EP1210721B1 - Flache feldemissionsanzeigevorrichtung mit modulationselektrode - Google Patents

Flache feldemissionsanzeigevorrichtung mit modulationselektrode Download PDF

Info

Publication number
EP1210721B1
EP1210721B1 EP00962588A EP00962588A EP1210721B1 EP 1210721 B1 EP1210721 B1 EP 1210721B1 EP 00962588 A EP00962588 A EP 00962588A EP 00962588 A EP00962588 A EP 00962588A EP 1210721 B1 EP1210721 B1 EP 1210721B1
Authority
EP
European Patent Office
Prior art keywords
electrode
cathode
cathode electrode
anode
display screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00962588A
Other languages
English (en)
French (fr)
Other versions
EP1210721A1 (de
Inventor
Aimé Perrin
Adeline Fournier
Brigitte Montmayeul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9911292A external-priority patent/FR2798507B1/fr
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1210721A1 publication Critical patent/EP1210721A1/de
Application granted granted Critical
Publication of EP1210721B1 publication Critical patent/EP1210721B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/467Control electrodes for flat display tubes, e.g. of the type covered by group H01J31/123
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/021Electron guns using a field emission, photo emission, or secondary emission electron source
    • H01J3/022Electron guns using a field emission, photo emission, or secondary emission electron source with microengineered cathode, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group

Definitions

  • the present invention relates to a device for producing a modulated electric field at an electrode. It applies in particular to flat screens with field emission.
  • Field emission excited cathodoluminescence display devices are well known. Such a device comprises a cathode disposed opposite an anode.
  • the cathode is a plane electron-emitting structure and the anode is another flat structure covered with a luminescent layer. These structures are separated by a space in which one has evacuated.
  • the cathode may be a micropoint source or a source equipped with a low threshold field emissive material (the threshold field being the electric field required to extract electrons from a material), for example nanostructures or carbon.
  • Sources equipped with an emissive material are used in viewing devices that are generally in two forms: a diode type structure or a triode type structure.
  • FIG. 1 shows, in cross section, a flat field emission screen operating in a diode type structure.
  • the cathode 1 consists of a plate of insulating material 3 supporting metal tracks 4 parallel to each other and covered with layers of an emissive material 5.
  • the anode 2 is an insulating plate and transparent 6, for example glass, supporting conductive tracks 7 parallel to each other and perpendicular to the tracks 4 of the cathode.
  • the tracks 7 are made by etching a layer of transparent conductive material such as mixed tin oxide and indium (ITO).
  • the tracks 7 are covered with layers of phosphor 8.
  • the cathode and anode plates are placed opposite each other, the tracks being in facing relation to constitute a matrix structure.
  • Crossing track networks forms pixels or pixels.
  • An emissive material with a low threshold field such as carbon requires, for the emission of electrons to occur, a minimum electric field of a few V / microns between an anode track and a cathode track opposite. If the spacing between these tracks is 1 mm, it is necessary to apply a potential difference of a few kV, typically 5000 to 10 000 V. This causes two main problems.
  • the first problem is voltage withstand: there is a risk of breakdown between anode and cathode and especially between two adjacent tracks.
  • the second problem results from the need to switch a voltage of several kV when scanning the screen.
  • This problem can be solved by reducing the space between the anode and the cathode, which makes it possible to reduce the potential difference between them all the same while preserving the same electric field.
  • the disadvantage of this solution is that this reduction in potential results in a decrease in the efficiency of the phosphors and a decrease in the brightness of the screen.
  • FIG. 2 is a cross-sectional view of a flat field emission screen implementing such a structure.
  • the cathode 11 consists of a glass plate 13 supporting metal tracks 14 parallel to each other and covered with layers 15 of an emissive material, for example carbon.
  • the tracks 14 are placed at the bottom of trenches etched in a layer of insulating material 10, this layer 10 being covered with a metal layer 19 serving as an extraction grid.
  • the anode 12 may be formed of a transparent plate 16 supporting for example a transparent and conductive layer 17 covered with a layer of luminescent material 18.
  • An emission of electrons by the emissive material can be obtained by applying, between extraction grid 19 and track 14, a potential difference such that the resulting electric field at the emissive material is greater than the threshold field of this material, typically some V / ⁇ m. Since the distance separating the extraction grid from the tracks is much smaller than the distance separating the anode from the cathode, the potential difference to be applied is reduced accordingly.
  • the triode type structure therefore has the disadvantage that very few emitted electrons reach the phosphor layer.
  • triode-type display device thus makes it possible to avoid the risks of electrical breakdown and the problems of switching high voltages.
  • improvements are achieved at the expense of the density of emitted electrons that reach the phosphor layer.
  • this type of structure requires the realization of a deposition of the emissive material only at the bottom of the trenches, which presents significant difficulties.
  • US-A-3,671,798 discloses a device and a method for limiting the field emission current.
  • the device comprises rod-shaped electrodes arranged parallel to each other. A first end of the rods faces an anode. The second end of the rods is connected to a common electrode through an insulating layer. There exists between the first and second ends of each rod sufficient resistance to provide a determined potential variation between the two ends of the rod.
  • the rods pass through a grid that serves to adjust the electric field applied to all the electrodes.
  • US-A-5,374,868 discloses a field emission display screen comprising a microtip cathode, a screen anode and located opposite, and an electron extraction grid located between the cathode and the anode.
  • the microtips are located in trenches of an insulating layer supporting the grid. They are connected to a cathode conductor located under the gate.
  • the present invention solves the problems outlined above.
  • the solution consists in applying an electric modulation field in the vicinity of an electrode in the vicinity of which it is desired to obtain an electric field of determined value.
  • the electric field of modulation will have the effect of reducing or increasing the value of the electric field in the vicinity of the electrode in question.
  • a first object of the invention relates to a field emission display screen comprising an anode plate and a cathode plate arranged facing each other, the anode plate having on its internal face on the screen at least one supporting electrode.
  • phosphor means the cathode plate having at least one electron-emitting electrode at least partially facing the anode electrode, this cathode electrode becoming electron-emitting when the electric field in its vicinity exceeds a value.
  • the screen also comprising means for applying a potential difference between said anode electrode and said cathode electrode, the screen further comprising modulation electrode means located near the electrode cathode, characterized in that the electron-emitting electrode is located on the face of the cathode plate which is internal to the screen and the means forming an electrode the modulation electrode are located either in the same plane as the cathode electrode or so that the cathode electrode is interposed between the anode electrode and said modulation electrode means, the screen also comprising means method for applying a potential difference between the cathode electrode and the modulation electrode means, the means for applying potential differences are such as to obtain a predetermined value in said vicinity of the cathode electrode; electric field resulting from the contribution of said potential differences, said predetermined value being at will either less than said threshold value, greater than said threshold value.
  • the means for applying a potential difference between said anode electrode and said cathode electrode are such that, in the absence of a potential difference applied between the cathode electrode and the electrode means of modulation, said predetermined value of electric field is less than said threshold value.
  • the means for applying a potential difference between said anode electrode and said cathode electrode are such that, in the absence of a potential difference applied between the cathode electrode and the electrode means modulation, said predetermined electric field value is greater than said threshold value.
  • the modulation electrode means may comprise two electrodes flanking the cathode electrode.
  • the modulation electrode means may consist of a single electrode.
  • the cathode electrode and the modulation electrode means are separated by a layer of insulating material.
  • the cathode electrode comprises a conductive element on which is deposited a layer of emissive material.
  • This layer of emissive material may be separated from the conductive element by a resistive layer.
  • the layer of emissive material may cover only a portion of the resistive layer.
  • the emissive material may be a material deposited on the resistive layer by means of a catalyst material deposited on the resistive layer and on which the emitting material is deposited preferentially.
  • the display screen is advantageously of the matrix type, the crossing of rows and columns defining pixels.
  • the anode plate comprises a common electrode supporting phosphor means
  • the cathode plate comprises a plate supporting conductor lines constituting the modulation electrode means, covered with a layer of dielectric material, the layer dielectric material supporting columns of conductors, the rows and columns forming a matrix arrangement connected to addressing means and defining pixels, the conductor columns supporting an emissive material.
  • Each pixel can correspond to the crossing of a line and several columns conductors.
  • the conductor lines comprise windows opposite the columns of conductors, the emissive material supported by the columns of conductors being present only on the areas of the columns of conductors corresponding to the windows.
  • FIGS 3A and 3B are sectional views illustrating the operation of a device according to the invention.
  • the device comprises a plate 21 designated in this example as a cathode plate.
  • the cathode plate 21 comprises a support plate 23 supporting an electrode 25 flanked by two parts 28 and 29 of the same electrode.
  • the device also comprises a plate 22 designated in this example as anode plate.
  • the anode plate 22 comprises a support plate 26 supporting an electrode 27.
  • the anode and cathode plates are arranged opposite and in parallel planes, their corresponding electrodes facing each other. They are separated by distance d.
  • FIG. 3A represents the case where a potential + V is applied to the electrode 27 and to the electrode 25 as well as to the parts 28 and 29 a zero potential.
  • a uniform electric field of value V / d is established inside the device.
  • Equipotential lines are shown in broken lines in FIG. 3A. The line shown closest to the electrode 25 corresponds to the potential V 1 , intermediate between the potential of the cathode electrode 25 and that of the anode electrode 27.
  • FIG. 3B represents the case where a potential + V is applied to the electrode 27, the electrode 25 has a zero potential and on the parts 28 and 29 a potential V 1 . There then occurs a movement and a deformation of the equipotentials which cause a tightening of the equipotentials above the cathode electrode 25, thus an increase of the electric field at this level. The same effect is obtained if a potential difference is set between the electrode 27 and the parts 28 and 29 and the electrode 25 is taken to a potential more negative than that of the parts 28 and 29 with respect to the electrode 27.
  • the parts 28 and 29 can be brought to potential - V 1 .
  • the electrode formed of the portions 28 and 29 may therefore be referred to as the modulator electrode.
  • FIG. 4 is a partial view in cross section of a flat field emission screen to which the control mode according to the invention applies.
  • This screen comprises a cathode plate 31 and an anode plate 32 placed vis-à-vis in parallel planes. They carry electrodes on their internal face. Unrepresented spacers provide a constant gap between the cathode and anode plates and the void is made inside the screen.
  • the cathode plate 31 comprises a support plate 33 made of insulating material, for example glass, on which is deposited successively a network of metal strips 38, 39 to form the modulation electrodes, an insulating layer 34 (for example silica) and an array of cathode electrodes 35 placed in the intervals of the underlying network.
  • insulating layer 34 for example silica
  • cathode electrodes 35 placed in the intervals of the underlying network.
  • FIG. 4 only one cathode electrode has been shown. It is either made of a low threshold field material, or covered with a layer of low output material, for example carbon or nanostructures.
  • the cathode electrode 35 supports a layer 30 of such material.
  • the strips 38 and 39 corresponding to an electrode 35 are electrically connected together to form a modulation electrode.
  • the anode plate 32 comprises a support plate 36 of insulating and transparent material, typically made of glass, successively covered with a layer 37 of transparent and conductive material, for example ITO, and a layer 20 of a luminescent material.
  • the screen can be used in the following first mode of operation.
  • a potential difference is applied between the anode electrode 37 and the cathode electrode 35 so that the resulting electric field at the emitting electrode is smaller than the electron extraction threshold field of the emissive material 30. There is therefore no emission of electrons under the effect of this single field.
  • the modulation electrode 38, 39 is brought to a potential intermediate between that of the anode and that of the emitting electrode, there is a movement and a deformation of the equipotentials causing an increase in the field. at the emitting electrode.
  • the potential of the modulation electrode can be chosen such that the electric field at the emission electrode becomes greater than the threshold field of the emissive material. Then there will be emission of electrons. These electrons are emitted perpendicular to the emission electrode. They are then accelerated by the anode field and strike the luminescent layer 20 covering the anode electrode 37.
  • V s V + .DELTA.V s
  • V s V + .DELTA.V s
  • the anode plates 32 and cathode 31 may be spaced 1 mm, the metal strips 38 and 39 may have a width of 20 microns and be spaced 10 microns.
  • the insulating layer 34 may be a silica layer 1 ⁇ m thick.
  • the cathode electrode 35 may have a width of 5 ⁇ m and be centered in the spacing between the metal strips 38 and 39.
  • a potential of + 3000 V with respect to the cathode is applied to the anode, which gives an electric field of 3 V / ⁇ m at the emitting electrode, this field being lower than the threshold field.
  • the cathode electrode 35 being maintained at 0 V, if the modulator electrode 38, 39 is raised to + 30 V, the electric field at the surface of the emitting electrode goes to 7 V / microns, which is greater than threshold field. It therefore appears that the voltages to be switched remain low, typically a few tens of volts, which is no problem.
  • the screen can also be used in the next second mode of operation.
  • a potential difference is applied between the electrode 37 and the cathode electrode 35 and an electric field results at the emitting electrode. If this electric field is greater than the electron extraction threshold field of the emissive material 30, there is emission of electrons under the effect of this single field. If the modulation electrode 38, 39 is brought to a potential lower than that of the cathode electrode 35, there is a movement and deformation of the equipotentials causing a decrease in the electric field at the emitting electrode.
  • the potential of the modulation electrode can be chosen such that the electric field at the emission electrode becomes lower than the threshold field of the emitting material and thus makes it possible to stop the emission of electrons.
  • V s V - .DELTA.V s
  • V s V - .DELTA.V s
  • the cathode plate and in particular the distribution of the electrodes, may have different variants.
  • Figures 5 to 9 show some of the possible variants. For the sake of clarity, we did not shown in these figures only one cathode electrode.
  • FIG. 5 shows a cathode plate 41 comprising a plate 43 made of insulating material (for example glass) supporting an array of modulating electrodes each formed of two conducting strips 48 and 49 connected together.
  • the plate 43 also supports an insulating layer 44, for example silica.
  • cathode electrodes 45 are deposited in correspondence with the modulator electrodes 48, 49. Each cathode electrode is deposited above the gap separating the corresponding conductive strips 48 and 49 and symmetrically with respect to them.
  • On these cathode electrodes 45 are successively deposited a resistive layer 46 and a layer of emissive material 47.
  • the function of the resistive layer 46 is to standardize the emission on the surface of the emitting electrode which is formed by the superposition of the elements. 45, 46 and 47. Thus, it prevents very strong point emissions, which can lead to breakdowns, to occur.
  • This arrangement makes it possible to minimize the superposition of the cathode electrode and of the modulating electrode and thus to minimize the parasitic capacitance that exists between them, which is important when the surface of the screen is large. Some devices do not require this precaution against parasitic capacitance.
  • the shape of the modulation electrode may range from that shown in Figure 5 to that shown in Figure 6 where it consists of only one band. It can obviously take all the intermediate forms.
  • FIG. 6 represents a cathode plate comprising, as for FIG. 5, a plate support 53, an insulating layer 54, a cathode electrode 55, a resistive layer 56 and a layer of emissive material 57.
  • the modulator electrode 50 consists of a single conductive strip, the emitting electrode being centered on the modulator electrode.
  • FIG. 7 illustrates an intermediate form.
  • the cathode plate structure of FIG. 5 is found.
  • the cathode plate 61 comprises a support plate 63, two conductive strips 68 and 69 forming the modulating electrode, the insulating layer 64 supporting the emitting electrode constituted by the electrode cathode 65, the resistive layer 66 and the emissive material layer 67.
  • the emitter electrode has the same width as the gap separating the two conductive strips 68 and 69.
  • FIG. 8 also shows the cathode plate structure of FIG. 5.
  • the cathode plate 71 comprises a support plate 73, two conductive strips 78 and 79 forming the modulator electrode, the insulating layer 74 supporting the electrode transmitter constituted by the cathode electrode 75, the resistive layer 76 and the emissive material layer 77.
  • the emissive material layer 77 covers only the central portion of the resistive layer 76. This arrangement makes it possible to obtain a more focused electron beam by eliminating the electrons that could be subject to the edge effects of the cathode electrode 75. This arrangement can be combined with the other variants described above.
  • the cathode plate 91 comprises a support plate 93, two conductive strips 98 and 99 forming the modulator electrode, the insulating layer 94 supporting the emitting electrode comprising the cathode electrode 95 and the resistive layer 96.
  • the emitter electrode also comprises pads 92 made of catalyst material , for example nickel, iron, cobalt or an alloy of these metals, these pads being deposited on the resistive layer 96.
  • the pads 92 support the emitting material 97, for example carbon which is deposited preferentially on the catalyst material for constitute emissive sites.
  • FIG. 10 is an exploded perspective view of a matrix-type field emission flat screen cathode plate embodying the invention.
  • the cathode plate 81 comprises a plate 83, for example glass, supporting a network of conductive strips Y forming lines, for example Y i , Y j , Y k . In these strips are openings or windows 80, for example of rectangular shape.
  • This network of lines is covered with a layer of dielectric material 84 on which are deposited conductive strips 85 parallel to each other and perpendicular to the Y strips.
  • the conductive strips 85 are, in this embodiment, grouped by three to constitute columns X i , X j , X k .
  • the conductive strips 85 are each covered with a layer of resistive material 86 and emissive material.
  • the emissive material 87 has been deposited on the useful areas, that is to say, the areas of the columns above the windows 80 in the lines. We thus obtain two networks, one of lines and the other of columns, orthogonal to each other. A pixel is the crossing of a line and a column.
  • FIG. 11 is an example of the diagrams of the voltages to be applied for addressing a pixel of a display screen comprising a cathode plate of the type represented in FIG. 10 and in the case where the voltage applied between the anode and the cathode creates an electric field lower than the emission threshold field.
  • This example minimizes the number of voltage values required.
  • To address the pixel X j , Y j the not shown anode is brought to a potential V A , the column X j to the potential V 0 and the line Y j to a potential V 1 (V 1 being intermediate between V 0 and V A ).
  • the other columns X are brought to the potential V1 while the other lines Y are brought to the potential V 0 .
  • the potential V 1 is chosen so that the increase in the electric field at the emitting electrode is such that this electric field becomes greater than the threshold field.
  • FIG. 12 is a diagram of the voltages to be applied for addressing a pixel of a display screen comprising a cathode plate of the type shown in FIG. 10 and in the case where the voltage applied between the anode and the cathode creates a field electric higher than the threshold emission field.
  • Y j the not shown anode is brought to a potential V A and the column X j to the potential V 0 . If we call d the distance separating the anode from the cathode, the electric field resulting from this potential difference (V A -V 0 ) / d is greater than the emission threshold field of the material.
  • the potential V 1 of the line Y j must be greater than the voltage V S.
  • the potential V 2 of the lines Y i and Y k must be less than V s .
  • the two pixels X i , Y j and X k , Y j must be extinguished.
  • the potential V 3 of the columns X i and X k must be greater than V 1 + ⁇ V s , ⁇ V s being equal to V 0 -V s .
  • the pixels X i , Y i / X i , Y k / Y k , Y i and X k , Y k have a column voltage equal to V 3 and a line voltage equal to V 2 .
  • the difference between the column voltages X i -X k and the lines Y i -Y k being greater than ⁇ V s and the line voltages being lower than the column voltages, the corresponding pixels do not emit.
  • Figure 13 is also a voltage diagram applicable to the previous case.
  • V 1 , V 2 and V 3 a simpler solution can be chosen.

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Claims (16)

  1. Feldemissionsanzeigevorrichtung, mit einer Anodenplatte (32) und einer Kathodenplatte (31), die sich gegenüberstehen, wobei die Anodenplatte (32) auf ihrer dem Innem der Anzeigevorrichtung zugewandten Seite wenigstens eine Elektrode (37) umfasst, welche luminophore Einrichtungen (20) trägt, die Kathodenplatte (31) wenigstens eine Elektronenemissions-Elektrode (35) umfasst, die der Anodenelektrode (37) wenigstens partiell gegenübersteht, und diese Kathodenelektrode (35) Elektronen emittiert, wenn das elektrische Feld in ihrer Umgebung einen Schwellenwert überschreitet, wobei die Anzeigevorrichtung auch Einrichtungen zum Anlegen einer Potentialdifferenz zwischen der genannten Anodenelektrode (37) und der genannten Kathodenelektrode (35) umfasst, und die Anzeigevorrichtung außerdem in der Nähe der Kathodenelektrode (35) befindliche Modulationselektrode-bildende Einrichtungen (38, 39) enthält,
    dadurch gekennzeichnet, dass die Elektronenemissionselektrode sich auf der dem Innern der Anzeigevorrichtung zugewandten Seite der Kathodenplatte befindet, und die Modulationselektrode-bildenden Einrichtungen sich entweder in derselben Ebene wie die Kathodenelektrode befinden, oder so angeordnet sind, dass sich die Kathodenelektrode (35) zwischen der Anodenelektrode (37) und den genannten Modulationselektrode-bildenden Einrichtungen befindet, wobei die Anzeigevorrichtung außerdem Steuereinrichtungen zum Anlegen einer Potentialdifferenz zwischen der Kathodenelektrode (35) und den Modulationselektrode-bildenden Einrichtungen (38, 39) umfasst, die Einrichtungen zum Anlegen von Potentialdifferenzen so konzipiert sind, dass es möglich ist, in der genannten Umgebung der Kathodenelektrode einen festgelegten Wert eines elektrischen Feldes zu erhalten, der aus dem Beitrag der genannten Potentialdifferenzen resultiert, wobei der genannte festgelegte Wert, je nach Wunsch, entweder niedriger als der genannte Schwellenwert ist, oder höher als der genannte Schwellenwert ist.
  2. Anzeigevorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Einrichtungen zum Anlegen einer Potentialdifferenz zwischen der genannten Anodenelektrode (37) und der genannten Kathodenelektrode (35) so sind, dass bei Fehlen einer Potentialdifferenz zwischen der Kathodenelektrode (35) und den Modulationselektrode-bildenden Einrichtungen (38, 39) der genannte festgelegte Wert des elektrischen Feldes niedriger ist als der genannte Schwellenwert.
  3. Anzeigevorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Einrichtungen zum Anlegen einer Potentialdifferenz zwischen der genannten Anodenelektrode (37) und der genannten Kathodenelektrode (35) so sind, dass bei Fehlen einer Potentialdifferenz zwischen der Kathodenelektrode (35) und den Modulationselektrode-bildenden Einrichtungen (38, 39) der genannte festgelegte Wert des elektrischen Feldes höher ist als der genannte Schwellenwert.
  4. Anzeigevorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Modulationselektrode-bildenden Einrichtungen (38, 39) die genannte Kathodenelektrode (35) umgeben.
  5. Anzeigevorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die genannte Kathodenelektrode sich zwischen der genannten Anodenelektrode und den Modulationselektrode-bildenden Einrichtungen befindet, wobei die Modulationselektrode-bildenden Einrichtungen (50) durch eine einzige Elektrode gebildet werden.
  6. Anzeigevorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die genannte Kathodenelektrode sich zwischen der genannten Anodenelektrode und den Modulationselektrode-bildenden Einrichtungen befindet, wobei die genannte Kathodenelektrode (35) und Modulationselektrode-bildenden Einrichtungen (38, 39) durch eine Schicht aus isolierendem Material (34) getrennt sind.
  7. Anzeigevorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die genannte Kathodenelektrode (35) ein leitfähiges Element umfasst, auf dem eine Schicht aus Emissionsmaterial (30) abgeschieden ist.
  8. Anzeigevorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Emissionsmaterialschicht (47) von dem genannten leitfähigen Element (45) durch eine resistive Schicht (46) getrennt ist.
  9. Anzeigevorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Emissionsmaterialschicht (77) nur einen Teil der resistiven Schicht (76) bedeckt.
  10. Anzeigevorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass das Emissionsmaterial (97) ein Material ist - abgeschieden auf der resitiven Schicht (96) mittels eines auf der resistiven Schicht (96) abgeschiedenen Katalysatormaterials (92) - auf dem sich das Emissionsmaterial (97) vorzugsweise niederschlägt.
  11. Anzeigevorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass sie vom Matrixtyp ist, wo Überkreuzungen von Zeilen und Spalten Pixel definieren.
  12. Anzeigevorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Anodenplatte eine gemeinsame Elektrode umfasst, die luminophore Einrichtungen trägt, die Kathodenplatte (81) eine Platte (83) mit Leiterzeilen (Yi, Yj, Yk) umfasst, welche die mit einer Schicht aus dielektrischem Material (84) überzogenen Modulationselektrode-bildenden Einrichtungen bilden, die Schicht aus dielektrischem Material Leiterspalten (85) trägt, die Zeilen und die Spalten eine matrixförmige Anordnung bilden, die mit Ansteuerungseinrichtungen verbunden ist und Pixel definiert, wobei die Leiterspalten ein Emissionsmaterial (87) tragen.
  13. Anzeigevorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass jedes Pixel einer Überkreuzung einer Zeile (Yi, Yj, Yk) und mehrerer Spaltenleiter (85) entspricht.
  14. Anzeigevorrichtung nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass die Leiterzeilen (Yi, Yj, Yk) den Leiterspalten (85) gegenüberstehende Fenster (80) umfassen, wobei das durch die Leiterspalten getragene Emissionsmaterial (87) nur in den den Fenstern (80) entsprechenden Zonen der Leiterspalten vorhanden ist.
  15. Verfahren zur Benutzung einer Feldemissionsanzeigevorrichtung nach einem der Ansprüche 1 bis 14, wenigstens eine Anodenelektrode (37) und wenigstens eine gegenüberstehende Kathodenelektrode (35) umfassend, wobei die Kathodenelektrode ein Emissionsmaterial (30) umfasst, das Elektronen emittiert, wenn das elektrische Feld in der Umgebung der Kathodenelektrode (35) einen Schwellenwert überschreitet,
    dadurch gekennzeichnet, dass es zur Erzeugung einer Elektronenemission durch das Emissionsmaterial umfasst:
    - das Anwenden einer Potentialdifferenz zwischen der Anodenelektrode (37) und der Kathodenelektrode (35), um in der genannten Umgebung der Kathodenelektrode, wenn nur diese Potentialdifferenz angelegt wird, ein elektrisches Feld zu erhalten, dessen Wert niedriger ist als der genannte Schwellenwert,
    - das Anwenden einer Potentialdifferenz zwischen der Kathodenelektrode (35) und Modulationselektrode-bildenden Einrichtungen (38, 39), die sich in der Nähe der Kathodenelektrode befinden, entweder in derselben Ebene wie diese, oder so angeordnet, dass sich die Kathodenelektrode zwischen der Anodenelektrode und den genannten Modulationselektrode-bildenden Einrichtungen befindet, um in der genannten Umgebung der Kathodenelektrode, in Kooperation mit dem durch das Anlegen der Potentialdifferenz zwischen der Anodenelektrode (37) und der Kathodenelektrode (35) erzeugten elektrischen Feld, ein elektrisches Feld zu erhalten, dessen Wert höher ist als der genannte Schwellenwert.
  16. Verfahren zur Benutzung einer Feldemissionsanzeigevorrichtung nach einem der Ansprüche 1 bis 14, wenigstens eine Anodenelektrode (37) und wenigstens eine gegenüberstehende Kathodenelektrode (35) umfassend, wobei die Kathodenelektrode ein Emissionsmaterial (30) umfasst, das Elektronen emittiert, wenn das elektrische Feld in der Umgebung der Kathodenelektrode (35) einen Schwellenwert überschreitet,
    dadurch gekennzeichnet, dass es zur Vermeidung einer Elektronenemission durch das Emissionsmaterial umfasst:
    - das Anwenden einer Potentialdifferenz zwischen der Anodenelektrode (37) und der Kathodenelektrode (35), um in der genannten Umgebung der Kathodenelektrode, wenn nur diese Potentialdifferenz angelegt wird, ein elektrisches Feld zu erhalten, dessen Wert höher ist als der genannte Schwellenwert,
    - das Anwenden einer Potentialdifferenz zwischen der Kathodenelektrode (35) und Modulationselektrode-bildenden Einrichtungen (38, 39), die sich in der Nähe der Kathodenelektrode befinden, entweder in derselben Ebene wie diese, oder so angeordnet, dass sich die Kathodenelektrode zwischen der Anodenelektrode und den genannten Modulationselektrode-bildenden Einrichtungen befindet, um in der genannten Umgebung der Kathodenelektrode, in Kooperation mit dem durch das Anlegen der Potentialdifferenz zwischen der Anodenelektrode (37) und der Kathodenelektrode (35) erzeugten elektrischen Feld, ein elektrisches Feld zu erhalten, dessen Wert niedriger ist als der genannte Schwellenwert.
EP00962588A 1999-09-09 2000-09-08 Flache feldemissionsanzeigevorrichtung mit modulationselektrode Expired - Lifetime EP1210721B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR9911292 1999-09-09
FR9911292A FR2798507B1 (fr) 1999-09-09 1999-09-09 Dispositif permettant de produire un champ electrique module au niveau d'une electrode et son application aux ecrans plats a emission de champ
FR0001832A FR2798508B1 (fr) 1999-09-09 2000-02-15 Dispositif permettant de produire un champ electrique module au niveau d'une electrode et son application aux ecrans plats a emission de champ
FR0001832 2000-02-15
PCT/FR2000/002487 WO2001018838A1 (fr) 1999-09-09 2000-09-08 Ecran plat a emission de champ avec electrode de modulation

Publications (2)

Publication Number Publication Date
EP1210721A1 EP1210721A1 (de) 2002-06-05
EP1210721B1 true EP1210721B1 (de) 2006-02-15

Family

ID=26212175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00962588A Expired - Lifetime EP1210721B1 (de) 1999-09-09 2000-09-08 Flache feldemissionsanzeigevorrichtung mit modulationselektrode

Country Status (6)

Country Link
US (1) US6815902B1 (de)
EP (1) EP1210721B1 (de)
JP (1) JP5159011B2 (de)
DE (1) DE60026044T2 (de)
FR (1) FR2798508B1 (de)
WO (1) WO2001018838A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477739B1 (ko) * 1999-12-30 2005-03-18 삼성에스디아이 주식회사 전계 방출 소자 및 그 구동 방법
JP2002334672A (ja) * 2001-05-09 2002-11-22 Noritake Itron Corp 蛍光表示装置
JP3703415B2 (ja) 2001-09-07 2005-10-05 キヤノン株式会社 電子放出素子、電子源及び画像形成装置、並びに電子放出素子及び電子源の製造方法
FR2836280B1 (fr) * 2002-02-19 2004-04-02 Commissariat Energie Atomique Structure de cathode a couche emissive formee sur une couche resistive
KR100517960B1 (ko) * 2003-04-18 2005-09-30 엘지전자 주식회사 전계방출 소자 스페이서 방전 장치 및 방법
FR2886284B1 (fr) 2005-05-30 2007-06-29 Commissariat Energie Atomique Procede de realisation de nanostructures

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671798A (en) * 1970-12-11 1972-06-20 Nasa Method and apparatus for limiting field-emission current
GB9008811D0 (en) * 1990-04-19 1990-06-13 Exxon Chemical Patents Inc Chemical compositions and their use as fuel additives
JP2981764B2 (ja) * 1990-09-28 1999-11-22 キヤノン株式会社 電子線発生装置及びそれを用いた画像形成装置と光信号供与装置
US5252833A (en) * 1992-02-05 1993-10-12 Motorola, Inc. Electron source for depletion mode electron emission apparatus
US5374868A (en) * 1992-09-11 1994-12-20 Micron Display Technology, Inc. Method for formation of a trench accessible cold-cathode field emission device
US5382185A (en) * 1993-03-31 1995-01-17 The United States Of America As Represented By The Secretary Of The Navy Thin-film edge field emitter device and method of manufacture therefor
US5610471A (en) * 1993-07-07 1997-03-11 Varian Associates, Inc. Single field emission device
JP3532275B2 (ja) * 1994-12-28 2004-05-31 ソニー株式会社 平面表示パネル
KR100343214B1 (ko) * 1995-03-28 2002-11-13 삼성에스디아이 주식회사 전계방출소자의제조방법
US5818166A (en) * 1996-07-03 1998-10-06 Si Diamond Technology, Inc. Field emission device with edge emitter and method for making
JP3836539B2 (ja) * 1996-07-12 2006-10-25 双葉電子工業株式会社 電界放出素子およびその製造方法

Also Published As

Publication number Publication date
WO2001018838A1 (fr) 2001-03-15
JP2003509808A (ja) 2003-03-11
FR2798508A1 (fr) 2001-03-16
EP1210721A1 (de) 2002-06-05
JP5159011B2 (ja) 2013-03-06
US6815902B1 (en) 2004-11-09
DE60026044T2 (de) 2006-09-14
FR2798508B1 (fr) 2001-10-05
DE60026044D1 (de) 2006-04-20

Similar Documents

Publication Publication Date Title
EP0172089B1 (de) Bildanzeigevorrichtung mittels feldemissions angeregter Kathodolumineszenz
EP0704877B1 (de) Elektrischer Schutz von einer Anode eines flachen Bildschirms
FR2796489A1 (fr) Dispositif d'affichage a emission de champ comportant un film de nanotube en carbone en tant qu'emetteurs
EP0155895A1 (de) Verfahren zur Herstellung flacher Bildwiedergabeschirme und nach diesem Verfahren hergestellte Schirme
EP1210721B1 (de) Flache feldemissionsanzeigevorrichtung mit modulationselektrode
FR2682211A1 (fr) Dispositif d'affichage fluorescent de type plat.
EP0893817B1 (de) Ionenpumpen eines flachen Mikrospitzen-Schirms
EP0625277B1 (de) Flacher bildschirm mit einzelnen dipol-geschuetzten mikropunkten.
EP0734043B1 (de) Doppel-Gate-Flaches Bildschirm
FR2748347A1 (fr) Anode d'ecran plat de visualisation a anneau de protection
EP0649162B1 (de) Flaches Kaltkathodeanzeigegerät mit geschalteter Anode
FR2798507A1 (fr) Dispositif permettant de produire un champ electrique module au niveau d'une electrode et son application aux ecrans plats a emission de champ
WO1992009981A1 (fr) Dispositif d'affichage cathodoluminescent utilisant des electrons guides et son procede de commande
EP0884753A1 (de) Verfahren zur Herstellung von Abstandshaltern für einen flachen Bildschirm
FR2762927A1 (fr) Anode d'ecran plat de visualisation
FR2641108A1 (en) Display device having a cathode ray tube screen
EP0844642A1 (de) Flaches Bildschirm mit fokussierenden Gittern
FR2797092A1 (fr) Procede de fabrication d'une anode d'un ecran plat de visualisation
EP1956625B1 (de) Struktur zum Aussenden von Elektronen durch Feldeffekt mit Fokussierung der Aussendung
EP0867908A1 (de) Vergleichmässigung der potentiellen Elektronenemission einer Kathode eines flachen Mikrospitzen-Bildschirms
EP0657914A1 (de) Anode mit elektrisch leitende Streifen die individuel adressierbar sind
WO2000021112A1 (fr) Source d'electrons comportant au moins une electrode de protection contre des emissions parasites
EP2104944A1 (de) Katodenstruktur für einen flachbildschirm mit refokusierungsgitter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20050107

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60026044

Country of ref document: DE

Date of ref document: 20060420

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100924

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110920

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130910

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130930

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60026044

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930