EP2376515A1 - Synthesis of purine nucleosides - Google Patents

Synthesis of purine nucleosides

Info

Publication number
EP2376515A1
EP2376515A1 EP09793688A EP09793688A EP2376515A1 EP 2376515 A1 EP2376515 A1 EP 2376515A1 EP 09793688 A EP09793688 A EP 09793688A EP 09793688 A EP09793688 A EP 09793688A EP 2376515 A1 EP2376515 A1 EP 2376515A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
compound
cycloalkyl
salt
lower alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09793688A
Other languages
German (de)
English (en)
French (fr)
Inventor
Byoung-Kwon Chun
Jinfa Du
Suguna Rachakonda
Bruce S. Ross
Michael Joseph Sofia
Ganapati Reddy Pamulapati
Wonsuk Chang
Hai-Ren Zhang
Dhanapalan Nagarathnam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gilead Pharmasset LLC
Original Assignee
Pharmasset Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41683220&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2376515(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pharmasset Inc filed Critical Pharmasset Inc
Priority to EP13182837.8A priority Critical patent/EP2671888A1/en
Publication of EP2376515A1 publication Critical patent/EP2376515A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/167Purine radicals with ribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • C07H19/213Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids containing cyclic phosphate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H5/00Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
    • C07H5/02Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to halogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • Hepatitis C virus (HCV) infection is a major health problem that leads to chronic liver disease, such as cirrhosis and hepatocellular carcinoma, in a substantial number of infected individuals, estimated to be 2-15% of the world's population.
  • chronic liver disease such as cirrhosis and hepatocellular carcinoma
  • According to the World Health Organization there are more than 200 million infected individuals worldwide, with at least 3 to 4 million people being infected each year. Once infected, about 20% of people clear the virus, but the rest can harbor HCV the rest of their lives.
  • Ten to twenty percent of chronically infected individuals eventually develop liver- destroying cirrhosis or cancer.
  • the viral disease is transmitted parenterally by contaminated blood and blood products, contaminated needles, or sexually and vertically from infected mothers or carrier mothers to their offspring.
  • Current treatments for HCV infection which are restricted to immunotherapy with recombinant interferon- ⁇ alone or in combination with the nucleoside analog ribavirin, are of limited clinical benefit.
  • Purine phosphoramidates have been shown to be potent inhibitors of the HCV virus (US Patent Application 12/053,015, see also WO 2008/121634). However, preparation of these compounds has been made difficult due to poor yields associated with the coupling of the ribose sugar to the purine base and because of poor C-I' beta-stereoselectivity associated with the ribose to purine base coupling step.
  • nucleoside analogue there are two ways to prepare a nucleoside analogue.
  • the first way follows a linear synthetic sequence in which the target nucleoside is prepared from an appropriate nucleoside. In this approach, usually there is less concern about stereoselective chemistry as most if not all of the stereocenters are set. However, the synthesis can be lengthy if extensive modification of the sugar is required.
  • a common way to avoid this stereochemical problem is to employ an ⁇ -halosugar so that an Sj ⁇ 2 type coupling with a salt of a purine base or a silylated pyrimidine base would generate the desired ⁇ isomer enriched mixture (Kazimierczuk, Z. et al. J. Am. Chem. Soc. 1984, 106, 6379-6382; Chun, B. K. et al J. Org. Chem, 2000, 65, 685-693; Zhong, M. et al. J. Org. Chem. 2006, 71, 1113- 7779).
  • Another possible way to do an Sj ⁇ 2 type coupling is enzymatic glycosylation in which the sugar- 1- ⁇ -O-phosphate is coupled with purine base using either isolated enzymes or whole cells.
  • the phosphate intermediate can be generated enzymatically from another nucleoside containing the desired sugar.
  • This coupled reaction is called transglycosylation.
  • This conversion is highly stereospecific.
  • natural enzymes only work with a limited number of modified sugars.
  • existing enzymes from a range of microorganisms need to be screened for activity or through extensive research there is a possibility that a mutated enzyme can be selected and produced though genetic engineering ( Komatsu, H. et al Tetrahedron Lett. 2003, 44, 2899-2901; Okuyama, K.
  • a final alternative method to couple a sugar with a purine base is through the use of Mitsunobu chemistry.
  • This approach uses a condensing reagent such as N, N- dicyclohexylcarbodiiomide (DCC) and triphenylphosphine.
  • DCC dicyclohexylcarbodiiomide
  • triphenylphosphine triphenylphosphine
  • 2'-deoxy-2'-fluoro-2'-C-methyl purine nucleosides and their corresponding nucleotide phosphoramidates belong to the 2'-deoxy nucleoside category since there is no directing ⁇ -acyloxy group in 2'-position.
  • a close derivative of the purine analogs was first prepared using the linear nucleoside route in a less than 5% overall yield due to the complexity of forming the 2' quaternary center. The lowest yielding step, fluorination, was done late in the sequence. This route was unsuitable for large scale synthesis (Clark, J. L. et al. Bioorg. Med. Chem. Lett. 2006, 16, 1712-1715).
  • R 1 is hydrogen, n-alkyl; branched alkyl; cycloalkyl; or aryl, which includes, but is not limited to, phenyl or naphthyl, where phenyl or naphthyl are optionally substituted with at least one of Ci_6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci_6 alkoxy, F, Cl, Br, I, nitro, cyano,
  • R 1 is independently hydrogen or alkyl, which includes, but is not limited to, Ci_ 2 o alkyl, Ci_io alkyl, or Ci_ 6 alkyl, R 1 is - OR' or -N(R r ) 2 );
  • R 2 is hydrogen, C 1-10 alkyl, or R 3a or R 3b and R 2 together are (CH 2 ),, so as to form a cyclic ring that includes the adjoining N and C atoms, where n is 2 to 4;
  • R 3a and R 3b together are(CH 2 ) f so as to form a spiro ring;
  • R 3a is hydrogen and R 3b and R 2 together are (CH 2 ) n so as to form a cyclic ring that includes the adjoining N and C atoms
  • R 3b is hydrogen and R 3a and R 2 together are (CH 2 ) n so as to form a cyclic ring that includes the adjoining N and C atoms, where c is 1 to 6, d is
  • R 3 is independently hydrogen or Ci_ 6 alkyl and R 3" is -OR or -N(R 3' ) 2 );
  • R 3a is H and R 3b is H, CH 3 , CH 2 CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 , CH(CH 3 )CH 2 CH 3 , CH 2 Ph, CH 2 -indol-3-yl, -CH 2 CH 2 SCH 3 , CH 2 CO 2 H, CH 2 C(O)NH 2 , CH 2 CH 2 COOH, CH 2 CH 2 C(O)NH 2 , CH 2 CH 2 CH 2 CH 2 NH 2 , -
  • R 3a is CH 3 , -CH 2 CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 ,
  • R 3b is H, where R 3' is independently hydrogen or alkyl, which includes, but is not limited to, Ci_ 20 alkyl, C 1-10 alkyl, or C 1-6 alkyl, R 3" is -OR' or -N(R 3' ) 2 );
  • R 4 is hydrogen, C 1-10 alkyl, C 1-10 alkyl optionally substituted with a lower alkyl, alkoxy, di(lower alkyl)-amino, or halogen, C 1-10 haloalkyl, C 3 -Io cycloalkyl, cycloalkyl alkyl, cycloheteroalkyl, aminoacyl, aryl, such as phenyl, heteroaryl, such as, pyridinyl, substituted aryl, or substituted heteroaryl;
  • R 5 is H, a lower alkyl, CN, vinyl, O-(lower alkyl), hydroxyl lower alkyl, i.e., -(CH 2 ) P OH, where p is 1 -6, including hydroxyl methyl (CH 2 OH), CH 2 F, N 3 , CH 2 CN, CH 2 NH 2 , CH 2 NHCH 3 , CH 2 N(CH 3 ) 2 , alky
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , F, CN, vinyl, or ethynyl;
  • R 7 is hydrogen, n-alkyl, branched alkyl, cycloalkyl, alkaryl, or aryl, which includes, but is not limited to, phenyl or naphthyl, where phenyl or naphthyl are optionally substituted with at least one of H, F, Cl, Br, I, OH, OR 7' , SH, SR 7' , NH 2 , NHR 7' , NR 7' 2 , lower alkyl Of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkyl of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkenyl Of C 2 -C 6 , lower alkynyl Of C 2 -C 6 , such as C ⁇ CH, halogenated (F,
  • X is H, OH, OMe, halogen, CN, NH 2 , or N 3 ;
  • O) Z is N or CR 10 ;
  • R 5 , R 6 , and X have the meanings as defined above, X' is a leaving group and R 11 is a protecting group.
  • a or “an” entity refers to one or more of that entity; for example, a compound refers to one or more compounds or at least one compound.
  • a compound refers to one or more compounds or at least one compound.
  • the terms “a” (or “an”), “one or more”, and “at least one” can be used interchangeably herein.
  • halo includes chloro, bromo, iodo and fluoro.
  • both R's can be carbon, both R's can be nitrogen, or one R' can be carbon and the other nitrogen.
  • purified refers to the purity of a given compound.
  • a compound is “purified” when the given compound is a major component of the composition, i.e., at least 50% w/w pure.
  • purified embraces at least 50% w/w purity, at least 60% w/w purity, at least 70% purity, at least 80% purity, at least 85% purity, at least 90% purity, at least 92% purity, at least 94% purity, at least 96% purity, at least 97% purity, at least 98% purity, and at least 99% purity.
  • tautomerism and “tautomers” have their accepted plain meanings.
  • P* means that the phosphorus atom is chiral and that it has a corresponding Cahn-Ingold-Prelog designation of "R” or "S” which have their accepted plain meanings. It is contemplated that the phosphoramidate nucleoside I and the cyclic phosphate nucleotide II can exist as a mixture of diastereomers due to the chirality at phosphorus. Applicants contemplate use of the mixture of disastereomers and/or the resolved diastereomers. In some instances, an asterisk does not appear next to the phosphoroamidate or cyclic phosphate phosphorus atom.
  • isotopically-enriched analogs of compounds I and II are also contemplated.
  • isotopically-enriched means that at least one atom of compounds I and II is enriched with a particular isotope, such as, for example, 2 H, 3 H, 13 C, 15 N, 32 P, etc.
  • deuterated analogs means a compound described herein or its salts thereof, whereby a hydrogen atom is enriched with its 2 H-isotope, i.e., deuterium (D).
  • Deuterium substitution can be partial or complete. Partial deuterium substitution means that at least one hydrogen is substituted by at least one deuterium.
  • methyl groups depicted below are shown as being completely deuterated, one will recognize that partial-deuterated variations are also possible, such as, -CDH 2 and -CD 2 H.
  • alkenyl refers to an unsubstituted hydrocarbon chain radical having from 2 to 10 carbon atoms having one or two olefmic double bonds, preferably one olefmic double bond.
  • C 2 -N alkenyl refers to an alkenyl comprising 2 to N carbon atoms, where N is an integer having the following values: 3, 4, 5, 6, 7, 8, 9, or 10.
  • C 2 -io alkenyl refers to an alkenyl comprising 2 to 10 carbon atoms.
  • C 2 _ 4 alkenyl refers to an alkenyl comprising 2 to 4 carbon atoms. Examples include, but are not limited to, vinyl, 1-propenyl, 2- propenyl (allyl) or 2-butenyl (crotyl).
  • halogenated alkenyl refers to an alkenyl comprising at least one of F, Cl, Br, and I.
  • alkyl refers to an unbranched or branched chain, saturated, monovalent hydrocarbon residue containing 1 to 30 carbon atoms.
  • C I _ M alkyl refers to an alkyl comprising 1 to M carbon atoms, where M is an integer having the following values: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30.
  • C 1-4 alkyl refers to an alkyl containing 1 to 4 carbon atoms.
  • lower alkyl denotes a straight or branched chain hydrocarbon residue comprising 1 to 6 carbon atoms, which is also designated by the expression "Ci_6-alkyl.”
  • Ci_2o alkyl refers to an alkyl comprising 1 to 20 carbon atoms.
  • C 1 -H alkyl refers to an alkyl comprising 1 to 10 carbons.
  • alkyl groups include, but are not limited to, methyl, ethyl, propyl, /-propyl, n-butyl, /-butyl, /-butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, etc..
  • lower alkyl groups include, but are not limited to, methyl, ethyl, propyl, /-propyl, n-butyl, /-butyl, /-butyl, pentyl, isopentyl, neopentyl, hexyl, etc.
  • the term (ar)alkyl or (heteroaryl)alkyl indicate the alkyl group is optionally substituted by an aryl or a heteroaryl group respectively.
  • halogenated alkyl refers to an unbranched or branched chain alkyl comprising at least one of F, Cl, Br, and I.
  • C I _ M haloalkyl refers to an alkyl comprising 1 to M carbon atoms that comprises at least one of F, Cl, Br, and I, where M is an integer having the following values: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30.
  • Ci- 3 haloalkyl refers to a haloalkyl comprising 1 to 3 carbons and at least one of F, Cl, Br, and I.
  • halogenated lower alkyl refers to a haloalkyl comprising 1 to 6 carbon atoms and at least one of F, Cl, Br, and I.
  • Examples include, but are not limited to, fluoromethyl, chloromethyl, bromomethyl, iodomethyl, difluoromethyl, dichloromethyl, dibromomethyl, diiodomethyl, trifluoromethyl, trichloromethyl, tribromomethyl, triiodomethyl, 1- fluoroethyl, 1-chloroethyl, 1-bromoethyl, 1-iodoethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl, 2,2-dichloroethyl, 2,2-dibromomethyl, 2-2-diiodomethyl, 3-
  • alkynyl refers to an unbranched or branched hydrocarbon chain radical having from 2 to 10 carbon atoms, preferably 2 to 5 carbon atoms, and having one triple bond.
  • C 2 -N alkynyl refers to an alkynyl comprising 2 to N carbon atoms, where N is an integer having the following values: 3, 4, 5, 6, 7, 8, 9, or 10.
  • C C2-4 alkynyl refers to an alkynyl comprising 2 to 4 carbon atoms.
  • C 2 - 10 alkynyl refers to an alkynyl comprising 2 to 10 carbons. Examples include, but are limited to, ethynyl (i.e., -C ⁇ CH), 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl or 3-butynyl.
  • halogenated alkynyl refers to an unbranched or branched hydrocarbon chain radical having from 2 to 10 carbon atoms, preferably 2 to 5 carbon atoms, and having one triple bond and at least one of F, Cl, Br, and I.
  • alkoxy refers to an -O-alkyl group, an -O-cycloalkyl group, an - O-lower cycloalkyl, wherein alkyl, cycloalkyl, and lower cycloalkyl are as defined above.
  • -O-alkyl groups include, but are not limited to, methoxy, ethoxy, n-propyloxy, z-propyloxy, n-butyloxy, z-butyloxy, t-butyloxy.
  • “Lower alkoxy” as used herein denotes an alkoxy group with a "lower alkyl” group as previously defined.
  • C 1 -H) alkoxy refers to an-O-alkyl wherein alkyl is C 1-10 .
  • -O-cycloalkyl groups include, but are not limited to, -O-c-propyl, -O-c- butyl, -O-c-pentyl, and -O-c-hexyl.
  • halogenated alkoxy refers to an -O-alkyl group in which the alkyl group comprises at least one of F, Cl, Br, and I.
  • halogenated lower alkoxy refers to an -O-(lower alkyl) group in which the lower alkyl group comprises at least one of F, Cl, Br, and I.
  • cycloalkyl refers to an unsubstituted or substituted carbocycle, in which the carbocycle contains 3 to 10 carbon atoms; preferably 3 to 8 carbon atoms; more preferably 3 to 6 carbon atoms (i.e., lower cycloalkyls).
  • Examples of cycloalkyl groups include, but are not limited to, cyclopropyl, 2-methyl-cyclopropyl, cyclobutyl, cyclopentyl, cycloheptyl, or cyclooctyl.
  • C 3 - 7 cycloalkyl refers to a cycloalkyl comprising 3 to 7 carbons in the carbocyclic ring.
  • lower cycloalkyl refers to C 3-6 cycloalkyl rings, which include, but are not limited to, cyclopropyl ( c Pr), 2-methyl-cyclopropyl, etc., cyclobutyl ( c Bu), 2- methyl-cyclobutyl, 3-methyl-cyclobutyl, etc., cyclopentyl ( c Pn), 2-methyl- cyclopentyl, 3-methyl-cyclopentyl, 4-methyl-cyclopentyl, etc., cyclohexyl ( ⁇ x), etc.
  • cycloalkyl alkyl refers to an additionally unsubstituted or substituted alkyl substituted by a lower cycloalkyl.
  • cycloalkyl alkyls include, but are not limited to, any one of methyl, ethyl, propyl, i-propyl, n-butyl, i- butyl, t-butyl or pentyl, isopentyl, neopentyl, hexyl, heptyl, and octyl that is substituted with cyclopropyl, 2-methyl-cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • cycloheteroalkyl refers to an unsubstituted or substituted heterocycle, in which the heterocycle contains 2 to 9 carbon atoms; preferably 2 to 7 carbon atoms; more preferably 2 to 5 carbon atoms.
  • Examples of cycloheteroalkyls include, but are not limited to, aziridin-2-yl, N-Ci_ 3 -alkyl-aziridin-2-yl, azetidinyl, N- Ci_ 3 -alkyl-azetidin-m'-yl, pyrrolidin-m'-yl, N-Ci_ 3 -alkyl-pyrrolidin-m'-yl, piperidin- m'-yl, and N-Ci_ 3 -alkyl-piperidin-m'-yl, where m' is 2, 3, or 4 depending on the cycloheteroalkyl.
  • ⁇ -Ci_ 3 -alkyl-cycloheteroalkyls include, but are not limited to, N-methyl-aziridin-2-yl, N-methyl-azetidin-3-yl, N-methyl- pyrrolidin-3-yl, N-methyl-pyrrolidin-4-yl, N-methyl-piperidin-2-yl, N-methyl- piperidin-3-yl, and N-methyl-piperidin-4-yl.
  • R 4 the point of attachment between the cycloheteroalkyl ring carbon and the oxygen occurs at any one of m'.
  • acyl refers to a substituent containing a carbonyl moiety and a non-carbonyl moiety.
  • the carbonyl moiety contains a double-bond between the carbonyl carbon and a heteroatom, where the heteroatom is selected from among O, N and S.
  • the heteroatom is selected from among O, N and S.
  • the heteroatom is N, the N is substituted by a lower alkyl.
  • the non- carbonyl moiety is selected from straight, branched, and cyclic alkyl, which includes, but is not limited to, a straight, branched, or cyclic Ci_2o alkyl, C 1-10 alkyl, or lower alkyl; alkoxyalkyl, including methoxymethyl; aralkyl, including benzyl; aryloxyalkyl, such as phenoxymethyl; or aryl, including phenyl optionally substituted with halogen (F, Cl, Br, I), hydroxyl, Ci to C 4 alkyl, or Ci to C 4 alkoxy, sulfonate esters, such as alkyl or aralkyl sulphonyl, including methanesulfonyl, the mono, di or triphosphate ester, trityl or monomethoxytrityl, substituted benzyl, trialkylsilyl (e.g. dimethyl-t-butylsilyl) or diphenyl
  • lower acyl refers to an acyl group in which the non-carbonyl moiety is lower alkyl.
  • aryl refers to substituted or unsubstituted phenyl (Ph), biphenyl, or naphthyl, preferably the term aryl refers to substituted or unsubstituted phenyl.
  • the aryl group can be substituted with one or more moieties selected from among hydroxyl, F, Cl, Br, I, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, and phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in T. W. Greene and P. G. M. Wuts, "Protective Groups in Organic Synthesis," 3rd ed., John Wiley & Sons, 1999.
  • alkaryl or “alkylaryl” refer to an alkyl group with an aryl substituent, such as benzyl.
  • lower alkaryl or “lower alkylaryl” refer to a lower alkyl group with an aryl substituent, such as benzyl.
  • aralkyl or “arylalkyl” refer to an aryl group with an alkyl substituent.
  • di(lower alkyl)amino-lower alkyl refers to a lower alkyl substituted by an amino group that is itself substituted by two lower alkyl groups. Examples include, but are not limited to, (CH 3 ) 2 NCH 2 , (CHs) 2 NCH 2 CH 2 , (CHs) 2 NCH 2 CH 2 CH 2 , etc.
  • the examples above show lower alkyls substituted at the terminus carbon atom with an N,N-dimethyl-amino substituent. These are intended as examples only and are not intended to limit the meaning of the term "di(lower alkyl)amino-lower alkyl" so as to require the same.
  • the lower alkyl chain can be substituted with an N,N-di(lower alkyl)-amino at any point along the chain, e.g., CH 3 CH(N-(lower alkyl) 2 )CH 2 CH 2 .
  • heterocycle refers to an unsubstituted or substituted heterocycle containing carbon, hydrogen, and at least one of N, O, and S, where the C and N can be trivalent or tetravalent, i.e., sp 2 - or sp 3 -hybridized.
  • heterocycles include, but are not limited to, aziridine, azetidine, pyrrolidine, piperidine, imidazole, oxazole, piperazine, etc.
  • nitrogen heterocycle as used for R 8 and R 9 represents a heterocycle containing a nitrogen where the nitrogen is the point of attachment to the purine.
  • Examples of a nitrogen heterocycle include, but are not limited to, -N(-CH 2 CH 2 -) (aziridin-1-yl), -N(-CH 2 CH 2 CH 2 -) (azetidin-1-yl), -N(-CH 2 CH 2 CH 2 CH 2 -) (pyrrolidin-1-yl), etc.
  • piperazine as related to R 10 for NR' 2 , the corresponding opposite nitrogen atom of the piperazinyl is substituted by a lower alkyl represented by the following structure:
  • the opposite nitrogen of the piperazinyl is substituted by a methyl group.
  • amino acid includes naturally occurring and synthetic ⁇ , ⁇ ⁇ or ⁇ amino acids, and includes but is not limited to, amino acids found in proteins, i.e. glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan, proline, serine, threonine, cysteine, tyrosine, asparagine, glutamine, aspartate, glutamate, lysine, arginine and histidine.
  • the amino acid is in the L-configuration.
  • the amino acid can be a derivative of alanyl, valinyl, leucinyl, isoleucinyl, prolinyl, phenylalaninyl, tryptophanyl, methioninyl, glycinyl, serinyl, threoninyl, cysteinyl, tyrosinyl, asparaginyl, glutaminyl, aspartoyl, glutaroyl, lysinyl, argininyl, histidinyl, ⁇ -alanyl, ⁇ -valinyl, ⁇ -leucinyl, ⁇ -isoleucinyl, ⁇ -prolinyl, ⁇ -phenylalaninyl, ⁇ -tryptophanyl, ⁇ -methioninyl, ⁇ -glycinyl, ⁇ -serinyl, ⁇ - threoninyl, ⁇ -cysteiny
  • amino acid When the term amino acid is used, it is considered to be a specific and independent disclosure of each of the esters of ⁇ , ⁇ ⁇ or ⁇ glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan, proline, serine, threonine, cysteine, tyrosine, asparagine, glutamine, aspartate, glutamate, lysine, arginine and histidine in the D and L-conf ⁇ gurations.
  • aminoacyl includes unsubstituted, N -monosubstituted, and N,N- disubstituted derivatives of naturally occurring and synthetic ⁇ , ⁇ ⁇ or ⁇ amino acyls, where the amino acyls are derived from amino acids.
  • the amino-nitrogen can be substituted or unsubstituted. When the amino-nitrogen is substituted, the nitrogen is either mono- or di-substituted, where the substituent bound to the amino-nitrogen is a lower alkyl or an alkaryl.
  • alkylamino or arylamino refer to an amino group that has one or two alkyl or aryl substituents, respectively.
  • protected refers to a group that is added to an oxygen, nitrogen, or phosphorus atom to prevent its further reaction or for other purposes.
  • oxygen and nitrogen protecting groups are known to those skilled in the art of organic synthesis.
  • Non-limiting examples include: C(O)-alkyl, C(O)Ph, C(O)aryl, CH 3 , CH 2 -alkyl, CH 2 -alkenyl, CH 2 Ph, CH 2 -aryl, CH 2 O-alkyl, CH 2 O-aryl, SO 2 -alkyl, SO 2 -aryl, tert- butyldimethylsilyl, tert-butyldiphenylsilyl, and 1, 3-(l, 1,3,3- tetraisopropyldisiloxanylidene).
  • purine or "pyrimidine” base includes, but is not limited to, adenine, N 6 -alkylpurines, N 6 -acylpurines (wherein acyl is C(O)(alkyl, aryl, alkylaryl, or arylalkyl), N 6 -benzylpurine, N 6 -halopurine, N 6 -vinylpurine, N 6 - acetylenic purine, N 6 -acyl purine, N 6 -hydroxyalkyl purine, N 6 -alkylaminopurine, N 6 -thioalkyl purine, N 2 -alkylpurines, N 2 -alkyl-6-thiopurines, thymine, cytosine, 5- fluorocytosine, 5-methylcytosine, 6-azapyrimidine, including 6-azacytosine, 2- and/or 4-mercaptopyrmidine, uracil, 5-halouracil, including 5-fluorouracil,
  • Purine bases include, but are not limited to, guanine, adenine, hypoxanthine, 2,6- diaminopurine, and 6-chloropurine. Functional oxygen and nitrogen groups on the base can be protected as necessary or desired. Suitable protecting groups are well known to those skilled in the art, and include trimethylsilyl, dimethylhexylsilyl, t- butyldimethylsilyl, and t-butyldiphenylsilyl, trityl, alkyl groups, and acyl groups such as acetyl and propionyl, methanesulfonyl, and p-toluenesulfonyl.
  • protecting group refers to a chemical group which exhibits the following characteristics. The group must react selectively in good yield to give a protected substrate that is stable to the projected reactions; and the protective group must be selectively removable in good yield by readily available, preferably nontoxic reagents that do not attack the functional group(s) generated in such projected reactions (see Protective Groups in Organic Synthesis, 3 nd ed. T. W. Greene and P. G. M. Wuts, John Wiley & Sons, New York, N.Y., 1999).
  • protecting groups include, but are not limited to: benzoyl, substituted benzoyl, acetyl, phenyl-substituted benzoyl, trityl, DMT (4,4'-dimethoxytrityl), MMT (4- monomethoxytrityl), pixyl (9-phenylxanthen-9-yl) group, thiopixyl (9- phenylthioxanthen-9-yl).
  • the substituted benzoyl groups can be partially substituted or fully substituted.
  • the 2-, 3-, 4-, 5-, and 6-positions of the benzoyl ring can be substituted with either hydrogen (an unsubstituted position) or another substituent (a substituted position), such as the substituents contemplated above and throughout the present disclosure.
  • substituted benzoyl groups include, but are not limited to: 2-halo-benzoyl, 3-halo- benzoyl, 4-halo-benzoyl; 2,4-dihalo-benzoyl, 3,4-dihalo-benzoyl, and 3,5-dihalo- benzoyl; 2-(Ci_6-alkyl)-benzoyl, 3-(Ci_6-alkyl)-benzoyl, and 4-(Ci_6-alkyl)-benzoyl; 2,4-(diCi_ 6 -alkyl)-benzoyl, 3,4-(diCi_ 6 -alkyl)-benzoyl, and 3,5-(diCi_ 6 -alkyl)- benzoyl; 2-nitro-benzoyl, 3-nitro-benzoyl, 4-nitro-benzoyl; 2,4-(dinitro)-benzoyl, 3,4-(dinitro)-benzoyl, and 3,5-
  • leaving group (see also "Lv") as used herein, has the same meaning to the skilled artisan (Advanced Organic Chemistry: reactions, mechanisms and structure-Fourth Edition by Jerry March, John Wiley and Sons Ed.; 1992 pages 351-357) and represents a group which is part of and attached to a substrate molecule; in a reaction where the substrate molecule undergoes a displacement reaction (with for example a nucleophile), the leaving group is then displaced.
  • leaving groups include, but are not limited to: halogen (F, Cl, Br, and I), preferably Cl, Br, or I; tosylate, mesylate, triflate, acetate, etc.
  • Hydride reducing agents include, but are not limited to: ('BuO ⁇ AlH, sodium (bis(2-methoxyethoxy)(2,2,2-trifluoro-ethoxy)aluminum hydride, Red- Al (sodium bis(2-methoxyethoxy)aluminum hydride), sodium borohydride, lithium aluminum hydride, diborane, borane-tetrahydrofuran complex, borane-dimethylsulfide complex, aluminum tri-isopropoxide, boron triacetoxy hydride, alcohol dehydrogenase enzymes, (-)- or (+)- diisopinocampheylchloroborane, lithium (2,3-Dimethyl-2-butyl)-t- butoxyborohydride, Diisobuty
  • the term "reagent" standing alone, as used herein, has the meaning of at least one compound capable of reacting with the lactol derivative by introducing a leaving group at the anomeric carbon atom.
  • the at least one compound includes, but is not limited to, Ph 3 P/CBr 4 , Ph 3 P/CHBr 3 , Ph 3 P/CHBr 3 /imidazole Ph 3 P/Br 2 , Ph 3 P/Br 2 /imidazole, N-bromosuccinimide/ Ph 3 P, HBr in acetic acid, PBr 3 ZDMF, PBr 3 /sodium bicarbonate, PBr 3 /imidazole, PBrs/DMF, PBrs/sodium bicarbonate, PBrs/imidazole, N-chlorosuccinimide/Pr ⁇ P, POBr 3 /imidazole, POCl 3 /imidazole, SOCl 2 , SO 2 Cl 2 ,
  • basic reagent means a compound that is capable of abstracting a proton from an acidic reagent, such as a purine base, whereby the "acidic" functional group of the purine base includes the N-H of the fused imidazole ring.
  • Examples of basic reagents include, but are not limited to, a (lower alk)oxide ((lower alkyl)OM) in combination with an alcoholic solvent, where (lower alk)oxides include, but are not limited to, MeO “ , EtO “ , “PrO “ , 'PrO “ , 'BuO “ , 'AmO- (iso-amyloxide), etc., and where M is an alkali metal cation, such as Li + , Na + , K + , etc.
  • Alcoholic solvents include (lower alkyl)OH, such as, for example, MeOH, EtOH, "PrOH, 'PrOH, 'BuOH, 'AmOH, etc.
  • Non-alkoxy bases can also be used such as sodium hydride, sodium hexamethyldisilazane, lithium hexamethyldisilazane, lithium diisopropylamide, calcium hydride, sodium carbonate, potassium carbonate, cesium carbonate, DBU, and DBN.
  • nucleophilic reagent means a compound that contains a radical that is capable of replacing another radical, e.g., by way of a nucleophilic-substitution reaction.
  • An example of a nucleophilic reagent includes, but is not limited to, a (lower alk)oxide ((lower alkyl)OM) in combination with an alcoholic solvent, where (lower alk)oxides include, but are not limited to, MeO " , EtO " , "PrO " , 'PrO " , 'BuO " , etc., and where M is an alkali metal cation, such as Li + , Na + , K + , etc.
  • Alcoholic solvents include (lower alkyl)OH, such as, for example, MeOH, EtOH, "PrOH, 'PrOH, 'BuOH, etc.
  • a nucleophilic reagent includes, but is not limited to, an (aralkyl)oxide in combination with an aralkanol solvent, such as, for example, BnONa/BnOH, where "Bn” represents a benzyl radical (CeH 5 CH 2 -).
  • nucleophilic reagent includes, but is not limited to, an unsubstituted or substituted heterocycle containing carbon, hydrogen, and at least one of N, O, and S, where the C and N can be trivalent or tetravalent, i.e., sp 2 - or sp 3 -hybridized in the presence of a basic reagent or lower alkyl amine, such as triethylamine or diisopropyl ethyl amine, etc.
  • heterocycles include (see also a preceding paragraph), but are not limited to, aziridine, azetidine, pyrrolidine, piperidine, imidazole, oxazole, piperazine, etc.
  • nucleophilic reagents includes primary and secondary amines, which includes, but is not limited to, H 2 NR' or HNR' 2 , wherein R' is an optionally substituted alkyl, which includes, but is not limited to, an optionally substituted Ci_ 2 o alkyl, an optionally substituted C 1-10 alkyl, an optionally substituted lower alkyl; or an optionally substituted cycloalkyl.
  • nucleophilic reagent also provides for functional groups, which when introduced at the 6 position of the purine moiety, are capable of being co verted to a hydroxy group.
  • a group capable of being converted to OH means a substituent comprised of -OZ, where -OZ is converted to -OH on exposure to certain chemical reagents.
  • P(III)-reagent as used in the process described herein means a chemical reagent whereby the phosphorus atom has a +3-oxidation state.
  • P(III)-reagents examples include, but are not limited to, P(Lv) 3 , R 7 OP(Lv) 2 , R 7 OP(Lv)(N(C i_6 alkyl) 2 ), R 7 OP[N(d_ 6 alkyl) 2 ] 2 , and mixtures thereof, where Lv is a leaving group, R 7 and Ci_6 alkyl are defined herein.
  • activator reagent as used in the process described herein means a compound that promotes the reaction involving a P(III)-reagent.
  • activators include, but are not limited to, lH-tetrazole, 5-ethylthiotetrazole, imidazolium triflate, and 4,5-dicyano-imidazole, as well as those disclosed in U.S. Patent No. 6,274,725.
  • P(V)-reagents include, but are not limited to, P(O)(Lv) 3 , R 7 OP(O)(Lv) 2 , R 7 OP(O)(LV)(N(CL 6 alkyl) 2 ), R 7 OP(O)[N(CL 6 alkyl) 2 ] 2 , and mixtures thereof, where Lv is a leaving group, R 7 and C L6 alkyl are defined herein.
  • oxidizing agent as used in the process described herein means a chemical reagent that increases the oxidation state of an atom, i.e., an oxidizing agent promotes "oxidizing" or "oxidation.”
  • the atom that is oxidized is phosphorus, as in a phosphite derivative of II.
  • oxidizing agents include, but are not limited to, hydrogen peroxide, hydroperoxides, peroxides, peracids, iodine, and mixtures thereof.
  • Hydrogen peroxide can be used in the presence of a solvent, such as acetonitrile, as disclosed in Cvetovich, R. J. Organic Process Research & Development, Article ASAP, Publication Date (Web): May 11, 2009.
  • Hydroperoxides include peroxides in which R is an alkyl or an aryl and salts thereof, which include, but is not limited to t-butylperoxide ('BuOOH).
  • Peroxides include alkyl, aryl, or mixed alkyl/aryl peroxides and salts thereof.
  • Peracids include alkyl and aryl peracids, which include, but are not limited to, m-chloroperoxybenzoic acid (mCPBA).
  • an elemental halogent such as, bromine (Br 2 ), chlorine (Cl 2 ), or iodine (I 2 )
  • bromine (Br 2 ) chlorine (Cl 2 ), or iodine (I 2 )
  • Cl 2 iodine
  • water and other components such as, pyridine, tetrahydrofuran, and water.
  • an aqueous Cl 2 solution in the presence of TEMPO is contemplated as well.
  • equilibrating the phosphite derivative of II refers to a process where a composition comprising the two isomers (cis and trans) of the phosphite derivative of II is allowed to equilibrate, as depicted in the following equation.
  • cis and trans refer to the spatial position of the -OR 7 substituent relative to the spatial position of the nucleobase on the furanose ring system.
  • the equilibrium position i.e., the ratio of cis-to- trans
  • solvent, temperature, etc. may be influenced by solvent, temperature, etc. and that the conditions to obtain a certain equilibrium position can be determined experimentally, such experimental techniques include, but are not limited to, 1 H- or 31 P-NMR spectroscopy.
  • amine reagent as used herein means a composition containing at least one compound comprising nitrogen in its protonated or unprotonated form.
  • alkyl amines such as methyl amine, di-isopropyl amine, cyclopentyl- amine, as well as heterocyclic compounds that include, but are not limited to, pyrrolidine, piperidine, morpholine, etc., imidazole, N-(C 1-6 alkyl)-imidazole, such as, N-methyl-imidazole, pyrazole, N-(C 1-6 alkyl)- pyrazole, such as, N-methyl- pyrazole, triazole, N-(C 1-6 alkyl)-triazole, such as N-methyl-triazole, tetrazole, N- (C 1-6 alkyl)-tetrazole, such as N-methyl-tetrazole, oxazole, etc.
  • heterocyclic amines are disclosed in T. L. Gilchrist, Heterocyclic Chemistry, 1985, Longman Scientific & Technical, which is hereby incorporated by reference.
  • purine or "derivatized purine", as used in the process described herein, means, in addition to the compounds specifically disclosed in a preceding paragraph, a precursor compound of the "Base” of the compounds represented by the structures of formula I and formula II.
  • salts thereof includes acid or basic additions salts, as well as pharmaceutically acceptable salts.
  • pharmaceutically acceptable salt means a salt that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound.
  • Such salts include, but are not limited to: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as gly colic acid, pyruvic acid, lactic acid, malonic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, 3-(4- hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1 ,2-ethane-disulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzen
  • references to pharmaceutically acceptable salts include solvent addition forms (solvates) or crystal forms (polymorphs) as defined herein, of the same acid addition salt.
  • preparation or “dosage form” is intended to include both solid and liquid formulations of the active compound and one skilled in the art will appreciate that an active ingredient can exist in different preparations depending on the desired dose and pharmacokinetic parameters.
  • excipient refers to a compound that is used to prepare a pharmaceutical composition, and is generally safe, non-toxic and neither biologically nor otherwise undesirable, and includes excipients that are acceptable for veterinary use as well as human pharmaceutical use.
  • crystalline refers to a situation where a solid sample of compound I or II has crystalline characteristics when determined by X-ray powder diffraction or a single crystal X-ray technique.
  • crystal-like refers to a situation where a solid sample of compound I or II has crystalline characteristics when determined by one means, e.g., visually or by optical or polarizing microscopy, but does not have crystalline characteristics when determined by another means, e.g., x-ray powder diffraction.
  • Methods of visually determining the crystallinity of a solid sample by visual or by optical or by polarizing microscopy are disclosed in USP ⁇ 695> and ⁇ 776>, both of which are incorporated by reference.
  • a solid sample of compound I or II that is "crystal-like” may be crystalline under certain conditions but may become noncrystalline when subjected to other conditions.
  • amorphous refers to a situation where a solid sample of compound I or II is neither crystalline nor crystal-like.
  • co-crystallates include co-crystallates of compound I or II in combination with salts, which embraces pharmaceutically acceptable salts.
  • substantially anhydrous means that a substance contains at most
  • a (lattice or adsorbed) solvent (designated in some instances by the symbol S) or anti-solvent includes at least one of a Ci to Cg alcohol, a C 2 to Cg ether, a C3 to C 7 ketone, a C3 to C 7 ester, a Ci to C 2 chlorocarbon, a C5 to Ci 2 saturated hydrocarbon, and a C 6 to Ci 2 aromatic hydrocarbon.
  • R 1 is hydrogen, n-alkyl; branched alkyl; cycloalkyl; or aryl, which includes, but is not limited to, phenyl or naphthyl, where phenyl or naphthyl are optionally substituted with at least one of
  • Ci_6 alkyl C 2 _6 alkenyl, C 2 _6 alkynyl, Ci_6 alkoxy, F, Cl, Br, I, nitro, cyano, C 1-6 haloalkyl, -N(R r ) 2 , C 1-6 acylamino, -NHSO 2 CL 6 alkyl, -SO 2 N(R r ) 2 , COR 1 , and -SO 2 Ci_6 alkyl;
  • R 1 is independently hydrogen or alkyl, which includes, but is not limited to, Ci_ 20 alkyl, C 1-10 alkyl, or Ci_ 6 alkyl, R 1 is -
  • R 2 is hydrogen, C 1-10 alkyl, or R 3a or R 3b and R 2 together are (CH 2 ) n so as to form a cyclic ring that includes the adjoining N and C atoms, where n is 2 to
  • R 3a and R 3b both are C 1-6 alkyl
  • R 3a and R 3b together are(CH 2 ) f so as to form a spiro ring;
  • R 3a is hydrogen and R 3b and R 2 together are (CH 2 ) n so as to form a cyclic ring that includes the adjoining N and C atoms
  • R 3b is hydrogen and R 3a and R 2 together are (CH 2 ) n so as to form a cyclic ring that includes the adjoining N and C atoms, where c is 1 to 6, d is 0 to 2, e is 0 to 3, f is 2 to 5, n is 2 to 4, and where R 3 is independently hydrogen or C 1-6 alkyl and R 3" is -OR or -N(R 3' ) 2 );
  • R 3a is H and R 3b is H, CH 3 , CH 2 CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 , CH(CH 3 )CH 2 CH 3 , CH 2 Ph, CH 2 -indol-3-yl, -CH 2 CH 2 SCH 3 , CH 2 CO 2 H, CH 2 C(O)NH 2 , CH 2 CH 2 COOH, CH 2 CH 2 C(O)NH 2 , CH 2 CH 2 CH 2 CH 2 NH 2 , - CH 2 CH 2 CH 2 NHC(NH)NH 2 , CH 2 -imidazol-4-yl, CH 2 OH, CH(OH)CH 3 , CH 2 ((4'-OH)-Ph), CH 2 SH, or lower cycloalkyl; or
  • R 3a is CH 3 , -CH 2 CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 , CH(CH 3 )CH 2 CH 3 , CH 2 Ph, CH 2 -indol-3-yl, -CH 2 CH 2 SCH 3 , CH 2 CO 2 H, CH 2 C(O)NH 2 , CH 2 CH 2 COOH, CH 2 CH 2 C(O)NH 2 , CH 2 CH 2 CH 2 CH 2 NH 2 , - CH 2 CH 2 CH 2 NHC(NH)NH 2 , CH 2 -imidazol-4-yl, CH 2 OH, CH(OH)CH 3 , CH 2 ((4'-OH)-Ph), CH 2 SH, or lower cycloalkyl and R 3b is H, where R 3' is independently hydrogen or alkyl, which includes, but is not limited to, Ci_ 2 o alkyl, C LIO alkyl, or C 1-6 alkyl, R 3" is -OR'
  • R 4 is hydrogen, C 1-10 alkyl, C 1-10 alkyl optionally substituted with a lower alkyl, alkoxy, di(lower alkyl)-amino, or halogen, C 1-10 haloalkyl, C 3 _io cycloalkyl, cycloalkyl alkyl, cycloheteroalkyl, aminoacyl, aryl, such as phenyl, heteroaryl, such as, pyridinyl, substituted aryl, or substituted heteroaryl;
  • R 5 is H, a lower alkyl, CN, vinyl, O-(lower alkyl), hydroxyl lower alkyl, i.e., -(CH 2 ) p 0H, where p is 1 -6, including hydroxyl methyl (CH 2 OH), CH 2 F, N 3 , CH 2 CN, CH 2 NH 2 , CH 2 NHCH 3 , CH 2 N(CH 3 ) 2 , alkyne (optionally substituted), or halogen, including F, Cl, Br, or I;
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , F, CN, vinyl, or ethynyl;
  • R 7 is hydrogen, n-alkyl, branched alkyl, cycloalkyl, alkaryl, or aryl, which includes, but is not limited to, phenyl or naphthyl, where phenyl or naphthyl are optionally substituted with at least one of H, F, Cl, Br, I, OH, OR 7' , SH, SR 7' , NH 2 , NHR 7' , NR 7' 2 , lower alkyl Of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkyl of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkenyl Of C 2 -C 6 , lower alkynyl Of C 2 -C 6 , such as C ⁇ CH, halogenated (F, Cl, Br, I) lower alkynyl Of C 2 -C 6 , lower alkoxy of Ci-C 6 , halogenated (F, Cl, Br, I
  • R 5 , R 6 , and X have their meanings as described above, X' is a leaving group, and R 11 is a protecting group.
  • a first embodiment is directed to compound I,
  • R 1 is hydrogen, n-alkyl; branched alkyl; cycloalkyl; or aryl, which includes, but is not limited to, phenyl or naphthyl, where phenyl or naphthyl are optionally substituted with at least one of Ci_ 6 alkyl, C 2 - 6 alkenyl, C 2 _ 6 alkynyl, Ci_ 6 alkoxy, F, Cl, Br, I, nitro, cyano, Ci_ 6 haloalkyl, -N(R 1 ) ⁇ Ci_ 6 acylamino, - NHSO 2 C L6 alkyl, -SO 2 N(R r ) 2 , COR 1" , and -SO 2 C 1-6 alkyl;
  • R 1' is independently hydrogen or alkyl, which includes, but is not limited to, Ci_ 2 o alkyl, C 1-10 alkyl, or C 1-6 alkyl, R 1" is -OR' or -N(
  • R 2 is hydrogen or CH 3 ;
  • R 3a and R 3b are
  • R 3a is CH 3 , -CH 2 CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 , CH(CH 3 )CH 2 CH 3 , CH 2 Ph, CH 2 -indol-3-yl, -CH 2 CH 2 SCH 3 , CH 2 CO 2 H, CH 2 C(O)NH 2 , CH 2 CH 2 COOH, CH 2 CH 2 C(O)NH 2 , CH 2 CH 2 CH 2 CH 2 NH 2 , -
  • R 3b is H, where R 3' is independently hydrogen or alkyl, which includes, but is not limited to, Ci_ 2 o alkyl, C 1-10 alkyl, or Ci_ 6 alkyl, R 3" is -OR' or -N(R 3' ) 2 );
  • R 4 is hydrogen, C 1-10 alkyl, C 1-10 alkyl optionally substituted with a lower alkyl, alkoxy or halogen, C 1-10 haloalkyl, C 3 _io cycloalkyl, cycloalkyl alkyl, cycloheteroalkyl, aminoacyl, di(lower alkyl)amino-lower alkyl, aryl, such as phenyl, heteroaryl, such as, pyridinyl, substituted aryl, or substituted heteroaryl;
  • R 5 is H, a lower alkyl, CN, vinyl, O-(lower alkyl), hydroxyl lower alkyl, i.e., -(CH 2 ) p 0H, where p is 1 -6, including hydroxyl methyl (CH 2 OH), CH 2 F, N 3 , CH 2 CN, CH 2 NH 2 , CH 2 NHCH 3 , CH 2 N(CH 3 ) 2 , alkyne (optionally substituted), or halogen, including F, Cl, Br, or I;
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , F, CN, vinyl, ethynyl;
  • X is H, OH, OMe, CN, F, Cl, Br, I, NH 2 , or N 3 ;
  • O) Z is N or CR 10 ;
  • R is a lower alkyl, a lower cycloalkyl, a lower alkaryl, or a C(O)(lower alkyl);
  • R 1 is hydrogen, methyl, ethyl, n-propyl, /-propyl, phenyl, p-tolyl, p- bromo-phenyl, p-chloro-phenyl, p-fluorophenyl;
  • R 2 is hydrogen or CH 3 ;
  • R 3a is H and R 3b is H, CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 , CH(CH 3 )CH 2 CH 3 , CH 2 Ph, CH 2 -indol-3-yl, -CH 2 CH 2 SCH 3 , CH 2 CO 2 H, CH 2 C(O)NH 2 , CH 2 CH 2 COOH, CH 2 CH 2 C(O)NH 2 , CH 2 CH 2 CH 2 CH 2 NH 2 , -
  • R 4 is hydrogen, CH 3 , Et, 'Pr, “Pr, “Bu, 2-butyl, 'Bu, benzyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, N-methyl-aziridin-2-yl, N-methyl- azetidin-3-yl, N-methyl-pyrrolidin-3-yl, N-methyl-pyrrolidin-4-yl, N-methyl- piperidin-4-yl, lower haloalkyl, or di(lower alkyl)amino-lower alkyl;
  • R 5 is H, CN, CH 3 , OCH 3 , CH 2 OH, CH 2 F, N 3 , halogen, including F, Cl, Br, or I;
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , F, CN, vinyl, or ethynyl;
  • X is H, OH, OCH 3 , CN, F, Cl, Br, I, NH 2 , or N 3 ;
  • O) Z is N or CR 10 ;
  • R 10 is an H, halogen (including F, Cl, Br, I), OR, NH 2 , NHR', NR 2 ,
  • R is a lower alkyl, a lower cycloalkyl, a lower alkyaryl, or a C(O)(lower alkyl).
  • R 1 is hydrogen, methyl, ethyl, n-propyl, /-propyl, phenyl, p-tolyl, p- bromo-phenyl, p-chloro-phenyl, or p-fluorophenyl;
  • R 2 is hydrogen or CH 3 ;
  • R 3a is H and R 3b is H, CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 ,
  • R 4 is hydrogen, CH 3 , Et, 'Pr, “Pr, “Bu, 2-butyl, 'Bu, benzyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, N-methyl-aziridin-2-yl, N-methyl- azetidin-3-yl, N-methyl-pyrrolidin-3-yl, N-methyl-pyrrolidin-4-yl, N-methyl- piperidin-4-yl, lower haloalkyl, or di(lower alkyl)amino-lower alkyl;
  • R 5 is H, CN, CH 2 F, N 3 , F, Cl, Br, or I;
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , F, vinyl, or ethynyl;
  • X is H, OH, OCH 3 , CN, F, Cl, Br, I, NH 2 or N 3 ;
  • O) Z is N or CR 10 ;
  • R is a lower alkyl, a lower cycloalkyl, a lower alkaryl, or a C(O)(lower alkyl).
  • a third aspect of the first embodiment is directed to compound I,
  • R 1 is hydrogen, methyl, ethyl, n-propyl, /-propyl, phenyl, p-tolyl, p- bromo-phenyl, p-chloro-phenyl, or p-fluorophenyl;
  • R 2 is hydrogen
  • R 3a is H and R 3b is H, CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 , CH(CH 3 )CH 2 CH 3 , CH 2 Ph, or lower cycloalkyl;
  • R 4 is hydrogen, CH 3 , Et, 'Pr, “Pr, “Bu, 2-butyl, 'Bu, benzyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, N-methyl-aziridin-2-yl, N-methyl- azetidin-3-yl, N-methyl-pyrrolidin-3-yl, N-methyl-pyrrolidin-4-yl, N-methyl- piperidin-4-yl, lower haloalkyl, or di(lower alkyl)amino-lower alkyl;
  • R 5 is H or N 3 ;
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , F, vinyl or ethynyl;
  • X is H, OH, OCH 3 , CN, F, NH 2 or N 3 ;
  • O) Z is N or CR 10 ;
  • R is a lower alkyl, a lower cycloalkyl, a lower alkyaryl, or a C(O)(lower alkyl).
  • a fourth aspect of the first embodiment is directed to compound I,
  • R 1 is hydrogen, methyl, phenyl, p-bromo-phenyl, p-chloro-phenyl, or p-fluorophenyl;
  • R 2 is hydrogen
  • R 3a is H and R 3b is H, CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 , CH(CH 3 )CH 2 CH 3 , CH 2 Ph, or lower cycloalkyl;
  • R 4 is hydrogen, CH 3 , Et, 'Pr, “Pr, “Bu, 2-butyl, 'Bu, benzyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, N-methyl-aziridin-2-yl, N-methyl- azetidin-3-yl, N-methyl-pyrrolidin-3-yl, N-methyl-pyrrolidin-4-yl, N-methyl- piperidin-4-yl, lower haloalkyl, or di(lower alkyl)amino-lower alkyl;
  • R 5 is H or N 3 ;
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , F, vinyl, or ethynyl;
  • X is H, OH, OCH 3 , CN, F, NH 2 or N 3 ;
  • O) Z is N or CR 10 ;
  • R is a lower alkyl, a lower cycloalkyl, a lower alkyaryl, or a
  • a fifth aspect of the first embodiment is directed to compound I,
  • R 1 is hydrogen, methyl, phenyl, p-bromo-phenyl, p-chloro-phenyl, or p-fluorophenyl;
  • R 2 is hydrogen
  • R 3a is H and R 3b is H, CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 , CH(CH 3 )CH 2 CH 3 , CH 2 Ph, or lower cycloalkyl;
  • R 4 is hydrogen, CH 3 , Et, 'Pr, “Pr, “Bu, 2-butyl, 'Bu, benzyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, N-methyl-aziridin-2-yl, N-methyl- azetidin-3-yl, N-methyl-pyrrolidin-3-yl, N-methyl-pyrrolidin-4-yl, N-methyl- piperidin-4-yl, lower haloalkyl, or di(lower alkyl)amino-lower alkyl;
  • R 5 is H or N 3 ;
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , F, vinyl, or ethynyl;
  • X is H, OH, OCH 3 , CN, F, NH 2 or N 3 ;
  • Y is OH;
  • Z is N or CR 10 ;
  • R is a lower alkyl, a lower cycloalkyl, a lower alkyl, or a C(O)(lower alkyl).
  • a sixth aspect of the first embodiment is directed to compound I,
  • R 1 is hydrogen, phenyl, p-tolyl, p-bromo-phenyl, p-chloro-phenyl, or p-fluorophenyl;
  • R 2 is hydrogen or CH 3 ;
  • R 3a is H and R 3b is H, CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 , CH(CH 3 )CH 2 CH 3 , CH 2 Ph, CH 2 OH, CH 2 ((4'-OH)-Ph), or lower cycloalkyl;
  • R 4 is hydrogen, CH 3 , Et, 'Pr, “Pr, “Bu, 2-butyl, 'Bu, benzyl, cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl;
  • R 5 is H or N 3 ;
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , F, CN, vinyl or ethynyl;
  • X is H, OH, OCH 3 , CN, F, Cl, Br, I, NH 2 , or N 3 ;
  • R 10 is an H, F, Cl, Br, I, OR, NH 2 , NHR', NR 2 , or lower alkyl of C 1 - C 6 , or -C ⁇ CH;
  • R is a lower alkyl, a lower cycloalkyl, a lower alkaryl, or a C(O)(lower alkyl).
  • a seventh aspect of the first embodiment is directed to compound I,
  • R 1 is hydrogen, phenyl, p-tolyl, p-bromo-phenyl, or p-chloro-phenyl;
  • R 2 is hydrogen or CH 3 ;
  • R 3a is H and R 3b is H, CH 3 , CH(CHs) 2 , CH 2 CH(CHs) 2 ,
  • R 4 is hydrogen, CH 3 , Et, 'Pr, “Pr, “Bu, 2-butyl, 'Bu, benzyl, cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl;
  • R 5 is H ofN 3 ;
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , F, CN, vinyl or ethynyl;
  • X is H, OH, OCH 3 , CN, F, Cl, Br, or N 3 ;
  • R 9 is NH 2 and R 8 is H, F, OH, O(lower alkyl), O(lower alkyaryl), NH 2 , NHR', NR 2 , or nitrogen heterocycle;
  • R is a lower alkyl, a lower cycloalkyl, a lower alkaryl, or a C(O)(lower alkyl).
  • An eighth aspect of the first embodiment is directed to compound I,
  • R 1 is hydrogen, phenyl, p-bromo-phenyl, p-chloro-phenyl, or p- fluorophenyl;
  • R 2 is hydrogen
  • R 3a is H and R 3b is H, CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 , or CH(CH 3 )CH 2 CH 3 ;
  • R 4 is hydrogen, CH 3 , Et, 'Pr, "Pr, “Bu, 2-butyl, or cyclopentyl;
  • R 5 is H or N 3 ;
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , F, CN, vinyl, or ethynyl;
  • X is H, OH, CN, F, or N 3 ;
  • R 9 is NH 2 and R 8 is H, F, OH, O(lower alkyl), O(lower alkaryl), NH 2 , NHR, NR' 2 , or nitrogen heterocycle;
  • R is a lower alkyl, a lower cycloalkyl, a lower alkaryl, or a C(O)(lower alkyl).
  • R 1 is hydrogen, phenyl, p-bromo-phenyl, p-chloro-phenyl, or p- fluorophenyl;
  • R 2 is hydrogen
  • R 3a is H and R 3b is H, CH 3 , CH(CH 3 ) 2 , or CH 2 CH(CH 3 ) 2 ;
  • R 4 is hydrogen, CH 3 , Et, 'Pr, "Pr, “Bu, 2-butyl, or cyclopentyl;
  • R 5 is H
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , F, CN, vinyl, or ethynyl
  • X is H, OH, CN, F, or N 3 ;
  • R 9 is NH 2 and R 8 is H, F, OH, O(lower alkyl), O(lower alkaryl), NH 2 , NHR, NR' 2 , or nitrogen heterocycle;
  • R is a lower alkyl, a lower cycloalkyl, a lower alkaryl, or a C(O)(lower alkyl).
  • a tenth aspect of the first embodiment is directed to compound I wherein (a) R 1 is hydrogen, phenyl, p-bromo-phenyl, p-chloro-phenyl, or p-fluorophenyl; (b) R 2 is hydrogen; (c) R 3a is H and R 3b is CH 3 ; (d) R 4 is hydrogen, CH 3 , 'Pr, or cyclopentyl; (e) R 5 is H; (f) R 6 is CH 3 ; (g) X is F; (h) Y is OH; (i) R 8 is independently OH, OMe, OEt, O'Pr, OBn, or-N(-CH 2 CH 2 CH 2 -) (azetidin-1-yl), and R 9 is NH 2 ; O) Z is N.
  • An eleventh aspect of the first embodiment is directed to compound I wherein (a) R 1 is phenyl; (b) R 2 is hydrogen; (c) R 3a is H and R 3b is CH 3 ;(d) R 4 is 'Pr; (e) R 5 is H; (f) R 6 is CH 3 ; (g) X is F; (h) Y is OH; R 8 is OMe; and (j) Z is N.
  • a twelfth aspect of the first embodiment is directed to compound I wherein (a) R 1 is phenyl; (b) R 2 is hydrogen; (c) R 3a is H and R 3b is CH 3 ;(d) R 4 is 'Pr; (e) R 5 is H; (f) R 6 is CH 3 ; (g) X is F; (h) Y is OH; R 8 is OEt; and O) Z is N.
  • a thirteenth aspect of the first embodiment is directed to compound I wherein (a) R 1 is phenyl; (b) R 2 is hydrogen; (c) R 3a is H and R 3b is CH 3 ;(d) R 4 is 'Pr; (e) R 5 is H; (f) R 6 is CH 3 ; (g) X is F; (h) Y is OH; R 8 is O'Pr; and O) Z is N.
  • a fourteenth aspect of the first embodiment is directed to compound I wherein (a) R 1 is phenyl; (b) R 2 is hydrogen; (c) R 3a is H and R 3b is CH 3 ;(d) R 4 is CH 3 ; (e) R 5 is H; (f) R 6 is CH 3 ; (g) X is F; (h) Y is OH; R 8 is -N(-CH 2 CH 2 CH 2 -) (azetidin-1-yl), and R 9 is NH 2 ; and O) Z is N.
  • a fifteenth aspect of the first embodiment is directed to compound I wherein (a) R 1 is phenyl; (b) R 2 is hydrogen; (c) R 3a is H and R 3b is CH 3 ;(d) R 4 is cyclopentyl; (e) R 5 is H; (f) R 6 is CH 3 ; (g) X is F; (h) Y is OH; R 8 is independently OBn; and R 9 is NH 2 ; and G) Z is N.
  • R 1 is phenyl
  • R 2 is hydrogen
  • R 3a is H and R 3b is CH 3
  • R 4 is cyclopentyl
  • R 5 is H
  • R 6 is CH 3
  • X is F
  • Y is OH
  • R 8 is OH and R 9 is NH 2
  • O Z is N.
  • R 4 is a lower alkyl and R 8 is a O(lower alkyl).
  • R 8 is a O(lower alkyl).
  • preferred compounds include:
  • compound 11 is particularly preferred.
  • 11 comprises a mixture of diastereomers designated Sp-11 and i?p-ll.
  • Contemplated herein is a composition that comprises Sp-Il, i?p-ll, or mixtures thereof.
  • the composition that comprises Sp-H, i?p-ll, or mixtures thereof can also be part of a solvate, a hydrate, or a mixed solvate/hydrate.
  • the solvate is designated as iSp-1 l-nS, R ⁇ -ll-nS, or 11 -nS; while the hydrate is designated as Sv-H mH 2 O, R ⁇ - 11 -HiH 2 O, or ll-mH 2 0, where S is a lattice solvent, n varies by an integer or non- integer amount from about 0 to about 3 and m varies by an integer or non-integer amount from about 0 to about 5.
  • the composition that comprises Sp-ll, i?p-ll, or mixtures thereof and its salts, solvates, and hydrates thereof is crystalline, crystal- like, or amorphous.
  • a second embodiment is directed to compound II,
  • R 5 is H, a lower alkyl, cyano (CN), vinyl, O-(lower alkyl), including OCH 3 , OCH 2 CH 3 , hydroxyl lower alkyl, i.e., -(CH 2 ) P OH, where p is 1 -6, including hydroxyl methyl (CH 2 OH), fluoromethyl (CH 2 F), azido (N 3 ), CH 2 CN, CH 2 N 3 , CH 2 NH 2 , CH 2 NHCH 3 , CH 2 N(CH 3 ) 2 , F, Cl, Br, or I
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , F, vinyl, or ethynyl;
  • R 7 is H, n-alkyl, branched alkyl, cycloalkyl, alkaryl, alkenyl, or aryl, which includes, but is not limited to, phenyl or naphthyl, where phenyl or naphthyl are optionally substituted with at least one of H, F, Cl, Br, I, OH, OR 7' , SH, SR 7' , NH 2 , NHR 7' , NR 7' 2 , lower alkyl Of Ci-C 6 , halogenated (F, Cl, Br, I), halogenated (F, Cl, Br, I) lower alkenyl of C 2 -C 6 , lower alkynyl of C 2 -C 6 such as C ⁇ CH, halogenated (F, Cl, Br, I) lower alkynyl Of C 2 -C 6 , lower alkoxy Of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkoxy of
  • X is H, OH, F, OMe, NH 2 , or N 3 ;
  • R 8 and R 9 are independently H, F, Cl, Br, I, OH, OR', SH, SR', NH 2 , NHR, NR' 2 , nitrogen heterocycle, CH 3 , CH 3 _ q X q , where X is F, Cl, Br, or I and q is 1 to 3, vinyl, CO 2 H, CO 2 CH 3 , CONH 2 , CONHCH 3 , CON(CH 3 ) 2 , (f) Z is N or CR 10 ; and
  • R is a Ci_ 2 o alkyl; a Ci_ 2 o cycloalkyl; an alkaryl, a C 2 -C 6 alkenyl, a C 2 -C 6 alkynyl.
  • a first aspect of the second embodiment is directed to compound II,
  • R 5 is H, a lower alkyl, cyano (CN), vinyl, O-(lower alkyl), including OCH 3 , OCH 2 CH 3 , hydroxyl lower alkyl, i.e., -(CH 2 ) P OH, where p is 1 -6, including hydroxyl methyl (CH 2 OH), fluoromethyl (CH 2 F), azido (N 3 ), CH 2 CN, CH 2 N 3 , CH 2 NH 2 , CH 2 NHCH 3 , CH 2 N(CH 3 ) 2 , F, Cl, Br, or I
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , or F;
  • R 7 is H, n-alkyl, branched alkyl, cycloalkyl, alkaryl, alkenyl, or aryl, which includes, but is not limited to, phenyl or naphthyl, where phenyl or naphthyl are optionally substituted with at least one of H, F, Cl, Br, I, OH, OR 7' , SH, SR 7' , NH 2 , NHR 7' , NR 7' 2 , lower alkyl of Ci-C 6 , halogenated (F, Cl, Br, I), halogenated (F, Cl, Br, I) lower alkenyl Of C 2 -C 6 , lower alkynyl Of C 2 -C 6 such as C ⁇ CH, halogenated (F, Cl, Br, I) lower alkynyl Of C 2 -C 6 , lower alkoxy Of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkoxy Of Ci-
  • X is H, OH, F, OMe, NH 2 , or N 3 ;
  • R 8 and R 9 are independently H, F, Cl, Br, I, OH, OR', SH, SR', NH 2 , NHR, NR' 2 , nitrogen heterocycle, CH 3 , CH 3 .
  • q X q where X is F, Cl, Br, or I and q is 1 to 3, vinyl, CO 2 H, CO 2 CH 3 , CONH 2 , CONHCH 3 , or CON(CH 3 ) 2 ,
  • (f) Z is N or CR 10 ;
  • R 10 is an H, F, OH, OR, NH 2 , NHR', NR 2 , NR" 2 , lower alkyl of C 1 -
  • R is a Ci_ 2 o alkyl; a Ci_ 2 o cycloalkyl; an alkaryl, a C 2 -C 6 alkenyl, a C 2 -C 6 alkynyl.
  • a second aspect of the second embodiment is directed to compound II,
  • R 5 is H, a lower alkyl, cyano (CN), vinyl, O-(lower alkyl), including OCH 3 , OCH 2 CH 3 , hydroxyl lower alkyl, i.e., -(CH 2 ) P OH, where p is 1 -6, including hydroxyl methyl (CH 2 OH), fluoromethyl (CH 2 F), azido (N 3 ), CH 2 CN, CH 2 N 3 , CH 2 NH 2 , CH 2 NHCH 3 , CH 2 N(CH 3 ) 2 , F, Cl, Br, or I
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , or CH 2 CH 3 ;
  • R 7 is H, n-alkyl, branched alkyl, cycloalkyl, alkaryl, alkenyl, or aryl, which includes, but is not limited to, phenyl or naphthyl, where phenyl or naphthyl are optionally substituted with at least one of H, F, Cl, Br, I, OH, OR 7' , SH, SR 7' , NH 2 , NHR 7' , NR 7' 2 , lower alkyl Of Ci-C 6 , halogenated (F, Cl, Br, I), halogenated (F, Cl, Br, I) lower alkenyl of C 2 -C 6 , lower alkynyl of C 2 -C 6 such as C ⁇ CH, halogenated (F, Cl, Br, I) lower alkynyl Of C 2 -C 6 , lower alkoxy Of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkoxy of
  • X is H, OH, F, OMe, NH 2 , or N 3 ;
  • R 8 and R 9 are independently H, F, Br, OH, OR, NH 2 , NHR, NR' 2 , nitrogen heterocycle, CH 3 , CH 3 _ q X q , where X is F, Cl, Br, or I and q is 1 to 3, vinyl, CO 2 CH 3 , CONH 2 , CONHCH 3 , CON(CH 3 ) 2 ;
  • (f) Z is N or CR 10 ;
  • R 10 is an H, F, OH, OR, NH 2 , NHR', NR 2 , lower alkyl of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkyl Of Ci-C 6 , or -C ⁇ CH;
  • R is a Ci_ 2 o alkyl; a Ci_ 2 o cycloalkyl; an alkaryl, a C 2 -C 6 alkenyl, a C 2 -C 6 alkynyl.
  • a third aspect of the second embodiment is directed to compound II,
  • R 5 is H, a lower alkyl, cyano (CN), vinyl, O-(lower alkyl), including OCH 3 , OCH 2 CH 3 , hydroxyl lower alkyl, i.e., -(CH 2 ) P OH, where p is 1 -6, including hydroxyl methyl (CH 2 OH), fluoromethyl (CH 2 F), azido (N 3 ), CH 2 CN, CH 2 N 3 , CH 2 NH 2 , CH 2 NHCH 3 , CH 2 N(CH 3 ) 2 , F, Cl, Br, or I
  • R 6 is H, CH 3 , CH 2 F, CHF 2 , CF 3 , or CH 2 CH 3 ;
  • R 7 is H, n-alkyl, branched alkyl, cycloalkyl, alkaryl, alkenyl, or aryl, which includes, but is not limited to, phenyl or naphthyl, where phenyl or naphthyl are optionally substituted with at least one of H, F, Cl, Br, I, OH, OR 7' , SH, SR 7' , NH 2 , NHR 7' , NR 7' 2 , lower alkyl Of Ci-C 6 , halogenated (F, Cl, Br, I), halogenated (F, Cl, Br, I) lower alkenyl of C 2 -C 6 , lower alkynyl of C 2 -C 6 such as C ⁇ CH, halogenated (F, Cl, Br, I) lower alkynyl Of C 2 -C 6 , lower alkoxy Of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkoxy of
  • X is F
  • R 8 and R 9 are independently H, F, Br, OH, OR, NH 2 , NHR, NR' 2 , nitrogen heterocycle, CH 3 , CH 3 _ q X q , where X is F, Cl, Br, or I and q is 1 to 3, vinyl, CO 2 CH 3 , CONH 2 , CONHCH 3 , or CON (CH 3 ) 2 ;
  • (f) Z is N or CR 10 ;
  • R 10 is an H, F, OH, OR, NH 2 , NHR', NR 2 , lower alkyl of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkyl Of Ci-C 6 , or -C ⁇ CH;
  • R is a lower alkyl; a lower cycloalkyl; a lower alkaryl, a C 2 -C 6 alkenyl, a C 2 -C 6 alkynyl.
  • a fourth aspect of the second embodiment is directed to compound II,
  • R 5 is H, -CH 3 , cyano (CN), vinyl, -OCH 3 , -CH 2 OH, -CH 2 F, azido (N 3 ), CH 2 CN, CH 2 N 3 , CH 2 NH 2 , CH 2 NHCH 3 , CH 2 N(CH 3 ) 2 , F, Cl, Br, or I
  • R 6 is H, CH 3 , or CH 2 CH 3 ;
  • R 7 is H, n-alkyl, branched alkyl, cycloalkyl, alkaryl, alkenyl, or aryl, which includes, but is not limited to, phenyl or naphthyl, where phenyl or naphthyl are optionally substituted with at least one of H, F, Cl, Br, I, OH, OR 7' , SH, SR 7' , NH 2 , NHR 7' , NR 7' 2 , lower alkyl Of Ci-C 6 , halogenated (F, Cl, Br, I), halogenated (F, Cl, Br, I) lower alkenyl Of C 2 -C 6 , lower alkynyl Of C 2 -C 6 such as C ⁇ CH, halogenated (F, Cl, Br, I) lower alkynyl Of C 2 -C 6 , lower alkoxy Of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkoxy of Ci-
  • R 8 and R 9 are independently H, F, OH, OR, SH, SCH 3 , NH 2 , NHR',
  • R 10 is an H, F, OH, OR, NH 2 , NHR', NR 2 , lower alkyl of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkyl Of Ci-C 6 , or -C ⁇ CH;
  • R is a lower alkyl; a lower cycloalkyl; a lower alkaryl, a C 2 -C 6 alkenyl, a C 2 -C 6 alkynyl.
  • a fifth aspect of the second embodiment is directed to compound II,
  • R 5 is H, -CH 3 , cyano (CN), vinyl, -OCH 3 , -CH 2 OH, -CH 2 F, azido (N 3 ), CH 2 CN, CH 2 N 3 , CH 2 NH 2 , CH 2 NHCH 3 , CH 2 N(CH 3 ) 2 , F, Cl, Br, or I
  • R 6 is H or CH 3 ;
  • R 7 is H, lower alkyl, lower alkylaryl, lower cycloalkyl, lower alkenyl, or aryl, which includes, but is not limited to, phenyl or naphthyl, where phenyl or naphthyl are optionally substituted with at least one of H, F, Cl, Br, I, OH, OR 7' , SH, SR 7' , NH 2 , NHR 7' , NR 7' 2 , lower alkoxy Of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkoxy Of Ci-C 6 , wherein R 7 is an optionally substituted alkyl, cycloalkyl, alkenyl, alkynyl, or alkoxyalkyl, which includes, but is not limited to, Ci_io alkyl, C 3 _ 7 cycloalkyl, C 2 _io alkenyl, C 2 _io alkynyl, or Ci_io
  • R 8 and R 9 are independently H, F, OH, OR', NH 2 , NHR, NR' 2 , nitrogen heterocycle, CH 3 , CH 3 _ q X q , where X is F, Cl, Br, or I and q is 1 to 3, vinyl, CO 2 H, CO 2 CH 3 , CONH 2 , CONHCH 3 , CON(CH 3 ) 2 ;
  • (f) Z is N or CR 10 ;
  • R 10 is an H, F, OH, OR, NH 2 , NHR', NR 2 , lower alkyl of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkyl Of Ci-C 6 , or -C ⁇ CH;
  • R is a lower alkyl; a lower cycloalkyl; a lower alkaryl, a C 2 -C 6 alkenyl, a C 2 -C 6 alkynyl.
  • a sixth aspect of the second embodiment is directed to compound II,
  • R 5 is H or N 3 ;
  • R 6 is H, CH 3 , or CH 2 CH 3 ;
  • R 7 is H, lower alkyl, lower alkylaryl, lower cycloalkyl, lower alkenyl, or aryl, which includes, but is not limited to, phenyl or naphthyl, where phenyl or naphthyl are optionally substituted with at least one of H, F, Cl, Br, I, OH, OR 7' , SH, SR 7' , NH 2 , NHR 7' , NR T 2 , lower alkoxy of C 1 -C 6 , halogenated (F, Cl, Br, I) lower alkoxy of Ci-C 6 , wherein R 7 is an optionally substituted alkyl, cycloalkyl, alkenyl, alkynyl, or alkoxyalkyl, which includes, but is not limited to, C 1-10 alkyl, C 3 _7 cycloalkyl, C 2-10 alkenyl, C 2-10 alkynyl, or C 1-10 alkoxyalkyl;
  • R 8 and R 9 are independently H, F, OH, OR', NH 2 , NHR, NR' 2 , nitrogen heterocycle, CH 3 , CH 3 _ q X q , where X is F, Cl, Br, or I and q is 1 to 3, vinyl, CO 2 H, CO 2 CH 3 , CONH 2 , CONHCH 3 , CON(CH 3 ) 2 ,
  • (f) Z is N or CR 10 ;
  • R 10 is an H, F, OH, OR, NH 2 , NHR', NR 2 , lower alkyl of Ci-C 6 , halogenated (F, Cl, Br, I) lower alkyl Of Ci-C 6 , or -C ⁇ CH;
  • R is a lower alkyl; a lower cycloalkyl; a lower alkaryl, a C 2 -C 6 alkenyl, a C 2 -C 6 alkynyl.
  • a seventh aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is H, CH 3 , or CH 2 CH 3 ; (c) R 7 is lower alkyl or lower cycloalkyl; (d) X is F; (e) R 8 and R 9 are independently H, F, OH, OR', NH 2 , NHR, NR' 2 , nitrogen heterocycle, and (f) Z is N; wherein R is a lower alkyl; a lower cycloalkyl; a lower alkaryl, a C 2 -C 6 alkenyl, a C 2 -C 6 alkynyl.
  • An eighth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is H, CH 3 , or CH 2 CH 3 ; (c) R 7 is lower alkyl or lower cycloalkyl; (d) X is F; (e) R 9 is NH 2 and R 8 OH, OR, or nitrogen heterocycle, and (f) Z is N; wherein R is a lower alkyl; a lower cycloalkyl; a lower alkaryl, a C 2 - Ce alkenyl, a C 2 -C 6 alkynyl.
  • a ninth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is H, CH 3 , or CH 2 CH 3 ; (c) R 7 is lower alkyl or lower cycloalkyl; (d) X is F; (e)R 9 is NH 2 and R 8 is O(lower alkyl), O(lower cycloalkyl), or nitrogen heterocycle; and (f) Z is N.
  • a tenth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is is lower alkyl or lower cycloalkyl; (d) X is F; (e) R 9 is NH 2 and R 8 is O(lower alkyl), O(lower cycloalkyl), or nitrogen heterocycle; and (f) Z is N.
  • An eleventh aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is is lower alkyl or lower cycloalkyl; (d) X is F; (e) R 9 is NH 2 and R 8 is O(lower alkyl), O(lower cycloalkyl) or -N(- CH 2 CH 2 CH 2 -) (azetidin- 1 -yl); and (f) Z is N.
  • a twelfth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is CH 3 , 'Pr, c Bu, or c Pn; (d) X is F; (e) R 9 is NH 2 and R 8 is O(lower alkyl) or -N(-CH 2 CH 2 CH 2 -) (azetidin- 1-yl); and (f) Z is N.
  • a thirteenth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is CH 3 , 'Pr, c Bu, or c Pn; (d) X is F; (e) R 9 is NH 2 and R 8 is OMe, OEt, O'Pr, or -N(-CH 2 CH 2 CH 2 -) (azetidin- 1-yl); and (f) Z is N.
  • a fourteenth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is CH 3 , 'Pr, c Bu, or c Pn; (d) X is F; (e) R 9 is NH 2 and R 8 is OMe, OEt, or O'Pr; and (f) Z is N.
  • a fifteenth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is CH 3 , 'Pr, c Bu, or c Pn; (d) X is F; (e) R 8 is
  • a sixteenth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is CH 3 , 'Pr, c Bu, or c Pn; (d) X is F; (e) R 8 is
  • OEt and R 9 is NH 2 ; and (f) Z is N.
  • a seventeenth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is CH 3 , 'Pr, c Bu, or c Pn; (d) X is F; (e) R 8 is O'Pr and R 9 is NH 2 ; and (f) Z is N.
  • An eighteenth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is CH 3 ; (d) X is F; (e) R 8 is -N(- CH 2 CH 2 CH 2 -) (azetidin-1-yl); and R 9 is NH 2 ; and (f) Z is N.
  • a nineteenth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is CH 3 ; (d) X is F; (e) R 8 is OEt and R 9 is
  • a twentieth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is 'Pr; (d) X is F; (e) R 8 is OEt and R 9 is NH 2 ; and (f) Z is N.
  • a twenty-first aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is c Bu; (d) X is F; (e) R 8 is OMe and R 9 is
  • a twenty-second aspect of the second embodiment is directed to a compound II wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is c Pn; (d) X is F; (e) R 8 is OMe and R 9 is NH 2 ; and (f) Z is N.
  • a twenty-third aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is c Bu; (d) X is F; (e) R 8 is OEt and R 9 is
  • a twenty- fourth aspect of the second embodiment is directed to compound II, wherein (a) R 5 is H; (b) R 6 is CH 3 ; (c) R 7 is c Pn; (d) X is F; (e) R 8 is OEt and R 9 is
  • Preferred compounds to be prepared by way of the second embodiment, or by another suitable process include compounds represented by the following structure
  • R 7 is a lower alkyl or a lower cycloalkyl and R 8 is an O(lower alkyl).
  • R 8 is an O(lower alkyl).
  • preferred compounds include:
  • 17 is particularly preferred.
  • 17 comprises a mixture of diastereomers designated as Rp- 17 and Sp-17.
  • Contemplated herein is a composition that comprises Sp-17, i?p-17, or mixtures thereof. It is preferred that the composition comprises purified i?p-17. It is further preferred that the composition comprises substantially pure i?p-17.
  • the composition that comprises Sp- 17, i?p-17, or mixtures thereof can also be part of a solvate, a hydrate, or a mixed solvate/hydrate.
  • the solvate is designated as Sp-17-nS, i?p-17-nS, or 17-nS; while the hydrate is designated as S P -17 mH 2 O, R P - 17-HiH 2 O, or 17-mH 2 O, where S is a lattice solvent, n varies by an integer or non- integer amount from about O to about 3 and m varies by an integer or non-integer amount from about O to about 5.
  • composition that comprises Sp- 17, i?p-17, or mixtures thereof and its salts, solvates, and hydrates thereof is crystalline, crystal- like, or amorphous.
  • a first aspect of the preferred compounds of formula II is directed to crystalline i?p-17.
  • a second aspect of the preferred compounds of formula II directed to crystalline R P -l7 having an XRD 2 ⁇ -reflections (°) at about 12.2.
  • a third aspect of the preferred compounds of formula II directed to crystalline R P -ll having XRD 2 ⁇ -reflections (°) at about 12.2, 14.3, 15.5, and 19.9.
  • a fourth aspect of the preferred compounds of formula II directed to crystalline R 7 -Il having XRD 2 ⁇ -reflections (°) at about 12.2, 14.3, 15.5, 17.4, 18.1, 19.9, 22.8, 23.6, 24.5, 25.1, and 27.35.
  • a fifth aspect of the preferred compounds of formula II directed to crystalline i?p-17 having an XRD diffraction pattern substantially as that shown in Fig. 1.
  • a sixth aspect of the preferred compounds of formula II directed to orthorhombic, crystalline i?p-17.
  • a sixth aspect of the preferred compounds of formula II directed to crystalline i?p-17 having orthorhombic (P2i2i2i) unit cell parameters of a ⁇ 11.4 A, b ⁇ 12.4 A, and c ⁇ 14.2 A.
  • a seventh aspect of the preferred compounds of formula II directed to crystalline R P -ll having the following FT-IR peaks (cm 1 ): -1581, -1295, -1065, -999, -798, and ⁇ 79 ⁇
  • An eighth aspect of the preferred compounds of formula II is directed to crystalline i?p-17 having an FT-IR spectrum substantially as that shown in Fig. 2.
  • a ninth aspect of the preferred compounds of formula II is directed to substantially pure i?p-17.
  • a tenth aspect of the preferred compounds of formula II is directed to substantially pure, crystalline i?p-17.
  • An eleventh aspect of the preferred compounds of formula II is directed to substantially pure, crystal-like i?p-17.
  • a twelfth aspect of the preferred compounds of formula II is directed to substantially pure, amorphous i?p-17.
  • a third embodiment is directed to a process for preparing compound I or compound II or any of the compounds recited in any one of the aspects of the first and second embodiments, wherein said process comprises:
  • R 5 , R 6 , and X have their meanings as described above, X' is a leaving group, and R 11 is a protecting group.
  • a first aspect of the third embodiment directed to a process for preparing a compound I or compound II or any of the compounds recited in any one of the aspects of the first and second embodiments, wherein for the compound III or the compound IV, R 11 is benzoyl or substituted benzoyl (preferably R 11 is 4-chloro- benzoyl), R 5 is H, R 6 is CH3, and X is F.
  • the hydride reducing agent is ('BuO) 3 AlH, sodium (bis(2-methoxyethoxy)(2,2,2-trifluoro-ethoxy)aluminum hydride, or Red- Al (sodium bis(2-methoxyethoxy)aluminum hydride).
  • the stereoselective reduction can be performed in a solvent comprising tetrahydrofuran (THF) or diethyl ether, preferably the solvent is THF at a temperature ranging from about (-78 0 C) to about 25°C, preferably at a temperature ranging from about (-78 0 C) to about O 0 C, and most preferably at a temperature from about (-30 0 C) to about 0 0 C.
  • THF tetrahydrofuran
  • diethyl ether diethyl ether
  • a second aspect of the third embodiment is directed to a process for preparing a compound I or a compound II or any of the compounds recited in any one of the aspects of the first and second embodiments, said process comprising stereoselective reduction of a protected ribonolactone III using a hydride reducing agent to provide a mixture comprising a beta-lactol derivative IV and an alpha-lactol derivative IV- ⁇ :
  • R 5 , R 6 , and X have the meanings as defined herein above and R 11 is a protecting group .
  • a third aspect of the third embodiment is directed to a process for preparing a compound I or a compound II or any of the compounds recited in any one of the aspects of the first and second embodiments, wherein for the compound III, the compound IV, or the compound IV- ⁇ , R 5 is H, R 6 is CH 3 , R 11 is benzoyl or a substituted benzoyl (preferably R 11 is 4-chloro-benzoyl), and X is F.
  • the hydride reducing agent is ('BuO ⁇ AlH, sodium (bis(2-methoxyethoxy)(2,2,2-trifluoro- ethoxy)aluminum hydride, or Red- Al (sodium bis(2-methoxyethoxy)aluminum hydride).
  • the stereoselective reduction can be performed in a solvent comprising tetrahydrofuran (THF) or diethyl ether, preferably the solvent is THF at a temperature ranging from about (-78 0 C) to about 25°C, preferably at a temperature ranging from about (-78 0 C) to about 0 0 C, and most preferably at a temperature from about (-30 0 C) to about 0 0 C.
  • THF tetrahydrofuran
  • diethyl ether diethyl ether
  • the crystallization occurs by a process comprising adding to the mixture seed crystals of the beta-lactol derivative and then heating the mixture comprising the seed crystals of the beta-lactol derivative at a temperature that ranges from about 25°C to about 80 0 C, preferably about 50 0 C with (about 0.2 mmHg) or without applied vacuum.
  • a fourth aspect of the third embodiment is directed to a process for preparing a compound I or a compound II or any of the compounds recited in any one of the aspects of the first and second embodiments, comprising stereoselective conversion of a lactol derivative IV using a reagent to obtain an anomeric alpha-derivative V
  • R 5 , R 6 , and X have the meanings as defined herein above, R 11 is a protecting group and X' is a leaving group.
  • a fifth aspect of the third embodiment is directed to a process for preparing a compound I or a compound II or any of the compounds recited in any one of the aspects of the first and second embodiments, wherein for the compound IV or the compound V, R 5 is H, R 6 is CH 3 , R 11 is benzoyl or a substituted benzoyl (preferably R 11 is 4-chloro-benzoyl), X is F, and X" is Br.
  • the reagent is defined as above.
  • the reagent is at least one of Ph 3 P/CBr 4 , Ph 3 P/CHBr 3 ,
  • the stereoselective conversion can be performed in the presence of certain solvents, which include, but are not limited to, CH 2 Cl 2 , 1 ,2- dichloroethane, toluene, chlorobenzene, tetrahydrofuran, dioxane, diethyl ether, dimethylformamide, acetonitrile, N-methylpyrrolidine, dimethoxyethane, preferably the solvent used is CH 2 Cl 2 .
  • the stereoselective conversion can be performed at a temperature that ranges from about (-78 0 C) to about 0 0 C.
  • the temperature ranges from about (-78 0 C) to about (-10 0 C).
  • the temperature ranges from about (-30 0 C) to about (-10 0 C).
  • a fourth embodiment is directed to a compound IV.
  • R 5 , R 6 , and X have the meanings as defined herein above and R 11 is a protecting group.
  • R 5 is H
  • R 6 is CH 3
  • R 11 is a protecting group
  • R 11 is is benzoyl or a substituted benzoyl and more preferably R 11 is 4- chloro-benzoyl
  • X is F, preferably R 11 is 4-chloro-benzoyl.
  • the compound IV can be purified or unpurif ⁇ ed.
  • the compound IV is useful for preparing compound I and compound II.
  • a fifth embodiment is directed to a compound V.
  • R 5 , R 6 , R 11 , X, and X' have the meanings set forth above.
  • R 5 , R 6 , R 11 , X, and X' have the meanings set forth above.
  • R 5 is H, R 6 is CH 3 , R 11 is a protecting group, preferably R 11 is is benzoyl or a substituted benzoyl and more preferably R 11 is 4-chloro-benzoyl, X is F, and X' is Cl, Br, or I (most preferably X' is Br).
  • the compound V can be purified or unpurified. The compound V is useful for preparing a compound I and a compound II.
  • An sixth embodiment is directed to a process for preparing a compound I or a compound II or any of the compounds recited in any one of the aspects of the first and second embodiments, comprising stereoselective coupling of an alpha- derivative V with a purine or a derivatized purine base using a basic reagent to produce a beta-nucleoside VI
  • R 5 , R 6 , R 9 X, and Z have the meanings as defined herein above
  • R 11 is a protecting group
  • X' and X" independent of each other are leaving groups.
  • a first aspect of the sixth embodiment is directed to a process for preparing a compound I or a compound II or any of the compounds recited in any one of the aspects of the first and second embodiments, wherein for the compound V or the compound VI, R 5 is H, R 6 is CH3, R 9 is NH 2 , R 11 is a protecting group, preferably R 11 is is benzoyl or a substituted benzoyl and more preferably R 11 is 4-chloro- benzoyl, X is F, X' is Br, X" is Cl, and Z is N.
  • the basic reagent is as defined above.
  • the basic reagent comprises a (lower alk)oxide ((lower alkyl)OM) and an alcoholic solvent.
  • the basic reagent is MeONa/MeOH, EtONa/EtOH, or 'BUOK/BUOH. Most preferably, the basic reagent is 'BUOK/BUOH.
  • the stereoselective coupling can be performed in a solvent comprising at least one of a polar aprotic solvent, a non-polar solvent, and a polar solvent. Examples of polar aprotic solvents include, but are not limited to, acetonitrile, dimethylsulfoxide, N 5 N- dimethylformamide, hexamethylphosphoramide, etc.
  • the stereoselective coupling can be performed at a temperature that ranges from about 0 0 C up to about the reflux temperature of the solvent. Preferably, the temperature ranges from about 25°C to about 75°C. More preferably, the temperature ranges from about 40 0 C to about 6O 0 C. Most preferably, the temperature is about 50 0 C.
  • a seventh embodiment is directed to a compound VI.
  • R 5 , R 6 , R 9 X, and Z have the meanings as defined herein above
  • R 11 is a protecting group
  • X" is a leaving group.
  • R 11 is benzoyl or a substituted benzoyl, more preferably R 11 is 4-chloro-benzoyl
  • R 5 is H
  • R 6 is CH 3
  • X is F
  • X" is Cl
  • R 9 is NH 2
  • Z is N.
  • Compound VI can be purified or unpurified.
  • Compound VI is useful for preparing compound I and compound II.
  • a first aspect of the seventh embodiment is directed to a process for preparing compound VI, wherein said process comprises:
  • a second aspect of the seventh embodiment is directed to a process for preparing compound Vl, where R 5 is H, R 6 is CH3, R 9 is NH 2 , R 11 is a protecting group, preferably R 11 is benzoyl or a substituted benzoyl and more preferably R 11 is 4-chloro-benzoyl, X is F, X' is Br, X" is Cl, and Z is N.
  • the stereoselective reduction can be performed in a solvent comprising tetrahydrofuran (THF) or diethyl ether, preferably the solvent is THF at a temperature ranging from about (-78 0 C) to about 25°C, preferably at a temperature ranging from about (-78 0 C) to about 0 0 C, and most preferably at a temperature from about (-30 0 C) to about 0 0 C.
  • the hydride reducing agent is ('BuO ⁇ AlH, sodium (bis(2-methoxyethoxy)(2,2,2-trifluoro- ethoxy)aluminum hydride, or Red- Al (sodium bis(2-methoxyethoxy)aluminum hydride).
  • the stereoselective coupling can be performed in a solvent comprising at least one of a polar aprotic solvent, a non-polar solvent, and a polar solvent.
  • polar aprotic solvents include, but are not limited to, acetonitrile, dimethylsulfoxide, N,N-dimethylformamide, hexamethylphosphoramide, etc.
  • the stereoselective coupling can be performed at a temperature that ranges from about 0 0 C up to about the reflux temperature of the solvent. Preferably, the temperature ranges from about 25°C to about 75°C. More preferably, the temperature ranges from about 40 0 C to about 60 0 C. Most preferably, the temperature is about 50 0 C.
  • the basic reagent is as defined above.
  • the basic reagent comprises a (lower alk)oxide ((lower alkyl)OM) and an alcoholic solvent.
  • the basic reagent is MeONa/MeOH, EtONa/EtOH, EtOK/EtOH, 'PrONa/'PrOH, 'PrOK/PrOH, or 'BUOK/BUOH.
  • the basic reagent is 'BUOK/BUOH.
  • R > 5 , r R> 6 , r R> 9 , X, and Z have the meanings as defined above, each of X' and X" independent of each other is a leaving group, and R 11 is a protecting group.
  • R 5 is H
  • R 6 is CH3
  • R 11 is benzoyl or a substituted benzoyl (preferably R 11 is 4-chloro-benzoyl)
  • X is F
  • X is Br
  • X" is Cl
  • Z is N
  • R 9 is NH 2 .
  • the hydride reducing agent is ('BuO ⁇ AlH, sodium (bis(2-methoxyethoxy)(2,2,2- trifluoro-ethoxy)aluminum hydride, or Red- Al (sodium bis(2- methoxyethoxy)aluminum hydride).
  • the stereoselective reduction can be performed in a solvent comprising tetrahydrofuran (THF) or diethyl ether, preferably the solvent is THF at a temperature ranging from about (-78 0 C) to about 25°C, preferably at a temperature ranging from about (-78 0 C) to about 0 0 C, and most preferably at a temperature from about (-30 0 C) to about 0 0 C.
  • the crystallization occurs by a process comprising adding to the mixture seed crystals of the beta-lactol derivative and then heating the mixture comprising the seed crystals of the beta- lactol derivative at a temperature that ranges from about 25°C to about 8O 0 C, preferably about 50 0 C with (about 0.2 mmHg) or without applied vacuum.
  • the stereoselective coupling can be performed in a solvent comprising at least one of a polar aprotic solvent, a non-polar solvent, and a polar solvent.
  • polar aprotic solvents include, but are not limited to, acetonitrile, dimethylsulfoxide, N 5 N- dimethylformamide, hexamethylphosphoramide, etc.
  • the stereoselective coupling can be performed at a temperature that ranges from about 0 0 C up to about the reflux temperature of the solvent.
  • the temperature ranges from about 25°C to about 75°C. More preferably, the temperature ranges from about 40 0 C to about 6O 0 C. Most preferably, the temperature is about 50 0 C.
  • the basic reagent is as defined above.
  • the basic reagent comprises a (lower alk)oxide ((lower alkyl)OM) and an alcoholic solvent.
  • the basic reagent is MeONa/MeOH, EtONa/EtOH, EtOK/EtOH, 'PrONa/'PrOH, 'PrOK/PrOH, or 'BUOK/BUOH.
  • the basic reagent is 'BUOK/BUOH.
  • An eight embodiment is directed to a process for preparing a compound I or a compound II or any of the compounds recited in any one of the aspects of the first and second embodiments, comprising reacting a beta-nucleoside derivative VI with a nucleophilic reagent to produce a 6-substituted nucleoside VII;
  • R 5 , R 6 , R 8 , R 9 , X, Z have the meanings as defined herein above, R 11 is a protecting group, and X" is a leaving group.
  • a first aspect of the eighth embodiment is directed to a process for preparing a compound I or a compound II, wherein for the the compound VI, the compound VII, or the compound VIII, R 5 is H, R 6 is CH 3 , R 8 is any one -OMe, -OEt, -O'Pr, - N(-CH 2 CH 2 CH 2 -) (azetidin-1-yl), and -OBn, R 9 is NH 2 , R 11 is a protecting group (preferably benzoyl or substituted benzoyl, more preferably 4-chlor-benzoyl), X is F, X" is Cl, and Z is N.
  • the nucleophilic reagent is as defined above.
  • the nucleophilic reagent is one that provides for R 8 which is any one -OMe, -OEt, - O'Pr, -N(-CH 2 CH 2 CH 2 -) (azetidin-1-yl), and -OBn.
  • the reacting can be performed in at least one solvent comprising at least one of a polar aprotic solvent, a non-polar solvent, and a polar solvent.
  • polar solvents include, but are not limited to, methanol, ethanol, t-butanol, benzyl alcohol.
  • polar aprotic solvents include, but are not limited to, acetonitrile, dimethylsulfoxide, N 5 N- dimethylformamide, hexamethylphosphoramide, etc.
  • the reacting can be performed at a temperature that ranges from about 0 0 C up to about the reflux temperature of the at least one solvent. Preferably, the temperature ranges from about 25°C to about 75°C. More preferably, the temperature ranges from about 40 0 C to about 60 0 C. Most preferably, the temperature is about 50 0 C.
  • the deprotecting can occur as described herein.
  • a second aspect of the eight embodiment is directed to a process for preparing a compound I or a compound II, comprising reacting a beta-nucleoside derivative VI with a nucleophilic reagent to produce a 6-substituted nucleoside VII;
  • the nucleophilic reagent is MeONa/MeOH.
  • the reacting can be performed in a solvent comprising methanol.
  • the reacting can be performed at a temperature that ranges from about 0 0 C up to about 65°C.
  • the temperature ranges from about 25°C to about 65°C or alternatively from a temperature above room temperature to the boiling point of the alcoholic solvent/reagent. More preferably, the temperature ranges from about 40 0 C to about 60 0 C. Most preferably, the temperature is about 50 0 C.
  • the deprotecting can occur as described herein.
  • a third aspect of the eighth embodiment is directed to a process for preparing a compound I or a compound II, comprising reacting a beta-nucleoside derivative VI with a nucleophilic reagent to produce a 6-substituted nucleoside VII;
  • the nucleophilic reagent is as defined above.
  • the nucleophilic reagent can be prepared in situ by reacting EtOH a base, such as potassium carbonate. The reacting can be performed in ethanol and at a temperature that ranges from about 0 0 C up to about 78°C.
  • a fourth aspect of the eighth embodiment is directed to a process for preparing a compound I or a compound II comprising reacting a beta-nucleoside derivative VI with a nucleophilic reagent to produce a 6-substituted nucleoside VII;
  • the nucleophilic reagent is BnONa/BnOH, wherein BnONa is obtained by a process comprising reacting benzyl alcohol with sodium hydride in a N ,N- dimethylformamide solution at a temperature achieved using an ice bath (about O 0 C). The reacting can be performed in a solvent comprising benzyl alcohol. The reacting can be performed at a temperature that ranges from about O 0 C up to about 75°C.
  • the temperature ranges from about 25°C to about 65°C. More preferably, the temperature ranges from about 40 0 C to about 6O 0 C. Most preferably, the temperature is about 50 0 C.
  • the deprotecting can occur as described herein.
  • a fifth aspect of the eighth embodiment is directed to a process for preparing a compound I or a compound II comprising reacting a beta-nucleoside derivative VI with a nucleophilic reagent to produce a 6-substituted nucleoside VII;
  • R is H
  • R 6 is CH 3
  • R 8 is -N(-CH 2 CH 2 CH 2 -) (azetidin-1-yl)
  • R 9 is NH 2
  • R 11 is a protecting group (preferably benzoyl or substituted benzoyl)
  • X is F
  • X" is Cl
  • Z is N (see compound (8) below).
  • the nucleophilic reagent is azetidine/triethyl amine.
  • the reacting can be performed in a solvent comprising ethanol.
  • the reacting can be performed at a temperature that ranges from about O 0 C up to about 78°C.
  • the temperature ranges from about 25°C to about 75°C. More preferably, the temperature ranges from about 40 0 C to about 60 0 C. Most preferably, the temperature is about 50 0 C.
  • the deprotecting can occur as described herein.
  • a ninth embodiment is directed to a compound VIII.
  • R > 5 , n Ro , X ⁇ ⁇ 7-, f R) 8 , f R) 9 , and Z have the meanings as defined herein above.
  • R 5 is H
  • R 6 is CH 3
  • X is F
  • R 8 is a -O(lower alkyl), -O(lower cycloalkyl), -O(lower alkaryl), or nitrogen heterocycle
  • R 9 is NH 2
  • Z is N.
  • R 5 is H
  • R 6 is CH 3
  • X is F
  • R 8 is any one of OMe, OEt, O'Pr, OBn, and N(-CH 2 CH 2 CH 2 -) (azetidin-1-yl)
  • R 9 is NH 2
  • Z is N.
  • the compound VIII can be purified or unpurified.
  • the compound VIII is purified.
  • a preferred compound VIII is represented by one of compounds 7, 8, 9, and
  • the compound VIII is useful for preparing a compound I and a compound II.
  • a tenth embodiment of is directed to a process comprising converting a free purine nucleoside derivative VIII to compound I or converting the free purine nucleoside derivative to compound II.
  • Procedures for converting a free purine nucleoside derivative VIII to compound I are disclosed herein, as well as U.S. Patent Application No. 12/053,015, filed March 21, 2008 (see also WO 2008/121634).
  • Procedures for converting a free purine nucleoside derivative VIII to compound II are disclosed herein and U.S. Provisional Patent Application No. 61/060,683, filed June 11, 2008.
  • a first aspect of the tenth embodiment related to preparing compound II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with either a P(III)-reagent or a P(V)-reagent.
  • a second aspect of the tenth embodiment related to preparing the compound II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a P(III)-reagent to obtain a phosphite derivative of II, wherein the phosphite derivative of II comprises a mixture of isomers.
  • a third aspect of the tenth embodiment related to preparing the compound II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a P(III)-reagent in the presence of an activator reagent to obtain a phosphite derivative of II, wherein the phosphite derivative of II comprises a mixture of isomers.
  • a fourth aspect of the tenth embodiment related to preparing the compound II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a P(III)-reagent in the presence of an activator reagent to obtain a phosphite derivative of II, wherein the phosphite derivative of II comprises a mixture of isomers; and equilibrating the phosphite derivative of II to provide an equilibrium mixture of phosphite isomer derivatives of II.
  • a fifth aspect of the tenth embodiment related to preparing the 3',5'-cyclic phosphate derivative II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a R 7 OP[N('Pr) 2 ]2 in the presence of 4,5- dicyanoimidazole to obtain a phosphite derivative of II
  • the phosphite derivative of II comprises a mixture of isomers and R 5 , R 6 , R 7 , R 8 , R 9 , X and Z are defined herein; and equilibrating the phosphite derivative of II to obtain an equilibrium mixture of phosphite isomer derivatives of II.
  • a sixth aspect of the tenth embodiment is related to the fifth aspect further comprising oxidizing the equilibrium mixture of phosphite isomer derivatives of II to obtain the 3',5'-cyclic phosphate derivative II
  • a seventh aspect of the tenth embodiment related to preparing the 3',5'-cyclic phosphate derivative II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a R 7 OP [NCPr) 2 J 2 in the presence of 4,5- dicyanoimidazole to obtain a phosphite derivative of II
  • phosphite derivative of II comprises a mixture of isomers, R 5 is H, R 6 is CH 3 , X is F, Z is N, and R 9 is NH 2 , while R 7 and R 8 are defined herein; and equilibrating the phosphite derivative of II to obtain an equilibrium mixture of phosphite isomer derivatives of II.
  • An eighth aspect of the tenth embodiment is related to the seventh aspect further comprising oxidizing the equilibrium mixture of phosphite isomer derivatives of II to obtain the 3',5'-cyclic phosphate derivative II
  • a ninth aspect of the tenth embodiment related to preparing the 3',5'-cyclic phosphate derivative II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a R 7 OP[N( 2 Pr) 2 J 2 in the presence of 4,5- dicyanoimidazole to obtain a phosphite derivative of II
  • the phosphite derivative of II comprises a mixture of isomers and R 5 is H, R 6 is CH 3 , R 7 is Me, 'Pr, c Bu, or c Pn, R 8 is OMe, OEt, or O'Pr, R 9 is NH 2 , X is F, and Z is N. and equilibrating the phosphite derivative of II to obtain an equilibrium mixture of phosphite isomer derivatives of II.
  • a tenth aspect of the tenth embodiment is related to the ninth aspect further comprising oxidizing the equilibrium mixture of phosphite isomer derivatives of II to obtain the 3',5'-cyclic phosphate derivative II
  • An eleventh aspect of the tenth embodiment related to preparing the 3',5'- cyclic phosphate derivative II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a 'PrOP[N('Pr) 2 ]2 in the presence of 4,5- dicyanoimidazole to obtain a phosphite derivative of II
  • the phosphite derivative of II comprises a mixture of isomers and R 5 is H, R 6 is CH 3 , R 7 is Me, 'Pr, c Bu, or c Pn, R 8 is OMe, OEt, or O'Pr, R 9 is NH 2 , X is F, and Z is N; and equilibrating the phosphite derivative of II to obtain an equilibrium mixture of phosphite isomer derivatives of II.
  • a twelfth aspect of the tenth embodiment is related to the eleventh aspect further comprising oxidizing the equilibrium mixture of phosphite isomer derivatives of II to obtain a disasteromeric mixture of the 3',5'-cyclic phosphate derivatives s shown below.
  • a thirteenth aspect of the tenth embodiment related to preparing the 3',5'- cyclic phosphate derivative II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a 'PrOP[N('Pr) 2 ] 2 in the presence of 4,5- dicyanoimidazole to obtain a phosphite derivative of II
  • the phosphite derivative of II comprises a mixture of isomers and R 5 is H, R 6 is CH 3 , R 7 is Me, 'Pr, c Bu, or c Pn, R 8 is OMe, OEt, or O'Pr, R 9 is NH 2 , X is F, and Z is N; and equilibrating the phosphite derivative of II in a solution at a temperature to obtain an equilibrium mixture of phosphite isomer derivatives of II.
  • the above- noted solution comprises a polar solvent, a non-polar solvent, and mixtures thereof.
  • polar solvents include, but are not limited to, water, dimethylsulfoxide, N,N-dimethylformamide, hexamethylphosphoramidate, acetonitrile, ethyl acetate, tetrahydrofuran, etc. and mixtures thereof.
  • non-polar solvents include, but are not limited to, hexane, heptane, benzene, toluene, methylene chloride, chloroform, etc., and mixtures thereof.
  • the temperature can range over the entire available temperature range for the solution, which entails a temperature range where the solution does not solidify due to freezing, the solution does not evaporate due to boiling, or the solution components do not decompose.
  • the solution temperature is determined experimentally based on the equilibrium position of the mixture of isomers of the phosphite derivative of II. For instance, if the cis isomer is desired, then the desirable temperature or temperature range is one where the mole (or molar) ratio of the c ⁇ -isomer to the trans-isomcr is at an acceptable maximum.
  • a fourteenth aspect of the tenth embodiment is related to the eleventh aspect further comprising optionally isolating the equilibrium mixture as a solid and contacting an oxidizing agent and the equilibrium mixture of phosphite isomer derivatives of II in a solution comprising an organic solvent to obtain the 3',5'-cyclic phosphate derivatives s shown below.
  • the mole ratio of oxidizing agent to the phosphite derivative II ranges from about 0.9 to about 1.5, preferably from about 0.9 to about 1.2, more preferably from about 0.9 to about 1.1, most preferably the mole ratio of oxidizing agent to the phosphite derivative II is about 1.
  • the solution comprises tetrahydrofuran ("THF"), and the oxidizing agent comprises iodine (I 2 ).
  • the solution comprises THF, pyridine (“pyr”), and water in at least about one-molar equivalent relative to the phosphite derivative of II.
  • the solution comprises about 60 v/v % to about 80 v/v % of THF and about 39 v/v % to about 17 v/v % of pyr, and about 1 v/v% to about 3 v/v % of water, with the proviso that the amount of water is at least about one -molar equivalent relative to the phosphite derivative of II.
  • the solution comprises about 65 v/v % to about 75 v/v % of THF and about 34 v/v % to about 22 v/v % of pyr, and about 1 v/v% to about 3 v/v % of water, with the proviso that the amount of water is at least about one-molar equivalent relative to the phosphite derivative of II.
  • the solution comprises about 70 v/v % of THF, about 28 v/v of pyr, and about 2 v/v % of water, with the proviso that the amount of water is at least about one-molar equivalent relative to the phosphite derivative of II.
  • a fifteenth aspect of the tenth embodiment related to preparing the compound II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a P(V)-reagent.
  • a sixteenth aspect of the tenth embodiment related to preparing the compound II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a P(V)-reagent and an amine reagent.
  • a seventeenth aspect of the tenth embodiment related to preparing the compound II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a P(V)-reagent selected from among P(O)(Lv) 3 , R 7 OP(O)(Lv) 2 , R 7 OP(O)(LV)(N(CL 6 alkyl) 2 ), R 7 OP(O)[N(CL 6 alkyl) 2 ] 2 and an amine reagent.
  • a P(V)-reagent selected from among P(O)(Lv) 3 , R 7 OP(O)(Lv) 2 , R 7 OP(O)(LV)(N(CL 6 alkyl) 2 ), R 7 OP(O)[N(CL 6 alkyl) 2 ] 2 and an amine reagent.
  • An eighteenth aspect of the tenth embodiment related to preparing the compound II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a R 7 OP(O)(Lv) 2 and an amine reagent.
  • a nineteenth aspect of the tenth embodiment related to preparing the compound II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a R 7 OP(O)(Lv) 2 and an amine reagent, wherein R 5 is H, R 6 is CH 3 , R 7 is Me, 'Pr, c Bu, or c Pn, R 8 is OMe, OEt, or O'Pr, R 9 is NH 2 , X is F, and Z is N.
  • a twentieth aspect of the tenth embodiment related to preparing the 3', 5'- cyclic phosphate derivative II is directed to a process which comprises reacting the free purine nucleoside derivative VIII with a R 7 OP(O)(Lv) 2 and an amine reagent, wherein R 5 is H, R 6 is CH 3 , R 7 is Me, 'Pr, c Bu, or c Pn, R 8 is OMe, OEt, O'Pr, R 9 is NH 2 , X is F, and Z is N, Lv is Cl, and the amine reagent comprises triethyl amine and N-methylimidazole.
  • the phosphite derivative of II wherein the phosphite derivative of II where R 5 , R 6 , R 7 , R 8 , R 9 , X, and Z are as defined herein.
  • the phosphite derivative of II has R 5 is H, R 6 is CH 3 , R 7 is lower alkyl or lower cycloalkyl, R 8 is a -O(lower alkyl), -O(lower cycloalkyl), or -OBn, R 9 is NH 2 , X is F, and Z is N.
  • the phosphite derivative of II has R 5 is H, R 6 is CH3, R 7 is Me, 'Pr, c Bu, or c Pn, R 8 is OMe, OEt, or O'Pr, R 9 is NH 2 , X is F, and Z is N.
  • An eleventh embodiment is directed to a process for preparing the comound I or the compound II, where for both R 8 is OH, said process comprising reacting a beta-nucleoside derivative VI with a nucleophilic reagent to produce a 6-X'"-substituted nucleoside VII 1 ;
  • a first aspect of the eleventh embodiment is directed to a process for preparing a compound I, where R 8 is OH, said process comprising reacting the beta-nucleoside derivative VI with a nucleophilic reagent to produce a 6-X'"-substituted nucleoside VII 1 ;
  • R 11 is a protecting group (preferably benzoyl or 4-chloro-benzoyl, and more preferably 4-chloro-benzoyl)
  • X" is a leaving group
  • X"" is a group capable of being converted to OH; wherein the reacting can be performed in a solvent comprising ethanol and at a temperature that ranges from about O 0 C up to about 78°C.
  • the temperature ranges from about 25°C to about 75°C. More preferably, the temperature ranges from about 40 0 C to about 60 0 C. Most preferably, the temperature is about 50 0 C.
  • the deprotecting can occur as described herein.
  • a second aspect of the eleventh embodiment is directed to a process for preparing a compound I, where R 8 is OH, said process comprising reacting a beta-nucleoside derivative VI with a nucleophilic reagent to produce a 6-X'"-substituted nucleoside VII 1 ;
  • R 11 is a protecting group (preferably benzoyl or 4-chloro-benzoyl, and more preferably 4-chloro-benzoyl)
  • X" is a leaving group
  • X"" is a group capable of being converted to OH; wherein the reacting can be performed in a solvent comprising ethanol and at a temperature that ranges from about O 0 C up to about 78°C. Preferably, the temperature ranges from about 25°C to about 75°C.
  • the temperature ranges from about 40 0 C to about 60 0 C. Most preferably, the temperature is about 50 0 C.
  • the group capable of being converted to OH (X'") is - OBn, an -O-silyl, or an -O-allyl. The deprotecting can occur as described herein.
  • a third aspect of the eleventh embodiment is directed to a process for preparing a compound I, where R 8 is OH, said process comprising reacting a beta-nucleoside derivative VI with a nucleophilic reagent to produce a 6-X'"-substituted nucleoside VII 1 ; deprotecting the 6-X'"-substituted nucleoside VII 1 to produce a 6-X'"- substituted nucleoside IX;
  • R 1 is phenyl
  • R 2 is hydrogen
  • R 3a is hydrogen
  • R 3b is CH 3
  • R 4 is -lower alkyl or - lower cycloalkyl
  • R 5 is H
  • R 6 is CH 3
  • R 9 is NH 2
  • R 11 is a protecting group (preferably benzoyl or 4-chloro benzoyl)
  • X is F
  • X" is Cl
  • X" is -OBn, -O-silyl, or -O-allyl
  • Z is N; wherein the reacting can be performed in a solvent comprising ethanol and at a temperature that ranges from about 0 0 C up to about 78°C. Preferably, the temperature ranges from about 25°C to about 75°C.
  • the temperature ranges from about 40 0 C to about 60 0 C. Most preferably, the temperature is about 50 0 C.
  • the group capable of being converted to OH (X'") is - OBn, an -O-silyl, or an -O-allyl. The deprotecting can occur as described herein.
  • a fourth aspect of the eleventh embodiment is directed to a process for preparing a compound I, where R 8 is OH, said process comprising reacting a beta-nucleoside derivative VI with a nucleophilic reagent to produce a 6-X'"-substituted nucleoside VII 1 ;
  • X'" is a group capable of being converted to OH; deprotecting the 6-X'"-substituted nucleoside VII 1 to produce a 6-X'"- substituted nucleoside IX;
  • R 1 is phenyl
  • R 2 is hydrogen
  • R 3a is hydrogen
  • R 3b is CH 3
  • R 4 is -lower alkyl or -lower cycloalkyl
  • R 5 is H
  • R 6 is CH 3
  • R 9 is NH 2
  • R 11 is a protecting group (preferably benzoyl or 4-chloro-benzoyl)
  • X is F
  • X" is Cl
  • X'" is -OBn or -O-allyl
  • Z is N; wherein the reacting can be performed in a solvent comprising ethanol and at a temperature that ranges from about 0 0 C up to about 78°C.
  • the temperature ranges from about 25°C to about 75°C. More preferably, the temperature ranges from about 40 0 C to about 6O 0 C. Most preferably, the temperature is about 50 0 C.
  • the deprotecting can occur as described herein.
  • a fifth aspect of the eleventh embodiment is directed to a process for preparing a compound I, where R 8 is OH, said process comprising reacting a beta-nucleoside derivative VI with a nucleophilic reagent to produce a 6-X'"-substituted nucleoside VII 1 ;
  • X'" is a group capable of being converted to OH; deprotecting the 6-X'"-substituted nucleoside VII 1 to produce a 6-X'"- substituted nucleoside IX;
  • R 1 is phenyl
  • R 2 is hydrogen
  • R 3a is hydrogen
  • R 3b is CH 3
  • R 4 is -Me, -Et, -"Pr, - Pr,
  • R 5 is H
  • R 6 is CH 3
  • R 9 is NH 2
  • R 11 is a protecting group (preferably benzoyl or substituted benzoyl)
  • X is F
  • X" is Cl
  • X'" is -OBn or -O-allyl
  • Z is N; wherein the reacting can be performed in a solvent comprising ethanol and at a temperature that ranges from about 0 0 C up to about 78°C.
  • the temperature ranges from about 25°C to about 75°C. More preferably, the temperature ranges from about 40 0 C to about 60 0 C. Most preferably, the temperature is about 50 0 C.
  • the deprotecting can occur as described herein.
  • a twelfth embodiment is directed to a process for preparing a compound I or compound II: said process comprising: ( a "l) stereoselective reduction of a protected ribonolactone III using a hydride reducing agent
  • X'" is a group capable of being converted to -OH.
  • Compounds prepared by the processes disclosed herein are useful for the treatment of any condition the result of an infection by any one of the following viral agents: hepatitis C virus, West Nile virus, yellow fever virus, degue virus, rhinovirus, polio virus, hepatitis A virus, bovine viral diarrhea virus and Japanese encephalitis virus.
  • the invention is related to a composition for the treatment and/or prophylaxis of any of the viral agents using compound I or II.
  • Possible viral agents include, but are not limited to: hepatitis C virus, hepatitus B virus, Hepatitis A virus, West Nile virus, yellow fever virus, dengue virus, rhinovirus, polio virus, bovine viral diarrhea virus, Japanese encephalitis virus, or those viruses belonging to the groups of Pestiviruses, hepaciviruses, or flavaviruses.
  • a preferred compound of formula I is represented by compound 11, while a preferred compound of formula II is represented by compound 17, more preferably i?p-17.
  • An aspect of this embodiment is directed to a composition for the treatment of any of the viral agents disclosed herein said composition comprising a pharmaceutically acceptable medium selected from among an excipient, carrier, diluent, and equivalent medium and compound I or II.
  • the compound I or II may be independently formulated in a wide variety of oral administration dosage forms and carriers. Oral administration can be in the form of tablets, coated tablets, hard and soft gelatin capsules, solutions, emulsions, syrups, or suspensions.
  • the compound I or II is efficacious when administered by suppository administration, among other routes of administration.
  • the most convenient manner of administration is generally oral using a convenient daily dosing regimen which can be adjusted according to the severity of the disease and the patient's response to the antiviral medication.
  • the compound I or II, as well as their pharmaceutically acceptable salts, together with one or more conventional excipients, carriers, or diluents, may be placed into the form of pharmaceutical compositions and unit dosages.
  • the pharmaceutical compositions and unit dosage forms may be comprised of conventional ingredients in conventional proportions, with or without additional active compounds and the unit dosage forms may contain any suitable effective amount of the active ingredient commensurate with the intended daily dosage range to be employed.
  • the pharmaceutical compositions may be employed as solids, such as tablets or filled capsules, semisolids, powders, sustained release formulations, or liquids such as suspensions, emulsions, or filled capsules for oral use; or in the form of suppositories for rectal or vaginal administration.
  • a typical preparation will contain from about 5% to about 95% active compound or compounds (w/w).
  • the compound I or II can be administered alone but will generally be administered in admixture with one or more suitable pharmaceutical excipients, diluents or carriers selected with regard to the intended route of administration and standard pharmaceutical practice.
  • a pharmaceutically acceptable salt form of an active ingredient may also initially confer a desirable pharmacokinetic property on the active ingredient which were absent in the non-salt form, and may even positively affect the pharmacodynamics of the active ingredient with respect to its therapeutic activity in the body.
  • Solid form preparations include, for example, powders, tablets, pills, capsules, suppositories, and dispersible granules.
  • a solid carrier may be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material.
  • the carrier In powders, the carrier generally is a finely divided solid which is a mixture with the finely divided active component.
  • the active component In tablets, the active component generally is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired.
  • Suitable carriers include but are not limited to magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like.
  • Solid form preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.
  • solid formulations are exemplified in EP 0524579; US 6,635,278; US 2007/0099902; US 7,060,294; US 2006/0188570; US 2007/0077295; US 2004/0224917; US 7,462,608; US 2006/0057196; US 6,267,985; US 6,294,192; US 6,569,463; US 6,923,988; US 2006/0034937; US 6,383,471; US 6,395,300; US 6,645,528; US 6,932,983; US 2002/0142050; US 2005/0048116; US 2005/0058710; US 2007/0026073; US 2007/0059360; and US 2008/0014228, each of which is incorporated by reference.
  • Liquid formulations also are suitable for oral administration include liquid formulation including emulsions, syrups, elixirs and aqueous suspensions. These include solid form preparations which are intended to be converted to liquid form preparations shortly before use. Examples of liquid formulation are exemplified in U.S. Patent Nos. 3,994,974; 5,695,784; and 6,977,257.
  • Emulsions may be prepared in solutions, for example, in aqueous propylene glycol solutions or may contain emulsifying agents such as lecithin, sorbitan monooleate, or acacia.
  • Aqueous suspensions can be prepared by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well known suspending agents.
  • the compound I or II may be independently formulated for administration as suppositories.
  • a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted and the active component is dispersed homogeneously, for example, by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool, and to solidify.
  • the compound I or II may be independently formulated for vaginal administration. Pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient such carriers as are known in the art to be appropriate. Certain of these formulations may also be used in conjunction with a condom with or without a spermicidal agent.
  • the purified compound I or II may be independently formulated in conjunction with liposomes or micelles.
  • liposomes it is contemplated that the purified compounds can be formulated in a manner as disclosed in U.S. Patent Nos. 5,013,556; U.S.
  • the purified compounds can be formulated in a manner as disclosed in U.S. Patent Nos. 5,145,684 and 5,091,188, both of which are incorporated by reference.
  • the fourteenth embodiment is directed to a use compound I or II in the manufacture of a medicament for the treatment of any condition the result of an infection by any one of the following viral agents: hepatitis C virus, West Nile virus, yellow fever virus, degue virus, rhinovirus, polio virus, hepatitis A virus, bovine viral diarrhea virus and Japanese encephalitis virus.
  • a preferred compound of formula I is represented by compound 11, while a preferred compound of formula II is represented by compound 17, more preferably i?p-17.
  • the term “medicament” means a substance used in a method of treatment and/or prophylaxis of a subject in need thereof, wherein the substance includes, but is not limited to, a composition, a formulation, a dosage form, and the like, comprising compound I or II. It is contemplated that the use of any of compound I or II in the manufacture of a medicament, for the treatment of any of the antiviral conditions disclosed herein, either alone or in combination with another compound.
  • a medicament includes, but is not limited to, any one of the compositions contemplated by the thirteenth embodiment.
  • a fifteenth embodiment is directed to a method of treatment and/or prophylaxis in a subject in need thereof said method comprises administering a therapeutically effective amount of any of compound I or II to the subject.
  • a preferred compound of formula I is represented by compound 11, while a preferred compound of formula II is represented by compound 17, more preferably R P -l7.
  • a subject in need thereof is one that has any condition the result of an infection by any of the viral agents disclosed herein, which includes, but is not limited to, hepatitis C virus, West Nile virus, yellow fever virus, degue virus, rhinovirus, polio virus, hepatitis A virus, bovine viral diarrhea virus or Japanese encephalitis virus, flaviviridae viruses or pestiviruses or hepaciviruses or a viral agent causing symptoms equivalent or comparable to any of the above-listed viruses.
  • the viral agents disclosed herein includes, but is not limited to, hepatitis C virus, West Nile virus, yellow fever virus, degue virus, rhinovirus, polio virus, hepatitis A virus, bovine viral diarrhea virus or Japanese encephalitis virus, flaviviridae viruses or pestiviruses or hepaciviruses or a viral agent causing symptoms equivalent or comparable to any of the above-listed viruses.
  • subject means a mammal, which includes, but is not limited to, cattle, pigs, sheep, chicken, turkey, buffalo, llama, ostrich, dogs, cats, and humans, preferably the subject is a human. It is contemplated that in the method of treating a subject thereof of the fifteenth embodiment can be any of the compounds contemplated herein, either alone or in combination with another compound.
  • terapéuticaally effective amount means an amount required to reduce symptoms of the disease in an individual.
  • the dose will be adjusted to the individual requirements in each particular case. That dosage can vary within wide limits depending upon numerous factors such as the severity of the disease to be treated, the age and general health condition of the patient, other medicaments with which the patient is being treated, the route and form of administration and the preferences and experience of the medical practitioner involved.
  • a daily dosage of between about 0.001 and about 10 g including all values in between, such as 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.050, 0.075, 0.1, 0.125, 0.150, 0.175, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, and 9.5, per day should be appropriate in monotherapy and/or in combination therapy.
  • a particular daily dosage is between about 0.01 and about 1 g per day, including all incremental values of 0.01 g (i.e., 10 mg) in between, a preferred daily dosage about 0.01 and about 0.8 g per day, more preferably about 0.01 and about 0.6 g per day, and most preferably about 0.01 and about 0.25 g per day, each of which including all incremental values of 0.01 g in between.
  • treatment is initiated with a large initial "loading dose" to rapidly reduce or eliminate the virus following by a decreasing the dose to a level sufficient to prevent resurgence of the infection.
  • Therapeutic efficacy can be ascertained from tests of liver function including, but not limited to protein levels such as serum proteins (e.g., albumin, clotting factors, alkaline phosphatase, aminotransferases (e.g., alanine transaminase, aspartate transaminase), 5 '-nucleosidase, ⁇ -glutaminyltranspeptidase, etc.), synthesis of bilirubin, synthesis of cholesterol, and synthesis of bile acids; a liver metabolic function, including, but not limited to, carbohydrate metabolism, amino acid and ammonia metabolism. Alternatively the therapeutic effectiveness may be monitored by measuring HCV-RNA. The results of these tests will allow the dose to be optimized.
  • serum proteins e.g., albumin, clotting factors, alkaline phosphatase, aminotransferases (e.g., alanine transaminase, aspartate transaminase), 5 '-nucle
  • a first aspect of the fifteenth embodiment is directed to a method of treatment and/or prophylaxis in a subject in need thereof said method comprises administering to the subject a therapeutically effective amount of a compound represented by any of compound I (preferably compound 11) or II (preferably compound 17, more preferably i?p-17) and a therapeutically effective amount of another antiviral agent; wherein the administration is concurrent or alternative.
  • the time between alternative administration can range between 1-24 hours, which includes any sub-range in between including, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23 hours.
  • another antiviral agent examples include, but are not limited to: HCV NS3 protease inhibitors (see WO 2008010921, WO 2008010921, EP 1881001, WO 2007015824, WO 2007014925, WO 2007014926, WO 2007014921, WO 2007014920, WO 2007014922, US 2005267018, WO 2005095403, WO
  • HCV NS5B Inhibitors see US 2007275947, US20072759300, WO2007095269, WO 2007092000, WO 2007076034, WO 200702602, US 2005-98125, WO 2006093801, US 2006166964, WO 2006065590, WO 2006065335, US 2006040927, US 2006040890, WO 2006020082, WO
  • Concurrent administration as used herein thus includes administration of the agents at the same time or at different times. Administration of two or more agents at the same time can be achieved by a single formulation containing two or more active ingredients or by substantially simultaneous administration of two or more dosage forms with a single active agent.
  • references herein to treatment extend to prophylaxis as well as to the treatment of existing conditions.
  • treatment also includes treatment or prophylaxis of a disease or a condition associated with or mediated by HCV infection, or the clinical symptoms thereof.
  • An alternative common intermediate is the 4- chlorobenzoyl analog Ia, which can be produced either by debenzoylation of Ia to form the intermediate lactone diol, Ia', followed by 4-chlorobenzoylation, or by substituting 4-chlorobenzoyl chloride directly to react with Ia'.
  • An unexpected feature of the 3,5-di(4-chloro-benzoylated) intermediates is that they tend to have better crystalline properties, compared to the 3,5-di(benzoylated) intermediates, and so provides for an alternative means of purification in addition to chromatography.
  • the preferred approach became the Sj ⁇ 2 type reaction using a halo-sugar and a salt of the purine base. Again, the challenge of this approach was how to obtain an ⁇ halo-sugar stereospecifically in high yield to take advantage the inversion of configuration expected with Sj ⁇ 2 type reactions.
  • a typical method treats an anomeric mixture of the 1-O-acetate of a sugar with HCl or HBr in acetic acid. However, this method resulted in production of unfavorable anomeric mixtures.
  • the ⁇ -anomer (6a) could be selectively crystallized out from a methanolic solution to give the pure desired ⁇ - anomer (6a) in 55% yield from the bromosugar (4a).
  • conversion to unprotected 2-amino-6- substituted purines e.g., 7-10 was accomplished.
  • Further conversion to the phosphoramidate derivatives e.g., 11-14 proceeded by an adaptation of the method of Lehsten et al., Org. Proc. Res. Dev., 2002, 6, 819-822 or as disclosed in U.S. Patent Application No. 12/053,015, filed March 21, 2008, pp. 651-675.
  • Cyclic phosphate derivatives e.g., 15-17 were prepared as described in Can J. Chem.,
  • the 4-chlorobenzoyl lactone analog (Ib) can be produced either by debenzoylation of Ia to form the intermediate lactone diaol, Ia', followed by 4-chlorobenzoylation, or by substituting 4-chlorobenzoyl chloride directly to react with Ia'.
  • the reaction was quenched via addition of water (60 mL) and then the solution was concentrated under reduced pressure. The residue was diluted with ethyl acetate (200 mL)and washed with water, brine (2x100 mL each). The organic layer was concentrated under reduced pressure and the residue was purified by column chromatography (20% EtOAc in hexanes) to afford the product as a light yellow fluffy solid. The product was dried under (0.2 mmHg, 50 0 C, 2 h) to afford 24.3 g (46%), mp: 138-14FC.
  • the residue was purified by plug column (2.2 kg of 40-63 micron silica gel, packed in a 6 L sintered glass funnel, 22 cm length of silica gel, diameter 15 cm) using suction and a step-gradient of 5%, 10%, 20%, and 30% ethyl acetate in hexanes -ca 5 L of each).
  • the product containing fractions were combined and concentrated under reduced pressure to a colorless, very thick liquid (310.4 g).
  • the white solid thus collected (293.8 g, 77%) has a mp of 79-80 0 C and ratio of ⁇ / ⁇ is 20:1 based on NMR.
  • the reaction was judged to be >95% complete by TLC (RfS 0.61 ( ⁇ ), 0.72 ( ⁇ ), 0.36 lactol; 20% EtOAc in hexanes).
  • the reaction solution was immediately transferred to a vessel containing 230 g of flash chromatography grade silica gel (40-63 microns).
  • the stirred mixture was immediately passed through a pad of silica gel (680 g) in a 2.5 L sintered glass Buchner funnel.
  • the residue was purified by plug column chromatography using 2.1 kg of silica gel in a 6 L sintered glass Buchner funnel and eluted (via suction) with a stepwise gradient elution of 1%, 5%, 8% 12% EtOAc in hexane (ca 4 L each) to remove non-polar impurities followed by 12%, 25% EtOAc in hexane (6 L total) to elute the product.
  • the product containing fractions were combined into two fractions, concentrated under reduced pressure, dried under vacuum (0.1 mmHg, ambient temp., 20 h) to colorless oils.
  • the bromide solution was added to the purine base suspension over 1 min at ambient temperature.
  • the 5L flask was rinsed with acetonitrile (2x1 L) to transfer bromide completely to the reaction mixture.
  • the mixture was heated gradually to 50 0 C over 2 h with a heating mantle and controller, and stirred for 20 h.
  • the reaction was almost complete as shown by TLC beta (R/ 0.28, 30% EtOAc in hexanes).
  • the reaction was quenched by the addition of sat. NH 4 Cl (200 mL) to form a suspension.
  • the suspended solid 1 was removed by filtration through a 3 cm pad of Celite in a 2.5 L porcelain Buchner funnel. The solid was washed with toluene (3x100 mL).
  • the combined filtrate was neutralized by adding 6 N HCl solution until pH 7 (approx 220 mL).
  • the mixture was concentrated under reduced pressure. When the volume of mixture was reduced to about one-third volume, additional precipitated solid was removed by filtration in a similar manner.
  • the filtrate was further concentrated to a volume of about 800 mL.
  • the mixture was loaded in line with a silica gel cartridge and separated via column chromatography using a gradient of methanol in dichloromethane 0 to 15% MeOH.
  • the product eluted out at 12% methanol in dichloromethane.
  • the product containing fractions were combined, concentrated under reduced pressure and dried under vacuum (0.2 mmHg, 50 0 C, 24 h) to a white powder solid (4.45 g, 98% yield), mp 199-202 0 C.
  • the residue was mixed with 420 mL of 2 N HCl (420 mL) and dichloromethane (1 L). The organic layer was separated and the aqueous layer was extracted with additional dichloromethane (3x 500 mL). To the aqueous layer, ethyl acetate (1.4 L) was added and solid sodium carbonate (86 g) was added portion- wise to neutralize the aqueous layer to ca pH 8 (caution: foaming). After separation of the organic layer, the solid in aqueous layer was dissolved by adding more water (200 mL). The aqueous layer was extracted with ethyl acetate (3x 700 mL and 400 mL).
  • phenyl dichlorophosphate (2.66 g, 12.61 mmol) and anhydrous dichloromethane (40 mL).
  • the amino ester salt (2.6O g, 15.53 mmol) was added to the solution and the mixture was cooled to -5°C.
  • TV-Methyl imidazole (7.7 mL, 97 mmol) was then added quickly via a dry syringe at -5°C and the solution was stirred at -5°C for 1 h.
  • the nucleoside (7, 3.04 g, 9.7 mmol) was added from a vial in one portion at -5°C and the solid was slowly dissolved in 20 minutes.
  • reaction temperature was allowed to rise to ambient temperature over 2 h. After 17 h, the reaction was not complete. More chemical reagents were made (as described above from phosphate (2.66g), aminoester (2.6Og), and NMI (3.8 mL, 48 mmol)) and added to the reaction mixture at -5°C. The reaction was stirred at room temperature for 2 more hours. The reaction was almost complete as shown by TLC result and diluted with 70 mL of dichloromethane ⁇ Cl solution (1 N, 70 mL) was added. The aqueous layer was separated and extracted with dichloromethane. The organic layer was washed with saturated NaHCOs, water, brine and dried over MgSO 4 .
  • Example 14 using compounds (10) and (7a) as starting reagents.
  • phenyl dichlorophosphate (1.72 g, 8.15 mmol) and anhydrous dichloromethane (17 mL).
  • the amino ester (1.42 g, 10.2 mmol) was added and the suspension was cooled to - 5°C.
  • JV-Methylimidazole (3.34 g, 40.7 mmol) was added via a syringe in one portion and the solution was stirred at -5°C for 1 h under a nitrogen atmosphere.
  • the nucleoside (8, 1.38 g, 4.07 mmol) (foam solid) was then added in one portion and the solution was allowed to warm up over 1 h to ambient temperature.
  • phenyl dichlorophosphate (3.29 g, 15.58 mmol) and anhydrous dichloromethane (24 mL).
  • aminoester tosylate (white powder) was added and the solution was cooled to - 5°C under nitrogen.
  • N-Methylimidazole (4.92 g, 59.94 mmol) was added via a dry syringe in one portion and the resulted colorless clear solution was stirred at -5°C for one hour.
  • Example 22 N 6 ,N 6 -Diethyl-9-((4aR,6R,7R,7aR)-7-fluoro-2-methoxy-7-methyl- tetrahydro-furo[3,2-d] [l,3,2]dioxaphosphinin-6-yl)-9H-purine-2,6-diamine (phosphite precursor to 15)
  • the reaction was quenched upon the addition of water (0.1 mL).
  • the reaction solution was concentrated under reduced pressure and then the residue was triturated with ethyl acetate (5 mL).
  • the resulting white precipitate was removed by filtration and the filtrate was concentrated under reduced pressure.
  • the resulting intermediate cyclic phosphite residue was dissolved in acetonitrile (2 mL) and then treated with t-butyl hydroperoxide (70% in water, 0.19 mL) for 5 h at ambient temperature. TLC indicated a complete reaction.
  • the reaction solution was concentrated under reduced pressure and the residue was purified by column chromatography (Analogix using a gradient of 0 to 5% IPA in DCM). The two diastereomers were separable.
  • the P(III)-reagent cyclization reaction incorporating nucleoside 10 and a P(III)-reagent, such as 18 using lH-tetrazole as the activator initially gives an approximately equimolar mixture of cyclic phosphite diastereomers, but with elevated reaction temperature (50-60 0 C) for 6-24 hours, the mixture equilibrates predominantly to the cis isomer as reported in the literature.
  • 4,5-dicyanoimidazole, DCI accelerates this conversion rate and drives the equilibrium from initially approximately 80% to greater than 95% cis at 40-60 0 C after 6 h.
  • the c ⁇ -phosphite diastereomer leads to i?p-17 upon oxidation and also doubles the effective yield of this diastereomer and also simplifies the purification away from Sp-17.
  • the cyclic phosphate esters do not equilibrate under the reaction conditions.
  • Oxidation [ox] of the phosphite esters to the phosphate esters can be accomplished in many ways.
  • Peroxides such as m-chloroperbenzoic acid, t- butylhydroperoxide, hydrogen peroxide work well but are potentially explosive.
  • Urea hydrogen peroxide is a safer peroxide form that works well for this conversion.
  • the diastereomers, i?p-17and iSp-17 can be prepared directly from compound (10) by using an appropriate P(V)-reagent, as illustrated in Scheme 3.
  • Purification of i? P -17from iSp-17 and other by-products such as ring opened phosphates can be accomplished through washing an organic solution of the crude product with dilute base to remove free phosphates and the activating reagents followed by silica gel chromatography or crystallization or by a combination of both.
  • solvents include ethyl acetate, acetone and isopropanol.
  • an XPRD study of crystals from the three solvents showed a single polymorph which is the same as could be mathematically predicted from the single crystal x-ray from ethyl acetate.
  • the synthesis of the cyclic phosphate ester can be done either through P(III)- or P(V)-reagents. Chemistry involving the use of the P(III)-reagent requires an oxidation step for the intermediate cyclic phosphite esters as shown in Scheme 2.
  • the preferred route is to make the phosphorus reagent, isopropyl-N,N, N',N'-tetraisopropylphosphorodiamidite (18), which is not commercially available, but can be prepared readily by reacting commercially available chloro-N,N,N',N'-tetraisopropylphosphorodiamidite (19) with isopropanol in the presence of a tertiary amine base as described below.
  • Reagent 18 can be used as crude or it can be purified by vacuum distillation.
  • Example 27 6-Ethoxy-9-((2R,4aR,6R,7R,7aR)-7-fluoro-2-isopropoxy-7-methyl- 2-oxo-tetrahydro-2 ⁇ 5 -furo[3,2- ⁇ /] [1,3,2] dioxaphosphinin-6-yl)-9H-purin-2- ylamine (17-R P ) and 6-Ethoxy-9-((2S,4aR,6R,7R,7aR)-7-fluoro-2-isopropoxy-7- methyl-2-oxo-tetrahydro-2 ⁇ 5 -furo[3,2- ⁇ /][l,3,2]dioxaphosphinin-6-yl)-9H-purin- 2-ylamine (5 P -17)
  • the primary fraction was suspended in ethyl ether (250 mL) which immediately gave a fine granular solid.
  • the solid was collected by filtration and dried (40 0 C, 0.2mmHg, 17 h) to 73.5 g of slightly off white powder containing 20 mole% of ethyl ether.
  • the solid was co- evaporated with acetone (200 mL) and re-dried in a similar manner to 71.5 g of white solid with 2 mole% of acetone, and HPLC purity of 98.5%.
  • the secondary contaminated fractions were purified by chromatography to afford an additional 9.0 g for a total recovery of 80.5 g (41%) of pure product.
  • Portions of the desired Rp- 17solid could be re-crystallized into large irregular prisms by slow evaporation of product solutions in ethyl acetate, isopropanol and acetone.
  • a small portion of the lower isomer (Sp- 17 250 mg) was also isolated as an amorphous white foam solid.
  • Example 30 6-Methoxy-9-((2R,4aR,6R,7R,7aR)-7-fluoro-2-cyclobutoxy-7- methyl-2-oxo-tetrahydro-2 ⁇ s -furo[3,2-d][l,3,2]dioxaphosphinin-6-yl)-9H-purin- 2-ylamine (23)
  • the crude reaction mixture from a same scale reaction was diluted with dichloromethane (100 mL) and washed with 1 N HCl ( 2x100 mL) and water (2x50 mL). The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure followed by high vacuum for 2 h to give 5.1 g of crude i?p-17.
  • One portion of the crude (750 mg) was dissolved in ethyl acetate (2,0 mL) and heated to reflux with stirring for 6 h. The resulting suspension was cooled to ambient temperature and stirred for 2Oh.
  • the maximum ⁇ / ⁇ in the final cycle of least squares was 0.009 and the two most prominent peaks in the
  • Table 1 lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Table 2.
  • Figure 1 is an ORTEP representation of i?p-17 with 30% probability thermal ellipsoids displayed (ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". CK. Johnson (1976) ORNL-5138).
  • Samples run under ambient conditions were prepared as flat plate specimens using powder as received. Approximately 35 mg of the sample was gently packed into a cavity cut into polished, zero-background (510) silicon wafer. The sample was rotated in its own plane during analysis. The details of the data collection are: angular range: 2 to 42°2 ⁇ ; step size: 0.05°2 ⁇ ; and collection time: 4 s.step "1 .
  • X-Ray Powder Diffraction patterns were collected on a Bruker AXS C2 GADDS diffractometer using Cu Ka radiation (40 kV, 40 rnA), automated XYZ stage, laser video microscope for auto-sample positioning and a HiStar 2- dimensional area detector.
  • X-ray optics consists of a single G ⁇ bel multilayer mirror coupled with a pinhole collimator of 0.3 mm.
  • Figure 2 shows an XRD Diffractogram for i?p-17.
  • nucleoside 30 was dissolved in pyridine (30 mL) and CH 2 Cl 2 (100 mL). To the solution was added Ac 2 O (3 mL, excess) and the mixture was stirred at 0 0 C for 16 h. Water (10 mL) was added and the mixture was stirred at room temperature for 10 min. EtOAc (200 niL) was added and the solution was washed with water, brine and dried over Na 2 SO 4 .
  • HCV replicon assay HCV replicon assay.
  • HCV replicon RNA-containing Huh7 cells (clone A cells; Apath, LLC, St. Louis, Mo.) were kept at exponential growth in Dulbecco's modified Eagle's medium (high glucose) containing 10% fetal bovine serum, 4 mM L-glutamine and 1 mM sodium pyruvate, l ⁇ nonessential amino acids, and G418 (1,000 ⁇ g/ml).
  • Antiviral assays were performed in the same medium without G418. Cells were seeded in a 96-well plate at 1,500 cells per well, and test compounds were added immediately after seeding. Incubation time 4 days.
  • Replicon RNA and an internal control (TaqMan rRNA control reagents; Applied Biosystems) were amplified in a single-step multiplex RT-PCR protocol as recommended by the manufacturer.
  • the HCV primers and probe were designed with Primer Express software (Applied Biosystems) and covered highly conserved 5 '-untranslated region (UTR) sequences (sense, 5'-AGCCATGGCGTTAGTA(T)GAGTGT-3', and antisense, 5'-TTCCGCAGACCACTATGG-S'; probe, 5'-FAM- CCTCCAGGACCCCCCCTCCC-TAMRA-3').
  • the threshold RT-PCR cycle of the test compound was subtracted from the average threshold RT-PCR cycle of the no-drug control ( ⁇ Ct H cv)- A ⁇ Ct of 3.3 equals a 1-log 10 reduction (equal to the 90% effective concentration [EC90]) in replicon RNA levels.
  • the cytotoxicity of the test compound could also be expressed by calculating the ⁇ Ct rRN A values.
  • the ⁇ Ct specificity parameter could then be introduced ( ⁇ Ct H cv ⁇ ⁇ Ct r RNA), in which the levels of HCV RNA are normalized for the rRNA levels and calibrated against the no-drug control.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
EP09793688A 2008-12-23 2009-12-23 Synthesis of purine nucleosides Withdrawn EP2376515A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13182837.8A EP2671888A1 (en) 2008-12-23 2009-12-23 3',5'-cyclic nucleoside phosphate analogues

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14031708P 2008-12-23 2008-12-23
PCT/US2009/069475 WO2010075554A1 (en) 2008-12-23 2009-12-23 Synthesis of purine nucleosides

Publications (1)

Publication Number Publication Date
EP2376515A1 true EP2376515A1 (en) 2011-10-19

Family

ID=41683220

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09793688A Withdrawn EP2376515A1 (en) 2008-12-23 2009-12-23 Synthesis of purine nucleosides
EP13182837.8A Withdrawn EP2671888A1 (en) 2008-12-23 2009-12-23 3',5'-cyclic nucleoside phosphate analogues

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13182837.8A Withdrawn EP2671888A1 (en) 2008-12-23 2009-12-23 3',5'-cyclic nucleoside phosphate analogues

Country Status (19)

Country Link
US (2) US8716263B2 (pt)
EP (2) EP2376515A1 (pt)
JP (4) JP5793084B2 (pt)
KR (1) KR20110104074A (pt)
CN (1) CN102325783A (pt)
AR (1) AR074977A1 (pt)
AU (1) AU2009329872B2 (pt)
BR (1) BRPI0923815A2 (pt)
CA (1) CA2748016A1 (pt)
CL (1) CL2009002206A1 (pt)
CO (1) CO6400228A2 (pt)
EA (1) EA019295B1 (pt)
IL (1) IL213701A0 (pt)
MX (1) MX2011006892A (pt)
NZ (1) NZ593647A (pt)
PA (1) PA8855801A1 (pt)
SG (2) SG194404A1 (pt)
TW (1) TW201031675A (pt)
WO (1) WO2010075554A1 (pt)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY164523A (en) 2000-05-23 2017-12-29 Univ Degli Studi Cagliari Methods and compositions for treating hepatitis c virus
HUE033832T2 (en) 2002-11-15 2018-01-29 Idenix Pharmaceuticals Llc 2'-methyl nucleosides in combination with interferon and Flaviviridae mutation
PL3521297T3 (pl) 2003-05-30 2022-04-04 Gilead Pharmasset Llc Zmodyfikowane fluorowane analogi nukleozydów
US7964580B2 (en) 2007-03-30 2011-06-21 Pharmasset, Inc. Nucleoside phosphoramidate prodrugs
US8173621B2 (en) 2008-06-11 2012-05-08 Gilead Pharmasset Llc Nucleoside cyclicphosphates
EP2376514A2 (en) 2008-12-23 2011-10-19 Pharmasset, Inc. Nucleoside analogs
NZ593648A (en) * 2008-12-23 2013-09-27 Gilead Pharmasset Llc Nucleoside phosphoramidates
CL2009002206A1 (es) * 2008-12-23 2011-08-26 Gilead Pharmasset Llc Compuestos derivados de pirrolo -(2-3-d]-pirimidin-7(6h)-tetrahidrofuran-2-il fosfonamidato, composicion farmaceutica; y su uso en el tratamiento de enfermedades virales.
TWI583692B (zh) 2009-05-20 2017-05-21 基利法瑪席特有限責任公司 核苷磷醯胺
US8618076B2 (en) 2009-05-20 2013-12-31 Gilead Pharmasset Llc Nucleoside phosphoramidates
PL3290428T3 (pl) 2010-03-31 2022-02-07 Gilead Pharmasset Llc Tabletka zawierająca krystaliczny (S)-2-(((S)-(((2R,3R,4R,5R)-5-(2,4-diokso-3,4-dihydropirymidyn-1(2H)-ylo)-4-fluoro-3-hydroksy-4-metylotetrahydrofuran-2-ylo)metoksy)(fenoksy)fosforylo)amino)propanian izopropylu
KR101715981B1 (ko) 2010-03-31 2017-03-13 길리애드 파마셋 엘엘씨 뉴클레오사이드 포스포르아미데이트
WO2012040124A1 (en) 2010-09-22 2012-03-29 Alios Biopharma, Inc. Azido nucleosides and nucleotide analogs
US8841275B2 (en) 2010-11-30 2014-09-23 Gilead Pharmasset Llc 2′-spiro-nucleosides and derivatives thereof useful for treating hepatitis C virus and dengue virus infections
WO2012088155A1 (en) 2010-12-22 2012-06-28 Alios Biopharma, Inc. Cyclic nucleotide analogs
WO2012142093A2 (en) * 2011-04-13 2012-10-18 Merck Sharp & Dohme Corp. 2'-cyano substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
EP2755983B1 (en) 2011-09-12 2017-03-15 Idenix Pharmaceuticals LLC. Substituted carbonyloxymethylphosphoramidate compounds and pharmaceutical compositions for the treatment of viral infections
DE202012013074U1 (de) 2011-09-16 2014-10-29 Gilead Pharmasset Lcc Zusammensetzungen zur Behandlung von HCV
TW201331221A (zh) 2011-10-14 2013-08-01 Idenix Pharmaceuticals Inc 嘌呤核苷酸化合物類之經取代的3’,5’-環磷酸酯及用於治療病毒感染之醫藥組成物
US8889159B2 (en) 2011-11-29 2014-11-18 Gilead Pharmasset Llc Compositions and methods for treating hepatitis C virus
US9073960B2 (en) 2011-12-22 2015-07-07 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
USRE48171E1 (en) 2012-03-21 2020-08-25 Janssen Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
US9441007B2 (en) 2012-03-21 2016-09-13 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
US9296778B2 (en) 2012-05-22 2016-03-29 Idenix Pharmaceuticals, Inc. 3′,5′-cyclic phosphate prodrugs for HCV infection
US9109001B2 (en) 2012-05-22 2015-08-18 Idenix Pharmaceuticals, Inc. 3′,5′-cyclic phosphoramidate prodrugs for HCV infection
EA031301B1 (ru) 2012-05-22 2018-12-28 Иденикс Фармасьютикалз Ллс D-аминокислотные химические соединения для лечения заболеваний печени
EP2861611B1 (en) 2012-05-25 2016-07-13 Janssen Sciences Ireland UC Uracyl spirooxetane nucleosides
WO2014052638A1 (en) 2012-09-27 2014-04-03 Idenix Pharmaceuticals, Inc. Esters and malonates of sate prodrugs
MX353422B (es) * 2012-10-08 2018-01-12 Idenix Pharmaceuticals Llc Análogos de 2'-cloronucleósido para infección por vhc.
EP2909222B1 (en) 2012-10-22 2021-05-26 Idenix Pharmaceuticals LLC 2',4'-bridged nucleosides for hcv infection
EP2935304A1 (en) * 2012-12-19 2015-10-28 IDENIX Pharmaceuticals, Inc. 4'-fluoro nucleosides for the treatment of hcv
WO2014100505A1 (en) 2012-12-21 2014-06-26 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
SI2950786T1 (sl) 2013-01-31 2020-03-31 Gilead Pharmasset Llc Formulacija kombinacije dveh protivirusnih spojin
US10034893B2 (en) 2013-02-01 2018-07-31 Enanta Pharmaceuticals, Inc. 5, 6-D2 uridine nucleoside/tide derivatives
US9339541B2 (en) 2013-03-04 2016-05-17 Merck Sharp & Dohme Corp. Thiophosphate nucleosides for the treatment of HCV
US9309275B2 (en) 2013-03-04 2016-04-12 Idenix Pharmaceuticals Llc 3′-deoxy nucleosides for the treatment of HCV
US20140271547A1 (en) 2013-03-13 2014-09-18 Idenix Pharmaceuticals, Inc. Amino acid phosphoramidate pronucleotides of 2'-cyano, azido and amino nucleosides for the treatment of hcv
US9187515B2 (en) 2013-04-01 2015-11-17 Idenix Pharmaceuticals Llc 2′,4′-fluoro nucleosides for the treatment of HCV
UA123533C2 (uk) 2013-05-16 2021-04-21 Рібосаєнс Ллс 4'-фтор-2'-метилзаміщені нуклеозидні похідні
US20180200280A1 (en) 2013-05-16 2018-07-19 Riboscience Llc 4'-Fluoro-2'-Methyl Substituted Nucleoside Derivatives as Inhibitors of HCV RNA Replication
WO2014197578A1 (en) 2013-06-05 2014-12-11 Idenix Pharmaceuticals, Inc. 1',4'-thio nucleosides for the treatment of hcv
ES2825035T3 (es) 2013-06-26 2021-05-14 Janssen Biopharma Inc Nucleósidos, nucleótidos y análogos de estos sustituidos con 4’-azidoalquilo
WO2015017713A1 (en) 2013-08-01 2015-02-05 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate pronucleotides of halogeno pyrimidine compounds for liver disease
ES2900570T3 (es) 2013-08-27 2022-03-17 Gilead Pharmasset Llc Formulación de combinación de dos compuestos antivirales
UA117375C2 (uk) 2013-09-04 2018-07-25 Медівір Аб Інгібітори полімерази hcv
TW201524990A (zh) 2013-10-11 2015-07-01 Alios Biopharma Inc 經取代之核苷、核苷酸及其類似物
US20160271160A1 (en) 2013-10-17 2016-09-22 Medivir Ab Hcv polymerase inhibitors
WO2015061683A1 (en) * 2013-10-25 2015-04-30 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate and d-alanine thiophosphoramidate pronucleotides of nucleoside compounds useful for the treatment of hcv
WO2015095419A1 (en) * 2013-12-18 2015-06-25 Idenix Pharmaceuticals, Inc. 4'-or nucleosides for the treatment of hcv
US10202411B2 (en) 2014-04-16 2019-02-12 Idenix Pharmaceuticals Llc 3′-substituted methyl or alkynyl nucleosides nucleotides for the treatment of HCV
WO2016033164A1 (en) 2014-08-26 2016-03-03 Enanta Pharmaceuticals, Inc. Nucleoside and nucleotide derivatives
US10251903B2 (en) 2014-10-20 2019-04-09 Merck Sharp & Dohme Corp. Process for making nucleoside phosphoramidate compounds
US9718851B2 (en) 2014-11-06 2017-08-01 Enanta Pharmaceuticals, Inc. Deuterated nucleoside/tide derivatives
US9732110B2 (en) 2014-12-05 2017-08-15 Enanta Pharmaceuticals, Inc. Nucleoside and nucleotide derivatives
EP3265102A4 (en) 2015-03-06 2018-12-05 ATEA Pharmaceuticals, Inc. Beta-d-2'-deoxy-2'alpha-fluoro-2'-beta-c-substituted-2-modified-n6-substituted purine nucleotides for hcv treatment
WO2016144660A1 (en) 2015-03-09 2016-09-15 W.R. Grace & Co.-Conn. Crystalline form of nicotinamide riboside
JP7005508B2 (ja) 2016-03-24 2022-01-21 ノバルティス アーゲー ヒトライノウイルスの阻害剤としてのアルキニルヌクレオシド類似体
CN109562113A (zh) 2016-05-10 2019-04-02 C4医药公司 用于靶蛋白降解的螺环降解决定子体
WO2017197055A1 (en) 2016-05-10 2017-11-16 C4 Therapeutics, Inc. Heterocyclic degronimers for target protein degradation
CN109641874A (zh) 2016-05-10 2019-04-16 C4医药公司 用于靶蛋白降解的c3-碳连接的戊二酰亚胺降解决定子体
US10202412B2 (en) 2016-07-08 2019-02-12 Atea Pharmaceuticals, Inc. β-D-2′-deoxy-2′-substituted-4′-substituted-2-substituted-N6-substituted-6-aminopurinenucleotides for the treatment of paramyxovirus and orthomyxovirus infections
LU100724B1 (en) 2016-07-14 2018-07-31 Atea Pharmaceuticals Inc Beta-d-2'-deoxy-2'-alpha-fluoro-2'-beta-c-substituted-4'-fluoro-n6-substituted-6-amino-2-substituted purine nucleotides for the treatment of hepatitis c virus infection
PT3512863T (pt) 2016-09-07 2022-03-09 Atea Pharmaceuticals Inc Nucleótidos de purina 2'-substituídos-n6-substituídos para tratamento de vírus de rna
SG10202012214WA (en) 2017-02-01 2021-01-28 Atea Pharmaceuticals Inc Nucleotide hemi-sulfate salt for the treatment of hepatitis c virus
AR112702A1 (es) 2017-09-21 2019-11-27 Riboscience Llc Derivados de nucleósidos sustituidos con 4’-fluoro-2’-metilo como inhibidores de la replicación de hcv arn
WO2019126482A1 (en) 2017-12-22 2019-06-27 Elysium Health, Inc. Crystalline forms of nicotinamide riboside chloride
TW202012001A (zh) 2018-04-10 2020-04-01 美商亞堤製藥公司 C型肝炎病毒(hcv)感染硬化之患者的治療
US10874687B1 (en) 2020-02-27 2020-12-29 Atea Pharmaceuticals, Inc. Highly active compounds against COVID-19
CN111253454B (zh) * 2020-03-19 2022-03-08 江苏工程职业技术学院 一种抗丙肝药物索非布韦的制备方法
CN114686188B (zh) * 2020-12-31 2023-05-02 中石化石油工程技术服务有限公司 一种核苷磷脂钻井液润滑剂及其制备方法

Family Cites Families (449)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2512572A (en) 1950-06-20 Substituted pteridines and method
US2563707A (en) 1947-12-12 1951-08-07 American Cyanamid Co Process for preparing pteridines
GB768821A (en) 1954-05-17 1957-02-20 Gruenenthal Chemie Novel products of the amino-piperidine-2, 6-dione series
US2759300A (en) 1954-08-11 1956-08-21 Pest Control Ltd Method and means for introducing a predetermined amount of a poisonous material beneath the surface of the soil
US3053865A (en) 1958-03-19 1962-09-11 Merck & Co Inc Novel 16-alkyl and 16-alkylene steroids and processes
US2960527A (en) 1958-08-20 1960-11-15 Akad Wissenschaften Ddr Process for the preparation of dichloro phosphoric esters
US3097137A (en) 1960-05-19 1963-07-09 Canadian Patents Dev Vincaleukoblastine
US3104246A (en) 1961-08-18 1963-09-17 Roussel Uclaf Process of preparation of beta-methasone
FR1533151A (fr) 1962-05-18 1968-07-19 Rhone Poulenc Sa Nouvel antibiotique et sa préparation
NL6613143A (pt) 1965-09-21 1967-03-22
YU33730B (en) 1967-04-18 1978-02-28 Farmaceutici Italia Process for preparing a novel antibiotic substance and salts thereof
US3480613A (en) 1967-07-03 1969-11-25 Merck & Co Inc 2-c or 3-c-alkylribofuranosyl - 1-substituted compounds and the nucleosides thereof
CH514578A (de) 1968-02-27 1971-10-31 Sandoz Ag Verfahren zur Herstellung von Glucosiden
JPS4716483Y1 (pt) 1969-03-01 1972-06-09
USRE29835E (en) 1971-06-01 1978-11-14 Icn Pharmaceuticals 1,2,4-Triazole nucleosides
US3798209A (en) 1971-06-01 1974-03-19 Icn Pharmaceuticals 1,2,4-triazole nucleosides
US3849397A (en) 1971-08-04 1974-11-19 Int Chem & Nuclear Corp 3',5'-cyclic monophosphate nucleosides
US3994974A (en) 1972-02-05 1976-11-30 Yamanouchi Pharmaceutical Co., Ltd. α-Aminomethylbenzyl alcohol derivatives
US3852267A (en) 1972-08-04 1974-12-03 Icn Pharmaceuticals Phosphoramidates of 3{40 ,5{40 -cyclic purine nucleotides
ZA737247B (en) 1972-09-29 1975-04-30 Ayerst Mckenna & Harrison Rapamycin and process of preparation
BE799805A (fr) 1973-05-23 1973-11-21 Toyo Jozo Kk Nouvel agent immunosuppresseur et sa preparation
JPS535678B2 (pt) 1973-05-30 1978-03-01
US3991045A (en) 1973-05-30 1976-11-09 Asahi Kasei Kogyo Kabushiki Kaisha N4 -acylarabinonucleosides
US3888843A (en) 1973-06-12 1975-06-10 Toyo Jozo Kk 4-carbamoyl-1-' -d-ribofuranosylimidazolium-5-olate
SU508076A1 (ru) 1973-07-05 1976-10-05 Институт По Изысканию Новых Антибиотиков Амн Ссср Способ получени карминомицина 1
GB1457632A (en) 1974-03-22 1976-12-08 Farmaceutici Italia Adriamycins
US3923785A (en) 1974-04-22 1975-12-02 Parke Davis & Co (R)-3-(2-deoxy-{62 -D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo{8 4,5-d{9 {8 1,3{9 diazepin-8-ol
GB1467383A (en) 1974-06-12 1977-03-16 Farmaceutici Italia Daunomycin analogues
GB1523865A (en) 1974-09-02 1978-09-06 Wellcome Found Purine compunds and salts thereof
US4199574A (en) 1974-09-02 1980-04-22 Burroughs Wellcome Co. Methods and compositions for treating viral infections and guanine acyclic nucleosides
GB1509875A (en) 1976-06-14 1978-05-04 Farmaceutici Italia Optically active anthracyclinones and anthracycline glycosides
SE445996B (sv) 1977-08-15 1986-08-04 American Cyanamid Co Nya atrakinonderivat
US4197249A (en) 1977-08-15 1980-04-08 American Cyanamid Company 1,4-Bis(substituted-amino)-5,8-dihydroxyanthraquinones and leuco bases thereof
US4203898A (en) 1977-08-29 1980-05-20 Eli Lilly And Company Amide derivatives of VLB, leurosidine, leurocristine and related dimeric alkaloids
US4210745A (en) 1978-01-04 1980-07-01 The United States Of America As Represented By The Department Of Health, Education And Welfare Procedure for the preparation of 9-β-D-arabinofuranosyl-2-fluoroadenine
US4303785A (en) 1978-08-05 1981-12-01 Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai Antitumor anthracycline antibiotics
US4307100A (en) 1978-08-24 1981-12-22 Agence Nationale De Valorisation De La Recherche (Anvar) Nor bis-indole compounds usable as medicaments
DK160616C (da) 1979-02-03 1991-09-02 Zaidan Hojin Biseibutsu Fremgangsmaade til fremstilling af anthracyclinderivater eller syreadditionssalte deraf
US4418068A (en) 1981-04-03 1983-11-29 Eli Lilly And Company Antiestrogenic and antiandrugenic benzothiophenes
PH18628A (en) 1981-04-03 1985-08-23 Lilly Co Eli "6-hydroxy-2-(4-hydroxyphenyl)-3 4-(2- piperidine or 3-methylpyrollidine -benzo b thiophene compounds
US4355032B2 (en) 1981-05-21 1990-10-30 9-(1,3-dihydroxy-2-propoxymethyl)guanine as antiviral agent
JPS58219196A (ja) 1982-06-15 1983-12-20 Nippon Kayaku Co Ltd 4′−デメチル−エピポドフイロトキシン−β−D−エチリデングルコシドの製造法
JPS5976099A (ja) 1982-10-22 1984-04-28 Sumitomo Chem Co Ltd アミノナフタセン誘導体とその製造方法
IT1155446B (it) 1982-12-23 1987-01-28 Erba Farmitalia Procedimento per la purificazione di glucosidi antraciclinonici mediante adsobimento selettivo su resine
US4526988A (en) 1983-03-10 1985-07-02 Eli Lilly And Company Difluoro antivirals and intermediate therefor
JPS6019790A (ja) 1983-07-14 1985-01-31 Yakult Honsha Co Ltd 新規なカンプトテシン誘導体
DE3485225D1 (de) 1983-08-18 1991-12-05 Beecham Group Plc Antivirale guanin-derivate.
JPS6051189A (ja) 1983-08-30 1985-03-22 Sankyo Co Ltd チアゾリジン誘導体およびその製造法
US4894366A (en) 1984-12-03 1990-01-16 Fujisawa Pharmaceutical Company, Ltd. Tricyclo compounds, a process for their production and a pharmaceutical composition containing the same
US4760137A (en) 1984-08-06 1988-07-26 Brigham Young University Method for the production of 2'-deoxyadenosine compounds
CA1269659A (en) 1984-08-06 1990-05-29 Brigham Young University Method for the production of 2'-deoxyadenosine compounds
US5077056A (en) 1984-08-08 1991-12-31 The Liposome Company, Inc. Encapsulation of antineoplastic agents in liposomes
US5736155A (en) 1984-08-08 1998-04-07 The Liposome Company, Inc. Encapsulation of antineoplastic agents in liposomes
NL8403224A (nl) 1984-10-24 1986-05-16 Oce Andeno Bv Dioxafosforinanen, de bereiding ervan en de toepassing voor het splitsen van optisch actieve verbindingen.
DK173350B1 (da) 1985-02-26 2000-08-07 Sankyo Co Thiazolidinderivater, deres fremstilling og farmaceutisk paæparat indeholdende dem
US5223263A (en) 1988-07-07 1993-06-29 Vical, Inc. Liponucleotide-containing liposomes
US4724232A (en) 1985-03-16 1988-02-09 Burroughs Wellcome Co. Treatment of human viral infections
CS263951B1 (en) 1985-04-25 1989-05-12 Antonin Holy 9-(phosponylmethoxyalkyl)adenines and method of their preparation
DK224286A (da) 1985-05-15 1986-11-16 Wellcome Found 2',3'-dideoxy-nucleosider
US5246937A (en) 1985-09-18 1993-09-21 Beecham Group P.L.C. Purine derivatives
US4751221A (en) 1985-10-18 1988-06-14 Sloan-Kettering Institute For Cancer Research 2-fluoro-arabinofuranosyl purine nucleosides
US4797285A (en) 1985-12-06 1989-01-10 Yissum Research And Development Company Of The Hebrew University Of Jerusalem Lipsome/anthraquinone drug composition and method
NZ219974A (en) 1986-04-22 1989-08-29 Goedecke Ag N-(2'-aminophenyl)-benzamide derivatives, process for their preparation and their use in the control of neoplastic diseases
FR2601675B1 (fr) 1986-07-17 1988-09-23 Rhone Poulenc Sante Derives du taxol, leur preparation et les compositions pharmaceutiques qui les contiennent
US4753935A (en) 1987-01-30 1988-06-28 Syntex (U.S.A.) Inc. Morpholinoethylesters of mycophenolic acid and pharmaceutical compositions
US5154930A (en) 1987-03-05 1992-10-13 The Liposome Company, Inc. Pharmacological agent-lipid solution preparation
US4923986A (en) 1987-03-09 1990-05-08 Kyowa Hakko Kogyo Co., Ltd. Derivatives of physiologically active substance K-252
GB8719367D0 (en) 1987-08-15 1987-09-23 Wellcome Found Therapeutic compounds
JPH03501253A (ja) 1987-09-22 1991-03-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア エイズ(aids)治療を目的とするリポソームによるヌクレオシド類似物質
US5004758A (en) 1987-12-01 1991-04-02 Smithkline Beecham Corporation Water soluble camptothecin analogs useful for inhibiting the growth of animal tumor cells
US4880784A (en) 1987-12-21 1989-11-14 Brigham Young University Antiviral methods utilizing ribofuranosylthiazolo[4,5-d]pyrimdine derivatives
US5130421A (en) 1988-03-24 1992-07-14 Bristol-Myers Company Production of 2',3'-dideoxy-2',3'-didehydronucleosides
GB8815265D0 (en) 1988-06-27 1988-08-03 Wellcome Found Therapeutic nucleosides
IL91664A (en) 1988-09-28 1993-05-13 Yissum Res Dev Co Ammonium transmembrane gradient system for efficient loading of liposomes with amphipathic drugs and their controlled release
US6132763A (en) 1988-10-20 2000-10-17 Polymasc Pharmaceuticals Plc Liposomes
US5705363A (en) 1989-03-02 1998-01-06 The Women's Research Institute Recombinant production of human interferon τ polypeptides and nucleic acids
US5277914A (en) 1989-03-31 1994-01-11 The Regents Of The University Of California Preparation of liposome and lipid complex compositions
US5549910A (en) 1989-03-31 1996-08-27 The Regents Of The University Of California Preparation of liposome and lipid complex compositions
US5077057A (en) 1989-04-05 1991-12-31 The Regents Of The University Of California Preparation of liposome and lipid complex compositions
US5411947A (en) 1989-06-28 1995-05-02 Vestar, Inc. Method of converting a drug to an orally available form by covalently bonding a lipid to the drug
US5194654A (en) 1989-11-22 1993-03-16 Vical, Inc. Lipid derivatives of phosphonoacids for liposomal incorporation and method of use
US5225212A (en) 1989-10-20 1993-07-06 Liposome Technology, Inc. Microreservoir liposome composition and method
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5463092A (en) 1989-11-22 1995-10-31 Vestar, Inc. Lipid derivatives of phosphonacids for liposomal incorporation and method of use
GB8927913D0 (en) 1989-12-11 1990-02-14 Hoffmann La Roche Amino acid derivatives
US5026687A (en) 1990-01-03 1991-06-25 The United States Of America As Represented By The Department Of Health And Human Services Treatment of human retroviral infections with 2',3'-dideoxyinosine alone and in combination with other antiviral compounds
US5041246A (en) 1990-03-26 1991-08-20 The Babcock & Wilcox Company Two stage variable annulus spray attemperator method and apparatus
EP1018558A3 (en) 1990-04-06 2002-06-05 Genelabs Technologies, Inc. Hepatitis C Virus Epitopes
US5091188A (en) 1990-04-26 1992-02-25 Haynes Duncan H Phospholipid-coated microcrystals: injectable formulations of water-insoluble drugs
GB9009861D0 (en) 1990-05-02 1990-06-27 Glaxo Group Ltd Chemical compounds
AU7872491A (en) 1990-05-07 1991-11-27 Vical, Inc. Lipid prodrugs of salicylate and nonsteroidal anti-inflammatory drugs
EP0527736B1 (de) 1990-05-18 1997-04-16 Hoechst Aktiengesellschaft Isoxazol-4-carbonsäureamide und hydroxyalkyliden-cyanessigsäureamide, diese verbindungen enthaltende arzneimittel und deren verwendung
EP0531452A4 (en) 1990-05-29 1993-06-09 Vical, Inc. Synthesis of glycerol di- and triphosphate derivatives
DK0533833T3 (da) 1990-06-13 1996-04-22 Arnold Glazier Phosphorprolægemidler
US6060080A (en) 1990-07-16 2000-05-09 Daiichi Pharmaceutical Co., Ltd. Liposomal products
JP2599492B2 (ja) 1990-08-21 1997-04-09 第一製薬株式会社 リポソーム製剤の製造法
US5372808A (en) 1990-10-17 1994-12-13 Amgen Inc. Methods and compositions for the treatment of diseases with consensus interferon while reducing side effect
US5206244A (en) 1990-10-18 1993-04-27 E. R. Squibb & Sons, Inc. Hydroxymethyl (methylenecyclopentyl) purines and pyrimidines
US5543390A (en) 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University Covalent microparticle-drug conjugates for biological targeting
US5256641A (en) 1990-11-01 1993-10-26 State Of Oregon Covalent polar lipid-peptide conjugates for immunological targeting
US5543389A (en) 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University, A Non Profit Organization Covalent polar lipid-peptide conjugates for use in salves
US5149794A (en) 1990-11-01 1992-09-22 State Of Oregon Covalent lipid-drug conjugates for drug targeting
US5179104A (en) 1990-12-05 1993-01-12 University Of Georgia Research Foundation, Inc. Process for the preparation of enantiomerically pure β-D-(-)-dioxolane-nucleosides
US5925643A (en) 1990-12-05 1999-07-20 Emory University Enantiomerically pure β-D-dioxolane-nucleosides
JP3008226B2 (ja) 1991-01-16 2000-02-14 第一製薬株式会社 六環性化合物
US5145684A (en) 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
NZ241625A (en) 1991-02-22 1996-03-26 Univ Emory 1,3-oxathiolane derivatives, anti-viral compositions containing such and method of resolving racemic mixture of enantiomers
NZ241868A (en) 1991-03-08 1995-05-26 Univ Vermont 6,9-bis(substituted-amino)benzo[g]isoquinoline-5,10-diones, preparation and pharmaceutical compositions thereof
US5595732A (en) 1991-03-25 1997-01-21 Hoffmann-La Roche Inc. Polyethylene-protein conjugates
US5157027A (en) 1991-05-13 1992-10-20 E. R. Squibb & Sons, Inc. Bisphosphonate squalene synthetase inhibitors and method
CA2112803A1 (en) 1991-07-12 1993-01-21 Karl Y. Hostetler Antiviral liponucleosides: treatment of hepatitis b
HU9202318D0 (en) 1991-07-22 1992-10-28 Bristol Myers Squibb Co Method for preparing medical preparatives containing didesoxi-purine nucleoside
US5554728A (en) 1991-07-23 1996-09-10 Nexstar Pharmaceuticals, Inc. Lipid conjugates of therapeutic peptides and protease inhibitors
GB9116601D0 (en) 1991-08-01 1991-09-18 Iaf Biochem Int 1,3-oxathiolane nucleoside analogues
TW224053B (pt) 1991-09-13 1994-05-21 Paul B Chretien
DE4200821A1 (de) 1992-01-15 1993-07-22 Bayer Ag Geschmacksmaskierte pharmazeutische mittel
US5676942A (en) 1992-02-10 1997-10-14 Interferon Sciences, Inc. Composition containing human alpha interferon species proteins and method for use thereof
US5405598A (en) 1992-02-24 1995-04-11 Schinazi; Raymond F. Sensitizing agents for use in boron neutron capture therapy
US5610054A (en) 1992-05-14 1997-03-11 Ribozyme Pharmaceuticals, Inc. Enzymatic RNA molecule targeted against Hepatitis C virus
DK0576231T3 (da) 1992-06-22 1997-08-25 Lilly Co Eli Proces til fremstilling af alfa-anomerberigede 1-halogen-2-deoxy-2, 2-difluor-D-ribofuranosylderivater
US5426183A (en) 1992-06-22 1995-06-20 Eli Lilly And Company Catalytic stereoselective glycosylation process for preparing 2'-deoxy-2',2'-difluoronucleosides and 2'-deoxy-2'-fluoronucleosides
US5256798A (en) 1992-06-22 1993-10-26 Eli Lilly And Company Process for preparing alpha-anomer enriched 2-deoxy-2,2-difluoro-D-ribofuranosyl sulfonates
US5719147A (en) 1992-06-29 1998-02-17 Merck & Co., Inc. Morpholine and thiomorpholine tachykinin receptor antagonists
KR100252451B1 (ko) 1992-09-01 2000-04-15 피터 지. 스트링거 뉴클레오사이드의아노머화방법
GB9221220D0 (en) 1992-10-09 1992-11-25 Sandoz Ag Organic componds
GB9226729D0 (en) 1992-12-22 1993-02-17 Wellcome Found Therapeutic combination
US5484926A (en) 1993-10-07 1996-01-16 Agouron Pharmaceuticals, Inc. HIV protease inhibitors
AU6247594A (en) 1993-02-24 1994-09-14 Jui H. Wang Compositions and methods of application of reactive antiviral polymers
US6180134B1 (en) 1993-03-23 2001-01-30 Sequus Pharmaceuticals, Inc. Enhanced ciruclation effector composition and method
EP0746319A4 (en) 1993-05-12 1997-11-05 Karl Y Hostetler ACYCLOVIR DERIVATIVES FOR TOPICAL USE
CA2167537A1 (en) 1993-07-19 1995-02-02 Tsuneo Ozeki Hepatitis c virus proliferation inhibitor
FR2707988B1 (fr) 1993-07-21 1995-10-13 Pf Medicament Nouveaux dérivés antimitotiques des alcaloïdes binaires du catharantus rosesus, leur procédé de préparation et les compositions pharmaceutiques les comprenant.
US7375198B2 (en) 1993-10-26 2008-05-20 Affymetrix, Inc. Modified nucleic acid probes
US6156501A (en) 1993-10-26 2000-12-05 Affymetrix, Inc. Arrays of modified nucleic acid probes and methods of use
EP0730470B1 (en) 1993-11-10 2002-03-27 Enzon, Inc. Improved interferon polymer conjugates
US5951974A (en) 1993-11-10 1999-09-14 Enzon, Inc. Interferon polymer conjugates
IL111960A (en) 1993-12-17 1999-12-22 Merck & Co Inc Morpholines and thiomorpholines their preparation and pharmaceutical compositions containing them
AU6550394A (en) 1994-03-11 1995-09-25 Isis Pharmaceuticals, Inc. Novel pyrimidine nucleosides
DE4447588C2 (de) 1994-05-03 1997-11-20 Omer Osama Dr Dr Med Pflanzliches Arzneimittel zur Behandlung von chronischen und allergischen Rhino-Sino-Bronchitiden
IL129871A (en) 1994-05-06 2003-11-23 Pharmacia & Upjohn Inc Process for preparing 4-phenyl-substituted octanoyl-oxazolidin-2-one intermediates that are useful for preparing pyran-2-ones useful for treating retroviral infections
CA2192950A1 (en) 1994-06-22 1995-12-28 Danny P.C. Mcgee Novel method of preparation of known and novel 2'-modified nucleosides by intramolecular nucleophilic displacement
DE4432623A1 (de) 1994-09-14 1996-03-21 Huels Chemische Werke Ag Verfahren zur Bleichung von wäßrigen Tensidlösungen
US5738846A (en) 1994-11-10 1998-04-14 Enzon, Inc. Interferon polymer conjugates and process for preparing the same
US5696277A (en) 1994-11-15 1997-12-09 Karl Y. Hostetler Antiviral prodrugs
US5703058A (en) 1995-01-27 1997-12-30 Emory University Compositions containing 5-fluoro-2',3'-didehydro-2',3'-dideoxycytidine or a mono-, di-, or triphosphate thereof and a second antiviral agent
US6391859B1 (en) 1995-01-27 2002-05-21 Emory University [5-Carboxamido or 5-fluoro]-[2′,3′-unsaturated or 3′-modified]-pyrimidine nucleosides
GB9505025D0 (en) 1995-03-13 1995-05-03 Medical Res Council Chemical compounds
GB9618952D0 (en) 1996-09-11 1996-10-23 Sandoz Ltd Process
US6504029B1 (en) 1995-04-10 2003-01-07 Daiichi Pharmaceutical Co., Ltd. Condensed-hexacyclic compounds and a process therefor
DE19514523A1 (de) 1995-04-12 1996-10-17 Schering Ag Neue Cytosin- und Cytidinderivate
AU719122B2 (en) 1995-09-27 2000-05-04 Emory University Recombinant hepatitis C virus RNA replicase
US5908621A (en) 1995-11-02 1999-06-01 Schering Corporation Polyethylene glycol modified interferon therapy
US5767097A (en) 1996-01-23 1998-06-16 Icn Pharmaceuticals, Inc. Specific modulation of Th1/Th2 cytokine expression by ribavirin in activated T-lymphocytes
GB9602028D0 (en) 1996-02-01 1996-04-03 Amersham Int Plc Nucleoside analogues
US5980884A (en) 1996-02-05 1999-11-09 Amgen, Inc. Methods for retreatment of patients afflicted with Hepatitis C using consensus interferon
EP0914421A2 (en) 1996-02-29 1999-05-12 Immusol, Inc. Hepatitis c virus ribozymes
US5633388A (en) 1996-03-29 1997-05-27 Viropharma Incorporated Compounds, compositions and methods for treatment of hepatitis C
US5830905A (en) 1996-03-29 1998-11-03 Viropharma Incorporated Compounds, compositions and methods for treatment of hepatitis C
US5849733A (en) 1996-05-10 1998-12-15 Bristol-Myers Squibb Co. 2-thio or 2-oxo flavopiridol analogs
US5990276A (en) 1996-05-10 1999-11-23 Schering Corporation Synthetic inhibitors of hepatitis C virus NS3 protease
GB9609932D0 (en) 1996-05-13 1996-07-17 Hoffmann La Roche Use of IL-12 and IFN alpha for the treatment of infectious diseases
US5891874A (en) 1996-06-05 1999-04-06 Eli Lilly And Company Anti-viral compound
US5837257A (en) 1996-07-09 1998-11-17 Sage R&D Use of plant extracts for treatment of HIV, HCV and HBV infections
US6214375B1 (en) 1996-07-16 2001-04-10 Generex Pharmaceuticals, Inc. Phospholipid formulations
US5635517B1 (en) 1996-07-24 1999-06-29 Celgene Corp Method of reducing TNFalpha levels with amino substituted 2-(2,6-dioxopiperidin-3-YL)-1-oxo-and 1,3-dioxoisoindolines
AU4090697A (en) 1996-09-03 1998-03-26 Bristol-Myers Squibb Company Improved process for preparing the antiviral agent {1s-(1alpha, 3alpha, 4beta)}-2-amino-1,9-dihydro-9-{4-hydroxy-3-(hydroxymethyl)-2 -methylenecyclopentyl}-6h-purin-6-one
US5908934A (en) 1996-09-26 1999-06-01 Bristol-Myers Squibb Company Process for the preparation of chiral ketone intermediates useful for the preparation of flavopiridol and analogs
US5922757A (en) 1996-09-30 1999-07-13 The Regents Of The University Of California Treatment and prevention of hepatic disorders
US6174905B1 (en) 1996-09-30 2001-01-16 Mitsui Chemicals, Inc. Cell differentiation inducer
US6224903B1 (en) 1996-10-11 2001-05-01 Sequus Pharmaceuticals, Inc. Polymer-lipid conjugate for fusion of target membranes
TW520297B (en) 1996-10-11 2003-02-11 Sequus Pharm Inc Fusogenic liposome composition and method
CN1233254A (zh) 1996-10-16 1999-10-27 Icn药品公司 嘌呤l-核苷、其类似物及其用途
US6509320B1 (en) 1996-10-16 2003-01-21 Icn Pharmaceuticals, Inc. Purine L-nucleosides, analogs and uses thereof
ES2195970T3 (es) 1996-10-16 2003-12-16 Ribapharm Inc L-ribavirina y usos de la misma.
US6455690B1 (en) 1996-10-16 2002-09-24 Robert Tam L-8-oxo-7-propyl-7,8-dihydro-(9H)-guanosine
EP2314598A1 (en) 1996-10-18 2011-04-27 Vertex Pharmaceuticals Incorporated Inhibitors of Hepatitis C virus NS3 serine protease
GB9623908D0 (en) 1996-11-18 1997-01-08 Hoffmann La Roche Amino acid derivatives
IL119833A (en) 1996-12-15 2001-01-11 Lavie David Hypericum perforatum extracts for the preparation of pharmaceutical compositions for the treatment of hepatitis
US5827533A (en) 1997-02-06 1998-10-27 Duke University Liposomes containing active agents aggregated with lipid surfactants
US20020127371A1 (en) 2001-03-06 2002-09-12 Weder Donald E. Decorative elements provided with a circular or crimped configuration at point of sale or point of use
US6004933A (en) 1997-04-25 1999-12-21 Cortech Inc. Cysteine protease inhibitors
BR9809178A (pt) 1997-05-29 2000-08-01 Novartis Ag 2-amino-7-(1-substituìdo-2-hidroxietil)-3,5-dihidro-pir rolo[3,2-d]pirimidin-4-onas
CZ293248B6 (cs) 1997-06-30 2004-03-17 Merz Pharma Gmbh & Co. Kgaa 1-Aminocyklohexanový derivát a farmaceutická kompozice na jeho bázi
HUP0100100A3 (en) 1997-08-11 2001-12-28 Boehringer Ingelheim Ca Ltd Hepatitis c inhibitor peptide analogues, pharmaceutical compositions comprising thereof and their use
DK1136075T3 (da) 1997-09-21 2003-04-28 Schering Corp Kombinationsterapi til udryddelse aff detekterbart HCV-RNA i patienter med kronisk hepatitis C infektion
US6703374B1 (en) 1997-10-30 2004-03-09 The United States Of America As Represented By The Department Of Health And Human Services Nucleosides for imaging and treatment applications
US5981709A (en) 1997-12-19 1999-11-09 Enzon, Inc. α-interferon-polymer-conjugates having enhanced biological activity and methods of preparing the same
TWI244924B (en) 1998-01-23 2005-12-11 Newbiotics Inc Enzyme catalyzed therapeutic agents
DK1058686T3 (da) 1998-02-25 2007-03-05 Univ Emory 2'-fluornukleosider
US6787305B1 (en) 1998-03-13 2004-09-07 Invitrogen Corporation Compositions and methods for enhanced synthesis of nucleic acid molecules
AU3363499A (en) 1998-03-27 1999-10-18 George W. Griesgraber Nucleosides with antiviral and anticancer activity
GB9806815D0 (en) 1998-03-30 1998-05-27 Hoffmann La Roche Amino acid derivatives
JP5281726B2 (ja) 1998-05-15 2013-09-04 メルク・シャープ・アンド・ドーム・コーポレーション 慢性C型肝炎感染を有する、抗ウイルス処置を受けていない患者における、リバビリンおよびインターフェロンαを含む併用療法
US20010014352A1 (en) 1998-05-27 2001-08-16 Udit Batra Compressed tablet formulation
US6274725B1 (en) 1998-06-02 2001-08-14 Isis Pharmaceuticals, Inc. Activators for oligonucleotide synthesis
ATE307597T1 (de) 1998-06-08 2005-11-15 Hoffmann La Roche Verwendung von peg-ifn-alpha und ribavirin zur behandlung chronischer hepatitis c
US6200598B1 (en) 1998-06-18 2001-03-13 Duke University Temperature-sensitive liposomal formulation
US6726925B1 (en) 1998-06-18 2004-04-27 Duke University Temperature-sensitive liposomal formulation
US6320078B1 (en) 1998-07-24 2001-11-20 Mitsui Chemicals, Inc. Method of producing benzamide derivatives
DE69925918T2 (de) 1998-07-27 2006-05-11 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Diketosäure-derivate als hemmstoffe von polymerasen
US6323180B1 (en) 1998-08-10 2001-11-27 Boehringer Ingelheim (Canada) Ltd Hepatitis C inhibitor tri-peptides
EP2415776B1 (en) 1998-08-10 2016-05-25 Novartis AG Beta-L-2'-Deoxy-Nucleosides for the Treatment of Hepatitis B
ATE284893T1 (de) 1998-10-16 2005-01-15 Mercian Corp Kristallisation von doxorubicin-hydrochlorid
FR2784892B1 (fr) 1998-10-23 2001-04-06 Smith & Nephew Kinetec Sa Attelle de mobilisation passive repliable pour membre inferieur
GB9826555D0 (en) 1998-12-03 1999-01-27 Univ Nottingham Microemulsion compositions
US6635278B1 (en) 1998-12-15 2003-10-21 Gilead Sciences, Inc. Pharmaceutical formulations
AR021876A1 (es) 1998-12-18 2002-08-07 Schering Corp Terapia de combinacion para vhc por induccion de ribavirina - interferon alfa pegilado
US6248363B1 (en) 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US6267985B1 (en) 1999-06-30 2001-07-31 Lipocine Inc. Clear oil-containing pharmaceutical compositions
US6294192B1 (en) 1999-02-26 2001-09-25 Lipocine, Inc. Triglyceride-free compositions and methods for improved delivery of hydrophobic therapeutic agents
US6383471B1 (en) 1999-04-06 2002-05-07 Lipocine, Inc. Compositions and methods for improved delivery of ionizable hydrophobic therapeutic agents
US6395300B1 (en) 1999-05-27 2002-05-28 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
US7919119B2 (en) 1999-05-27 2011-04-05 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
CN1079473C (zh) 1999-05-31 2002-02-20 李岭群 预制梁连接筋
WO2001005433A2 (en) 1999-07-14 2001-01-25 Board Of Regents, The University Of Texas System Delivery and retention of activity agents to lymph nodes
CA2380644A1 (en) 1999-07-30 2001-02-08 Basf Aktiengesellschaft 2-pyrazolin-5-ones
AU1262001A (en) 1999-11-04 2001-05-14 Biochem Pharma Inc. Method for the treatment or prevention of flaviviridae viral infection using nucleoside analogues
WO2001034618A2 (en) 1999-11-12 2001-05-17 Pharmasset Limited Synthesis of 2'-deoxy-l-nucleosides
US20060034937A1 (en) 1999-11-23 2006-02-16 Mahesh Patel Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US6495677B1 (en) 2000-02-15 2002-12-17 Kanda S. Ramasamy Nucleoside compounds
WO2001060315A2 (en) 2000-02-18 2001-08-23 Shire Biochem Inc. Method for the treatment or prevention of flavivirus infections using nucleoside analogues
JP2003532643A (ja) 2000-04-13 2003-11-05 フアーマセツト・リミテツド 肝炎ウイルス感染症を治療するための3’−または2’−ヒドロキシメチル置換ヌクレオシド誘導体
AU2001255495A1 (en) 2000-04-20 2001-11-07 Schering Corporation Ribavirin-interferon alfa combination therapy for eradicating detectable hcv-rnain patients having chronic hepatitis c infection
MY164523A (en) 2000-05-23 2017-12-29 Univ Degli Studi Cagliari Methods and compositions for treating hepatitis c virus
DE60105424T2 (de) 2000-05-26 2005-09-22 Idenix (Cayman) Ltd. Methoden zur behandlung von delta hepatitis virus infektionen mit beta-l-2' deoxy-nucleosiden
NZ547204A (en) 2000-05-26 2008-01-31 Idenix Cayman Ltd Methods and compositions for treating flaviviruses and pestiviruses
US6787526B1 (en) 2000-05-26 2004-09-07 Idenix Pharmaceuticals, Inc. Methods of treating hepatitis delta virus infection with β-L-2′-deoxy-nucleosides
FR2810322B1 (fr) 2000-06-14 2006-11-10 Pasteur Institut PRODUCTION COMBINATOIRE D'ANALOGUES DE NUCLEOTIDES ET NUCLEOTIDES (XiTP)
MY141594A (en) 2000-06-15 2010-05-14 Novirio Pharmaceuticals Ltd 3'-PRODRUGS OF 2'-DEOXY-ß-L-NUCLEOSIDES
US6815542B2 (en) 2000-06-16 2004-11-09 Ribapharm, Inc. Nucleoside compounds and uses thereof
UA72612C2 (en) 2000-07-06 2005-03-15 Pyrido[2.3-d]pyrimidine and pyrimido[4.5-d]pyrimidine nucleoside analogues, prodrugs and method for inhibiting growth of neoplastic cells
US6680068B2 (en) 2000-07-06 2004-01-20 The General Hospital Corporation Drug delivery formulations and targeting
AR029851A1 (es) 2000-07-21 2003-07-16 Dendreon Corp Nuevos peptidos como inhibidores de ns3-serina proteasa del virus de hepatitis c
AU8294101A (en) 2000-07-21 2002-02-05 Gilead Sciences Inc Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same
CN1446201A (zh) 2000-07-21 2003-10-01 先灵公司 用作丙型肝炎病毒ns3-丝氨酸蛋白酶抑制剂的新型肽
AR034127A1 (es) 2000-07-21 2004-02-04 Schering Corp Imidazolidinonas como inhibidores de ns3-serina proteasa del virus de hepatitis c, composicion farmaceutica, un metodo para su preparacion, y el uso de las mismas para la manufactura de un medicamento
EP1301527A2 (en) 2000-07-21 2003-04-16 Corvas International, Inc. Peptides as ns3-serine protease inhibitors of hepatitis c virus
US7018985B1 (en) 2000-08-21 2006-03-28 Inspire Pharmaceuticals, Inc. Composition and method for inhibiting platelet aggregation
AR039558A1 (es) 2000-08-21 2005-02-23 Inspire Pharmaceuticals Inc Composiciones y metodo para el tratamiento de glaucoma o hipertension ocular
US6897201B2 (en) 2000-08-21 2005-05-24 Inspire Pharmaceuticals, Inc. Compositions and methods for the treatment of glaucoma or ocular hypertension
US20030008841A1 (en) 2000-08-30 2003-01-09 Rene Devos Anti-HCV nucleoside derivatives
KR20090089922A (ko) 2000-10-18 2009-08-24 파마셋 인코포레이티드 바이러스 감염 및 비정상적인 세포 증식의 치료를 위한 변형된 뉴클레오시드
BR0114636A (pt) 2000-10-18 2004-02-10 Schering Corp Terapia combinada para hcv de interferon-alfa peguilado/ribavirina
US6555677B2 (en) 2000-10-31 2003-04-29 Merck & Co., Inc. Phase transfer catalyzed glycosidation of an indolocarbazole
CA2429359A1 (en) 2000-11-20 2002-08-08 Bristol-Myers Squibb Company Hepatitis c tripeptide inhibitors
DE20019797U1 (de) 2000-11-21 2001-04-05 MALA Verschlußsysteme GmbH, 36448 Schweina Verschlußkappe
ATE430166T1 (de) 2000-12-12 2009-05-15 Schering Corp Diarylrest entfassende peptide als inhibitoren des ns-3 serinproteases von hepatitis c virus
US6727366B2 (en) 2000-12-13 2004-04-27 Bristol-Myers Squibb Pharma Company Imidazolidinones and their related derivatives as hepatitis C virus NS3 protease inhibitors
AU2002230763A1 (en) 2000-12-13 2008-01-03 Bristol-Myers Squibb Pharma Company Inhibitors of hepatitis c virus ns3 protease
US6750396B2 (en) 2000-12-15 2004-06-15 Di/Dt, Inc. I-channel surface-mount connector
CA2429352A1 (en) 2000-12-15 2002-06-20 Lieven Stuyver Antiviral agents for treatment of flaviviridae infections
US7105499B2 (en) 2001-01-22 2006-09-12 Merck & Co., Inc. Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
CA2434386C (en) 2001-01-22 2006-12-05 Merck & Co., Inc. Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
MY129350A (en) 2001-04-25 2007-03-30 Bristol Myers Squibb Co Aripiprazole oral solution
GB0112617D0 (en) 2001-05-23 2001-07-18 Hoffmann La Roche Antiviral nucleoside derivatives
GB0114286D0 (en) 2001-06-12 2001-08-01 Hoffmann La Roche Nucleoside Derivatives
WO2003000713A1 (en) 2001-06-21 2003-01-03 Glaxo Group Limited Nucleoside compounds in hcv
ES2279879T3 (es) 2001-07-11 2007-09-01 Vertex Pharmaceuticals Incorporated Inhibidores biciclicos puente de la serina proteasa.
EP2335700A1 (en) 2001-07-25 2011-06-22 Boehringer Ingelheim (Canada) Ltd. Hepatitis C virus polymerase inhibitors with a heterobicylic structure
DE60226447D1 (de) 2001-08-02 2008-06-19 Ilex Oncology Inc Verfahren zur herstellung von purinnukleosiden
US6962991B2 (en) 2001-09-12 2005-11-08 Epoch Biosciences, Inc. Process for the synthesis of pyrazolopyrimidines
WO2003022861A1 (en) 2001-09-13 2003-03-20 Bristol-Myers Squibb Company Process for the preparation of rebeccamycin and analogs thereof
WO2003024461A1 (en) 2001-09-20 2003-03-27 Schering Corporation Hcv combination therapy
WO2003026589A2 (en) 2001-09-28 2003-04-03 Idenix (Cayman) Limited Methods and compositions for treating hepatitis c virus using 4'-modified nucleosides
ES2289161T3 (es) 2001-11-02 2008-02-01 Glaxo Group Limited Derivados de 4-(heteroaril de 6 miembros)-acil pirrolidina como inhibidores de hcv.
AU2002359518A1 (en) 2001-11-27 2003-06-10 Bristol-Myers Squibb Company Efavirenz tablet formulation having unique biopharmaceutical characteristics
GB0129945D0 (en) 2001-12-13 2002-02-06 Mrc Technology Ltd Chemical compounds
CA2470255C (en) 2001-12-14 2012-01-17 Kyoichi A. Watanabe N4-acylcytosine nucleosides for treatment of viral infections
WO2003051899A1 (en) 2001-12-17 2003-06-26 Ribapharm Inc. Deazapurine nucleoside libraries and compounds
CA2470521A1 (en) 2001-12-21 2003-07-10 Micrologix Biotech Inc. Anti-viral 7-deaza l-nucleosides
WO2003062256A1 (en) 2002-01-17 2003-07-31 Ribapharm Inc. 2'-beta-modified-6-substituted adenosine analogs and their use as antiviral agents
US7070801B2 (en) 2002-01-30 2006-07-04 National Institute Of Advanced Industrial Science And Technology Sugar-modified liposome and products comprising the liposome
US6642204B2 (en) 2002-02-01 2003-11-04 Boehringer Ingelheim International Gmbh Hepatitis C inhibitor tri-peptides
CA2370396A1 (en) 2002-02-01 2003-08-01 Boehringer Ingelheim (Canada) Ltd. Hepatitis c inhibitor tri-peptides
EP1476565A2 (en) 2002-02-08 2004-11-17 Novartis AG Method for screening for compounds having hdac inhibitory activity
WO2003068244A1 (en) 2002-02-13 2003-08-21 Merck & Co., Inc. Methods of inhibiting orthopoxvirus replication with nucleoside compounds
JP2005524662A (ja) 2002-02-28 2005-08-18 ビオタ インコーポレーティッド ヌクレオシド5’−一リン酸模倣物およびこれらのプロドラッグ
WO2003072757A2 (en) 2002-02-28 2003-09-04 Biota, Inc. Nucleotide mimics and their prodrugs
AU2003231766A1 (en) 2002-04-26 2003-11-10 Gilead Sciences, Inc. Non nucleoside reverse transcriptase inhibitors
WO2003100017A2 (en) 2002-05-24 2003-12-04 Isis Pharmaceuticals, Inc. Oligonucleotides having modified nucleoside units
WO2003106477A1 (en) 2002-06-01 2003-12-24 Isis Pharmaceuticals, Inc. Oligomeric compounds that include carbocyclic nucleosides and their use in gene modulation
WO2003101993A1 (en) 2002-06-04 2003-12-11 Neogenesis Pharmaceuticals, Inc. Pyrazolo` 1,5a! pyrimidine compounds as antiviral agents
US7906491B2 (en) 2002-06-07 2011-03-15 Univisitair Medisch Centrum Utrecht Compounds for modulating the activity of exchange proteins directly activated by cAMP (Epacs)
CA2488842A1 (en) 2002-06-17 2003-12-24 Merck & Co., Inc. Carbocyclic nucleoside analogs as rna-antivirals
US20070004669A1 (en) 2002-06-21 2007-01-04 Carroll Steven S Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
WO2004003138A2 (en) 2002-06-27 2004-01-08 Merck & Co., Inc. Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
PL374792A1 (en) 2002-06-28 2005-10-31 Idenix (Cayman) Limited 2' and 3'-nucleoside prodrugs for treating flaviviridae infections
US7456155B2 (en) 2002-06-28 2008-11-25 Idenix Pharmaceuticals, Inc. 2′-C-methyl-3′-O-L-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections
PT1523489E (pt) 2002-06-28 2014-06-24 Centre Nat Rech Scient Profármacos de nucleósido modificado em 2' e 3' para tratamento de infecções por flaviridae
US7608600B2 (en) 2002-06-28 2009-10-27 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
WO2004002940A1 (en) 2002-07-01 2004-01-08 Pharmacia & Upjohn Company Inhibitors of hcv ns5b polymerase
US7041690B2 (en) 2002-07-01 2006-05-09 Pharmacia & Upjohn Company, Llc Inhibitors of HCV NS5B polymerase
US6973905B2 (en) 2002-07-01 2005-12-13 Cinetic Automation Corporation Valve lash adjustment apparatus and method
JP2005533108A (ja) 2002-07-16 2005-11-04 メルク エンド カムパニー インコーポレーテッド Rna依存性rnaウイルスポリメラーゼの阻害剤としてのヌクレオシド誘導体
US7323449B2 (en) 2002-07-24 2008-01-29 Merck & Co., Inc. Thionucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
EP1572709A3 (en) 2002-07-24 2005-11-23 PTC Therapeutics, Inc. Use of nucleoside compounds for nonsense suppression and the treatment of genetic diseases
CA2492607A1 (en) 2002-07-25 2004-02-05 Micrologix Biotech Inc. Anti-viral 7-deaza d-nucleosides and uses thereof
WO2004014852A2 (en) 2002-08-12 2004-02-19 Bristol-Myers Squibb Company Iminothiazolidinones as inhibitors of hcv replication
WO2004024095A2 (en) 2002-09-13 2004-03-25 Idenix (Cayman) Limited ß-L-2'-DEOXYNUCLEOSIDES FOR THE TREATMENT OF RESISTANT HBV STRAINS AND COMBINATION THERAPIES
AU2003287160A1 (en) 2002-10-15 2004-05-04 Rigel Pharmaceuticals, Inc. Substituted indoles and their use as hcv inhibitors
US20040229840A1 (en) 2002-10-29 2004-11-18 Balkrishen Bhat Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
KR20050065661A (ko) 2002-11-01 2005-06-29 비로파마 인코포레이티드 벤조푸란 화합물, 조성물 및 c형 간염 바이러스 감염 및관련 질병의 치료 및 예방 방법
HUE033832T2 (en) 2002-11-15 2018-01-29 Idenix Pharmaceuticals Llc 2'-methyl nucleosides in combination with interferon and Flaviviridae mutation
TWI332507B (en) 2002-11-19 2010-11-01 Hoffmann La Roche Antiviral nucleoside derivatives
AU2003296601A1 (en) 2002-12-10 2004-06-30 F. Hoffmann-La Roche Ag Antiviral nucleoside derivatives
PL377287A1 (pl) 2002-12-12 2006-01-23 Idenix (Cayman) Limited Sposób wytwarzania 2'-rozgałęzionych nukleozydów
CN100335492C (zh) 2002-12-23 2007-09-05 埃迪尼克斯(开曼)有限公司 生产3’-核苷前体药物的方法
JP3658392B2 (ja) 2002-12-27 2005-06-08 キヤノン電子株式会社 信号出力装置及び信号出力装置を備えたシート材処理装置
AU2004206827A1 (en) 2003-01-14 2004-08-05 Gilead Sciences, Inc. Compositions and methods for combination antiviral therapy
US7223785B2 (en) 2003-01-22 2007-05-29 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
AU2003225705A1 (en) 2003-03-07 2004-09-30 Ribapharm Inc. Cytidine analogs and methods of use
EP1745573A4 (en) 2003-03-20 2010-05-26 Microbiol Quimica Farmaceutica PROCESS FOR PREPARING 2-DEOXY-BETA-L-NUCLEOSIDES
US20040202993A1 (en) 2003-04-10 2004-10-14 Poo Ramon E. Apparatus and method for organ preservation and transportation
WO2004094452A2 (en) 2003-04-16 2004-11-04 Bristol-Myers Squibb Company Macrocyclic isoquinoline peptide inhibitors of hepatitis c virus
CA2522845A1 (en) 2003-04-25 2004-11-11 Gilead Sciences, Inc. Kinase inhibitor phosphonate conjugates
US7407965B2 (en) 2003-04-25 2008-08-05 Gilead Sciences, Inc. Phosphonate analogs for treating metabolic diseases
WO2005002626A2 (en) 2003-04-25 2005-01-13 Gilead Sciences, Inc. Therapeutic phosphonate compounds
WO2004096235A2 (en) 2003-04-25 2004-11-11 Gilead Sciences, Inc. Anti-cancer phosphonate analogs
US20050261237A1 (en) 2003-04-25 2005-11-24 Boojamra Constantine G Nucleoside phosphonate analogs
EP1628685B1 (en) 2003-04-25 2010-12-08 Gilead Sciences, Inc. Antiviral phosphonate analogs
US7470724B2 (en) 2003-04-25 2008-12-30 Gilead Sciences, Inc. Phosphonate compounds having immuno-modulatory activity
US7452901B2 (en) 2003-04-25 2008-11-18 Gilead Sciences, Inc. Anti-cancer phosphonate analogs
US20040259934A1 (en) 2003-05-01 2004-12-23 Olsen David B. Inhibiting Coronaviridae viral replication and treating Coronaviridae viral infection with nucleoside compounds
WO2004096210A1 (en) 2003-05-01 2004-11-11 Glaxo Group Limited Acylated indoline and tetrahydroquinoline derivatives as hcv inhibitors
US20040229839A1 (en) 2003-05-14 2004-11-18 Biocryst Pharmaceuticals, Inc. Substituted nucleosides, preparation thereof and use as inhibitors of RNA viral polymerases
EP1656093A2 (en) 2003-05-14 2006-05-17 Idenix (Cayman) Limited Nucleosides for treatment of infection by corona viruses, toga viruses and picorna viruses
WO2004106356A1 (en) 2003-05-27 2004-12-09 Syddansk Universitet Functionalized nucleotide derivatives
PL3521297T3 (pl) 2003-05-30 2022-04-04 Gilead Pharmasset Llc Zmodyfikowane fluorowane analogi nukleozydów
US7507859B2 (en) 2003-06-16 2009-03-24 Fifth Base Llc Functional synthetic molecules and macromolecules for gene delivery
CA2528294A1 (en) 2003-06-19 2005-01-06 F. Hoffmann-La Roche Ag Processes for preparing 4'-azido nucleoside derivatives
DE10331239A1 (de) 2003-07-10 2005-02-03 Robert Bosch Gmbh Überwachungselektronik für einen Elektromotor und Verfahren zur Überwachung eines Elektromotors
GB0317009D0 (en) 2003-07-21 2003-08-27 Univ Cardiff Chemical compounds
WO2005009418A2 (en) 2003-07-25 2005-02-03 Idenix (Cayman) Limited Purine nucleoside analogues for treating diseases caused by flaviviridae including hepatitis c
WO2005021568A2 (en) 2003-08-27 2005-03-10 Biota, Inc. Novel tricyclic nucleosides or nucleotides as therapeutic agents
WO2005028502A1 (en) 2003-09-18 2005-03-31 Vertex Pharmaceuticals, Incorporated Inhibitors of serine proteases, particularly hcv ns3-ns4a protease
US20050148534A1 (en) 2003-09-22 2005-07-07 Castellino Angelo J. Small molecule compositions and methods for increasing drug efficiency using compositions thereof
RS20110578A3 (en) 2003-10-14 2016-02-29 F. Hoffmann-La Roche Ltd MACROCYCLIC CARBOXYLIC ACIDS AND ACYLSULPHONAMIDES AS HCV REPLICATION INHIBITORS
US7491794B2 (en) 2003-10-14 2009-02-17 Intermune, Inc. Macrocyclic compounds as inhibitors of viral replication
AU2004285923A1 (en) * 2003-10-27 2005-05-12 Genelabs Technologies, Inc. Nucleoside compounds for treating viral infections
US7026339B2 (en) 2003-11-07 2006-04-11 Fan Yang Inhibitors of HCV NS5B polymerase
TW200528459A (en) 2004-01-06 2005-09-01 Achillion Pharmaceuticals Inc Azabenzofuran substituted thioureas; inhibitors of viral replication
US20070155731A1 (en) 2004-01-28 2007-07-05 Gabor Butora Aminocyclopentyl pyridopyrazinone modulators of chemokine receptor activity
CA2557075A1 (en) 2004-02-25 2005-09-09 Government Of The United States Of America, As Represented By The Secret Ary, Department Of Health And Human Services Office Of Technology Transf Methylation inhibitor compounds
CN100384237C (zh) 2004-02-28 2008-04-23 鸿富锦精密工业(深圳)有限公司 音量调整装置及方法
WO2005087788A2 (en) 2004-03-04 2005-09-22 The Regents Of The University Of California Methods for preparation of nucleoside phosphonate esters
US8759317B2 (en) 2004-03-18 2014-06-24 University Of South Florida Method of treatment of cancer using guanosine 3′, 5′ cyclic monophosphate (cyclic GMP)
AP2006003763A0 (en) 2004-03-30 2006-10-31 Intermune Inc Macrocyclic compounds as inhibitors of viral replication
GB0408995D0 (en) 2004-04-22 2004-05-26 Glaxo Group Ltd Compounds
US7534767B2 (en) 2004-06-15 2009-05-19 Merck & Co., Inc. C-purine nucleoside analogs as inhibitors of RNA-dependent RNA viral polymerase
CA2571675A1 (en) 2004-06-23 2006-01-05 Idenix (Cayman) Limited 5-aza-7-deazapurine derivatives for treating infections with flaviviridae
US20070265222A1 (en) 2004-06-24 2007-11-15 Maccoss Malcolm Nucleoside Aryl Phosphoramidates for the Treatment of Rna-Dependent Rna Viral Infection
US7217523B2 (en) 2004-07-02 2007-05-15 Regents Of The University Of Minnesota Nucleoside phosphoramidates and nucleoside phosphoramidases
CN101023094B (zh) 2004-07-21 2011-05-18 法莫赛特股份有限公司 烷基取代的2-脱氧-2-氟代-d-呋喃核糖基嘧啶和嘌呤及其衍生物的制备
KR101235548B1 (ko) * 2004-07-21 2013-02-21 길리어드 파마셋 엘엘씨 2'-데옥시-2'-플루오로-2'-C-메틸-β-D-리보퓨라노실 뉴클레오사이드의 제조 방법
ME03423B (me) 2004-07-27 2020-01-20 Gilead Sciences Inc Fosfonatni analozi jedinjenja hiv inhibitora
US7153848B2 (en) 2004-08-09 2006-12-26 Bristol-Myers Squibb Company Inhibitors of HCV replication
US7348425B2 (en) 2004-08-09 2008-03-25 Bristol-Myers Squibb Company Inhibitors of HCV replication
CA2577526A1 (en) 2004-08-23 2006-03-02 Joseph Armstrong Martin Antiviral 4'-azido-nucleosides
BRPI0514591A (pt) 2004-08-23 2008-06-17 Hoffmann La Roche compostos antivirais heterocìclicos
WO2006029081A2 (en) 2004-09-02 2006-03-16 Neopharm, Inc. Nucleoside-lipid conjugates, their method of preparation and uses thereof
WO2006031725A2 (en) 2004-09-14 2006-03-23 Pharmasset, Inc. Preparation of 2'­fluoro-2'- alkyl- substituted or other optionally substituted ribofuranosyl pyrimidines and purines and their derivatives
JP2008514639A (ja) 2004-09-24 2008-05-08 イデニクス(ケイマン)リミテツド フラビウイルス、ペスチウイルス及びヘパシウイルスの感染症を治療するための方法及び組成物
EP1799218A1 (en) 2004-09-30 2007-06-27 Tibotec Pharmaceuticals Ltd. Hcv inhibiting bi-cyclic pyrimidines
CA2584367A1 (en) 2004-10-21 2006-06-22 Merck & Co., Inc. Fluorinated pyrrolo[2,3-d]pyrimidine nucleosides for the treatment of rna-dependent rna viral infection
US8133870B2 (en) 2004-10-29 2012-03-13 Biocryst Pharmaceuticals, Inc. Therapeutic furopyrimidines and thienopyrimidines
CA2589935A1 (en) * 2004-12-09 2006-06-15 Regents Of The University Of Minnesota Nucleosides with antiviral and anticancer activity
GB0427123D0 (en) 2004-12-11 2005-01-12 Apv Systems Ltd Food item coating apparatus and method
WO2006065590A2 (en) 2004-12-16 2006-06-22 Xtl Biopharmaceuticals Inc. Pyridine and pyrimidine antiviral compositions
WO2006063717A2 (en) 2004-12-16 2006-06-22 Febit Biotech Gmbh Polymerase-independent analysis of the sequence of polynucleotides
WO2006093801A1 (en) 2005-02-25 2006-09-08 Abbott Laboratories Thiadiazine derivatives useful as anti-infective agents
EA200701849A1 (ru) 2005-02-28 2008-02-28 Дженелабс Текнолоджис, Инк. Пролекарственные соединения трициклических нуклеозидов, фармацевтическая композиция на их основе и способ лечения и/или ингибирования вирусной инфекции у млекопитающего
US8802840B2 (en) 2005-03-08 2014-08-12 Biota Scientific Management Pty Ltd. Bicyclic nucleosides and nucleotides as therapeutic agents
GB0505781D0 (en) 2005-03-21 2005-04-27 Univ Cardiff Chemical compounds
CA2602294C (en) 2005-03-25 2015-02-24 Tibotec Pharmaceuticals Ltd. Heterobicylic inhibitors of hvc
AR056327A1 (es) * 2005-04-25 2007-10-03 Genelabs Tech Inc Compuestos de nucleosidos para el tratamiento de infecciones virales
WO2006119347A1 (en) 2005-05-02 2006-11-09 Pharmaessentia Corp. STEREOSELECTIVE SYNTHESIS OF β-NUCLEOSIDES
WO2006121820A1 (en) * 2005-05-05 2006-11-16 Valeant Research & Development Phosphoramidate prodrugs for treatment of viral infection
AR054122A1 (es) 2005-05-12 2007-06-06 Tibotec Pharm Ltd Pirido[2,3-d]pirimidas utiles como inhibidores de hcv, y metodos para la preparacion de las mismas
AR056347A1 (es) 2005-05-12 2007-10-03 Tibotec Pharm Ltd Uso de compuestos de pteridina para fabricar medicamentos y composiciones farmaceuticas
WO2007027248A2 (en) * 2005-05-16 2007-03-08 Valeant Research & Development 3', 5' - cyclic nucleoside analogues for treatment of hcv
US8143288B2 (en) 2005-06-06 2012-03-27 Bristol-Myers Squibb Company Inhibitors of HCV replication
TWI375560B (en) 2005-06-13 2012-11-01 Gilead Sciences Inc Composition comprising dry granulated emtricitabine and tenofovir df and method for making the same
TWI471145B (zh) 2005-06-13 2015-02-01 Bristol Myers Squibb & Gilead Sciences Llc 單一式藥學劑量型
EP1893625A4 (en) 2005-06-22 2012-12-26 Biocryst Pharm Inc PROCESS FOR THE PREPARATION OF 9-DEAZAPURINE DERIVATIVES
US20060293752A1 (en) 2005-06-27 2006-12-28 Missoum Moumene Intervertebral disc prosthesis and associated methods
CN102816170A (zh) 2005-07-25 2012-12-12 因特蒙公司 C型肝炎病毒复制的新颖大环抑制剂
CN101277682B (zh) 2005-07-28 2015-07-29 Isp投资有限公司 无定形依发韦仑及其生产
WO2007013047A2 (en) 2005-07-29 2007-02-01 Ranbaxy Laboratories Limited Water-dispersible anti-retroviral pharmaceutical compositions
AR054882A1 (es) 2005-07-29 2007-07-25 Tibotec Pharm Ltd Inhibidores macrociclicos del virus de la hepatitis c
PE20070211A1 (es) 2005-07-29 2007-05-12 Medivir Ab Compuestos macrociclicos como inhibidores del virus de hepatitis c
SI1912997T1 (sl) 2005-07-29 2012-02-29 Tibotec Pharm Ltd Makrociklični inhibitorji virusa hepatitis C
CN101273027B (zh) 2005-07-29 2015-12-02 爱尔兰詹森科学公司 丙型肝炎病毒的大环抑制剂
DK1912996T3 (da) 2005-07-29 2012-09-17 Janssen R & D Ireland Makrocykliske inhibitorer af hepatitis C-virus
CA2618335C (en) 2005-08-15 2015-03-31 F.Hoffmann-La Roche Ag Antiviral phosphoramidates of 4'-substituted pronucleotides
GB0519478D0 (en) 2005-09-23 2005-11-02 Glaxo Group Ltd Compounds
GB0519488D0 (en) 2005-09-23 2005-11-02 Glaxo Group Ltd Compounds
CA2623522C (en) 2005-09-26 2015-12-08 Pharmasset, Inc. Modified 4'-nucleosides as antiviral agents
US7668209B2 (en) 2005-10-05 2010-02-23 Lg Electronics Inc. Method of processing traffic information and digital broadcast system
EP1957510A1 (en) 2005-12-09 2008-08-20 F.Hoffmann-La Roche Ag Antiviral nucleosides
BRPI0619733A2 (pt) 2005-12-12 2011-10-11 Genelabs Tech Inc compostos antivirais de n-(anel aromático de 6 membros)-amido
NZ544187A (en) 2005-12-15 2008-07-31 Ind Res Ltd Deazapurine analogs of 1'-aza-l-nucleosides
AU2006330924B2 (en) 2005-12-21 2012-03-15 Abbvie Inc. Anti-viral compounds
GB0602046D0 (en) 2006-02-01 2006-03-15 Smithkline Beecham Corp Compounds
WO2007092000A1 (en) 2006-02-06 2007-08-16 Bristol-Myers Squibb Company Inhibitors of hcv replication
JP2009526850A (ja) 2006-02-14 2009-07-23 メルク エンド カムパニー インコーポレーテッド Rna依存性rnaウイルス感染を治療するためのヌクレオシドアリールホスホルアミデート
ATE532784T1 (de) 2006-02-17 2011-11-15 Pfizer Ltd 3-deazapurinderivate als tlr7-modulatoren
US8895531B2 (en) 2006-03-23 2014-11-25 Rfs Pharma Llc 2′-fluoronucleoside phosphonates as antiviral agents
ATE469155T1 (de) 2006-05-25 2010-06-15 Bristol Myers Squibb Co Cyclopropyl-fusionierte indolbenzazepin-hcv-ns5b- hemmer
KR101636221B1 (ko) 2006-07-07 2016-07-04 길리애드 사이언시즈, 인코포레이티드 치료제의 약동학 특성의 모듈레이터
EP2043613A1 (en) 2006-07-14 2009-04-08 Fmc Corporation Solid form
EP1881001A1 (en) 2006-07-20 2008-01-23 Tibotec Pharmaceuticals Ltd. HCV NS-3 serine protease inhibitors
TW200815384A (en) 2006-08-25 2008-04-01 Viropharma Inc Combination therapy method for treating hepatitis C virus infection and pharmaceutical compositions for use therein
CA2666098C (en) 2006-10-10 2012-09-25 Steven D. Axt Preparation of nucleosides ribofuranosyl pyrimidines
PL216525B1 (pl) 2006-10-17 2014-04-30 Ct Badań Molekularnych I Makromolekularnych Polskiej Akademii Nauk 5'-O-[(N-acylo)amidoditiofosforano] nukleozydy oraz sposób wytwarzania 5'-O-[(N-acylo)amidofosforano]-,5'-O-[(N-acylo)amidotiofosforano]-, 5'-O-[(N-acylo)amidoditiofosforano]nukleozydów
GB0623493D0 (en) * 2006-11-24 2007-01-03 Univ Cardiff Chemical compounds
CA2672613A1 (en) 2006-12-20 2008-07-03 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Nucleoside cyclic phosphoramidates for the treatment of rna-dependent rna viral infection
US20080261913A1 (en) 2006-12-28 2008-10-23 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of liver disorders
US8071568B2 (en) 2007-01-05 2011-12-06 Merck Sharp & Dohme Corp. Nucleoside aryl phosphoramidates for the treatment of RNA-dependent RNA viral infection
JP5513135B2 (ja) 2007-03-19 2014-06-04 カスケード プロドラッグ インコーポレイテッド マンニッヒ塩基n−オキシド薬物
US7964580B2 (en) 2007-03-30 2011-06-21 Pharmasset, Inc. Nucleoside phosphoramidate prodrugs
GB0709791D0 (en) * 2007-05-22 2007-06-27 Angeletti P Ist Richerche Bio Antiviral agents
CN100532388C (zh) 2007-07-16 2009-08-26 郑州大学 2’-氟-4’-取代-核苷类似物、其制备方法及应用
CN101108870A (zh) * 2007-08-03 2008-01-23 冷一欣 核苷磷酸酯类化合物及制备方法和应用
US20100256098A1 (en) 2007-08-31 2010-10-07 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services Compounds for inhibiting wip1, prodrugs and compositions thereof, and related methods
JO2778B1 (en) 2007-10-16 2014-03-15 ايساي انك Certain vehicles, installations and methods
JP5238939B2 (ja) 2007-11-07 2013-07-17 三菱化学株式会社 長繊維強化複合樹脂組成物および成形品
US20090318380A1 (en) 2007-11-20 2009-12-24 Pharmasset, Inc. 2',4'-substituted nucleosides as antiviral agents
US20090176732A1 (en) 2007-12-21 2009-07-09 Alios Biopharma Inc. Protected nucleotide analogs
US8227431B2 (en) 2008-03-17 2012-07-24 Hetero Drugs Limited Nucleoside derivatives
WO2009142822A2 (en) 2008-03-26 2009-11-26 Alnylam Pharmaceuticals, Inc. 2-f modified rna interference agents
CA2722308C (en) 2008-04-15 2024-02-27 Rfs Pharma, Llc. Nucleoside derivatives for treatment of caliciviridae infections, including norovirus infections
SI2937350T1 (en) 2008-04-23 2018-05-31 Gilead Sciences, Inc. 1'-SUBSTITUTED CARBON-NUCLEOUS ANALOGS FOR ANTIVIRUSAL TREATMENT
US7964560B2 (en) 2008-05-29 2011-06-21 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8173621B2 (en) * 2008-06-11 2012-05-08 Gilead Pharmasset Llc Nucleoside cyclicphosphates
TWI480272B (zh) 2008-10-09 2015-04-11 Anadys Pharmaceuticals Inc 藉由5,6-二氫-1h-吡啶-2-酮與一或多種其他抗病毒化合物的組合物抑制c型肝炎病毒的方法
EP2376514A2 (en) 2008-12-23 2011-10-19 Pharmasset, Inc. Nucleoside analogs
CL2009002206A1 (es) 2008-12-23 2011-08-26 Gilead Pharmasset Llc Compuestos derivados de pirrolo -(2-3-d]-pirimidin-7(6h)-tetrahidrofuran-2-il fosfonamidato, composicion farmaceutica; y su uso en el tratamiento de enfermedades virales.
NZ593648A (en) 2008-12-23 2013-09-27 Gilead Pharmasset Llc Nucleoside phosphoramidates
AU2010203660A1 (en) 2009-01-07 2011-07-28 Scynexis, Inc Combination of a cyclosporine derivative and nucleosides for treating HCV
WO2010081082A2 (en) 2009-01-09 2010-07-15 University College Of Cardiff Consultants Limited Phosphoramidate derivatives of guanosine nucleoside compounds for treatment of viral infections
JO3027B1 (ar) 2009-05-14 2016-09-05 Janssen Products Lp نيوكليوسيدات يوراسيل سبيرواوكسيتان
TWI583692B (zh) 2009-05-20 2017-05-21 基利法瑪席特有限責任公司 核苷磷醯胺
US8618076B2 (en) 2009-05-20 2013-12-31 Gilead Pharmasset Llc Nucleoside phosphoramidates
US8719767B2 (en) 2011-03-31 2014-05-06 Commvault Systems, Inc. Utilizing snapshots to provide builds to developer computing devices
RS55699B1 (sr) 2009-09-21 2017-07-31 Gilead Sciences 2' -fluoro supstituisani karba-nukleozidni analozi zaantiviralno lečenje
US7973013B2 (en) 2009-09-21 2011-07-05 Gilead Sciences, Inc. 2'-fluoro substituted carba-nucleoside analogs for antiviral treatment
KR101715981B1 (ko) 2010-03-31 2017-03-13 길리애드 파마셋 엘엘씨 뉴클레오사이드 포스포르아미데이트
PL3290428T3 (pl) 2010-03-31 2022-02-07 Gilead Pharmasset Llc Tabletka zawierająca krystaliczny (S)-2-(((S)-(((2R,3R,4R,5R)-5-(2,4-diokso-3,4-dihydropirymidyn-1(2H)-ylo)-4-fluoro-3-hydroksy-4-metylotetrahydrofuran-2-ylo)metoksy)(fenoksy)fosforylo)amino)propanian izopropylu
US8841275B2 (en) 2010-11-30 2014-09-23 Gilead Pharmasset Llc 2′-spiro-nucleosides and derivatives thereof useful for treating hepatitis C virus and dengue virus infections

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010075554A1 *

Also Published As

Publication number Publication date
WO2010075554A1 (en) 2010-07-01
CL2009002206A1 (es) 2011-08-26
AU2009329872A1 (en) 2011-07-14
US20120316327A1 (en) 2012-12-13
TW201031675A (en) 2010-09-01
CN102325783A (zh) 2012-01-18
IL213701A0 (en) 2011-07-31
CO6400228A2 (es) 2012-03-15
NZ593647A (en) 2013-08-30
EA019295B1 (ru) 2014-02-28
SG194404A1 (en) 2013-11-29
BRPI0923815A2 (pt) 2015-07-14
US20100279973A1 (en) 2010-11-04
SG172363A1 (en) 2011-07-28
JP2015180628A (ja) 2015-10-15
JP2015227337A (ja) 2015-12-17
JP2013082728A (ja) 2013-05-09
CA2748016A1 (en) 2010-07-01
JP5793084B2 (ja) 2015-10-14
AR074977A1 (es) 2011-03-02
JP2012513479A (ja) 2012-06-14
EP2671888A1 (en) 2013-12-11
PA8855801A1 (es) 2010-07-27
EA201100932A1 (ru) 2012-02-28
US8716263B2 (en) 2014-05-06
US9045520B2 (en) 2015-06-02
MX2011006892A (es) 2011-07-20
AU2009329872B2 (en) 2016-07-07
KR20110104074A (ko) 2011-09-21

Similar Documents

Publication Publication Date Title
AU2009329872B2 (en) Synthesis of purine nucleosides
EP2313422B1 (en) Nucleoside cyclicphosphates
EP2826784B1 (en) Composition comprising a HCV NS3 protease inhibitor and a phosphoramidate prodrug of 2'-deoxy-2'-fluoro-2'-C-methyluridine nucleoside
KR20050109918A (ko) 2'-분지형 뉴클레오시드의 제조 방법
KR20130064064A (ko) 인을 함유하는 활성물의 입체선택성 합성
EP3252066A1 (en) Hcv polymerase inhibitors
JP2006514038A (ja) 3’−ヌクレオシドプロドラッグの生産方法
US7595390B2 (en) Industrially scalable nucleoside synthesis
WO2006122207A1 (en) 6-hydrazinopurine 2'-methyl ribonucleosides and nucleotides for treatment of hcv

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GILEAD PHARMASSET LLC

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GILEAD PHARMASSET LLC

17Q First examination report despatched

Effective date: 20130430

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131112