EP0316214B1 - Source d'électrons à cathodes émissives à micropointes et dispositif de visualisation par cathodoluminescence excitée par émission de champ, utilisant cette source - Google Patents

Source d'électrons à cathodes émissives à micropointes et dispositif de visualisation par cathodoluminescence excitée par émission de champ, utilisant cette source Download PDF

Info

Publication number
EP0316214B1
EP0316214B1 EP88402742A EP88402742A EP0316214B1 EP 0316214 B1 EP0316214 B1 EP 0316214B1 EP 88402742 A EP88402742 A EP 88402742A EP 88402742 A EP88402742 A EP 88402742A EP 0316214 B1 EP0316214 B1 EP 0316214B1
Authority
EP
European Patent Office
Prior art keywords
source
cathode
layer
conductive layer
resistive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88402742A
Other languages
German (de)
English (en)
Other versions
EP0316214A1 (fr
Inventor
Michel Borel
Jean-François Boronat
Robert Meyer
Philippe Rambaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0316214A1 publication Critical patent/EP0316214A1/fr
Application granted granted Critical
Publication of EP0316214B1 publication Critical patent/EP0316214B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/04Electrodes; Screens
    • H01J17/06Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/319Circuit elements associated with the emitters by direct integration

Definitions

  • the present invention relates to an electron source with microtip emissive cathodes and a cathodoluminescence display device excited by field emission, using this source.
  • the invention applies in particular to the production of simple displays, allowing the visualization of still images, and to the production of complex multiplexed screens, allowing the visualization of animated images, for example of the type of television images.
  • the electron source used in this known device is schematically represented in FIG. 1.
  • this source has a matrix structure and optionally comprises, on a substrate 2, for example made of glass, a thin layer of silica 4.
  • a substrate 2 for example made of glass
  • silica layer 4 On this silica layer 4 is formed a plurality of electrodes 5 in the form of parallel conductive strips or layers 6, playing the role of cathode conductors and constituting the columns of the matrix structure.
  • These cathode conductors 5 are covered with an electrically insulating layer 8, for example made of silica, except on the connection ends 19 of these conductors 5, ends provided for the polarization of said conductors.
  • an electrically insulating layer 8 for example made of silica, except on the connection ends 19 of these conductors 5, ends provided for the polarization of said conductors.
  • electrodes 10 Above this layer 8 are formed a plurality of electrodes 10 also in the form of parallel conductive strips. These electrodes 10 are perpendicular to
  • the known source also includes a plurality of elementary electron emitters (microtips), a copy of which 12 is schematically represented in FIG. 2: in each of the crossing zones of the cathode conductors 5 and of the grids 10, the layer 6 of the cathode conductor 5 corresponding to this zone is provided with a plurality of microtips 12, for example made of molybdenum and the grid 10 corresponding to said zone has an opening 14 facing each of the microtips.
  • Each of these latter conforms substantially to the shape of a cone the base of which rests on the layer 6 and the top of which is situated at the level of the corresponding opening 14.
  • the insulating layer 8 is also provided with openings 15 allowing the passage of the microtips 12.
  • the grids as well as the insulating layer 8 are provided with openings elsewhere than in the crossing zones, a microtip being associated with each of these openings, due to the method described in the patent application cited above, due to ease of manufacture.
  • each layer 6 has a thickness of the order of 0.2 micrometer
  • the electrically insulating layer 8 has a thickness of the order of 1 micrometer
  • each grid has a thickness of the order of 0.4 micrometer
  • each opening 14 has a diameter of the order of 1.3 micrometer
  • the base of each microtip has a diameter of the order of 1.1 micrometer.
  • the known device further comprises a screen E comprising a cathodoluminescent anode 16 disposed opposite the grids, parallel to the latter.
  • control means 20 When the known device is put under vacuum, by carrying by control means 20 a grid at a potential for example of the order of 100 volts relative to a cathode conductor, the microtips located in the crossing zone of this grid and of this cathode conductor emit electrons.
  • the anode 16 is advantageously brought by these means 20 to a potential equal to or greater than that of the grids; in particular, it can be grounded when the grids are brought to ground, or polarized negatively with respect to ground.
  • Each crossing zone which comprises for example 104 to 105 elementary emitters per mm2, thus corresponds to a bright spot on the screen.
  • the known source of electrons poses a problem: it has been found that, during the operation of this known device, especially during its start-up and during its stabilization period, local degassing takes place which can generate electric arcs between different components of the device (tips, grids, anodes). There is nothing in this case to limit the electric current in the cathode conductors. There is a runaway phenomenon during which this current increases and, at a certain moment, its intensity becomes greater than the maximum intensity Io of the electric current which the cathode conductors can withstand. Some of these are then destroyed and no longer work, in part or in whole depending on the location of the destruction (breakdown).
  • the known source of electrons is thus fragile and therefore has a limited lifespan.
  • resistors can only be used with electron sources - notably intended for the manufacture of display devices - of reduced size, complexity and functional possibility.
  • the known source of electrons thus has another drawback: the display devices which use it can exhibit significant point heterogeneities in luminosity.
  • the present invention makes it possible to remedy not only the disadvantage of brittleness mentioned above but also this other drawback, which was not the case with the source using the resistors.
  • resistive layer is meant an electrically resistant layer.
  • the invention makes it possible to limit the intensity of the current in each of the microtips of each cathode conductor and therefore makes it possible, a fortiori, to limit the intensity of the electric current flowing in the corresponding cathode conductor.
  • each microtip has a base (“pedestal”) made of an electrically resistant material.
  • the source object of the present invention in which each conductive layer is entirely covered by a continuous resistive layer, presents an important advantage compared to this known source: it allows a better dissipation of the thermal power released in the "active" parts of the resistive material (resistive parts included between the microtips and the conductive layers), which gives the source of the present invention more robustness and reliability.
  • the nominal current per transmitter is less than 1 microamp and generally between 0.1 and 1 microamp.
  • the resistance Ri that this resistive layer generates under the microtips has a value for example of the order of 107 to 108 ohms (corresponding to a voltage drop of 10 V in the resistive layer for a current of the order of 1 to 0.1 microampere per transmitter).
  • the entire voltage between the conductive layer and the grid which is generally of the order of 100 V, is transferred to the terminals of the resistive material.
  • the thermal power released in each active part then becomes very large and can be of the order of (100) 2 / 108 W or 0.1 mW in a volume of the order of 1 cubic micrometer (volume of the active part) .
  • the source object of the invention is therefore very advantageous compared to the source of the American document. mentioned above.
  • the source object of the invention may comprise a plurality of continuous resistive layers, respectively arranged on the conductive layers of the source. This plurality of resistive layers can be obtained by etching, between the cathode conductors, a single continuous resistive layer.
  • the source object of the invention comprises a single continuous resistive layer which covers all of the conductive layers of the source.
  • Each conductive layer can be made of a material chosen from the group comprising aluminum, tin oxide doped with antimony or fluorine, indium oxide doped with tin and niobium.
  • the resistive layer or layers are made of a material which is chosen from the group comprising In2O3, SnO2, Fe2O3, ZnO and Si doped, and which has a resistivity greater than that of the material constituting the conductive layer.
  • the resistivity of the resistive layer is between approximately 102 ohms.cm and 106 ohms.cm.
  • resistive materials of resistivity between 102 ohms.cm and 106 ohms.cm and in particular between 104 ohms.cm and 105 ohms.cm, allows to obtain a significant series resistance for example of the order of 108 ohms under each microtip for a resistive layer of 1 to 0.1 micrometer in thickness so as to obtain a good homogenization of emission, a good limitation of over-intensities and a good heat dissipation in the case of short circuits.
  • the silicon which, precisely, by suitable doping, can have a high resistivity for example of the order of 104 ohms.cm to 105 ohms.cm, can be advantageously chosen as a resistive material.
  • an electrical resistance 18 of appropriate Ro value is mounted in series with each cathode conductor 6.
  • the control means 20 known, making it possible to selectively bring the grids to positive potentials, for example of the order of 100 volts, with respect to the cathode conductors are electrically connected to the grids and to the cathode conductors and the electrical connection between these means 20 and each cathode conductor is performed via an electrical resistor 18. This is thus connected to the end of the connection 19 of the corresponding cathode conductor (end which is shown in Figure 1).
  • each of these electrical resistances is calculated so that the maximum intensity of the current capable of flowing in the corresponding cathode conductor is less than the critical intensity Io beyond which breakdowns occur.
  • This value Io depends on the size and the nature of the cathode conductors. It is always much greater than the intensity of the current corresponding to the nominal operation of the cathode conductors.
  • the cathode conductors are made of indium oxide and have a width of 0.7 mm, a thickness of 0, 2 micrometer, a length of 40 mm and a square resistance of 10 ohms, so that the electrical resistance of each cathode conductor has an Rc value of about 0.6 kilo-ohms;
  • the critical value Io is of the order of 10 milliamps, the intensity of the nominal current being less than or equal to about 1 milliampere; to excite a given crossing zone, the grid is brought to a positive potential U of the order of 100 volts relative to the corresponding cathode conductor, the quantity Ro + Rc having to be greater than U / Io.
  • the Ro value can be taken equal to approximately 10 kilo-ohms.
  • the source represented in FIG. 3, which uses electrical resistances, is applicable, for reasons of response time, only to screens of size, complexity and reduced functional possibility.
  • the response time of the corresponding cathode conductor is equal to the charge time of the capacitor formed by this cathode conductor, by the corresponding grid (line) and by the insulating layer separating the conductor cathodic grid.
  • This charging time is of the order of the product of the charging resistance Ro + Rc by the capacity of the capacitor in question.
  • the capacity is of the order of 4 nanofarads per cm2 and, for a screen of 1 dm2 of surface and 256 columns and 256 lines, the surface of a column is about 0.25 cm2.
  • the excitation time of a line for such a screen is 1 / (50x256) second, or approximately 80 microseconds.
  • the charging time is not negligible compared to the line excitation time (if it is for example greater than 10% of the latter), the coupling effect is visible.
  • the response time problem can be solved by replacing said electrical resistors of Ro value with resistive layers.
  • resistive layers thus we limit the current in the cathode conductors while having an access resistance to them practically zero.
  • FIG. 4 an exemplary embodiment of the source object of the invention is shown diagrammatically, making it possible to solve this problem of the response time and the problems of heterogeneity and over-intensity mentioned above.
  • the source schematically shown in Figure 4 differs from the source described with reference to Figures 1 and 2 in that, in the known source, described with reference to these Figures 1 and 2, each cathode conductor 5 has a single electrically conductive layer 6, while in the source according to the invention, shown in FIG.
  • each cathode conductor 5 comprises a first electrically conductive layer 22 resting on the electrically insulating layer 4 (as was the case with layer 6 of the figures 1 to 3) and a second resistive layer 24, which surmounts the conductive layer 22 and on which the bases of the microtips 12 of the cathode conductor 5 rest.
  • each cathode conductor of the source is thus presented in the form of a double-layer strip, the control means 20 being connected to the conductive layers 22.
  • the conductive layer 22 is for example made of aluminum.
  • the resistive layer 24 acts as a buffer resistance between the conductive layer and the corresponding elementary emitters 12.
  • the resistive layer which of course must have an electrical resistance greater than that of the layer conductive, is preferably made with materials having a resistivity of the order of 102 to 106 ohms.cm, compatible with the method of manufacturing cathode conductors (see in particular description of Figure 5).
  • this resistive layer 24 it is possible, for example, to choose as materials indium oxide In2O3, tin oxide SnO2, iron oxide Fe2O3, zinc oxide ZnO or doped silicon, by ensuring, of course, that the material chosen has a higher resistivity than that of the material chosen to produce the conductive layer.
  • the advantage of the embodiment shown in FIG. 4 lies inter alia in the fact that it makes it possible to "transfer" the "protection" resistors, of the type of resistors 18 in FIG. 3, between the conductive layer and each elementary emitter . A better response time is thus obtained, without appreciable increase in the cost of the electron source.
  • the intensity of the current flowing through each cathode conductor can be limited to a value less than or equal to Io, while allowing the nominal current to pass through this cathode conductor.
  • the resistive layer 24 therefore also provides protection against the risks of breakdown.
  • the load resistance is that of the conductive layer and therefore corresponds to a response time much less than a microsecond, in the case of a conductive layer of aluminum, which makes it possible to produce complex screens of big size.
  • the use of the resistive layer makes it possible to associate with each elementary emitter a resistance denoted Ri, which allows this resistive layer to also play a role of homogenization on the electronic emission.
  • Ri a resistance denoted Ri
  • Ri has a self-regulating effect on the current. Any abnormal brightness of the light points is thus greatly attenuated.
  • a first layer 22 of aluminum 200 nanometers thick and with resistivity is deposited by sputtering 3.10 ⁇ 6 ohm.cm then, on this aluminum layer, a second layer 24 of Fe2O2 iron oxide with a thickness of 150 nanometers and a resistivity of 104 ohm.cm, also by sputtering.
  • the two layers thus deposited are then etched successively for example through the same resin mask by chemical etching so as to obtain a network of parallel cathode strips or conductors 5 the length of which is 150 millimeters and the width of 300 micrometers, l the interval between two bands 5 being 50 micrometers.
  • the etching of the aluminum layer can be carried out by means of a bath comprising 4 volumes of H3PO4 at 85% by weight, 4 volumes of pure CH3COOH, 1 volume of HNO3 at 67% by weight and 1 volume of H2O, for 6 minutes at room temperature, for an aluminum layer 200 nm thick and the etching of the Fe2O3 layer can be carried out using the product Mixelec Mélange PFE 8.1, sold by the company SOPRELEC SA, for minutes at room temperature, for a layer of Fe3O3 150 nm thick.
  • the load resistance is that of the aluminum layer and is therefore approximately 75 ohms.
  • the area of a column is 0.45 cm2.
  • the response time is therefore of the order of 0.15 microseconds, with a capacity which remains of the order of 4 nanofarads per cm2.
  • each resistance Ri is calculated to calculate the value of each resistance Ri. It is observed that the lines of the electric current flowing through the cathode conductors are located in the conductive layer and pass through the various corresponding microtips by crossing the resistive layer perpendicularly to the latter.
  • the resistance Ri is therefore equal to the resistivity of the iron oxide Fe2O3 multiplied by the thickness of the resistive layer and divided by the base surface of an elementary electron emitter, which gives a resistance Ri equal in this case at around 107 ohms.
  • a microtip is crossed by a current of about 0.1 microampere, which corresponds to a voltage drop in Ri of 1 volt. The nominal operation is not disturbed.
  • the maximum current per transmitter can be 10 microamps.
  • the resistive material is advantageously suitably doped silicon.
  • a layer of this material is used which, preferably, is not etched between the cathode conductors, the leakage currents which it induces between these cathode conductors being tolerable.
  • a first layer 22 of aluminum 200 nm thick and with resistivity is deposited by cathode sputtering 3.10 ⁇ 6 ohm.cm.
  • This aluminum layer is then etched for example through a resin mask by chemical etching so as to obtain a network of parallel conductive strips or layers the length of which is 150 millimeters and the width of 300 micrometers for example, the interval between two bands being 50 micrometers.
  • the etching of the aluminum layer can for example be carried out by means of the bath described in the preceding example, relating to FIG. 5.
  • a layer 25 of phosphorus doped silicon for example, 500 nm thick and a resistivity of 5.104 ohms.cm is then deposited on the network of conductive layers by vacuum deposition techniques.
  • the resistance Ri here is 2.5.108 ohms. It is stronger than in the previous example described with reference to the FIG. 5, which has the effect on the one hand of reducing the leakage current due to possible short circuits, on the other hand of having a greater effect on the homogenization of the emission.

Description

  • La présente invention concerne une source d'électrons à cathodes émissives à micropointes et un dispositif de visualisation par cathodoluminescence excitée par émission de champ, utilisant cette source.
  • L'invention s'applique notamment à la réalisation d'afficheurs simples, permettant la visualisation d'images fixes, et à la réalisation d'écrans complexes multiplexés, permettant la visualisation d'images animées, par exemple du type des images de télévision.
  • On connaît déjà, par la demande de brevet français no8601024 du 24 janvier 1986 (brevet FR-A-2593953), un dispositif de visualisation par cathodoluminescence excitée par émission de champ, comprenant une source d'électrons à cathodes émissives à micropointes. Dans la demande citée, est également décrit un procédé de fabrication du dispositif de visualisation.
  • La source d'électrons utilisée dans ce dispositif connu est schématiquement représentée sur la figure 1. Comme on le voit, cette source a une structure matricielle et comprend éventuellement, sur un substrat 2 par exemple en verre, une mince couche de silice 4. Sur cette couche de silice 4 sont formées une pluralité d'électrodes 5 en forme de bandes ou couches conductrices parallèles 6, jouant le rôle de conducteurs cathodiques et constituant les colonnes de la structure matricielle. Ces conducteurs cathodiques 5 sont recouverts d'une couche électriquement isolante 8, par exemple en silice, excepté sur les extrémités de connexion 19 de ces conducteurs 5, extrémités prévues pour la polarisation desdits conducteurs. Au-dessus de cette couche 8 sont formées une pluralité d'électrodes 10 également en forme de bandes conductrices parallèles. Ces électrodes 10 sont perpendiculaires aux électrodes 5, jouent le rôle de grilles et constituent les lignes de la structure matricielle.
  • La source connue comporte également une pluralité d'émetteurs élémentaires d'électrons (micropointes) dont un exemplaire 12 est schématiquement représenté sur la figure 2 : dans chacune des zones de croisement des conducteurs cathodiques 5 et des grilles 10, la couche 6 du conducteur cathodique 5 correspondant à cette zone est pourvue d'une pluralité de micropointes 12 par exemple en molybdène et la grille 10 correspondant à ladite zone comporte une ouverture 14 en regard de chacune des micropointes 12. Chacune de ces dernières épouse sensiblement la forme d'un cône dont la base repose sur la couche 6 et dont le sommet est situé au niveau de l'ouverture 14 correspondante. Bien entendu, la couche isolante 8 est également pourvue d'ouvertures 15 permettant le passage des micropointes 12.
  • On notera également sur la figure 1, que, de façon préférentielle, les grilles ainsi que la couche isolante 8 sont pourvues d'ouvertures ailleurs que dans les zones de croisement, une micropointe étant associée à chacune de ces ouvertures, du fait du procédé décrit dans la demande de brevet citée plus haut, en raison de facilité de fabrication.
  • A titre purement indicatif et nullement limitatif, chaque couche 6 a une épaisseur de l'ordre de 0,2 micromètre, la couche électriquement isolante 8 a une épaisseur de l'ordre de 1 micromètre, chaque grille a une épaisseur de l'ordre de 0,4 micromètre, chaque ouverture 14 a un diamètre de l'ordre de 1,3 micromètre et la base de chaque micropointe a un diamètre de l'ordre de 1,1 micromètre.
  • Le dispositif connu comprend en outre un écran E comportant une anode cathodoluminescente 16 disposée en regard des grilles, parallèlement à ces dernières.
  • Lorsque le dispositif connu est mis sous vide, en portant par des moyens de commande 20 une grille à un potentiel par exemple de l'ordre de 100 volts par rapport à un conducteur cathodique, les micropointes situées dans la zone de croisement de cette grille et de ce conducteur cathodique émettent des électrons. L'anode 16 est portée avantageusement par ces moyens 20 à un potentiel égal ou supérieur à celui des grilles ; en particulier, elle peut être mise à la masse lorsque les grilles sont portées à la masse, ou polarisées négativement par rapport à la masse.
  • L'anode est alors frappée par les électrons et émet de ce fait de la lumière. Chaque zone de croisement, qui comporte par exemple 10⁴ à 10⁵ émetteurs élémentaires par mm², correspond ainsi à un point lumineux sur l'écran.
  • La source connue d'électrons pose un problème : on a constaté que, pendant le fonctionnement de ce dispositif connu, surtout pendant sa mise en route et pendant sa période de stabilisation, il se produit des dégazages locaux qui peuvent engendrer des arcs électriques entre différents constituants du dispositif (pointes, grilles, anodes). Rien ne permet dans ce cas de limiter le courant électrique dans les conducteurs cathodiques. Il se produit un phénomène d'emballement au cours duquel ce courant croît et, à un certain moment, son intensité devient supérieure à l'intensité maximale Io du courant électrique que peuvent supporter les conducteurs cathodiques. Certains de ceux-ci sont alors détruits et ne fonctionnent plus, en partie ou en totalité selon la localisation de la destruction (claquage).
  • La source connue d'électrons est ainsi fragile et présente de ce fait une durée de vie limitée.
  • Pour limiter l'intensité du courant électrique dans les conducteurs cathodiques, on pourrait monter en série, avec chaque conducteur cathodique, une résistance électrique ayant une valeur suffisamment grande pour conduire à un courant d'intensité inférieure à l'intensité du courant de claquage de ce conducteur cathodique.
  • Cependant, pour des questions de temps de réponse, ces résistances ne peuvent être utilisées qu'avec des sources d'électrons -notamment destinées à la fabrication de dispositifs de visualisation- de taille, de complexité et de possibilité fonctionnelle réduites.
  • Par ailleurs, la source connue d'électrons pose un autre problème que l'on ne peut résoudre en utilisant lesdites résistances mentionnées précédemment.
  • On a en effet constaté que, si une micropointe de la source connue a une structure particulièrement favorable, elle émet un courant électronique beaucoup plus fort que les autres micropointes, ce qui engendre sur l'écran E un point anormalement lumineux qui peut constituer un défaut visuel inacceptable.
  • La source connue d'électrons présente ainsi un autre inconvénient : les dispositifs de visualisation qui l'utilisent peuvent présenter d'importantes hétérogénéités ponctuelles de luminosité.
  • La présente invention permet de remédier non seulement à l'inconvénient de fragilité mentionné plus haut mais encore à cet autre inconvénient, ce qui n'était pas le cas avec la source utilisant les résistances.
  • Elle a pour objet une source d'électrons comprenant :
    • des premières électrodes parallèles, jouant le rôle de conducteurs cathodiques, chaque conducteur cathodique comportant une couche électriquement conductrice dont une face porte une pluralité de micropointes qui sont faites d'un matériau émetteur d'électrons, et
    • des secondes électrodes parallèles, jouant le rôle de grilles, celles-ci étant électriquement isolées des conducteurs cathodiques et faisant un angle avec ceux-ci, ce qui définit des zones de croisement des conducteurs cathodiques et des grilles, les micropointes étant situées au moins dans ces zones de croisement, les grilles étant en outre disposées en regard desdites faces et percées de trous respectivement en regard des micropointes, le sommet de chaque micropointe étant situé sensiblement au niveau du trou qui lui correspond, les micropointes de chaque zone de croisement étant capables d'émettre des électrons lorsque la grille correspondante est polarisée positivement par rapport au conducteur cathodique correspondant, un courant électrique circulant alors dans chaque micropointe de la zone,
    source caractérisée en ce que chaque conducteur cathodique comporte en outre des moyens prévus pour limiter l'intensité du courant électrique circulant dans chaque micropointe de ce conducteur cathodique, ces moyens comportant une couche résistive continue, disposée sur la couche conductrice du conducteur cathodique correspondant, entre cette couche conductrice et les micropointes correspondantes, ces dernières reposant sur la couche résistive.
  • Par couche résistive, on entend une couche électriquement résistante.
  • L'invention permet de limiter l'intensité du courant dans chacune des micropointes de chaque conducteur cathodique et permet donc, a fortiori, de limiter l'intensité du courant électrique circulant dans le conducteur cathodique correspondant.
  • L'utilisation de ces moyens de limitation permet donc d'accroître la durée de vie de la source en minimisant les risques de destruction par claquage, provoquée par des surintensités et d'améliorer l'homogénéité d'émission électronique de la source et par conséquent l'homogénéité de luminosité des écrans des dispositifs de visualisation incorporant une telle source, et donc le rendement de fabrication de ces dispositifs, en atténuant de façon importante les points trop lumineux dus à des émetteurs d'électrons qui engendrent un courant électronique anormalement élevé.
  • Certes, on connaît déjà par le document US-A-3789471, une source d'électrons à micropointes dans laquelle chaque micropointe comporte une base (''pedestal'') faite d'un matériau électriquement résistant. Cependant la source objet de la présente invention, dans laquelle chaque couche conductrice est entièrement recouverte par une couche résistive continue, présente un avantage important par rapport à cette source connue : elle permet une meilleure dissipation de la puissance thermique dégagée dans les parties "actives" du matériau résistif (parties résistives comprises entre les micropointes et les couches conductrices), ce qui donne à la source de la présente invention plus de robustesse et de fiabilité.
  • En effet, dans la source du document américain mentionné plus haut, pour une micropointe donnée, la dissipation a lieu seulement par l'intermédiaire de la couche conductrice correspondante, alors que dans la présente invention, cette dissipation a lieu non seulement par l'intermédiaire de cette couche conductrice mais encore de façon latérale, dans la couche résistive (qui entoure la partie active de couche résistive située sous la micropointe).
  • En particulier, dans les applications de type "écran plat", le courant nominal par émetteur est inférieur à 1 microampère et généralement compris entre 0,1 et 1 microampère. Pour que la couche résistive ait un effet sur l'homogénéité d'émission et sur les courts-circuits susceptibles de se produire en particulier entre les micropointes et la grille de la source, il faut que la résistance Ri que cette couche résistive engendre sous les micropointes (émetteurs d'électrons) ait une valeur par exemple de l'ordre de 10⁷ à 10⁸ ohms (correspondant à une chute de tension de 10 V dans la couche résistive pour un courant de l'ordre de 1 à 0,1 microampère par émetteur).
  • En cas de courts-circuits, toute la tension entre la couche conductrice et la grille qui est généralement de l'ordre de 100 V est reportée aux bornes du matériau résistif. La puissance thermique dégagée dans chaque partie active devient alors très importante et peut être de l'ordre de (100)² /10⁸ W soit 0,1 mW dans un volume de l'ordre de 1 micromètre cube (volume de la partie active).
  • Grâce aux meilleures possibilités de dissipation thermique qu'elle offre, la source objet de l'invention est donc très avantageuse par rapport à la source du document américain mentionné plus haut.
  • La source objet de l'invention peut comprendre une pluralité de couches résistives continues, respectivement disposées sur les couches conductrices de la source. Cette pluralité de couches résistives peut être obtenue par gravure, entre les conducteurs cathodiques, d'une couche résistive continue, unique.
  • Cependant, de préférence, la source objet de l'invention comprend une couche résistive continue unique qui recouvre l'ensemble des couches conductrices de la source.
  • Chaque couche conductrice peut être faite d'un matériau choisi dans le groupe comprenant l'aluminium, l'oxyde d'étain dopé à l'antimoine ou au fluor, l'oxyde d'indium dopé à l'étain et le niobium.
  • Dans une réalisation particulière, la ou les couches résistives sont faites d'un matériau qui est choisi dans le groupe comprenant In₂O₃, SnO₂, Fe₂O₃, ZnO et Si dopé, et qui a une résistivité supérieure à celle du matériau constituant la couche conductrice.
  • De préférence, la résistivité de la couche résistive est comprise entre environ 10² ohms.cm et 10⁶ ohms.cm.
  • Le choix de matériaux résistifs, de résistivité comprise entre 10² ohms.cm et 10⁶ ohms.cm et en particulier entre 10⁴ ohms.cm et 10⁵ ohms.cm, permet d'obtenir une résistance-série importante par exemple de l'ordre de 10⁸ ohms sous chaque micropointe pour une couche résistive de 1 à 0,1 micromètre d'épaisseur de façon à obtenir une bonne homogénéisation d'émission, une bonne limitation des sur-intensités et une bonne dissipation thermique dans le cas de courts-circuits. Le silicium qui justement, par un dopage approprié, peut avoir une résistivité importante par exemple de l'ordre de 10⁴ ohms.cm à 10⁵ ohms.cm, peut être avantageusement choisi comme matériau résistif.
  • La présente invention concerne également un dispositif de visualisation par cathodoluminescence, comprenant :
    • une source d'électrons à cathodes émissives à micropointes, et
    • une anode cathodoluminescente,
    caractérisé en ce que la source est conforme à la source objet de l'invention.
  • La présente invention sera mieux comprise à la lecture de la description qui suit, d'exemples de réalisation donnés à titre purement indicatif et nullement limitatif, en référence aux dessins annexés sur lesquels :
    • la figure 1 est une vue schématique d'une source connue d'électrons à cathodes émissives à micropointes et a déjà été décrite,
    • la figure 2 est une vue schématique d'un émetteur élémentaire d'électrons de cette source et a déjà été décrite,
    • la figure 3 est une vue schématique d'une source d'électrons comportant des résistances électriques,
    • la figure 4 est une vue schématique d'un mode de réalisation particulier de la source objet de l'invention, utilisant une pluralité de couches résistives continues,
    • la figure 5 illustre schématiquement une étape d'un procédé de fabrication de la source représentée sur la figure 4, et
    • la figure 6 illustre schématiquement une étape d'un procédé de fabrication d'un autre mode de réalisation particulier de la source de l'invention.
  • La présente invention sera décrite en référence aux figures 4 à 6 dans son application particulière à la visualisation.
  • Sur la figure 3, on a représenté schématiquement une source d'électrons. La seule différence entre celle-ci et la source connue, qui est représentée sur les figures 1 et 2, réside dans le fait que l'on ajoute à cette source connue des résistances électriques 18 de valeur Ro.
  • Plus précisément, une résistance électrique 18 de valeur Ro appropriée, indiquée par la suite est montée en série avec chaque conducteur cathodique 6. Les moyens de commande 20 connus, permettant de porter sélectivement les grilles à des potentiels positifs, par exemple de l'ordre de 100 volts, par rapport aux conducteurs cathodiques sont reliés électriquement aux grilles et aux conducteurs cathodiques et la liaison électrique entre ces moyens 20 et chaque conducteur cathodique est effectuée par l'intermédiaire d'une résistance électrique 18. Celle-ci est ainsi reliée à l'extrémité de la connexion 19 du conducteur cathodique correspondant (extrémité qui est représentée sur la figure 1).
  • La valeur Ro de chacune de ces résistances électriques est calculée de façon que l'intensité maximale du courant susceptible de circuler dans le conducteur cathodique correspondant soit inférieure à l'intensité Io critique au-delà de laquelle des claquages se produisent. Cette valeur Io dépend de la taille et de la nature des conducteurs cathodiques. Elle est toujours largement supérieure à l'intensité du courant correspondant au fonctionnement nominal des conducteurs cathodiques.
  • On donne ci-après, à titre purement indicatif et nullement limitatif, un exemple de calcul de la valeur Ro des résistances électriques : les conducteurs cathodiques sont en oxyde d'indium et ont une largeur de 0,7 mm, une épaisseur de 0,2 micromètre, une longueur de 40 mm et une résistance carrée de 10 ohms, de sorte que la résistance électrique de chaque conducteur cathodique a une valeur Rc de l'ordre de 0,6 kilo-ohms ; la valeur critique Io est de l'ordre de 10 milliampères, l'intensité du courant nominal étant inférieure ou égale à 1 milliampère environ ; pour exciter une zone de croisement donnée, on porte la grille correspondante à un potentiel positif U de l'ordre de 100 volts par rapport au conducteur cathodique correspondant, la quantité Ro+Rc devant être supérieure à U/Io. Il en résulte que la valeur Ro peut être prise égale à 10 kilo-ohms environ.
  • La source représentée sur la figure 3, qui utilise des résistances électriques, n'est applicable, pour des raisons de temps de réponse, qu'à des écrans de taille, de complexité et de possibilité fonctionnelle réduites.
  • En effet, pour une zone de croisement donnée, le temps de réponse du conducteur cathodique correspondant (colonne) est égal au temps de charge du condensateur formé par ce conducteur cathodique, par la grille correspondante (ligne) et par la couche isolante séparant le conducteur cathodique de la grille. Ce temps de charge est de l'ordre du produit de la résistance de charge Ro+Rc par la capacité du condensateur en question.
  • Pour une couche 8 de silice de 1 micromètre d'épaisseur, la capacité est de l'ordre de 4 nanofarads par cm² et, pour un écran de 1 dm² de surface et de 256 colonnes et 256 lignes, la surface d'une colonne est de l'ordre de 0,25 cm². En prenant pour Ro+Rc une valeur de l'ordre 10⁴ ohms, on obtient un temps de réponse t de l'ordre de 10 microsecondes.
  • A une fréquence de 50 images par seconde, le temps d'excitation d'une ligne pour un tel écran est de 1/(50x256) seconde, soit environ 80 microsecondes.
  • Dans cet exemple, le temps de réponse représente ainsi environ 10% du temps d'excitation d'une ligne, ce qui est la limite maximale admissible si l'on veut éviter les phénomènes de couplage. Ces phénomène correspondent au fait que sur une colonne, la luminosité d'un point est influencée par l'état du point précédent :
    • lorsque le point précédent est allumé, le temps d'excitation du point est égal au temps d'excitation de ligne puisque la colonne est déjà au potentiel d'émission,
    • lorsque le point précédent est éteint, le temps d'excitation du point est égal au temps d'excitation de ligne moins le temps de charge, puisque la colonne doit être portée au potentiel d'émission.
  • Si le temps de charge n'est pas négligeable devant le temps d'excitation de ligne (s'il est par exemple supérieur à 10% de ce dernier), l'effet de couplage est visible.
  • La solution utilisant les résistances électriques est donc peu satisfaisante si l'on veut soit faire une image de télévision de bonne définition (comportant au moins 500 lignes et des niveaux de gris) soit faire des écrans de plus grande surface (plus de 1 dm²), la capacité du condensateur étant alors encore plus grande que précédemment.
  • Le problème du temps de réponse peut être résolu en remplaçant lesdites résistances électriques de valeur Ro par des couches résistives. Ainsi limite-t-on le courant dans les conducteurs cathodiques tout en ayant une résistance d'accès à ceux-ci pratiquement nulle.
  • Sur la figure 4, on a représenté schématiquement un exemple de réalisation de la source objet de l'invention, permettant de résoudre ce problème du temps de réponse et les problèmes d'hétérogénéité et de sur-intensité mentionnés plus haut. La source schématiquement représentée sur la figure 4 diffère de la source décrite en référence aux figures 1 et 2 par le fait que, dans la source connue, décrite en référence à ces figures 1 et 2, chaque conducteur cathodique 5 comporte une simple couche électriquement conductrice 6, alors que dans la source conforme à l'invention, représentée sur la figure 4, chaque conducteur cathodique 5 comporte une première couche 22 électriquement conductrice reposant sur la couche électriquement isolante 4 (comme c'était le cas de la couche 6 des figures 1 à 3) et une seconde couche 24 résistive, qui surmonte la couche conductrice 22 et sur laquelle reposent les bases des micropointes 12 du conducteur cathodique 5. Dans l'exemple représenté sur la figure 4, chaque conducteur cathodique de la source se présente ainsi sous la forme d'une bande à double couche, les moyens de commande 20 étant reliés aux couches conductrices 22.
  • La couche conductrice 22 est par exemple en aluminium. La couche résistive 24 joue le rôle de résistance-tampon entre la couche conductrice et les émetteurs élémentaires 12 correspondants.
  • La couche résistive, qui bien entendu doit avoir une résistance électrique supérieure à celle de la couche conductrice, est de préférence réalisée avec des matériaux présentant une résistivité de l'ordre de 10² à 10⁶ ohms.cm, compatibles avec le procédé de fabrication des conducteurs cathodiques (voir notamment description de la figure 5).
  • Pour réaliser cette couche résistive 24, on peut par exemple choisir en tant que matériaux l'oxyde d'indium In₂O₃, l'oxyde d'étain SnO₂, l'oxyde de fer Fe₂O₃, l'oxyde de zinc ZnO ou le silicium dopé, en s'assurant bien entendu du fait que le matériau choisi a une résistivité supérieure à celle du matériau choisi pour réaliser la couche conductrice.
  • L'intérêt de la réalisation représentée sur la figure 4 réside entre autres dans le fait qu'elle permet de "reporter" les résistances de "protection", du type des résistances 18 de la figure 3, entre la couche conductrice et chaque émetteur élémentaire. On obtient ainsi un meilleur temps de réponse, sans accroîssement notable du coût de la source d'électrons.
  • En choisissant convenablement la résistivité de la couche résistive et l'épaisseur de cette dernière, on peut limiter l'intensité du courant parcourant chaque conducteur cathodique à une valeur inférieure ou égale à Io, tout en laissant passer le courant nominal dans ce conducteur cathodique. La couche résistive 24 assure donc également une protection contre les risques de claquage.
  • Pour un conducteur cathodique donné, la résistance de charge est celle de la couche conductrice et correspond donc à un temps de réponse largement inférieur à une microseconde, dans le cas d'une couche conductrice en aluminium, ce qui permet de réaliser des écrans complexes de grande taille.
  • Comme on l'a déjà indiqué, l'utilisation de la couche résistive permet d'associer à chaque émetteur élémentaire une résistance notée Ri, ce qui permet à cette couche résistive de jouer en outre un rôle d'homogénéisation sur l'émission électronique. En effet, si un émetteur élémentaire d'électrons reçoit un courant électrique trop élevé, la chute de tension résultant de Ri permet d'abaisser la tension qui est appliquée à cet émetteur et fait donc décroître le courant. Ainsi Ri a un effet d'auto-régulation sur le courant. Toute luminosité anormale des points lumineux est ainsi fortement atténuée.
  • On va maintenant expliquer, en s'appuyant sur la figure 5, comment réaliser la source décrite en référence à la figure 4 et plus exactement comment modifier le procédé de fabrication d'une source d'électrons à cathodes émissives à micropointes indiqué dans la demande de brevet français n°8601024 du 24 janvier 1986 déjà citée, pour obtenir la superposition de la couche conductrice et de la couche résistive dans chaque conducteur cathodique de la source.
  • Ainsi par exemple, sur un substrat en verre 2, recouvert d'un film de silice 4 de 100 nanomètres d'épaisseur par exemple, on dépose par pulvérisation cathodique une première couche 22 en aluminium de 200 nanomètres d'épaisseur et de résistivité 3.10⁻⁶ ohm.cm puis, sur cette couche d'aluminium, une deuxième couche 24 en oxyde de fer Fe₂O₃ d'épaisseur 150 nanomètres et de résistivité 10⁴ ohm.cm, également par pulvérisation cathodique.
  • Les deux couches ainsi déposées sont ensuite gravées successivement par exemple à travers un même masque de résine par une gravure chimique de façon à obtenir un réseau de bandes ou conducteurs cathodiques parallèles 5 dont la longueur est de 150 millimètres et la largeur de 300 micromètres, l'intervalle entre deux bandes 5 étant de 50 micromètres.
  • A titre purement indicatif et nullement limitatif, la gravure de la couche en aluminium peut être réalisée au moyen d'un bain comportant 4 volumes de H₃PO₄ à 85% en poids, 4 volumes de CH₃COOH pur, 1 volume de HNO₃ à 67% en poids et 1 volume de H₂O, pendant 6 minutes à température ambiante, pour une couche en aluminium de 200 nm d'épaisseur et la gravure de la couche Fe₂O₃ peut être réalisée au moyen du produit Mixelec Mélange PFE 8.1, commercialisé par la société SOPRELEC S.A., pendant minutes à température ambiante, pour une couche en Fe₃O₃ de 150 nm d'épaisseur.
  • Le reste de la structure (couches isolantes, grilles, émetteurs, ...) est ensuite réalisé selon le procédé décrit dans la demande de brevet déjà citée (voir description de la figure 5 et des figures suivantes de cette demande).
  • La résistance de charge est celle de la couche d'aluminium et vaut donc environ 75 ohms. La surface d'une colonne est de 0,45 cm². Le temps de réponse est donc de l'ordre de 0,15 microseconde, avec une capacité qui reste de l'ordre de 4 nanofarads par cm².
  • Pour calculer la valeur de chaque résistance Ri, on observe que les lignes du courant électrique parcourant les conducteurs cathodiques sont situées dans la couche conductrice et passent dans les différentes micropointes correspondantes en traversant la couche résistive perpendiculairement à celle-ci. La résistance Ri est donc égale à la résistivité de l'oxyde de fer Fe₂O₃ multipliée par l'épaisseur de la couche résistive et divisée par la surface de base d'un émetteur élémentaire d'électrons, ce qui donne une résistance Ri égale dans ce cas à environ 10⁷ ohms.
  • De ce fait, en fonctionnement nominal, une micropointe est traversée par un courant d'environ 0,1 microampère, ce qui correspond à une chute de tension dans Ri de 1 volt. Le fonctionnement nominal n'est pas perturbé.
  • Avec une tension d'excitation de 100 volts, le courant maximum par émetteur peut être de 10 microampères. Pour une surface émissive totale d'une zone de croisement, de 0,1 mm², comportant 1000 émetteurs, en admettant que l'ensemble des émetteurs fournissent simultanément le courant maximum (c'est à dire que ces émetteurs soient tous en court-circuit), ce qui est très peu probable, le courant traversant la couche conductrice serait de 10 milliampères, ce qui est la valeur maximum admissible pour éviter le claquage.
  • Enfin, en supposant que pour une tension de 100 volts, un émetteur élémentaire ait un courant 10 fois plus fort que la normale (1 microampère au lieu de 0,1 microampère), la chute de tension dans Ri serait de 10 volts, ce qui réduirait d'un coefficient de l'ordre de 4 à 5 l'émission de l'émetteur élémentaire et la ramènerait à une valeur d'environ 0,2 à 0,3 microampère.
  • On voit donc bien l'effet d'homogénéisation de la résistance Ri, les points excessivement brillants étant supprimés.
  • Un autre exemple de réalisation de source conforme à l'invention va être décrit en se référant à la figure 6. Dans cet exemple, le matériau résistif est de façon avantageuse du silicium convenablement dopé. On utilise une couche de ce matériau qui, de préférence, n'est pas gravée entre les conducteurs cathodiques, les courants de fuite qu'elle induit entre ces conducteurs cathodiques étant tolérables.
  • Ainsi, par exemple, sur un substrat en verre 2, recouvert généralement d'un film de silice 4 de 100 nm d'épaisseur par exemple, on dépose par pulvérisation cathodique une premier couche 22 en aluminium de 200 nm d'épaisseur et de résistivité 3.10⁻⁶ ohm.cm. Cette couche d'aluminium est ensuite gravée par exemple à travers un masque de résine par une gravure chimique de façon à obtenir un réseau de bandes ou couches conductrices parallèles dont la longueur est de 150 millimètres et la largeur de 300 micromètres par exemple, l'intervalle entre deux bandes étant de 50 micromètres. La gravure de la couche d'aluminium peut être par exemple réalisée au moyen du bain décrit dans l'exemple précédent, relatif à la figure 5. Une couche 25 de silicium dopé au phosphore par exemple, de 500 nm d'épaisseur et d'une résistivité de 5.10⁴ ohms.cm est ensuite déposée sur le réseau de couches conductrices par des techniques de dépôt sous vide.
  • Le reste de la structure (couches isolantes, grilles, émetteurs, ...) est ensuite réalisé selon le procédé décrit dans la demande de brevet déjà citée.
  • La résistance Ri vaut ici 2,5.10⁸ ohms. Elle est plus forte que dans l'exemple précédent décrit en référence à la figure 5, ce qui a pour effet d'une part de réduire le courant de fuite dû aux éventuels courts-circuits, d'autre part d'avoir un plus grand effet sur l'homogénéisation de l'émission.
  • Bien entendu, on peut utiliser dans le mode de réalisation des figures 4 et 5 des matériaux tels que la résistance Ri soit aussi de l'ordre de 10⁸ ohms notamment par l'utilisation de Si dopé.

Claims (8)

  1. Source d'électrons comprenant :
    - des premières électrodes parallèles (5), jouant le rôle de conducteurs cathodiques, chaque conducteur cathodique comportant une couche électriquement conductrice (22) dont une face porte une pluralité de micropointes (12) qui sont faites d'un matériau émetteur d'électrons, et
    - des secondes électrodes parallèles (10), jouant le rôle de grilles, celles-ci étant électriquement isolées des conducteurs cathodiques (5) et faisant un angle avec ceux-ci, ce qui définit des zones de croisement des conducteurs cathodiques et des grilles, les micropointes (12) étant situées au moins dans ces zones de croisement, les grilles (10) étant en outre disposées en regard desdites faces et percées de trous (14) respectivement en regard des micropointes, le sommet de chaque micropointe étant situé sensiblement au niveau du trou qui lui correspond, les micropointes de chaque zone de croisement étant capables d'émettre des électrons lorsque la grille correspondante est polarisée positivement par rapport au conducteur cathodique correspondant, un courant électrique circulant alors dans chaque micropointe de la zone,
    source caractérisée en ce que chaque conducteur cathodique (5) comporte en outre des moyens prévus pour limiter l'intensité du courant électrique circulant dans chaque micropointe de ce conducteur cathodique, ces moyens comportant une couche résistive (24, 25) continue, disposée sur la couche conductrice (22) du conducteur cathodique (5) correspondant, entre cette couche conductrice et les micropointes (12) correspondantes, ces dernières reposant sur la couche résistive (24, 25).
  2. Source selon la revendication 1, caractérisée en ce qu'elle comprend une pluralité de couches résistives continues (24), respectivement disposées sur les couches conductrices de la source.
  3. Source selon la revendication 2, caractérisée en ce que cette pluralité de couches résistives est obtenue par gravure, entre les conducteurs cathodiques, d'une couche résistive continue, unique.
  4. Source selon la revendication 1, caractérisée en ce qu'elle comprend une couche résistive continue unique (25), qui recouvre l'ensemble des couches conductrices de la source.
  5. Source selon l'une quelconque des revendications 1 à 4, caractérisée en ce que chaque couche conductrice (22) est faite d'un matériau choisi dans le groupe comprenant l'aluminium, l'oxyde d'étain dopé à l'antimoine ou au fluor, l'oxyde d'indium dopé à l'étain et le niobium.
  6. Source selon l'une quelconque des revendications 1 à 5, caractérisée en ce que chaque couche résistive (24, 25) est faite d'un matériau qui est choisi dans le groupe comprenant In₂O₃, SnO₂, Fe₂O₃, ZnO et Si dopé, et qui a une résistivité supérieure à celle du matériau constituant la couche conductrice (22).
  7. Source selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la résistivité de chaque couche résistive (24, 25) est comprise entre environ 10² ohms.cm et 10⁶ ohms.cm.
  8. Dispositif de visualisation par cathodoluminescence, comprenant :
    - une source d'électrons à cathodes émissives à micropointes, et
    - une anode cathodoluminescente (16),
    caractérisé en ce que la source est conforme à l'une quelconque des revendications 1 à 7.
EP88402742A 1987-11-06 1988-11-02 Source d'électrons à cathodes émissives à micropointes et dispositif de visualisation par cathodoluminescence excitée par émission de champ, utilisant cette source Expired - Lifetime EP0316214B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8715432A FR2623013A1 (fr) 1987-11-06 1987-11-06 Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source
FR8715432 1987-11-06

Publications (2)

Publication Number Publication Date
EP0316214A1 EP0316214A1 (fr) 1989-05-17
EP0316214B1 true EP0316214B1 (fr) 1993-01-27

Family

ID=9356577

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88402742A Expired - Lifetime EP0316214B1 (fr) 1987-11-06 1988-11-02 Source d'électrons à cathodes émissives à micropointes et dispositif de visualisation par cathodoluminescence excitée par émission de champ, utilisant cette source

Country Status (6)

Country Link
US (1) US4940916B1 (fr)
EP (1) EP0316214B1 (fr)
JP (1) JPH07118259B2 (fr)
KR (1) KR970005760B1 (fr)
DE (1) DE3877902T2 (fr)
FR (1) FR2623013A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8477156B2 (en) 2006-10-30 2013-07-02 Commissariat A L'energie Atomique Method of driving a matrix display device having an electron source with reduced capacitive consumption

Families Citing this family (298)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627308B1 (fr) * 1988-02-15 1990-06-01 Commissariat Energie Atomique Procede de commande d'un ecran d'affichage matriciel permettant d'ajuster son contraste et dispositif pour la mise en oeuvre de ce procede
US5354695A (en) 1992-04-08 1994-10-11 Leedy Glenn J Membrane dielectric isolation IC fabrication
JP2805326B2 (ja) * 1989-03-22 1998-09-30 キヤノン株式会社 電子源及びそれを用いた画像形成装置
FR2650119A1 (fr) * 1989-07-21 1991-01-25 Thomson Tubes Electroniques Dispositif de regulation de courant individuel de pointe dans un reseau plan de microcathodes a effet de champ, et procede de realisation
US4956574A (en) * 1989-08-08 1990-09-11 Motorola, Inc. Switched anode field emission device
EP0416625B1 (fr) * 1989-09-07 1996-03-13 Canon Kabushiki Kaisha Dispositif émetteur d'électrons et son procédé de fabrication, dispositif d'affichage et d'écriture par faisceau d'électrons utilisant ledit dispositif.
US5142184B1 (en) * 1990-02-09 1995-11-21 Motorola Inc Cold cathode field emission device with integral emitter ballasting
FR2661566B1 (fr) * 1990-04-25 1995-03-31 Commissariat Energie Atomique Laser compact a semi-conducteur du type a pompage electronique.
FR2663462B1 (fr) * 1990-06-13 1992-09-11 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
US5204581A (en) * 1990-07-12 1993-04-20 Bell Communications Research, Inc. Device including a tapered microminiature silicon structure
US5201992A (en) * 1990-07-12 1993-04-13 Bell Communications Research, Inc. Method for making tapered microminiature silicon structures
US5075591A (en) * 1990-07-13 1991-12-24 Coloray Display Corporation Matrix addressing arrangement for a flat panel display with field emission cathodes
US5103145A (en) * 1990-09-05 1992-04-07 Raytheon Company Luminance control for cathode-ray tube having field emission cathode
WO1992004732A1 (fr) * 1990-09-07 1992-03-19 Motorola, Inc. Dispositif d'emission de champ utilisant une couche de silicium monocristal
US5157309A (en) * 1990-09-13 1992-10-20 Motorola Inc. Cold-cathode field emission device employing a current source means
US5057047A (en) * 1990-09-27 1991-10-15 The United States Of America As Represented By The Secretary Of The Navy Low capacitance field emitter array and method of manufacture therefor
JP2562168Y2 (ja) * 1990-11-08 1998-02-10 双葉電子工業株式会社 電界放出素子
US5138220A (en) * 1990-12-05 1992-08-11 Science Applications International Corporation Field emission cathode of bio-molecular or semiconductor-metal eutectic composite microstructures
JP2613697B2 (ja) * 1991-01-16 1997-05-28 工業技術院長 電界放出素子
US5212426A (en) * 1991-01-24 1993-05-18 Motorola, Inc. Integrally controlled field emission flat display device
US5075595A (en) * 1991-01-24 1991-12-24 Motorola, Inc. Field emission device with vertically integrated active control
JP2626276B2 (ja) * 1991-02-06 1997-07-02 双葉電子工業株式会社 電子放出素子
US5347201A (en) * 1991-02-25 1994-09-13 Panocorp Display Systems Display device
US5660570A (en) * 1991-04-09 1997-08-26 Northeastern University Micro emitter based low contact force interconnection device
US5245248A (en) * 1991-04-09 1993-09-14 Northeastern University Micro-emitter-based low-contact-force interconnection device
US5220725A (en) * 1991-04-09 1993-06-22 Northeastern University Micro-emitter-based low-contact-force interconnection device
JP3235172B2 (ja) * 1991-05-13 2001-12-04 セイコーエプソン株式会社 電界電子放出装置
JP2738197B2 (ja) * 1992-01-27 1998-04-08 松下電器産業株式会社 電子放出素子
US5144191A (en) * 1991-06-12 1992-09-01 Mcnc Horizontal microelectronic field emission devices
FR2679653B1 (fr) * 1991-07-23 1993-09-24 Commissariat Energie Atomique Vacumetre a ionisation.
JPH0547296A (ja) * 1991-08-14 1993-02-26 Sharp Corp 電界放出型電子源及びその製造方法
US5227699A (en) * 1991-08-16 1993-07-13 Amoco Corporation Recessed gate field emission
JP2720662B2 (ja) * 1991-09-30 1998-03-04 双葉電子工業株式会社 電界放出素子及びその製造方法
US5536193A (en) * 1991-11-07 1996-07-16 Microelectronics And Computer Technology Corporation Method of making wide band gap field emitter
JPH05242794A (ja) * 1991-11-29 1993-09-21 Motorola Inc 集積化された静電界レンズを有する電界放出デバイス
US5199917A (en) * 1991-12-09 1993-04-06 Cornell Research Foundation, Inc. Silicon tip field emission cathode arrays and fabrication thereof
US5627427A (en) * 1991-12-09 1997-05-06 Cornell Research Foundation, Inc. Silicon tip field emission cathodes
US5371431A (en) * 1992-03-04 1994-12-06 Mcnc Vertical microelectronic field emission devices including elongate vertical pillars having resistive bottom portions
US5548185A (en) * 1992-03-16 1996-08-20 Microelectronics And Computer Technology Corporation Triode structure flat panel display employing flat field emission cathode
US5679043A (en) * 1992-03-16 1997-10-21 Microelectronics And Computer Technology Corporation Method of making a field emitter
US5763997A (en) * 1992-03-16 1998-06-09 Si Diamond Technology, Inc. Field emission display device
US6127773A (en) * 1992-03-16 2000-10-03 Si Diamond Technology, Inc. Amorphic diamond film flat field emission cathode
US5543684A (en) * 1992-03-16 1996-08-06 Microelectronics And Computer Technology Corporation Flat panel display based on diamond thin films
US5675216A (en) * 1992-03-16 1997-10-07 Microelectronics And Computer Technololgy Corp. Amorphic diamond film flat field emission cathode
US5449970A (en) * 1992-03-16 1995-09-12 Microelectronics And Computer Technology Corporation Diode structure flat panel display
US5686791A (en) * 1992-03-16 1997-11-11 Microelectronics And Computer Technology Corp. Amorphic diamond film flat field emission cathode
US5357172A (en) * 1992-04-07 1994-10-18 Micron Technology, Inc. Current-regulated field emission cathodes for use in a flat panel display in which low-voltage row and column address signals control a much higher pixel activation voltage
US5616991A (en) * 1992-04-07 1997-04-01 Micron Technology, Inc. Flat panel display in which low-voltage row and column address signals control a much higher pixel activation voltage
US5581159A (en) * 1992-04-07 1996-12-03 Micron Technology, Inc. Back-to-back diode current regulator for field emission display
US5956004A (en) * 1993-05-11 1999-09-21 Micron Technology, Inc. Controlling pixel brightness in a field emission display using circuits for sampling and discharging
US6714625B1 (en) * 1992-04-08 2004-03-30 Elm Technology Corporation Lithography device for semiconductor circuit pattern generation
US5477105A (en) * 1992-04-10 1995-12-19 Silicon Video Corporation Structure of light-emitting device with raised black matrix for use in optical devices such as flat-panel cathode-ray tubes
US5424605A (en) * 1992-04-10 1995-06-13 Silicon Video Corporation Self supporting flat video display
US5391259A (en) * 1992-05-15 1995-02-21 Micron Technology, Inc. Method for forming a substantially uniform array of sharp tips
US5302238A (en) * 1992-05-15 1994-04-12 Micron Technology, Inc. Plasma dry etch to produce atomically sharp asperities useful as cold cathodes
US5753130A (en) * 1992-05-15 1998-05-19 Micron Technology, Inc. Method for forming a substantially uniform array of sharp tips
US5283500A (en) * 1992-05-28 1994-02-01 At&T Bell Laboratories Flat panel field emission display apparatus
GB2268324A (en) * 1992-06-30 1994-01-05 Ibm Colour field emission display.
US5359256A (en) * 1992-07-30 1994-10-25 The United States Of America As Represented By The Secretary Of The Navy Regulatable field emitter device and method of production thereof
US5347292A (en) * 1992-10-28 1994-09-13 Panocorp Display Systems Super high resolution cold cathode fluorescent display
US5291572A (en) * 1993-01-14 1994-03-01 At&T Bell Laboratories Article comprising compression bonded parts
WO1994020975A1 (fr) * 1993-03-11 1994-09-15 Fed Corporation Structure de tete d'emetteur, dispositif d'emission de champ comprenant cette structure et procede associe
US5717285A (en) * 1993-03-17 1998-02-10 Commissariat A L 'energie Atomique Microtip display device having a current limiting layer and a charge avoiding layer
US5642017A (en) * 1993-05-11 1997-06-24 Micron Display Technology, Inc. Matrix-addressable flat panel field emission display having only one transistor for pixel control at each row and column intersection
US5686790A (en) * 1993-06-22 1997-11-11 Candescent Technologies Corporation Flat panel device with ceramic backplate
JPH0721903A (ja) * 1993-07-01 1995-01-24 Nec Corp 電界放出型陰極を用いた陰極線管用電子銃構体
FR2707795B1 (fr) * 1993-07-12 1995-08-11 Commissariat Energie Atomique Perfectionnement à un procédé de fabrication d'une source d'électrons à micropointes.
US5495143A (en) * 1993-08-12 1996-02-27 Science Applications International Corporation Gas discharge device having a field emitter array with microscopic emitter elements
US5564959A (en) * 1993-09-08 1996-10-15 Silicon Video Corporation Use of charged-particle tracks in fabricating gated electron-emitting devices
US7025892B1 (en) 1993-09-08 2006-04-11 Candescent Technologies Corporation Method for creating gated filament structures for field emission displays
US5559389A (en) * 1993-09-08 1996-09-24 Silicon Video Corporation Electron-emitting devices having variously constituted electron-emissive elements, including cones or pedestals
US5462467A (en) * 1993-09-08 1995-10-31 Silicon Video Corporation Fabrication of filamentary field-emission device, including self-aligned gate
JP2699827B2 (ja) * 1993-09-27 1998-01-19 双葉電子工業株式会社 電界放出カソード素子
FR2711273B1 (fr) * 1993-10-14 1996-01-19 Pixel Int Sa Ecran plat à anode doublement commutée, utilisant des bandes de couleur dans le sens des lignes .
JP2861755B2 (ja) * 1993-10-28 1999-02-24 日本電気株式会社 電界放出型陰極装置
WO1995012835A1 (fr) * 1993-11-04 1995-05-11 Microelectronics And Computer Technology Corporation Procedes de fabrication de systemes et composants d'affichage a ecran plat
FR2713394B1 (fr) * 1993-11-29 1996-11-08 Futaba Denshi Kogyo Kk Source d'électron de type à émission de champ.
US5461009A (en) * 1993-12-08 1995-10-24 Industrial Technology Research Institute Method of fabricating high uniformity field emission display
US5445550A (en) * 1993-12-22 1995-08-29 Xie; Chenggang Lateral field emitter device and method of manufacturing same
JP2809078B2 (ja) * 1993-12-28 1998-10-08 日本電気株式会社 電界放出冷陰極およびその製造方法
US5451830A (en) * 1994-01-24 1995-09-19 Industrial Technology Research Institute Single tip redundancy method with resistive base and resultant flat panel display
JP2856672B2 (ja) * 1994-02-28 1999-02-10 三星電管株式會社 電界電子放出素子及びその製造方法
FR2717304B1 (fr) * 1994-03-09 1996-04-05 Commissariat Energie Atomique Source d'électrons à cathodes émissives à micropointes.
JP3249288B2 (ja) * 1994-03-15 2002-01-21 株式会社東芝 微小真空管およびその製造方法
JP3388870B2 (ja) * 1994-03-15 2003-03-24 株式会社東芝 微小3極真空管およびその製造方法
US5448131A (en) * 1994-04-13 1995-09-05 Texas Instruments Incorporated Spacer for flat panel display
FR2719156B1 (fr) * 1994-04-25 1996-05-24 Commissariat Energie Atomique Source d'électrons à micropointes, les micropointes comportant deux parties.
US5538450A (en) * 1994-04-29 1996-07-23 Texas Instruments Incorporated Method of forming a size-arrayed emitter matrix for use in a flat panel display
JPH0845445A (ja) * 1994-04-29 1996-02-16 Texas Instr Inc <Ti> フラット・パネル・ディスプレイ装置及びその製造方法
KR950034365A (ko) * 1994-05-24 1995-12-28 윌리엄 이. 힐러 평판 디스플레이의 애노드 플레이트 및 이의 제조 방법
US5473218A (en) * 1994-05-31 1995-12-05 Motorola, Inc. Diamond cold cathode using patterned metal for electron emission control
US5491376A (en) * 1994-06-03 1996-02-13 Texas Instruments Incorporated Flat panel display anode plate having isolation grooves
US5453659A (en) * 1994-06-10 1995-09-26 Texas Instruments Incorporated Anode plate for flat panel display having integrated getter
US5607335A (en) * 1994-06-29 1997-03-04 Silicon Video Corporation Fabrication of electron-emitting structures using charged-particle tracks and removal of emitter material
FR2722913B1 (fr) * 1994-07-21 1996-10-11 Pixel Int Sa Cathode a micropointes pour ecran plat
US5698933A (en) * 1994-07-25 1997-12-16 Motorola, Inc. Field emission device current control apparatus and method
US5920154A (en) 1994-08-02 1999-07-06 Micron Technology, Inc. Field emission display with video signal on column lines
FR2723471B1 (fr) * 1994-08-05 1996-10-31 Pixel Int Sa Cathode d'ecran plat de visualisation a resistance d'acces constante
US6204834B1 (en) 1994-08-17 2001-03-20 Si Diamond Technology, Inc. System and method for achieving uniform screen brightness within a matrix display
GB9416754D0 (en) * 1994-08-18 1994-10-12 Isis Innovation Field emitter structures
US5525857A (en) * 1994-08-19 1996-06-11 Texas Instruments Inc. Low density, high porosity material as gate dielectric for field emission device
FR2724041B1 (fr) * 1994-08-24 1997-04-11 Pixel Int Sa Ecran plat de visualisation a haute tension inter-electrodes
EP0700065B1 (fr) * 1994-08-31 2001-09-19 AT&amp;T Corp. Dispositif à émission de champ et procédé de fabrication
US5504385A (en) * 1994-08-31 1996-04-02 At&T Corp. Spaced-gate emission device and method for making same
US5531880A (en) * 1994-09-13 1996-07-02 Microelectronics And Computer Technology Corporation Method for producing thin, uniform powder phosphor for display screens
EP0707301A1 (fr) 1994-09-14 1996-04-17 Texas Instruments Incorporated Gestion de l'énergie dans un dispositif d'affichage
TW289864B (fr) * 1994-09-16 1996-11-01 Micron Display Tech Inc
US5975975A (en) * 1994-09-16 1999-11-02 Micron Technology, Inc. Apparatus and method for stabilization of threshold voltage in field emission displays
US6417605B1 (en) * 1994-09-16 2002-07-09 Micron Technology, Inc. Method of preventing junction leakage in field emission devices
US5528108A (en) * 1994-09-22 1996-06-18 Motorola Field emission device arc-suppressor
FR2725072A1 (fr) * 1994-09-28 1996-03-29 Pixel Int Sa Protection electrique d'une anode d'ecran plat de visualisation
US6252569B1 (en) * 1994-09-28 2001-06-26 Texas Instruments Incorporated Large field emission display (FED) made up of independently operated display sections integrated behind one common continuous large anode which displays one large image or multiple independent images
US5521660A (en) * 1994-09-29 1996-05-28 Texas Instruments Inc. Multimedia field emission device portable projector
EP0706164A1 (fr) 1994-10-03 1996-04-10 Texas Instruments Incorporated Gestion de l'énergie dans un système d'affichage
US5528098A (en) * 1994-10-06 1996-06-18 Motorola Redundant conductor electron source
US5669690A (en) * 1994-10-18 1997-09-23 Texas Instruments Incorporated Multimedia field emission device projection system
FR2726122B1 (fr) 1994-10-19 1996-11-22 Commissariat Energie Atomique Procede de fabrication d'une source d'electrons a micropointes
FR2726098B1 (fr) 1994-10-24 1997-01-10 Commissariat Energie Atomique Procede de photolithogravure de motifs circulaires denses
US5623180A (en) 1994-10-31 1997-04-22 Lucent Technologies Inc. Electron field emitters comprising particles cooled with low voltage emitting material
US5637950A (en) 1994-10-31 1997-06-10 Lucent Technologies Inc. Field emission devices employing enhanced diamond field emitters
US5527651A (en) * 1994-11-02 1996-06-18 Texas Instruments Inc. Field emission device light source for xerographic printing process
JP3095780B2 (ja) 1994-11-04 2000-10-10 マイクロン、ディスプレイテクノロジー、インコーポレーテッド 低温酸化法を用いてエミッタサイトを尖らせる方法
FR2726688B1 (fr) 1994-11-08 1996-12-06 Commissariat Energie Atomique Source d'electrons a effet de champ et procede de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence
FR2726689B1 (fr) 1994-11-08 1996-11-29 Commissariat Energie Atomique Source d'electrons a effet de champ et procede de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence
US5541466A (en) * 1994-11-18 1996-07-30 Texas Instruments Incorporated Cluster arrangement of field emission microtips on ballast layer
US5536993A (en) * 1994-11-18 1996-07-16 Texas Instruments Incorporated Clustered field emission microtips adjacent stripe conductors
US5557159A (en) * 1994-11-18 1996-09-17 Texas Instruments Incorporated Field emission microtip clusters adjacent stripe conductors
US5486126A (en) 1994-11-18 1996-01-23 Micron Display Technology, Inc. Spacers for large area displays
EP0713236A1 (fr) 1994-11-18 1996-05-22 Texas Instruments Incorporated Dispositif émitteur d'électrons
US5569975A (en) * 1994-11-18 1996-10-29 Texas Instruments Incorporated Cluster arrangement of field emission microtips
WO1996018204A1 (fr) * 1994-12-05 1996-06-13 Color Planar Displays, Inc. Structure de support pour ecrans plats
US5477284A (en) 1994-12-15 1995-12-19 Texas Instruments Incorporated Dual mode overhead projection system using field emission device
US5709577A (en) * 1994-12-22 1998-01-20 Lucent Technologies Inc. Method of making field emission devices employing ultra-fine diamond particle emitters
US5616368A (en) * 1995-01-31 1997-04-01 Lucent Technologies Inc. Field emission devices employing activated diamond particle emitters and methods for making same
US5554828A (en) * 1995-01-03 1996-09-10 Texas Instruments Inc. Integration of pen-based capability into a field emission device system
JP2932250B2 (ja) 1995-01-31 1999-08-09 キヤノン株式会社 電子放出素子、電子源、画像形成装置及びそれらの製造方法
US5561340A (en) * 1995-01-31 1996-10-01 Lucent Technologies Inc. Field emission display having corrugated support pillars and method for manufacturing
US5598056A (en) * 1995-01-31 1997-01-28 Lucent Technologies Inc. Multilayer pillar structure for improved field emission devices
US5578902A (en) * 1995-03-13 1996-11-26 Texas Instruments Inc. Field emission display having modified anode stripe geometry
US5598057A (en) * 1995-03-13 1997-01-28 Texas Instruments Incorporated Reduction of the probability of interlevel oxide failures by minimization of lead overlap area through bus width reduction
FR2731840B1 (fr) * 1995-03-17 1997-06-06 Pixtech Sa Ecran plat de visualisation a distance inter-electrodes elevee
US5578896A (en) * 1995-04-10 1996-11-26 Industrial Technology Research Institute Cold cathode field emission display and method for forming it
US5601466A (en) * 1995-04-19 1997-02-11 Texas Instruments Incorporated Method for fabricating field emission device metallization
US5594297A (en) * 1995-04-19 1997-01-14 Texas Instruments Incorporated Field emission device metallization including titanium tungsten and aluminum
US5760858A (en) * 1995-04-21 1998-06-02 Texas Instruments Incorporated Field emission device panel backlight for liquid crystal displays
US5628659A (en) * 1995-04-24 1997-05-13 Microelectronics And Computer Corporation Method of making a field emission electron source with random micro-tip structures
US6296740B1 (en) 1995-04-24 2001-10-02 Si Diamond Technology, Inc. Pretreatment process for a surface texturing process
US5657054A (en) * 1995-04-26 1997-08-12 Texas Instruments Incorporated Determination of pen location on display apparatus using piezoelectric point elements
US5657053A (en) * 1995-04-26 1997-08-12 Texas Instruments Incorporated Method for determining pen location on display apparatus using piezoelectric point elements
US5591352A (en) * 1995-04-27 1997-01-07 Industrial Technology Research Institute High resolution cold cathode field emission display method
US5644188A (en) * 1995-05-08 1997-07-01 Advanced Vision Technologies, Inc. Field emission display cell structure
US5630741A (en) * 1995-05-08 1997-05-20 Advanced Vision Technologies, Inc. Fabrication process for a field emission display cell structure
US5543691A (en) * 1995-05-11 1996-08-06 Raytheon Company Field emission display with focus grid and method of operating same
US5633120A (en) * 1995-05-22 1997-05-27 Texas Instruments Inc. Method for achieving anode stripe delineation from an interlevel dielectric etch in a field emission device
US5577943A (en) * 1995-05-25 1996-11-26 Texas Instruments Inc. Method for fabricating a field emission device having black matrix SOG as an interlevel dielectric
US5608285A (en) * 1995-05-25 1997-03-04 Texas Instruments Incorporated Black matrix sog as an interlevel dielectric in a field emission device
US5759078A (en) * 1995-05-30 1998-06-02 Texas Instruments Incorporated Field emission device with close-packed microtip array
US5686782A (en) * 1995-05-30 1997-11-11 Texas Instruments Incorporated Field emission device with suspended gate
US5621272A (en) * 1995-05-30 1997-04-15 Texas Instruments Incorporated Field emission device with over-etched gate dielectric
US5589728A (en) * 1995-05-30 1996-12-31 Texas Instruments Incorporated Field emission device with lattice vacancy post-supported gate
US5558554A (en) * 1995-05-31 1996-09-24 Texas Instruments Inc. Method for fabricating a field emission device anode plate having multiple grooves between anode conductors
US5594305A (en) * 1995-06-07 1997-01-14 Texas Instruments Incorporated Power supply for use with switched anode field emission display including energy recovery apparatus
FR2735266B1 (fr) * 1995-06-08 1997-08-22 Pixtech Sa Procede de commande d'ecran plat de visualisation
FR2735265B1 (fr) * 1995-06-08 1997-08-22 Pixtech Sa Commutation d'une anode d'ecran plat de visualisation
US5666024A (en) * 1995-06-23 1997-09-09 Texas Instruments Incorporated Low capacitance field emission device with circular microtip array
US5674407A (en) * 1995-07-03 1997-10-07 Texas Instruments Incorporated Method for selective etching of flat panel display anode plate conductors
US5611719A (en) * 1995-07-06 1997-03-18 Texas Instruments Incorporated Method for improving flat panel display anode plate phosphor efficiency
US5585301A (en) * 1995-07-14 1996-12-17 Micron Display Technology, Inc. Method for forming high resistance resistors for limiting cathode current in field emission displays
US5637951A (en) * 1995-08-10 1997-06-10 Ion Diagnostics, Inc. Electron source for multibeam electron lithography system
US5663742A (en) * 1995-08-21 1997-09-02 Micron Display Technology, Inc. Compressed field emission display
US5635791A (en) * 1995-08-24 1997-06-03 Texas Instruments Incorporated Field emission device with circular microtip array
US5606225A (en) * 1995-08-30 1997-02-25 Texas Instruments Incorporated Tetrode arrangement for color field emission flat panel display with barrier electrodes on the anode plate
US5628662A (en) * 1995-08-30 1997-05-13 Texas Instruments Incorporated Method of fabricating a color field emission flat panel display tetrode
US5773927A (en) 1995-08-30 1998-06-30 Micron Display Technology, Inc. Field emission display device with focusing electrodes at the anode and method for constructing same
US5763998A (en) * 1995-09-14 1998-06-09 Chorus Corporation Field emission display arrangement with improved vacuum control
US5716251A (en) * 1995-09-15 1998-02-10 Micron Display Technology, Inc. Sacrificial spacers for large area displays
US5672938A (en) * 1995-09-29 1997-09-30 Fed Corporation Light emission device comprising light emitting organic material and electron injection enhancement structure
US5772488A (en) 1995-10-16 1998-06-30 Micron Display Technology, Inc. Method of forming a doped field emitter array
US6181308B1 (en) 1995-10-16 2001-01-30 Micron Technology, Inc. Light-insensitive resistor for current-limiting of field emission displays
US5818165A (en) * 1995-10-27 1998-10-06 Texas Instruments Incorporated Flexible fed display
US5831384A (en) * 1995-10-30 1998-11-03 Advanced Vision Technologies, Inc. Dual carrier display device
US5669802A (en) * 1995-10-30 1997-09-23 Advanced Vision Technologies, Inc. Fabrication process for dual carrier display device
US5672933A (en) * 1995-10-30 1997-09-30 Texas Instruments Incorporated Column-to-column isolation in fed display
KR970023568A (ko) * 1995-10-31 1997-05-30 윤종용 전계 방출 표시소자와 그 구동 방법 및 제조 방법
US5648699A (en) 1995-11-09 1997-07-15 Lucent Technologies Inc. Field emission devices employing improved emitters on metal foil and methods for making such devices
US5656892A (en) * 1995-11-17 1997-08-12 Micron Display Technology, Inc. Field emission display having emitter control with current sensing feedback
US5767619A (en) * 1995-12-15 1998-06-16 Industrial Technology Research Institute Cold cathode field emission display and method for forming it
US6031250A (en) * 1995-12-20 2000-02-29 Advanced Technology Materials, Inc. Integrated circuit devices and methods employing amorphous silicon carbide resistor materials
US6680489B1 (en) 1995-12-20 2004-01-20 Advanced Technology Materials, Inc. Amorphous silicon carbide thin film coating
US5656886A (en) * 1995-12-29 1997-08-12 Micron Display Technology, Inc. Technique to improve uniformity of large area field emission displays
US5916004A (en) * 1996-01-11 1999-06-29 Micron Technology, Inc. Photolithographically produced flat panel display surface plate support structure
US6252347B1 (en) 1996-01-16 2001-06-26 Raytheon Company Field emission display with suspended focusing conductive sheet
US5952987A (en) * 1996-01-18 1999-09-14 Micron Technology, Inc. Method and apparatus for improved gray scale control in field emission displays
US6117294A (en) 1996-01-19 2000-09-12 Micron Technology, Inc. Black matrix material and methods related thereto
US5705079A (en) * 1996-01-19 1998-01-06 Micron Display Technology, Inc. Method for forming spacers in flat panel displays using photo-etching
JPH09219144A (ja) * 1996-02-08 1997-08-19 Futaba Corp 電界放出カソードとその製造方法
US5593562A (en) * 1996-02-20 1997-01-14 Texas Instruments Incorporated Method for improving flat panel display anode plate phosphor efficiency
US5733160A (en) * 1996-03-01 1998-03-31 Texas Instruments Incorporated Method of forming spacers for a flat display apparatus
US5695658A (en) * 1996-03-07 1997-12-09 Micron Display Technology, Inc. Non-photolithographic etch mask for submicron features
US5944975A (en) * 1996-03-26 1999-08-31 Texas Instruments Incorporated Method of forming a lift-off layer having controlled adhesion strength
US5956002A (en) * 1996-03-28 1999-09-21 Tektronix, Inc. Structures and methods for limiting current in ionizable gaseous medium devices
US5684356A (en) * 1996-03-29 1997-11-04 Texas Instruments Incorporated Hydrogen-rich, low dielectric constant gate insulator for field emission device
JP3134772B2 (ja) * 1996-04-16 2001-02-13 双葉電子工業株式会社 電界放出型表示素子およびその駆動方法
FR2747839B1 (fr) * 1996-04-18 1998-07-03 Pixtech Sa Ecran plat de visualisation a source d'hydrogene
US5830527A (en) * 1996-05-29 1998-11-03 Texas Instruments Incorporated Flat panel display anode structure and method of making
US5755944A (en) * 1996-06-07 1998-05-26 Candescent Technologies Corporation Formation of layer having openings produced by utilizing particles deposited under influence of electric field
US5865657A (en) * 1996-06-07 1999-02-02 Candescent Technologies Corporation Fabrication of gated electron-emitting device utilizing distributed particles to form gate openings typically beveled and/or combined with lift-off or electrochemical removal of excess emitter material
US6187603B1 (en) 1996-06-07 2001-02-13 Candescent Technologies Corporation Fabrication of gated electron-emitting devices utilizing distributed particles to define gate openings, typically in combination with lift-off of excess emitter material
US5865659A (en) * 1996-06-07 1999-02-02 Candescent Technologies Corporation Fabrication of gated electron-emitting device utilizing distributed particles to define gate openings and utilizing spacer material to control spacing between gate layer and electron-emissive elements
US5811926A (en) * 1996-06-18 1998-09-22 Ppg Industries, Inc. Spacer units, image display panels and methods for making and using the same
US5834891A (en) * 1996-06-18 1998-11-10 Ppg Industries, Inc. Spacers, spacer units, image display panels and methods for making and using the same
JPH1012125A (ja) * 1996-06-19 1998-01-16 Nec Corp 電界電子放出装置
JP3026484B2 (ja) * 1996-08-23 2000-03-27 日本電気株式会社 電界放出型冷陰極
US5854615A (en) * 1996-10-03 1998-12-29 Micron Display Technology, Inc. Matrix addressable display with delay locked loop controller
DE69621017T2 (de) 1996-10-04 2002-10-31 St Microelectronics Srl Herstellungsverfahren einer flachen Feldemissionsanzeige und nach diesem Verfahren hergestellte Anzeige
US5902491A (en) 1996-10-07 1999-05-11 Micron Technology, Inc. Method of removing surface protrusions from thin films
US6010917A (en) * 1996-10-15 2000-01-04 Micron Technology, Inc. Electrically isolated interconnects and conductive layers in semiconductor device manufacturing
US5847515A (en) * 1996-11-01 1998-12-08 Micron Technology, Inc. Field emission display having multiple brightness display modes
US6130106A (en) * 1996-11-14 2000-10-10 Micron Technology, Inc. Method for limiting emission current in field emission devices
US5836799A (en) * 1996-12-06 1998-11-17 Texas Instruments Incorporated Self-aligned method of micro-machining field emission display microtips
FR2756969B1 (fr) * 1996-12-06 1999-01-08 Commissariat Energie Atomique Ecran d'affichage comprenant une source d'electrons a micropointes, observable a travers le support des micropointes, et procede de fabrication de cette source
US5984746A (en) 1996-12-12 1999-11-16 Micron Technology, Inc. Attaching spacers in a display device
US5938493A (en) * 1996-12-18 1999-08-17 Texas Instruments Incorporated Method for increasing field emission tip efficiency through micro-milling techniques
US5780960A (en) * 1996-12-18 1998-07-14 Texas Instruments Incorporated Micro-machined field emission microtips
US5851133A (en) * 1996-12-24 1998-12-22 Micron Display Technology, Inc. FED spacer fibers grown by laser drive CVD
US5888112A (en) * 1996-12-31 1999-03-30 Micron Technology, Inc. Method for forming spacers on a display substrate
US5770919A (en) * 1996-12-31 1998-06-23 Micron Technology, Inc. Field emission device micropoint with current-limiting resistive structure and method for making same
US6015323A (en) * 1997-01-03 2000-01-18 Micron Technology, Inc. Field emission display cathode assembly government rights
US5828163A (en) * 1997-01-13 1998-10-27 Fed Corporation Field emitter device with a current limiter structure
US6262530B1 (en) * 1997-02-25 2001-07-17 Ivan V. Prein Field emission devices with current stabilizer(s)
JP3104639B2 (ja) * 1997-03-31 2000-10-30 日本電気株式会社 電界放出型冷陰極
US6551857B2 (en) 1997-04-04 2003-04-22 Elm Technology Corporation Three dimensional structure integrated circuits
US5915167A (en) 1997-04-04 1999-06-22 Elm Technology Corporation Three dimensional structure memory
US6064148A (en) * 1997-05-21 2000-05-16 Si Diamond Technology, Inc. Field emission device
US6002199A (en) * 1997-05-30 1999-12-14 Candescent Technologies Corporation Structure and fabrication of electron-emitting device having ladder-like emitter electrode
JPH10340666A (ja) * 1997-06-09 1998-12-22 Futaba Corp 電界電子放出素子
US6013986A (en) * 1997-06-30 2000-01-11 Candescent Technologies Corporation Electron-emitting device having multi-layer resistor
KR100453187B1 (ko) * 1997-07-23 2004-12-29 삼성에스디아이 주식회사 전자총의음극구조체용전계방출소자
JP3107007B2 (ja) * 1997-08-11 2000-11-06 日本電気株式会社 電界放出型冷陰極および電子管
JPH1186719A (ja) * 1997-09-05 1999-03-30 Yamaha Corp 電界放射型素子の製造方法
FR2769751B1 (fr) 1997-10-14 1999-11-12 Commissariat Energie Atomique Source d'electrons a micropointes, a grille de focalisation et a densite elevee de micropointes, et ecran plat utilisant une telle source
US6144144A (en) * 1997-10-31 2000-11-07 Candescent Technologies Corporation Patterned resistor suitable for electron-emitting device
US6255769B1 (en) 1997-12-29 2001-07-03 Micron Technology, Inc. Field emission displays with raised conductive features at bonding locations and methods of forming the raised conductive features
WO1999049492A1 (fr) * 1998-03-21 1999-09-30 Korea Advanced Institute Of Science & Technology Afficheur ligne a emission de champ
CN1279562C (zh) * 1998-04-30 2006-10-11 叶夫根尼·因维维奇·吉瓦吉佐夫 稳定和受控的电子源,电子源的矩阵系统以及它们的生产的方法
US6107728A (en) * 1998-04-30 2000-08-22 Candescent Technologies Corporation Structure and fabrication of electron-emitting device having electrode with openings that facilitate short-circuit repair
US6174449B1 (en) 1998-05-14 2001-01-16 Micron Technology, Inc. Magnetically patterned etch mask
FR2779243B1 (fr) 1998-05-26 2000-07-07 Commissariat Energie Atomique Procede de realisation par photolithographie d'ouvertures auto-alignees sur une structure, en particulier pour ecran plat a micropointes
US6326725B1 (en) 1998-05-26 2001-12-04 Micron Technology, Inc. Focusing electrode for field emission displays and method
US6558570B2 (en) 1998-07-01 2003-05-06 Micron Technology, Inc. Polishing slurry and method for chemical-mechanical polishing
US6190223B1 (en) 1998-07-02 2001-02-20 Micron Technology, Inc. Method of manufacture of composite self-aligned extraction grid and in-plane focusing ring
US6028322A (en) * 1998-07-22 2000-02-22 Micron Technology, Inc. Double field oxide in field emission display and method
US6176752B1 (en) 1998-09-10 2001-01-23 Micron Technology, Inc. Baseplate and a method for manufacturing a baseplate for a field emission display
US6630772B1 (en) 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
US6328620B1 (en) 1998-12-04 2001-12-11 Micron Technology, Inc. Apparatus and method for forming cold-cathode field emission displays
US6250984B1 (en) 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
US6283812B1 (en) 1999-01-25 2001-09-04 Agere Systems Guardian Corp. Process for fabricating article comprising aligned truncated carbon nanotubes
US6504291B1 (en) 1999-02-23 2003-01-07 Micron Technology, Inc. Focusing electrode and method for field emission displays
JP3595718B2 (ja) 1999-03-15 2004-12-02 株式会社東芝 表示素子およびその製造方法
KR100334017B1 (ko) 1999-03-18 2002-04-26 김순택 평판 디스플레이
JP3600126B2 (ja) * 1999-07-29 2004-12-08 シャープ株式会社 電子源アレイ及び電子源アレイの駆動方法
US7052350B1 (en) * 1999-08-26 2006-05-30 Micron Technology, Inc. Field emission device having insulated column lines and method manufacture
US6635983B1 (en) * 1999-09-02 2003-10-21 Micron Technology, Inc. Nitrogen and phosphorus doped amorphous silicon as resistor for field emission device baseplate
JP3878365B2 (ja) * 1999-09-09 2007-02-07 株式会社日立製作所 画像表示装置および画像表示装置の製造方法
US6541908B1 (en) * 1999-09-30 2003-04-01 Rockwell Science Center, Llc Electronic light emissive displays incorporating transparent and conductive zinc oxide thin film
US6155900A (en) 1999-10-12 2000-12-05 Micron Technology, Inc. Fiber spacers in large area vacuum displays and method for manufacture
US6741019B1 (en) 1999-10-18 2004-05-25 Agere Systems, Inc. Article comprising aligned nanowires
US6710525B1 (en) 1999-10-19 2004-03-23 Candescent Technologies Corporation Electrode structure and method for forming electrode structure for a flat panel display
US6989631B2 (en) * 2001-06-08 2006-01-24 Sony Corporation Carbon cathode of a field emission display with in-laid isolation barrier and support
US6469436B1 (en) * 2000-01-14 2002-10-22 Micron Technology, Inc. Radiation shielding for field emitters
US6424083B1 (en) 2000-02-09 2002-07-23 Motorola, Inc. Field emission device having an improved ballast resistor
JP2001319564A (ja) * 2000-05-08 2001-11-16 Canon Inc 電子源形成用基板、該基板を用いた電子源並びに画像表示装置
FR2809862B1 (fr) 2000-05-30 2003-10-17 Pixtech Sa Ecran plat de visualisation a memoire d'adressage
US6611093B1 (en) 2000-09-19 2003-08-26 Display Research Laboratories, Inc. Field emission display with transparent cathode
US6748994B2 (en) * 2001-04-11 2004-06-15 Avery Dennison Corporation Label applicator, method and label therefor
US7002290B2 (en) * 2001-06-08 2006-02-21 Sony Corporation Carbon cathode of a field emission display with integrated isolation barrier and support on substrate
US6756730B2 (en) * 2001-06-08 2004-06-29 Sony Corporation Field emission display utilizing a cathode frame-type gate and anode with alignment method
US6682382B2 (en) * 2001-06-08 2004-01-27 Sony Corporation Method for making wires with a specific cross section for a field emission display
US6903504B2 (en) * 2002-01-29 2005-06-07 Canon Kabushiki Kaisha Electron source plate, image-forming apparatus using the same, and fabricating method thereof
US6791278B2 (en) * 2002-04-16 2004-09-14 Sony Corporation Field emission display using line cathode structure
US6873118B2 (en) * 2002-04-16 2005-03-29 Sony Corporation Field emission cathode structure using perforated gate
AU2003255254A1 (en) 2002-08-08 2004-02-25 Glenn J. Leedy Vertical system integration
US7012582B2 (en) * 2002-11-27 2006-03-14 Sony Corporation Spacer-less field emission display
KR100576733B1 (ko) * 2003-01-15 2006-05-03 학교법인 포항공과대학교 일체형 3극구조 전계방출디스플레이 및 그 제조 방법
US20040145299A1 (en) * 2003-01-24 2004-07-29 Sony Corporation Line patterned gate structure for a field emission display
US20040189552A1 (en) * 2003-03-31 2004-09-30 Sony Corporation Image display device incorporating driver circuits on active substrate to reduce interconnects
US7071629B2 (en) * 2003-03-31 2006-07-04 Sony Corporation Image display device incorporating driver circuits on active substrate and other methods to reduce interconnects
FR2863102B1 (fr) * 2003-12-02 2006-04-28 Commissariat Energie Atomique Dispositifs a emission de champ.
JP2005340133A (ja) * 2004-05-31 2005-12-08 Sony Corp カソードパネル処理方法、並びに、冷陰極電界電子放出表示装置及びその製造方法
US20060113888A1 (en) * 2004-12-01 2006-06-01 Huai-Yuan Tseng Field emission display device with protection structure
US7564178B2 (en) * 2005-02-14 2009-07-21 Agere Systems Inc. High-density field emission elements and a method for forming said emission elements
FR2899991B1 (fr) * 2006-04-14 2009-03-20 Commissariat Energie Atomique Procede de commande d'un dispositif de visualisation matriciel a source d'electrons
JP2007294126A (ja) * 2006-04-21 2007-11-08 Canon Inc 電子放出素子、電子源、画像表示装置、及び、電子放出素子の製造方法
CN101192494B (zh) * 2006-11-24 2010-09-29 清华大学 电子发射元件的制备方法
CN101192490B (zh) * 2006-11-24 2010-09-29 清华大学 表面传导电子发射元件以及应用表面传导电子发射元件的电子源
KR20080075360A (ko) * 2007-02-12 2008-08-18 삼성에스디아이 주식회사 발광 장치 및 이를 이용한 표시장치
KR102076380B1 (ko) * 2012-03-16 2020-02-11 나녹스 이미징 피엘씨 전자 방출 구조체를 갖는 장치
US9053890B2 (en) 2013-08-02 2015-06-09 University Health Network Nanostructure field emission cathode structure and method for making

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453478A (en) * 1966-05-31 1969-07-01 Stanford Research Inst Needle-type electron source
US3789471A (en) * 1970-02-06 1974-02-05 Stanford Research Inst Field emission cathode structures, devices utilizing such structures, and methods of producing such structures
US3671798A (en) * 1970-12-11 1972-06-20 Nasa Method and apparatus for limiting field-emission current
US3735186A (en) * 1971-03-10 1973-05-22 Philips Corp Field emission cathode
US3935500A (en) * 1974-12-09 1976-01-27 Texas Instruments Incorporated Flat CRT system
JPS57187849A (en) * 1981-05-15 1982-11-18 Nippon Telegr & Teleph Corp <Ntt> Electron gun
US4663559A (en) * 1982-09-17 1987-05-05 Christensen Alton O Field emission device
US4513308A (en) * 1982-09-23 1985-04-23 The United States Of America As Represented By The Secretary Of The Navy p-n Junction controlled field emitter array cathode
FR2593953B1 (fr) * 1986-01-24 1988-04-29 Commissariat Energie Atomique Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ
US4721885A (en) * 1987-02-11 1988-01-26 Sri International Very high speed integrated microelectronic tubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8477156B2 (en) 2006-10-30 2013-07-02 Commissariat A L'energie Atomique Method of driving a matrix display device having an electron source with reduced capacitive consumption

Also Published As

Publication number Publication date
US4940916B1 (en) 1996-11-26
DE3877902T2 (de) 1993-07-15
KR890008886A (ko) 1989-07-13
JPH01154426A (ja) 1989-06-16
DE3877902D1 (de) 1993-03-11
US4940916A (en) 1990-07-10
EP0316214A1 (fr) 1989-05-17
FR2623013A1 (fr) 1989-05-12
JPH07118259B2 (ja) 1995-12-18
KR970005760B1 (ko) 1997-04-19

Similar Documents

Publication Publication Date Title
EP0316214B1 (fr) Source d&#39;électrons à cathodes émissives à micropointes et dispositif de visualisation par cathodoluminescence excitée par émission de champ, utilisant cette source
EP0461990B1 (fr) Source d&#39;électrons à cathodes émissives à micropointes
EP0172089B1 (fr) Dispositif de visualisation par cathodoluminescence excitée par émission de champ
EP0704877B1 (fr) Protection électrique d&#39;une anode d&#39;écran plat de visualisation
FR2796489A1 (fr) Dispositif d&#39;affichage a emission de champ comportant un film de nanotube en carbone en tant qu&#39;emetteurs
US5908699A (en) Cold cathode electron emitter and display structure
EP0558393A1 (fr) Source d&#39;électrons à cathodes émissives à micropointes et dispositif de visualisation par cathodoluminescence excitée par émission de champ utilisant cette source
US6831403B2 (en) Field emission display cathode assembly
FR2744834A1 (fr) Cathode a emission de champ et son procede de fabrication
FR2764435A1 (fr) Element a emission de champ
FR2897718A1 (fr) Structure de cathode a nanotubes pour ecran emissif
EP0734042B1 (fr) Anode d&#39;écran plat de visualisation à bandes résistives
FR2742578A1 (fr) Cathode a emission de champ et son procede de fabrication
EP0259213B1 (fr) Afficheur electroluminescent à photoconducteur à faible taux de remplissage
EP0616356B1 (fr) Dispositif d&#39;affichage à micropointes et procédé de fabrication de ce dispositif
FR2717304A1 (fr) Source d&#39;électrons à cathodes émissives à micropointes.
EP0697710B1 (fr) Procédé de fabrication d&#39;une source d&#39;électrons à micropointes
EP1210721B1 (fr) Ecran plat a emission de champ avec electrode de modulation
EP0625277B1 (fr) Ecran plat a micropointes protegees individuellement par dipole
FR2750533A1 (fr) Cathode froide a emission de champ et tube a rayons cathodiques comportant celle-ci
EP0275769A1 (fr) Transducteur photo-électronique utilisant une cathode émissive à micropointes
WO2017186941A1 (fr) Dispositif optoelectronique organique matriciel
EP1073088A1 (fr) Procédé de fabrication d&#39;une anode d&#39;un écran plat de visualisation, anode obtenue par ce procédé et écran plat utilisant cette anode
FR2798507A1 (fr) Dispositif permettant de produire un champ electrique module au niveau d&#39;une electrode et son application aux ecrans plats a emission de champ
EP2104944A1 (fr) Structure de cathode pour ecran plat avec grille de refocalisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19891020

17Q First examination report despatched

Effective date: 19920402

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3877902

Country of ref document: DE

Date of ref document: 19930311

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961105

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961130

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980601

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071128

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071127

Year of fee payment: 20

Ref country code: GB

Payment date: 20071031

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081101