR101770196B1 - Cnt 주입된 탄소 섬유 물질 및 그 제조방법 - Google Patents

Cnt 주입된 탄소 섬유 물질 및 그 제조방법 Download PDF

Info

Publication number
KR101770196B1
KR101770196B1 KR1020127014296A KR20127014296A KR101770196B1 KR 101770196 B1 KR101770196 B1 KR 101770196B1 KR 1020127014296 A KR1020127014296 A KR 1020127014296A KR 20127014296 A KR20127014296 A KR 20127014296A KR 101770196 B1 KR101770196 B1 KR 101770196B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
cnt
fiber material
carbon
barrier coating
Prior art date
Application number
KR1020127014296A
Other languages
English (en)
Other versions
KR20120099710A (ko
Inventor
투샤르 케이. 샤
슬레이드 에이치. 가드너
마크 알. 앨버딩
해리 씨. 말레키
Original Assignee
어플라이드 나노스트럭처드 솔루션스, 엘엘씨.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. filed Critical 어플라이드 나노스트럭처드 솔루션스, 엘엘씨.
Publication of KR20120099710A publication Critical patent/KR20120099710A/ko
Application granted granted Critical
Publication of KR101770196B1 publication Critical patent/KR101770196B1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/16Yarns or threads made from mineral substances
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J3/00Modifying the surface
    • D02J3/18Treating with particulate, semi-solid, or solid substances, e.g. wax
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/44Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific cross-section or surface shape
    • D03D15/46Flat yarns, e.g. tapes or films
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/76Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres otherwise than in a plane, e.g. in a tubular way
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/752Multi-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249948Fiber is precoated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • Y10T428/292In coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3049Including strand precoated with other than free metal or alloy
    • Y10T442/3057Multiple coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/603Including strand or fiber material precoated with other than free metal or alloy
    • Y10T442/605Strand or fiber material is inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

조성물은 스풀가능한 치수의 탄소 섬유 물질 및 탄소 섬유 물질로 주입된 탄소 나노튜브(CNT)를 포함하는 탄소 나노튜브(CNT) 주입된 탄소 섬유 물질을 포함한다. 주입된 CNT는 길이의 균일성 및 분포의 균일성을 갖는다. CNT가 배리어 코팅을 실질적으로 포함하지 않는 반면에, CNT 주입된 탄소 섬유 물질도 탄소 섬유 물질에 대해 등각으로 배치된 배리어 코팅을 포함한다. 연속 CNT 주입 공정은 (a)탄소 섬유 물질 기능화하는 단계; (b)기능화된 탄소 섬유 물질 상에 배리어 코팅을 배치하는 단계; (c)기능화된 탄소 섬유 물질 상에 탄소 나노튜브(CNT) 형성 촉매를 배치하는 단계; (d)탄소 나노튜브를 합성하여, 탄소 나노튜브 주입된 탄소 섬유 물질을 형성하는 단계를 포함한다.

Description

CNT 주입된 탄소 섬유 물질 및 그 제조방법{CNT-INFUSED CARBON FIBER MATERIALS AND PROCESS THEREFOR}
[관련 출원에 대한 기재]
본 출원은 2007년 1월 3일자로 출원된 미국 특허 출원 11/619,327호의 일부 계속 출원이다. 본 출원은 그 전문이 본 명세서에 참조로 편입된 2009년 4월 10일자로 출원된 미국 가출원 61/168,516호, 2009년 4월 14일자로 출원된 미국 가출원 61/169,055호, 2009년 2월 27일자로 출원된 미국 가출원 61/155,935호, 2009년 3월 3일자로 출원된 미국 가출원 61/157,096호, 2009년 5월 29일자로 출원된 미국 가출원 61/182,153호의 우선권을 주장한다.
[기술 분야]
본 발명은 섬유 물질, 더 구체적으로 탄소 나노튜브로 개질된 탄소 섬유 물질에 관한 것이다.
섬유 물질은 상업 비행, 레크레이션, 산업 및 운송 산업과 같은 매우 다양한 산업에 상이한 적용으로 사용된다. 이런 적용 및 다른 적용을 위해 일반적으로 사용되는 섬유 물질은 예를 들어 탄소 섬유, 셀루로오즈 섬유, 유리 섬유, 금속 섬유, 세라믹 섬유, 아라미드 섬유를 포함한다.
탄소 섬유는 환경의 저하로부터 물질을 보호하기 위해 일반적으로 사이징 작용제와 함께 제조된다. 추가적으로, 다른 물리적 응력은 자기 마모 및 압축력과 같은 탄소 섬유 무결성을 포함할 수 있다. 이런 취약점에 대해서 탄소 섬유를 보호하기 위해 사용되는 많은 사이징 제제가 등록되어있고, 특정한 수지 종류와 계면을 이루도록 고안된다. 복합재에서 탄소 섬유 물질 특성의 이점을 깨닫기 위해서, 탄소 섬유와 매트릭스 사이에 양호한 계면이 있어야만 한다. 탄소 섬유에 채용된 사이징은 섬유와 수지 매트릭스 사이에 물리-화학적 링크를 제공할 수 있고, 따라서 복합재의 역학적 및 화학적 특징에 영향을 줄 수 있다.
그러나, 대부분 종래의 사이징 작용제는 적용된 탄소 섬유 물질보다 낮은 계면 강도를 가진다. 그 결과, 사이징의 강도 및 계면 응력에 저항하는 성능은 궁극적으로 전체 복합재의 강도를 결정한다. 따라서, 종래의 사이징을 사용하는 경우, 최종 복합재는 일반적으로 탄소 섬유 물질의 강도 보다 낮은 강도를 가진다.
상술한 문제점의 일부를 해결하고, 탄소 섬유 물질에 바람직한 특징을 제공하기 위하여, 사이징 작용제 및 탄소 섬유 물질에 사이징 작용제를 코팅하는 방법을 개발하는 것이 유용하다. 본 발명은 이런 필요를 만족시키고 관련된 장점도 제공한다.
일부 관점에서, 본 명세서에 개시된 실시예는 탄소 나노튜브(CNT) 주입된 탄소 섬유 물질을 포함하는 조성물에 관한 것이다. CNT 주입된 탄소 섬유 물질은 스풀가능한 치수의 탄소 섬유 물질 및 탄소 섬유 물질로 주입된 탄소 나노튜브(CNT)를 포함한다. 주입된 CNT는 길이의 균일성 및 분포의 균일성이 있다. 또한, CNT는 실질적으로 배리어 코팅을 포함하지 않지만, CNT 주입된 탄소 섬유 물질은 탄소 섬유 물질에 대하여 등각으로 배치된 배리어 코팅을 포함한다.
일부 관점에서, 본 명세서에 개시된 실시예는 연속 CNT 주입 방법에 관한 것으로: (a) 탄소 섬유 물질을 기능화하는 단계; (b) 기능화된 상기 탄소 섬유 물질 상에 배리어 코팅을 배치하는 단계; (c) 기능화된 상기 탄소 섬유 물질 상에 탄소 나노튜브(CNT) 형성 촉매를 배치하는 단계; 및 (d) 탄소 나노튜브를 합성하여, 탄소 나노튜브 주입된 탄소 섬유 물질을 형성하는 단계를 포함한다.
도 1은 연속 CVD 공정을 매개로 AS4 탄소 섬유 상에서 성장된 다중벽 CNT(MWNT)의 투과 전자 현미경(TEM) 이미지를 도시한다.
도 2는 연속 CVD 공정을 매개로 AS4 탄소 섬유 상에서 성장된 이중벽 CNT(DWNT)의 투과 전자 현미경(TEM) 이미지를 도시한다.
도 3은 CNT 형성(CNT-forming) 나노입자 촉매가 탄소 섬유 물질 표면에 기계적으로 주입된 배리어 코팅(barrier coating) 내부로부터 성장된 CNT의 주사 전자 현미경(SEM) 이미지를 도시한다.
도 4는 약 40 미크론의 타겟 길이의 20% 이내로 탄소 섬유 물질에서 성장된 CNT의 길이 분포의 균일성을 나타내는 SEM 이미지를 도시한다.
도 5는 CNT 성장에 대한 배리어 코팅제의 효과를 나타내는 SEM 이미지를 도시한다. 배리어 코팅이 적용된 위치에서 밀집, 정렬된 CNT가 성장했고, 배리어 코팅제가 적용되지 않은 위치에서는 어떠한 CNT도 성장하지 않았다.
도 6는 약 10% 이내로 섬유에 걸쳐 CNT 밀도의 균일성을 나타내는 탄소 섬유 상에서의 CNT의 저배율 SEM을 도시한다.
도 7은 본 발명의 예시적인 실시예에 따른 CNT 주입된 탄소 섬유 물질의 제조 방법을 도시한다.
도 8은 열 전도성 및 전기 전도성 향상을 목표하기 위하여, 연속적인 공정으로, 탄소 섬유 물질에 CNT가 주입될 수 있는 방법을 도시한다.
도 9는 기계적 특성, 특히 전단 강도와 같은 계면 특성의 향상을 목표하기 위하여, "리버스(reverse)" 배리어 코팅 공정을 사용하여, 연속적인 공정으로, 탄소 섬유 물질에 CNT가 주입될 수 있는 방법을 도시한다.
도 10은 기계적 특성, 특히 전단 강도 및 층간 파괴 인성과 같은 계면 특성의 향상 목표를 위하여, "하이브리드(hybrid)" 배리어 코팅을 사용하는, 또 다른 연속적인 공정에서, 탄소 섬유 물질에 CNT가 주입될 수 있는 방법을 도시한다.
도 11은 층간 파괴 인성에 대한 IM7 탄소 섬유에 주입된 CNT의 효과를 도시한다. 기준 물질은 언사이즈드(unsized) IM7 탄소 섬유이고, 한편 CNT 주입된 물질은 섬유 표면에 주입된 15 미크론 길이의 CNT를 갖는 언사이즈드 탄소 섬유이다.
본 발명은 부분적으로 탄소 나노튜브 주입된("CNT-주입된") 탄소 섬유 물질에 관한 것이다. 탄소 섬유 물질로 CNT의 주입은 예를 들어, 수분, 산화, 마모, 및 압축으로부터의 손상을 예방하기 위해 사이징 작용제를 포함하는 많은 기능을 제공할 수 있다. 또한, CNT 기반의 사이징은 복합재 내에서 탄소 섬유 물질과 매트릭스 물질 사이의 계면으로 제공될 수 있다. 또한, CNT는 탄소 섬유 물질을 코팅하는 여러 사이징 작용제 중 하나로서 제공될 수 있다.
또한, 탄소 섬유 물질 상에 주입된 CNT는, 예를 들어 열 전도성 및/또는 전기 전도성, 및/또는 인장 강도와 같은 탄소 섬유 물질의 다양한 특성을 변경할 수 있다. CNT 주입된 탄소 섬유 물질을 제조하기 위해 이용된 공정은 실질적으로 균일한 길이 및 분포를 갖는 CNT를 제공해서, 개질된 탄소 섬유 물질을 통해 균일하게 유용한 특성을 부여한다. 또한, 본 명세서에 개시된 공정은 스풀가능한 치수의 CNT 주입된 탄소 섬유 물질의 제조에 적합하다.
본 발명은 부분적으로 CNT 주입된 탄소 섬유 물질의 제조 공정에 관한 것이다. 본 명세서에 개시된 공정은 탄소 섬유 물질에 종래의 사이징 용액의 적용 전에, 또는 적용에 대신하여 새로이 생성된 탄소 섬유 물질에 적용될 수 있다. 대안적으로, 본 명세서에 개시된 공정은 상업적인 탄소 섬유 물질, 예를 들어, 표면에 이미 적용된 사이징을 갖는 탄소 토우를 활용할 수 있다. 이러한 실시예에서, 후술하는 바와 같이, 비록 배리어 코팅 및/또는 전이 금속 입자가 간접 주입을 제공하는 중간 층으로 제공될 수 있을지라도, 탄소 섬유 물질과 합성된 CNT 사이의 직접적인 계면을 제공하기 위하여 사이징이 제거될 수 있다. CNT 합성 이후, 추가적인 사이징 작용제는 필요에 따라 탄소 섬유 물질에 적용될 수 있다.
본 명세서에 개시된 공정은 토우, 테이프, 직물 및 다른 3D 직조된 구조물의 스풀가능한 길이를 따라 균일한 길이 및 분포를 갖는 탄소 나노튜브의 연속 공정을 가능하게 한다. 여러 가지 매트, 직조 및 비직조 직물 등이 본 발명의 공정에 의해 기능화될 수 있지만, 이러한 모 매트릭스의 CNT 기능화 후에 모 토우, 얀 등으로부터 보다 고차의 구조물을 생성할 수도 있다. 예를 들어, CNT 주입된 직조 직물은 CNT 주입된 탄소 섬유 토우로부터 생성될 수 있다.
본 명세서에 사용된 바와 같이, 용어 "탄소 섬유 물질(carbon fiber material)"은 기본적인 구성 성분으로서 탄소 섬유를 가지는 임의의 물질을 나타낸다. 상기 용어는 섬유, 필라멘트, 얀, 토우, 토우, 테이프, 직조 및 비직조 직물, 플라이, 매트 등을 포함한다.
본 명세서에 사용된 바와 같이, 용어 "스풀가능한 치수(spoolable dimension)"는 스풀 또는 맨드릴(mandrel) 상에 물질이 저장될 수 있는, 길이로 제한되지 않는 적어도 하나의 치수를 가지는, 탄소 섬유 물질을 나타낸다. "스풀가능한 치수(spoolable dimension)"의 탄소 섬유 물질은 본 명세서에 개시된 배치 또는 CNT 주입을 위한 연속 공정 중 하나의 사용을 나타내는 적어도 하나의 치수를 갖는다. 상업적으로 이용가능한 스풀가능한 치수의 하나의 탄소 섬유 물질은 800(1 tex = 1 g/1,000 m)의 tex 값 또는 620 yard/lb(Grafil, Inc., Sacramento, CA)를 가지는 ASK 12K 탄소 섬유 토우가 전형적인 예이다. 특히, 예를 들어 비록 큰 스풀이 특별한 주문에 요구될지라도, 상업적인 탄소 섬유 토우는 예를 들어, 5 lb, 10 lb, 20 lb, 50 lb, 및 100 lb(높은 중량을 가지는 스풀을 위해, 보통 3k/12K 토우) 스풀을 얻을 수 있다. 본 발명의 공정은 비록 더 큰 스풀이 이용될지라도, 5 lb 내지 20 lb 스풀로 손쉽게 작동한다. 더욱이, 전처리 작용은 예를 들어 100 lb 또는 그 이상의 매우 큰 스풀가능한 길이를 2개의 50 lb 스풀과 같은 처리하기 쉬운 치수로 나누는 것을 포함한다.
본 명세서에 사용된 바와 같이, 용어 "탄소 나노튜브"(carbon nanotube, CNT)는 단일벽 탄소 나노튜브(single-walled carbon nanotubes,SWNT), 이중벽 탄소 나노튜브(double-walled carbon nanotubes, DWNT), 다중벽 탄소 나노튜브(multi-walled carbon nanotubes, MWNT)를 포함하는 플러린 계의 탄소의 임의의 수의 원통 형상의 동소체를 나타낸다. CNT는 플러린-유사 구조에 의해 캡핑되거나 또는 단부가 개방될 수 있다. CNT는 다른 물질로 캡슐화되는 것을 포함한다.
본 명에서에 사용된 바와 같이 "길이의 균일성(uniform in length)"은 반응기에서 성장한 CNT의 길이를 나타낸다. "균일 길이(Uniform length)"는 CNT 길이가 약 1 미크론 내지 약 500 미크론으로 달라지는, 전체 CNT 길이 중 약 ±20% 이하의 공차의 길이를 가지는 것을 의미한다. 1 미크론 내지 4 미크론과 같이 매우 짧은 길이에서, 이런 오차는 전체 CNT 길이의 약 ±20%로부터 약 ±1 미크론까지의 범위가 될 수 있는데, 즉 전체 CNT 길이의 약 20%보다 다소 클 수 있다.
본 명세서에 사용된 바와 같이 "분포의 균일성(uniform in distribution)"은 탄소 섬유 물질 상에 CNT의 밀도의 균일성을 나타낸다. "균일 분포(uniform distribution)"는 CNT로 덮인 섬유의 표면적의 백분율로 정의된 약 ±10% 범위의 오차를 가지는 탄소 섬유 물질에서 CNT가 밀도를 가지는 것을 의미한다. 이것은 5개의 벽을 가진 8 nm 직경 CNT에 대하여 ±1500 CNT/㎛2과 동등하다. 이러한 값은 CNT 내부에 채울 수 있는 공간을 상정한다.
본 명세서에 사용된 바와 같이, "주입된(infused)"은 본딩을 의미하고, "주입(infusion)"은 본딩 공정을 의미한다. 이러한 본딩은 공유결합, 이온결합, pi-pi, 및/또는 반데르 발스(van der waals force)- 매개의 물리흡착을 포함할 수 있다. 예를 들어, 일 실시예에서, CNT는 탄소 섬유 물질에 공유적으로 직접 본딩할 수 있다. 본딩은 CNT와 탄소 섬유 물질 사이에 배치된 배리어 코팅 및/또는 중계(intervening) 전이 금속 나노입자를 통한 탄소 섬유 물질로의 CNT 주입과 같이 간접적일 수 있다. 본 명세서에 개시된 CNT 주입된 탄소 섬유 물질에서, 탄소 나노튜브는 상술한 바와 같이 직접 또는 간접으로 탄소 섬유 물질에 "주입(infused)"될 수 있다. 탄소 섬유 물질로 "주입"된 CNT의 특정한 방식은 "본딩 모티프(bonding motif)"로 불린다.
본 명세서에 사용된 바와 같이, 용어 "전이 금속(transition metal)"은 주기율표의 d-블록에서 임의의 원소 또는 이러한 원소들의 합금을 나타낸다. 또한, "전이 금속"이라는 용어는 산화물, 탄화물, 질화물 등과 같은 전이 염기성 전이 금속 원소의 염 형태를 포함한다.
본 명세서에 사용된 바와 같이, 용어 "나노입자(nanoparticle)" 또는 NP, 또는 이와 문언적으로 동등한 용어는 비록 NP가 형태상 구형일 필요는 없지만, 동등한 구형 직경으로 약 0.1 나노미터 내지 약 100 나노미터의 입자 사이즈를 나타낸다. 특히, 전이 금속 NP는 탄소 섬유 물질에서 CNT 성장을 위한 촉매로서 작용한다.
본 명세서에 사용된 바와 같이, 용어 "사이징 작용제(sizing agent)", "섬유 사이징 작용제(fiber sizing agent)", 또는 단지 "사이징(sizing)"은 탄소 섬유의 완전성을 보호하고, 복합재 내의 탄소 섬유와 매트릭스 물질 사이의 향상된 계면 작용을 제공하고, 및/또는 탄소 섬유의 특별한 물리적 성질을 변경 및/또는 향상시키는 코팅으로 탄소 섬유의 제조에 사용되는 물질을 총체적으로 언급한다. 일부 실시예에서, CNT 주입된 탄소 섬유 물질은 사이징 작용제로 행동한다.
본 명세서에 사용된 바와 같이, 용어 "매트릭스 물질(matrix material)"은 임의의 배향을 포함하여, 특별한 배향으로 사이즈화된 CNT 주입된 탄소 섬유 물질을 조직화하도록 기능할 수 있는 벌크(bulk) 물질을 언급한다. 이러한 매트릭스 물질은 CNT 주입된 탄소 섬유 물질의 물리적 성질 및/또는 화학적 성질의 일부 측면을 매트릭스 물질로 제공함에 의하여 CNT 주입된 탄소 섬유 물질의 존재에 대한 혜택을 얻을 수 있다.
본 명세서에 사용된 바와 같이, 용어 "물질 체류 시간(material residence time)"은 본 명세서에서 설명되는 CNT 주입 공정 동안 스풀가능한 치수의 탄소 섬유 물질이 CNT 성장 조건에 노출되는 분리 지점에서 시간의 양을 나타낸다. 이러한 정의는 다중 CNT 성장 챔버를 사용할 때 체류 시간을 포함한다.
본 명세서에 사용된 바와 같이, 용어 "선속도(linespeed)"는 본 명세서에서 설명되는 CNT 주입 공정을 통해서 스풀가능한 치수의 탄소 섬유 물질이 공급될 수 있는 속도를 언급하며, 선속도는 CNT 챔버(들) 길이를 물질 체류 시간으로 나누어서 결정되는 속도이다.
일부 실시예에서, 본 발명은 탄소 나노튜브(CNT) 주입된 탄소 섬유 물질을 포함하는 조성물을 제공한다. CNT 주입된 탄소 섬유 물질은 스풀가능한 치수의 탄소 섬유 물질, 탄소 섬유 물질에 대해 등각으로 배치된 배리어 코팅, 및 탄소 섬유 물질에 주입된 탄소 나노튜브(CNT)를 포함할 수 있다. 탄소 섬유 물질로 CNT의 주입은 탄소 섬유 물질에 각각의 CNT의 직접 본딩, 또는 전이 금속 NP, 배리어 코팅을 매개로 한 간접 본딩, 또는 둘 다의 본딩 모티프를 포함할 수 있다.
이론의 경계 없이, CNT 형성 촉매로 제공된 전이 금속 NP는 CNT 성장 시드 구조물의 형성에 의해 CNT 성장을 촉진할 수 있다. 일 실시예에서, CNT 형성 촉매는 배리어 코팅에 의해 막히고 탄소 섬유 물질의 표면에 주입된 탄소 섬유 물질의 계를 유지할 수 있다. 이러한 경우에, 전이 금속 나노 입자 촉매에 의해 초기에 형성된 시드 구조는 당 업계에서 흔히 관찰되는 바와 같이 촉매가 CNT 성장의 선단 에지를 따른 이동을 허용하지 않는 연속 비촉매 시드 CNT 성장에 충분하다. 이러한 경우에, NP는 탄소 섬유 물질로 CNT에 부착물의 포인트로 제공된다. 배리어 코팅의 존재도 추가의 간접 본딩 모티프를 이끌 수 있다. 예를 들어, CNT 형성 촉매는 상술한 바와 같이 배리어 코팅으로 막을 수 있지만, 표면상에 탄소 섬유 물질을 가진 접촉이 없다. 이러한 경우에, 이것은 CNT 형성 촉매와 탄소 섬유 물질 사이에 배치된 배리어 코팅과 함께 스택된 구조의 결과이다. 어느 경우에나, 형성된 CNT는 탄소 섬유 물질로 주입된다. 일부 실시예에서, 일부 배리어 코팅은 여전히 CNT 형성 촉매가 성장된 나노튜브의 선단 에지를 따르는 것을 허용한다. 이러한 경우에, 이것은 선택적으로 탄소 섬유 물질 또는 배리어 코팅으로 CNT의 직접 본딩의 결과이다. 탄소 나노튜브와 탄소 섬유 물질 사이에 형성된 실제 본딩 모티프의 본질에 상관없이, 주입된 CNT는 견고하고, CNT 주입된 탄소 섬유 물질이 탄소 나노 튜브 성질 및/또는 특징을 보이는 것을 허용한다.
또한, 이론의 경계 없이, 탄소 섬유 물질에서 CNT가 성장할 때, 반응 챔버에 존재할 수 있는 상승된 온도 및/또는 어느 나머지 산소 및/또는 습기는 탄소 섬유 물질을 손상시킬 수 있다. 또한, 탄소 섬유 물질 그 자체는 CNT 형성 촉매 자체와의 반응에 의해 손상될 수 있다. 이것은 CNT 합성을 위해 사용된 반응 온도에서 탄소 섬유 물질이 탄소 공급원료를 촉매로 작용하게 한다. 이러한 과잉 탄소는 탄소 공급원료 가스의 제어된 도입을 방해하고, 심지어 그것을 탄소로 오버로딩(overloading)하여 촉매를 독(poison)으로 작용하게 할 수 있다. 본 발명에서 사용된 배리어 코팅은 탄소 섬유 물질에서 CNT 합성이 용이하도록 고안된다. 이론에 제한됨이 없이, 코팅은 열 분해에 대한 열 배리어를 제공할 수 있고/있거나 상승된 온도의 환경에 탄소 섬유 물질의 노출을 억제하는 물리적 배리어일 수 있다. 대안적으로 또는 추가적으로, 그것은 CNT 형성 촉매와 탄소 섬유 물질 사이의 표면 접촉을 최소화할 수 있고/있거나 CNT 성장 온도에서 CNT 형성 촉매에 탄소 섬유 물질의 노출을 완화할 수 있다.
CNT 주입된 탄소 섬유 물질을 가지는 조성물은 CNT가 실질적으로 길이의 균일성을 갖도록 제공된다. 본 명세서에 사용된 연속 공정에서, CNT 성장 챔버 상에서 탄소 섬유 물질의 체류 시간은 궁극적으로 CNT 성장 및 CNT 길이를 조정하기 위해 조절될 수 있다. 이것은 CNT 성장의 특정한 특징을 조정하기 위한 방법을 제공한다. 또한, CNT 길이는 탄소 공급원료와 운반 기체 유량 및 반응 온도의 조절을 통해 조정될 수 있다. CNT 특징의 추가적인 조정은 예를 들어 CNT를 준비하기 위해 사용된 촉매 사이즈의 조정에 의해 얻어질 수 있다. 예를 들어, 1 nm 전이 금속 나노입자 촉매는 특별히 SWNT를 제공하기 위해 사용될 수 있다. 더욱 큰 촉매는 주로 MWNT를 준비하기 위해 사용될 수 있다.
추가적으로, 채용된 CNT 성장 공정은 사전 형성된 CNT가 용매 용액 상에 현탁되거나 분산되고 탄소 섬유 물질로 수동에 의해 적용되는 공정에서 일어날 수 있는 CNT의 결속 및/또는 응집을 방지하면서, 탄소 섬유 물질 상에 균일하게 분배된 CNT를 갖는 CNT 주입된 탄소 섬유 물질을 제공하는데 유용하다. 이러한 응집된 CNT는 탄소 섬유 물질에 약하게 접착되는 경향이 있고, 특정한 CNT 성질을 약하게 나타낸다. 일부 실시예에서, 범위 백분율로 나타낸 최대 분포 밀도는 섬유 피복된 표면적에서 5개의 벽과 약 8 nm 직경 CNT를 상정할 때, 약 55%만큼 높을 수 있다. 이런 범위는 "채울 수 있는" 공간으로 CNT 내부 공간을 고려하여 계산된다. 다양한 분포/밀도 값은 공정 속도와 조정된 가스 조성물뿐만 아니라 표면상의 분산된 촉매에 따라 얻어질 수 있다. 일반적으로 일련의 주어진 변수를 위해, 약 10% 이내의 범위 백분율이 섬유 표면에 걸쳐 얻어질 수 있다. 증가된 밀도가 여전히 양호할지라도, 낮은 밀도와 긴 CNT가 열적 특징 및 전기적 특징을 향상시키는데 유용한 반면, 높은 밀도와 짧은 CNT는 기계적 특징을 향상시키는데 유용하다. 낮은 밀도는 긴 CNT가 성장할 때 발생할 수 있다. 이것은 낮은 촉매 입자 수득률 때문에 높은 온도와 보다 빠른 성장의 결과일 수 있다.
CNT 주입된 탄소 섬유 물질을 가지는 본 발명의 조성물은 탄소 필라멘트, 탄소 섬유 얀, 탄소 섬유 토우, 탄소 테이프, 탄소 섬유-브레이드, 직조 탄소 직물, 비직조 탄소 섬유 매트, 탄소 섬유 플라이 및 3D 직조 구조물을 포함할 수 있다. 탄소 필라멘트는 약 1 미크론 내지 약 100 미크론의 사이즈 직경 범위를 가지는 높은 종횡비 탄소 섬유를 포함한다. 일반적으로 탄소 섬유 토우는 필라멘트 다발과 조밀하게 연관되어있고, 일반적으로 함께 꼬여서 얀이 된다.
얀은 꼬여진 필라멘트의 다발과 인접하게 결합된다. 얀에서 각 필라멘트의 직경은 비교적 균일하다. 얀은 1000 선 미터(linear meter)에 대한 그람의 중량으로 표현되는 '텍스(tex)', 또는 10,000 야드(yard)에 대한 파운드의 중량으로 표현되는 데니어(denier)에 의해 정의되는 변하는 중량을 가지며, 일반적으로, 전형적인 텍스 범위는 약 200 tex 내지 약 2000 tex이다.
토우는 꼬이지 않은 필라멘트의 느슨하게 결합된 다발을 포함한다. 얀에서와 같이, 일반적으로, 토우에서 필라멘트 직경은 균일하다. 또한, 토우는 다양한 중량을 가지며, 일반적으로 약 200 tex 내지 2000 tex의 범위이다. 토우는 종종 토우에서의 수많은 필라멘트의 수, 예를 들어 12K 토우, 24K 토우, 48 K 토우 등으로 특징된다.
탄소 테이프는 직물로 조립될 수 있거나 비직조된 평평한 토우일 수 있다. 탄소 테이프는 넓이가 다양하고, 일반적으로 리본과 유사한 양면 구조이다. 본 발명의 공정은 테이프의 일면 또는 양면에 CNT 주입과 양립가능하다. CNT 주입 테이프는 평평한 기질 표면에서 "카페트(carpet)" 또는 "포레스트(forest)"와 유사할 수 있다. 또한, 본 발명의 공정은 연속적인 모드로 수행되어서 테이프의 스풀을 기능화할 수 있다.
탄소 섬유 브레이드는 촘촘하게 패킹된 탄소 섬유의 루프(rope) 유사 구조물을 나타낸다. 이러한 구조는, 예를 들면 탄소 얀으로부터 모일 수 있다. 브레이드 구조물은 비어있는 부분을 포함하거나, 다른 중심 물질로 모일 수 있다.
일부 실시예에서, 많은 1차 탄소 섬유 물질 구조물은 직물 또는 시트 유사 구조물로 조직화될 수 있다. 이것은, 예를 들어 상술한 바와 같이 직조된 탄소 직물, 비직조된 탄소 섬유 매트 및 탄소 섬유 플라이 이외에 테이프를 포함한다. 이러한 고차 구조물은 모 섬유에 이미 주입된 CNT를 가지고 모 토우, 얀, 필라멘트 등에서 모일 수 있다. 대안적으로 이러한 구조물은 본 명세서에서 설명되는 CNT 주입 공정을 위한 기질로 제공될 수 있다.
본 발명에 사용될 수 있는 임의의 섬유를 만드는데 사용된 전구체에 근거하여 분류된 탄소 섬유의 세가지 타입, 즉 레이온, 폴리아크릴로나이트릴(PAN), 피치가 있다. 셀루로오즈 물질인 레이온 전구체로부터 탄소 섬유는 약 20%의 상대적으로 낮은 탄소 함량을 가지고, 섬유는 낮은 강도와 강성을 가지는 경우가 있다. 폴리아크릴로나이트릴(PAN) 전구체는 약 55%의 탄소함량을 가진 탄소 섬유를 제공한다. 일반적으로 PAN 전구체에 근거한 탄소 섬유는 표면 결함의 감소로 다른 탄소 섬유 전구체에 근거한 탄소 섬유보다 더 높은 인장 강도를 가진다.
페트롤륨 아스팔트, 콜타르, 및 폴리비닐 염화물에 근거한 피치 전구체도 탄소 섬유를 제조하기 위해 사용될 수 있다. 비록 피치가 상대적으로 비용이 낮고 탄소 수득률이 높지만, 주어진 배치에서 불균일의 문제를 일으킨다.
탄소 섬유 물질로 주입하기 위한 유용한 CNT는 단일벽 CNT, 이중벽 CNT, 다중벽 CNT, 및 그 혼합물을 포함한다. 사용되는 정확한 CNT는 CNT 주입된 탄소 섬유의 적용에 의해 결정된다. CNT는 열 전도성 및 전기 전도성 적용 또는 부도체로서 사용될 수 있다. 일부 실시예에서, 주입된 탄소 나노튜브는 단일벽 나노튜브이다. 일부 실시예에서, 주입된 탄소 나노튜브는 단일벽과 다중벽의 조합이다. 섬유의 일부 최종 용도를 위해, 나노튜브의 하나 또는 다른 타입의 합성에 영향을 주는 단일벽 및 다중벽의 특성 특징에 몇 가지 다른 점이 있다. 예를 들어, 다중벽 나노튜브가 금속인 반면에, 단일벽 나노튜브는 반도체 또는 금속일 수 있다.
CNT는, CNT 주입된 탄소 섬유 물질로 기계적 강도, 적당하게 낮은 전기 저항, 높은 열 전도성 등과 같은 특징적인 특성을 부여한다. 일부 실시예에서, 예를 들어 탄소 나노튜브-주입된 탄소 섬유 물질의 전기 저항은 모 탄소 섬유 물질의 전기 저항보다 낮다. 더 일반적으로, 최종적인 CNT 주입된 탄소 섬유가 이러한 특징을 나타내는 정도는 탄소 나노튜브에 대한 섬유 크기 및 밀도 범위에 따라 다르다. 0-55%의 섬유 표면적의 임의의 양은 가령 8nm 직경, 5개 벽 MWNT(다시, 이 계산은 CNT의 채울 수 있는 내부 공간으로 계산됨)로 덮일 수 있다. 이 숫자는 CNT의 직경이 작을수록 낮고, CNT의 직경이 클수록 크다. 55% 섬유 표면적 범위는 약 15,000 CNT/미크론2으로 같다. 추가의 CNT 특징은 상술한 CNT 길이에 따른 방식으로 탄소 섬유 물질로 부여될 수 있다. 주입된 CNT는 1 미크론, 2 미크론, 3 미크론, 4 미크론, 5 미크론, 6 미크론, 7 미크론, 8 미크론, 9 미크론, 10 미크론, 15 미크론, 20 미크론, 25 미크론, 30 미크론, 35 미크론, 40 미크론, 45 미크론, 50 미크론, 60 미크론, 70 미크론, 80 미크론, 90 미크론, 100 미크론, 150 미크론, 200 미크론, 250 미크론, 300 미크론, 350 미크론, 400 미크론, 500 미크론, 사이의 모든 값을 포함하는 약 1 미크론 내지 약 500 미크론 길이 범위로 달라질 수 있다. 또한, 예를 들어 CNT는 약 0.5 미크론을 포함하는 길이에서 약 1 미크론보다 작을 수 있다. 또한, 예를 들어 CNT는 510 미크론, 520 미크론, 550 미크론, 600 미크론, 700 미크론 및 사이의 모든 값을 포함하는 500 미크론보다 클 수 있다.
본 발명의 조성물은 약 1 미크론 내지 약 10 미크론의 길이를 가지는 CNT를 나타낼 수 있다. 이러한 CNT 길이는 전단 강도를 증가시키기 위한 적용에 유용할 수 있다. 또한, CNT는 약 5 미크론 내지 약 70 미크론의 길이를 가질 수 있다. 이러한 CNT 길이는 만약 CNT가 섬유 방향으로 정렬한다면, 인장 강도를 증가시키기 위한 적용에 유용할 수 있다. 또한, CNT는 약 10 미크론 내지 약 100 미크론의 길이를 가질 수 있다. 이러한 CNT 길이는 기계적 특징뿐만 아니라 전기/열적 특징을 증가시키는데 유용할 것이다. 본 발명에 이용된 공정은 전기 및 열적 특징을 증가시키기 위해 유용할 수 있는 약 100 미크론 내지 약 500 미크론의 길이를 가지는 CNT를 제공할 수도 있다. CNT 길이의 이러한 조절은 탄소 원료 물질과 변하는 선속도와 성장 온도와 연관된 불활성 기체의 유량 조정을 통해 쉽게 얻어진다.
일부 실시예에서, CNT 주입된 탄소 섬유 물질의 스풀가능한 길이를 포함하는 조성물은 CNT의 상이한 길이를 가지는 다양하고 균일한 면적을 가질 수 있다. 예를 들어, 전단 강도 특징을 강화시키기 위해 균일하고 짧은 CNT 길이를 가지는 CNT 주입된 탄소 섬유 물질의 제1 부분과 전기 또는 열적 특징을 강화시키기 위해 균일하고 긴 CNT 길이를 가지는 스풀가능한 물질의 제2 부분을 가지는 것이 바람직할 수 있다.
본 발명의 탄소 섬유 물질로 CNT 주입을 위한 공정은 CNT 길이를 균일하게 조절할 수 있고, 연속 공정에서 고속으로 스풀가능한 탄소 섬유 물질이 CNT로 기능화될 수 있게 한다. 5초 내지 300초의 물질 체류 시간과 3 피트 길이 시스템을 위한 연속 공정에서 선속도는 어디에서도 약 0.5 ft/min 내지 약 36 ft/min 및 더 큰 범위일 것이다. 속도는 아래의 설명으로 다양한 변수에 따라 선택된다.
일부 실시예에서, 약 5초 내지 약 30초의 물질 체류 시간은 약 1 미크론 내지 약 10 미크론의 길이를 가지는 CNT를 제조할 수 있다. 일부 실시예에서, 약 30초 내지 약 180초의 물질 체류 시간은 약 10 미크론 내지 약 100 미크론의 길이를 가지는 CNT를 제조할 수 있다. 다른 실시예에서, 약 180초 내지 약 300초의 물질 체류 시간은 약 100 미크론 내지 약 500 미크론의 길이를 가지는 CNT를 제조할 수 있다. 당업자는 이 범위가 근사치이고 CNT 길이는 반응 온도, 그리고 운반 및 탄소 공급원료 농도 및 유량에 의해 조정될 수 있음을 인식할 수 있을 것이다.
본 발명의 CNT 주입된 탄소 섬유 물질은 배리어 코팅을 포함한다. 예를 들어, 배리어 코팅은 알콕시실란, 메틸실록산, 알루목산, 알루미나, 나노입자, 스핀 온 글라스(Spin-On Glass) 및 유리 나노입자를 포함할 수 있다. 아래의 설명에서, CNT 형성 촉매는 비경화된 배리어 코팅으로 첨가될 수 있고, 그 다음 탄소 섬유 물질로 동시에 적용된다. 다른 실시예에서, 배리어 코팅 물질은 CNT 형성 촉매의 증착 전에 탄소 섬유 물질로 첨가될 수 있다. 배리어 코팅 물질은 후속적인 CVD 성장을 위해 탄소 원료 물질로 CNT 형성 촉매의 노출을 허용할 수 있도록 충분히 얇은 두께일 수 있다. 일부 실시예에서, 두께는 CNT 형성 촉매의 유효 직경과 같거나 또는 더 작다. 일부 실시예에서, 배리어 코팅의 두께는 약 10 nm 내지 약 100 nm이다. 배리어 코팅은 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm 및 그 범위의 임의의 값을 포함하는 10 nm 미만일 수 있다.
이론의 경계 없이, 배리어 코팅은 탄소 섬유 물질과 CNT 사이의 중간 층으로 제공될 수 있고, 탄소 섬유 물질로 CNT를 기계적으로 주입하기 위해 제공된다. 이러한 기계적 주입은 탄소 섬유 물질로 CNT의 특징을 계속해서 부여하는 반면에, CNT의 조직화를 위한 플랫폼으로서 공급되는 탄소 섬유 물질에 견고한 시스템(robust system)을 제공한다. 더욱이, 배리어 코팅을 포함하는 이점은 CNT 성장을 촉진하기 위해 사용된 온도에서 탄소 섬유 물질의 가열로 인한 임의의 열적 손상 및/또는 수분의 노출로 인해 생긴 화학적 손상으로부터 탄소 섬유 물질에 즉각적인 보호를 제공하는 것이다.
본 명세서에 설명된 주입된 CNT는 종래의 탄소 섬유 "사이징(sizing)"의 대체물로서 효과적으로 기능할 수 있다. 주입된 CNT는 종래의 사이징 물질보다 더 강건하고 복합재 물질 상에서 섬유 대 매트릭스 계면을 향상시킬 수 있고, 더 일반적으로, 섬유 대 섬유 계면을 향상시킨다. 실제로, 본 명세서에 기재된 CNT 주입 탄소 섬유 물질은, CNT 주입 탄소 섬유 물질 특성이 주입된 CNT의 특성과 탄소 섬유 물질의 특성의 조합일 것이라는 의미에서, 그 자체가 복합재 물질이다. 그 결과로, 본 발명의 실시예는 이러한 특징이 결여되어 있거나 이러한 특징을 불충분한 정도로 갖는 탄소 섬유 물질에 바람직한 특징을 부여하기 위한 수단을 제공한다. 탄소 섬유 물질은 특정한 적용의 요구를 충족시키기 위해서 설계되거나 맞추어질 수 있다. 사이징으로서 CNT 거동은 소수성 CNT 구조 때문에 수분 흡수로부터 탄소 섬유 물질을 보호할 수 있다. 더욱이, 아래에 더 예시되는 바와 같이, 소수성 매트릭스 물질은 향상된 섬유와 매트릭스 상호작용을 제공하기 위해 소수성 CNT와 쉽게 상호작용한다.
상술한 주입된 CNT를 가지는 탄소 섬유 물질에 제공된 이로운 특징에도 불구하고, 본 발명의 조성물은 "종래의(conventional)" 사이징 작용제를 더 포함할 수 있다. 이러한 사이징은 종류와 기능에 따라 다양하게 달라지며, 예를 들어 계면활성제, 대전방지제, 윤활제, 실록산, 알콕시실란, 아미노실란, 실란, 실라놀, 폴리비닐 알코올, 스타치 및 이들의 혼합물을 포함한다. 이러한 이차적인 사이징 작용제는 CNT 자체를 보호하기 위해 사용될 수 있고, 주입된 CNT의 존재에 의해 제공되지 않는 추가적인 특징을 섬유로 제공할 수 있다.
본 발명의 조성물은 CNT 주입된 탄소 섬유 물질을 갖는 조성물을 형성하기 위해 매트릭스 물질을 더 포함할 수 있다. 이러한 매트릭스 물질은 예를 들어, 에폭시, 폴리에스테르, 비닐에스테르, 폴리에테르이미드, 폴리에테르케톤케톤, 폴리프탈아미드, 폴리에테르케톤, 폴리에테르에테르케톤, 폴리이미드, 페놀-포름알데히드, 비스말레이미드를 포함할 수 있다. 본 발명에 유용한 매트릭스 물질은 임의의 알려진 매트릭스 물질(Mel M. Schwartz, Composite Materials Handbook(2d ed. 1992))을 포함할 수 있다. 더 일반적으로 매트릭스 물질은 수지(폴리머), 열경화성이나 열가소성 중 하나, 금속, 세라믹, 및 시멘트를 포함할 수 있다.
매트릭스 물질로 유용한 열경화성 수지는 프탈릭/말릭 종류 폴리에스테르, 비닐 에스테르, 에폭시, 페놀, 시아네이트, 비스말레이미드, 및 나딕이 말단에 캡핑된 폴리이미드(예를 들어, PMR-15)를 포함한다. 열가소성 수지는 폴리설폰, 폴리아미드, 폴리카보네이트, 폴리페닐렌, 산화물, 폴리설파이드, 폴리에테르 에테르 케톤, 폴리에테르 설폰, 폴리아미드-이미드, 폴리에테르이미드, 폴리이미드, 폴리아릴레이트, 및 액정(liquid crystalline) 폴리에스테르를 포함한다.
매트릭스 물질에 유용한 금속은 알루미늄 6061, 2024 및 713 알루미늄 브레이즈와 같은 알루미늄 합금을 포함한다. 매트릭스 물질에 유용한 세라믹은 리튬 알루미노규산염과 같은 탄소 세라믹, 알루미나 및 멀라이트와 같은 산화물, 실리콘 질화물과 같은 질화물, 및 실리콘 탄화물과 같은 탄화물을 포함한다. 매트릭스 물질에 유용한 시멘트는 탄화물계 시멘트(텅스텐 탄화물, 크롬 탄화물, 및 티타늄 탄화물), 내화 시멘트(텅스텐-토리아 및 바륨-탄화물-니켈), 크롬-알루미나, 니켈-마그네시아 철-지르코늄 탄화물을 포함한다. 임의의 상술한 매트릭스 물질은 단독으로 또는 조합으로 사용될 수 있다.
도 1-6은 본 명세서에 설명된 공정에 의해 준비된 탄소 섬유 물질의 TEM과 SEM의 이미지를 도시한다. 이런 물질을 준비하는 것을 위한 절차는 실시예 Ⅰ-Ⅲ과 아래에 더 상세히 설명되어 있다. 도 1과 2는 연속 공정에서 AS4 탄소 섬유 상에서 개별적으로 준비된 다중벽과 이중벽 탄소 나노튜브의 TEM 이미지를 도시한다. 도 3은 CNT 형성 나노입자 촉매가 탄소 섬유 물질 표면에 기계적으로 주입되고 난 후에 배리어 코팅 내부로부터 성장된 CNT의 주사 전자 현미경(SEM)의 이미지를 도시한다. 도 4는 약 40 미크론의 타겟 길이의 20% 이내로 탄소 섬유 물질에서 성장된 CNT의 길이 및 분포의 균일성을 나타내는 SEM 이미지를 도시한다. 도 5는 CNT 성장에 대한 배리어 코팅의 효과를 나타내는 SEM 이미지를 도시한다. 배리어 코팅 적용된 위치에서는 밀집, 정렬된 CNT가 성장했고, 배리어 코팅이 적용되지 않은 위치에서는 어떠한 CNT도 성장하지 않았다. 도 6는 약 10% 이내로 섬유에 걸쳐 CNT 밀도의 균일성을 나타내는 탄소 섬유 상에서의 CNT의 저배율 SEM을 도시한다.
CNT 주입된 탄소 섬유 물질은 무수히 많은 적용에 사용될 수 있다. 예를 들어, 개조된 CNT 주입된 탄소 섬유는 추진제 적용에 사용될 수 있다. 미국 특허4,072,546호는 추진제 연소율을 증가하기 위한 흑연 섬유의 사용에 대해 기술한다. 개조된 탄소 섬유 상에서 주입된 CNT의 존재는 이러한 연소율을 더 강화시킬 수 있다. 또한, CNT 주입된 탄소 섬유 물질은 내연제 적용에 사용될 수 있다. 예를 들어, CNT는 CNT 주입된 탄소 섬유 물질의 층으로 코팅된 물질의 연소를 지연시키는 보호용 차르 층(char layer)을 형성할 수 있다.
CNT 주입된 전도성 탄소 섬유는 초전도체를 위한 전극의 제조에 사용될 수 있다. 초전도 섬유의 제조에 있어서, 부분적으로, 섬유 물질의 열팽창 계수와 초전도 층의 열팽창 계수가 상이하기 때문에, 운반 섬유에 초전도 층의 충분한 접착력을 얻는 것은 어려울 수 있다. 당 업계의 다른 어려운 점은 CVD 공정에 의한 섬유의 코팅 중에 발생한다. 예를 들어, 수소 가스 또는 암모니아와 같은 반응 가스는 섬유 표면을 공격하고/하거나 섬유 표면 상에 바람직하지 않은 탄화수소 화합물을 형성해서, 초전도 층의 양호한 접착을 어렵게 만들 수 있다. 배리어 코팅을 갖는 CNT 주입된 탄소 섬유 물질은 이와 같이 언급된 당 업계의 난점을 극복할 수 있다.
CNT 주입된 탄소 섬유 물질은 내마모성을 요구하는 적용에 사용될 수 있다. 미국 특허 6,691,393호는 탄소 섬유 마찰 물질 상의 내마모성을 기술한다. 이러한 탄소 섬유 마찰 물질은 예를 들어, 자동차의 브레이크 디스크에 사용된다. 다른 내마모성 적용은 예를 들어, 고무 오링(rubber o-ring) 및 개스킷 시일(gasket seal)을 포함할 수 있다.
CNT에 효과적인 큰 표면적은 물로부터 유기 오일의 분리와 같은 다른 추출 공정 및 물의 여과 장치에 효과적인 CNT 주입된 탄소 섬유 물질을 만든다. CNT 주입된 탄소 섬유 물질은 지하수면(water table), 물 저장 장치, 또는 가정 및 사무실 사용을 위한 인라인 필터(in-line filters)로부터 유기 독소를 제거하는데 사용될 수 있다.
유전 기술에서, CNT 주입된 탄소 섬유는 파이프 베어링(pipe bearing), 파이핑 보강부(piping reinforcement), 및 고무 오링(rubber o-ring)과 같은 드릴 장비의 제조에 유용하다. 게다가, 상술한 바와 같이, CNT 주입된 탄소 섬유는 추출 공정에 사용될 수 있다. 가치 있는 석유 매장물을 함유하는 층에서 이러한 추출 성질을 적용하는 경우, CNT 주입된 탄소 섬유 물질은 다루기 힘든 층으로부터 원유를 추출하기 위해 사용될 수 있다. 예를 들어, 상당한 물 및/또는 모래가 존재하는 층으로부터 원유를 추출하기 위해서, CNT 주입된 탄소 섬유 물질이 사용될 수 있다. 또한, CNT 주입된 탄소 섬유 물질은 고 비등점 때문에 추출하기 어려운 중유를 추출하는데 유용할 수 있다. 예를 들어, 천공된 파이핑 시스템과 결합하여, 천공된 파이핑에 오버코팅된 CNT 주입된 탄소 물질에 의해 이러한 중유의 위킹(wicking)은 오일 셰일(oil shale) 층 및 중유로부터 고 비등점을 가진 부분을 연속적으로 제거하도록, 진공 시스템 등에 동작가능하게 연결될 수 있다. 또한, 당 업계에 알려진 종래의 열 또는 촉매된 분해 방법과 함께 또는 대신에, 이러한 공정이 사용될 수 있다.
CNT 주입된 탄소 섬유 물질은 대기 우주 및 탄도 적용에서 구조적 성분을 강화할 수 있다. 예를 들어 미사일에서 노즈 콘(nose cones)과 같은 구조, 날개의 선단 에지(leading edge), 플랩(flaps) 및 에어로포일(aerofoils), 프로펠러 및 공기 브레이크(air brake), 작은 비행기의 기체, 헬리곱터 쉘(helicopter shell) 및 로터 블레이드(rotor blades)와 같은 1차 구조 부분, 바닥, 문, 시트, 에어컨, 및 2차 탱크와 같은 항공기 2차 구조 부분 그리고 비행기 모터 부분은 CNT 주입된 탄소 섬유에 의해 제공된 구조적 강화로부터 유용할 수 있다. 많은 다른 적용에서 구조적 강화는 예를 들어 소해함 선체(mine sweeper hull), 헬멧, 레이돔(radom), 로켓 노즐(rocket nozzles), 구조 스트레쳐(rescue stretcher), 및 엔진 부품을 포함할 수 있다. 빌딩과 건축물에서, 외부 특징의 구조적 강화는 기둥(column), 페디먼트(pediment), 돔(dome), 처마 돌림띠(cornic), 및 거푸집(formwork)을 포함한다. 마찬가지로, 블라인드, 위생-도기(sanitary-ware), 창틀(window profile) 등과 같은 내부 빌딩 구조는 CNT 주입된 탄소 섬유 재료의 사용으로부터 모두 유용할 수 있다.
해양 산업에서, 구조적 강화는 보트 선체(boat hull), 스트링거(stringer), 및 갑판(deck)을 포함할 수 있다. 또한, CNT 주입된 탄소 섬유 물질은 예를 들어, 화물 수송업 산업의 견지에서 트레일러 벽을 위한 패널(panel), 철도 차량용 바닥 패널(floor panel), 트럭 캡(truck cab), 외부 몸체 몰딩(exterior body molding), 버스 몸체 쉘, 및 화물(cargo container)에 사용될 수 있다. 자동차 적용에서, CNT 주입된 탄소 섬유 물질은 장식, 시트, 및 계기 패널과 같은 인테리어 부분에 사용될 수 있다. 몸체 패널, 개구(opening), 하부 몸체, 및 전면과 후면 모듈과 같은 외부 구조는 CNT 주입된 탄소 섬유 물질의 사용으로부터 모두 유용할 수 있다. 또한, 엑셀(exle)과 서스펜션(suspension), 연료와 배기 시스템과 같은 자동차 엔진 부품과 연료 기계적 영역부, 및 전기 및 전자 부품은 CNT 주입된 탄소 섬유 물질을 모두 활용할 수 있다.
CNT 주입된 탄소 섬유 물질의 다른 적용은 교각 건설, 다웰 바(dowel bar), 보강 철근(reinforcing bar), 포스트 텐셔닝(post-tensioning) 및 프리 스트레싱 텐돈(pre-stressing tendon), 스테이-인-플레이스(stay-in-place) 골재와 같은 강화된 콘크리트 제품, 전신주, 송신주 및 가로장(cross-arm)과 같은 전력 전송 및 수송 구조, 표시 지지대, 가드 레일, 푯말 및 지지대, 방음벽과 같은 고속도로 안전 및 길가 특징물, 및 시자체의 파이프(municipal pipe) 및 저장 탱크를 포함한다.
또한, CNT 주입된 탄소 섬유 물질은 수상 및 스노우 스키, 카약, 카누 및 노, 스노우 보드, 골프 클럽 샤프트(golf club shaft), 골프 카트, 낚싯대, 그리고 수영장과 같은 다양한 레저 용품에 사용될 수 있다. 다른 소비재와 사무기기는 기어, 팬, 주택, 가스 압력 통, 세탁기, 드럼 세탁기, 드라이어, 음식물 쓰레기 처리기, 에어컨 및 가습기와 같은 가전제품의 부품을 포함한다.
또한, CNT 주입된 탄소 섬유의 전기적 특성은 다양한 에너지와 전기 분야에 영향을 줄 수 있다. 예를 들어, CNT 주입된 탄소 섬유 물질은 풍력 발전 터빈 날(blade), 태양전지 구조, 랩탑, 휴대폰, 컴퓨터 케비넷과 같은 전자 인클로저에 사용될 수 있고, 여기서 이러한 CNT 주입된 물질은 예를 들어 전자파 차폐(EMI shielding)에 사용될 수 있다. 다른 적용은 전력선, 냉각 장치, 등주(light pole), 회로 판, 전기 연결 박스, 사다리 레일, 광학 섬유, 데이터 라인, 컴퓨터 터미널 하우징과 같은 전력 내장형 구조, 및 복사기, 금전 복사기와 같은 사무기기 및 우편 장치를 포함한다.
일부 실시예에서, 본 발명은, (a) 스풀가능한 치수의 탄소 섬유 물질의 표면에 탄소 나노튜브 형성 촉매를 위치시키는 단계; 및 (b) 탄소 섬유 물질에서 직접 탄소 나노튜브를 합성하여, 탄소 나노튜브 주입된 탄소 섬유 물질을 형성하는 단계를 포함하는, CNT 주입을 위한 연속적인 공정을 제공한다. 9 피트 길이 시스템에서, 공정의 선속도는 약 1.5 ft/mim 내지 약 108 ft/min 범위일 수 있다. 본 명세서에서 설명된 공정으로 얻어지는 선속도는 짧은 제조 시간으로 상업적으로 상당한 양의 CNT 주입된 탄소 섬유 물질을 형성할 수 있게 한다. 예를 들어, 36 ft/min의 선속도에서, (5 중량% 이상으로 섬유에 주입된 CNT) CNT 주입된 탄소 섬유의 양은 100 파운드 이상, 또는 5개의 별도의 토우를 동시에 제조하도록 고안된 시스템(20 lb/tow)에서 하루에 제조된 물질 이상을 초과할 수 있다. 시스템은 한번에 또는 성장대를 반복해서 더 빠른 속도로 더 많은 토우를 제조하도록 구성된다. 또한, 기술분야에서 공지된 바와 같이, CNT 가공에서 일부 단계는 연속적인 동작 방법을 방해하는 상당히 느린 속도를 가진다. 예를 들어, 기술 분야에서 공지된 전형적인 공정에서, CNT 형성 촉매 감소 단계를 수행하는데 1 내지 12 시간이 걸릴 수 있다. 또한, 예를 들어, CNT 성장을 위해 수십 분을 요구하여 CNT 성장 자체가 시간 소모적이고, 본 발명에서 인식된 빠른 선속도를 방해할 수 있다. 본 명세서에 기술된 공정은 이러한 속도 제한 단계를 극복한다.
본 발명의 CNT 주입 탄소 섬유 물질 형성 공정은 사전 형성된 탄소 나노튜브의 부유물을 탄소 섬유 물질로 적용하려 할 때 발생하는 CNT 얽힘을 피할 수 있다. 다시 말해서, 미리 형성된 CNT는 탄소 섬유 물질에 용해되지 않기 때문에, CNT는 묶이거나 얽히는 경향이 있다. 그 결과, 탄소 섬유 물질에 약하게 부착된 CNT는 균일하지 않게 분포하게 된다. 그러나, 원한다면, 본 발명의 공정은 성장 밀도를 감소시켜서 탄소 섬유 물질의 표면에 매우 균일하게 얽힌 CNT 매트를 제공할 수 있다. 저밀도에서 성장된 CNT는 탄소 섬유 물질에 가장 먼저 주입된다. 이러한 실시예에서, 섬유는 수직 배열을 유도하는데 충분한 밀도로 성장하지 않고, 결과적으로 탄소 섬유 물질 표면에서 얽힌 매트가 된다. 대조적으로, 미리 형성된 CNT의 수동적 적용은 탄소 섬유 물질에서 CNT 매트의 균일한 분포 및 밀도를 보장하지 않는다.
도 7은 본 발명의 예시적인 실시예에 따른 CNT 주입된 탄소 섬유 물질의 제조 공정(700)의 흐름도를 도시한다.
상기 공정(700)은, 적어도:
탄소 섬유 물질을 기능화하는 단계(701);
기능화된 탄소 섬유 물질에 배리어 코팅 및 CNT 형성 촉매를 적용하는 단계(702);
탄소 섬유 물질을 탄소 나노튜브 합성에 충분한 온도로 가열하는 단계(704); 및
촉매 함유 탄소 섬유에서 CVD 매개 CNT 성장을 촉진시키는 단계(706)의 동작을 포함한다.
단계 701에서, 탄소 섬유 물질은 기능화되어서, 섬유의 표면 젖음을 향상시키고 배리어 코팅의 접착을 향상시킨다.
탄소 나노튜브를 섬유 물질에 주입하기 위해서, 배리어 코팅으로 균일하게 코팅된 탄소 섬유 물질에서 탄소 나노튜브가 합성된다. 일 실시예에서, 가장 먼저 탄소 섬유 물질을 배리어 코팅으로 균일하게 코팅하고, 그 다음 단계 702로서, 배리어 코팅에 나노튜브 형성 촉매를 배치하는 것에 의하여 이것을 수행할 수 있다. 일부 실시예에서, 배리어 코팅은 촉매 배치 이전에 부분적으로 경화될 수 있다. 이것은 촉매를 수용하여 이것을 배리어 코팅에 끼워넣게 하는 표면을 제공할 수 있고, CNT 형성 촉매와 탄소 섬유 물질 사이에 표면이 접촉하게 하는 것을 포함한다. 일부 실시예에서, 배리어 코팅은 CNT 형성 촉매의 배치와 동시에 탄소 섬유 물질에 걸쳐서 균일하게 코팅된다. 일단, CNT 형성 촉매 및 배리어 코팅이 배치되면, 배리어 코팅은 완전히 경화될 수 있다.
일부 실시예에서, 배리어 코팅은 촉매 배치 이전에 완전히 경화될 수 있다. 이러한 실시예에서, 완전히 경화되어 배리어 코팅된 탄소 섬유 물질은 플라즈마로 처리되어 표면을 마련하고 촉매를 수용할 수 있다. 예를 들어, 경화된 배리어 코팅을 가지는 플라즈마 처리된 탄소 섬유 물질은 CNT 형성 촉매가 배치될 수 있는 거친 표면을 제공할 수 있다. 따라서, 배리어의 표면을 "조도화(roughing)"하는 플라즈마 공정은 촉매 배치를 용이하게 한다. 전형적으로, 조도(roughness)는 나노미터 스케일이다. 플라즈마 처리 공정에서, 나노미터 깊이 및 나노미터 직경의 크리에이터(creater) 또는 침강(depression)이 형성된다. 이러한 표면 개질은 임의의 하나 이상의 여러 가지 다른 기체의 플라즈마를 사용하여 얻을 수 있고, 기체는 아르곤, 헬륨, 산소, 질소, 및 수소를 포함할 수 있으며, 이것으로 한정되는 것은 아니다. 일부 실시예에서, 또한, 플라즈마 조도화는 탄소 섬유 물질 그 자체에서 직접 수행될 수 있다. 이것은 탄소 섬유 물질에 배리어 코팅의 접착을 용이하게 할 수 있다.
도 7과 함께 이하에서 더 설명되는 바와 같이, 전이 금속 나노입자를 포함하는 CNT 형성 촉매를 함유하는 액체 용액으로 촉매가 제조된다. 합성된 나노튜브의 직경은 상술한 바와 같은 금속 입자의 크기와 관련된다. 일부 실시예에서, CNT 형성 전이 금속 나노입자 촉매의 상업적인 분산물이 이용가능하고, 희석 없이 사용될 수 있으며, 다른 실시예에서, 촉매의 상업적인 분산물은 희석될 수 있다. 이러한 용액을 희석할 것인가는 상술한 바와 같이 성장된 CNT의 원하는 밀도 및 길이에 따라 다를 수 있다.
도 7을 참조하면, 화학 기상 증착(chemical vapor deposition; CVD) 공정을 기반으로 하고 상승된 온도에서 일어나는 탄소 나노튜브 합성이 도시된다. 특정한 온도는 촉매 선택에 따라 다르지만, 전형적으로 약 500℃ 내지 1000℃ 범위일 수 있다. 따라서, 단계 704는 상술한 범위의 온도로 배리어 코팅된 탄소 섬유 물질을 가열하는 단계를 포함하여 탄소 나노튜브 합성을 돕는다.
그 다음, 단계 706에서, 촉매 함유 탄소 섬유 물질에서 CVD 촉진된 나노튜브 성장이 일어난다. 예를 들어, CVD 공정은 아세틸렌, 에틸렌, 및/또는 에탄올과 같은 탄소 함유 공급원료 기체에 의해 촉진될 수 있다. 일반적으로, CNT 합성 공정은 1차 운반 기체로서 불활성 기체(질소, 아르곤, 헬륨)를 사용한다. 탄소 공급원료는 전체 혼합물의 약 0% 내지 약 15% 범위로 제공된다. CVD 성장을 위한 실질적인 내부 환경은 성장 챔버로부터 습기 및 산소를 제거함으로써 마련된다.
CNT 합성 공정에서, CNT 형성 전이 금속 나노입자 촉매 자리에서 CNT가 성장한다. 강한 플라즈마 생성 전기장의 존재가 임의적으로 활용되어 나노튜브 성장에 영향을 준다. 다시 말해서, 성장은 전기장의 방향을 따를 수 있다. 플라즈마 분무 및 전기장의 기하학적 구조를 적합하게 조절해서, 수직 배열 CNT(즉, 탄소 섬유 물질에 수직임)가 합성될 수 있다. 어느 조건 하에서는, 플라즈마가 존재하지 않더라도, 가까이 위치한 나노튜브는 수직적인 성장 방향을 유지하여, 카펫(carpet) 또는 포레스트(forest)와 유사한 CNT의 밀집된 배열을 가져올 수 있다. 또한, 배리어 코팅의 존재가 CNT 성장의 방향성에 영향을 줄 수 있다.
섬유 물질에 촉매를 위치시키는 단계의 동작은 분무 또는 용액의 딥 코팅(dip coating), 또는 예를 들어, 플라즈마 공정을 통한 기상 증착에 의하여 수행될 수 있다. 기술의 선택은 배리어 코팅이 적용되는 방법으로 조정될 수 있다. 따라서, 일부 실시예에서, 용매에서 촉매의 용액을 형성한 이후, 분무, 또는 배리어 코팅된 탄소 섬유 물질을 용액으로 딥 코팅, 또는 분무와 딥 코팅의 조합에 의해서, 촉매가 적용될 수 있다. 단독으로 또는 조합해서 사용되는 이러한 기술은 1번, 2번, 3번, 4번, 몇 번까지도 사용되어서, 충분히 균일하게 코팅된 CNT 형성 촉매를 함유하는 탄소 섬유 물질을 제공할 수 있다. 딥 코팅이 사용될 때, 예를 들어, 제1 딥 배스(dip bath)에서 제1 체류시간 동안 탄소 섬유 물질은 제1 딥 배스에 배치될 수 있다. 제2 딥 배스를 사용할 때, 탄소 섬유 물질은 제2 체류 시간 동안 제2 딥 배스에 배치될 수 있다. 예를 들어, 탄소 섬유 물질은 딥 구성물 및 선속도에 따라서 약 3초 내지 약 90초 동안 CNT 형성 촉매의 용액에 적용될 수 있다. 분무 또는 딥 코팅 공정을 사용하여, 탄소 섬유 물질은 약 5% 이하의 표면적 내지 약 80%의 높은 표면적의 촉매의 표면 밀도를 가지며, CNT 형성 촉매 나노입자는 거의 단일층이다. 일부 실시예에서, 탄소 섬유 물질에서 CNT 형성 촉매를 코팅하는 공정은 단지 단일층을 생성하여야 한다. 예를 들어, CNT 형성 촉매의 스택(stack)에서의 CNT 성장은, 탄소 섬유 물질에 CNT의 주입 정도를 약화시킬 수 있다. 다른 실시예에서, 증발 기술, 전해질 증착 기술, 및 금속 유기물, 금속염 또는 기체상 이동을 촉진하는 다른 구성물로서 플라즈마 공급원료 기체에 전이 금속 촉매의 첨가와 같은 당업자에게 공지된 다른 공정을 사용하여, 전이 금속 촉매는 탄소 섬유 물질에 증착될 수 있다.
본 발명의 공정은 연속되도록 고안되기 때문에, 스풀가능한 탄소 섬유 물질은 일련의 배스에서 딥 코팅될 수 있고, 여기서 딥 배스는 공간적으로 분리된다. 새로운 탄소 섬유가 다시 생성되는 연속적인 공정에서, 탄소 섬유 물질에 배리어 코팅을 적용하고 경화 또는 부분적으로 경화한 이후, CNT 형성 촉매의 딥 배스 또는 분무가 제1 단계일 수 있다. 새롭게 형성된 탄소 섬유 물질을 위한 사이징의 적용 대신에, 배리어 코팅 및 CNT 형성 촉매의 적용이 수행될 수 있다. 다른 실시예에서, 배리어 코팅 이후 다른 사이징 작용제의 존재하에서, CNT 형성 촉매는 새롭게 형성된 탄소 섬유에 적용될 수 있다. 또한, 다른 사이징 작용제와 CNT 형성 촉매의 이러한 동시적인 적용은 탄소 섬유 물질의 배리어 코팅을 가지는 표면 접촉에서 CNT 형성 촉매를 제공하여 CNT 주입을 보장할 수 있다.
사용된 촉매 용액은 상술한 바와 같이 임의의 d-블록 전이 금속인 전이 금속 나노입자일 수 있다. 또한, 나노입자는 원소 형태 또는 염 형태에서 d-블록 금속의 합금 및 비합금 혼합물, 및 이들의 혼합물을 포함할 수 있다. 이러한 염 형태는 산화물, 탄화물, 및 질화물을 포함하며, 이것으로 제한되지 않는다. 제한적이 아닌 예시적인 전이 금속 NP는 니켈(Ni), 철(Fe), 코발트(Co), 몰리브덴(Mo), 구리(Cu), 백금(Pt), 금(Au), 은(Ag), 및 이들의 염, 및 이들의 혼합물을 포함한다. 일부 실시예에서, 배리어 코팅 증착과 동시에 탄소 섬유 물질에 직접 CNT 형성 촉매를 적용하거나 주입함에 의하여, 이러한 CNT 형성 촉매는 탄소 섬유에 배치된다. 이러한 많은 전이 금속 촉매는 예를 들어, Forrotec Corporation(Bedford, NH)을 포함하는 다양한 공급처로부터 상업적으로 쉽게 이용할 수 있다.
CNT 형성 촉매를 탄소 섬유 물질에 적용하는데 사용되는 촉매 용액은 CNT 형성 촉매를 균일하게 분산시킬 수 있는 임의의 일반적인 용매일 수 있다. 이러한 용매는, 비 제한적인, 물, 아세톤, 헥산, 이소프로필 알코올, 톨루엔, 에탄올, 메탄올, 테트라하이드로퓨란(THF), 사이클로헥산 또는 제어된 극성을 가지는 어느 다른 용매를 포함해서, CNT 형성 촉매 나노입자의 적당한 분산을 이룰 수 있다. CNT 형성 촉매의 농도는 촉매 대 용매가 약 1:1 내지 1:10000 범위일 수 있다. 배리어 코팅과 CNT 형성 촉매가 동시에 적용될 때에도, 이러한 농도가 사용될 수 있다.
일부 실시예에서, 약 500℃ 내지 1000℃ 온도에서 탄소 섬유 물질을 가열하여서, CNT 형성 촉매의 증착 이후 탄소 나노튜브를 합성할 수 있다. 이러한 온도로 가열하는 단계는 CNT 성장을 위한 탄소 공급원료의 도입 전에 또는 실질적으로 주입과 동시에 수행될 수 있다.
일부 실시예에서, 본 발명은 탄소 섬유 물질로부터 사이징 작용제를 제거하는 단계, 탄소 섬유 물질에 걸쳐 균일하게 배리어 코팅을 적용하는 단계, 탄소 섬유 물질에 CNT 형성 촉매를 적용하는 단계, 탄소 섬유 물질을 적어도 500℃로 가열하는 단계, 및 탄소 섬유 물질에서 탄소 나노튜브를 합성하는 단계를 포함하는 공정을 제공한다. 일부 실시예에서, CNT 주입 공정의 동작은 탄소 섬유 물질로부터 사이징을 제거하는 단계, 탄소 섬유 물질에 배리어 코팅을 적용하는 단계, 탄소 섬유에 CNT 형성 촉매를 적용하는 단계, 탄소 섬유를 CNT 합성 온도로 가열하는 단계, 및 촉매 함유 섬유 물질에서 CVD 매개 CNT 성장을 촉진하는 단계를 포함한다. 따라서, 상업적인 탄소 섬유 물질이 사용될 때, CNT 주입된 탄소 섬유의 제조 공정은, 탄소 섬유 물질에서 배리어 코팅 및 촉매를 배치하는 단계 이전에, 탄소 섬유 물질로부터 사이징을 제거하는 별도의 단계를 포함할 수 있다.
탄소 나노튜브를 합성하는 단계는 탄소 나노튜브를 형성하는 수많은 기술을 포함할 수 있고, 함께 계류중이며 본 명세서에서 참조로서 편입되는 미국 특허 공개 2004/0245088호를 포함한다. 본 발명의 섬유에서 성장된 CNT는, 이것으로 제한되는 것은 아닌, 마이크로 캐비티(micro-cavity), 열적 또는 플라즈마 향상된 CVD 기술, 레이저 제거(ablation), 아크 방전(arc discharge), 고압 탄소 모녹사이드(high pressure carbon monoxide, HiPCO)를 포함하는 당해 기술 분야에서 공지된 기술에 의해 수행될 수 있다. 특히, CVD 동안, 그 안에 배치된 CNT 형성 촉매를 가지는 배리어 코팅된 탄소 섬유 물질이 직접 사용될 수 있다. 일부 실시예에서, 어느 종래의 사이징 작용제는 CNT 합성 전에 제거될 수 있다. 일부 실시예에서, 아세틸렌 가스가 이온화되어서, CNT 합성을 위한 저온 탄소 플라즈마의 분출을 생성한다. 플라즈마는 촉매 함유 탄소 섬유 물질을 향하여 유도될 수 있다. 따라서, 일부 실시예에서, 탄소 섬유 물질에서 CNT를 합성하는 것은 (a) 탄소 플라즈마를 형성하는 단계; 및 (b) 탄소 섬유 물질에 배치된 촉매로 탄소 플라즈마를 유도하는 단계를 포함한다. 성장된 CNT의 직경은 상술한 바와 같이 CNT 형성 촉매의 크기에 따라 결정된다. 일부 실시예에서, 사이징된 섬유 기질은 약 550℃ 내지 약 800℃로 가열되어 CNT 합성을 용이하게 한다. CNT의 성장을 개시하기 위하여, 아르곤, 헬륨, 또는 질소와 같은 공정 기체, 및 아세틸렌, 에틸렌, 에탄올 또는 메탄올과 같은 탄소 함유 기체의 두 가지의 기체가 반응기로 주입된다. CNT는, CNT 형성 촉매의 위치에서 성장한다.
일부 실시예에서, CVD 성장은 플라즈마 향상(plasma-enhanced)된다. 성장 공정 동안 전기장을 제공하여 플라즈마가 생성될 수 있다. 이러한 조건에서 성장된 CNT는 전기장의 방향을 따를 수 있다. 따라서, 반응기의 기하학적 구조를 조절해서, 수직으로 배열된 탄소 나노튜브는 실린더형 섬유에 대하여 방사상으로 성장될 수 있다. 일부 실시예에서, 플라즈마는 섬유에 대하여 방사상 성장을 요구하지 않는다. 테이프, 매트, 직물, 플라이 등과 같은 특징적인 면을 가지는 탄소 섬유 물질에 대하여, 촉매는 일면 또는 양면에 배치될 수 있고, 상응해서 CNT는 일면 또는 양면에서 성장될 수 있다.
상술한 바와 같이, CNT 합성은 스풀가능한 탄소 섬유 물질을 기능화하는 연속적인 공정을 제공하기에 충분한 속도로 수행된다. 수많은 장치 구조물은 아래 예시된 바와 같이 이러한 연속적인 합성을 용이하게 한다.
일부 실시예에서, CNT 주입 탄소 섬유 물질은 "올 플라즈마(all plasma)" 공정에서 제조될 수 있다. 올 플라즈마 공정은 상술한 바와 같은 플라즈마를 가지고 탄소 섬유 물질을 조도화하는 단계를 포함해서, 섬유 표면 젖음 특징을 향상시키고 더 균일한 배리어 코팅을 제공하는 것 이외에, 아르곤 또는 헬륨 기반의 플라즈마에서 산소, 질소, 수소와 같은 특정한 활성 기체 종을 사용하여 탄소 섬유 물질을 기능화하는 이용을 통하여 역학적 연동(interlocking) 및 화학적 접착을 통하여 코팅 접착을 향상시킬 수 있다.
배리어 코팅된 탄소 섬유 물질은 추가의 플라즈마 매개된 수많은 단계를 통해서 최종적인 CNT 주입 생성물을 형성한다. 일부 실시예에서, 올 플라즈마 공정은 배리어 코팅이 경화된 이후 제2 표면 개질을 포함할 수 있다. 이것은 섬유 물질에서 배리어 코팅의 표면을 "조도화(roughing)"하여 촉매 증착을 용이하게 하는 플라즈마 공정이다. 상술한 바와 같이, 이것으로 제한되는 것은 아닌, 아르곤, 헬륨, 산소, 암모니아, 수소 및 질소를 포함하는 하나 이상의 여러 가지 임의의 다른 기체의 플라즈마를 사용하여 표면 개질을 얻을 수 있다.
표면 개질 이후, 배리어 코팅된 탄소 섬유 물질은 촉매 적용을 진행한다. 이것은 섬유에 CNT 형성 촉매를 위치시키는 플라즈마 공정이다. 전형적으로, CNT 형성 촉매는 상술한 바와 같이 전이 금속이다. 전이 금속 촉매는 자성 유체(ferrofluid), 금속 유기물(metal organic), 금속염, 또는 기상 운반을 촉진하는 다른 조성물의 형태에서 전구체로서 플라즈마 공급원료 기체에 첨가될 수 있다. 촉매는 진공도 불활성 대기도 요구되지 않는 주변 환경의 실온에서 적용될 수 있다. 일부 실시예에서, 탄소 섬유 물질은 촉매 적용 전에 냉각된다.
올 플라즈마 공정에 연속해서, 탄소 나노튜브 합성은 CNT 성장 반응기에서 일어난다. 이것은 플라즈마 향상된 화학 기상 증착을 사용해서 얻어질 수 있고, 여기서, 탄소 플라즈마는 촉매 함유 섬유에 분무된다. 탄소 나노튜브 성장은 (전형적으로, 촉매에 따라서 약 500℃ 내지 1000℃ 범위의) 상승된 온도에서 일어나기 때문에, 촉매 함유 섬유는 탄소 플라즈마에 노출되기 전에 가열될 수 있다. 주입 공정을 위해, 탄소 섬유 물질은 그것이 연화될 때까지 임의적으로 가열될 수 있다. 가열 이후, 탄소 섬유 물질은 탄소 플라즈마를 받도록 준비된다. 예를 들어, 탄소 플라즈마는 기체를 이온화할 수 있는 전기장을 통하여, 아세틸렌, 에틸렌, 에탄올 등과 같은 탄소 함유 기체를 통과시켜서 생성된다. 이러한 저온 탄소 플라즈마는 분무 노즐을 통해서 탄소 섬유 물질로 유도된다. 탄소 섬유 물질은 분무 노즐의 약 1 cm 이내와 같이, 분무 노즐에 가까이 인접하여 플라즈마를 받을 수 있다. 일부 실시예에서, 플라즈마 분무기에서 탄소 섬유 물질 상부에 가열기가 배치되어 탄소 섬유 물질의 상승된 온도를 유지한다.
연속적인 탄소 나노튜브 합성의 다른 양태는 탄소 섬유 물질에서 직접적으로 탄소 나노튜브의 합성 및 성장을 위한 특정한 장방형 반응기를 포함한다. 반응기는 탄소 나노튜브 함유 섬유를 제조하는 연속적인 인라인(in-line) 공정에서 사용되도록 고안될 수 있다. 일부 실시예에서, CNT는 멀티존(multi-zone) 반응기에서, 대기압 및 약 550℃ 내지 800℃ 범위의 상승된 온도에서 화학 기상 증착(chemical vapor deposition, CVD)을 통하여 성장된다. 합성이 대기압에서 일어난다는 사실은 섬유상 CNT(CNT-on-fiber) 합성을 위한 연속적인 공정 라인으로 반응기의 통합을 용이하게 하는 일 요인이다. 이러한 존(zone) 반응기를 사용하는 연속적인 인라인 공정에 부합하는 다른 장점은 CNT 성장이, 당해 기술에서 전형적인 다른 절차 및 장치 구성물에서의 분(minute) 단위 시간(또는 더 긴 시간)과는 달리, 초(second) 단위로 일어난다는 것이다.
다양한 실시예에 따른 CNT 합성 반응기는 이하의 특징을 포함한다.
장방형 형태의 합성 반응기:
당해 기술분야에서 공지된 전형적인 CNT 합성 반응기의 단면은 원형이다. 이는 예를 들어, 역사적인 이유(실린더형 반응기가 종종 실험실에서 사용됨) 및 편리성(유동 역학(flow dynamecs)은 실린더형 반응기로 모형화하기 쉽고, 가열기 시스템은 원형 튜브(석영 등)를 용이하게 수용), 제조의 용이성을 포함하는 많은 이유가 있다. 실린더형 관례를 이탈하여, 본 발명은 장방형 단면을 가지는 CNT 합성 반응기를 제공한다. 일탈의 이유는 하기와 같다.
1. 반응기에 의해 제조되는 많은 탄소 섬유 물질은 평평한 테이프 또는 시트 유사 형태와 같이 상대적으로 평면이기 때문에, 원형 단면은 반응기 용적의 비효율적인 사용이다. 이러한 비효율성은 예를 들어, 이하를 포함하여 실린더형 CNT 합성 반응기의 여러 가지 결점을 초래한다.
a) 충분한 시스템 퍼지(purge)를 유지하는 단계;
증가된 반응기 용적은 동일한 수준의 기체 퍼지를 유지하기 위하여 증가된 기체 유동률(gas flow rate)을 요구한다. 이것은 개방 환경에서 높은 용적의 CNT 제조에 비효율적인 시스템을 초래한다.
b) 증가된 탄소 공급원료 기체 흐름
상기 a)에 따르면, 불활성 기체 흐름에서의 상대적인 증가는 증가된 탄소 공급원료 기체 흐름을 요구한다. 12K 탄소 섬유 토우의 용적은 장방형 단면을 가지는 합성 반응기의 전체 용적보다 2000배 적은 것으로 고려된다. 균등한 성장 실린더형 반응기에서(즉, 장방형 단면 반응기와 동일한 평면화된 탄소 섬유 물질을 수용하는 폭을 가지는 실린더형 반응기), 탄소 섬유 물질의 용적은 챔버 용적보다 17,500배 적다. CVD와 같은 기체 증착 공정이 전형적으로 압력과 온도만의 지배를 받더라도, 용적은 증착의 효율성에 중요한 영향을 준다. 장방형 반응기로 여전히 용적 초과가 있다. 이러한 초과 용적은 원하지 않는 반응을 일으키기 쉽다. 그러나 실린더형 반응기는 그 용적의 약 8배를 가진다. 이러한 경쟁 반응이 일어날 더 큰 기회로 인하여, 실린더형 반응기 챔버에서 더 느리게 원하는 반응이 효율적으로 일어난다. CNT 성장에서 이러한 둔화(slow down)는 연속적인 공정의 전개에 문제가 된다. 장방형 반응기 구성의 하나의 이점은 장방형 챔버를 위한 작은 높이를 사용함에 의하여 반응기 용적이 감소 되어서, 이러한 용적비는 더 좋아지고 반응기는 더 효율적이 될 수 있다. 본 발명의 일부 실시예에서, 장방형 합성 반응기의 전체 용적은 합성 반응기를 통과하는 탄소 섬유 물질의 전체 용적보다 단지 약 3000배 더 크다. 또한, 일부 실시예에서, 장방형 합성 반응기의 전체 용적은 합성 반응기를 통과하는 탄소 섬유 물질의 전체 용적보다 단지 약 4000배 더 크다. 또한, 일부 실시예에서, 장방형 합성 반응기의 전체 용적은 합성 반응기를 통과하는 탄소 섬유 물질의 전체 용적보다 단지 약 10,000배 더 크다. 또한, 실린더형 반응기를 사용할 때, 더 많은 탄소 공급원료 기체는 장방형 단면을 가지는 반응기와 비교하여 같은 유동 퍼센트를 제공하도록 요구되는 것이 명백하다. 일부 다른 실시예에서, 합성 반응기는 장방형이 아닌 다각형 형태로 설명되는 단면도를 가지지만, 상대적으로 그와 유사하고 원형 단면을 가지는 반응기와 비교하여 반응 용적에서 유사한 감소를 제공한다는 것이 명백하다.
c) 온도 분포의 문제
상대적으로 작은 직경의 반응기가 사용될 때, 챔버의 중심으로부터 챔버의 벽으로 온도 구배는 최소화된다. 그러나, 상업적 규모의 제조에 사용되는 것과 같이 크기가 증가하면, 온도 구배는 증가된다. 이러한 온도 구배는 탄소 섬유 물질 기질에 걸쳐 생산물의 질적 변화를 초래한다(즉, 생산물의 질은 방사성 위치에 따라 변화한다). 이러한 문제는 장방형 단면을 가지는 반응기를 사용할 때 실질적으로 피할 수 있다. 특히, 평면 기질이 사용될 때, 반응기 높이는 상향된 기질 규모의 크기로서 유지된 상수이다. 반응기의 상부 플레이트(top plate)와 하부 플레이트(bottom plate) 사이의 온도 구배는 실질적으로 무시할 수 있고, 결과적으로, 발생되는 열 문제 및 생산품의 질 변화를 피할 수 있다.
2. 기체 도입
일반적으로, 종래 기술에서는 튜브형 노(tublar furnace)가 사용되기 때문에, 전형적인 CNT 합성 반응기는 일 단부(one end)에서 기체를 도입하고 다른 단부(other end)에서 반응기를 통하여 그것을 끌어당긴다. 본 명세서에서 공개된 일부 실시예에서, 반응기의 면을 통하여 또는 반응기의 상부 플레이트 및 하부 플레이트를 통하여 대칭적으로, 반응기의 중심 또는 타겟 성장대로 기체가 유도될 수 있다. 이것은 들어오는 공급원료 기체가 CNT 성장이 가장 활발한 시스템의 가장 고온 부분에서 연속적으로 보충되기 때문에 전체 CNT 성장률을 향상시킨다. 이러한 계속적인 기체 보충은 장방형 CNT 반응기에 의해 나타나는 증가된 성장률에 중요한 측면이다.
지대( Zoning )
상대적으로 냉각 퍼지(purge) 지대를 제공하는 챔버는 장방형 합성 반응기의 양 단부에 따른다. 출원인은 고온 기체가 외부 환경(즉, 반응기의 외부)과 혼합된다면, 탄소 섬유 물질의 분해(degradation)가 증가되도록 결정하였다. 냉각 퍼지 지대는 내부 시스템과 외부 환경 사이에 버퍼(buffer)를 제공한다. 일반적으로, 당해 기술 분야에서 공지된 전형적인 CNT 합성 반응기 구조는 기질이 조심스럽게 (그리고 천천히) 냉각되는 것을 요구한다. 본 발명의 장방형 CNT 성장 반응기의 출구에서 냉각 퍼지 지대는 연속적인 인라인 공정에서 요구되는 바와 같이 단기간의 시간 동안에 냉각을 획득한다.
비접촉, 고온 벽( hot - walled ), 금속 반응기
일부 실시예에서, 금속, 특히 스테인리스강(stainless steel)으로 구성된 고온 벽 반응기가 사용된다. 이것은 금속, 특히 스테인리스강은 탄소 증착(즉, 그을음(soot) 및 부산물 형성)하기 더 쉽기 때문에 반직관적으로 보일 수 있다. 따라서, 대부분의 CNT 반응기 구조물은 석영 반응기를 사용하는데, 이것은 탄소 증착이 덜하고, 석영이 제거하기 용이하며, 석영이 간단한 관찰을 용이하게 하기 때문이다. 그러나, 출원인은, 스테인리스강에서 증가된 그을음 및 탄소 증착이 더 균일하고, 더 빠르고, 더 효율적이고, 그리고 더 안정한 CNT 성장을 일으키는 것을 관찰하였다. 이론에 의해 한정되는 것은 아니지만, 대기 작용과 함께, 반응기에서 일어나는 CVD 공정은 확산(diffusion)이 제한적이라고 지적되어 왔다. 다시 말해서, 촉매가 "과잉공급(overfed)"되고, 과다한 탄소는 (부분적인 진공하에서 반응기가 동작하는 것보다) 그것의 상대적으로 높은 분압으로 인해 반응기 시스템에서 활용가능하다. 결과적으로, 개방 시스템에서, 특히 클린(clean) 시스템에서, 과다 탄소는 촉매 입자에 접착되고, 그들의 CNT 합성 능력을 타협한다. 일부 실시예에서, 반응기가 금속 반응기 벽에 증착된 그을음을 가지는 "더티(dirty)"일때, 장방형 반응기를 의도적으로 실행한다. 일단, 반응기의 벽의 단일층에 탄소가 증착되면, 탄소는 그 자체로 쉽게 증착될 것이다. 일부 활용가능한 탄소는 이러한 메커니즘으로 인하여 "후퇴(withdrawn)"되기 때문에, 방사상 형태로 남아있는 탄소 공급원료는 촉매가 유해하지않는 속도로 촉매와 반응한다. 현존하는 시스템은 "깨끗하게(cleanly)" 작동하고, 이것은 현존하는 시스템이 연속적인 공정에서 개방된다면, 감속된 성장 속도에서 크게 감소된 수율의 CNT를 제조하게 한다.
일반적으로, 상술한 바와 같은 CNT 합성 "더티"를 수행하는 것이 유익하더라도, 그을음이 장애물(blockage)을 생성할 때, 기체 매니폴드(manifold) 및 흡입구와 같이 장치의 어느 부분은 CNT 성장 공정에 부정적인 영향을 줄 수 있다. 이러한 문제를 해결하기 위해서, CNT 성장 반응 챔버의 이러한 영역은 실리카, 알루미나, 또는 MgO와 같이 그을음 억제 코팅제(soot inhibiting coating)로 보호될 수 있다. 실제로, 장치의 이러한 부분은 그을음 억제 코팅제로 딥 코팅될 수 있다. INVAR®와 같은 금속이 이러한 코팅제로 사용될 수 있는데, INVAR는 유사한 열팽창계수(coefficient of thermal expansion, CTE)를 가져서, 고온에서 적합한 코팅제의 접착을 보장하고, 중요한 지대에서 그을음이 상당히 크게 성장하는 것을 억제하기 때문이다.
결합된 촉매 환원 및 CNT 합성
본 명세서에서 공개된 CNT 합성 반응기에서, 촉매 환원 및 CNT 성장은 모두 반응기 내에서 일어난다. 이것은 환원 단계가 분리된 동작으로 수행된다면, 연속적인 공정에서 사용하기에 충분하도록 시기적절이 수행될 수 없기 때문에 중요하다. 당해 기술분야에서 공지된 전형적인 공정에서, 일반적으로, 환원 단계는 수행되는데 1 내지 12 시간이 걸린다. 적어도 부분적으로, 실린더형 반응기를 사용하는 기술 분야에서 일반적인 단부가 아닌, 반응기의 중심에서 탄소 공급원료 기체가 도입된다는 사실 때문에, 두 개의 동작 모두 본 발명에 따른 반응기에서 일어난다. 환원 공정은 섬유가 가열된 지대로 들어가면서 일어나며, 이러한 점에 의하여, 기체는 (수소 라디칼 반응에 의하여) 촉매와 반응해서 산화 환원을 일으키기 전에, 벽과 반응해서 냉각되는 시간을 가진다. 환원이 일어나는 이러한 전이 영역이 있다. 시스템의 가장 뜨거운 등온 지대에서, 반응기의 중심 근처의 기체 흡입구에 인접해서 일어나는 가장 큰 성장률을 가지고 CNT 성장이 일어난다.
일부 실시예에서, 토우와 같이 느슨하게 결합된 탄소 섬유 물질이 사용될 때, 연속적인 공정은 토우의 스트랜드 및/또는 필라멘트를 펼치는 단계를 포함할 수 있다. 따라서, 토우가 스풀되지 않을 때, 그것은 예를 들어, 진공 기반의 섬유 스프레딩 시스템(vacumn-based fiber spreading system)을 사용하여 스풀될 수 있다. 상대적으로 강성일 수 있는 사이즈된 탄소 섬유를 사용할 때, 추가적인 가열이 수행되어, 토우를 "연화(soften)"해서 섬유 스프레딩을 용이하게 할 수 있다. 각각의 필라멘트를 포함하는 스프레드 섬유는 효율적으로 떨어져서 스풀되고 필라멘트의 전체 표면적에 노출되어서, 후속 공정 단계에서 토우가 더 효율적으로 반응할 수 있게 한다. 이러한 스프레딩은 3k 토우에 대하여 약 4 인치(inch) 내지 약 6 인치(inch)에 근접할 수 있다. 스프레드 탄소 토우는 상술한 바와 같이 플라즈마 시스템으로 구성된 표면 처리 단계를 통과할 수 있다. 배리어 코팅이 적용되어 조도화된 이후, 스프레드 섬유는 CNT 형성 촉매 딥 배스를 통과할 수 있다. 결과적으로 그 표면에 방사상으로 분포된 촉매 입자를 가지는 탄소 섬유 토우가 된다. 그 다음, 토우의 촉매 함유 섬유는, 상술한 장방형 챔버와 같은 적합한 CNT 성장 챔버로 들어가고, 여기서, 대기압 CVD 또는 PE-CVD 공정을 통한 흐름이 사용되어, 수 미크론(micron)/초(second)와 같이 높은 속도로 CNT를 합성한다. 이제, 방사상으로 배열된 CNT와 함께 토우 섬유는 CNT 성장 반응기를 나온다.
일부 실시예에서, CNT 주입된 탄소 섬유 물질은, 일부 실시예에서 CNT를 기능화하는데 사용되는 플라즈마 공정인, 다른 처리 공정을 통과할 수 있다. CNT의 추가적인 기능화는 특별한 수지에 CNT의 접착을 촉진하기 위해 사용될 수 있다. 따라서, 일부 실시예에서, 본 발명은 기능화된 CNT를 포함하는 CNT 주입된 탄소 섬유 물질을 제공한다.
스풀가능한 탄소 섬유 물질의 연속적인 공정의 일부로서, CNT 주입된 탄소 섬유 물질은 사이징 딥 배스를 더 통과하여, 최종 생성물에 유익한 임의의 추가적인 사이징 작용제가 적용될 수 있다. 마지막으로, 습식 와인딩(wet winding)을 원한다면, CNT 주입된 탄소 섬유 물질은 수지 배스를 통과하여, 맨드릴 또는 스풀에서 와인딩될 수 있다. 최종적인 탄소 섬유 물질/수지 조합은, 취급 및 복합재 가공을 보다 용이하게 하는 탄소 섬유 물질에, CNT를 가둔다. 일부 실시예에서, CNT 주입이 사용되어 향상된 필라멘트 와인딩을 제공한다. 따라서, 탄소 토우와 같은 섬유에 형성된 CNT는 수지 배스를 통과하여, 수지 함침된 CNT 주입 토우(resin-impregnated, CNT-infused tow)를 제조한다. 수지가 함침된 이후, 탄소 토우는 분배 헤드에 의해, 회전하는 맨드릴의 표면에 배치될 수 있다. 그 다음, 토우는 공지된 방법에서 정확한 기하학적 패턴으로 맨드릴에 와인딩될 수 있다.
상술한 와인딩 공정은 파이프, 튜브, 또는 수형 몰드(male mold)를 매개로 하여 특징적으로 제조된 다른 형태를 제공한다. 그러나, 본 명세서에 개시된 와인딩 공정으로 이루어진 형태는, 종래의 필라멘트 와인딩 공정을 매개로 하여 제조된 것과 다르다. 특히, 본 명세서에 개시된 공정에서, 그 형태는 CNT 주입된 토우를 포함하는 복합재로 구성된다. 따라서, 이러한 형태는 CNT 주입된 토우에 의해 제공되는 바와 같이 향상된 강도 등의 이점이 있을 것이다.
일부 실시예에서, 스풀가능한 탄소 섬유 물질에 CNT의 주입을 위한 연속적인 공정은 약 0.5 ft/min 내지 약 36 ft/min의 선속도를 얻을 수 있다. CNT 성장 챔버가 3 피트(feet) 길이이고, 750℃의 성장 온도에서 동작하는 이러한 실시예에서, 그 공정은 예를 들어, 약 6 ft/min 내지 약 36 ft/min의 선속도로 동작하여, 약 1 미크론 내지 약 10 미크론의 길이를 가지는 CNT를 제조할 수 있다. 또한, 공정은 예를 들어, 약 1 ft/min 내지 약 6 ft/min의 선속도로 동작하여, 약 10 미크론 내지 약 100 미크론의 길이를 가지는 CNT를 제조할 수 있다. 공정은 예를 들어, 약 0.5 ft/min 내지 약 1 ft/min의 선속도로 동작하여, 약 100 미크론 내지 약 200 미크론의 길이를 가지는 CNT를 제조할 수 있다. 그러나, CNT 길이는 선속도 및 성장 온도에만 구속되는 것은 아니고, 탄소 공급원료 및 불활성 운반 기체의 유속도 CNT 길이에 영향을 줄 수 있다. 예를 들어, 높은 선속도(6 ft/min 내지 36 ft/min)에서, 불활성 기체에 1% 미만의 탄소 공급원료로 구성된 유속은, CNT가 1 미크론 내지 약 5 미크론의 길이를 가지게 한다. 높은 선속도(6 ft/min 내지 36 ft/min)에서, 불활성 기체에 1% 이상의 탄소 공급원료로 구성된 유속은, CNT가 5 미크론 내지 약 10 미크론의 길이를 가지게 한다.
일부 실시예에서, 하나 이상의 탄소 섬유 물질이 공정을 통하여 동시에 작용될 수 있다. 예를 들어, 다수의 테이프 토우, 필라멘트, 스트랜드 등은 유사하게 공정을 통해 작용될 수 있다. 따라서, 탄소 섬유 물질의 미리 가공된 스풀의 임의의 수는 공정을 통해 유사하게 작용될 수 있고, 공정이 끝날 때 다시 스풀(re-spooled)될 수 있다. 유사하게 작용될 수 있는 스풀된 탄소 섬유 물질의 수는 하나, 둘, 셋, 넷, 다섯, 여섯, CNT 성장 반응기 챔버의 폭에 의해 수용될 수 있는 임의의 수를 포함할 수 있다. 또한, 다수의 탄소 섬유 물질이 공정을 통하여 적용될 때, 총체적인 스풀의 수는 공정의 개시에서 스풀의 수보다 적을 수 있다. 이러한 실시예에서, 탄소 스트랜드, 토우 등은, 이러한 탄소 섬유 물질을 직조된 직물 등과 같은 고차 탄소 섬유 물질과 결합하는 추가 공정을 위해, 보내질 수 있다. 또한, 연속적인 공정은 예를 들어, CNT 주입 절단 섬유 매트(CNT-infused chopped fiber mat)의 형성을 용이하게 하는, 후 처리 절단기(post processing chopper)를 포함할 수 있다.
일부 실시예에서, 본 발명의 공정은 탄소 섬유 물질에서 탄소 나노튜브의 제1 형태의 제1 양을 합성할 수 있게 하고, 여기서 탄소 나노튜브의 제1 형태는 탄소 섬유 물질의 적어도 하나의 제1 특성을 변경하기 위하여 선택된다. 이후, 본 발명의 공정은 탄소 섬유 물질에서 탄소 나노튜브의 제2 형태의 제2 양을 합성할 수 있게 하고, 여기서 탄소 나노튜브의 제2 형태는 탄소 섬유 물질의 적어도 하나의 제2 특성을 변경하기 위하여 선택된다.
일부 실시예에서, CNT의 제1 양과 제2 양은 상이하다. 이것은 CNT 형태를 변경하거나 변경하지 않음으로써 수행될 수 있다. 따라서, CNT 형태가 변경되지 않더라도, CNT의 밀도를 변화시키는 것은 원래의 탄소 섬유 물질의 특성을 변경시키는데 사용될 수 있다. CNT 형태는, 예를 들어 CNT 길이 및 벽의 개수를 포함할 수 있다. 일부 실시예에서, 제1 양과 제2 양은 동일하다. 스풀가능한 물질의 2개의 상이한 신축성을 따르는 이러한 경우에 상이한 특성이 바람직하다면, 이후 CNT 형태는 CNT 길이처럼 변경될 수 있다. 예를 들어, 전기적/열적 적용에는 보다 긴 CNT가 유용할 수 있지만, 기계적 강도 적용에는 보다 짧은 CNT가 유용할 수 있다.
탄소 섬유 물질의 특성을 변경하는 것에 관한 상기 논의에 비추어, 일부 실시예에서는 탄소 나노튜브의 제1 형태 및 탄소 나노튜브의 제2 형태가 동일할 수 있지만, 다른 실시예에서는 탄소 나노튜브의 제1 형태 및 탄소 나노튜브의 제2 형태가 상이할 수 있다. 마찬가지로, 일부 실시예에서는 제1 특성 및 제2 특성이 동일할 수 있다. 예를 들어, EMI 차폐 특성은 CNT의 제1 양과 제1 형태 및 CNT의 제2 양과 제2 형태에 의해 나타나는 흥미로운 특성이지만, 사용되는 CNT의 양 및/또는 형태를 상이하게 하여 나타나는 바와 같이, 이러한 특성의 변경 정도는 상이할 수 있다. 마지막으로, 일부 실시예에서, 제1 특성 및 제2 특성은 상이할 수 있다. 또한, 이것은 CNT 형태의 변경을 반영할 수 있다. 예를 들어, 제1 특성은 보다 짧은 CNT에서의 기계적 강도일 수 있지만, 제2 특성은 보다 긴 CNT에서의 전기적/열적 특성일 수 있다. 상이한 CNT 밀도, 상이한 CNT 길이, 및 예를 들어 단일벽, 이중벽 및 다중벽과 같은, CNT에서의 상이한 벽의 개수를 사용해서, 탄소 섬유 물질의 특성을 조절할 수 있다는 것을 당업자는 알 수 있을 것이다.
일부 실시예에서, 본 발명의 공정은, 탄소 섬유 물질에서 탄소 나노튜브의 제1 양을 합성하는 단계를 제공하여서, 이러한 제1 양에 의하여, 탄소 나노튜브 주입된 탄소 섬유 물질이 탄소 섬유 물질 그 자체에 의해 나타나는 제1 그룹의 특성과 구별되는 제2 그룹의 특성을 나타내게 한다. 다시 말해서, 그 양을 선택하는 것은 인장 강도와 같은 탄소 섬유 물질의 하나 이상의 특성을 변경시킬 수 있다. 제1 그룹의 특성 및 제2 그룹의 특성은 적어도 하나의 동일한 특성을 나타내어서, 탄소 섬유 물질에 이미 존재하는 특성의 향상을 나타낼 수 있다. 일부 실시예에서, CNT 주입은, 탄소 섬유 물질 그 자체에 의해 나타나는 제1 그룹의 특성 중에는 포함되지 않은 제2 그룹의 특성을 탄소 나노튜브 주입된 탄소 섬유 물질에 제공할 수 있다.
일부 실시예에서, 탄소 나노튜브의 제1 양은, 탄소 나노튜브 주입된 탄소 섬유 물질의 인장 강도, 영률, 전단 강도, 전단 탄성률, 인성, 압축 강도, 압축 탄성률, 밀도, EM파 흡수성/반사성, 음향 전달성, 전기 전도성 및 열 전도성으로 이루어진 그룹에서 선택된 적어도 하나의 특성 값이, 탄소 섬유 물질 그 자체의 동일한 특성 값과 구별되도록, 선택된다.
인장 강도는 3가지 상이한 측정, 즉 1) 탄성 변형에서 물질을 영구적으로 변형시키는 소성 변형으로 물질 변형률이 변화할 때의 응력을 평가하는 항복 강도(Yield strength); 2) 장력, 압축 또는 전단력이 작용할 때 물질이 저항할 수 있는 최대 응력을 평가하는 극한 강도(Ultimate strength); 및 3) 파열점에서 응력-변형률 곡선에서 응력 좌표를 평가하는 파단 강도(Breaking strength)를 포함한다. 복합재 전단 강도는 하중이 섬유 방향과 수직으로 적용될 때 물질이 받는 응력을 평가한다. 압축 강도는 압축 하중이 적용될 때 물질이 받는 응력을 평가한다.
특히, 다중벽 탄소 나노튜브는 63 GPa의 인장 강도가 얻어지도록 측정된 것 중 임의의 물질의 최고 인장 강도를 갖는다. 또한, 이론적인 계산은 CNT의 가능한 인장 강도를 약 300 GPa로 나타내었다. 따라서, CNT 주입된 탄소 섬유 물질은 모 탄소 섬유 물질에 비해 실질적으로 높은 극한 강도를 갖는 것으로 예측된다. 상술한 바와 같이, 인장 강도의 증가는 탄소 섬유 물질 상에서 CNT의 밀도 및 분포뿐만 아니라, CNT의 정확한 특성에 따라 다를 것이다. CNT 주입된 탄소 섬유 물질은, 예를 들어 인장 특성에서 2배 내지 3배의 증가를 나타낼 수 있다. 일반적인 CNT 주입된 탄소 섬유 물질은 비기능화된 모 섬유 물질보다 3배 높은 전단 강도 및 2.5배 높은 압축 강도를 가질 수 있다.
영률은 등방성 탄성 물질에 대한 강성의 측정 방법이다. 이것은 후크의 법칙(Hooke's Law)이 유지되는 응력 범위에서 단축 변형률에 대한 단축 응력의 비율로 정의된다. 이것은 샘플 물질에서 인장 시험을 수행하는 동안 만들어진 응력-변형률 곡선의 기울기로부터 실험적으로 결정될 수 있다.
전기 전도성 또는 비전도율은 전류를 전도시키는 물질의 성능에 대한 측정이다. CNT 키랄성과 관련된 꼬임의 정도와 같은 특정한 구조적 매개변수를 갖는 CNT는 높은 전도성을 가질 수 있어서, 금속성을 나타낼 수 있다. CNT 키랄성과 관련하여 인식된 명명법 체계(M. S. Dresselhaus, et al. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA pp. 756-760, (1996))가 공식화되었고, 당업자에 의해 인정되고 있다. 따라서, 예를 들어 n과 m이 육각형 그래파이트의 절단 및 포장을 설명하는 정수인 경우, CNT는 이중 지수(n,m)에 의하여 서로 구별되어서, 육각형 그래파이트가 실린더의 표면 상에서 포장되고 에지가 함께 밀봉될 때, 육각형 그래파이트는 튜브를 만든다. 튜브가 CNT 축에 수직일 때만, 육각형의 측면이 노출되어 튜브 에지의 가장자리 주변에서 이러한 패턴은 n회 반복된 암 체어(arm-chair)의 암(arm) 및 시트(seat)와 유사하기 때문에, 2개의 지수가 동일할 때(즉 m=n), 최종 튜브는 "암-체어(arm-chair)" (또는 n,n) 형태라고 불린다. 특정한 SWNT에서, 암-체어 CNT는 금속이고, 매우 높은 전기 전도성 및 열 전도성을 갖는다. 또한, 이러한 SWNT는 매우 높은 인장 강도를 갖는다.
꼬임의 정도 이외에, CNT 직경도 전기 전도성에 영향을 미친다. 상술한 바와 같이, CNT 직경은 조절된 크기의 CNT 형성 촉매 나노입자를 사용하여 조절될 수 있다. 또한, CNT는 반도체 물질로서 형성될 수도 있다. 다중벽 CNT(MWNT)에서 전도성은 보다 복잡할 수 있다. MWNT 내에서 벽간 반응(interwall reaction)은 개별 튜브에 걸쳐 전류를 불균일하게 재분배할 수 있다. 대조적으로, 금속성 단일벽 나노튜브(SWNT)의 상이한 부분을 가로지르는 전류에는 변화가 전혀 없다. 또한, 탄소 나노튜브는 다이아몬드 결정 및 평면 그래파이트 시트에 비하여 매우 높은 열 전도성을 갖는다.
CNT 주입된 탄소 섬유 물질은 상술한 특성에서 CNT의 존재로부터 이점을 얻을 수 있을 뿐만 아니라, 상기 공정에서 보다 가벼운 물질을 제공할 수도 있다. 따라서, 이러한 저밀도 및 고강도 물질은 보다 큰 강도 대 중량 비율을 제공한다. 본 발명의 다양한 실시예의 활용에 실질적으로 영향을 미치지 않는 변경은 본 명세서에서 제공된 발명의 범위 이내에 포함되는 것으로 이해되어야 한다. 따라서, 이하의 실시예는 본 발명을 설명하기 위한 것이며, 본 발명을 제한하는 것이 아니다.
실시예 Ⅰ
이러한 실시예는, 열 전도성 및 전기 전도성 향상을 목적으로 하는 연속적인 공정에서 탄소 섬유 물질에 CNT를 주입할 수 있는 방법을 도시한다.
이러한 실시예에서, 섬유에 CNT의 최대 적재가 목표이다. 800 텍스값을 가지는 34-700 12K 탄소 섬유 토우(Grafil Inc., Sacramento, CA)가 탄소 섬유 기질로 적용될 수 있다. 이러한 탄소 섬유 토우에서 각각의 필라멘트는 대략 7㎛의 직경을 가진다.
도 8은 본 발명의 실시예에 따른 CNT 주입된 탄소 섬유를 제조하는 시스템(800)을 도시한다. 시스템(800)은, 도시된 바와 같이 밀접하게 관련된, 탄소 섬유 물질 페이아웃(payout) 및 텐셔너(tensioner) 부(805), 사이징 제거 및 섬유 스프레더 부(810), 플라즈마 처리 부(815), 배리어 코팅 적용 부(820), 공기 건조 부(825),촉매 적용 부(830), 용매 플래쉬 오프 부(835), CNT 주입 부(840), 섬유 번들러 부(845), 및 탄소 섬유 물질 업테이크 보빈(850)을 포함한다.
페이아웃 및 텐셔너 부(805)는 페이아웃 보빈(806) 및 텐셔너(807)를 포함한다. 페이아웃 보빈은 탄소 섬유 물질(860)을 공정으로 분배하고, 섬유는 텐셔너(807)를 통하여 팽팽하게 된다. 이러한 실시예에서, 탄소 섬유는 2 ft/min의 선속도로 제조된다.
섬유 물질(860)은 사이징 제거 가열기(865) 및 섬유 스프레더(870)를 포함하는 사이징 제거 및 섬유 스프레더 부(810)로 분배된다. 이 부분에서, 섬유(860)에 있는 임의의 "사이징(sizing)"은 제거된다. 전형적으로, 제거는 섬유의 사이징 오프를 연소시켜 수행된다. 임의의 다양한 가열 수단이 이러한 목적을 위해 사용될 수 있고, 예를 들어, 적외선 가열기, 머플 노(muffle furnace), 및 다른 비접촉 가열 공정을 포함할 수 있다. 또한, 사이징 제거는 화학적으로 수행될 수 있다. 섬유 스프레더는 섬유의 각 요소를 분리할 수 있다. 섬유 오버 플랫 및 언더 플랫의 당김(pulling the fiber over and under flat), 균일 직경의 바(uniform-diameter bar), 또는 오버 및 언더 가변 직경 바(over and under variable-diameter bar), 또는 방사상으로 확장된 글로브 및 니딩 롤러를 가지는 오버 바(over bar with radially-expending groove and a kneading roller), 오버 진동 바(over a viboratory bar) 등과 같은 다양한 기술 및 장치가 섬유를 풀기 위해서 사용될 수 있다. 섬유의 스프레딩은 섬유 표면적을 더 노출시킴으로써, 플라즈마 적용, 배리어 코팅 적용, 및 촉매 적용과 같은 다운스트림 동작의 효율성을 향상시킨다.
다수의 사이징 제거 가열기(865)는, 점진적으로 섬유의 디사이징(desizing) 및 스프레딩을 동시에 가능하게 하는, 섬유 스프레더(870)를 통해 배치될 수 있다. 페이아웃 및 텐셔너 부(805) 및 사이징 제거 및 섬유 스프레더 부(810)는 섬유 산업에서 일상적으로 사용되고, 당업자는 이러한 고안 및 사용이 친숙할 것이다.
사이징을 연소하는데 필요한 온도 및 시간은 (1) 사이징 물질 및 (2) 탄소 섬유 물질(860)의 상업적인 소스/식별에 따라 다르다. 탄소 섬유 물질에서 종래의 사이징은 약 650℃에서 제거될 수 있다. 이러한 온도에서, 사이징의 완전한 연소를 보장하기 위해서는 15분만큼 긴 시간이 걸릴 수 있다. 이러한 연소 온도 이상으로 온도를 증가시키는 것은 번 오프(burn-off) 시간을 감소시킬 수 있다. 특별한 상업적 제품을 위해 사이징하는 최소의 번 오프 온도를 결정하기 위해 열무게 분석(thermogravimetric analysis)이 이용된다.
사이징 제거를 위해 필요한 시간에 따라, 사이징 제거 가열기는 적합한 CNT 주입 공정에서 반드시 포함되어야 하는 것은 아니고, 제거는 별도로(예를 들어, 동시에 등) 수행될 수 있다. 이러한 방법에서, 사이징 프리(sizing-free) 탄소 섬유 물질의 재고가 축적되고, 섬유 제거 가열기를 포함하지 않는 CNT 주입된 탄소 섬유 제조 라인에서 사용을 위해 스풀될 수 있다. 그 다음, 사이징 프리 섬유는 페이아웃 및 텐셔너 부(805)에서 스풀 된다. 이러한 공정 라인은 사이징 제거를 포함하는 것보다 더 고속으로 동작될 수 있다.
언사이즈드(unsized) 섬유(880)는 플라즈마 처리 부(815)로 분배된다. 예를 들어, 스프레드 탄소 섬유 물질로부터 1 mm의 거리에서 '다운스트림(downstream)' 방법으로 대기 플라즈마 처리가 활용된다. 가스 공급원료는 100% 헬륨으로 구성된다.
플라즈마 향상 섬유(plasma enhanced fiber)(885)는 촉매 적용 부(820)로 분배된다. 이러한 예시적인 실시예에서, 실록산계 배리어 코팅 용액이 딥 코팅 구성물에 채용될 수 있다. 용액은 'Accuglass T-11 Spin-On Glass'(Honeywell International Inc., Morristown, NJ)이고, 부피의 40 대 1의 희석률로 이소프로필 알코올에서 희석된다. 탄소 섬유 물질에서 최종적인 배리어 코팅의 두께는 대략 40 nm이다. 주위 환경의 실온에서 배리어 코팅이 적용될 수 있다.
배리어 코팅된 탄소 섬유(890)는 나노규모 배리어 코팅의 부분적인 경화를 위해서 공기 건조 부(825)로 분배된다. 공기 건조 부는 전체 탄소 섬유 스프레드에 걸쳐서 가열된 공기의 스트림을 보낸다. 채용된 온도는 100℃내지 약 500℃일 수 있다.
공기 건조 후, 배리어 코팅된 탄소 섬유(890)는 촉매 적용 부(825)로 분배된다. 이러한 실시예에서, 철 산화물계 CNT 형성 촉매 용액이 딥 코팅 구성물에 사용될 수 있다. 용액은 'EFH-1'(Ferrotec Corporation, Bedford, NH)이고, 부피의 2000 대 1의 희석률로 헥산에서 희석된다. 촉매 코팅의 단일 층이 탄소 섬유 물질 상에 얻어질 수 있다. 희석 이전의 'EFH-1'은 3 용적% 내지 15 용적% 범위의 나노입자 농도를 가진다. 철 산화물 나노입자는 Fe2O3 및 Fe3O4로 구성되고, 대략 8nm의 직경을 가진다.
촉매 함유 탄소 섬유 물질(895)은 용매 플래쉬 오프 부(835)로 분배된다. 용매 플래쉬 오프 부는 전체 탄소 섬유 스프레드에 걸쳐서 공기의 스트림을 보낸다. 이러한 실시예에서, 촉매 함유 탄소 섬유 물질에 남은 모든 헥산을 플래쉬 오프 하기 위해 실온의 공기가 채용된다.
용매 플래쉬 오프 이후, 촉매 함유 탄소 섬유(895)는 마지막으로 CNT 주입 부(840)로 운반된다. 이러한 실시예에서, 12 인치의 성장대를 가지는 장방형 반응기를 사용하여, 대기압에서 CVD 성장을 이용한다. 전체 가스 흐름의 98.0%는 불활성 기체(질소)이고, 나머지 2.0%는 탄소 공급원료(아세틸렌)이다. 성장대는 750℃로 유지된다. 상술한 장방형 반응기를 위해, 750℃는 상대적으로 높은 성장 온도이고, 이것은 CNT 성장률을 가능한 가장 높게 한다.
CNT 주입 이후, CNT 주입 섬유(897)는 섬유 번들러 부(845)에서 다시 번들된다. 이러한 동작은 섬유의 각각의 스트랜드를 재조합하고, 사이징 제거 및 섬유 스프레더 부(810)에서 수행한 스프레딩 동작을 효과적으로 반대로 되게 한다.
번들된 CNT 주입된 섬유(897)는 저장을 위해 업테이크 섬유 보빈(850) 근처에서 와인딩된다. CNT 주입된 섬유(897)를 약 50㎛ 길이의 CNT로 적재하고, 그 다음, 강화된 열 전도성 및 전기 전도성을 갖는 복합재에서 사용을 위해 준비한다.
상술한 동작의 일부는 환경적인 단절을 위해 불활성 대기 또는 진공 하에서 수행될 수 있다는 것은 주목할 만하다. 예를 들어, 사이징이 탄소 섬유 물질로 연소된다면, 섬유는 환경적으로 단절되어서 오프 가스(off-gassing)를 포함하고 습기로부터의 손상을 방지할 수 있다. 편리성을 위하여, 시스템(800)에서, 탄소 섬유 물질 페이아웃 및 텐션을 제외한 모든 동작은 제조 라인의 초기에 이루어지며, 섬유 업테이크는 제조 라인의 말기에 이루어지도록 환경적인 단절이 제공된다.
실시예 Ⅱ
이러한 실시예는 기계적 특성, 특히 전단 강도와 같은 계면 특성의 향상을 목표로 하는 연속적인 공정에서, 탄소 섬유 물질에 CNT가 주입되는 방법을 나타낸다. 이러한 경우, 섬유에 보다 짧은 CNT의 적재가 목표이다. 이러한 실시예에서, 793 tex 값(Grafil., Sacramento, CA)을 가지는 34-700 12k 언사이즈드 탄소 섬유 토우가 탄소 섬유 기질로 적용된다. 이러한 탄소 섬유 토우에서 각각의 필라멘트는 대략 7㎛의 직경을 가진다.
도 9는 본 발명의 예시적인 실시예에 따른 CNT 주입된 섬유를 제조하는 시스템(900)을 도시하며, 시스템(800)에서 설명된 것과 동일한 많은 부(station)를 포함한다. 시스템(900)은, 도시된 바와 같이 밀접하게 관련된, 탄소 섬유 물질 페이아웃 및 텐셔너 부(902), 섬유 스프레더 부(908), 플라즈마 처리 부(910), 촉매 적용 부(912), 용매 플래쉬 오프 부(914), 제 2 촉매 적용 부(916), 제 2 용매 플래쉬 오프 부(918), 배리어 코팅 적용 부(920), 공기 건조 부(922), 제 2 배리어 코팅 적용 부(924), 제 2 공기 건조 부(926), CNT 주입 부(928), 섬유 번들러 부(930), 및 탄소 섬유 물질 업테이크 보빈(932)을 포함한다.
페이아웃 및 텐셔너 부(902)는 페이아웃 보빈(904) 및 텐셔너(906)를 포함한다. 페이아웃 보빈은 탄소 섬유 물질(901)을 공정으로 분배하고; 섬유는 텐셔너(906)을 매개로 하여 팽팽하게 된다. 이러한 실시예에서, 2 ft/min의 선속도로 탄소 섬유가 제조된다.
섬유 물질(901)은 섬유 스프레더 부(908)로 분배된다. 이러한 섬유는 사이징 없이 제조되기 때문에, 사이징 제거 공정은 섬유 스프레더 부(908)의 일부로 통합되지 않는다. 섬유 스프레더(870)에 기재된 것과 유사한 방식으로, 섬유 스프레더는 섬유의 개별 요소를 분리한다.
섬유 물질(901)은 플라즈마 처리 부(910)로 분배된다. 이러한 실시예를 위해, 스프레드 탄소 섬유 물질로부터 12 mm의 거리에서 '다운스트림(downstream)' 방법으로 대기 플라즈마 처리가 활용된다. 가스 공급원료는 전체 불활성 기체 흐름(헬륨)의 1.1% 양의 산소로 구성된다. 탄소 섬유 물질의 표면 상에서 산소 함량의 조절은 후속 코팅의 접착력을 효과적으로 강화하는 방법이며, 따라서 탄소 섬유 복합재의 기계적 특성을 향상시키는데 바람직하다.
플라즈마 향상된 섬유(911)는 촉매 적용 부(912)로 분배된다. 이러한 실시예에서, 철 산화물계 CNT 형성 촉매 용액이 딥 코팅 구성물로 채용된다. 용액은 'EFH-1'(Ferrotec Corporation, Bedford, NH)로, 부피의 200 대 1의 희석률로 헥산으로 희석된다. 촉매 코팅의 단일 층이 탄소 섬유 물질 상에 얻어진다. 희석 이전의 'EFH-1'은 3 용적% 내지 15 용적% 범위의 나노입자 농도를 가진다. 철 산화물 나노입자는 Fe2O3 및 Fe3O4로 구성되고, 대략 8nm의 직경을 가진다.
촉매 함유 탄소 섬유 물질(913)은 용매 플래쉬 오프 부(914)로 분배된다. 용매 플래쉬 오프 부는 전체 탄소 섬유 스프레드에 걸쳐서 공기의 스트림을 보낸다. 이러한 실시예에서, 촉매 함유 탄소 섬유 물질에 남은 모든 헥산을 플래쉬 오프 하기 위해 실온의 공기가 채용될 수 있다.
용매 플래쉬 오프 후, 촉매 함유 섬유(913)는 촉매 적용 부(912)와 동일한 촉매 적용 부(916)로 분배된다. 용매는 'EFH-1'이고 부피의 800 대 1의 희석률로 헥산에서 희석된다. 이러한 예를 위하여, 다수의 촉매 적용 부를 포함하는 구성물이 활용되어서, 플라즈마 향상된 섬유(911)에 촉매의 범위를 최적화한다.
촉매 함유 탄소 섬유 물질(917)은 용매 플래쉬 오프 부(914)와 동일한 용매 플래쉬 오프 부(918)로 분배된다.
용매 플래쉬 오프 후, 촉매 함유 탄소 섬유 물질(917)은 배리어 코팅 적용 부(920)로 분배된다. 이러한 실시예에서, 실록산계 배리어 코팅 용액이 딥 코팅 구성물로 사용된다. 용액은 'Accuglass T-11 Spin-On Glass'(Honeywell International Inc., Morristowm, NJ)로 부피의 40 대 1의 희석률로 이소프로필 알콜에서 희석된다. 탄소 섬유 물질에서 최종적인 배리어 코팅의 두께는 대략 40 nm이다. 주위 환경의 실온에서 배리어 코팅 적용될 수 있다.
배리어 코팅된 탄소 섬유(921)는 배리어 코팅의 부분적인 경화를 위해 공기 건조 부(922)로 분배된다. 공기 건조 부는 전체 탄소 섬유 스프레드에 걸쳐서 가열된 공기의 스트림을 보낸다. 채용된 온도는 100℃ 내지 약 500℃의 범위일 수 있다.
공기 건조 후, 배리어 코팅된 탄소 섬유(921)는 배리어 코팅 적용 부(820)와 동일한 배리어 코팅 적용 부(924)로 분배된다. 용액은 'Accuglass T-11 Spin-On Glass'로 부피의 120 대 1의 희석률로 이소프로필 알콜에서 희석된다. 이러한 예를 위해, 다수의 배리어 코팅 적용 부를 포함하는 구성물이 활용되어서, 촉매 함유 섬유(917)에 배리어 코팅의 범위를 최적화한다.
배리어 코팅된 탄소 섬유(925)는 배리어 코팅의 부분적인 경화를 위해, 공기 공기 건조 부(922)와 동일한, 건조 부(926)로 분배된다.
공기 건조 후, 배리어 코팅된 탄소 섬유(925)는 마지막으로 CNT 주입 부(928)로 운반된다. 이러한 실시예에서, 12 인치의 성장대를 가지는 장방형 반응기를 사용하여, 대기압에서 CVD 성장이 이용된다. 전체 가스 흐름의 97.75%는 불활성 기체(질소)이고, 나머지 2.25%는 탄소 공급원료(아세틸렌)이다. 성장대는 650℃로 유지된다. 상술한 장방형 반응기를 위해, 650℃는 상대적으로 낮은 성장 온도이고, 이것은 보다 짧은 CNT 성장을 조절할 수 있게 한다.
CNT 주입 이후, CNT 주입된 섬유(929)는 섬유 번들러(930)에서 다시 번들된다. 이러한 동작은 섬유의 각각의 스트랜드를 재조합하고, 섬유 스프레서 부(908)에서 수행된 스프레딩 동작을 효과적으로 반대로 되게 한다.
번들된 CNT 주입된 섬유(931)는 저장을 위해 업테이크 섬유 보빈(932) 근처에서 와인딩된다. CNT 주입된 섬유(929)는 대략 5㎛ 길이의 CNT로 적재되고, 그 다음, 향상된 기계적 특성을 갖는 복합재에서 사용을 위해 준비된다.
이러한 실시예에서, 탄소 섬유 물질은 배리어 코팅 적용 부(920 및 924) 이전에 촉매 적용 부(912 및 916)를 통과한다. 이러한 코팅 순서는, 탄소 섬유 기질에 CNT의 정착을 향상시킬 수 있는 실시예 Ⅰ에 예시된 것과 '반대' 순서이다. CNT 성장 공정 동안에, (촉매 NP 계면을 매개로 하여) 탄소 섬유 물질과 더욱 직접적인 접촉을 허용하는 CNT에 의하여, 배리어 코팅 층 기질로부터 리프트 오프(lift off)된다. 열적/전기적 특성이 아닌, 기계적 특성이 증가가 목표이기 때문에, '반대' 순서의 코팅 구성물은 바람직하다.
상술한 동작의 일부는 환경적인 단절을 위해 불활성 대기 또는 진공 하에서 수행될 수 있다는 것은 주목할 만하다. 편리성을 위하여, 시스템(900)에서, 탄소 섬유 물질 페이아웃 및 텐션을 제외한 모든 동작은 제조 라인의 초기에 이루어지며, 섬유 업테이크는 제조 라인의 말기에 이루어지도록 환경적인 단절이 제공된다.
실시예 Ⅲ
이러한 실시예는, 기계적 특성, 특히 층간 전단과 같은 계면 특성 향상을 목표로 하는 연속적인 공정에서 탄소 섬유 물질에 CNT가 주입될 수 있는 방법을 도시한다.
이러한 실시예에서, 섬유에 보다 짧은 CNT의 적재가 목표이다. 이러한 실시예에서, 793 tex 값(Grafil., Sacramento, CA)을 가지는 34-700 12k 언사이즈드 탄소 섬유 토우가 탄소 섬유 기질로 적용된다. 이러한 탄소 섬유 토우에서 각각의 필라멘트는 대략 7㎛의 직경을 가진다.
도 10은 본 발명의 예시적인 실시예에 따른 CNT 주입된 탄소 섬유를 제조하는 시스템(1000)을 도시하며, 시스템(800)에 설명된 것과 동일한 많은 부(station)를 포함한다. 시스템(1000)은, 도시된 바와 같이 밀접하게 관련된, 탄소 섬유 물질 페이아웃 및 텐셔너 부(1002), 섬유 스프레더 부(1008), 플라즈마 처리 부(1010), 코팅 적용 부(1012), 공기 건조 부(1014), 제 2 코팅 적용 부(1016), 제 2 공기 건조 부(1018), CNT 주입 부(1020), 섬유 번들러 부(1022), 및 탄소 섬유 물질 업테이크 보빈(1024)을 포함한다.
페이아웃 및 텐셔너 부(1002)는 페이아웃 보빈(1004) 및 텐셔너(1006)를 포함한다. 페이아웃 보빈은 탄소 섬유 물질(1001)을 공정으로 분배하고; 섬유는 텐셔너(1006)를 매개로 하여 팽팽하게 된다. 이러한 실시예에서, 5 ft/min의 선속도로 탄소 섬유가 제조된다.
섬유 물질(1001)은 섬유 스프레더 부(1008)로 분배된다. 이러한 섬유는 사이징 없이 제조되기 때문에, 사이징 제거 공정이 섬유 스프레더 부(1008)의 일부로 통합되지 않는다. 섬유 스프레더(870에 기재된 것과 유사한 방식으로, 섬유 스프레더는 섬유의 개별 요소를 분리한다.
섬유 물질(1001)은 플라즈마 처리 부(1010))로 분배된다. 이러한 예를 위해, 스프레드 탄소 섬유 물질로부터 12 mm의 거리에서 '다운스트림(downstream)' 방법으로 대기 플라즈마 처리가 활용된다. 가스 공급원료는 전체 불활성 기체 흐름(헬륨)의 1.1% 양의 산소로 구성된다. 탄소 섬유 물질의 표면 상에서 산소 함량의 조절은 후속 코팅의 접착력을 효과적으로 향상시키는 방법이며, 따라서 탄소 섬유 복합재의 기계적 특성을 강화시키는 것이 바람직하다.
플라즈마 향상된 섬유(1011)는 코팅 적용 부(1012)로 분배된다. 이러한 실시예에서, 철 산화물계 촉매와 배리어 코팅 물질은 단일 '하이브리드(hybrid)' 용액으로 조합되어서, 딥 코팅 구성물로 채용된다. '하이브리드' 용액은 부피의 1 부(part)의 'EFH-1', 5 부의 'Accuglass T-11 Spin-On Glass', 24 부의 hexane, 24 부의 이소프로필 알코올, 및 146 부의 테트라하이드로퓨란이다. 이러한 '하이브리드' 코팅 채용의 이점은 높은 온도에서 섬유 분해의 효과를 낮추는 것이다. 이론에 한정되지 않고, 탄소 섬유 물질에서의 분해는 높은 온도(CNT의 성장에 중요한 동일한 온도)의 소결에 의해 강화된다. 배리어 코팅 자체로 각각의 촉매 NP를 밀봉함으로써, 이러한 효과를 조절할 수 있다. 열적/전기적 특성이 아닌, 기계적 특성의 증가가 목표이기 때문에, 탄소 섬유계 물질의 무결성을 유지하는 것이 바람직하며, 따라서 '하이브리드' 코팅이 채용될 수 있다.
촉매 함유 및 배리어 코팅된 탄소 섬유 물질(1013)은 배리어 코팅의 부분적인 경화를 위해 공기 건조 부(1014)로 분배된다. 공기 건조 부는 전체 탄소 섬유 스프레드에 걸쳐서 가열된 공기의 스트림을 보낸다. 채용된 온도는 100℃ 내지 약 500℃의 범위일 수 있다.
공기 건조 후, 촉매 및 배리어 코팅 함유 탄소 섬유(1013)는, 코팅 적용 부(1012)과 동일한, 코팅 적용 부(1016)로 분배된다. 동일한 '하이브리드' 용액은(부피의 1부의 'EFH-1', 5부의 'Accuglass T-11 Spin-On Glass', 24부의 hexane, 24부의 이소프로필 알코올, 및 146부의 테트라하이드로퓨란)이 사용된다. 이러한 예를 위해, 다수의 코팅 적용 부를 포함하는 구성물이 활용되어서, 플라즈마 향상된 섬유(1011)에 '하이브리드' 코팅의 범위를 최적화한다.
촉매 및 배리어 코팅 함유 탄소 섬유(1017)는 배리어 코팅의 부분적인 경화를 위해, 공기 건조 부(1014)와 동일한, 공기 건조 부(926)로 분배된다.
공기 건조 후, 촉매 및 배리어 코팅 함유 탄소 섬유(1017)는 마지막으로 CNT 주입 부(1020)로 운반된다. 이러한 실시예에서, 12 인치의 성장대를 가지는 장방형 반응기가 사용되어, 대기압에서 CVD 성장을 이용한다. 전체 가스 흐름의 98.7%는 불활성 기체(질소), 나머지 1.3%는 탄소 공급원료(아세틸렌)이다. 성장대는 675℃로 유지된다. 상술한 장방형 반응기를 위해, 675℃는 상대적으로 낮은 성장 온도이고, 이것은 보다 짧은 CNT 성장을 조절할 수 있게 한다.
CNT 주입 이후, CNT 주입된 섬유(1021)는 섬유 번들러(1022)에서 다시 번들된다. 이러한 동작은 섬유의 각각의 스트랜드를 재조합하고, 섬유 스프레더 부(1008)에서 수행한 스프레딩 동작을 효과적으로 반대로 되게 한다.
번들된 CNT 주입된 섬유(1021)는 저장을 위해 업테이크 섬유 보빈(1024) 근처에서 와인딩된다. CNT 주입된 섬유(1021)는 대략 2㎛ 길이의 CNT로 적재되고, 그 다음, 향상된 기계적 특성을 갖는 복합재에서 사용을 위해 준비된다.
상술한 동작의 일부는 환경적인 단절을 위해 불활성 대기 또는 진공 하에서 수행될 수 있다는 것은 주목할 만하다. 편리성을 위하여, 시스템(1000)에서, 탄소 섬유 물질 페이아웃 및 텐션을 제외한 모든 동작은 제조 라인의 초기에 이루어지며, 섬유 업테이크는 제조 라인의 말기에 이루어지도록 환경적인 단절이 제공된다.
상술된 실시예는 단지 본 발명을 예시하는 것이며, 본 발명의 사상을 벗어나지 않으면서, 상술된 실시예의 많은 변경이 당업자에 의해 고안될 수 있다. 예를 들면, 본 발명의 명세서에서, 본 발명의 예시적인 실시예의 완전한 설명 및 이해를 제공하기 위해서, 많은 특정한 세부사항이 제공되었다. 그러나, 하나 이상의 이러한 세부사항 없이도, 또는 다른 공정, 물질, 구성 등으로도 본 발명을 수행할 수 있다는 것을 당업자는 인식할 것이다.
또한, 일부 예시에서, 예시적인 실시예의 양태를 모호하게 하는 것을 방지하기 위하여, 공지의 구조, 물질, 또는 동작은 상세하게 도시 또는 기재되지 않는다. 도면에 나타난 다양한 실시예는 예시적인 것이며, 필수적으로 도시된 축척인 것은 아니라는 것을 알 수 있다. 명세서를 통한 "일 실시예(one embodiment)" 또는 "하나의 실시예(an embodiment)" 또는 "일부 실시예(some embodiment)"라는 언급은 실시예(들)와 연결해서 기재된 특별한 성질, 구조, 물질, 또는 특징이 본 발명의 적어도 하나의 실시예에 포함되는 것을 의미하며, 반드시 모든 실시예들에 포함되는 것을 의미하는 것은 아니다. 결과적으로, 명세서를 통해 여러 곳에서 기재된 "일 실시예에서(in one embodiment)", "하나의 실시예에서(in an embodiment)", 또는 "일부 실시예에서(in some embodiment)"라는 문구의 등장도 반드시 동일한 실시예를 모두 참조하여야 하는 것을 의미하는 것은 아니다. 또한, 특별한 성질, 구조, 물질, 또는 특징은 하나 이상의 실시예에서 적절한 방식으로 결합될 수 있다. 따라서, 이러한 변형은 이하의 청구항 및 그 균등물의 범위 내에 포함됨을 의도한다.

Claims (40)

  1. 탄소 나노튜브(CNT) 주입된 탄소 섬유 물질을 포함하는 조성물에 있어서,
    스풀가능한 치수의 탄소 섬유 물질;
    상기 탄소 섬유 물질에 주입된 탄소 나노튜브(CNT); 및
    상기 탄소 섬유 물질 상에 배치된 배리어 코팅을 포함하며,
    상기 배리어 코팅은 알콕시실란, 알루목산, 스핀 온 유리(Spin-On Glass) 및 유리 나노입자로 이루어진 그룹으로부터 선택되고,
    상기 배리어 코팅은 상기 탄소 섬유 물질과 상기 탄소 나노튜브 사이의 중간 층을 포함하는, 조성물.
  2. 제1항에 있어서,
    상기 CNT의 성장에 사용되는 전이 금속 나노입자를 더 포함하는, 조성물.
  3. 제1항에 있어서,
    상기 탄소 섬유 물질로의 CNT의 주입은, 상기 탄소 섬유 물질로의 CNT의 직접 본딩; 상기 CNT와 상기 탄소 섬유 물질 사이에 배치된 전이 금속 나노입자 촉매를 통한 간접 본딩, 상기 CNT와 상기 탄소 섬유 물질 사이에 배치된 전이 금속 나노입자 촉매 및 배리어 코팅을 통한 간접 본딩, 상기 CNT와 상기 탄소 섬유 물질 사이에 배치된 상기 배리어 코팅을 통한 간접 본딩; 및 그 혼합으로부터 선택된 본딩 모티프를 포함하는, 조성물.
  4. 제1항에 있어서,
    상기 CNT는 1 미크론 내지 500 미크론의 길이를 갖는, 조성물.
  5. 제1항에 있어서,
    상기 CNT는 1 미크론 내지 10 미크론의 길이를 갖는, 조성물.
  6. 제1항에 있어서,
    상기 CNT는 10 미크론 내지 100 미크론의 길이를 갖는, 조성물.
  7. 제1항에 있어서,
    상기 CNT는 100 미크론 내지 500 미크론의 길이를 갖는, 조성물.
  8. 제1항에 있어서,
    상기 CNT는 최대 15,000 나노튜브/㎛2의 밀도를 갖는, 조성물.
  9. 제1항에 있어서,
    상기 탄소 섬유 물질은 탄소 필라멘트, 탄소 토우, 탄소 얀, 탄소 테이프, 탄소 섬유-브레이드, 직조 탄소 직물, 비직조 탄소 섬유 매트, 탄소 섬유 플라이, 및 3D 직조 구조물로부터 선택되는, 조성물.
  10. 제1항에 있어서,
    상기 CNT는 단일벽 CNT, 이중벽 CNT, 다중벽 CNT, 및 그 혼합으로 이루어진 그룹으로부터 선택되는, 조성물.
  11. 제1항에 있어서,
    상기 CNT는 다중벽 CNT인, 조성물.
  12. 제1항에 있어서,
    계면활성제, 대전방지제, 윤활제, 실록산, 알콕시실란, 아미노실란, 실란, 실라놀, 폴리비닐 알코올, 스타치 및 이들의 혼합에서 선택되는 사이징 작용제를 더 포함하는, 조성물.
  13. 제1항에 있어서,
    에폭시, 폴리에스테르, 비닐에스테르, 폴리에테르이미드, 폴리에테르케톤케톤, 폴리프탈아미드, 폴리에테르케톤, 폴리에테르에테르케톤, 폴리이미드, 페놀-포름알데하이드 및 비스말레이미드에서 선택된 매트릭스 물질을 더 포함하는, 조성물.
  14. 제1항에 있어서,
    상기 탄소 나노튜브 주입된 탄소 섬유 물질의 전기 저항률은 상기 탄소 섬유물질의 전기 저항률보다 낮은, 조성물.
  15. (a) 기능화되지 않은 탄소 섬유 물질을 기능화하는 단계;
    (b) 기능화된 상기 탄소 섬유 물질 상에 배리어 코팅을 배치하는 단계, 상기 배리어 코팅은 알콕시실란, 알루목산, 스핀 온 유리(Spin-On Glass) 및 유리 나노입자로 이루어진 그룹으로부터 선택됨;
    (c) 기능화된 상기 탄소 섬유 물질 상에 탄소 나노튜브(CNT) 형성 촉매를 배치하는 단계; 및
    (d) 탄소 나노튜브를 합성하여, 탄소 나노튜브 주입된 탄소 섬유 물질을 형성하는 단계를 포함하며,
    상기 기능화되지 않은 탄소 섬유 물질을 기능화하는 단계는 섬유의 표면 젖음 및 배리어 코팅의 접착을 위해 수행되는, 연속 CNT 주입 방법.
  16. 제15항에 있어서,
    CNT 성장 챔버 내에서 5초 내지 300초의 물질 체류 시간을 갖는, 연속 CNT 주입 방법.
  17. 제15항에 있어서,
    CNT 성장 챔버 내에서 5초 내지 30초의 물질 체류 시간은, 1 미크론 내지 10 미크론의 길이를 갖는 CNT를 제조하는, 연속 CNT 주입 방법.
  18. 제15항에 있어서,
    CNT 성장 챔버 내에서 30초 내지 180초의 물질 체류 시간은, 10 미크론 내지 100 미크론의 길이를 갖는 CNT를 제조하는, 연속 CNT 주입 방법.
  19. 제15항에 있어서,
    CNT 성장 챔버 내에서 180초 내지 300초의 물질 체류 시간은, 100 미크론 내지 500 미크론의 길이를 갖는 CNT를 제조하는, 연속 CNT 주입 방법.
  20. 제15항에 있어서,
    상기 연속 CNT 주입 방법을 통해 하나 이상의 탄소 섬유 물질이 동시에 제공되는, 연속 CNT 주입 방법.
  21. 제15항에 있어서,
    상기 탄소 섬유 물질을 기능화하는 단계는, 상기 탄소 섬유 물질을 플라즈마에 노출시키는 단계를 포함하는, 연속 CNT 주입 방법.
  22. 제15항에 있어서,
    상기 기능화되지 않은 탄소 섬유 물질로부터 사이징 물질을 제거하는 단계를 더 포함하는, 연속 CNT 주입 방법.
  23. 제15항에 있어서,
    상기 CNT 형성 촉매는 철계 나노입자 촉매(iron-based nanoparticle catalyst)인, 연속 CNT 주입 방법.
  24. 제15항에 있어서,
    기능화된 상기 탄소 섬유 물질 상에 상기 CNT 형성 촉매를 배치하는 단계는, 상기 탄소 섬유 물질 상에 용액에 의한 분무법, 딥 코팅법 또는 기상 증착법을 포함하는, 연속 CNT 주입 방법.
  25. 제15항에 있어서,
    상기 배리어 코팅을 배치하는 단계는, 기능화된 상기 탄소 섬유 물질 상에 상기 CNT 형성 촉매를 배치하는 단계와 동시에 이루어지는, 연속 CNT 주입 방법.
  26. 제15항에 있어서,
    상기 배리어 코팅은, 기능화된 상기 탄소 섬유 물질 상에 상기 CNT 형성 촉매를 배치하기 전에 기능화된 상기 탄소 섬유 물질 상에 배치되는, 연속 CNT 주입 방법.
  27. 제26항에 있어서,
    기능화된 상기 탄소 섬유 물질 상에 상기 CNT 형성 촉매를 배치하기 전에 상기 배리어 코팅을 부분적으로 경화시키는 단계를 더 포함하는, 연속 CNT 주입 방법.
  28. 제27항에 있어서,
    기능화된 상기 탄소 섬유 물질 상에 상기 CNT 형성 촉매를 배치한 후에 상기 배리어 코팅을 경화시키는 단계를 더 포함하는, 연속 CNT 주입 방법.
  29. 제26항에 있어서,
    a) 상기 배리어 코팅을 완전히 경화시키는 단계; 및
    b) 완전히 경화된 상기 배리어 코팅을 플라즈마에 노출시키는 단계를 더 포함하며,
    a) 및 b) 단계는 기능화된 상기 탄소 섬유 물질 상에 상기 CNT 형성 촉매를 배치하기 전에 수행되는, 연속 CNT 주입 방법.
  30. 제15항에 있어서,
    상기 탄소 나노튜브를 합성하는 단계는 CVD 성장을 포함하는, 연속 CNT 주입 방법.
  31. 제15항에 있어서,
    상기 탄소 나노튜브 주입된 탄소 섬유 물질에 사이징제를 적용하는 단계를 더 포함하는, 연속 CNT 주입 방법.
  32. 제15항에 있어서,
    상기 탄소 나노튜브 주입된 탄소 섬유 물질에 매트릭스 물질을 적용하는 단계를 더 포함하는, 연속 CNT 주입 방법.
  33. 제15항에 있어서,
    a) 기능화된 상기 탄소 섬유 물질 상에 탄소 나노튜브의 제1 타입의 제1 양을 합성하는 단계로서, 상기 탄소 나노튜브의 제1 타입은 기능화된 상기 탄소 섬유 물질의 적어도 하나의 제 1 특성을 변경하도록 선택되는, 상기 제1 양의 합성 단계; 및
    b) 기능화된 상기 탄소 섬유 물질 상에 탄소 나노튜브의 제2 타입의 제2 양을 합성하는 단계로서, 상기 탄소 나노튜브의 제2 타입은 기능화된 상기 탄소 섬유 물질의 적어도 하나의 제2 특성을 변경하도록 선택되는, 상기 제2 양의 합성 단계를 더 포함하며,
    상기 적어도 하나의 제1 특성은, 인장 강도, 영률, 전단 강도, 전단 탄성률, 인성, 압축 강도, 압축 탄성률, 밀도, EM파 흡수성 또는 반사성, 음향 전달성, 전기 전도성, 및 열 전도성으로 이루어지는 그룹으로부터 선택되고,
    상기 적어도 하나의 제2 특성은, 인장 강도, 영률, 전단 강도, 전단 탄성률, 인성, 압축 강도, 압축 탄성률, 밀도, EM파 흡수성 또는 반사성, 음향 전달성, 전기 전도성, 및 열 전도성으로 이루어지는 그룹으로부터 선택되는, 연속 CNT 주입 방법.
  34. 제33항에 있어서,
    상기 제1 양과 상기 제2 양은 상이한, 연속 CNT 주입 방법.
  35. 제33항에 있어서,
    상기 제1 양과 상기 제2 양은 동일한, 연속 CNT 주입 방법.
  36. 제33항에 있어서,
    상기 탄소 나노튜브의 제1 타입 및 상기 탄소 나노튜브의 제2 타입은 동일한, 연속 CNT 주입 방법.
  37. 제33항에 있어서,
    상기 탄소 나노튜브의 제1 타입 및 상기 탄소 나노튜브의 제2 타입은 상이한, 연속 CNT 주입 방법.
  38. 제33항에 있어서,
    상기 제1 특성과 상기 제2 특성은 동일한, 연속 CNT 주입 방법.
  39. 제33항에 있어서,
    상기 제1 특성과 상기 제2 특성은 상이한, 연속 CNT 주입 방법.
  40. 삭제
KR1020127014296A 2009-11-02 2010-10-13 Cnt 주입된 탄소 섬유 물질 및 그 제조방법 KR101770196B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/611,101 US8951632B2 (en) 2007-01-03 2009-11-02 CNT-infused carbon fiber materials and process therefor
US12/611,101 2009-11-02
PCT/US2010/052554 WO2011053458A1 (en) 2009-11-02 2010-10-13 Cnt-infused carbon fiber materials and process therefor

Publications (2)

Publication Number Publication Date
KR20120099710A KR20120099710A (ko) 2012-09-11
KR101770196B1 true KR101770196B1 (ko) 2017-08-22

Family

ID=43922452

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127014296A KR101770196B1 (ko) 2009-11-02 2010-10-13 Cnt 주입된 탄소 섬유 물질 및 그 제조방법

Country Status (10)

Country Link
US (3) US8951632B2 (ko)
EP (1) EP2497342A4 (ko)
JP (1) JP5823403B2 (ko)
KR (1) KR101770196B1 (ko)
CN (1) CN102640573A (ko)
AU (1) AU2010313614A1 (ko)
BR (1) BR112012011606A2 (ko)
CA (1) CA2778607A1 (ko)
WO (1) WO2011053458A1 (ko)
ZA (1) ZA201202972B (ko)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280793A1 (en) 2004-12-22 2011-11-17 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Carbon nanotube fibers/filaments formulated from metal nanoparticle catalyst and carbon source
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
BRPI1007300A2 (pt) 2009-02-17 2019-09-24 Applied Nanostructured Sols compósitos compreendendo nanotubos de carbono sobre fibra
BRPI1008131A2 (pt) 2009-02-27 2016-03-08 Applied Nanostructured Sols "crescimento de nanotubo de carbono de baixa temperatura usando método de preaquecimento de gás".
US20100224129A1 (en) * 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
WO2010124260A1 (en) 2009-04-24 2010-10-28 Lockheed Martin Corporation Cnt-infused emi shielding composite and coating
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
KR101696207B1 (ko) 2009-04-27 2017-01-13 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 복합 구조물 제빙을 위한 cnt계 저항 가열
CN102470546B (zh) 2009-08-03 2014-08-13 应用纳米结构方案公司 纳米颗粒在复合材料纤维中的结合
BR112012010907A2 (pt) 2009-11-23 2019-09-24 Applied Nanostructured Sols "materiais compósitos de cerâmica contendo materiais de fibra infundidos em nanotubo de carbono e métodos para a produção dos mesmos"
JP5643835B2 (ja) 2009-11-23 2014-12-17 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc Cntを適合された海ベース複合材料構造体
CA2780354A1 (en) 2009-12-14 2011-11-17 Applied Nanostructured Solutions, Llc Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
EP2531558B1 (en) 2010-02-02 2018-08-22 Applied NanoStructured Solutions, LLC Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom
TWI410275B (zh) * 2010-02-06 2013-10-01 Nat Univ Tsing Hua 可見光吸收之具二氧化鈦/奈米碳管結構之光觸媒之製備方法以及光觸媒過濾網
US8665581B2 (en) 2010-03-02 2014-03-04 Applied Nanostructured Solutions, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
WO2011109485A1 (en) 2010-03-02 2011-09-09 Applied Nanostructured Solutions,Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
WO2012019819A1 (en) * 2010-08-13 2012-02-16 Huntsman Advanced Materials (Switzerland) Gmbh Process to grow carbon nanotubes onto fibers
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
WO2012037042A1 (en) 2010-09-14 2012-03-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
AU2011305809A1 (en) * 2010-09-22 2013-02-28 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
AU2011305751A1 (en) 2010-09-23 2012-06-21 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
WO2012074800A1 (en) * 2010-12-02 2012-06-07 Applied Nanostructured Solutions, Llc Ionically conductive polymers, methods for production thereof and electrical devices made therefrom
US9605376B2 (en) 2011-06-28 2017-03-28 Mtix Ltd. Treating materials with combined energy sources
US9309619B2 (en) * 2011-06-28 2016-04-12 Mtix Ltd. Method and apparatus for surface treatment of materials utilizing multiple combined energy sources
US9909505B2 (en) 2011-07-05 2018-03-06 United Technologies Corporation Efficient, low pressure ratio propulsor for gas turbine engines
US9506422B2 (en) 2011-07-05 2016-11-29 United Technologies Corporation Efficient, low pressure ratio propulsor for gas turbine engines
WO2013016738A1 (en) * 2011-07-22 2013-01-31 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Carbon nanotube fibers/filaments formulated from metal nanoparticle catalyst and carbon source
RU2475463C1 (ru) * 2011-11-23 2013-02-20 Закрытое акционерное общество "ГрАВИОНИКС-К" (ЗАО "ГрАВИОНИКС-К") Способ модифицирования поверхности неорганического волокна, модифицированное волокно и композиционный материал
KR101951320B1 (ko) * 2012-02-07 2019-02-22 삼성전자주식회사 가변 초점 렌즈
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
WO2014039509A2 (en) 2012-09-04 2014-03-13 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
TWI509119B (zh) 2012-12-03 2015-11-21 Ind Tech Res Inst 碳纖維複合材料及其製法
CN103896244B (zh) * 2012-12-29 2016-08-10 清华大学 反应器及生长碳纳米管的方法
CN103088648B (zh) * 2013-01-25 2015-01-07 中国科学院新疆生态与地理研究所 一种复合纳米结构碳纤维材料的制备方法
EP2990380B1 (en) 2013-04-24 2018-09-19 Nitta Corporation Composite material and molded article
US9741918B2 (en) 2013-10-07 2017-08-22 Hypres, Inc. Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit
CN105081490B (zh) * 2014-04-23 2017-09-12 北京富纳特创新科技有限公司 线切割电极丝及线切割装置
ES2873096T3 (es) * 2014-06-17 2021-11-03 Ocv Intellectual Capital Llc Rejillas de empastado antisulfatación para baterías de plomo-ácido
JP6942297B2 (ja) 2014-06-17 2021-09-29 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 鉛蓄電池用の水分損失を減じる貼付マット
DE102014212241A1 (de) * 2014-06-25 2015-12-31 Siemens Aktiengesellschaft Carbonfasern mit modifizierter Oberfläche sowie Verfahren zur Modifizierung einer Carbonfaseroberfläche und Verwendung der Carbonfaser
GB201412656D0 (en) * 2014-07-16 2014-08-27 Imp Innovations Ltd Process
JP2018012741A (ja) * 2014-11-25 2018-01-25 学校法人同志社 炭素繊維強化プラスチック
KR101698361B1 (ko) * 2015-07-15 2017-01-23 주식회사 진명프리텍 습식 페이퍼 마찰재
US9994741B2 (en) 2015-12-13 2018-06-12 International Business Machines Corporation Enhanced adhesive materials and processes for 3D applications
US10920085B2 (en) * 2016-01-20 2021-02-16 Honda Motor Co., Ltd. Alteration of carbon fiber surface properties via growing of carbon nanotubes
JP6703427B2 (ja) * 2016-03-25 2020-06-03 ニッタ株式会社 複合織物の製造方法
CN107337197A (zh) * 2016-04-28 2017-11-10 香港理工大学深圳研究院 碳纳米管分散于水泥基材的方法
US20190136415A1 (en) * 2016-06-09 2019-05-09 Board Of Regents, The University Of Texas System Functional regenerated cellulose fibers
US9688827B1 (en) * 2016-08-29 2017-06-27 Northrop Grumman Systems Corporation Method for preparing high quality tendrillar carbon non-woven pre-impregnated and composite materials
EP3348685A1 (en) * 2017-01-12 2018-07-18 UHT Unitech Co., Ltd Carbon fiber surface oiling agent changing method and carbon fiber surface oiling agent changing apparatus
JP6393348B2 (ja) * 2017-01-16 2018-09-19 永虹先進材料股▲ふん▼有限公司 炭素繊維の表面の油剤の交換方法
US10584418B1 (en) * 2017-02-23 2020-03-10 Northrop Grumman Systems Corporation Plasma treatment of carbon nanotube sheet materials to reduce optical reflectance
JP6899031B2 (ja) * 2017-08-17 2021-07-07 リンテック・オヴ・アメリカ,インコーポレイテッド ナノファイバヤーンの選択的浸透
JP7084706B2 (ja) 2017-09-27 2022-06-15 ニッタ株式会社 複合素材、プリプレグ、炭素繊維強化成形体、および複合素材の製造方法
CN109676951B (zh) 2017-10-18 2021-03-09 财团法人工业技术研究院 纤维复合材料及其制法
US10272651B1 (en) 2017-10-18 2019-04-30 Industrial Technology Research Institute Fiber composite and manufacturing method thereof
JP6993176B2 (ja) * 2017-10-31 2022-01-13 住友化学株式会社 液晶ポリエステル樹脂組成物および射出成形体
US11827757B2 (en) 2018-02-20 2023-11-28 Ut-Battelle, Llc Carbon fiber-nanoparticle composites with electromechanical properties
WO2019240094A1 (ja) * 2018-06-11 2019-12-19 ニッタ株式会社 複合素材、プリプレグ、炭素繊維強化成形体及び複合素材の製造方法
CN109055914A (zh) * 2018-06-28 2018-12-21 华南理工大学 一种cvd法制备的碳纳米管复合微纤材料及其方法与应用
CN109402816A (zh) * 2018-12-11 2019-03-01 苏州璟珮新材料科技有限公司 一种非金属电加热功能纱线
CN111805935B (zh) 2019-04-11 2022-01-07 财团法人工业技术研究院 纤维复合结构
CN110435239B (zh) * 2019-06-28 2021-11-09 东华大学 一种多尺度增韧环氧树脂基碳纤维复合材料及其制备方法
CN114278691B (zh) * 2019-07-03 2023-11-24 福建省晋江凯燕新材料研究院有限公司 利用螺旋微碳纤维制备有机摩擦材料的方法
US11293507B2 (en) 2019-10-08 2022-04-05 Honeywell International Inc. Composite fiber preform for disc brakes
US11655870B2 (en) 2019-10-08 2023-05-23 Honeywell International Inc. Method for manufacturing composite fiber preform for disc brakes
CN111394991A (zh) * 2020-03-25 2020-07-10 深圳市富恒新材料股份有限公司 一种基于等离子技术的碳纤维表面接枝碳纳米管的方法
WO2021235263A1 (ja) 2020-05-21 2021-11-25 株式会社村田製作所 信号伝送線路
TWI789722B (zh) * 2021-03-16 2023-01-11 國立中正大學 觸媒結構、其用途與電化學裝置
CN114045037B (zh) * 2021-12-29 2023-01-20 北京化工大学 一种界面增强碳纤维复合材料及其制备方法
CN115182077B (zh) * 2022-07-28 2024-05-24 中国科学院苏州纳米技术与纳米仿生研究所 高稳定性碳纳米管纤维连续强化装置、系统及其应用
CN115418762A (zh) * 2022-09-13 2022-12-02 东华大学 棘轮式强化展丝辊表面振动而增加展丝功效的装置及用途
CN117904795A (zh) * 2024-03-20 2024-04-19 江苏青昀新材料有限公司 一种高透气的闪蒸片材及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021038A (ja) * 2007-07-10 2009-01-29 Sumitomo Electric Ind Ltd 線材、導体、接続構造および線材の製造方法
US20090081383A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Carbon Nanotube Infused Composites via Plasma Processing
US20090220409A1 (en) * 2008-03-03 2009-09-03 Performance Polymer Solutions, Inc. Continuous process for the production of carbon nanofiber reinforced continuous fiber preforms and composites made therefrom

Family Cites Families (409)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2412707A (en) 1943-06-07 1946-12-17 Harold M Barnett Process for carotene extraction
US3304855A (en) * 1963-05-15 1967-02-21 H G Molenaar & Company Proprie Extractor means for extracting liquid from a liquids containing mass
FR2450469A1 (fr) 1979-02-28 1980-09-26 Essilor Int Lentille ophtalmique photochromique en matiere organique
US4530750A (en) 1981-03-20 1985-07-23 A. S. Laboratories, Inc. Apparatus for coating optical fibers
JPS6027700Y2 (ja) 1981-04-20 1985-08-21 池田物産株式会社 車輌用座席の前後移動装置
US4566969A (en) * 1981-09-29 1986-01-28 Crane & Co., Inc. Rolling filter apparatus
EP0098315A1 (en) 1982-07-02 1984-01-18 Ppg Industries, Inc. Aqueous treating composition for glass fiber strands used to produce mats for thermoplastic polymers
US4515107A (en) 1982-11-12 1985-05-07 Sovonics Solar Systems Apparatus for the manufacture of photovoltaic devices
JPS6027700U (ja) 1983-07-25 1985-02-25 日東電工株式会社 酵素反応装置
US5310687A (en) 1984-10-31 1994-05-10 Igen, Inc. Luminescent metal chelate labels and means for detection
US5238808A (en) 1984-10-31 1993-08-24 Igen, Inc. Luminescent metal chelate labels and means for detection
US5221605A (en) 1984-10-31 1993-06-22 Igen, Inc. Luminescent metal chelate labels and means for detection
US4797378A (en) 1986-02-18 1989-01-10 Minnesota Mining And Manufacturing Company Internally modified ceramic fiber
US4707349A (en) 1986-02-28 1987-11-17 Hjersted Norman B Process of preparing a preferred ferric sulfate solution, and product
US4759950A (en) 1986-09-26 1988-07-26 Advance Technology Materials, Inc. Method for metallizing filaments
US4920917A (en) 1987-03-18 1990-05-01 Teijin Limited Reactor for depositing a layer on a moving substrate
US4834020A (en) 1987-12-04 1989-05-30 Watkins-Johnson Company Atmospheric pressure chemical vapor deposition apparatus
US5130194A (en) 1988-02-22 1992-07-14 The Boeing Company Coated ceramic fiber
CA2004076A1 (en) 1988-11-29 1990-05-29 Makoto Miyazaki Sulfone compounds, process for surface-treating reinforcing fibers using same and surface-treated reinforcing fibers obtained thereby
JP2824808B2 (ja) 1990-11-16 1998-11-18 キヤノン株式会社 マイクロ波プラズマcvd法による大面積の機能性堆積膜を連続的に形成する装置
US5173367A (en) 1991-01-15 1992-12-22 Ethyl Corporation Ceramic composites
US5246794A (en) 1991-03-19 1993-09-21 Eveready Battery Company, Inc. Cathode collector made from carbon fibrils
JP3206095B2 (ja) 1991-04-12 2001-09-04 株式会社ブリヂストン 表面処理方法及びその装置
JPH04334823A (ja) 1991-05-09 1992-11-20 Sumitomo Electric Ind Ltd 絶縁部材
JPH08505858A (ja) 1991-08-09 1996-06-25 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー 抗菌性組成物、その製造方法および使用
US20020085974A1 (en) 1992-01-15 2002-07-04 Hyperion Catalysis International, Inc. Surface treatment of carbon microfibers
US5946587A (en) 1992-08-06 1999-08-31 Canon Kabushiki Kaisha Continuous forming method for functional deposited films
DE69410301T2 (de) 1993-01-29 1998-09-24 Canon Kk Verfahren zur Herstellung funktioneller niedergeschlagener Schichten
US5547525A (en) 1993-09-29 1996-08-20 Thiokol Corporation Electrostatic discharge reduction in energetic compositions
US5470408A (en) 1993-10-22 1995-11-28 Thiokol Corporation Use of carbon fibrils to enhance burn rate of pyrotechnics and gas generants
JP3571785B2 (ja) 1993-12-28 2004-09-29 キヤノン株式会社 堆積膜形成方法及び堆積膜形成装置
JP3136951B2 (ja) 1994-06-28 2001-02-19 松下電工株式会社 ガラスクロスの表面処理方法
JP3593168B2 (ja) 1995-01-13 2004-11-24 積水化学工業株式会社 シートの連続表面処理方法及び装置
US5780101A (en) 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
AU4898296A (en) 1995-03-14 1996-10-08 Thiokol Corporation Infrared tracer compositions
JP3119172B2 (ja) 1995-09-13 2000-12-18 日新電機株式会社 プラズマcvd法及び装置
JPH09111135A (ja) 1995-10-23 1997-04-28 Mitsubishi Materials Corp 導電性ポリマー組成物
JPH09115334A (ja) 1995-10-23 1997-05-02 Mitsubishi Materiais Corp 透明導電膜および膜形成用組成物
US5697827A (en) 1996-01-11 1997-12-16 Rabinowitz; Mario Emissive flat panel display with improved regenerative cathode
JP2000516708A (ja) 1996-08-08 2000-12-12 ウィリアム・マーシュ・ライス・ユニバーシティ ナノチューブ組立体から作製された巨視的操作可能なナノ規模の装置
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US5997832A (en) 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US6205016B1 (en) 1997-06-04 2001-03-20 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
JP3740295B2 (ja) 1997-10-30 2006-02-01 キヤノン株式会社 カーボンナノチューブデバイス、その製造方法及び電子放出素子
JP3363759B2 (ja) 1997-11-07 2003-01-08 キヤノン株式会社 カーボンナノチューブデバイスおよびその製造方法
EP0933343B1 (en) 1998-01-29 2003-06-25 Coi Ceramics, Inc. Method for producing sized, coated ceramic fibers
US8105690B2 (en) 1998-03-03 2012-01-31 Ppg Industries Ohio, Inc Fiber product coated with particles to adjust the friction of the coating and the interfilament bonding
AU3892899A (en) 1998-05-08 1999-11-29 Asten, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
US6146462A (en) 1998-05-08 2000-11-14 Astenjohnson, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
FR2779751B1 (fr) 1998-06-10 2003-11-14 Saint Gobain Isover Substrat a revetement photocatalytique
KR20010074667A (ko) 1998-06-19 2001-08-08 추후보정 자립 정렬형 탄소 나노튜브 및 그 합성방법
US6455021B1 (en) 1998-07-21 2002-09-24 Showa Denko K.K. Method for producing carbon nanotubes
US6344232B1 (en) 1998-07-30 2002-02-05 The United States Of America As Represented By The Secretary Of The Air Force Computer controlled temperature and oxygen maintenance for fiber coating CVD
JP2000058158A (ja) 1998-08-05 2000-02-25 Jsr Corp コネクターおよびその製造方法並びに回路装置検査用アダプター装置
US6346189B1 (en) * 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US6146642A (en) 1998-09-14 2000-11-14 Mount Sinai School Of Medicine, Of The City University Of New York Recombinant new castle disease virus RNA expression systems and vaccines
US6692717B1 (en) 1999-09-17 2004-02-17 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
US7150864B1 (en) 1998-09-18 2006-12-19 William Marsh Rice University Ropes comprised of single-walled and double-walled carbon nanotubes
US6072930A (en) 1998-11-04 2000-06-06 Syracuse University Method of fabricating a cylindrical optical fiber containing a particulate optically active film
US6232706B1 (en) 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US6265466B1 (en) 1999-02-12 2001-07-24 Eikos, Inc. Electromagnetic shielding composite comprising nanotubes
US6221154B1 (en) 1999-02-18 2001-04-24 City University Of Hong Kong Method for growing beta-silicon carbide nanorods, and preparation of patterned field-emitters by chemical vapor depositon (CVD)
US6440277B1 (en) 1999-03-10 2002-08-27 American Bank Note Holographic Techniques of printing micro-structure patterns such as holograms directly onto final documents or other substrates in discrete areas thereof
JP3484441B2 (ja) 1999-04-21 2004-01-06 震 張 炭素ナノチューブの製造方法
AU4492100A (en) * 1999-04-22 2000-11-10 Broadcom Corporation Gigabit ethernet with timing offsets between the twisted pairs
JP3357315B2 (ja) 1999-04-26 2002-12-16 積水化学工業株式会社 放電プラズマ処理装置
US7091605B2 (en) 2001-09-21 2006-08-15 Eastman Kodak Company Highly moisture-sensitive electronic device element and method for fabrication
US20030091496A1 (en) 2001-07-23 2003-05-15 Resasco Daniel E. Method and catalyst for producing single walled carbon nanotubes
US7816709B2 (en) 1999-06-02 2010-10-19 The Board Of Regents Of The University Of Oklahoma Single-walled carbon nanotube-ceramic composites and methods of use
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US6361861B2 (en) 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
US6913075B1 (en) 1999-06-14 2005-07-05 Energy Science Laboratories, Inc. Dendritic fiber material
TW539763B (en) 1999-06-18 2003-07-01 Ibm Method for printing a catalyst on substrates for electroless deposition
US6270897B1 (en) 1999-07-29 2001-08-07 Owens Corning Fiberglas Technology, Inc. Coupling-agent system for composite fibers
WO2001031367A2 (en) 1999-10-18 2001-05-03 Corning Incorporated Method for making nanocrystalline glass-ceramic fibers
DE60045488D1 (de) 1999-10-27 2011-02-17 Univ Rice William M Makroskopische geordnete anordnung von kohlenstoffnanoröhren
AU1808001A (en) 1999-11-30 2001-06-12 University Of Nebraska-Lincoln Debonding resistant toughened composites prepared by small particle reinforcement of the fiber-matrix interface
DE19958473A1 (de) 1999-12-04 2001-06-07 Bosch Gmbh Robert Verfahren zur Herstellung von Kompositschichten mit einer Plasmastrahlquelle
CA2395807A1 (en) 2000-01-07 2001-07-12 Duke University High yield vapor phase deposition method for large scale single walled carbon nanotube preparation
FR2805179B1 (fr) 2000-02-23 2002-09-27 Centre Nat Rech Scient Procede d'obtention de fibres et de rubans macroscopiques a partir de particules colloidales, et notamment de nanotubes de carbone
AU2001255169A1 (en) 2000-03-07 2001-09-17 Robert P. H. Chang Carbon nanostructures and methods of preparation
KR100360470B1 (ko) 2000-03-15 2002-11-09 삼성에스디아이 주식회사 저압-dc-열화학증착법을 이용한 탄소나노튜브 수직배향증착 방법
US6479028B1 (en) 2000-04-03 2002-11-12 The Regents Of The University Of California Rapid synthesis of carbon nanotubes and carbon encapsulated metal nanoparticles by a displacement reaction
US6653005B1 (en) 2000-05-10 2003-11-25 University Of Central Florida Portable hydrogen generator-fuel cell apparatus
TW578214B (en) 2000-05-29 2004-03-01 Tokyo Electron Ltd Method of forming oxynitride film or the like and system for carrying out the same
US6413487B1 (en) 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6908572B1 (en) 2000-07-17 2005-06-21 University Of Kentucky Research Foundation Mixing and dispersion of nanotubes by gas or vapor expansion
EP1182272A1 (fr) 2000-08-23 2002-02-27 Cold Plasma Applications C.P.A. Procédé et dispositif permettant le dépôt de couches métalliques en continu par plasma froid
US6420293B1 (en) 2000-08-25 2002-07-16 Rensselaer Polytechnic Institute Ceramic matrix nanocomposites containing carbon nanotubes for enhanced mechanical behavior
US6653619B2 (en) 2000-09-15 2003-11-25 Agilent Technologies, Inc. Optical motion encoder with a reflective member allowing the light source and sensor to be on the same side
US6495258B1 (en) 2000-09-20 2002-12-17 Auburn University Structures with high number density of carbon nanotubes and 3-dimensional distribution
KR100382879B1 (ko) 2000-09-22 2003-05-09 일진나노텍 주식회사 탄소 나노튜브 합성 방법 및 이에 이용되는 탄소 나노튜브합성장치.
JP4644347B2 (ja) 2000-10-06 2011-03-02 株式会社アルバック 熱cvd法によるグラファイトナノファイバー薄膜形成方法
US7491634B2 (en) 2006-04-28 2009-02-17 Asm International N.V. Methods for forming roughened surfaces and applications thereof
JP3912583B2 (ja) 2001-03-14 2007-05-09 三菱瓦斯化学株式会社 配向性カーボンナノチューブ膜の製造方法
JP3981566B2 (ja) 2001-03-21 2007-09-26 守信 遠藤 膨張炭素繊維体の製造方法
US7265174B2 (en) 2001-03-22 2007-09-04 Clemson University Halogen containing-polymer nanocomposite compositions, methods, and products employing such compositions
WO2002076430A1 (en) 2001-03-26 2002-10-03 Eikos, Inc. Carbon nanotubes in structures and repair compositions
RU2184086C1 (ru) * 2001-04-02 2002-06-27 Петрик Виктор Иванович Способ удаления нефти, нефтепродуктов и/или химических загрязнителей из жидкости, и/или газа и/или с поверхности
AUPR421701A0 (en) 2001-04-04 2001-05-17 Commonwealth Scientific And Industrial Research Organisation Process and apparatus for the production of carbon nanotubes
US7160531B1 (en) 2001-05-08 2007-01-09 University Of Kentucky Research Foundation Process for the continuous production of aligned carbon nanotubes
WO2002095097A1 (en) 2001-05-21 2002-11-28 Trustees Of Boston College, The Varied morphology carbon nanotubes and methods for their manufacture
WO2002100154A2 (en) 2001-06-06 2002-12-19 Reytech Corporation Functionalized fullerenes, their method of manufacture and uses thereof
US7341498B2 (en) 2001-06-14 2008-03-11 Hyperion Catalysis International, Inc. Method of irradiating field emission cathode having nanotubes
US6783702B2 (en) 2001-07-11 2004-08-31 Hyperion Catalysis International, Inc. Polyvinylidene fluoride composites and methods for preparing same
EP1444701A4 (en) 2001-07-27 2005-01-12 Eikos Inc CONFORMAL COATINGS CONTAINING CARBON NANOTUBES
EP1414744A1 (en) 2001-07-27 2004-05-06 University Of Surrey Production of carbon nanotubes
CN1195793C (zh) 2001-08-06 2005-04-06 昭和电工株式会社 导电的可固化树脂组合物和燃料电池用的隔板
JP2008063718A (ja) 2001-08-23 2008-03-21 Nikkiso Co Ltd 炭素質ナノファイバー
US7070472B2 (en) 2001-08-29 2006-07-04 Motorola, Inc. Field emission display and methods of forming a field emission display
US6656339B2 (en) 2001-08-29 2003-12-02 Motorola, Inc. Method of forming a nano-supported catalyst on a substrate for nanotube growth
ATE414675T1 (de) 2001-08-29 2008-12-15 Georgia Tech Res Inst Zusammensetzungen, welche stäbchenförmige polymere und nanoröhrenförmige strukturen umfassen, sowie verfahren zur herstellung derselben
US6837928B1 (en) 2001-08-30 2005-01-04 The Board Of Trustees Of The Leland Stanford Junior University Electric field orientation of carbon nanotubes
US6528572B1 (en) 2001-09-14 2003-03-04 General Electric Company Conductive polymer compositions and methods of manufacture thereof
US7022776B2 (en) 2001-11-07 2006-04-04 General Electric Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom
JP3768867B2 (ja) 2001-12-03 2006-04-19 株式会社リコー カーボンナノチューブの作製方法
US6921462B2 (en) 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
EP1465836A2 (en) 2001-12-21 2004-10-13 Battelle Memorial Institute Structures containing carbon nanotubes and a porous support, methods of making the same, and related uses
JP4404961B2 (ja) 2002-01-08 2010-01-27 双葉電子工業株式会社 カーボンナノ繊維の製造方法。
TWI236505B (en) 2002-01-14 2005-07-21 Nat Science Council Thermal cracking chemical vapor deposition process for nanocarbonaceous material
US20050119105A1 (en) 2002-01-18 2005-06-02 Schott Ag Glass-ceramic composite containing nanoparticles
US20070035226A1 (en) 2002-02-11 2007-02-15 Rensselaer Polytechnic Institute Carbon nanotube hybrid structures
JP3972674B2 (ja) 2002-02-14 2007-09-05 東レ株式会社 炭素繊維その製造方法および炭素繊維強化樹脂組成物
JP3922039B2 (ja) 2002-02-15 2007-05-30 株式会社日立製作所 電磁波吸収材料及びそれを用いた各種製品
JP4168676B2 (ja) 2002-02-15 2008-10-22 コニカミノルタホールディングス株式会社 製膜方法
CN1176014C (zh) 2002-02-22 2004-11-17 清华大学 一种直接合成超长连续单壁碳纳米管的工艺方法
JP4107475B2 (ja) * 2002-02-22 2008-06-25 三菱レイヨン株式会社 繊維強化複合材料用の補強繊維
JP2006502322A (ja) 2002-02-25 2006-01-19 ジェンテックス コーポレーション 多機能性防護織物および汚染除去方法(関連出願の相互参照)この特許出願は、2002年2月25日出願の米国特許仮出願60/360,050の優先日の利益を主張する。
US6934600B2 (en) 2002-03-14 2005-08-23 Auburn University Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
JP3962376B2 (ja) 2002-03-14 2007-08-22 カーボン ナノテクノロジーズ インコーポレーテッド 極性重合体及び単層壁炭素ナノチューブを含有する複合体材料
FR2837287B1 (fr) 2002-03-18 2004-07-16 Cit Alcatel Guide optique comportant un milieu amplificateur, et un procede de fabrication d'un tel guide
US7405854B2 (en) 2002-03-21 2008-07-29 Cornell Research Foundation, Inc. Fibrous micro-composite material
JP2004002182A (ja) 2002-03-25 2004-01-08 Mitsubishi Gas Chem Co Inc 配向性カーボンナノチューブ膜およびその製造方法
US20060165914A1 (en) 2002-04-03 2006-07-27 John Abrahamson Continuous method for producing inorganic nanotubes
US6887451B2 (en) 2002-04-30 2005-05-03 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Process for preparing carbon nanotubes
ITBO20020258A1 (it) * 2002-05-03 2003-11-03 Gd Spa Metodo e dispositivo per il ribaltamento di pile di prodotti in una macchina steccatrice
US7445817B2 (en) 2002-05-08 2008-11-04 Btu International Inc. Plasma-assisted formation of carbon structures
AU2003245264A1 (en) 2002-05-08 2003-11-11 Dana Corporation Plasma-assisted joining
US6870311B2 (en) 2002-06-07 2005-03-22 Lumileds Lighting U.S., Llc Light-emitting devices utilizing nanoparticles
JP2004015600A (ja) 2002-06-10 2004-01-15 Hitachi Advanced Digital Inc 画像蓄積・配信システムおよび同システムのサーバ装置の制御方法
AU2003248602A1 (en) * 2002-06-13 2003-12-31 National University Of Singapore Selective area growth of aligned carbon nanotubes on a modified catalytic surface
FR2841233B1 (fr) 2002-06-24 2004-07-30 Commissariat Energie Atomique Procede et dispositif de depot par pyrolyse de nanotubes de carbone
US6852410B2 (en) 2002-07-01 2005-02-08 Georgia Tech Research Corporation Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same
US6979947B2 (en) 2002-07-09 2005-12-27 Si Diamond Technology, Inc. Nanotriode utilizing carbon nanotubes and fibers
JP2005533180A (ja) 2002-07-17 2005-11-04 ハイトコ カーボン コムポージッツ インコーポレイテッド 連続的化学気相蒸着プロセス及び処理炉
KR100759547B1 (ko) 2002-07-29 2007-09-18 삼성에스디아이 주식회사 연료전지용 탄소나노튜브, 그 제조방법 및 이를 채용한연료전지
US20040037767A1 (en) * 2002-08-21 2004-02-26 First Nano, Inc. Method and apparatus of carbon nanotube fabrication
US7153452B2 (en) 2002-09-12 2006-12-26 Clemson University Mesophase pitch-based carbon fibers with carbon nanotube reinforcements
FR2844510B1 (fr) 2002-09-12 2006-06-16 Snecma Propulsion Solide Structure fibreuse tridimensionnelle en fibres refractaires, procede pour sa realisation et application aux materiaux composites thermostructuraux
CN100411979C (zh) 2002-09-16 2008-08-20 清华大学 一种碳纳米管绳及其制造方法
WO2004027336A1 (en) 2002-09-17 2004-04-01 Midwest Research Institute Carbon nanotube heat-exchange systems
JP3735651B2 (ja) 2002-10-08 2006-01-18 独立行政法人 宇宙航空研究開発機構 カーボンナノファイバー分散樹脂繊維強化複合材料
US7378347B2 (en) 2002-10-28 2008-05-27 Hewlett-Packard Development Company, L.P. Method of forming catalyst nanoparticles for nanowire growth and other applications
US7431965B2 (en) 2002-11-01 2008-10-07 Honda Motor Co., Ltd. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
KR100704795B1 (ko) 2002-11-01 2007-04-09 미츠비시 레이온 가부시키가이샤 탄소 나노튜브 함유 조성물, 이를 포함하는 도막을 갖는복합체, 및 이들의 제조 방법
US7125533B2 (en) 2002-11-15 2006-10-24 William Marsh Rice University Method for functionalizing carbon nanotubes utilizing peroxides
JP3969650B2 (ja) 2002-11-19 2007-09-05 日精樹脂工業株式会社 複合樹脂成形品におけるスキン層の層厚制御方法
CN1239387C (zh) 2002-11-21 2006-02-01 清华大学 碳纳米管阵列及其生长方法
CA2450150C (en) 2002-11-22 2012-01-24 Minh-Tan Ton-That Polymeric nanocomposites
US7407640B2 (en) 2002-11-27 2008-08-05 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
CN1290763C (zh) 2002-11-29 2006-12-20 清华大学 一种生产碳纳米管的方法
JP3962773B2 (ja) 2002-12-05 2007-08-22 独立行政法人科学技術振興機構 原料吹き付け式カーボンナノ構造物の製造方法及び装置
EP1586146A4 (en) 2002-12-20 2006-02-01 Alnaire Laboratoires Corp OPTICAL PUMP LASER
TWI304321B (en) 2002-12-27 2008-12-11 Toray Industries Layered products, electromagnetic wave shielding molded articles and method for production thereof
JP2004261875A (ja) 2003-01-09 2004-09-24 Sony Corp 転写用原盤の製造方法および転写用原盤、ならびに基板の製造方法および基板
US7828620B2 (en) 2003-01-09 2010-11-09 Sony Corporation Method of manufacturing tubular carbon molecule and tubular carbon molecule, method of manufacturing field electron emission device and field electron emission device, and method of manufacturing display unit and display unit
JP4161191B2 (ja) 2003-01-09 2008-10-08 ソニー株式会社 電界電子放出素子の製造方法
US7656027B2 (en) 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
WO2004071654A1 (ja) 2003-02-14 2004-08-26 Bussan Nanotech Research Institute Inc. 単層カーボンナノチューブ製造用触媒金属微粒子形成方法
JP4004973B2 (ja) 2003-02-19 2007-11-07 双葉電子工業株式会社 炭素物質とその製造方法及び電子放出素子、複合材料
GB2399092B (en) 2003-03-03 2005-02-16 Morgan Crucible Co Nanotube and/or nanofibre synthesis
US7641863B2 (en) 2003-03-06 2010-01-05 Ut-Battelle Llc Nanoengineered membranes for controlled transport
JP4520983B2 (ja) 2003-03-07 2010-08-11 セルドン テクノロジーズ,インコーポレイテッド ナノ物質による流体の浄化
US7419601B2 (en) 2003-03-07 2008-09-02 Seldon Technologies, Llc Nanomesh article and method of using the same for purifying fluids
CN1286716C (zh) 2003-03-19 2006-11-29 清华大学 一种生长碳纳米管的方法
DE10312494A1 (de) 2003-03-20 2004-10-07 Association pour la Recherche et le Développement des Méthodes et Processus Industriels (Armines) Kohlenstoff-Nanostrukturen und Verfahren zur Herstellung von Nanoröhren, Nanofasern und Nanostrukturen auf Kohlenstoff-Basis
JP3837392B2 (ja) 2003-03-25 2006-10-25 憲治郎 尾浦 カーボンナノチューブの製造方法、カーボンナノチューブデバイスおよび電気二重層キャパシタ
JP2004284919A (ja) 2003-03-25 2004-10-14 Mitsubishi Electric Corp カーボンナノチューブ形成用基板の製造方法およびこの基板を用いたカーボンナノチューブの製造方法
US7579077B2 (en) 2003-05-05 2009-08-25 Nanosys, Inc. Nanofiber surfaces for use in enhanced surface area applications
US7074294B2 (en) 2003-04-17 2006-07-11 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
JP2004327085A (ja) 2003-04-21 2004-11-18 Hitachi Zosen Corp カーボンナノチューブを用いた電子放出素子の製造方法
FR2854409B1 (fr) 2003-04-30 2005-06-17 Centre Nat Rech Scient Procede d'obtention de fibres a haute teneur en particules colloidales et fibres composites obtenues
WO2005047181A2 (en) 2003-06-03 2005-05-26 Seldon Technologies, Llc Fused nanostructure material
US7261779B2 (en) 2003-06-05 2007-08-28 Lockheed Martin Corporation System, method, and apparatus for continuous synthesis of single-walled carbon nanotubes
EP2368932B1 (en) 2003-06-16 2014-01-15 William Marsh Rice University Fabrication of carbon nanotube reinforced polymer composites
WO2005005033A2 (en) 2003-06-30 2005-01-20 New Jersey Institute Of Technology Catalysts and methods for making same
CN1219125C (zh) 2003-07-07 2005-09-14 哈尔滨工业大学 碳纤维表面有机高分子—无机纳米浆料及其制备方法
US7658798B2 (en) 2003-07-18 2010-02-09 Nec Corporation Method for fixing metal particles and method for manufacturing substrate containing metal particles, method for manufacturing substrate containing carbon nanotube, and method for manufacturing substrate containing semiconductor-crystalline rod, employing thereof
EP1660405B1 (en) 2003-07-28 2012-11-28 William Marsh Rice University Sidewall functionalization of carbon nanotubes with organosilanes for polymer composites
US7354988B2 (en) 2003-08-12 2008-04-08 General Electric Company Electrically conductive compositions and method of manufacture thereof
EP1506975A1 (en) 2003-08-13 2005-02-16 Vantico GmbH Nanocomposites based on polyurethane or polyurethane-epoxy hybrid resins prepared avoiding isocyanates
US8211593B2 (en) 2003-09-08 2012-07-03 Intematix Corporation Low platinum fuel cells, catalysts, and method for preparing the same
US7704754B2 (en) 2004-01-27 2010-04-27 American Environmental Systems, Inc. Method of plasmon-enhanced properties of materials and applications thereof
WO2005025734A2 (en) 2003-09-17 2005-03-24 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
US20050065238A1 (en) 2003-09-23 2005-03-24 Lark John C. Encapsulated nanoparticles, products containing the same, and methods for using the same
US20050119371A1 (en) 2003-10-15 2005-06-02 Board Of Trustees Of Michigan State University Bio-based epoxy, their nanocomposites and methods for making those
KR100570634B1 (ko) 2003-10-16 2006-04-12 한국전자통신연구원 탄소나노튜브와 금속분말 혼성 복합에 의해 제조된 전자파차폐재
JP2007515364A (ja) * 2003-10-16 2007-06-14 ザ ユニバーシティ オブ アクロン カーボンナノファイバ基板上のカーボンナノチューブ
US7265175B2 (en) 2003-10-30 2007-09-04 The Trustees Of The University Of Pennsylvania Flame retardant nanocomposite
US7122165B2 (en) 2003-11-03 2006-10-17 The Research Foundation Of State University Of New York Sidewall-functionalized carbon nanotubes, and methods for making the same
WO2005047179A1 (en) 2003-11-07 2005-05-26 Bae Systems Plc Formation of metal nanowires
JP4432478B2 (ja) 2003-12-05 2010-03-17 ソニー株式会社 筒状分子の製造方法および筒状分子構造、並びに表示装置および電子素子
AU2005230961B2 (en) 2004-01-15 2010-11-11 Nanocomp Technologies, Inc. Systems and methods for synthesis of extended length nanostructures
CN100395857C (zh) 2004-01-16 2008-06-18 清华大学 一种在玻璃衬底上制备碳纳米管的方法
JP2005213700A (ja) 2004-01-30 2005-08-11 National Institute For Materials Science 繊維径の異なる複合型繊維状炭素およびその製造方法
US20070189953A1 (en) 2004-01-30 2007-08-16 Centre National De La Recherche Scientifique (Cnrs) Method for obtaining carbon nanotubes on supports and composites comprising same
US7338684B1 (en) 2004-02-12 2008-03-04 Performance Polymer Solutions, Inc. Vapor grown carbon fiber reinforced composite materials and methods of making and using same
US7628041B2 (en) 2004-02-27 2009-12-08 Alcatel-Lucent Usa Inc. Carbon particle fiber assembly technique
KR101153839B1 (ko) 2004-03-20 2012-07-06 데이진 아라미드 비.브이. Ppta와 나노튜브를 포함하는 복합 물질
CN100383213C (zh) 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法
US8632699B2 (en) * 2004-04-07 2014-01-21 Eikos, Inc. Fugitive viscosity and stability modifiers for carbon nanotube compositions
US7144563B2 (en) 2004-04-22 2006-12-05 Clemson University Synthesis of branched carbon nanotubes
US7399794B2 (en) 2004-04-28 2008-07-15 University Of South Florida Polymer/carbon nanotube composites, methods of use and methods of synthesis thereof
US7361626B2 (en) 2004-04-30 2008-04-22 Engelhard Corporation Supported catalyst
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
KR101190136B1 (ko) 2004-05-10 2012-10-12 가부시키가이샤 알박 카본 나노 튜브의 제작 방법 및 그 방법을 실시하는플라즈마 화학기상증착 장치
EP2113302A4 (en) 2004-05-13 2009-12-23 Univ Hokkaido Nat Univ Corp FINE CARBON Dispersion
US20050260412A1 (en) 2004-05-19 2005-11-24 Lockheed Martin Corporation System, method, and apparatus for producing high efficiency heat transfer device with carbon nanotubes
US8828792B2 (en) 2004-05-25 2014-09-09 The Trustees Of The University Of Pennsylvania Nanostructure assemblies, methods and devices thereof
US8075863B2 (en) 2004-05-26 2011-12-13 Massachusetts Institute Of Technology Methods and devices for growth and/or assembly of nanostructures
CN1705059B (zh) 2004-05-26 2012-08-29 清华大学 碳纳米管场发射装置及其制备方法
WO2006004599A2 (en) 2004-06-04 2006-01-12 The Trustees Of Columbia University In The City Of New York Methods for preparing single-walled carbon nanotubes
KR20050121426A (ko) 2004-06-22 2005-12-27 삼성에스디아이 주식회사 탄소나노튜브 제조용 촉매의 제조 방법
US7838165B2 (en) 2004-07-02 2010-11-23 Kabushiki Kaisha Toshiba Carbon fiber synthesizing catalyst and method of making thereof
FR2872826B1 (fr) 2004-07-07 2006-09-15 Commissariat Energie Atomique Croissance a basse temperature de nanotubes de carbone orientes
CN100552102C (zh) 2004-07-15 2009-10-21 住友金属矿山株式会社 含有硼化物微粒的纤维和使用该纤维的纤维制品
JP4722423B2 (ja) 2004-07-15 2011-07-13 電源開発株式会社 単層カーボンナノチューブ合成用触媒の調製方法並びにこの触媒を使用した単層カーボンナノチューブの製造方法
CA2577065C (en) 2004-07-22 2015-02-03 William Marsh Rice University Polymer/carbon-nanotube interpenetrating networks and process for making same
JP4693105B2 (ja) 2004-07-23 2011-06-01 昭和電工株式会社 気相法炭素繊維の製造方法および製造装置
TWI404675B (zh) 2004-07-27 2013-08-11 Nat Inst Of Advanced Ind Scien 單層奈米碳管及定向單層奈米碳管/塊材構造體暨該等之製造方法/裝置及用途
JP4786156B2 (ja) 2004-08-31 2011-10-05 美根男 平松 カーボンナノウォールの製造方法
US8080487B2 (en) 2004-09-20 2011-12-20 Lockheed Martin Corporation Ballistic fabrics with improved antiballistic properties
US20060083927A1 (en) 2004-10-15 2006-04-20 Zyvex Corporation Thermal interface incorporating nanotubes
FR2877262B1 (fr) 2004-10-29 2007-04-27 Centre Nat Rech Scient Cnrse Fibres composites et fibres dissymetriques a partir de nanotubes de carbonne et de particules colloidales
TW200631111A (en) 2004-11-04 2006-09-01 Koninkl Philips Electronics Nv Nanotube-based circuit connection approach
CN101437663B (zh) * 2004-11-09 2013-06-19 得克萨斯大学体系董事会 纳米纤维带和板以及加捻和无捻纳米纤维纱线的制造和应用
JP2008520526A (ja) 2004-11-16 2008-06-19 ハイピリオン カタリシス インターナショナル インコーポレイテッド 単層壁炭素ナノチューブを製造する方法
US7485600B2 (en) 2004-11-17 2009-02-03 Honda Motor Co., Ltd. Catalyst for synthesis of carbon single-walled nanotubes
WO2006060476A2 (en) 2004-12-01 2006-06-08 William Marsh Rice University Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip
WO2006064760A1 (ja) 2004-12-13 2006-06-22 Nikkiso Co., Ltd. 単層カーボンナノチューブの製造方法
US7431964B2 (en) 2004-12-17 2008-10-07 Motorola, Inc. Method of forming a porous metal catalyst on a substrate for nanotube growth
WO2006072085A2 (en) 2004-12-28 2006-07-06 William Marsh Rice University Purification of carbon nanotubes based on the chemistry of fenton's reagent
US7871591B2 (en) 2005-01-11 2011-01-18 Honda Motor Co., Ltd. Methods for growing long carbon single-walled nanotubes
US7407901B2 (en) 2005-01-12 2008-08-05 Kazak Composites, Incorporated Impact resistant, thin ply composite structures and method of manufacturing same
US7811632B2 (en) 2005-01-21 2010-10-12 Ut-Battelle Llc Molecular jet growth of carbon nanotubes and dense vertically aligned nanotube arrays
JP2006216482A (ja) * 2005-02-07 2006-08-17 Noritake Co Ltd カーボンナノチューブカソードの製造方法およびカーボンナノチューブカソード
US20060198956A1 (en) 2005-03-04 2006-09-07 Gyula Eres Chemical vapor deposition of long vertically aligned dense carbon nanotube arrays by external control of catalyst composition
KR100664545B1 (ko) 2005-03-08 2007-01-03 (주)씨엔티 탄소나노튜브 대량합성장치 및 대량합성방법
US7771784B2 (en) 2005-03-10 2010-08-10 Materials And Electrochemical Research (Mer) Corporation Thin film production method and apparatus
JP2006255817A (ja) 2005-03-16 2006-09-28 Sonac Kk 金属構造およびその製造方法
EP1712522A1 (en) 2005-04-14 2006-10-18 Robert Prof. Dr. Schlögl Nanosized carbon material-activated carbon composite
CN100500555C (zh) 2005-04-15 2009-06-17 清华大学 碳纳米管阵列结构及其制备方法
EP1885647A1 (en) 2005-04-22 2008-02-13 Seldon Technologies, LLC Article comprising carbon nanotubes and method of using the same for purifying fluids
CN100376478C (zh) 2005-04-22 2008-03-26 清华大学 碳纳米管阵列结构的制备装置
US7501750B2 (en) 2005-05-31 2009-03-10 Motorola, Inc. Emitting device having electron emitting nanostructures and method of operation
JP2006342011A (ja) 2005-06-08 2006-12-21 Bridgestone Corp カーボンナノチューブ−炭素繊維複合体及びその製造方法
US7278324B2 (en) 2005-06-15 2007-10-09 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube-based sensor and method for detection of crack growth in a structure
ATE526437T1 (de) 2005-06-28 2011-10-15 Univ Oklahoma Verfahren zur züchtung und entnahme von kohlenstoffnanoröhren
US20080274036A1 (en) 2005-06-28 2008-11-06 Resasco Daniel E Microstructured catalysts and methods of use for producing carbon nanotubes
WO2008054349A2 (en) 2005-07-07 2008-05-08 The University Of Maryland Carbon nanotube structures formed on large free floating substrates
US20070053824A1 (en) 2005-08-12 2007-03-08 Samsung Electronics Co., Ltd. Method of forming carbon nanotubes
FR2889876B1 (fr) 2005-08-17 2008-02-22 Alcatel Sa Guide optique comprenant des nanoparticules et procede de fabrication d'une preforme destinee a former un tel guide optique
US8313723B2 (en) 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
CN100445202C (zh) 2005-08-26 2008-12-24 鸿富锦精密工业(深圳)有限公司 一种碳纳米管制造方法
EP1919826B1 (en) 2005-08-29 2015-10-07 University Of The Witwatersrand Johannesburg Process and reactor for producing carbon nanotubes
US20070110977A1 (en) 2005-08-29 2007-05-17 Al-Haik Marwan S Methods for processing multifunctional, radiation tolerant nanotube-polymer structure composites
EP2530200B1 (en) 2005-09-01 2015-02-25 Seldon Technologies, Inc Large scale manufacturing of nanostructured material
CN1927988A (zh) 2005-09-05 2007-03-14 鸿富锦精密工业(深圳)有限公司 热界面材料及其制备方法
JP2007091556A (ja) 2005-09-30 2007-04-12 Hitachi Zosen Corp カーボン系薄膜の連続製造装置
CN100482580C (zh) 2005-10-13 2009-04-29 鸿富锦精密工业(深圳)有限公司 一种碳纳米管制备装置及方法
WO2008054378A2 (en) 2005-10-25 2008-05-08 Massachusetts Institute Of Technology Apparatus and methods for controlled growth and assembly of nanostructures
WO2008054379A2 (en) 2005-10-25 2008-05-08 Massachusetts Institute Of Technology Shape controlled growth of nanostructured films and objects
JP5131616B2 (ja) 2005-10-27 2013-01-30 ニッタ株式会社 カーボンファイバ製造用触媒担持基板およびカーボンファイバ製造用触媒担持基板の製造方法
US20070099527A1 (en) 2005-11-01 2007-05-03 General Electric Company Method and reactor to coat fiber tows and article
CN1959896B (zh) 2005-11-04 2011-03-30 鸿富锦精密工业(深圳)有限公司 碳纳米管场发射体及其制备方法
US7709087B2 (en) 2005-11-18 2010-05-04 The Regents Of The University Of California Compliant base to increase contact for micro- or nano-fibers
US8148276B2 (en) 2005-11-28 2012-04-03 University Of Hawaii Three-dimensionally reinforced multifunctional nanocomposites
KR101007621B1 (ko) 2005-11-30 2011-01-12 시마네켄 미크론 사이즈 및 나노 사이즈의 탄소섬유를 모두 함유하는금속기 복합재료
US7592248B2 (en) 2005-12-09 2009-09-22 Freescale Semiconductor, Inc. Method of forming semiconductor device having nanotube structures
KR100745735B1 (ko) 2005-12-13 2007-08-02 삼성에스디아이 주식회사 탄소나노튜브의 형성방법 및 이를 이용한 전계방출소자의제조방법
US7465605B2 (en) 2005-12-14 2008-12-16 Intel Corporation In-situ functionalization of carbon nanotubes
US8124169B2 (en) 2005-12-14 2012-02-28 3M Innovative Properties Company Antimicrobial coating system
US20070141114A1 (en) 2005-12-15 2007-06-21 Essilor International Compagnie Generale D'optique Article coated with an ultra high hydrophobic film and process for obtaining same
EP1973845A4 (en) 2005-12-19 2009-08-19 Nantero Inc PREPARATION OF CARBON NANOTUBES
US8424200B2 (en) 2005-12-19 2013-04-23 University Of Virginia Patent Foundation Conducting nanotubes or nanostructures based composites, method of making them and applications
US20070148429A1 (en) 2005-12-19 2007-06-28 Mcgrath Ralph D Tri-excluded WUCS glass fiber reinforced plastic composite articles and methods for making such articles
KR20080069705A (ko) 2005-12-22 2008-07-28 쇼와 덴코 가부시키가이샤 기상성장 탄소섬유 및 그 제조방법
US7595107B2 (en) 2005-12-22 2009-09-29 Certainteed Corporation Algae resistant roofing system containing silver compounds, algae resistant shingles, and process for producing same
FR2895398B1 (fr) 2005-12-23 2008-03-28 Saint Gobain Vetrotex Fils de verre revetus d'un ensimage renfermant des nanoparticules.
FR2895397B1 (fr) 2005-12-23 2008-03-28 Saint Gobain Vetrotex Fils de verre et structures de fils de verre pourvus d'un revetement renfermant des nanoparticules.
WO2008016388A2 (en) 2006-01-30 2008-02-07 Honda Motor Co., Ltd. Method and apparatus for growth of high quality carbon single-walled nanotubes
EP1980529A1 (en) 2006-02-01 2008-10-15 Otsuka Chemical Company, Ltd. Process and apparatus for producing carbon nanotube
KR100749886B1 (ko) 2006-02-03 2007-08-21 (주) 나노텍 탄소나노튜브를 이용한 발열체
JP4743520B2 (ja) 2006-03-02 2011-08-10 三洋電機株式会社 カーボンナノチューブ電極及びその製造方法
WO2008054839A2 (en) 2006-03-03 2008-05-08 William Marsh Rice University Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces
US7556743B2 (en) 2006-03-06 2009-07-07 Southwest Research Institute Nanocomposites and methods for synthesis and use thereof
US20100117764A1 (en) 2006-04-17 2010-05-13 Board Of Regents, The University Of Texas System Assisted selective growth of highly dense and vertically aligned carbon nanotubes
CN101484628A (zh) 2006-05-02 2009-07-15 罗尔股份有限公司 使用纳米增强材料对用于复合材料中的增强纤维丝束的改性
US7687981B2 (en) 2006-05-05 2010-03-30 Brother International Corporation Method for controlled density growth of carbon nanotubes
US20080213498A1 (en) 2006-05-16 2008-09-04 Board Of Trustees Of Michigan State University Reinforced composite with a tow of fibers and process for the preparation thereof
US20080280031A1 (en) 2006-05-16 2008-11-13 Board Of Trustees Of Michigan State University Conductive coatings produced by monolayer deposition on surfaces
WO2007136613A2 (en) 2006-05-17 2007-11-29 University Of Dayton Method of growing carbon nanomaterials on various substrates
JP2009537339A (ja) 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー ナノ構造強化された複合体およびナノ構造強化方法
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US7534648B2 (en) 2006-06-29 2009-05-19 Intel Corporation Aligned nanotube bearing composite material
US9095639B2 (en) 2006-06-30 2015-08-04 The University Of Akron Aligned carbon nanotube-polymer materials, systems and methods
US20080020193A1 (en) 2006-07-24 2008-01-24 Jang Bor Z Hybrid fiber tows containning both nano-fillers and continuous fibers, hybrid composites, and their production processes
US8389119B2 (en) 2006-07-31 2013-03-05 The Board Of Trustees Of The Leland Stanford Junior University Composite thermal interface material including aligned nanofiber with low melting temperature binder
WO2008025751A1 (en) 2006-08-30 2008-03-06 Umicore Ag & Co. Kg Core/shell-type catalyst particles comprising metal or ceramic core materials and methods for their preparation
JP2008056546A (ja) 2006-09-01 2008-03-13 Ihi Corp 炭素構造体の製造装置及び製造方法
US20080053922A1 (en) 2006-09-01 2008-03-06 Honsinger Charles P Jr Nanostructured materials comprising support fibers coated with metal containing compounds and methods of using the same
JP5309317B2 (ja) 2006-09-08 2013-10-09 古河電気工業株式会社 カーボンナノ構造体の製造方法及び製造装置
WO2008034806A1 (en) 2006-09-18 2008-03-27 Dow Corning Corporation Fillers, pigments and mineral powders treated with organopolysiloxanes
EP2079860B1 (en) 2006-10-05 2013-08-07 Technion Research & Development Foundation Ltd. Microtubes and methods of producing same
US8088614B2 (en) 2006-11-13 2012-01-03 Aurora Algae, Inc. Methods and compositions for production and purification of biofuel from plants and microalgae
US20080287598A1 (en) 2006-11-29 2008-11-20 Kiu-Seung Lee Method of preparing aramid polymers incorporating carbon nanotubes
KR100829001B1 (ko) 2006-12-07 2008-05-14 한국에너지기술연구원 유리섬유 또는 탄소섬유 위에 탄소나노와이어를 직접합성하는 방법 및 이를 이용한 강화복합체 제조 방법
WO2008140504A2 (en) 2006-12-15 2008-11-20 Los Alamos National Security, Llc Preparation of array of long carbon nanotubes and fibers therefrom
US20080160286A1 (en) 2006-12-27 2008-07-03 Jawed Asrar Modified discontinuous glass fibers for use in the formation of thermoplastic fiber-reinforced composite articles
US20080160302A1 (en) 2006-12-27 2008-07-03 Jawed Asrar Modified fibers for use in the formation of thermoplastic fiber-reinforced composite articles and process
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US20100279569A1 (en) 2007-01-03 2010-11-04 Lockheed Martin Corporation Cnt-infused glass fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
KR101281168B1 (ko) 2007-01-05 2013-07-02 삼성전자주식회사 전계 방출 전극, 이의 제조 방법 및 이를 구비한 전계 방출소자
CN101012621A (zh) 2007-01-30 2007-08-08 东华大学 一种纤维制品上氧化锌纳米棒薄膜的制备方法
US20080178924A1 (en) 2007-01-30 2008-07-31 Solasta, Inc. Photovoltaic cell and method of making thereof
TW200833861A (en) 2007-02-05 2008-08-16 Nat Univ Tsing Hua Method for growing carbon nanotubes directly on the carbon fiber
WO2008153609A1 (en) 2007-02-07 2008-12-18 Seldon Technologies, Inc. Methods for the production of aligned carbon nanotubes and nanostructured material containing the same
EP2962986B1 (en) 2007-02-27 2017-04-05 Nanocomp Technologies, Inc. Materials for thermal protection and methods of manufacturing same
CN100506751C (zh) 2007-03-19 2009-07-01 华东理工大学 整体型纳米碳纤维复合多孔材料及其制备方法
US20080247938A1 (en) 2007-04-05 2008-10-09 Ming-Chi Tsai Process of growing carbon nanotubes directly on carbon fiber
CN101286384B (zh) 2007-04-11 2010-12-29 清华大学 电磁屏蔽线缆
JP5122855B2 (ja) 2007-04-18 2013-01-16 田中貴金属工業株式会社 ガラス繊維製造装置
CN101049927B (zh) 2007-04-18 2010-11-10 清华大学 连续化生产碳纳米管的方法及装置
US8388795B2 (en) 2007-05-17 2013-03-05 The Boeing Company Nanotube-enhanced interlayers for composite structures
US7722422B2 (en) 2007-05-21 2010-05-25 Global Oled Technology Llc Device and method for improved power distribution for a transparent electrode
JP2008296338A (ja) 2007-05-31 2008-12-11 National Univ Corp Shizuoka Univ 被覆構造体
US7718220B2 (en) 2007-06-05 2010-05-18 Johns Manville Method and system for forming reinforcing fibers and reinforcing fibers having particulate protuberances directly attached to the surfaces
GB0712806D0 (en) 2007-07-02 2007-08-08 Grace W R & Co Slump retention-enhanced cement dispersants
GB0712820D0 (en) 2007-07-03 2007-08-08 Dunlop Aerospace Ltd Carbon-carbon composite
EP2011572B1 (en) * 2007-07-06 2012-12-05 Imec Method for forming catalyst nanoparticles for growing elongated nanostructures
CN101707904B (zh) 2007-07-06 2013-03-20 独立行政法人产业技术总合研究所 碳纳米管成膜方法、成膜装置及碳纳米管薄膜
US7785498B2 (en) 2007-07-19 2010-08-31 Nanotek Instruments, Inc. Method of producing conducting polymer-transition metal electro-catalyst composition and electrodes for fuel cells
US20100210159A1 (en) 2007-07-27 2010-08-19 Dow Coming Corporation Fiber structure and method of making same
EP2020502A1 (de) * 2007-08-01 2009-02-04 Prüfrex-Elektro-Apparatebau Elektrisches Zündverfahren für Brennkraftmaschinen
CN101772546B (zh) 2007-08-02 2012-05-23 陶氏环球技术公司 用来增强热固性聚合物性能的两亲性嵌段共聚物和无机纳米填料
WO2009023644A1 (en) 2007-08-13 2009-02-19 Smart Nanomaterials, Llc Nano-enhanced smart panel
WO2009023643A1 (en) 2007-08-13 2009-02-19 Smart Nanomaterials, Llc Nano-enhanced modularly constructed composite panel
KR100916330B1 (ko) 2007-08-21 2009-09-11 세메스 주식회사 탄소나노튜브 합성 방법 및 장치
US20090062417A1 (en) 2007-08-31 2009-03-05 Momentive Performance Materials Gmbh Process For The Continuous Manufacturing Of Shaped Articles And Use Of Silicone Rubber Compositions In That Process
US7985394B2 (en) 2007-09-19 2011-07-26 Gideon Duvall System and method for manufacturing carbon nanotubes
US20090081441A1 (en) 2007-09-20 2009-03-26 Lockheed Martin Corporation Fiber Tow Comprising Carbon-Nanotube-Infused Fibers
US7666915B2 (en) 2007-09-24 2010-02-23 Headwaters Technology Innovation, Llc Highly dispersible carbon nanospheres in a polar solvent and methods for making same
US8919428B2 (en) 2007-10-17 2014-12-30 Purdue Research Foundation Methods for attaching carbon nanotubes to a carbon substrate
US7815820B2 (en) 2007-10-18 2010-10-19 General Electric Company Electromagnetic interference shielding polymer composites and methods of manufacture
JP5420416B2 (ja) 2007-10-23 2014-02-19 特種東海製紙株式会社 シート状物及びその製造方法
KR20090041765A (ko) 2007-10-24 2009-04-29 삼성모바일디스플레이주식회사 탄소나노튜브 및 그 형성 방법, 하이브리드 구조 및 그형성 방법 및 발광 디바이스
CN100567602C (zh) 2007-10-26 2009-12-09 哈尔滨工业大学 碳纳米管连接碳纤维多尺度增强体及其制备方法
US20090126783A1 (en) 2007-11-15 2009-05-21 Rensselaer Polytechnic Institute Use of vertical aligned carbon nanotube as a super dark absorber for pv, tpv, radar and infrared absorber application
CN101177803A (zh) 2007-11-21 2008-05-14 中南大学 一种纳米碳纤维的制备方法
CN101450798A (zh) 2007-11-29 2009-06-10 索尼株式会社 处理碳纳米管的方法、碳纳米管以及碳纳米管元件
US8146861B2 (en) 2007-11-29 2012-04-03 Airbus Deutschland Gmbh Component with carbon nanotubes
KR100878751B1 (ko) 2008-01-03 2009-01-14 한국에너지기술연구원 셀룰로스 섬유를 이용한 촉매지지체, 이의 제조방법,촉매지지체 표면에 직접성장된 탄소나노튜브 및탄소나노튜브 표면에 나노금속 촉매가 담지된 담지촉매 및이의 제조방법
US20090191352A1 (en) 2008-01-24 2009-07-30 Nanodynamics, Inc. Combustion-Assisted Substrate Deposition Method For Producing Carbon Nanosubstances
JP2009184892A (ja) 2008-02-08 2009-08-20 Dainippon Screen Mfg Co Ltd カーボンナノチューブ形成装置およびカーボンナノチューブ形成方法
US7867468B1 (en) 2008-02-28 2011-01-11 Carbon Solutions, Inc. Multiscale carbon nanotube-fiber reinforcements for composites
WO2009110885A1 (en) 2008-03-03 2009-09-11 Performance Polymer Solutions, Inc. Continuous process for the production of carbon nanotube reinforced continuous fiber preforms and composites made therefrom
JP2009215146A (ja) 2008-03-13 2009-09-24 Panasonic Corp 金属含有ナノ粒子、これを用いて成長したカーボンナノチューブ構造体、及びこのカーボンナノチューブ構造体を用いた電子デバイス及びその製造方法
GB0805837D0 (en) 2008-03-31 2008-06-04 Qinetiq Ltd Chemical Vapour Deposition Process
US7837905B2 (en) 2008-05-16 2010-11-23 Raytheon Company Method of making reinforced filament with doubly-embedded nanotubes
US20110159270A9 (en) 2008-06-02 2011-06-30 Texas A & M University System Carbon nanotube fiber-reinforced polymer composites having improved fatigue durability and methods for production thereof
US8039380B2 (en) 2008-06-27 2011-10-18 Commissariat A L'energie Atomique Procedure for obtaining nanotube layers of carbon with conductor or semiconductor substrate
KR20110041469A (ko) 2008-07-17 2011-04-21 에스.에이. 나노실 보강된 열경화성 중합체 복합재의 제조 방법
US20100059243A1 (en) 2008-09-09 2010-03-11 Jin-Hong Chang Anti-electromagnetic interference material arrangement
DE102008042116B4 (de) 2008-09-15 2019-12-24 Robert Bosch Gmbh Ventil, zum Zerstäuben von Fluid
KR101420680B1 (ko) 2008-09-22 2014-07-17 삼성전자주식회사 저항가열을 이용한 탄소섬유의 표면처리 장치 및 표면처리 방법
US20100081769A1 (en) * 2008-09-26 2010-04-01 E.I.Du Pont De Nemours And Company Process for producing block copolymer pigment dispersants
CN101372327B (zh) 2008-09-26 2011-03-23 厦门大学 一种碳纳米管阵列的生长方法
US8632671B2 (en) 2008-10-03 2014-01-21 Board Of Regents, University Of Texas System Method for measuring carbon nanotubes taken-up by a plurality of living cells
KR101486750B1 (ko) 2008-12-01 2015-01-28 삼성전자주식회사 수평의 탄소나노튜브의 형성방법
WO2010087903A1 (en) 2008-12-11 2010-08-05 William Marsh Rice University Strongly bound carbon nanotube arrays directly grown on substrates and methods for production thereof
JP5318120B2 (ja) 2008-12-22 2013-10-16 アイシン精機株式会社 複合型炭素およびその製造方法
US20100178568A1 (en) 2009-01-13 2010-07-15 Nokia Corporation Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US8351220B2 (en) 2009-01-28 2013-01-08 Florida State University Research Foundation Electromagnetic interference shielding structure including carbon nanotube or nanofiber films and methods
BRPI1007300A2 (pt) 2009-02-17 2019-09-24 Applied Nanostructured Sols compósitos compreendendo nanotubos de carbono sobre fibra
BRPI1008131A2 (pt) 2009-02-27 2016-03-08 Applied Nanostructured Sols "crescimento de nanotubo de carbono de baixa temperatura usando método de preaquecimento de gás".
US20100224129A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
EP2415913B1 (en) * 2009-03-31 2017-09-06 Donghua University Processes for producing carbon fiber precursor
US8052951B2 (en) 2009-04-03 2011-11-08 Ut-Battelle, Llc Carbon nanotubes grown on bulk materials and methods for fabrication
CN102388172B (zh) 2009-04-10 2015-02-11 应用纳米结构方案公司 使用立式加热炉将碳纳米管并入纤维的方法和设备
DK2417286T3 (en) 2009-04-10 2015-08-17 Applied Nanostructured Solutions Inc Device and method for producing carbon nanotubes on a substrate that moves continuously
US20100260998A1 (en) 2009-04-10 2010-10-14 Lockheed Martin Corporation Fiber sizing comprising nanoparticles
US20100272891A1 (en) 2009-04-10 2010-10-28 Lockheed Martin Corporation Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
US20100261058A1 (en) 2009-04-13 2010-10-14 Applied Materials, Inc. Composite materials containing metallized carbon nanotubes and nanofibers
WO2010124260A1 (en) 2009-04-24 2010-10-28 Lockheed Martin Corporation Cnt-infused emi shielding composite and coating
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
KR101696207B1 (ko) 2009-04-27 2017-01-13 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 복합 구조물 제빙을 위한 cnt계 저항 가열
US20100311866A1 (en) 2009-06-05 2010-12-09 University Of Massachusetts Heirarchial polymer-based nanocomposites for emi shielding
CN101698975B (zh) 2009-09-23 2011-12-28 北京航空航天大学 炭纳米管对炭化后的预氧丝预制体界面的改性方法
JP5365450B2 (ja) 2009-09-28 2013-12-11 凸版印刷株式会社 膜電極接合体の製造方法及び膜電極接合体の製造装置
BR112012010907A2 (pt) 2009-11-23 2019-09-24 Applied Nanostructured Sols "materiais compósitos de cerâmica contendo materiais de fibra infundidos em nanotubo de carbono e métodos para a produção dos mesmos"
JP5643835B2 (ja) 2009-11-23 2014-12-17 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc Cntを適合された海ベース複合材料構造体
EP2531558B1 (en) 2010-02-02 2018-08-22 Applied NanoStructured Solutions, LLC Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom
JP5747333B2 (ja) 2010-03-01 2015-07-15 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造方法
US8665581B2 (en) 2010-03-02 2014-03-04 Applied Nanostructured Solutions, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
CN101837968B (zh) 2010-04-02 2012-12-19 北京富纳特创新科技有限公司 碳纳米管膜的制备方法
AU2011305809A1 (en) 2010-09-22 2013-02-28 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
TW201217827A (en) 2010-10-29 2012-05-01 Cheng Uei Prec Ind Co Ltd Anti-fingerprint coating, product having anti-fingerprint coating and manufacture method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021038A (ja) * 2007-07-10 2009-01-29 Sumitomo Electric Ind Ltd 線材、導体、接続構造および線材の製造方法
US20090081383A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Carbon Nanotube Infused Composites via Plasma Processing
US20090220409A1 (en) * 2008-03-03 2009-09-03 Performance Polymer Solutions, Inc. Continuous process for the production of carbon nanofiber reinforced continuous fiber preforms and composites made therefrom

Also Published As

Publication number Publication date
KR20120099710A (ko) 2012-09-11
WO2011053458A1 (en) 2011-05-05
JP2013509503A (ja) 2013-03-14
US8951632B2 (en) 2015-02-10
BR112012011606A2 (pt) 2016-06-28
JP5823403B2 (ja) 2015-11-25
US20100178825A1 (en) 2010-07-15
CN102640573A (zh) 2012-08-15
ZA201202972B (en) 2013-09-25
US20160130744A1 (en) 2016-05-12
CA2778607A1 (en) 2011-05-05
US9574300B2 (en) 2017-02-21
AU2010313614A1 (en) 2012-05-17
EP2497342A4 (en) 2013-08-28
US20110168089A1 (en) 2011-07-14
EP2497342A1 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
KR101770196B1 (ko) Cnt 주입된 탄소 섬유 물질 및 그 제조방법
US9005755B2 (en) CNS-infused carbon nanomaterials and process therefor
JP5830471B2 (ja) 平行に配列されたカーボン・ナノチューブを含むカーボン・ナノチューブ導入繊維材料の生産方法
EP2398955B1 (en) Composites comprising carbon nanotubes on fiber
US8168291B2 (en) Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
JP2013509503A5 (ko)
US20100192851A1 (en) Cnt-infused glass fiber materials and process therefor
KR20120117998A (ko) 탄소 나노튜브 주입된 섬유 물질을 포함하는 금속 매트릭스 복합재 물질 및 그 제조방법
WO2013184285A1 (en) Cns-infused carbon nanomaterials and process therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant