EP1956625B1 - Struktur zum Aussenden von Elektronen durch Feldeffekt mit Fokussierung der Aussendung - Google Patents

Struktur zum Aussenden von Elektronen durch Feldeffekt mit Fokussierung der Aussendung Download PDF

Info

Publication number
EP1956625B1
EP1956625B1 EP08101232A EP08101232A EP1956625B1 EP 1956625 B1 EP1956625 B1 EP 1956625B1 EP 08101232 A EP08101232 A EP 08101232A EP 08101232 A EP08101232 A EP 08101232A EP 1956625 B1 EP1956625 B1 EP 1956625B1
Authority
EP
European Patent Office
Prior art keywords
electron emitting
gate electrode
bands
emitting elements
emission zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08101232A
Other languages
English (en)
French (fr)
Other versions
EP1956625A1 (de
Inventor
Jean Dijon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1956625A1 publication Critical patent/EP1956625A1/de
Application granted granted Critical
Publication of EP1956625B1 publication Critical patent/EP1956625B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels

Definitions

  • the invention relates to an electron emitting structure for a field effect device. It concerns the focus of the electronic program.
  • the document FR-A-2,836,279 discloses a cathode structure for an emissive screen.
  • the cathode structure is of the triode type, that is to say that it comprises an electron extraction grid.
  • the grid is an electrode provided with openings.
  • the electron emitting elements are located in the central part of each gate opening. This structure is well suited to the use of nanotubes as electron emitting elements.
  • the figure 1 is a perspective view and very partial of a cathode structure disclosed by the document FR-A-2,836,279 .
  • the cathode structure comprises a substrate 1, for example made of glass, successively supporting a cathode electrode 3, a resistive layer 2, a dielectric layer 4 and an extraction gate electrode 5.
  • An opening 6 formed in the gate electrode 5 and the dielectric layer 4 reveals the resistive layer 2 which supports electron emitting elements 7 in carbon nanotubes.
  • the emitting elements are placed symmetrically with respect to the two parts of the gate electrode 5 so that the lateral component of the electric field, which is one of the causes of the divergence of the electron beam, is minimal.
  • the figure 2 is a top view of the structure of an image element (or pixel) made according to the teaching of the document FR-A-2,836,279 .
  • the figure 1 is a view corresponding to section II of the figure 2 .
  • the figure 2 shows the gate electrode 5 provided with slots 6 revealing electron emitting elements 7 supported by the resistive layer 2.
  • a cathode electrode 3 has also been initiated, although not visible in plan view.
  • Reference 8 represents the shape of the electronic spot (or spot) coming from an electron emitting element 7.
  • the document FR-A-2,873,852 proposed an improvement of the teaching of the document FR-A-2,836,279 .
  • This improvement consists in rotating the slots of the gate electrode by 90 ° so that these slots are perpendicular to the red-green-blue bands of the phosphors disposed on an anode facing the cathode structure. The slots are therefore arranged perpendicularly to the columns formed by the cathode electrodes.
  • the figure 3 shows three pixels of a cathode structure according to the teaching of the document FR-A-2,873,852 .
  • the pixels represented result from the crossing of cathode electrodes 13 and gate electrodes 15.
  • the slots 16 of the gate electrodes are arranged perpendicularly to the cathode electrodes 13.
  • the references 18 designate electronic spots coming from transmission elements. Electrons 17. It is seen that the interline mixing of the electron beams is important. Nevertheless, with this structure, there remains a significant divergence along the Y axis, a divergence that results in a loss of useful electrons for the pixel and in random pixel-to-pixel brightness fluctuations. These fluctuations come from a mixture of the electrons coming from the neighboring pixels of the pixel of interest (see figure 3 ).
  • the object of the present invention is to minimize this problem.
  • the subject of the invention is a field-emitting and triode-type electron-emitting structure comprising at least one electron emission zone resulting from the crossing of a cathode electrode arranged along a first axis and a extraction grid disposed along a second axis, a layer of electrical insulation separating the cathode electrode of the gate electrode, the electron emission zone comprising a plurality of electron emitting elements electrically connected to the cathode electrode, the electron emitting elements being arranged in rows in openings formed in the gate electrode and the electrical insulator layer, the gate openings being arranged in rows, each gate opening being between two bands of the gate electrode, the structure also comprising means for focusing the beams.
  • the focusing means are constituted by an asymmetrical arrangement of rows of electron emitting elements and their adjacent gate electrode strips, the dissymmetry being organized to focus the set of electron beams and resulting from a difference in bandwidth of the gate electrode adjacent to the same gate aperture so that for that gate aperture, the adjacent outermost band of the electron emission zone is narrower than the nearest-most adjacent band. inside the electronic emission zone.
  • the difference in width of the electrode strips may be such that the width of the bands decreases progressively from the inside to the outside of the electron emission zone.
  • the gate electrode may have, in the central part of the electronic emission zone, at least one gate opening whose adjacent bands are equal. widths, the electrode strips of gradually decreasing width being located on either side of this central portion.
  • the asymmetry also results from an offset of at least one row of electron-emitting elements with respect to the main axis of the gate opening corresponding to this row. , the offset consisting in bringing said row closer to the center of the electronic emission zone. Since the dissymmetry resulting from the shifting of several rows of electron-emitting elements, the shift may progressively increase from the inside to the outside of the electron emission zone.
  • the gate electrode may have, in the central part of the electronic emission zone, at least one gate opening whose row of electron-emitting elements is centered on its main axis, the rows of emitting elements progressively increasing shift electrons being located on either side of this central part.
  • the bands of the gate electrode may be oriented along the first axis or along the second axis.
  • the invention will be explained by comparing a triode type electron-emitting structure according to the prior art, illustrated by FIG. figure 4 , and a triode type electron-emitting structure, used by the invention and illustrated by the figure 5 .
  • the figure 4 shows a cathode electrode 23 successively supporting a dielectric layer 24 and a gate electrode 25.
  • An opening 26 is made in the gate electrode 25 and the dielectric layer 24 to reveal the cathode electrode 23.
  • an electron-emitting element 27 In the center of the 26 and in electrical contact with the cathode electrode 23 is disposed an electron-emitting element 27.
  • the electron-emitting element can be in electrical contact with the cathode electrode by means of a resistive layer ( or ballast layer) as in the case illustrated by the figure 1 .
  • the opening 26 separates the gate electrode 25 into two parts (left and right of the line) electrically connected to each other.
  • Arrows show the horizontal (along the Y axis) and the vertical (Z axis) electric field components that are generated when the cathode structure is operating.
  • Electronic trajectories have also been represented under the reference 20.
  • the structure being symmetrical (emitter element located in the center of the opening, left and right parts of the gate electrode of the same width), the zone where the electric field is vertical corresponds to the center of the emitter element.
  • the electrons emitted on either side of the vertical field line diverge in the same way on both sides of the vertical field line.
  • the figure 5 shows a cathode structure virtually identical to that of the figure 4 : cathode electrode 33, dielectric layer 34, gate electrode 35, aperture 36 and electron emitter element 37.
  • An essential difference concerns the asymmetry of width existing between the left and right parts of the gate electrode 35. case of figure 5 , the right part of the gate electrode is wider than the left part.
  • the figure 6 is a top view of a pixel according to the first embodiment of the invention.
  • a cathode electrode 43 and an extraction gate electrode 45 provided with slots 46 in the form of slots.
  • Each slot 46 reveals a row of electron emitting elements 47 electrically connected to the cathode electrode 43 via a resistive layer (or ballast layer) 42.
  • the slots 46 are separated from each other by strips 49.
  • the structure of the pixel defined by the intersection of the cathode electrode 43 and the gate electrode 45 has as a line of symmetry the line AA 'directed along the axis of the gate electrode. Note on this structure that the widths of the bands 49 are becoming weaker as one moves away from the line AA '.
  • the reference 48 designates electronic spots coming from electron-emitting elements 47.
  • the electronic spot 48 coming from an electron-emitting element 47 situated on the axis AA ' is centered on this element since there exists a symmetry at level of the axis AA 'between the electron emitting elements and the adjacent bands 49 which are of the same width.
  • the electronic spots 48 coming from electron emitting elements 47 situated in slots 46 not centered on the axis AA ' are eccentric because of the smaller width of the strips 49 furthest away from the axis AA'. The eccentricity of these spots causes the focus of all the electronic spots from the pixel.
  • the structure of a pixel usually has a much higher number of grid electrode strips.
  • a bandwidth gradient is made along the Y axis (see FIG. figure 6 ), starting from the central figure of the pixel constituted by the axis AA 'when the gate electrode strips are oriented along the axis X (axis of the gate electrode).
  • the gate electrode strips are oriented along the Y axis (as shown in FIG. figure 2 , Y being the axis of the cathode electrode)
  • a bandwidth gradient will be realized along the X axis (axis of the gate electrode).
  • the figure 7 gives an example of the width profile L of the bands of a grid electrode along the Y axis for a pixel of a display screen.
  • the y-axis, representing the width L is positioned on the center line of the pixel.
  • there is a first area where the gate electrode bands are of constant width up to a distance Y 0 from the center line which substantially corresponds to (h / 2 - d) where h is a dimension of the pixel corresponding to a gate electrode, d is the overflow of the electron beam, with d g.tg ⁇ , where g is the distance separating the anode from the cathode of the display screen and ⁇ is the half-divergence of the beam electronic.
  • the gradient remains up to the value Y 1 representing the edge of the emissive zone of the pixel.
  • the decentering consisting of to bring the rows of emitting elements closer to the strip closest to the axis AA '.
  • the bands 49 are of equal widths and, when one moves away from the axis AA ', the rows of electron-emitting elements are decentered more and more towards the axis AA'.
  • the figure 9 illustrates an exemplary implementation of the invention for a color flat screen display pixel.
  • the pixel has three subpixels: a subpixel for the red color, a subpixel for the green color and a subpixel for the blue color.
  • a subpixel for the red color a subpixel for the red color
  • a subpixel for the green color a subpixel for the blue color.
  • connections 90 electrically connect the three sub-pixels.
  • the connections 90 are arranged along the central axis AA 'of the pixel to avoid the creation of divergent lateral electric fields.
  • the sub-pixels 100, 200 and 300 being identical, only the sub-pixel 300 will be described in more detail.
  • a sub-pixel such as the sub-pixel 300 comprises four identical parts arranged symmetrically with respect to the center of the sub-pixel 300 1 , 300 2 , 300 3 and 300 4 .
  • the figure 10 shows one of the four portions 300 4 of the sub-pixel 300.
  • the portion 300 4 consists of the electrode strip 90 (common to the part 300 2 ) and successive electrode strips 91 to 99.
  • the width of the strips is in accordance with the profile illustrated by the figure 7 .
  • the strips 90 to 94 have a width of 13 ⁇ m
  • the strip 95 has a width of 11 ⁇ m
  • the strip 96 has a width of 9 ⁇ m
  • the strip 97 has a width of 7 ⁇ m
  • the strip 98 has a width of 5 ⁇ m
  • the band 99 has a width of 3 ⁇ m.
  • the rows of electron emitting elements 80 are arranged symmetrically between two adjacent bands. The distance separating two adjacent strips is, for example, 12 ⁇ m.
  • FIGS. 11A to 11D are cross-sectional views illustrating an embodiment of the present invention.
  • the figure 11A shows a substrate 51, for example glass, on which are deposited and etched cathode conductors 53 which may be molybdenum or tungsten alloy and titanium and which represent the columns of the screen.
  • cathode conductors 53 which may be molybdenum or tungsten alloy and titanium and which represent the columns of the screen.
  • a layer 52 of amorphous silicon having a thickness of between 0.5 and 2 ⁇ m, an electrically insulating layer 54 of silica with a thickness of between 1 and 3 ⁇ m and a metal layer 55 of molybdenum or copper are then successively deposited. , intended to form the electron extraction grid.
  • a resin layer 60 is then deposited on the structure obtained. Openings are made in the resin to define the lines of the screen and the grid patterns. Thus, an opening 61 defines the size of the future electron emitting elements.
  • the metal layer 55 and the electrical insulating layer 54 are etched by reactive dry etching (see FIG. Figure 11B ).
  • a pad 62 is deposited consisting of a catalyst layer (typically iron, nickel or iron / silicon / palladium / nickel alloys in thickness of 1 to 20 nm).
  • the pad may also be a multilayer comprising a metal sub-layer (TiN, TaN, Al or Ti 50 nm thick) and a catalyst layer.
  • the figure 11D shows the structure obtained after removal of the resin followed by the growth of carbon nanotubes 63 by CVD using a pressure of some 0.1 mbar acetylene at 550 ° C for 1 minute.

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)

Claims (8)

  1. Struktur zur Emission von Elektronen durch Feldeffekt und des Typs Triode, wenigstens eine Elektronenemissionszone umfassend, resultierend aus der Überkreuzung einer gemäß einer ersten Achse angeordneten Kathodenelekfirode (43) und einer gemäß einer zweiten Achse angeordneten Extraktionsgitterelektrode (45), wobei eine elektrisch isolierende Schicht die Kathodenelektrode und die Gitterelektrode trennt, die Elektronenemissionselektrode eine Vielzahl elektrisch mit der Kathodenelektrode (43) verbundener Elektronenemissionselemente (47) umfasst, die Elektronenemissionselemente (47) reihenförmig in Öffnungen (46) angeordnet sind, vorgesehen in der Gitterelektrode (45) und der elektrisch isolierenden Schicht, die Gitteröffnungen (46) reihenförmig angeordnet sind, jede Gitteröffnung (46) zwischen zwei Streifen (49) der Gitterelektrode (45) enthalten sind, und die Struktur ebenfalls Fokussiereinrichtungen der durch die Elektronenemissionselemente emittierten Elektronenstrahlen umfasst,
    dadurch gekennzeichnet, dass die Fokussiereinrichtungen durch eine asymmetrische Anordnung von Reihen von Elektronenemissionselementen (47) und ihren benachbarten Gitterelektronenstreifen (49) gebildet werden, wobei die Asymmetrie organisiert ist, um die Gesamtheit der Elektronenstrahlen zu fokussieren, und aus einer Differenz der Breite der einer selben Gitteröffnung (46) benachbarten Gitterelektrodenstreifen (49) resultiert, so dass bei dieser Gitteröffnung der benachbarte Streifen, der sich weiter außen in der Elektronenemissionszone befindet, weniger breit ist als der benachbarte Streifen, der sich weiter innen in der Elektronenemissionszone befindet.
  2. Struktur zur Emission von Elektronen nach Anspruch 1, bei der die Breitendifferenz der Streifen (49) der Gitterelektrode (45) so ist, dass die Breite der Streifen in der Elektronenemissionszone von innen nach außen progressiv abnimmt.
  3. Struktur zur Emission von Elektronen nach Anspruch 2, bei der die Gitterelektrode (45) im zentralen Teil der Elektronenemissionszone wenigstens eine Gitteröffnung (46) hat, deren benachbarte Streifen (49) gleiche Breiten aufweisen, wobei die Elektrodenstreifen mit progressiv abnehmender Breite sich beiderseits dieses zentralen Teils befinden.
  4. Struktur zur Emission von Elektronen nach Anspruch 1, bei der die Asymmetrie aus einer Verschiebung von wenigstens einer Reihe von Elektronenemissionselementen (47) in Bezug auf die Hauptachse der dieser Reihe entsprechenden Gitteröffnung (46) resultiert, wobei die Verschiebung darin besteht, die genannte Reihe dem Zentrum der Elektronenemissionszone anzunähern.
  5. Struktur zur Emission von Elektronen nach Anspruch 4, bei der die Asymmetrie aus einer Verschiebung von mehreren Reihen von Elektronenemissionselementen (47) resultiert, wobei die genannte Verschiebung in der Elektronenemissionszone von innen nach außen progressiv zunimmt.
  6. Struktur zur Emission von Elektronen nach Anspruch 5, bei der die Gitterelektrode (45) im zentralen Teil der Elektronenemissionszone wenigstens eine Gitteröffnung (46) hat, deren Reihen aus Elektronenemissionselementen (47) mit progressiv zunehmender Verschiebung sich beiderseits dieses zentralen Teils befindet.
  7. Struktur zur Emission von Elektronen nach einem der Ansprüche 1 bis 6, bei der die Gitterelektrodenstreifen gemäß der genannten ersten Achse ausgerichtet sind.
  8. Struktur zur Emission von Elektronen nach einem der Ansprüche 1 bis 6, bei der die Gitterelektrodenstreifen gemäß der genannten zweiten Achse ausgerichtet sind.
EP08101232A 2007-02-06 2008-02-04 Struktur zum Aussenden von Elektronen durch Feldeffekt mit Fokussierung der Aussendung Not-in-force EP1956625B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0753086A FR2912254B1 (fr) 2007-02-06 2007-02-06 Structure emettrice d'electrons par effet de champ, a focalisation de l'emission

Publications (2)

Publication Number Publication Date
EP1956625A1 EP1956625A1 (de) 2008-08-13
EP1956625B1 true EP1956625B1 (de) 2009-09-02

Family

ID=38181150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08101232A Not-in-force EP1956625B1 (de) 2007-02-06 2008-02-04 Struktur zum Aussenden von Elektronen durch Feldeffekt mit Fokussierung der Aussendung

Country Status (5)

Country Link
US (1) US7791263B2 (de)
EP (1) EP1956625B1 (de)
JP (1) JP2008198603A (de)
DE (1) DE602008000124D1 (de)
FR (1) FR2912254B1 (de)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315721A (ja) * 1995-05-19 1996-11-29 Nec Kansai Ltd 電界放出冷陰極
JP3823537B2 (ja) * 1998-06-03 2006-09-20 双葉電子工業株式会社 集束電極付電界放出カソード
JP2000243218A (ja) * 1999-02-17 2000-09-08 Nec Corp 電子放出装置及びその駆動方法
US7078863B2 (en) * 2000-09-28 2006-07-18 Sharp Kabushiki Kaisha Cold-cathode electron source and field-emission display
JP2003016919A (ja) * 2001-07-03 2003-01-17 Canon Inc 電子放出素子、電子源、電子源集合体および画像形成装置
JP2003016917A (ja) * 2001-07-03 2003-01-17 Canon Inc 電子放出素子、電子源及び画像形成装置
JP4810010B2 (ja) * 2001-07-03 2011-11-09 キヤノン株式会社 電子放出素子
JP2003203554A (ja) * 2002-01-08 2003-07-18 Matsushita Electric Ind Co Ltd 電子放出素子
FR2836279B1 (fr) 2002-02-19 2004-09-24 Commissariat Energie Atomique Structure de cathode pour ecran emissif
WO2004088703A1 (ja) * 2003-03-28 2004-10-14 Sumitomo Electric Industries Ltd. 冷極電子源と、これを用いたマイクロ波管及びその製造方法
FR2873852B1 (fr) * 2004-07-28 2011-06-24 Commissariat Energie Atomique Structure de cathode a haute resolution

Also Published As

Publication number Publication date
US7791263B2 (en) 2010-09-07
JP2008198603A (ja) 2008-08-28
EP1956625A1 (de) 2008-08-13
DE602008000124D1 (de) 2009-10-15
FR2912254B1 (fr) 2009-10-16
FR2912254A1 (fr) 2008-08-08
US20080203887A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
FR2753002A1 (fr) Dispositif d'affichage a emission de champ
EP0704877A1 (de) Elektrischer Schutz von einer Anode eines flachen Bildschirms
FR2684488A1 (fr) Ensemble formant canon a electrons du type en ligne et tube cathodique en couleurs contenant un tel ensemble.
FR2739223A1 (fr) Dispositif d'affichage a emission de champ
FR2764435A1 (fr) Element a emission de champ
FR2682211A1 (fr) Dispositif d'affichage fluorescent de type plat.
FR2807205A1 (fr) Plaque de cathode d'ecran plat de visualisation
EP1956625B1 (de) Struktur zum Aussenden von Elektronen durch Feldeffekt mit Fokussierung der Aussendung
EP1210721B1 (de) Flache feldemissionsanzeigevorrichtung mit modulationselektrode
FR2873852A1 (fr) Structure de cathode a haute resolution
EP1023741B1 (de) Mikrospitzen-elektronenquelle mit fokussierungsgitter und hoher mikrospitzendichte und flachschirm unter verwendung einer solchen quelle
EP0649162B1 (de) Flaches Kaltkathodeanzeigegerät mit geschalteter Anode
FR2756418A1 (fr) Ecran plat de visualisation a deviation laterale
EP0125949B1 (de) Farbfernsehröhre mit einer Korrektur von Komafehlern geringer Amplitude
FR2769405A1 (fr) Dispositif a emission de champ
EP0456550B1 (de) Elektronenröhre mit zylinderförmigem Gitter
EP0844642A1 (de) Flaches Bildschirm mit fokussierenden Gittern
EP0877407A1 (de) Anode eines flachen Bildschirms
FR2531809A1 (fr) Tube a rayons cathodiques a masque de focalisation
EP0867908A1 (de) Vergleichmässigung der potentiellen Elektronenemission einer Kathode eines flachen Mikrospitzen-Bildschirms
FR2910175A1 (fr) Structure de cathode pour ecran plat avec grille de refocalisation
FR2828956A1 (fr) Protection locale d'une grille d'ecran plat a micropointes
FR2902574A1 (fr) Element cathodique pour panneau d'affichage de type fed
FR2797092A1 (fr) Procede de fabrication d'une anode d'un ecran plat de visualisation
FR2833750A1 (fr) Canon a electrons pour tube a vide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20080926

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 602008000124

Country of ref document: DE

Date of ref document: 20091015

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120316

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120220

Year of fee payment: 5

Ref country code: GB

Payment date: 20120217

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120320

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008000124

Country of ref document: DE

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130204