EP0316214B1 - Elektronenquelle mit Mikrospitzen-Emissionskathoden und diese Quelle benutzende Bildwiedergabe-Anordnung, die auf durch Feldemission angeregter Kathodolumineszenz beruht - Google Patents

Elektronenquelle mit Mikrospitzen-Emissionskathoden und diese Quelle benutzende Bildwiedergabe-Anordnung, die auf durch Feldemission angeregter Kathodolumineszenz beruht Download PDF

Info

Publication number
EP0316214B1
EP0316214B1 EP88402742A EP88402742A EP0316214B1 EP 0316214 B1 EP0316214 B1 EP 0316214B1 EP 88402742 A EP88402742 A EP 88402742A EP 88402742 A EP88402742 A EP 88402742A EP 0316214 B1 EP0316214 B1 EP 0316214B1
Authority
EP
European Patent Office
Prior art keywords
source
cathode
layer
conductive layer
resistive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88402742A
Other languages
English (en)
French (fr)
Other versions
EP0316214A1 (de
Inventor
Michel Borel
Jean-François Boronat
Robert Meyer
Philippe Rambaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0316214A1 publication Critical patent/EP0316214A1/de
Application granted granted Critical
Publication of EP0316214B1 publication Critical patent/EP0316214B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/04Electrodes; Screens
    • H01J17/06Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/319Circuit elements associated with the emitters by direct integration

Definitions

  • the present invention relates to an electron source with microtip emissive cathodes and a cathodoluminescence display device excited by field emission, using this source.
  • the invention applies in particular to the production of simple displays, allowing the visualization of still images, and to the production of complex multiplexed screens, allowing the visualization of animated images, for example of the type of television images.
  • the electron source used in this known device is schematically represented in FIG. 1.
  • this source has a matrix structure and optionally comprises, on a substrate 2, for example made of glass, a thin layer of silica 4.
  • a substrate 2 for example made of glass
  • silica layer 4 On this silica layer 4 is formed a plurality of electrodes 5 in the form of parallel conductive strips or layers 6, playing the role of cathode conductors and constituting the columns of the matrix structure.
  • These cathode conductors 5 are covered with an electrically insulating layer 8, for example made of silica, except on the connection ends 19 of these conductors 5, ends provided for the polarization of said conductors.
  • an electrically insulating layer 8 for example made of silica, except on the connection ends 19 of these conductors 5, ends provided for the polarization of said conductors.
  • electrodes 10 Above this layer 8 are formed a plurality of electrodes 10 also in the form of parallel conductive strips. These electrodes 10 are perpendicular to
  • the known source also includes a plurality of elementary electron emitters (microtips), a copy of which 12 is schematically represented in FIG. 2: in each of the crossing zones of the cathode conductors 5 and of the grids 10, the layer 6 of the cathode conductor 5 corresponding to this zone is provided with a plurality of microtips 12, for example made of molybdenum and the grid 10 corresponding to said zone has an opening 14 facing each of the microtips.
  • Each of these latter conforms substantially to the shape of a cone the base of which rests on the layer 6 and the top of which is situated at the level of the corresponding opening 14.
  • the insulating layer 8 is also provided with openings 15 allowing the passage of the microtips 12.
  • the grids as well as the insulating layer 8 are provided with openings elsewhere than in the crossing zones, a microtip being associated with each of these openings, due to the method described in the patent application cited above, due to ease of manufacture.
  • each layer 6 has a thickness of the order of 0.2 micrometer
  • the electrically insulating layer 8 has a thickness of the order of 1 micrometer
  • each grid has a thickness of the order of 0.4 micrometer
  • each opening 14 has a diameter of the order of 1.3 micrometer
  • the base of each microtip has a diameter of the order of 1.1 micrometer.
  • the known device further comprises a screen E comprising a cathodoluminescent anode 16 disposed opposite the grids, parallel to the latter.
  • control means 20 When the known device is put under vacuum, by carrying by control means 20 a grid at a potential for example of the order of 100 volts relative to a cathode conductor, the microtips located in the crossing zone of this grid and of this cathode conductor emit electrons.
  • the anode 16 is advantageously brought by these means 20 to a potential equal to or greater than that of the grids; in particular, it can be grounded when the grids are brought to ground, or polarized negatively with respect to ground.
  • Each crossing zone which comprises for example 104 to 105 elementary emitters per mm2, thus corresponds to a bright spot on the screen.
  • the known source of electrons poses a problem: it has been found that, during the operation of this known device, especially during its start-up and during its stabilization period, local degassing takes place which can generate electric arcs between different components of the device (tips, grids, anodes). There is nothing in this case to limit the electric current in the cathode conductors. There is a runaway phenomenon during which this current increases and, at a certain moment, its intensity becomes greater than the maximum intensity Io of the electric current which the cathode conductors can withstand. Some of these are then destroyed and no longer work, in part or in whole depending on the location of the destruction (breakdown).
  • the known source of electrons is thus fragile and therefore has a limited lifespan.
  • resistors can only be used with electron sources - notably intended for the manufacture of display devices - of reduced size, complexity and functional possibility.
  • the known source of electrons thus has another drawback: the display devices which use it can exhibit significant point heterogeneities in luminosity.
  • the present invention makes it possible to remedy not only the disadvantage of brittleness mentioned above but also this other drawback, which was not the case with the source using the resistors.
  • resistive layer is meant an electrically resistant layer.
  • the invention makes it possible to limit the intensity of the current in each of the microtips of each cathode conductor and therefore makes it possible, a fortiori, to limit the intensity of the electric current flowing in the corresponding cathode conductor.
  • each microtip has a base (“pedestal”) made of an electrically resistant material.
  • the source object of the present invention in which each conductive layer is entirely covered by a continuous resistive layer, presents an important advantage compared to this known source: it allows a better dissipation of the thermal power released in the "active" parts of the resistive material (resistive parts included between the microtips and the conductive layers), which gives the source of the present invention more robustness and reliability.
  • the nominal current per transmitter is less than 1 microamp and generally between 0.1 and 1 microamp.
  • the resistance Ri that this resistive layer generates under the microtips has a value for example of the order of 107 to 108 ohms (corresponding to a voltage drop of 10 V in the resistive layer for a current of the order of 1 to 0.1 microampere per transmitter).
  • the entire voltage between the conductive layer and the grid which is generally of the order of 100 V, is transferred to the terminals of the resistive material.
  • the thermal power released in each active part then becomes very large and can be of the order of (100) 2 / 108 W or 0.1 mW in a volume of the order of 1 cubic micrometer (volume of the active part) .
  • the source object of the invention is therefore very advantageous compared to the source of the American document. mentioned above.
  • the source object of the invention may comprise a plurality of continuous resistive layers, respectively arranged on the conductive layers of the source. This plurality of resistive layers can be obtained by etching, between the cathode conductors, a single continuous resistive layer.
  • the source object of the invention comprises a single continuous resistive layer which covers all of the conductive layers of the source.
  • Each conductive layer can be made of a material chosen from the group comprising aluminum, tin oxide doped with antimony or fluorine, indium oxide doped with tin and niobium.
  • the resistive layer or layers are made of a material which is chosen from the group comprising In2O3, SnO2, Fe2O3, ZnO and Si doped, and which has a resistivity greater than that of the material constituting the conductive layer.
  • the resistivity of the resistive layer is between approximately 102 ohms.cm and 106 ohms.cm.
  • resistive materials of resistivity between 102 ohms.cm and 106 ohms.cm and in particular between 104 ohms.cm and 105 ohms.cm, allows to obtain a significant series resistance for example of the order of 108 ohms under each microtip for a resistive layer of 1 to 0.1 micrometer in thickness so as to obtain a good homogenization of emission, a good limitation of over-intensities and a good heat dissipation in the case of short circuits.
  • the silicon which, precisely, by suitable doping, can have a high resistivity for example of the order of 104 ohms.cm to 105 ohms.cm, can be advantageously chosen as a resistive material.
  • an electrical resistance 18 of appropriate Ro value is mounted in series with each cathode conductor 6.
  • the control means 20 known, making it possible to selectively bring the grids to positive potentials, for example of the order of 100 volts, with respect to the cathode conductors are electrically connected to the grids and to the cathode conductors and the electrical connection between these means 20 and each cathode conductor is performed via an electrical resistor 18. This is thus connected to the end of the connection 19 of the corresponding cathode conductor (end which is shown in Figure 1).
  • each of these electrical resistances is calculated so that the maximum intensity of the current capable of flowing in the corresponding cathode conductor is less than the critical intensity Io beyond which breakdowns occur.
  • This value Io depends on the size and the nature of the cathode conductors. It is always much greater than the intensity of the current corresponding to the nominal operation of the cathode conductors.
  • the cathode conductors are made of indium oxide and have a width of 0.7 mm, a thickness of 0, 2 micrometer, a length of 40 mm and a square resistance of 10 ohms, so that the electrical resistance of each cathode conductor has an Rc value of about 0.6 kilo-ohms;
  • the critical value Io is of the order of 10 milliamps, the intensity of the nominal current being less than or equal to about 1 milliampere; to excite a given crossing zone, the grid is brought to a positive potential U of the order of 100 volts relative to the corresponding cathode conductor, the quantity Ro + Rc having to be greater than U / Io.
  • the Ro value can be taken equal to approximately 10 kilo-ohms.
  • the source represented in FIG. 3, which uses electrical resistances, is applicable, for reasons of response time, only to screens of size, complexity and reduced functional possibility.
  • the response time of the corresponding cathode conductor is equal to the charge time of the capacitor formed by this cathode conductor, by the corresponding grid (line) and by the insulating layer separating the conductor cathodic grid.
  • This charging time is of the order of the product of the charging resistance Ro + Rc by the capacity of the capacitor in question.
  • the capacity is of the order of 4 nanofarads per cm2 and, for a screen of 1 dm2 of surface and 256 columns and 256 lines, the surface of a column is about 0.25 cm2.
  • the excitation time of a line for such a screen is 1 / (50x256) second, or approximately 80 microseconds.
  • the charging time is not negligible compared to the line excitation time (if it is for example greater than 10% of the latter), the coupling effect is visible.
  • the response time problem can be solved by replacing said electrical resistors of Ro value with resistive layers.
  • resistive layers thus we limit the current in the cathode conductors while having an access resistance to them practically zero.
  • FIG. 4 an exemplary embodiment of the source object of the invention is shown diagrammatically, making it possible to solve this problem of the response time and the problems of heterogeneity and over-intensity mentioned above.
  • the source schematically shown in Figure 4 differs from the source described with reference to Figures 1 and 2 in that, in the known source, described with reference to these Figures 1 and 2, each cathode conductor 5 has a single electrically conductive layer 6, while in the source according to the invention, shown in FIG.
  • each cathode conductor 5 comprises a first electrically conductive layer 22 resting on the electrically insulating layer 4 (as was the case with layer 6 of the figures 1 to 3) and a second resistive layer 24, which surmounts the conductive layer 22 and on which the bases of the microtips 12 of the cathode conductor 5 rest.
  • each cathode conductor of the source is thus presented in the form of a double-layer strip, the control means 20 being connected to the conductive layers 22.
  • the conductive layer 22 is for example made of aluminum.
  • the resistive layer 24 acts as a buffer resistance between the conductive layer and the corresponding elementary emitters 12.
  • the resistive layer which of course must have an electrical resistance greater than that of the layer conductive, is preferably made with materials having a resistivity of the order of 102 to 106 ohms.cm, compatible with the method of manufacturing cathode conductors (see in particular description of Figure 5).
  • this resistive layer 24 it is possible, for example, to choose as materials indium oxide In2O3, tin oxide SnO2, iron oxide Fe2O3, zinc oxide ZnO or doped silicon, by ensuring, of course, that the material chosen has a higher resistivity than that of the material chosen to produce the conductive layer.
  • the advantage of the embodiment shown in FIG. 4 lies inter alia in the fact that it makes it possible to "transfer" the "protection" resistors, of the type of resistors 18 in FIG. 3, between the conductive layer and each elementary emitter . A better response time is thus obtained, without appreciable increase in the cost of the electron source.
  • the intensity of the current flowing through each cathode conductor can be limited to a value less than or equal to Io, while allowing the nominal current to pass through this cathode conductor.
  • the resistive layer 24 therefore also provides protection against the risks of breakdown.
  • the load resistance is that of the conductive layer and therefore corresponds to a response time much less than a microsecond, in the case of a conductive layer of aluminum, which makes it possible to produce complex screens of big size.
  • the use of the resistive layer makes it possible to associate with each elementary emitter a resistance denoted Ri, which allows this resistive layer to also play a role of homogenization on the electronic emission.
  • Ri a resistance denoted Ri
  • Ri has a self-regulating effect on the current. Any abnormal brightness of the light points is thus greatly attenuated.
  • a first layer 22 of aluminum 200 nanometers thick and with resistivity is deposited by sputtering 3.10 ⁇ 6 ohm.cm then, on this aluminum layer, a second layer 24 of Fe2O2 iron oxide with a thickness of 150 nanometers and a resistivity of 104 ohm.cm, also by sputtering.
  • the two layers thus deposited are then etched successively for example through the same resin mask by chemical etching so as to obtain a network of parallel cathode strips or conductors 5 the length of which is 150 millimeters and the width of 300 micrometers, l the interval between two bands 5 being 50 micrometers.
  • the etching of the aluminum layer can be carried out by means of a bath comprising 4 volumes of H3PO4 at 85% by weight, 4 volumes of pure CH3COOH, 1 volume of HNO3 at 67% by weight and 1 volume of H2O, for 6 minutes at room temperature, for an aluminum layer 200 nm thick and the etching of the Fe2O3 layer can be carried out using the product Mixelec Mélange PFE 8.1, sold by the company SOPRELEC SA, for minutes at room temperature, for a layer of Fe3O3 150 nm thick.
  • the load resistance is that of the aluminum layer and is therefore approximately 75 ohms.
  • the area of a column is 0.45 cm2.
  • the response time is therefore of the order of 0.15 microseconds, with a capacity which remains of the order of 4 nanofarads per cm2.
  • each resistance Ri is calculated to calculate the value of each resistance Ri. It is observed that the lines of the electric current flowing through the cathode conductors are located in the conductive layer and pass through the various corresponding microtips by crossing the resistive layer perpendicularly to the latter.
  • the resistance Ri is therefore equal to the resistivity of the iron oxide Fe2O3 multiplied by the thickness of the resistive layer and divided by the base surface of an elementary electron emitter, which gives a resistance Ri equal in this case at around 107 ohms.
  • a microtip is crossed by a current of about 0.1 microampere, which corresponds to a voltage drop in Ri of 1 volt. The nominal operation is not disturbed.
  • the maximum current per transmitter can be 10 microamps.
  • the resistive material is advantageously suitably doped silicon.
  • a layer of this material is used which, preferably, is not etched between the cathode conductors, the leakage currents which it induces between these cathode conductors being tolerable.
  • a first layer 22 of aluminum 200 nm thick and with resistivity is deposited by cathode sputtering 3.10 ⁇ 6 ohm.cm.
  • This aluminum layer is then etched for example through a resin mask by chemical etching so as to obtain a network of parallel conductive strips or layers the length of which is 150 millimeters and the width of 300 micrometers for example, the interval between two bands being 50 micrometers.
  • the etching of the aluminum layer can for example be carried out by means of the bath described in the preceding example, relating to FIG. 5.
  • a layer 25 of phosphorus doped silicon for example, 500 nm thick and a resistivity of 5.104 ohms.cm is then deposited on the network of conductive layers by vacuum deposition techniques.
  • the resistance Ri here is 2.5.108 ohms. It is stronger than in the previous example described with reference to the FIG. 5, which has the effect on the one hand of reducing the leakage current due to possible short circuits, on the other hand of having a greater effect on the homogenization of the emission.

Claims (8)

  1. Elektronenquelle, die umfaßt:
    - erste parallele Elektroden (5), die die Rolle von kathodischen Leitern spielen, wobei jeder kathodische Leiter eine elektrisch leitende Schicht (22) umfaßt, deren eine Seite mehrere Mikrospitzen (12) aus einem elektonenemittierenden Material aufweist, und
    - zweite parallele Elektroden (10), die die Rolle von Gittern spielen, welche gegen die kathodischen Leiter (5) elektrisch isoliert sind und mit diesen einen Winkel bilden, der die Kreuzungsbereiche der kathodischen Leiter und der Gitter bestimmt, wobei sich die Mikrospitzen (12) unter diesen Kreuzungsbereichen befinden und die Gitter (10) außerdem gegenüber den genannten Flächen angeordnet sind und jeweils von Löchern (14) gegenüber den Mikrospitzen durchbohrt sind, wobei sich die Spitze jeder Mikrospitze genau auf der Höhe des ihr entsprechenden Lochs befindet und wobei die Mikrospitzen jedes Kreuzungsbereichs in der Lage sind, Elektronen zu emittieren, wenn das entsprechende Gitter gegenüber dem entsprechenden kathodischen Leiter positiv polarisiert ist und dann ein elektrischer Strom in jeder Mikrospitze des Bereichs fließt,
       Quelle, dadurch gekennzeichnet, daß jeder kathodische Leiter (5) außerdem Einrichtungen umfaßt, die dafür vorgesehen sind, die Stärke des in jeder Mikrospitze dieses kathodischen Leiters fließenden elektrischen Stromes zu begrenzen, wobei diese Einrichtungen eine zusammenhängende Widerstandsschicht (24, 25) umfassen, die auf der leitenden Schicht (22) des entsprechenden kathodischen Leiters (5) zwischen dieser leitenden Schicht und den entsprechenden Mikrospitzen (12) angeordnet ist, wobei diese letzteren auf der Widerstandsschicht (24, 25) liegen.
  2. Quelle gemäß Anspruch 1, dadurch gekennzeichnet, daß sie mehrere zusammenhängende Widerstandsschichten (24) umfaßt, die jeweils auf den leitenden Schichten der Quelle angeordnet sind.
  3. Quelle gemäß Anspruch 2, dadurch gekennzeichnet, daß diese mehreren Widerstandsschichten durch Ätzung zwischen den kathodischen Leitern aus einer einzigen zusammenhängenden Widerstandsschicht erhalten werden.
  4. Quelle gemäß Anspruch 1, dadurch gekennzeichnet, daß sie eine einzige zusammenhängende Widerstandsschicht (25) umfaßt, die die gesamten leitenden Schichten der Quelle bedeckt.
  5. Quelle gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß jede leitende Schicht (22) aus einem Material gefertigt ist, das aus der Gruppe gewählt wird, die Aluminium, mit Antimon oder Fluor dotiertes Zinnoxid, mit Zinn oder Niob dotiertes Indiumoxid enthält.
  6. Quelle gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß jede Widerstandsschicht (24, 25) aus einem Material gefertigt ist, das aus der Gruppe gewählt wird, die In₂O₃, SnO₂, Fe₂O₃, ZnO und dotiertes Si enthält, und das einen höheren spezifischen Widerstand als das Material, das die leitende Schicht (22) bildet, hat.
  7. Quelle gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der spezifische Widerstand jeder Widerstandsschicht (24, 25) etwa zwischen 10² Ohm cm und 10⁶ Ohm cm liegt.
  8. Bildwiedergabe-Anordnung, die auf Kathodolumineszenz beruht und die umfaßt:
    - eine Elektronenquelle mit Mikrospitzen-Emissionskathoden und
    - eine Kathodoluminiszenz-Anode (16), dadurch gekennzeichnet, daß die Quelle konform mit einem der Ansprüche 1 bis 7 ist.
EP88402742A 1987-11-06 1988-11-02 Elektronenquelle mit Mikrospitzen-Emissionskathoden und diese Quelle benutzende Bildwiedergabe-Anordnung, die auf durch Feldemission angeregter Kathodolumineszenz beruht Expired - Lifetime EP0316214B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8715432A FR2623013A1 (fr) 1987-11-06 1987-11-06 Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source
FR8715432 1987-11-06

Publications (2)

Publication Number Publication Date
EP0316214A1 EP0316214A1 (de) 1989-05-17
EP0316214B1 true EP0316214B1 (de) 1993-01-27

Family

ID=9356577

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88402742A Expired - Lifetime EP0316214B1 (de) 1987-11-06 1988-11-02 Elektronenquelle mit Mikrospitzen-Emissionskathoden und diese Quelle benutzende Bildwiedergabe-Anordnung, die auf durch Feldemission angeregter Kathodolumineszenz beruht

Country Status (6)

Country Link
US (1) US4940916B1 (de)
EP (1) EP0316214B1 (de)
JP (1) JPH07118259B2 (de)
KR (1) KR970005760B1 (de)
DE (1) DE3877902T2 (de)
FR (1) FR2623013A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8477156B2 (en) 2006-10-30 2013-07-02 Commissariat A L'energie Atomique Method of driving a matrix display device having an electron source with reduced capacitive consumption

Families Citing this family (298)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627308B1 (fr) * 1988-02-15 1990-06-01 Commissariat Energie Atomique Procede de commande d'un ecran d'affichage matriciel permettant d'ajuster son contraste et dispositif pour la mise en oeuvre de ce procede
US5354695A (en) 1992-04-08 1994-10-11 Leedy Glenn J Membrane dielectric isolation IC fabrication
JP2805326B2 (ja) * 1989-03-22 1998-09-30 キヤノン株式会社 電子源及びそれを用いた画像形成装置
FR2650119A1 (fr) * 1989-07-21 1991-01-25 Thomson Tubes Electroniques Dispositif de regulation de courant individuel de pointe dans un reseau plan de microcathodes a effet de champ, et procede de realisation
US4956574A (en) * 1989-08-08 1990-09-11 Motorola, Inc. Switched anode field emission device
EP0416625B1 (de) * 1989-09-07 1996-03-13 Canon Kabushiki Kaisha Elektronemittierende Vorrichtung; Herstellungsverfahren Elektronemittierende Vorrichtung, Herstellungsverfahren derselben und Anzeigegerät und Elektronstrahl- Schreibvorrichtung, welche diese Vorrichtung verwendet.
US5142184B1 (en) * 1990-02-09 1995-11-21 Motorola Inc Cold cathode field emission device with integral emitter ballasting
FR2661566B1 (fr) * 1990-04-25 1995-03-31 Commissariat Energie Atomique Laser compact a semi-conducteur du type a pompage electronique.
FR2663462B1 (fr) * 1990-06-13 1992-09-11 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
US5204581A (en) * 1990-07-12 1993-04-20 Bell Communications Research, Inc. Device including a tapered microminiature silicon structure
US5201992A (en) * 1990-07-12 1993-04-13 Bell Communications Research, Inc. Method for making tapered microminiature silicon structures
US5075591A (en) * 1990-07-13 1991-12-24 Coloray Display Corporation Matrix addressing arrangement for a flat panel display with field emission cathodes
US5103145A (en) * 1990-09-05 1992-04-07 Raytheon Company Luminance control for cathode-ray tube having field emission cathode
JP2620895B2 (ja) * 1990-09-07 1997-06-18 モトローラ・インコーポレーテッド 電界放出装置を備えた電子装置
US5157309A (en) * 1990-09-13 1992-10-20 Motorola Inc. Cold-cathode field emission device employing a current source means
US5057047A (en) * 1990-09-27 1991-10-15 The United States Of America As Represented By The Secretary Of The Navy Low capacitance field emitter array and method of manufacture therefor
JP2562168Y2 (ja) * 1990-11-08 1998-02-10 双葉電子工業株式会社 電界放出素子
US5138220A (en) * 1990-12-05 1992-08-11 Science Applications International Corporation Field emission cathode of bio-molecular or semiconductor-metal eutectic composite microstructures
JP2613697B2 (ja) * 1991-01-16 1997-05-28 工業技術院長 電界放出素子
US5212426A (en) * 1991-01-24 1993-05-18 Motorola, Inc. Integrally controlled field emission flat display device
US5075595A (en) * 1991-01-24 1991-12-24 Motorola, Inc. Field emission device with vertically integrated active control
JP2626276B2 (ja) * 1991-02-06 1997-07-02 双葉電子工業株式会社 電子放出素子
US5347201A (en) * 1991-02-25 1994-09-13 Panocorp Display Systems Display device
US5220725A (en) * 1991-04-09 1993-06-22 Northeastern University Micro-emitter-based low-contact-force interconnection device
US5245248A (en) * 1991-04-09 1993-09-14 Northeastern University Micro-emitter-based low-contact-force interconnection device
US5660570A (en) * 1991-04-09 1997-08-26 Northeastern University Micro emitter based low contact force interconnection device
JP3235172B2 (ja) * 1991-05-13 2001-12-04 セイコーエプソン株式会社 電界電子放出装置
JP2738197B2 (ja) * 1992-01-27 1998-04-08 松下電器産業株式会社 電子放出素子
US5144191A (en) * 1991-06-12 1992-09-01 Mcnc Horizontal microelectronic field emission devices
FR2679653B1 (fr) * 1991-07-23 1993-09-24 Commissariat Energie Atomique Vacumetre a ionisation.
JPH0547296A (ja) * 1991-08-14 1993-02-26 Sharp Corp 電界放出型電子源及びその製造方法
US5227699A (en) * 1991-08-16 1993-07-13 Amoco Corporation Recessed gate field emission
JP2720662B2 (ja) * 1991-09-30 1998-03-04 双葉電子工業株式会社 電界放出素子及びその製造方法
US5536193A (en) * 1991-11-07 1996-07-16 Microelectronics And Computer Technology Corporation Method of making wide band gap field emitter
DE69204629T2 (de) * 1991-11-29 1996-04-18 Motorola Inc Herstellungsverfahren einer Feldemissionsvorrichtung mit integraler elektrostatischer Linsenanordnung.
US5627427A (en) * 1991-12-09 1997-05-06 Cornell Research Foundation, Inc. Silicon tip field emission cathodes
US5199917A (en) * 1991-12-09 1993-04-06 Cornell Research Foundation, Inc. Silicon tip field emission cathode arrays and fabrication thereof
US5371431A (en) * 1992-03-04 1994-12-06 Mcnc Vertical microelectronic field emission devices including elongate vertical pillars having resistive bottom portions
US6127773A (en) * 1992-03-16 2000-10-03 Si Diamond Technology, Inc. Amorphic diamond film flat field emission cathode
US5543684A (en) * 1992-03-16 1996-08-06 Microelectronics And Computer Technology Corporation Flat panel display based on diamond thin films
US5449970A (en) * 1992-03-16 1995-09-12 Microelectronics And Computer Technology Corporation Diode structure flat panel display
US5686791A (en) * 1992-03-16 1997-11-11 Microelectronics And Computer Technology Corp. Amorphic diamond film flat field emission cathode
US5679043A (en) * 1992-03-16 1997-10-21 Microelectronics And Computer Technology Corporation Method of making a field emitter
US5548185A (en) * 1992-03-16 1996-08-20 Microelectronics And Computer Technology Corporation Triode structure flat panel display employing flat field emission cathode
US5675216A (en) * 1992-03-16 1997-10-07 Microelectronics And Computer Technololgy Corp. Amorphic diamond film flat field emission cathode
US5763997A (en) * 1992-03-16 1998-06-09 Si Diamond Technology, Inc. Field emission display device
US5616991A (en) * 1992-04-07 1997-04-01 Micron Technology, Inc. Flat panel display in which low-voltage row and column address signals control a much higher pixel activation voltage
US5581159A (en) * 1992-04-07 1996-12-03 Micron Technology, Inc. Back-to-back diode current regulator for field emission display
US5357172A (en) * 1992-04-07 1994-10-18 Micron Technology, Inc. Current-regulated field emission cathodes for use in a flat panel display in which low-voltage row and column address signals control a much higher pixel activation voltage
US5956004A (en) * 1993-05-11 1999-09-21 Micron Technology, Inc. Controlling pixel brightness in a field emission display using circuits for sampling and discharging
US6714625B1 (en) 1992-04-08 2004-03-30 Elm Technology Corporation Lithography device for semiconductor circuit pattern generation
US5424605A (en) * 1992-04-10 1995-06-13 Silicon Video Corporation Self supporting flat video display
US5477105A (en) * 1992-04-10 1995-12-19 Silicon Video Corporation Structure of light-emitting device with raised black matrix for use in optical devices such as flat-panel cathode-ray tubes
US5753130A (en) 1992-05-15 1998-05-19 Micron Technology, Inc. Method for forming a substantially uniform array of sharp tips
US5302238A (en) * 1992-05-15 1994-04-12 Micron Technology, Inc. Plasma dry etch to produce atomically sharp asperities useful as cold cathodes
US5391259A (en) * 1992-05-15 1995-02-21 Micron Technology, Inc. Method for forming a substantially uniform array of sharp tips
US5283500A (en) * 1992-05-28 1994-02-01 At&T Bell Laboratories Flat panel field emission display apparatus
GB2268324A (en) * 1992-06-30 1994-01-05 Ibm Colour field emission display.
US5359256A (en) * 1992-07-30 1994-10-25 The United States Of America As Represented By The Secretary Of The Navy Regulatable field emitter device and method of production thereof
US5347292A (en) * 1992-10-28 1994-09-13 Panocorp Display Systems Super high resolution cold cathode fluorescent display
US5291572A (en) * 1993-01-14 1994-03-01 At&T Bell Laboratories Article comprising compression bonded parts
EP0691032A1 (de) * 1993-03-11 1996-01-10 Fed Corporation Emitterspitzensstruktur und feldemissionsvorrichtung mis solcher struktur, und verfahren zu ihrer herstellung
US5717285A (en) * 1993-03-17 1998-02-10 Commissariat A L 'energie Atomique Microtip display device having a current limiting layer and a charge avoiding layer
US5642017A (en) * 1993-05-11 1997-06-24 Micron Display Technology, Inc. Matrix-addressable flat panel field emission display having only one transistor for pixel control at each row and column intersection
US5686790A (en) * 1993-06-22 1997-11-11 Candescent Technologies Corporation Flat panel device with ceramic backplate
JPH0721903A (ja) * 1993-07-01 1995-01-24 Nec Corp 電界放出型陰極を用いた陰極線管用電子銃構体
FR2707795B1 (fr) * 1993-07-12 1995-08-11 Commissariat Energie Atomique Perfectionnement à un procédé de fabrication d'une source d'électrons à micropointes.
US5495143A (en) * 1993-08-12 1996-02-27 Science Applications International Corporation Gas discharge device having a field emitter array with microscopic emitter elements
US7025892B1 (en) 1993-09-08 2006-04-11 Candescent Technologies Corporation Method for creating gated filament structures for field emission displays
US5462467A (en) * 1993-09-08 1995-10-31 Silicon Video Corporation Fabrication of filamentary field-emission device, including self-aligned gate
US5559389A (en) * 1993-09-08 1996-09-24 Silicon Video Corporation Electron-emitting devices having variously constituted electron-emissive elements, including cones or pedestals
US5564959A (en) * 1993-09-08 1996-10-15 Silicon Video Corporation Use of charged-particle tracks in fabricating gated electron-emitting devices
JP2699827B2 (ja) * 1993-09-27 1998-01-19 双葉電子工業株式会社 電界放出カソード素子
FR2711273B1 (fr) * 1993-10-14 1996-01-19 Pixel Int Sa Ecran plat à anode doublement commutée, utilisant des bandes de couleur dans le sens des lignes .
JP2861755B2 (ja) * 1993-10-28 1999-02-24 日本電気株式会社 電界放出型陰極装置
CA2172803A1 (en) * 1993-11-04 1995-05-11 Nalin Kumar Methods for fabricating flat panel display systems and components
FR2713394B1 (fr) * 1993-11-29 1996-11-08 Futaba Denshi Kogyo Kk Source d'électron de type à émission de champ.
US5461009A (en) * 1993-12-08 1995-10-24 Industrial Technology Research Institute Method of fabricating high uniformity field emission display
US5445550A (en) * 1993-12-22 1995-08-29 Xie; Chenggang Lateral field emitter device and method of manufacturing same
JP2809078B2 (ja) * 1993-12-28 1998-10-08 日本電気株式会社 電界放出冷陰極およびその製造方法
US5451830A (en) * 1994-01-24 1995-09-19 Industrial Technology Research Institute Single tip redundancy method with resistive base and resultant flat panel display
JP2856672B2 (ja) * 1994-02-28 1999-02-10 三星電管株式會社 電界電子放出素子及びその製造方法
FR2717304B1 (fr) * 1994-03-09 1996-04-05 Commissariat Energie Atomique Source d'électrons à cathodes émissives à micropointes.
JP3249288B2 (ja) * 1994-03-15 2002-01-21 株式会社東芝 微小真空管およびその製造方法
JP3388870B2 (ja) * 1994-03-15 2003-03-24 株式会社東芝 微小3極真空管およびその製造方法
US5448131A (en) * 1994-04-13 1995-09-05 Texas Instruments Incorporated Spacer for flat panel display
FR2719156B1 (fr) * 1994-04-25 1996-05-24 Commissariat Energie Atomique Source d'électrons à micropointes, les micropointes comportant deux parties.
JPH0845445A (ja) * 1994-04-29 1996-02-16 Texas Instr Inc <Ti> フラット・パネル・ディスプレイ装置及びその製造方法
US5538450A (en) * 1994-04-29 1996-07-23 Texas Instruments Incorporated Method of forming a size-arrayed emitter matrix for use in a flat panel display
KR950034365A (ko) * 1994-05-24 1995-12-28 윌리엄 이. 힐러 평판 디스플레이의 애노드 플레이트 및 이의 제조 방법
US5473218A (en) * 1994-05-31 1995-12-05 Motorola, Inc. Diamond cold cathode using patterned metal for electron emission control
US5491376A (en) * 1994-06-03 1996-02-13 Texas Instruments Incorporated Flat panel display anode plate having isolation grooves
US5453659A (en) * 1994-06-10 1995-09-26 Texas Instruments Incorporated Anode plate for flat panel display having integrated getter
US5607335A (en) * 1994-06-29 1997-03-04 Silicon Video Corporation Fabrication of electron-emitting structures using charged-particle tracks and removal of emitter material
FR2722913B1 (fr) * 1994-07-21 1996-10-11 Pixel Int Sa Cathode a micropointes pour ecran plat
US5698933A (en) * 1994-07-25 1997-12-16 Motorola, Inc. Field emission device current control apparatus and method
US5920154A (en) 1994-08-02 1999-07-06 Micron Technology, Inc. Field emission display with video signal on column lines
FR2723471B1 (fr) * 1994-08-05 1996-10-31 Pixel Int Sa Cathode d'ecran plat de visualisation a resistance d'acces constante
US6204834B1 (en) 1994-08-17 2001-03-20 Si Diamond Technology, Inc. System and method for achieving uniform screen brightness within a matrix display
GB9416754D0 (en) * 1994-08-18 1994-10-12 Isis Innovation Field emitter structures
US5525857A (en) * 1994-08-19 1996-06-11 Texas Instruments Inc. Low density, high porosity material as gate dielectric for field emission device
FR2724041B1 (fr) * 1994-08-24 1997-04-11 Pixel Int Sa Ecran plat de visualisation a haute tension inter-electrodes
EP0700065B1 (de) * 1994-08-31 2001-09-19 AT&amp;T Corp. Feldemissionsvorrichtung und Verfahren zur Herstellung
US5504385A (en) 1994-08-31 1996-04-02 At&T Corp. Spaced-gate emission device and method for making same
US5531880A (en) * 1994-09-13 1996-07-02 Microelectronics And Computer Technology Corporation Method for producing thin, uniform powder phosphor for display screens
EP0707301A1 (de) 1994-09-14 1996-04-17 Texas Instruments Incorporated Leistungssteuerung für eine Anzeigeeinrichtung
TW289864B (de) * 1994-09-16 1996-11-01 Micron Display Tech Inc
US6417605B1 (en) * 1994-09-16 2002-07-09 Micron Technology, Inc. Method of preventing junction leakage in field emission devices
US5975975A (en) * 1994-09-16 1999-11-02 Micron Technology, Inc. Apparatus and method for stabilization of threshold voltage in field emission displays
US5528108A (en) * 1994-09-22 1996-06-18 Motorola Field emission device arc-suppressor
US6252569B1 (en) * 1994-09-28 2001-06-26 Texas Instruments Incorporated Large field emission display (FED) made up of independently operated display sections integrated behind one common continuous large anode which displays one large image or multiple independent images
FR2725072A1 (fr) * 1994-09-28 1996-03-29 Pixel Int Sa Protection electrique d'une anode d'ecran plat de visualisation
US5521660A (en) * 1994-09-29 1996-05-28 Texas Instruments Inc. Multimedia field emission device portable projector
EP0706164A1 (de) 1994-10-03 1996-04-10 Texas Instruments Incorporated Leistungssteuerung für Anzeigegeräte
US5528098A (en) * 1994-10-06 1996-06-18 Motorola Redundant conductor electron source
US5669690A (en) 1994-10-18 1997-09-23 Texas Instruments Incorporated Multimedia field emission device projection system
FR2726122B1 (fr) 1994-10-19 1996-11-22 Commissariat Energie Atomique Procede de fabrication d'une source d'electrons a micropointes
FR2726098B1 (fr) 1994-10-24 1997-01-10 Commissariat Energie Atomique Procede de photolithogravure de motifs circulaires denses
US5637950A (en) * 1994-10-31 1997-06-10 Lucent Technologies Inc. Field emission devices employing enhanced diamond field emitters
US5623180A (en) 1994-10-31 1997-04-22 Lucent Technologies Inc. Electron field emitters comprising particles cooled with low voltage emitting material
US5527651A (en) * 1994-11-02 1996-06-18 Texas Instruments Inc. Field emission device light source for xerographic printing process
AU4145196A (en) 1994-11-04 1996-05-31 Micron Display Technology, Inc. Method for sharpening emitter sites using low temperature oxidation processes
FR2726689B1 (fr) 1994-11-08 1996-11-29 Commissariat Energie Atomique Source d'electrons a effet de champ et procede de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence
FR2726688B1 (fr) 1994-11-08 1996-12-06 Commissariat Energie Atomique Source d'electrons a effet de champ et procede de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence
US5536993A (en) * 1994-11-18 1996-07-16 Texas Instruments Incorporated Clustered field emission microtips adjacent stripe conductors
US5569975A (en) * 1994-11-18 1996-10-29 Texas Instruments Incorporated Cluster arrangement of field emission microtips
US5541466A (en) * 1994-11-18 1996-07-30 Texas Instruments Incorporated Cluster arrangement of field emission microtips on ballast layer
EP0713236A1 (de) 1994-11-18 1996-05-22 Texas Instruments Incorporated Elektron-emittierenden Vorrichtung
US5486126A (en) * 1994-11-18 1996-01-23 Micron Display Technology, Inc. Spacers for large area displays
US5557159A (en) * 1994-11-18 1996-09-17 Texas Instruments Incorporated Field emission microtip clusters adjacent stripe conductors
WO1996018204A1 (en) * 1994-12-05 1996-06-13 Color Planar Displays, Inc. Support structure for flat panel displays
US5477284A (en) * 1994-12-15 1995-12-19 Texas Instruments Incorporated Dual mode overhead projection system using field emission device
US5616368A (en) * 1995-01-31 1997-04-01 Lucent Technologies Inc. Field emission devices employing activated diamond particle emitters and methods for making same
US5709577A (en) * 1994-12-22 1998-01-20 Lucent Technologies Inc. Method of making field emission devices employing ultra-fine diamond particle emitters
US5554828A (en) * 1995-01-03 1996-09-10 Texas Instruments Inc. Integration of pen-based capability into a field emission device system
US5598056A (en) * 1995-01-31 1997-01-28 Lucent Technologies Inc. Multilayer pillar structure for improved field emission devices
JP2932250B2 (ja) * 1995-01-31 1999-08-09 キヤノン株式会社 電子放出素子、電子源、画像形成装置及びそれらの製造方法
US5561340A (en) * 1995-01-31 1996-10-01 Lucent Technologies Inc. Field emission display having corrugated support pillars and method for manufacturing
US5578902A (en) * 1995-03-13 1996-11-26 Texas Instruments Inc. Field emission display having modified anode stripe geometry
US5598057A (en) 1995-03-13 1997-01-28 Texas Instruments Incorporated Reduction of the probability of interlevel oxide failures by minimization of lead overlap area through bus width reduction
FR2731840B1 (fr) * 1995-03-17 1997-06-06 Pixtech Sa Ecran plat de visualisation a distance inter-electrodes elevee
US5578896A (en) * 1995-04-10 1996-11-26 Industrial Technology Research Institute Cold cathode field emission display and method for forming it
US5601466A (en) * 1995-04-19 1997-02-11 Texas Instruments Incorporated Method for fabricating field emission device metallization
US5594297A (en) * 1995-04-19 1997-01-14 Texas Instruments Incorporated Field emission device metallization including titanium tungsten and aluminum
US5760858A (en) * 1995-04-21 1998-06-02 Texas Instruments Incorporated Field emission device panel backlight for liquid crystal displays
US6296740B1 (en) 1995-04-24 2001-10-02 Si Diamond Technology, Inc. Pretreatment process for a surface texturing process
US5628659A (en) * 1995-04-24 1997-05-13 Microelectronics And Computer Corporation Method of making a field emission electron source with random micro-tip structures
US5657053A (en) * 1995-04-26 1997-08-12 Texas Instruments Incorporated Method for determining pen location on display apparatus using piezoelectric point elements
US5657054A (en) * 1995-04-26 1997-08-12 Texas Instruments Incorporated Determination of pen location on display apparatus using piezoelectric point elements
US5591352A (en) * 1995-04-27 1997-01-07 Industrial Technology Research Institute High resolution cold cathode field emission display method
US5630741A (en) * 1995-05-08 1997-05-20 Advanced Vision Technologies, Inc. Fabrication process for a field emission display cell structure
US5644188A (en) * 1995-05-08 1997-07-01 Advanced Vision Technologies, Inc. Field emission display cell structure
US5543691A (en) * 1995-05-11 1996-08-06 Raytheon Company Field emission display with focus grid and method of operating same
US5633120A (en) * 1995-05-22 1997-05-27 Texas Instruments Inc. Method for achieving anode stripe delineation from an interlevel dielectric etch in a field emission device
US5608285A (en) * 1995-05-25 1997-03-04 Texas Instruments Incorporated Black matrix sog as an interlevel dielectric in a field emission device
US5577943A (en) * 1995-05-25 1996-11-26 Texas Instruments Inc. Method for fabricating a field emission device having black matrix SOG as an interlevel dielectric
US5686782A (en) * 1995-05-30 1997-11-11 Texas Instruments Incorporated Field emission device with suspended gate
US5621272A (en) * 1995-05-30 1997-04-15 Texas Instruments Incorporated Field emission device with over-etched gate dielectric
US5589728A (en) * 1995-05-30 1996-12-31 Texas Instruments Incorporated Field emission device with lattice vacancy post-supported gate
US5759078A (en) * 1995-05-30 1998-06-02 Texas Instruments Incorporated Field emission device with close-packed microtip array
US5558554A (en) * 1995-05-31 1996-09-24 Texas Instruments Inc. Method for fabricating a field emission device anode plate having multiple grooves between anode conductors
US5594305A (en) * 1995-06-07 1997-01-14 Texas Instruments Incorporated Power supply for use with switched anode field emission display including energy recovery apparatus
FR2735266B1 (fr) * 1995-06-08 1997-08-22 Pixtech Sa Procede de commande d'ecran plat de visualisation
FR2735265B1 (fr) * 1995-06-08 1997-08-22 Pixtech Sa Commutation d'une anode d'ecran plat de visualisation
US5666024A (en) * 1995-06-23 1997-09-09 Texas Instruments Incorporated Low capacitance field emission device with circular microtip array
US5674407A (en) * 1995-07-03 1997-10-07 Texas Instruments Incorporated Method for selective etching of flat panel display anode plate conductors
US5611719A (en) * 1995-07-06 1997-03-18 Texas Instruments Incorporated Method for improving flat panel display anode plate phosphor efficiency
US5585301A (en) * 1995-07-14 1996-12-17 Micron Display Technology, Inc. Method for forming high resistance resistors for limiting cathode current in field emission displays
US5637951A (en) * 1995-08-10 1997-06-10 Ion Diagnostics, Inc. Electron source for multibeam electron lithography system
US5663742A (en) * 1995-08-21 1997-09-02 Micron Display Technology, Inc. Compressed field emission display
US5635791A (en) * 1995-08-24 1997-06-03 Texas Instruments Incorporated Field emission device with circular microtip array
US5606225A (en) * 1995-08-30 1997-02-25 Texas Instruments Incorporated Tetrode arrangement for color field emission flat panel display with barrier electrodes on the anode plate
US5628662A (en) * 1995-08-30 1997-05-13 Texas Instruments Incorporated Method of fabricating a color field emission flat panel display tetrode
US5773927A (en) * 1995-08-30 1998-06-30 Micron Display Technology, Inc. Field emission display device with focusing electrodes at the anode and method for constructing same
US5763998A (en) * 1995-09-14 1998-06-09 Chorus Corporation Field emission display arrangement with improved vacuum control
US5716251A (en) * 1995-09-15 1998-02-10 Micron Display Technology, Inc. Sacrificial spacers for large area displays
US5672938A (en) * 1995-09-29 1997-09-30 Fed Corporation Light emission device comprising light emitting organic material and electron injection enhancement structure
US5772488A (en) * 1995-10-16 1998-06-30 Micron Display Technology, Inc. Method of forming a doped field emitter array
US6181308B1 (en) 1995-10-16 2001-01-30 Micron Technology, Inc. Light-insensitive resistor for current-limiting of field emission displays
US5818165A (en) * 1995-10-27 1998-10-06 Texas Instruments Incorporated Flexible fed display
US5672933A (en) * 1995-10-30 1997-09-30 Texas Instruments Incorporated Column-to-column isolation in fed display
US5831384A (en) * 1995-10-30 1998-11-03 Advanced Vision Technologies, Inc. Dual carrier display device
US5669802A (en) * 1995-10-30 1997-09-23 Advanced Vision Technologies, Inc. Fabrication process for dual carrier display device
KR970023568A (ko) * 1995-10-31 1997-05-30 윤종용 전계 방출 표시소자와 그 구동 방법 및 제조 방법
US5648699A (en) 1995-11-09 1997-07-15 Lucent Technologies Inc. Field emission devices employing improved emitters on metal foil and methods for making such devices
US5656892A (en) * 1995-11-17 1997-08-12 Micron Display Technology, Inc. Field emission display having emitter control with current sensing feedback
US5767619A (en) * 1995-12-15 1998-06-16 Industrial Technology Research Institute Cold cathode field emission display and method for forming it
US6680489B1 (en) 1995-12-20 2004-01-20 Advanced Technology Materials, Inc. Amorphous silicon carbide thin film coating
US6031250A (en) * 1995-12-20 2000-02-29 Advanced Technology Materials, Inc. Integrated circuit devices and methods employing amorphous silicon carbide resistor materials
US5656886A (en) * 1995-12-29 1997-08-12 Micron Display Technology, Inc. Technique to improve uniformity of large area field emission displays
US5916004A (en) * 1996-01-11 1999-06-29 Micron Technology, Inc. Photolithographically produced flat panel display surface plate support structure
US6252347B1 (en) 1996-01-16 2001-06-26 Raytheon Company Field emission display with suspended focusing conductive sheet
US5952987A (en) * 1996-01-18 1999-09-14 Micron Technology, Inc. Method and apparatus for improved gray scale control in field emission displays
US6117294A (en) 1996-01-19 2000-09-12 Micron Technology, Inc. Black matrix material and methods related thereto
US5705079A (en) * 1996-01-19 1998-01-06 Micron Display Technology, Inc. Method for forming spacers in flat panel displays using photo-etching
JPH09219144A (ja) * 1996-02-08 1997-08-19 Futaba Corp 電界放出カソードとその製造方法
US5593562A (en) * 1996-02-20 1997-01-14 Texas Instruments Incorporated Method for improving flat panel display anode plate phosphor efficiency
US5733160A (en) * 1996-03-01 1998-03-31 Texas Instruments Incorporated Method of forming spacers for a flat display apparatus
US5695658A (en) * 1996-03-07 1997-12-09 Micron Display Technology, Inc. Non-photolithographic etch mask for submicron features
US5944975A (en) * 1996-03-26 1999-08-31 Texas Instruments Incorporated Method of forming a lift-off layer having controlled adhesion strength
US5956002A (en) * 1996-03-28 1999-09-21 Tektronix, Inc. Structures and methods for limiting current in ionizable gaseous medium devices
US5684356A (en) * 1996-03-29 1997-11-04 Texas Instruments Incorporated Hydrogen-rich, low dielectric constant gate insulator for field emission device
JP3134772B2 (ja) * 1996-04-16 2001-02-13 双葉電子工業株式会社 電界放出型表示素子およびその駆動方法
FR2747839B1 (fr) * 1996-04-18 1998-07-03 Pixtech Sa Ecran plat de visualisation a source d'hydrogene
US5830527A (en) * 1996-05-29 1998-11-03 Texas Instruments Incorporated Flat panel display anode structure and method of making
US6187603B1 (en) 1996-06-07 2001-02-13 Candescent Technologies Corporation Fabrication of gated electron-emitting devices utilizing distributed particles to define gate openings, typically in combination with lift-off of excess emitter material
US5755944A (en) * 1996-06-07 1998-05-26 Candescent Technologies Corporation Formation of layer having openings produced by utilizing particles deposited under influence of electric field
US5865657A (en) * 1996-06-07 1999-02-02 Candescent Technologies Corporation Fabrication of gated electron-emitting device utilizing distributed particles to form gate openings typically beveled and/or combined with lift-off or electrochemical removal of excess emitter material
US5865659A (en) * 1996-06-07 1999-02-02 Candescent Technologies Corporation Fabrication of gated electron-emitting device utilizing distributed particles to define gate openings and utilizing spacer material to control spacing between gate layer and electron-emissive elements
US5811926A (en) * 1996-06-18 1998-09-22 Ppg Industries, Inc. Spacer units, image display panels and methods for making and using the same
US5834891A (en) * 1996-06-18 1998-11-10 Ppg Industries, Inc. Spacers, spacer units, image display panels and methods for making and using the same
JPH1012125A (ja) * 1996-06-19 1998-01-16 Nec Corp 電界電子放出装置
JP3026484B2 (ja) * 1996-08-23 2000-03-27 日本電気株式会社 電界放出型冷陰極
US5854615A (en) * 1996-10-03 1998-12-29 Micron Display Technology, Inc. Matrix addressable display with delay locked loop controller
DE69621017T2 (de) 1996-10-04 2002-10-31 St Microelectronics Srl Herstellungsverfahren einer flachen Feldemissionsanzeige und nach diesem Verfahren hergestellte Anzeige
US5902491A (en) 1996-10-07 1999-05-11 Micron Technology, Inc. Method of removing surface protrusions from thin films
US6010917A (en) * 1996-10-15 2000-01-04 Micron Technology, Inc. Electrically isolated interconnects and conductive layers in semiconductor device manufacturing
US5847515A (en) * 1996-11-01 1998-12-08 Micron Technology, Inc. Field emission display having multiple brightness display modes
US6130106A (en) 1996-11-14 2000-10-10 Micron Technology, Inc. Method for limiting emission current in field emission devices
FR2756969B1 (fr) * 1996-12-06 1999-01-08 Commissariat Energie Atomique Ecran d'affichage comprenant une source d'electrons a micropointes, observable a travers le support des micropointes, et procede de fabrication de cette source
US5836799A (en) * 1996-12-06 1998-11-17 Texas Instruments Incorporated Self-aligned method of micro-machining field emission display microtips
US5984746A (en) 1996-12-12 1999-11-16 Micron Technology, Inc. Attaching spacers in a display device
US5780960A (en) * 1996-12-18 1998-07-14 Texas Instruments Incorporated Micro-machined field emission microtips
US5938493A (en) * 1996-12-18 1999-08-17 Texas Instruments Incorporated Method for increasing field emission tip efficiency through micro-milling techniques
US5851133A (en) * 1996-12-24 1998-12-22 Micron Display Technology, Inc. FED spacer fibers grown by laser drive CVD
US5770919A (en) * 1996-12-31 1998-06-23 Micron Technology, Inc. Field emission device micropoint with current-limiting resistive structure and method for making same
US5888112A (en) * 1996-12-31 1999-03-30 Micron Technology, Inc. Method for forming spacers on a display substrate
US6015323A (en) 1997-01-03 2000-01-18 Micron Technology, Inc. Field emission display cathode assembly government rights
US5828163A (en) * 1997-01-13 1998-10-27 Fed Corporation Field emitter device with a current limiter structure
US6262530B1 (en) * 1997-02-25 2001-07-17 Ivan V. Prein Field emission devices with current stabilizer(s)
JP3104639B2 (ja) * 1997-03-31 2000-10-30 日本電気株式会社 電界放出型冷陰極
US6551857B2 (en) 1997-04-04 2003-04-22 Elm Technology Corporation Three dimensional structure integrated circuits
US5915167A (en) 1997-04-04 1999-06-22 Elm Technology Corporation Three dimensional structure memory
US6064148A (en) * 1997-05-21 2000-05-16 Si Diamond Technology, Inc. Field emission device
US6002199A (en) * 1997-05-30 1999-12-14 Candescent Technologies Corporation Structure and fabrication of electron-emitting device having ladder-like emitter electrode
JPH10340666A (ja) * 1997-06-09 1998-12-22 Futaba Corp 電界電子放出素子
US6013986A (en) * 1997-06-30 2000-01-11 Candescent Technologies Corporation Electron-emitting device having multi-layer resistor
KR100453187B1 (ko) * 1997-07-23 2004-12-29 삼성에스디아이 주식회사 전자총의음극구조체용전계방출소자
JP3107007B2 (ja) * 1997-08-11 2000-11-06 日本電気株式会社 電界放出型冷陰極および電子管
JPH1186719A (ja) * 1997-09-05 1999-03-30 Yamaha Corp 電界放射型素子の製造方法
FR2769751B1 (fr) 1997-10-14 1999-11-12 Commissariat Energie Atomique Source d'electrons a micropointes, a grille de focalisation et a densite elevee de micropointes, et ecran plat utilisant une telle source
US6144144A (en) * 1997-10-31 2000-11-07 Candescent Technologies Corporation Patterned resistor suitable for electron-emitting device
US6255769B1 (en) 1997-12-29 2001-07-03 Micron Technology, Inc. Field emission displays with raised conductive features at bonding locations and methods of forming the raised conductive features
US6727642B1 (en) * 1998-03-21 2004-04-27 Korea Advanced Institute Of Science & Technology Flat field emitter displays
US6861791B1 (en) * 1998-04-30 2005-03-01 Crystals And Technologies, Ltd. Stabilized and controlled electron sources, matrix systems of the electron sources, and method for production thereof
US6107728A (en) * 1998-04-30 2000-08-22 Candescent Technologies Corporation Structure and fabrication of electron-emitting device having electrode with openings that facilitate short-circuit repair
US6174449B1 (en) 1998-05-14 2001-01-16 Micron Technology, Inc. Magnetically patterned etch mask
FR2779243B1 (fr) 1998-05-26 2000-07-07 Commissariat Energie Atomique Procede de realisation par photolithographie d'ouvertures auto-alignees sur une structure, en particulier pour ecran plat a micropointes
US6326725B1 (en) 1998-05-26 2001-12-04 Micron Technology, Inc. Focusing electrode for field emission displays and method
US6558570B2 (en) 1998-07-01 2003-05-06 Micron Technology, Inc. Polishing slurry and method for chemical-mechanical polishing
US6190223B1 (en) 1998-07-02 2001-02-20 Micron Technology, Inc. Method of manufacture of composite self-aligned extraction grid and in-plane focusing ring
US6028322A (en) * 1998-07-22 2000-02-22 Micron Technology, Inc. Double field oxide in field emission display and method
US6176752B1 (en) 1998-09-10 2001-01-23 Micron Technology, Inc. Baseplate and a method for manufacturing a baseplate for a field emission display
US6630772B1 (en) 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
US6328620B1 (en) 1998-12-04 2001-12-11 Micron Technology, Inc. Apparatus and method for forming cold-cathode field emission displays
US6250984B1 (en) 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
US6283812B1 (en) 1999-01-25 2001-09-04 Agere Systems Guardian Corp. Process for fabricating article comprising aligned truncated carbon nanotubes
US6504291B1 (en) * 1999-02-23 2003-01-07 Micron Technology, Inc. Focusing electrode and method for field emission displays
JP3595718B2 (ja) 1999-03-15 2004-12-02 株式会社東芝 表示素子およびその製造方法
KR100334017B1 (ko) 1999-03-18 2002-04-26 김순택 평판 디스플레이
JP3600126B2 (ja) * 1999-07-29 2004-12-08 シャープ株式会社 電子源アレイ及び電子源アレイの駆動方法
US7052350B1 (en) * 1999-08-26 2006-05-30 Micron Technology, Inc. Field emission device having insulated column lines and method manufacture
US6635983B1 (en) * 1999-09-02 2003-10-21 Micron Technology, Inc. Nitrogen and phosphorus doped amorphous silicon as resistor for field emission device baseplate
JP3878365B2 (ja) 1999-09-09 2007-02-07 株式会社日立製作所 画像表示装置および画像表示装置の製造方法
US6541908B1 (en) * 1999-09-30 2003-04-01 Rockwell Science Center, Llc Electronic light emissive displays incorporating transparent and conductive zinc oxide thin film
US6155900A (en) 1999-10-12 2000-12-05 Micron Technology, Inc. Fiber spacers in large area vacuum displays and method for manufacture
US6741019B1 (en) 1999-10-18 2004-05-25 Agere Systems, Inc. Article comprising aligned nanowires
US6710525B1 (en) 1999-10-19 2004-03-23 Candescent Technologies Corporation Electrode structure and method for forming electrode structure for a flat panel display
US6989631B2 (en) * 2001-06-08 2006-01-24 Sony Corporation Carbon cathode of a field emission display with in-laid isolation barrier and support
US6469436B1 (en) * 2000-01-14 2002-10-22 Micron Technology, Inc. Radiation shielding for field emitters
US6424083B1 (en) 2000-02-09 2002-07-23 Motorola, Inc. Field emission device having an improved ballast resistor
JP2001319564A (ja) * 2000-05-08 2001-11-16 Canon Inc 電子源形成用基板、該基板を用いた電子源並びに画像表示装置
FR2809862B1 (fr) 2000-05-30 2003-10-17 Pixtech Sa Ecran plat de visualisation a memoire d'adressage
US6611093B1 (en) * 2000-09-19 2003-08-26 Display Research Laboratories, Inc. Field emission display with transparent cathode
US6748994B2 (en) * 2001-04-11 2004-06-15 Avery Dennison Corporation Label applicator, method and label therefor
US7002290B2 (en) * 2001-06-08 2006-02-21 Sony Corporation Carbon cathode of a field emission display with integrated isolation barrier and support on substrate
US6756730B2 (en) * 2001-06-08 2004-06-29 Sony Corporation Field emission display utilizing a cathode frame-type gate and anode with alignment method
US6682382B2 (en) * 2001-06-08 2004-01-27 Sony Corporation Method for making wires with a specific cross section for a field emission display
US6903504B2 (en) * 2002-01-29 2005-06-07 Canon Kabushiki Kaisha Electron source plate, image-forming apparatus using the same, and fabricating method thereof
US6791278B2 (en) * 2002-04-16 2004-09-14 Sony Corporation Field emission display using line cathode structure
US6873118B2 (en) * 2002-04-16 2005-03-29 Sony Corporation Field emission cathode structure using perforated gate
US7402897B2 (en) * 2002-08-08 2008-07-22 Elm Technology Corporation Vertical system integration
US7012582B2 (en) * 2002-11-27 2006-03-14 Sony Corporation Spacer-less field emission display
KR100576733B1 (ko) * 2003-01-15 2006-05-03 학교법인 포항공과대학교 일체형 3극구조 전계방출디스플레이 및 그 제조 방법
US20040145299A1 (en) * 2003-01-24 2004-07-29 Sony Corporation Line patterned gate structure for a field emission display
US7071629B2 (en) * 2003-03-31 2006-07-04 Sony Corporation Image display device incorporating driver circuits on active substrate and other methods to reduce interconnects
US20040189552A1 (en) * 2003-03-31 2004-09-30 Sony Corporation Image display device incorporating driver circuits on active substrate to reduce interconnects
FR2863102B1 (fr) * 2003-12-02 2006-04-28 Commissariat Energie Atomique Dispositifs a emission de champ.
JP2005340133A (ja) * 2004-05-31 2005-12-08 Sony Corp カソードパネル処理方法、並びに、冷陰極電界電子放出表示装置及びその製造方法
US20060113888A1 (en) * 2004-12-01 2006-06-01 Huai-Yuan Tseng Field emission display device with protection structure
US7564178B2 (en) * 2005-02-14 2009-07-21 Agere Systems Inc. High-density field emission elements and a method for forming said emission elements
FR2899991B1 (fr) * 2006-04-14 2009-03-20 Commissariat Energie Atomique Procede de commande d'un dispositif de visualisation matriciel a source d'electrons
JP2007294126A (ja) * 2006-04-21 2007-11-08 Canon Inc 電子放出素子、電子源、画像表示装置、及び、電子放出素子の製造方法
CN101192494B (zh) * 2006-11-24 2010-09-29 清华大学 电子发射元件的制备方法
CN101192490B (zh) * 2006-11-24 2010-09-29 清华大学 表面传导电子发射元件以及应用表面传导电子发射元件的电子源
KR20080075360A (ko) * 2007-02-12 2008-08-18 삼성에스디아이 주식회사 발광 장치 및 이를 이용한 표시장치
JP2015515091A (ja) * 2012-03-16 2015-05-21 ナノックス イメージング ピーエルシー 電子放出構造を有する装置
US9053890B2 (en) 2013-08-02 2015-06-09 University Health Network Nanostructure field emission cathode structure and method for making

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453478A (en) * 1966-05-31 1969-07-01 Stanford Research Inst Needle-type electron source
US3789471A (en) * 1970-02-06 1974-02-05 Stanford Research Inst Field emission cathode structures, devices utilizing such structures, and methods of producing such structures
US3671798A (en) * 1970-12-11 1972-06-20 Nasa Method and apparatus for limiting field-emission current
US3735186A (en) * 1971-03-10 1973-05-22 Philips Corp Field emission cathode
US3935500A (en) * 1974-12-09 1976-01-27 Texas Instruments Incorporated Flat CRT system
JPS57187849A (en) * 1981-05-15 1982-11-18 Nippon Telegr & Teleph Corp <Ntt> Electron gun
US4663559A (en) * 1982-09-17 1987-05-05 Christensen Alton O Field emission device
US4513308A (en) * 1982-09-23 1985-04-23 The United States Of America As Represented By The Secretary Of The Navy p-n Junction controlled field emitter array cathode
FR2593953B1 (fr) * 1986-01-24 1988-04-29 Commissariat Energie Atomique Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ
US4721885A (en) * 1987-02-11 1988-01-26 Sri International Very high speed integrated microelectronic tubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8477156B2 (en) 2006-10-30 2013-07-02 Commissariat A L'energie Atomique Method of driving a matrix display device having an electron source with reduced capacitive consumption

Also Published As

Publication number Publication date
US4940916B1 (en) 1996-11-26
EP0316214A1 (de) 1989-05-17
KR970005760B1 (ko) 1997-04-19
US4940916A (en) 1990-07-10
FR2623013A1 (fr) 1989-05-12
DE3877902T2 (de) 1993-07-15
DE3877902D1 (de) 1993-03-11
JPH01154426A (ja) 1989-06-16
KR890008886A (ko) 1989-07-13
JPH07118259B2 (ja) 1995-12-18

Similar Documents

Publication Publication Date Title
EP0316214B1 (de) Elektronenquelle mit Mikrospitzen-Emissionskathoden und diese Quelle benutzende Bildwiedergabe-Anordnung, die auf durch Feldemission angeregter Kathodolumineszenz beruht
EP0461990B1 (de) Elektronenquelle mit Mikropunktkathoden
EP0172089B1 (de) Bildanzeigevorrichtung mittels feldemissions angeregter Kathodolumineszenz
EP0704877B1 (de) Elektrischer Schutz von einer Anode eines flachen Bildschirms
FR2796489A1 (fr) Dispositif d&#39;affichage a emission de champ comportant un film de nanotube en carbone en tant qu&#39;emetteurs
US5908699A (en) Cold cathode electron emitter and display structure
EP0558393A1 (de) Elektronenquelle mit Mikropunktkathoden und Anzeigevorrichtung mit Kathodolumineszenz erregt durch Feldemission unter Anwendung dieser Quelle
US20050179398A1 (en) Substrate having a light emitter and image display device
US6831403B2 (en) Field emission display cathode assembly
US7794298B2 (en) Electron-emitting device and method of producing thereof
FR2744834A1 (fr) Cathode a emission de champ et son procede de fabrication
FR2764435A1 (fr) Element a emission de champ
EP0734042B1 (de) Anode eines flachen Bildschirms mit Widerstandsstreifen
FR2742578A1 (fr) Cathode a emission de champ et son procede de fabrication
EP0259213B1 (de) Elektrolumineszenz-fotoinduktive Anzeige mit schwachem Ausfüllungsgrad
EP0616356B1 (de) Mikrospitzebildwiedergabeanordnung und Herstellungsverfahren
FR2717304A1 (fr) Source d&#39;électrons à cathodes émissives à micropointes.
EP1210721B1 (de) Flache feldemissionsanzeigevorrichtung mit modulationselektrode
EP0625277B1 (de) Flacher bildschirm mit einzelnen dipol-geschuetzten mikropunkten.
FR2750533A1 (fr) Cathode froide a emission de champ et tube a rayons cathodiques comportant celle-ci
EP0275769A1 (de) Photoelektronischer Umwandler mit einer aus mehreren Mikrospitzen bestehenden Emissionskathode
WO2017186941A1 (fr) Dispositif optoelectronique organique matriciel
FR2797092A1 (fr) Procede de fabrication d&#39;une anode d&#39;un ecran plat de visualisation
FR2798507A1 (fr) Dispositif permettant de produire un champ electrique module au niveau d&#39;une electrode et son application aux ecrans plats a emission de champ
FR2910175A1 (fr) Structure de cathode pour ecran plat avec grille de refocalisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19891020

17Q First examination report despatched

Effective date: 19920402

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3877902

Country of ref document: DE

Date of ref document: 19930311

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961105

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961130

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980601

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071128

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071127

Year of fee payment: 20

Ref country code: GB

Payment date: 20071031

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081101