DE102014217948A1 - Festelektrolytkondensator zur Verwendung unter Bedingungen hoher Temperatur und Feuchtigkeit - Google Patents

Festelektrolytkondensator zur Verwendung unter Bedingungen hoher Temperatur und Feuchtigkeit Download PDF

Info

Publication number
DE102014217948A1
DE102014217948A1 DE102014217948.3A DE102014217948A DE102014217948A1 DE 102014217948 A1 DE102014217948 A1 DE 102014217948A1 DE 102014217948 A DE102014217948 A DE 102014217948A DE 102014217948 A1 DE102014217948 A1 DE 102014217948A1
Authority
DE
Germany
Prior art keywords
electrolytic capacitor
solid electrolytic
capacitor according
anode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102014217948.3A
Other languages
English (en)
Inventor
Jyunya Tatsuno
Kiyofumi Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp N D Ges Us
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of DE102014217948A1 publication Critical patent/DE102014217948A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0003Protection against electric or thermal overload; cooling arrangements; means for avoiding the formation of cathode films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Ein Festelektrolytkondensator, der selbst unter den extremen Bedingungen einer hohen Temperatur und Feuchtigkeit gute elektrische Eigenschaften aufweisen kann, wird bereitgestellt. Insbesondere enthält der Kondensator ein Kondensatorelement, das einen gesinterten porösen Anodenkörper, ein Dielektrikum, das den Anodenkörper bedeckt, und einen festen Elektrolyten, der das Dielektrikum bedeckt, umfasst. Der feste Elektrolyt enthält ein leitfähiges Polymer und ein metallorganisches Kopplungsmittel. Der Kondensator enthält auch eine Feuchtigkeitssperrschicht, die den festen Elektrolyten bedeckt und aus einem hydrophoben Elastomer, das eine geringe Oberflächenenergie aufweist, so dass es von einem wässrigen Medium nicht leicht benetzt werden kann, gebildet ist.

Description

  • Elektrolytkondensatoren (z. B. Tantalkondensatoren) werden aufgrund ihrer volumetrischen Effizienz, Zuverlässigkeit und Verfahrenskompatibilität zunehmend bei der Gestaltung von Schaltungen verwendet. Zum Beispiel ist ein Kondensatortyp, der entwickelt wurde, ein Festelektrolytkondensator, der eine Tantalanode, eine dielektrische Schicht und ein leitfähiges Polymer als festen Elektrolyten umfasst. Um zum Schutz des Kondensators vor der äußeren Umgebung beizutragen und ihn mit einer guten mechanischen Stabilität zu versehen, ist er typischerweise in ein Epoxidharz eingebettet. Während solche Epoxidharze für die meisten Umgebungen geeignet sind, können sie dennoch unter bestimmten Umständen problematisch werden. Zum Beispiel sind bestimmte Typen von leitfähigen Polymerelektrolyten (z. B. PEDT) aufgrund der Tendenz solcher Polymere, in Gegenwart von Feuchtigkeit leicht zu oxidieren, hochgradig empfindlich. Leider kann die Anwesenheit eines sehr hohen Grades von Feuchtigkeit (z. B. etwa 85% relative Feuchtigkeit oder mehr) in der Umgebung bewirken, dass das Epoxidharz langsam schwächer wird oder sich zersetzt, was es schließlich einer kleinen Menge Feuchtigkeit ermöglichen kann, in das Innere des Kondensators einzudringen. Selbst in einer kleinen Menge kann die Feuchtigkeit zu einer schnellen Verschlechterung der elektrischen Eigenschaften führen. Daher besteht zurzeit ein Bedürfnis nach einem Kondensator mit verbesserter Leistungsfähigkeit in Umgebungen mit hoher Feuchtigkeit.
  • Kurzbeschreibung der Erfindung
  • Gemäß einer Ausführungsform der vorliegenden Erfindung wird ein Festelektrolytkondensator offenbart, der ein Kondensatorelement umfasst, das einen gesinterten porösen Anodenkörper, ein Dielektrikum, das den Anodenkörper bedeckt, einen festen Elektrolyten, der das Dielektrikum bedeckt, und eine Feuchtigkeitssperrschicht, die den festen Elektrolyten bedeckt, umfasst. Der feste Elektrolyt umfasst ein leitfähiges Polymer und ein metallorganisches Kopplungsmittel, das eine organische Kette mit wenigstens einer reaktiven Gruppe, die an ein Metallatom gebunden ist, enthält, wobei die Feuchtigkeitssperrschicht weiterhin ein hydrophobes Elastomer umfasst. Der Kondensator enthält auch ein Anoden-Endteil, das in elektrischer Verbindung mit dem Anodenkörper steht, und ein Kathoden-Endteil, das in elektrischer Verbindung mit dem festen Elektrolyten steht. Ein harzartiges Gehäuse bettet das Kondensatorelement ein und lässt wenigstens einen Teil des Anoden-Endteils und des Kathoden-Endteils exponiert.
  • Weitere Merkmale und Aspekte der vorliegenden Erfindung sind im Folgenden ausführlicher dargelegt.
  • Kurzbeschreibung der Zeichnung
  • Im Rest der Beschreibung und unter Bezugnahme auf die Begleitzeichnung ist eine vollständige und nacharbeitbare Offenbarung der vorliegenden Erfindung einschließlich ihrer besten Realisierung für den Fachmann insbesondere dargelegt; dabei ist:
  • 1 eine schematische Darstellung einer Ausführungsform eines Kondensators, der gemäß der vorliegenden Erfindung gebildet werden kann.
  • Bei mehrfacher Verwendung von Bezugszeichen in der vorliegenden Beschreibung und den Zeichnungen sollen diese dieselben oder analoge Merkmale oder Elemente der vorliegenden Erfindung repräsentieren.
  • Ausführliche Beschreibung von repräsentativen Ausführungsformen
  • Der Fachmann sollte sich darüber im Klaren sein, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und die breiteren Aspekte der vorliegenden Erfindung nicht einschränken soll, wobei diese breiteren Aspekte in der beispielhaften Konstruktion verkörpert sind.
  • Allgemein gesagt betrifft die vorliegende Erfindung einen Festelektrolytkondensator, der selbst unter den extremen Bedingungen einer hohen Temperatur und Feuchtigkeit gute elektrische Eigenschaften aufweisen kann. Insbesondere enthält der Kondensator ein Kondensatorelement, das einen gesinterten porösen Anodenkörper, ein Dielektrikum, das den Anodenkörper bedeckt, und einen festen Elektrolyten, der das Dielektrikum bedeckt, umfasst. Der feste Elektrolyt enthält ein leitfähiges Polymer und ein metallorganisches Kopplungsmittel. Der Kondensator enthält auch eine Feuchtigkeitssperrschicht, die den festen Elektrolyten bedeckt und aus einem hydrophoben Elastomer, das eine geringe Oberflächenenergie aufweist, so dass es von einem wässrigen Medium nicht leicht benetzt werden kann, gebildet ist. Zum Beispiel kann das hydrophobe Elastomer einen vorschreitenden und/oder zurücktretenden Kontaktwinkel gegenüber Wasser von etwa 90° oder mehr, in einigen Ausführungsformen etwa 100° oder mehr und in einigen Ausführungsformen etwa 120° oder mehr aufweisen, bestimmt gemäß ASTM D7490-08. Das hydrophobe Elastomer kann auch eine relativ niedrige Wasserdampfdurchlässigkeit, wie etwa 150 Gramm pro Quadratmeter pro 24 Stunden (”g/m2/24 h”) oder weniger, in einigen Ausführungsformen etwa 100 g/m2/24 h oder weniger und in einigen Ausführungsformen etwa 0 bis etwa 50 g/m2/24 h aufweisen, bestimmt gemäß ASTM F-1249. Die Erfinder haben herausgefunden, dass die einzigartige Kombination der obigen Merkmale zu einem Kondensator führen kann, der unter den Bedingungen von sowohl hoher Temperatur als auch hoher Feuchtigkeit eine ausgezeichnete Leistungsfähigkeit aufweisen kann.
  • Verschiedene Ausführungsformen der Erfindung werden nun ausführlicher beschrieben.
  • I. Kondensatorelement
  • A. Anodenkörper
  • Der Anodenkörper kann aus einem Pulver mit einer spezifischen Ladung von etwa 2000 Mikrofarad·Volt pro Gramm (”μF·V/g”) bis etwa 350000 μF·V/g gebildet werden. Wie in der Technik bekannt ist, kann die spezifische Ladung dadurch bestimmt werden, dass man die Kapazität mit der eingesetzten Anodisierungsspannung multipliziert und dann dieses Produkt durch das Gewicht des Elektrodenkörpers vor der Anodisierung dividiert. In bestimmten Ausführungsformen kann das Pulver eine hohe spezifische Ladung aufweisen, wie etwa 70000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 80000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 90000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 100000 bis etwa 300000 μF·V/g und in einigen Ausführungsformen etwa 120000 bis etwa 250000 μF·V/g. Selbstverständlich kann das Pulver auch eine niedrige spezifische Ladung aufweisen, wie etwa 70000 μF·V/g oder weniger, in einigen Ausführungsformen etwa 60000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 50000 μF·V/g oder mehr, in einigen Ausführungsformen etwa 2000 bis etwa 40000 μF·V/g und in einigen Ausführungsformen etwa 5000 bis etwa 35000 μF·V/g.
  • Das Pulver kann einzelne Teilchen und/oder Agglomerate solcher Teilchen enthalten. Zu den Verbindungen zur Bildung des Pulvers gehören ein Ventilmetall (d. h. ein Metall, das zur Oxidation befähigt ist) oder eine auf einem Ventilmetall basierende Verbindung, wie Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen davon, Oxide davon, Nitride davon usw. Zum Beispiel kann die Ventilmetallzusammensetzung ein elektrisch leitfähiges Oxid von Niob enthalten, wie Nioboxid mit einem Atomverhältnis von Niob zu Sauerstoff von 1:1,0 ± 1,0, in einigen Ausführungsformen 1:1,0 ± 0,3, in einigen Ausführungsformen 1:1,0 ± 0,1 und in einigen Ausführungsformen 1:1,0 ± 0,05. Zum Beispiel kann es sich bei dem Nioboxid um NbO0,7, NbO1,0, NbO1,1 und NbO2 handeln. Beispiele für solche Ventilmetalloxide sind in den US-Patenten Nr. 6,322,912 (Fife), 6,391,275 (Fife et al.), 6,416,730 (Fife et al.), 6,527,937 (Fife), 6,576,099 (Kimmel et al.), 6,592,740 (Fife et al.) und 6,639,787 (Kimmel et al.) und 7,220,397 (Kimmel et al.) sowie den US-Patentanmeldungen Veröffentlichungsnummer 2005/0019581 (Schnitter), 2005/0103638 (Schnitter et al.), 2005/0013765 (Thomas et al.) beschrieben.
  • Das Pulver kann mit Hilfe von dem Fachmann bekannten Techniken gebildet werden. Ein Vorläufer-Tantalpulver kann zum Beispiel gebildet werden, indem man ein Tantalsalz (z. B. Kaliumfluorotantalat (K2TaF7), Natriumfluorotantalat (Na2TaF7), Tantalpentachlorid (TaCl5) usw.) mit einem Reduktionsmittel (z. B. Wasserstoff, Natrium, Kalium, Magnesium, Calcium usw.) reduziert. Solche Pulver können in vielerlei Weise agglomeriert werden, wie etwa durch einen oder mehrere Wärmebehandlungsschritte bei einer Temperatur von etwa 700°C bis etwa 1400°C, in einigen Ausführungsformen etwa 750°C bis etwa 1200°C und in einigen Ausführungsformen etwa 800°C bis etwa 1100°C. Die Wärmebehandlung kann in einer inerten oder reduzierenden Atmosphäre erfolgen. Zum Beispiel kann die Wärmebehandlung in einer Atmosphäre erfolgen, die Wasserstoff oder eine wasserstofffreisetzende Verbindung (z. B. Ammoniumchlorid, Calciumhydrid, Magnesiumhydrid usw.) enthält, um das Pulver partiell zu sintern und den Gehalt an Verunreinigungen (z. B. Fluor) zu senken. Falls gewünscht, kann die Agglomeration auch in Gegenwart eines Gettermaterials, wie Magnesium, durchgeführt werden. Nach der Wärmebehandlung können die hochreaktiven groben Agglomerate durch allmählichen Luftzutritt passiviert werden. Weitere geeignete Agglomerationstechniken sind auch in den US-Patenten Nr. 6,576,038 (Rao), 6,238,456 (Wolf et al.), 5,954,856 (Pathare et al.), 5,082,491 (Rerat), 4,555,268 (Getz), 4,483,819 (Albrecht et al.), 4,441,927 (Getz et al.) und 4,017,302 (Bates et al.) beschrieben.
  • Um die Konstruktion des Anodenkörpers zu erleichtern, können auch bestimmte Komponenten in das Pulver mit aufgenommen werden. Zum Beispiel kann das Pulver gegebenenfalls mit einem Bindemittel und/oder Gleitmittel gemischt werden, um zu gewährleisten, dass die Teilchen ausreichend aneinander haften, wenn sie unter Bildung des Anodenkörpers verpresst werden. Zu den geeigneten Bindemitteln gehören zum Beispiel Polyvinylbutyral, Polyvinylacetat, Polyvinylalkohol, Polyvinylpyrrolidon, Cellulosepolymere, wie Carboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und Methylhydroxyethylcellulose, ataktisches Polypropylen, Polyethylen, Polyethylenglycol (z. B. Carbowax von Dow Chemical Co.), Polystyrol, Poly(butadien/styrol); Polyamide, Polyimide und Polyacrylamide, hochmolekulare Polyether; Copolymere von Ethylenoxid und Propylenoxid; Fluorpolymere, wie Polytetrafluorethylen, Polyvinylidenfluorid und Fluorolefin-Copolymere, Acrylpolymere, wie Natriumpolyacrylat, Poly(niederalkylacrylate), Poly(niederalkylmethacrylate) und Copolymere von Niederalkylacrylaten und -methacrylaten; sowie Fettsäuren und Wachse, wie Stearin- und andere Seifenfettsäuren, Pflanzenwachs, Mikrowachse (gereinigte Paraffine) usw. Das Bindemittel kann in einem Lösungsmittel gelöst und dispergiert werden. Beispielhafte Lösungsmittel sind etwa Wasser, Alkohole usw. Wenn sie verwendet werden, kann der Prozentsatz der Bindemittel und/oder Gleitmittel von etwa 0,1 bis etwa 8 Gew.-% der Gesamtmasse variieren. Man sollte sich jedoch darüber im Klaren sein, dass Bindemittel und Gleitmittel in der vorliegenden Erfindung nicht zwingend erforderlich sind.
  • Das resultierende Pulver kann dann mit Hilfe einer beliebigen herkömmlichen Pulverpressvorrichtung unter Bildung eines Presslings kompaktiert werden. Zum Beispiel kann eine Pressform eingesetzt werden, bei der es sich um eine Einplatz-Kompaktierpresse handelt, die eine Matrize und einen oder mehrere Stempel enthält. Alternativ dazu können auch Kompaktierpressformen des Ambosstyps verwendet werden, die nur eine Matrize und einen einzigen Unterstempel verwenden. Einplatz-Kompaktierpressformen sind in mehreren Grundtypen erhältlich, wie Nocken-, Kniehebel- und Exzenter- oder Kurbelpressen mit unterschiedlichen Fähigkeiten, wie einfach wirkend, doppelt wirkend, Schwebemantelmatrize, bewegliche Werkzeugaufspannplatte, Gegenstempel, Schnecke, Schlag, Heißpressen, Prägen oder Kalibrieren. Das Pulver kann um einen Anodenanschluss (z. B. Tantaldraht) herum kompaktiert werden. Man sollte sich weiterhin bewusst sein, dass der Anodenanschluss alternativ dazu auch nach dem Pressen und/oder Sintern des Anodenkörpers an dem Anodenkörper befestigt (z. B. daran geschweißt) werden kann.
  • Nach der Kompaktierung kann gegebenenfalls vorhandenes Bindemittel/Gleitmittel entfernt werden, indem man den Pressling mehrere Minuten lang im Vakuum auf eine bestimmte Temperatur (z. B. etwa 150°C bis etwa 500°C) erhitzt. Alternativ dazu kann das Bindemittel/Gleitmittel auch entfernt werden, indem man den Pressling mit einer wässrigen Lösung in Kontakt bringt, wie es im US-Patent Nr. 6,197,252 (Bishop et al.) beschrieben ist. Danach wird der Pressling unter Bildung einer porösen zusammenhängenden Masse gesintert. Zum Beispiel kann der Pressling in einer Ausführungsform bei einer Temperatur von etwa 1200°C bis etwa 2000°C und in einigen Ausführungsformen etwa 1500°C bis etwa 1800°C im Vakuum oder einer inerten Atmosphäre gesintert werden. Nach dem Sintern schrumpft der Pressling aufgrund des Wachstums von Bindungen zwischen den Teilchen. Die Dichte des Presslings im gepressten Zustand nach dem Sintern kann variieren, beträgt jedoch typischerweise etwa 2,0 bis etwa 7,0 Gramm pro Kubikzentimeter, in einigen Ausführungsformen etwa 2,5 bis etwa 6,5 und in einigen Ausführungsformen etwa 3,0 bis etwa 6,0 Gramm pro Kubikzentimeter. Die Dichte im gepressten Zustand wird bestimmt, indem man die Menge des Materials durch das Volumen des Presslings dividiert.
  • Obwohl es nicht erforderlich ist, kann die Dicke der Anode so gewählt werden, dass die elektrischen Eigenschaften des Kondensators verbessert werden. Zum Beispiel kann die Dicke der Anode etwa 4 Millimeter oder weniger betragen, in einigen Ausführungsformen etwa 0,05 bis etwa 2 Millimeter und in einigen Ausführungsformen etwa 0,1 bis etwa 1 Millimeter. Auch die Form der Anode kann so gewählt werden, dass die elektrischen Eigenschaften des resultierenden Kondensators verbessert werden. Zum Beispiel kann die Anode eine Form haben, die gekrümmt, wellenförmig, rechteckig, U-förmig, V-förmig usw. ist. Die Anode kann auch eine ”geriffelte” Form haben, indem sie eine oder mehrere Furchen, Rillen, Vertiefungen oder Einkerbungen enthält, um das Verhältnis von Oberfläche zu Volumen zu erhöhen und dadurch den ESR zu minimieren und den Frequenzgang der Kapazität auszudehnen. Solche ”geriffelten” Anoden sind zum Beispiel in den US-Patenten Nr. 6,191,936 (Webber et al.), 5,949,639 (Maeda et al.) und 3,345,545 (Bourgault et al.) sowie in der US-Patentanmeldung Veröffentlichungsnummer 2005/0270725 (Hahn et al.) beschrieben.
  • B. Dielektrikum
  • Der Anodenkörper wird auch mit einem Dielektrikum beschichtet. Das Dielektrikum kann durch anodisches Oxidieren (”Anodisieren”) der gesinterten Anode gebildet werden, so dass eine dielektrische Schicht auf und/oder innerhalb der Anode entsteht. Zum Beispiel kann eine Anode aus Tantal (Ta) zu Tantalpentoxid (Ta2O5) anodisiert werden. Typischerweise wird die Anodisierung durchgeführt, indem man zunächst eine Lösung auf die Anode aufträgt, etwa durch Eintauchen der Anode in den Elektrolyten. Im Allgemeinen wird ein Lösungsmittel, wie Wasser (z. B. deionisiertes Wasser), eingesetzt. Um die Ionenleitfähigkeit zu verstärken, kann eine Verbindung eingesetzt werden, die in dem Lösungsmittel unter Bildung von Ionen dissoziieren kann. Beispiele für solche Verbindungen sind zum Beispiel Säuren, wie sie im Folgenden in Bezug auf den Elektrolyten beschrieben werden. Zum Beispiel kann eine Säure (z. B. Phosphorsäure) etwa 0,01 Gew.-% bis etwa 5 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 0,8 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 0,5 Gew.-% der anodisierenden Lösung ausmachen. Falls gewünscht, können auch Gemische von Säuren eingesetzt werden.
  • Ein Strom wird durch die anodisierende Lösung geleitet, um die dielektrische Schicht zu bilden. Der Wert der Bildungsspannung entspricht der Dicke der dielektrischen Schicht. Zum Beispiel kann die Stromquelle zunächst im galvanostatischen Modus betrieben werden, bis die erforderliche Spannung erreicht ist.
  • Danach kann die Stromquelle auf einen potentiostatischen Modus umgeschaltet werden, um zu gewährleisten, dass die gewünschte Dicke des Dielektrikums über der gesamten Oberfläche der Anode gebildet wird. Selbstverständlich können auch andere bekannte Verfahren eingesetzt werden, wie potentiostatische Impuls- oder Schrittverfahren. Die Spannung, bei der die anodische Oxidation erfolgt, liegt typischerweise im Bereich von etwa 4 bis etwa 250 V und in einigen Ausführungsformen etwa 9 bis etwa 200 V und in einigen Ausführungsformen etwa 20 bis etwa 150 V. Während der Oxidation kann die anodisierende Lösung auf einer erhöhten Temperatur gehalten werden, wie etwa 30°C oder mehr, in einigen Ausführungsformen etwa 40°C bis etwa 200°C und in einigen Ausführungsformen etwa 50°C bis etwa 100°C. Die anodische Oxidation kann auch bei Umgebungstemperatur oder darunter durchgeführt werden. Die resultierende dielektrische Schicht kann auf einer Oberfläche der Anode und innerhalb ihrer Poren gebildet werden.
  • Falls gewünscht, kann jedes Stadium der Anodisierung durch einen oder mehrere Zyklen wiederholt werden, um die gewünschte Dicke des Dielektrikums zu erreichen. Weiterhin kann die Anode nach dem ersten und/oder dem zweiten Stadium auch mit einem anderen Lösungsmittel (z. B. Wasser) gespült oder gewaschen werden, um den Elektrolyten zu entfernen.
  • C. Fester Elektrolyt
  • Wie erwähnt, umfasst der feste Elektrolyt ein leitfähiges Polymer in Kombination mit einem metallorganischen Kopplungsmittel. Das leitfähige Polymer ist typischerweise π-konjugiert und weist nach Oxidation oder Reduktion eine elektrische Leitfähigkeit auf, wie eine elektrische Leitfähigkeit von wenigstens etwa 1 μS/cm. Beispiele für solche π-konjugierten leitfähigen Polymere sind zum Beispiel Polyheterocyclen (z. B. Polypyrrole, Polythiophene, Polyaniline usw.), Polyacetylene, Poly-p-phenylene, Polyphenolate usw. In einer Ausführungsform ist das Polymer zum Beispiel ein substituiertes Polythiophen, wie solche mit der folgenden allgemeinen Struktur:
    Figure DE102014217948A1_0002
    wobei
    T = O oder S ist;
    D ein gegebenenfalls substituierter C1- bis C5-Alkylenrest (z. B. Methylen, Ethylen, n-Propylen, n-Butylen, n-Pentylen usw.) ist;
    R7 Folgendes ist: ein linearer oder verzweigter, gegebenenfalls substituierter C1 bis C18-Alkylrest (z. B. Methyl, Ethyl, n-Propyl oder Isopropyl, n-, iso-, sek- oder tert-Butyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl usw.); ein gegebenenfalls substituierter C5- bis C12-Cycloalkylrest (z. B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl usw.); ein gegebenenfalls substituierter C6- bis C14-Arylrest (z. B. Phenyl, Naphthyl usw.); ein gegebenenfalls substituierter C7- bis C18-Aralkylrest (z. B. Benzyl, o-, m-, p-Tolyl, 2,3-, 2,4-, 2,5-, 2,6, 3,4-, 3,5-Xylyl, Mesityl usw.); ein gegebenenfalls substituierter C1- bis C4-Hydroxyalkylrest oder ein Hydroxyrest; und
    q eine ganze Zahl von 0 bis 8, in einigen Ausführungsformen 0 bis 2 und in einer Ausführungsform 0 ist; und
    n = 2 bis 5000, in einigen Ausführungsformen 4 bis 2000 und in einigen Ausführungsformen 5 bis 1000 ist. Beispiele für Substituenten für die Reste ”D” oder ”R7” sind zum Beispiel Alkyl, Cycloalkyl, Aryl, Aralkyl, Alkoxy, Halogen, Ether, Thioether, Disulfid, Sulfoxid, Sulfon, Sulfonat, Amino, Aldehyd, Keto, Carbonsäureester, Carbonsäure, Carbonat, Carboxylat, Cyano, Alkylsilan- und Alkoxysilangruppen, Carboxylamidgruppen usw.
  • Besonders gut geeignete Thiophenpolymere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel kann das Polymer gegebenenfalls substituiertes Poly(3,4-ethylendioxythiophen) sein, das die folgende allgemeine Struktur hat:
    Figure DE102014217948A1_0003
  • Verfahren zur Bildung von leitfähigen Polymeren wie den oben beschriebenen sind in der Technik wohlbekannt. Zum Beispiel beschreibt das US-Patent Nr. 6,987,663 (Merker et al.) verschiedene Techniken zur Bildung von substituierten Polythiophenen aus einem monomeren Vorläufer. Der monomere Vorläufer kann zum Beispiel die folgende Struktur haben:
    Figure DE102014217948A1_0004
    wobei
    T, D, R7 und q wie oben definiert sind. Besonders gut geeignete Thiophenmonomere sind solche, bei denen ”D” ein gegebenenfalls substituierter C2- bis C3-Alkylenrest ist. Zum Beispiel können gegebenenfalls substituierte 3,4-Alkylendioxythiophene eingesetzt werden, die die folgende allgemeine Struktur haben:
    Figure DE102014217948A1_0005
    wobei R7 und q wie oben definiert sind. In einer besonderen Ausführungsform ist ”q” = 0. Ein kommerziell geeignetes Beispiel für 3,4-Ethylendioxythiophen ist von der Heraeus Precious Metals GmbH & Co. KG unter der Bezeichnung CleviosTM M erhältlich. Weitere geeignete Monomere sind auch im US-Patent Nr. 5,111,327 (Blohm et al.) und 6,635,729 (Groenendahl et al.) beschrieben. Derivate dieser Monomere, die zum Beispiel Dimere oder Trimere der obigen Monomere sind, können ebenfalls eingesetzt werden. Höhermolekulare Derivate, d. h. Tetramere, Pentamere usw., der Monomere sind zur Verwendung in der vorliegenden Erfindung geeignet. Die Derivate können aus gleichen oder verschiedenen Monomereinheiten bestehen und können in reiner Form oder in einem Gemisch miteinander und/oder mit den Monomeren verwendet werden. Oxidierte oder reduzierte Formen dieser Vorläufer können ebenfalls eingesetzt werden.
  • Das leitfähige Polymer kann in situ gebildet oder vorpolymerisiert und dann in Form einer Dispersion auf den Anodenkörper aufgetragen werden. Zur Bildung einer in situ polymerisierten Schicht kann das Monomer chemisch polymerisiert werden, gegebenenfalls in Gegenwart eines oxidativen Katalysators. Der oxidative Katalysator umfasst typischerweise ein Übergangsmetallkation, wie Eisen(III)-, Kupfer(II)-, Chrom(VI)-, Cer(IV)-, Mangan(IV)-, Mangan(VII)- oder Ruthenium(III)-Kation usw. Es kann auch ein Dotierungsmittel eingesetzt werden, um dem leitfähigen Polymer überschüssige Ladung zu verleihen und die Leitfähigkeit des Polymers zu stabilisieren. Das Dotierungsmittel umfasst typischerweise ein anorganisches oder organisches Anion, wie ein Ion einer Sulfonsäure. In bestimmten Ausführungsformen weist der oxidative Katalysator insofern sowohl eine katalytische als auch eine dotierende Funktionalität auf, als er ein Kation (z. B. Übergangsmetall) und ein Anion (z. B. Sulfonsäure) enthält.
  • Der oxidative Katalysator kann zum Beispiel ein Übergangsmetallsalz sein, das Eisen(III)-Kationen enthält, wie Eisen(III)-Halogenide (z. B. FeCl3) oder Eisen(III)-Salze anderer anorganischer Säuren, wie Fe(ClO4)3 oder Fe2(SO4)3, und die Eisen(III)-Salze organischer Säuren und anorganischer Säuren, die organische Reste umfassen. Beispiele für Eisen(III)-Salze von anorganischen Säuren mit organischen Resten sind zum Beispiel Eisen(III)-Salze von Schwefelsäuremonoestern von C1- bis C20-Alkanolen (z. B. das Eisen(III)-Salz von Laurylsulfat). Ebenso sind Beispiele für Eisen(III)-Salze von organischen Säuren zum Beispiel Eisen(III)-Salze von C1- bis C20-Alkansulfonsäuren (z. B. Methan-, Ethan-, Propan-, Butan- oder Dodecansulfonsäure); Eisen(III)-Salze von aliphatischen Perfluorsulfonsäuren (z. B. Trifluormethansulfonsäure, Perfluorbutansulfonsäure oder Perfluoroctansulfonsäure); Eisen(III)-Salze von aliphatischen C1- bis C20-Carbonsäuren (z. B. 2-Ethylhexylcarbonsäure); Eisen(III)-Salze von aliphatischen Perfluorcarbonsäuren (z. B. Trifluoressigsäure oder Perfluoroctansäure); Eisen(III)-Salze von aromatischen Sulfonsäuren, die gegebenenfalls mit C1- bis C20-Alkylgruppen substituiert sind (z. B. Benzolsulfonsäure, o-Toluolsulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure); Eisen(III)-Salze von Cycloalkansulfonsäuren (z. B. Camphersulfonsäure); usw. Gemische dieser oben genannten Eisen(III)-Salze können ebenfalls verwendet werden. Eisen(III)-p-toluolsulfonat, Eisen(III)-o-toluolsulfonat und Gemische davon sind besonders gut geeignet. Ein kommerziell geeignetes Beispiel für Eisen(III)-p-toluolsulfonat ist von der Heraeus Precious Metals GmbH & Co. KG unter der Bezeichnung CleviosTM C erhältlich.
  • Der oxidative Katalysator und das Monomer können entweder nacheinander oder zusammen aufgetragen werden, um die Polymerisationsreaktion einzuleiten. Zu den geeigneten Auftragstechniken gehören Siebdruck, Tauchbeschichtung, elektrophoretische Beschichtung und Sprühbeschichtung; sie können verwendet werden, um eine leitfähige Polymerbeschichtung zu bilden. Als Beispiel kann das Monomer zunächst unter Bildung einer Vorläuferlösung mit dem oxidativen Katalysator gemischt werden. Sobald das Gemisch gebildet ist, kann es auf den Anodenteil aufgetragen und polymerisieren gelassen werden, so dass die leitfähige Beschichtung auf der Oberfläche entsteht. Alternativ dazu können der oxidative Katalysator und das Monomer auch nacheinander aufgetragen werden. In einer Ausführungsform wird der oxidative Katalysator zum Beispiel in einem organischen Lösungsmittel (z. B. Butanol) gelöst und dann als Tauchlösung aufgetragen. Das Anodenteil kann dann getrocknet werden, um das Lösungsmittel davon zu entfernen. Danach kann das Teil in eine Lösung, die das Monomer enthält, eingetaucht werden. Unabhängig davon wird die Polymerisation typischerweise bei Temperaturen von etwa –10°C bis etwa 250°C und in einigen Ausführungsformen etwa 0°C bis etwa 200°C durchgeführt, abhängig von dem verwendeten Oxidationsmittel und der gewünschten Reaktionszeit. Geeignete Polymerisationstechniken, wie sie oben beschrieben sind, sind ausführlicher in US-Patent Nr. 7,515,396 (Biler) beschrieben. Noch andere Verfahren zum Auftragen einer oder mehrerer solcher leitfähigen Polymerbeschichtungen sind in den US-Patenten Nr. 5,457,862 (Sakata et al.), 5,473,503 (Sakata et al.), 5,729,428 (Sakata et al.) und 5,812,367 (Kudoh et al.) beschrieben.
  • Das metallorganische Kopplungsmittel, das in dem festen Elektrolyten eingesetzt wird, enthält typischerweise eine organische Kette mit wenigstens einer reaktiven funktionellen Gruppe, die an ein Metallatom, wie Silicium, Titan, Aluminium, Vanadium, Niob, Mangan, Magnesium usw., gebunden ist. Beispiele für geeignete metallorganische Kopplungsmittel sind zum Beispiel Organosilane, wie Alkoxysilane (z. B. Vinyltrimethoxysilan, Vinyltriethoxysilan, Vinylmethyldimethoxysilan, Vinylmethyldiethoxysilan, 3-Aminopropyltrimethoxysilan, 3-Aminopropyltriethoxysilan, 3-Aminopropylmethyldimethoxysilan, 3-Aminopropylmethyldiethoxysilan, 3-(2-Aminoethyl)aminopropyltrimethoxysilan, 3-Mercaptopropyltrimethoxysilan, 3-Mercaptopropyltriethoxysilan, 3-Mercaptopropylmethyldimethoxysilan, 3-Mercaptopropylmethyldiethoxysilan, Glycidoxymethyltrimethoxysilan, Glycidoxymethyltriethoxysilan, Glycidoxymethyltripropoxysilan, Glycidoxymethyltributoxysilan, β-Glycidoxyethyltrimethoxysilan, β-Glycidoxyethyltriethoxysilan, β-Glycidoxyethyltripropoxysilan, β-Glycidoxyethyltributoxysilan, β-Glycidoxyethyltrimethoxysilan, α-Glycidoxyethyltriethoxysilan, α-Glycidoxyethyltripropoxysilan, α-Glycidoxyethyltributoxysilan, γ-Glycidoxypropyltrimethoxysilan, γ-Glycidoxypropyltriethoxysilan, γ-Glycidoxypropyltripropoxysilan, γ-Glycidoxypropyltributoxysilan, β-Glycidoxypropyltrimethoxysilan, β-Glycidoxypropyltriethoxysilan, β-Glycidoxypropyltripropoxysilan, α-Glycidoxypropyltributoxysilan, α-Glycidoxypropyltrimethoxysilan, α-Glycidoxypropyltriethoxysilan, α-Glycidoxypropyltripropoxysilan, α-Glycidoxypropyltributoxysilan, γ-Glycidoxybutyltrimethoxysilan, δ-Glycidoxybutyltriethoxysilan, δ-Glycidoxybutyltripropoxysilan, δ-Glycidoxybutyltributoxysilan, δ-Glycidoxybutyltrimethoxysilan, γ-Glycidoxybutyltriethoxysilan, γ-Glycidoxybutyltripropoxysilan, γ-Propoxybutyltributoxysilan, δ-Glycidoxybutyltrimethoxysilan, δ-Glycidoxybutyltriethoxysilan, δ-Glycidoxybutyltripropoxysilan, α-Glycidoxybutyltrimethoxysilan, α-Glycidoxybutyltriethoxysilan, α-Glycidoxybutyltripropoxysilan, α-Glycidoxybutyltributoxysilan, (3,4-Epoxycyclohexyl)methyltrimethoxysilan, (3,4-Epoxycyclohexyl)methyltriethoxysilan, (3,4-Epoxycyclohexyl)methyltripropoxysilan, (3,4-Epoxycyclohexyl)methyltributoxysilan, (3,4-Epoxycyclohexyl)ethyltrimethoxysilan, (3,4-Epoxycyclohexyl)ethyltriethoxysilan, (3,4-Epoxycyclohexyl)ethyltripropoxysilan, (3,4-Epoxycyclohexyl)ethyltributoxysilan, (3,4-Epoxycyclohexyl)propyltrimethoxysilan, (3,4-Epoxycyclohexyl)propyltriethoxysilan, (3,4-Epoxycyclohexyl)propyltripropoxysilan, (3,4-Epoxycyclohexyl)propyltributoxysilan, (3,4-Epoxycyclohexyl)butyltrimethoxysilan, (3,4-Epoxycyclohexyl)butyltriethoxysilan, (3,4-Epoxycyclohexyl)butyltripropoxysilan, (3,4-Epoxycyclohexyl)butyltributoxysilan usw.) und Alkylsilane (z. B. Vinyltrichlorsilan, Vinylmethyldichlorsilan usw.); Organotitanate, wie Bis(cyclopentadienyl)titanbis(trifluormethansulfonat), Chlortriisopropoxytitan, Diisopropoxytitanbis(acetylacetonat), 3-Hydroxy-1,2-propandioxytitandichlorid, Tetrakis(diethylamido)titan, Titanbis(ammoniumlactato)dihydroxid, Titanbutoxid, Titanisopropoxid, Isopropyltriisostearoyltitanat, Isopropyltris(dioctylpyrophosphit)titanat, Isopropyltri(N-aminoethylaminoethyl)titanat, Isopropyltridecylbenzolsulfonyltitanat, Tetraoctylbis(ditridecylphosphit)titanat, Tetra(2,2-diaryloxymethyl-1-butyl)bis(ditridecyl)phosphittitanat, Bis(dioctylpyrophosphat)oxyacetattitanat, Bis(dioctylpyrophosphat)ethylentitanat, Isopropyltrioctanoyltitanat, Isopropyldimethacrylisostearoyltitanat, Isopropyltricumylphenyltitanat usw.); Organoaluminium, wie Aluminiumacetylacetonat, Aluminiumbutoxid, Aluminiumisopropoxid, Aluminiummonostearat, Acetalalkoxyaluminiumdiisopropylat; usw. Silan-Kopplungsmittel können für die Verwendung in der vorliegenden Erfindung besonders gut geeignet sein.
  • Die besondere Art und Weise, in der das metallorganische Kopplungsmittel in den festen Elektrolyten eingebaut wird, kann nach Wunsch variieren. In bestimmten Ausführungsformen zum Beispiel kann das metallorganische Kopplungsmittel als von einer leitfähigen Polymerschicht separate Schicht gebildet werden. Zum Beispiel kann das metallorganische Kopplungsmittel das Dielektrikum bedecken, und eine leitfähige Polymerschicht kann das metallorganische Kopplungsmittel bedecken, oder umgekehrt. In einer bestimmten Ausführungsform wird das Kopplungsmittel in einem organischen Lösungsmittel gelöst und als Lösung auf das Teil aufgetragen, wie etwa durch Siebdruck, Tauchbeschichtung, elektrophoretische Beschichtung, Sprühen usw. Dann kann das Teil getrocknet werden, um das Lösungsmittel davon zu entfernen und eine Schicht aus dem metallorganischen Kopplungsmittel zu bilden. Selbstverständlich können das leitfähige Polymer und das metallorganische Kopplungsmittel in noch anderen Ausführungsformen in derselben Schicht enthalten sein. Zum Beispiel kann dies dadurch erreicht werden, dass man das metallorganische Kopplungsmittel zu einer Lösung gibt, die das Monomer und/oder den oxidativen Katalysator enthält, wie es oben beschrieben ist.
  • D. Kathodenbeschichtung
  • Falls gewünscht, kann das Kondensatorelement auch eine Kathodenbeschichtung enthalten, die den festen Elektrolyten bedeckt und wenigstens eine kohlenstoffhaltige Schicht und/oder wenigstens eine Metallschicht, die die kohlenstoffhaltige Schicht bedeckt, umfasst. Die Metallschicht kann als lötbarer Leiter, Kontaktschicht und/oder Ladungssammler für den Kondensator wirken und kann aus einem leitfähigen Metall bestehen, wie Kupfer, Nickel, Silber, Zink, Zinn, Palladium, Blei, Aluminium, Molybdän, Titan, Eisen, Zirconium, Magnesium und Legierungen davon. Silber ist ein besonders gut geeignetes leitfähiges Metall zur Verwendung in der Schicht. Die kohlenstoffhaltige Schicht kann den Kontakt zwischen der Metallschicht und dem festen Elektrolyten begrenzen, was ansonsten den Widerstand des Kondensators erhöhen würde. Die kohlenstoffhaltige Schicht kann aus einer Vielzahl von bekannten kohlenstoffhaltigen Materialien, wie Graphit, Aktivkohle, Ruß usw., bestehen.
  • E. Feuchtigkeitssperrschicht
  • Wie erwähnt, bedeckt die Feuchtigkeitssperrschicht den festen Elektrolyten und gegebenenfalls die Kathodenbeschichtung, wenn eine eingesetzt wird. Die Feuchtigkeitssperrschicht wird im Allgemeinen aus einem hydrophoben Elastomer, wie Silikone, Fluorpolymere usw., gebildet. Silikon-Elastomere sind für die Verwendung in der Feuchtigkeitssperrschicht der vorliegenden Erfindung besonders gut geeignet. Solche Elastomere sind typischerweise von Polyorganosiloxanen abgeleitet, wie solchen, die die folgende allgemeine Formel aufweisen:
    Figure DE102014217948A1_0006
    wobei
    x eine ganze Zahl größer als 1 ist; und
    R1, R2, R3, R4, R5, R6, R7 und R8 unabhängig voneinander einwertige Gruppen sind, die typischerweise 1 bis etwa 20 Kohlenstoffatome enthalten, wie Alkylgruppen (z. B. Methyl, Ethyl, Propyl, Pentyl, Octyl, Undecyl, Octadecyl usw.); Alkoxygruppen (z. B. Methoxy, Ethoxy, Propoxy usw.), Carboxyalkylgruppen (z. B. Acetyl), Cycloalkylgruppen (z. B. Cyclohexyl); Alkenylgruppen (z. B. Vinyl, Allyl, Butenyl, Hexenyl usw.); Arylgruppen (z. B. Phenyl, Tolyl, Xylyl, Benzyl, 2-Phenylethyl usw.) und halogenierte Kohlenwasserstoffgruppen (z. B. 3,3,3-Trifluorpropyl, 3-Chlorpropyl, Dichlorphenyl usw.). Beispiele für solche Polyorganosiloxane sind etwa Polydimethylsiloxan (”PDMS”), Polymethylhydrogensiloxan, Dimethyldiphenylpolysiloxan, Dimethyl/methylphenylpolysiloxan, Polymethylphenylsiloxan, Methylphenyl/dimethylsiloxan, Vinyldimethyl-terminiertes Polydimethylsiloxan, Vinylmethyl/dimethylpolysiloxan, Vinyldimethyl-terminiertes Vinylmethyl/dimethylpolysiloxan, Divinylmethyl-terminiertes Polydimethylsiloxan, Vinylphenylmethyl-terminiertes Polydimethylsiloxan, Dimethylhydro-terminiertes Polydimethylsiloxan, Methylhydro/dimethylpolysiloxan, Methylhydro-terminiertes Methyloctylpolysiloxan, Methylhydro/phenylmethylpolysiloxan, fluormodifiziertes Polysiloxan usw. Zur Bildung eines Elastomers kann das Polyorganosiloxan mit Hilfe einer Vielzahl bekannter Techniken, wie durch Katalysatorhärtung (z. B. Platinkatalysatoren), Raumtemperaturvulkanisation, Feuchtigkeitshärtung usw., vernetzt werden. Es können Vernetzungsmittel eingesetzt werden, wie Alkoxysilane mit der Formel Si-OR, wobei R = H, Alkyl (z. B. Methyl), Alkenyl, Carboxyalkyl (z. B. Acetyl) usw. ist.
  • Außer dass es hydrophob ist, ist es im Allgemeinen wünschenswert, dass das zur Bildung der Feuchtigkeitssperrschicht verwendete Material einen relativ niedrigen Modul und einen bestimmten Grad an Flexibilität aufweist, was dazu beitragen kann, einige der durch die Ausdehnung des Gehäuses verursachten thermischen Spannungen aufzunehmen, und es auch ermöglicht, dasselbe Druckkräften auszusetzen. Die Flexibilität des Materials kann durch einen entsprechenden niedrigen Elastizitätsmodul (”Youngschen Modul”) gekennzeichnet sein, wie etwa 5000 Kilopascal (”kPa”) oder weniger, in einigen Ausführungsformen etwa 1 bis etwa 2000 kPa und in einigen Ausführungsformen etwa 2 bis etwa 500 kPa, gemessen bei einer Temperatur von etwa 25°C. Das Material besitzt auch typischerweise einen bestimmten Grad der Festigkeit, der es ihm ermöglicht, seine Form auch dann beizubehalten, wenn es Druckkräften ausgesetzt ist. Zum Beispiel kann das Material eine Zugfestigkeit von etwa 1 bis etwa 5000 kPa, in einigen Ausführungsformen etwa 10 bis etwa 2000 kPa und in einigen Ausführungsformen etwa 50 bis etwa 1000 kPa besitzen, gemessen bei einer Temperatur von etwa 25°C. Unter den oben genannten Bedingungen kann das hydrophobe Elastomer die Fähigkeit des Kondensators, unter extremen Bedingungen zu funktionieren, noch weiter verbessern.
  • Um dazu beizutragen, die gewünschten Flexibilitäts- und Festigkeitseigenschaften zu erreichen, kann ein nichtleitender Füllstoff in der Feuchtigkeitssperrschicht eingesetzt werden. Wenn sie eingesetzt werden, machen solche Additive typischerweise etwa 0,5 Gew.-% bis etwa 30 Gew.-%, in einigen Ausführungsformen etwa 1 Gew.-% bis etwa 25 Gew.-% und in einigen Ausführungsformen etwa 2 Gew.-% bis etwa 20 Gew.-% der Feuchtigkeitssperrschicht aus. Das Silikon-Elastomer kann etwa 70 Gew.-% bis etwa 99,5 Gew.-%, in einigen Ausführungsformen etwa 75 Gew.-% bis etwa 99 Gew.-% und in einigen Ausführungsformen etwa 80 Gew.-% bis etwa 98 Gew.-% der Feuchtigkeitssperrschicht ausmachen. Ein besonderes Beispiel für einen solchen Füllstoff ist zum Beispiel Siliciumoxid. Während die meisten Formen von Siliciumoxid wegen der Anwesenheit von Silanolgruppen (Si-OH) eine relativ hydrophobe Oberfläche enthalten, kann das Siliciumoxid gegebenenfalls einer Oberflächenbehandlung unterzogen werden, so dass seine Oberfläche (CH3)n-Si-Gruppen enthält, wobei n eine ganze Zahl von 1 bis 3 ist, was die Hydrophobie der Feuchtigkeitssperrschicht weiter verstärkt. Das Oberflächenbehandlungsmittel kann zum Beispiel ein Monomer in Form einer siliciumorganischen Verbindung mit einer hydrolysierbaren Gruppe oder einem partiellen Hydrolysat davon sein. Beispiele für solche Verbindungen sind etwa Organosilazane, Silan-Kopplungsmittel, wie sie oben beschrieben sind, usw.
  • Allgemein gesprochen, kann die Feuchtigkeitssperrschicht auf eine beliebige Oberfläche des Kondensators aufgetragen werden, um die gewünschten Eigenschaften zu erhalten. Zum Beispiel kann sich die Feuchtigkeitssperrschicht auf der oberen, unteren und/oder den Seitenflächen des Kondensators befinden. Die Feuchtigkeitssperrschicht kann sich ebenso auf der vorderen und/oder hinteren Fläche des Kondensators befinden. Die Feuchtigkeitssperrschicht kann die gesamte Fläche oder nur einen Teil der Fläche, auf die sie aufgetragen wird, bedecken. In einer Ausführungsform zum Beispiel bedeckt die Feuchtigkeitssperrschicht etwa 30% oder mehr, in einigen Ausführungsformen etwa 40% oder mehr und in einigen Ausführungsformen etwa 50% oder mehr der Oberfläche des Kondensators, auf die sie aufgetragen wird.
  • 1 zeigt zum Beispiel eine Ausführungsform eines Kondensators 30, der ein Kondensatorelement 33 mit einer im Wesentlichen rechteckigen Form aufweist und eine vordere Fläche 36, eine hintere Fläche 38, eine obere Fläche 37, eine untere Fläche 39, eine erste Seitenfläche 32 und eine zweite Seitenfläche (nicht gezeigt) enthält. In der gezeigten Ausführungsform ist ein Anodenanschluss 16 in einem Anodenkörper 40 eingebettet und erstreckt sich von der vorderen Fläche 36 des Kondensatorelements 33 ausgehend in Längsrichtung (”γ”-Richtung). Das Kondensatorelement 33 enthält ein Dielektrikum (nicht gezeigt), das den Anodenkörper 40 bedeckt, einen festen Elektrolyten 44, der das Dielektrikum bedeckt, und eine Kathodenbeschichtung 46, die den festen Elektrolyten 44 bedeckt. Wie gezeigt, sind der feste Elektrolyt 44 und die Kathodenbeschichtung 46 typischerweise auf jeder Fläche des Kondensators 30 außer der vorderen Fläche 36 vorhanden. Selbstverständlich sollte man sich darüber im Klaren sein, dass solche Schichten auf eine beliebige Fläche des Kondensators aufgetragen werden können und nicht in der gezeigten Weise aufgetragen zu werden brauchen.
  • Das Kondensatorelement 33 enthält auch eine Feuchtigkeitssperrschicht 63, die gemäß der vorliegenden Erfindung gebildet ist und ein hydrophobes Material umfasst. In dieser besonderen Ausführungsform bedeckt die Feuchtigkeitssperrschicht 63 den festen Elektrolyten 44 auf der hinteren Fläche 38, der oberen Fläche 37 sowie den Seitenflächen (nicht gezeigt). Die Feuchtigkeitssperrschicht 63 ist auch auf der vorderen Fläche 36 vorhanden, obwohl sie auf dieser Fläche nicht notwendigerweise den festen Elektrolyten überdecken muss, wie oben erwähnt ist. Selbstverständlich sollte man sich darüber im Klaren sein, dass sich die Feuchtigkeitssperrschicht 63 nicht auf den Flächen des Kondensatorelements 33 zu befinden braucht, wie in 1 gezeigt ist. In einer anderen Ausführungsform zum Beispiel kann sich die Feuchtigkeitssperrschicht auch nur auf den Seitenflächen des Kondensatorelements 33 befinden. Unabhängig davon, wo sie sich befindet, kann die Feuchtigkeitssperrschicht jeden gewünschten Teil der Oberfläche bedecken. Zum Beispiel kann die Feuchtigkeitssperrschicht im Wesentlichen die gesamten Flächen, auf denen sie sich befindet, bedecken, wie etwa 90% oder mehr und in einigen Ausführungsformen etwa 95% oder mehr. Wiederum ist dies jedoch nur optional, und die Schicht braucht keinen solchen wesentlichen Teil der Oberfläche zu bedecken.
  • F. Andere Schichten
  • Falls gewünscht, kann das Kondensatorelement auch andere Schichten enthalten, wie in der Technik bekannt ist. Zum Beispiel kann zwischen dem Dielektrikum und dem festen Elektrolyten eine diskontinuierliche Vorbeschichtung eingesetzt werden. Die Vorbeschichtung kann eine Vielzahl von diskreten Nanovorsprüngen aus einem Manganoxid (z. B. Mangandioxid) enthalten. Zum Beispiel ermöglicht die kleine Größe der diskreten Nanovorsprünge es diesen, leichter in die kleinen Poren des Anodenkörpers einzudringen. Wenn sie auf dem Dielektrikum abgeschieden werden, können die Nanovorsprünge auch in das leitfähige Polymer eingebettet werden, während dieses entsteht, was die Haftung zwischen dem Dielektrikum und dem leitfähigen Polymer verstärken kann. Da die Vorbeschichtung in Form von diskreten Nanovorsprüngen und nicht als kontinuierliche Schicht gebildet wird, kann das leitfähige Polymer auch in der Lage sein, mit einem erheblichen Teil des Dielektrikums in direktem Kontakt zu sein, entweder direkt oder über den Kontakt mit einer anderen Schicht. Der relativ große Grad des Kontakts zwischen dem leitfähigen Polymer und dem Dielektrikum kann den ESR noch weiter reduzieren. Um das gewünschte Ergebnis zu erreichen, ohne die Gesamtleistung eines Kondensators zu beeinträchtigen, ist die mittlere Größe (z. B. Durchmesser) der Nanovorsprünge typischerweise groß genug, so dass eine Verbesserung der Haftung erreicht wird, aber nicht so groß, dass sie nicht mehr in die Poren der Anode eindringen können. In dieser Hinsicht haben die Nanovorsprünge typischerweise eine mittlere Größe von etwa 5 Nanometer bis etwa 500 Nanometer, in einigen Ausführungsformen etwa 6 Nanometer bis etwa 250 Nanometer, in einigen Ausführungsformen etwa 8 Nanometer bis etwa 150 Nanometer und in einigen Ausführungsformen etwa 10 Nanometer bis etwa 110 Nanometer. Der Ausdruck ”mittlerer Durchmesser” kann sich zum Beispiel auf den mittleren Wert der Hauptachse der Nanovorsprünge bei Blick von oben (den maximalen Durchmesser) beziehen. Solche Durchmesser können zum Beispiel mit Hilfe bekannter Techniken, wie Photonenkorrelationsspektroskopie, dynamischer Lichtstreuung, quasielastischer Lichtstreuung usw., erhalten werden. Verschiedene Teilchengrößenanalysegeräte können eingesetzt werden, um den Durchmesser in dieser Weise zu messen. Ein besonderes Beispiel ist ein Cordouan VASCO 3 Particle Size Analyzer. Obwohl es nicht unbedingt erforderlich ist, können die Nanovorsprünge auch eine enge Teilchengrößenverteilung haben, was die Eigenschaften des Kondensators weiter verbessern kann. Zum Beispiel können etwa 50% oder mehr, in einigen Ausführungsformen etwa 70% oder mehr und in einigen Ausführungsformen etwa 90% oder mehr der Nanovorsprünge eine mittlere Größe innerhalb der oben genannten Bereiche haben. Die Zahl der Nanovorsprünge mit einer bestimmten Größe kann mit Hilfe der oben genannten Techniken bestimmt werden, wobei das prozentuale Volumen mit der Zahl der Teilchen, die eine bestimmte Absorptionseinheit (AE) aufweisen, korreliert werden kann.
  • Neben ihrer Größe kann auch die Oberflächenbedeckung der Nanovorsprünge auf dem Dielektrikum gezielt gesteuert werden, so dass die gewünschten elektrischen Eigenschaften leichter erreicht werden können. Das heißt, eine zu geringe Oberflächenbedeckung kann die Fähigkeit der leitfähigen Polymerschicht, besser an dem Dielektrikum zu haften, einschränken, aber eine zu große Bedeckung kann den ESR des Kondensators beeinträchtigen. In dieser Hinsicht beträgt die Oberflächenbedeckung der Nanovorsprünge typischerweise etwa 0,1% bis etwa 40%, in einigen Ausführungsformen etwa 0,5% bis etwa 30% und in einigen Ausführungsformen etwa 1% bis etwa 20%. Der Grad der Oberflächenbedeckung kann auf vielerlei Weise berechnet werden, wie etwa durch Dividieren des Werts der ”tatsächlichen Kapazität” durch den Wert der ”normalen Kapazität” und dann Multiplizieren mit 100. Die ”normale Kapazität” wird bestimmt, nachdem die Nanovorsprünge gebildet wurden und dann die Anode mit der Lösung des leitfähigen Polymers imprägniert wurde, während die ”tatsächliche Kapazität” bestimmt wird, nachdem die Nanovorsprünge gebildet wurden, die Anode mit der Lösung des leitfähigen Polymers imprägniert wurde, die Lösung des leitfähigen Polymers aus dem Innern der Anode gewaschen wurde und dann die Anode zur Entfernung von Feuchtigkeit getrocknet wurde.
  • Eine Vielzahl von verschiedenen Techniken kann eingesetzt werden, um die Vorbeschichtung der vorliegenden Erfindung zu bilden. Wie in der Technik bekannt ist, werden Manganoxide (z. B. Mangandioxid) typischerweise durch pyrolytische Zersetzung eines Vorläufers (z. B. Mangannitrat (Mn(NO3)2)) gebildet, wie in US-Patent Nr. 4,945,452 (Sturmer et al.) beschrieben ist. Zum Beispiel kann ein mit Dielektrikum beschichteter Anodenkörper mit einer Lösung, die den Vorläufer enthält, in Kontakt gebracht (z. B. eingetaucht, untergetaucht, besprüht usw.) und danach zur Umwandlung in das Oxid erhitzt werden. Falls gewünscht, können auch mehrere Auftragungsschritte eingesetzt werden. Die Zeitdauer, während der der Anodenkörper mit einer Manganoxid-Vorläuferlösung in Kontakt ist, kann nach Wunsch variieren. Zum Beispiel kann der Anodenkörper während einer Zeitdauer im Bereich von etwa 10 Sekunden bis etwa 10 Minuten in eine solche Lösung eingetaucht werden.
  • Die Manganoxid-Vorläuferlösung kann gegebenenfalls ein Tensid enthalten. Ohne uns auf eine bestimmte Theorie festlegen zu wollen, glauben wir, dass ein solches Tensid die Oberflächenspannung reduzieren und dadurch das Eindringen der Lösung ins Innere des Anodenkörpers verbessern kann. Besonders gut geeignet sind nichtionische Tenside, wie ein Polyglycolether (z. B. Polyoxyethylenalkylether), Nonylphenoxypoly(ethylenoxy)ethanol (z. B. Igepal CO-630), Isooctylphenoxypolyethoxyethanol (z. B. Triton X-100), Benzyletheroctylphenol-Ethylenoxid-Kondensat (z. B. Triton CF-10), 3,6-Dimethyl-4-octin-3,6-diol (z. B. Surfynol 82) usw. Um die gewünschte Verbesserung bei der Imprägnierung des Manganoxid-Vorläufers zu erreichen, ohne andere Merkmale des Kondensators zu beeinträchtigen, möchte man im Allgemeinen, dass die Konzentration des Tensids gezielt innerhalb eines bestimmten Bereichs gesteuert wird. Zum Beispiel kann die Lösung, in die der Anodenkörper eingetaucht wird, das Tensid in einer Menge von etwa 0,01 Gew.-% bis etwa 30 Gew.-%, in einigen Ausführungsformen etwa 0,05 Gew.-% bis etwa 25 Gew.-% und in einigen Ausführungsformen etwa 0,1 Gew.-% bis etwa 20 Gew.-% enthalten. Der oder die Vorläufer (z. B. Mangannitrat) kann ebenso etwa 1 Gew.-% bis etwa 55 Gew.-%, in einigen Ausführungsformen etwa 2 Gew.-% bis etwa 15 Gew.-% und in einigen Ausführungsformen etwa 5 Gew.-% bis etwa 10 Gew.-% der Lösung ausmachen. Ein Träger, wie Wasser, kann ebenfalls in der Lösung eingesetzt werden. Wässrige Lösungen der vorliegenden Erfindung können zum Beispiel Wasser in einer Menge von etwa 30 Gew.-% bis etwa 95 Gew.-%, in einigen Ausführungsformen etwa 40 Gew.-% bis etwa 99 Gew.-% und in einigen Ausführungsformen etwa 50 Gew.-% bis etwa 95 Gew.-% enthalten. Man sollte sich darüber im Klaren sein, dass die tatsächlichen Mengen der Komponenten in der Lösung in Abhängigkeit von Faktoren wie der Teilchengröße und der Verteilung der Teilchen in der Anode, der Temperatur, bei der die Zersetzung durchgeführt wird, der Identität des Dispergiermittels, der Identität des Trägers usw. variieren können.
  • Falls gewünscht, kann der Anodenkörper in einem Vorbehandlungsschritt, der vor dem Kontakt mit einer Manganoxid-Vorläuferlösung stattfindet, mit einer befeuchteten Atmosphäre in Kontakt gebracht werden. Ohne sich auf eine bestimmte Theorie festlegen zu wollen, glauben die Erfinder, dass die Anwesenheit einer bestimmten Menge Wasserdampf die thermische Zersetzungsreaktion von Mangandioxid verlangsamen kann, wodurch bewirkt wird, dass es in Form von dispergierten Nanovorsprüngen entsteht. Zum Beispiel kann der Anodenkörper während des Vorbehandlungsschritts einer Atmosphäre mit einem Feuchtigkeitsniveau von etwa 1 bis etwa 30 Gramm Wasser pro Kubikmeter Luft (g/m3), in einigen Ausführungsformen etwa 4 bis etwa 25 g/m3 und in einigen Ausführungsformen etwa 5 bis etwa 20 g/m3 ausgesetzt werden. Die relative Feuchtigkeit kann ebenso im Bereich von etwa 30% bis etwa 90%, in einigen Ausführungsformen etwa 40% bis etwa 85% und in einigen Ausführungsformen etwa 50% bis etwa 80% liegen. Die Temperatur der befeuchteten Atmosphäre kann variieren, wie von etwa 10°C bis etwa 50°C, in einigen Ausführungsformen etwa 15°C bis etwa 45°C und in einigen Ausführungsformen etwa 20°C bis etwa 40°C. Zusätzlich zu einem Vorbehandlungsschritt kann der Anodenkörper auch in einem Zwischenbehandlungsschritt, der nach Kontakt mit einer Manganoxid-Vorläuferlösung stattfindet, mit einer befeuchteten Atmosphäre in Kontakt gebracht werden. Die befeuchtete Atmosphäre in dem Zwischenbehandlungsschritt kann dieselben oder andere Bedingungen aufweisen als die des Vorbehandlungsschritts, liegt aber im Allgemeinen innerhalb der oben genannten Bereiche.
  • Unabhängig davon wird das Teil, sobald es während der gewünschten Zeitspanne mit der Vorlauferlösung in Kontakt gebracht wurde, auf eine ausreichende Temperatur erhitzt, um den Vorläufer (z. B. Mangannitrat) pyrolytisch in ein Oxid umzuwandeln. Das Erhitzen kann zum Beispiel in einem Ofen bei einer Temperatur von etwa 150°C bis etwa 300°C, in einigen Ausführungsformen etwa 180°C bis etwa 290°C und in einigen Ausführungsformen etwa 190°C bis etwa 260°C erfolgen. Das Erhitzen kann in einer feuchten oder trockenen Atmosphäre durchgeführt werden. In bestimmten Ausführungsformen kann das Erhitzen zum Beispiel in einer befeuchteten Atmosphäre durchgeführt werden, die dieselbe oder eine andere sein kann als die Atmosphären, die in den oben genannten Vorbehandlungs- und Zwischenbehandlungsschritten verwendet werden, aber im Allgemeinen unter den oben genannten Bedingungen. Die Zeit für die Umwandlung hängt von der Ofentemperatur, der Wärmeübertragungsrate und der Atmosphäre ab, beträgt jedoch im Allgemeinen etwa 3 bis etwa 5 Minuten. Nach der Pyrolyse kann der Leckstrom aufgrund einer Beschädigung des dielektrischen Films während der Abscheidung des Mangandioxids zuweilen hoch sein. Um diesen Leckstrom zu reduzieren, kann der Kondensator in einem Anodisierungsbad reformiert werden, wie in der Technik bekannt ist. Zum Beispiel kann der Kondensator in einen Elektrolyten, wie er oben beschrieben ist, eingetaucht und dann einem Gleichstrom ausgesetzt werden.
  • II. Endteile
  • Der Kondensator kann auch mit Endteilen versehen sein, insbesondere wenn er in Oberflächenmontageanwendungen eingesetzt wird. Zum Beispiel kann der Kondensator ein Anoden-Endteil, an das der Anodenanschlussdraht des Kondensatorelements elektrisch angeschlossen wird, und einen Kathoden-Endteil, an das die Kathode des Kondensatorelements elektrisch angeschlossen wird, enthalten. Jedes beliebige leitfähige Material kann eingesetzt werden, um die Endteile zu bilden, wie ein leitfähiges Metall (z. B. Kupfer, Nickel, Silber, Zink, Zinn, Palladium, Blei, Kupfer, Aluminium, Molybdän, Titan, Eisen, Zirconium, Magnesium und Legierungen davon). Zu den besonders gut geeigneten leitfähigen Metallen gehören zum Beispiel Kupfer, Kupferlegierungen (z. B. Kupfer-Zirconium, Kupfer-Magnesium, Kupfer-Zink oder Kupfer-Eisen), Nickel und Nickellegierungen (z. B. Nickel-Eisen). Die Dicke der Endteile ist im Allgemeinen so gewählt, dass die Dicke des Kondensators minimiert wird. Zum Beispiel kann die Dicke der Endteile im Bereich von etwa 0,05 bis etwa 1 Millimeter, in einigen Ausführungsformen etwa 0,05 bis etwa 0,5 Millimeter und etwa 0,07 bis etwa 0,2 Millimeter liegen. Ein beispielhaftes leitfähiges Material ist eine Metallplatte aus einer Kupfer-Eisen-Legierung, die von Wieland (Deutschland) erhältlich ist. Falls gewünscht, kann die Oberfläche der Endteile, wie in der Technik bekannt ist, mit Nickel, Silber, Gold, Zinn usw. galvanisiert werden, um zu gewährleisten, dass das endgültige Teil auf der Leiterplatte montierbar ist. In einer besonderen Ausführungsform werden beide Flächen der Endteile mit Nickel- bzw. Silber-Schutzschichten versehen, während die Montagefläche auch mit einer Zinnlötschicht versehen wird.
  • Wenn wir uns zum Beispiel wieder auf 1 beziehen, so ist ein Elektrolytkondensator 30 gezeigt, der ein Anoden-Endteil 62 und ein Kathoden-Endteil 72 in elektrischer Verbindung mit einem Kondensatorelement 33 umfasst. Das Kathoden-Endteil 72 kann zwar in elektrischem Kontakt mit einer beliebigen Fläche des Kondensatorelements 33 sein, befindet sich aber in der gezeigten Ausführungsform über einen leitfähigen Kleber 90 in elektrischem Kontakt mit der unteren Fläche 39. Insbesondere enthält das Kathoden-Endteil 72 eine erste Komponente 73, die sich in elektrischem Kontakt und im Wesentlichen parallel zur unteren Fläche 39 des Kondensatorelements 33 befindet. Das Anoden-Endteil 62 enthält ebenso eine erste Komponente 63, die im Wesentlichen senkrecht zu einer zweiten Komponente 64 positioniert ist. Die erste Komponente 63 befindet sich in elektrischem Kontakt und im Wesentlichen parallel zur unteren Fläche 39 des Kondensatorelements 33. Die zweite Komponente 64 enthält einen Bereich 51, der einen Anodenanschluss 16 trägt. Obwohl es in 1 nicht gezeigt ist, kann der Bereich 51 eine ”U-Form” besitzen, um den Oberflächenkontakt und die mechanische Stabilität des Anschlusses 16 weiter zu erhöhen.
  • Die Endteile können unter Verwendung einer beliebigen, in der Technik bekannten Methode mit dem Kondensatorelement verbunden werden. In einer Ausführungsform zum Beispiel kann ein Leiterrahmen bereitgestellt werden, der das Kathoden-Endteil 72 und das Anoden-Endteil 62 definiert. Um das Elektrolytkondensatorelement 33 an dem Leiterrahmen zu befestigen, kann der leitfähige Kleber 90 zunächst auf eine Fläche des Kathoden-Endteils 72 aufgetragen werden. Der leitfähige Kleber 90 kann zum Beispiel leitfähige Metallteilchen umfassen, die in einer Harzzusammensetzung enthalten sind. Bei den Metallteilchen kann es sich um Silber, Kupfer, Gold, Platin, Nickel, Zink, Bismut usw. handeln. Die Harzzusammensetzung kann ein duroplastisches Harz (z. B. Epoxidharz), Härtungsmittel (z. B. Säureanhydrid) und Kopplungsmittel (z. B. Silan-Kopplungsmittel) umfassen. Geeignete leitfähige Kleber sind in der US-Patentanmeldung Veröffentlichungsnummer 2006/0038304 (Osako et al.) beschrieben. Eine Vielzahl von Techniken kann verwendet werden, um den leitfähigen Kleber auf das Kathoden-Endteil 72 aufzutragen. Aufgrund ihres praktischen und kostensparenden Nutzens können zum Beispiel Drucktechniken eingesetzt werden.
  • Im Allgemeinen kann eine Vielzahl von Methoden eingesetzt werden, um die Endteile an dem Kondensator zu befestigen. In einer Ausführungsform zum Beispiel ist die zweite Komponente 64 des Anoden-Endteils 62 zunächst in die in 1 gezeigte Position aufwärts gebogen. Danach wird das Kondensatorelement 33 auf dem Kathoden-Endteil 72 positioniert, so dass seine untere Fläche 39 mit dem Kleber 90 in Kontakt kommt und der Anodenanschluss 16 von dem Bereich 51 aufgenommen wird. Falls gewünscht, kann sich ein Isolationsmaterial (nicht gezeigt), wie ein Kunststoffpolster oder -band, zwischen der unteren Fläche 39 des Kondensatorelements 33 und der ersten Komponente 63 des Anoden-Endteils 62 befinden, um das Anoden- und das Kathoden-Endteil elektrisch voneinander zu isolieren.
  • Dann wird der Anodenanschluss 16 mit Hilfe einer in der Technik bekannten Methode, wie mechanisches Schweißen, Laserschweißen, leitfähige Kleber usw., elektrisch mit dem Bereich 51 verbunden. Zum Beispiel kann der Anodenanschluss 16 mit Hilfe eines Lasers an den Anoden-Endteil 62 geschweißt werden. Laser enthalten im Allgemeinen Resonatoren, die ein Lasermedium enthalten, das Photonen durch stimulierte Emission freisetzen kann, und eine Energiequelle, die die Elemente des Lasermediums anregt. Ein Typ von geeignetem Laser ist einer, bei dem das Lasermedium aus einem Aluminium-Yttrium-Granat (YAG) besteht, der mit Neodym (Nd) dotiert ist. Die angeregten Teilchen sind Neodymionen Nd3+. Die Energiequelle kann kontinuierliche Energie zu dem Lasermedium liefern, um einen kontinuierlichen Laserstrahl zu emittieren, oder Energieentladungen, um einen gepulsten Laserstrahl zu emittieren. Nach dem elektrischen Verbinden des Anodenanschlusses 16 mit dem Anoden-Endteil 62 kann der leitfähige Kleber dann gehärtet werden. Zum Beispiel kann eine Heizpresse verwendet werden, um Wärme und Druck anzuwenden und so zu gewährleisten, dass das Elektrolytkondensatorelement 33 durch den Kleber ausreichend stark an den Kathoden-Endteil 72 geklebt wird.
  • III. Gehäuse
  • Das Kondensatorelement ist im Allgemeinen so in einem Gehäuse eingebettet, dass wenigstens ein Teil des Anoden- und des Kathoden-Endteils zur Montage auf einer Leiterplatte exponiert sind. Wie in 1 gezeigt ist, ist das Kondensatorelement 33 zum Beispiel so in einem Gehäuse 92 eingebettet, dass ein Teil des Anoden-Endteils 62 und ein Teil des Kathoden-Endteils 72 exponiert sind. Das Gehäuse wird typischerweise aus einem duroplastischen Harz gebildet. Beispiele für solche Harze sind zum Beispiel Epoxidharze, Polyimidharze, Melaminharze, Harnstoff-Formaldehyd-Harze, Polyurethanharze, Phenolharze, Polyesterharze usw. Epoxidharze sind auch besonders gut geeignet. Es können auch noch andere Additive eingesetzt werden, wie Photoinitiatoren, Viskositätsmodifikatoren, Suspendier-Hilfsmittel, Pigmente, spannungsreduzierende Mittel, nichtleitende Füllstoffe, Stabilisatoren usw. Zum Beispiel können die nichtleitenden Füllstoffe anorganische Oxidteilchen, wie Siliciumoxid, Aluminiumoxid, Zirconiumoxid, Magnesiumoxid, Eisenoxid, Kupferoxid, Zeolithe, Silicate, Tone (z. B. Smektit-Ton) usw., sowie Verbundmaterialien (z. B. mit Aluminiumoxid beschichtete Siliciumoxidteilchen) und Gemische davon umfassen.
  • Als Ergebnis der vorliegenden Erfindung kann der Kondensator ausgezeichnete elektrische Eigenschaften aufweisen, selbst wenn er hohen Feuchtigkeitswerten (85% relative Feuchtigkeit oder mehr) ausgesetzt ist. Zum Beispiel kann die Kondensatorbaugruppe einen äquivalenten Serienwiderstand (”ESR”) von weniger als etwa 50 Ohm, in einigen Ausführungsformen weniger als etwa 25 Ohm, in einigen Ausführungsformen etwa 0,01 bis etwa 10 Ohm und in einigen Ausführungsformen etwa 0,05 bis etwa 5 Ohm aufweisen, gemessen bei einer Arbeitsfrequenz von 100 kHz. Außerdem kann der Leckstrom, der sich allgemein auf die Stromstärke bezieht, die von einem Leiter zu einem benachbarten Leiter durch einen Isolator fließt, auf relativ geringen Niveaus gehalten werden. Zum Beispiel beträgt der Zahlenwert des normierten Leckstroms eines Kondensators der vorliegenden Erfindung in einigen Ausführungsformen weniger als etwa 1 μA/μF·V, in einigen Ausführungsformen weniger als etwa 0,5 μA/μF·V und in einigen Ausführungsformen weniger als etwa 0,1 μA/μF·V, wobei ”μA” Mikroampère bedeutet und μF·V das Produkt aus Kapazität und Nennspannung ist. Diese ESR- und normalisierten Leckstrombeträge können auch nach Alterung während einer erheblichen Zeitspanne bei hohen Temperaturen aufrechterhalten werden. Zum Beispiel können die Werte während etwa 100 Stunden oder mehr, in einigen Ausführungsformen etwa 300 Stunden bis etwa 3000 Stunden und in einigen Ausführungsformen etwa 400 Stunden bis etwa 2500 Stunden (z. B. 500 Stunden, 600 Stunden, 700 Stunden, 800 Stunden, 900 Stunden, 1000 Stunden, 1100 Stunden, 1200 Stunden oder 2000 Stunden) bei Temperaturen im Bereich von 50°C bis 250°C und in einigen Ausführungsformen 70°C bis 200°C und in einigen Ausführungsformen 80°C bis etwa 150°C (z. B. 85°C) und bei einem Wert der relativen Feuchtigkeit von 85% oder mehr aufrechterhalten werden.
  • Die vorliegende Erfindung wird anhand der folgenden Beispiele besser verständlich.
  • Testverfahren
  • Äquivalenter Serienwiderstand (ESR)
  • Der äquivalente Serienwiderstand kann mit einem Präzisions-LCZ-Messgerät Keithley 3330 mit Kelvin-Anschlussleitungen bei 2,2 Volt Vorspannung und einem sinusförmigen Signal mit 0,5 Volt Abstand zwischen den Peaks gemessen werden. Die Betriebsfrequenz kann 100 kHz betragen, und die Temperatur kann 23°C ± 2°C betragen.
  • Kapazität
  • Die Kapazität kann mit einem Präzisions-LCR-Messgerät von Hewlett-Packard bei 1,5 Volt Vorspannung und einer Betriebsfrequenz von 120 Hz gemessen werden. Die Kapazität kann nach dem Reflow (0 Stunden), nach 48 Stunden und nach 500 Stunden in einer feuchten Umgebung bestimmt werden. Nach dem Reflow kann die Kapazität bei 20°C und einer relativen Feuchtigkeit von 59% gemessen werden. Nach 48 Stunden kann die Kapazität bei 20°C und einer relativen Feuchtigkeit von 56% gemessen werden. Schließlich kann die Kapazität nach 500 Stunden bei 20°C und einer relativen Feuchtigkeit von 52% gemessen werden.
  • Leckstrom
  • Der Leckstrom (”DCL”) kann mit einer Leckstrom-Testeinrichtung gemessen werden, die den Leckstrom bei einer Temperatur von etwa 25°C und einer Nennspannung (z. B. 4 V) nach 60 Sekunden misst.
  • Beispiel 1
  • Ein Kondensator mit 10 V und 2,2 μF (M) wurde wie folgt gebildet. Zunächst wurde ein Tantalpulver (50000 CV/g) auf eine Größe von 0,76 × 1,22 × 0,57 mm und eine Dichte von 6 g/cm3 gepresst, und darin wurde ein Anoden-Anschlussdraht eingebettet. Das Pulver wurde bei 1475°C gesintert und dann in 0,1-Gew.-%iger Salpetersäure bei einer Formierungsspannung von 39,4 V anodisiert. Dann wurde das Teil, sobald es gebildet worden war, 30 Minuten lang in einer Atmosphäre mit einer Feuchtigkeit von 8 g/m3 bei einer Temperatur von 30°C belassen. Dann wurde das Teil 3 Minuten lang in eine Lösung eingetaucht, die Mangannitrat (relative Dichte 1,09) und 1 Gew.-% Polyalkylether enthielt. Das Teil wurde 2 Stunden lang in einer Atmosphäre mit einer Feuchtigkeit von 8 g/m3 bei einer Temperatur von 30°C belassen und danach einer Wärmebehandlung bei 250°C in einer Atmosphäre mit einer relativen Feuchtigkeit von 80% unterzogen. Sobald die Vorbeschichtung gebildet wurde, wurde das Teil reformiert und dann in eine Lösung eingetaucht, die 3,4-Ethylendioxythiophen, p-Toluolsulfonat-Eisen, Butanol und Wasser enthielt. Eine Polymerisation wurde bei einer relativen Feuchtigkeit von 80% durchgeführt, und danach wurde das Teil gewaschen und reformiert. Dieser Vorgang wurde noch zweimal wiederholt. Sobald der feste Elektrolyt entstanden war, wurde das Teil dann in eine Lösung, die 2,5 Gew.-% (3-Mercaptopropyl)trimethoxysilan enthielt, eingetaucht und 10 Minuten lang einer Wärmebehandlung bei 130°C unterzogen. Kohlenstoff- und Silberschichten wurden aufgetragen, wie in der Technik bekannt ist. Danach wurden alle Flächen des Teils außer der unteren Fläche mit einem Polyorganosiloxan-Harz (Dow CorningTM JCR 6115) behandelt und 10 Minuten lang einer Wärmebehandlung bei 185°C unterzogen. Danach wurde der Kondensator auf einen Leiterrahmen geschweißt und eingebettet.
  • Beispiel 2
  • Kondensatoren wurden in der in Beispiel 1 beschriebenen Weise gebildet, außer dass das Polyorganosiloxan-Harz nicht eingesetzt wurde.
  • Beispiel 3
  • Kondensatoren wurden in der in Beispiel 1 beschriebenen Weise gebildet, außer dass das (3-Mercaptopropyl)trimethoxysilan nicht eingesetzt wurde. Dann wurde die Kapazität der Teile der Beispiele 1–3 getestet. Die Ergebnisse sind in der folgenden Tabelle gezeigt.
    mittlere Kapazität (anfangs) mittlere Kapazität (nach 48 h) mittlere Kapazität (nach 500 h)
    Beispiel 1 2,30 μF 2,41 μF 2,40 μF
    Beispiel 2 2,29 μF 2,40 μF 2,34 μF
    Beispiel 3 2,30 μF 2,43 μF 2,23 μF
  • Diese und andere Modifikationen und Variationen der vorliegenden Erfindung können vom Fachmann praktisch umgesetzt werden, ohne vom Wesen und Umfang der vorliegenden Erfindung abzuweichen. Außerdem sollte man sich darüber im Klaren sein, dass Aspekte der verschiedenen Ausführungsformen ganz oder teilweise gegeneinander ausgetauscht werden können. Weiterhin wird der Fachmann anerkennen, dass die obige Beschreibung nur beispielhaften Charakter hat und die Erfindung, die in den beigefügten Ansprüchen näher beschrieben ist, nicht einschränken soll.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 6322912 [0011]
    • US 6391275 [0011]
    • US 6416730 [0011]
    • US 6527937 [0011]
    • US 6576099 [0011]
    • US 6592740 [0011]
    • US 6639787 [0011]
    • US 7220397 [0011]
    • US 6576038 [0012]
    • US 6238456 [0012]
    • US 5954856 [0012]
    • US 5082491 [0012]
    • US 4555268 [0012]
    • US 4483819 [0012]
    • US 4441927 [0012]
    • US 4017302 [0012]
    • US 6197252 [0015]
    • US 6191936 [0016]
    • US 5949639 [0016]
    • US 3345545 [0016]
    • US 6987663 [0023]
    • US 5111327 [0023]
    • US 6635729 [0023]
    • US 7515396 [0026]
    • US 5457862 [0026]
    • US 5473503 [0026]
    • US 5729428 [0026]
    • US 5812367 [0026]
    • US 4945452 [0038]
  • Zitierte Nicht-Patentliteratur
    • ASTM D7490-08 [0008]
    • ASTM F-1249 [0008]

Claims (19)

  1. Festelektrolytkondensator, umfassend: ein Kondensatorelement, das einen gesinterten porösen Anodenkörper, ein Dielektrikum, das den Anodenkörper bedeckt, einen festen Elektrolyten, der das Dielektrikum bedeckt, und eine Feuchtigkeitssperrschicht, die den festen Elektrolyten bedeckt, umfasst, wobei der feste Elektrolyt ein leitfähiges Polymer und ein metallorganisches Kopplungsmittel, das eine organische Kette mit wenigstens einer reaktiven Gruppe, die an ein Metallatom gebunden ist, enthält, umfasst, wobei die Feuchtigkeitssperrschicht weiterhin ein hydrophobes Elastomer umfasst; ein Anoden-Endteil, das in elektrischer Verbindung mit dem Anodenkörper steht; ein Kathoden-Endteil, das in elektrischer Verbindung mit dem festen Elektrolyten steht; und ein harzartiges Gehäuse, das das Kondensatorelement einbettet und wenigstens einen Teil des Anoden-Endteils und des Kathoden-Endteils exponiert lässt.
  2. Festelektrolytkondensator gemäß Anspruch 1, wobei das metallorganische Kopplungsmittel ein Organosilan ist.
  3. Festelektrolytkondensator gemäß Anspruch 1, wobei der feste Elektrolyt eine Schicht enthält, die das metallorganische Kopplungsmittel und das leitfähige Polymer umfasst.
  4. Festelektrolytkondensator gemäß Anspruch 1, wobei der feste Elektrolyt eine Schicht, die das metallorganische Kopplungsmittel umfasst, und eine andere Schicht, die das leitfähige Polymer umfasst, enthält.
  5. Festelektrolytkondensator gemäß Anspruch 1, wobei das hydrophobe Elastomer einen Kontaktwinkel gegenüber Wasser von etwa 90° oder mehr aufweist, bestimmt gemäß ASTM D7490-08.
  6. Festelektrolytkondensator gemäß Anspruch 1, wobei das hydrophobe Elastomer eine Wasserdampfdurchlässigkeit von etwa 150 Gramm pro Quadratmeter pro 24 Stunden oder weniger aufweist, bestimmt gemäß ASTM F-1249.
  7. Festelektrolytkondensator gemäß Anspruch 1, wobei das hydrophobe Elastomer ein Silikon-Elastomer ist.
  8. Festelektrolytkondensator gemäß Anspruch 7, wobei das Silikon-Elastomer aus einem Polydimethylsiloxan, Polymethylhydrogensiloxan, Dimethyldiphenylpolysiloxan, Dimethyl/methylphenylpolysiloxan, Polymethylphenylsiloxan, Methylphenyl/dimethylsiloxan, Vinyldimethyl-terminierten Polydimethylsiloxan, Vinylmethyl/dimethylpolysiloxan, Vinyldimethyl-terminierten Vinylmethyl/dimethylpolysiloxan, Divinylmethyl-terminierten Polydimethylsiloxan, Vinylphenylmethyl-terminierten Polydimethylsiloxan, Dimethylhydro-terminierten Polydimethylsiloxan, Methylhydro/dimethylpolysiloxan, Methylhydro-terminierten Methyloctylpolyslloxan, Methylhydro/phenylmethylpolysiloxan, fluormodifizierten Polysiloxan oder einer Kombination davon gebildet ist.
  9. Festelektrolytkondensator gemäß Anspruch 1, wobei das hydrophobe Elastomer einen Youngschen Modul von etwa 5000 Kilopascal oder weniger aufweist, bestimmt bei einer Temperatur von etwa 25°C.
  10. Festelektrolytkondensator gemäß Anspruch 1, wobei das hydrophobe Elastomer eine Zugfestigkeit von etwa 1 bis etwa 5000 Kilopascal aufweist, bestimmt bei einer Temperatur von etwa 25°C.
  11. Festelektrolytkondensator gemäß Anspruch 1, wobei die Feuchtigkeitssperrschicht einen nichtleitfähigen Füllstoff enthält.
  12. Festelektrolytkondensator gemäß Anspruch 11, wobei es sich bei dem nichtleitfähigen Füllstoff um Siliciumoxid handelt.
  13. Festelektrolytkondensator gemäß Anspruch 12, wobei das Siliciumoxid (CH3)n-Si-Gruppen enthält, wobei n eine ganze Zahl von 1 bis 3 ist.
  14. Festelektrolytkondensator gemäß Anspruch 1, wobei der Anodenkörper Tantal umfasst und das Dielektrikum Tantalpentoxid umfasst.
  15. Festelektrolytkondensator gemäß Anspruch 1, wobei das leitfähige Polymer chemisch polymerisiert ist.
  16. Festelektrolytkondensator gemäß Anspruch 1, wobei das leitfähige Polymer ein substituiertes Polythiophen ist.
  17. Festelektrolytkondensator gemäß Anspruch 16, wobei es sich bei dem substituierten Polythiophen um Poly(3,4-ethylendioxythiophen) handelt.
  18. Festelektrolytkondensator gemäß Anspruch 1, wobei eine Kathodenbeschichtung den festen Elektrolyten bedeckt, wobei die Kathodenbeschichtung eine kohlenstoffhaltige Schicht und eine Silberschicht enthält.
  19. Festelektrolytkondensator gemäß Anspruch 1, wobei sich ein Anodenanschluss vom Anodenkörper ausgehend erstreckt und mit dem Anoden-Endteil verbunden ist.
DE102014217948.3A 2013-10-02 2014-09-08 Festelektrolytkondensator zur Verwendung unter Bedingungen hoher Temperatur und Feuchtigkeit Pending DE102014217948A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/044,290 2013-10-02
US14/044,290 US9236193B2 (en) 2013-10-02 2013-10-02 Solid electrolytic capacitor for use under high temperature and humidity conditions

Publications (1)

Publication Number Publication Date
DE102014217948A1 true DE102014217948A1 (de) 2015-04-02

Family

ID=51752465

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014217948.3A Pending DE102014217948A1 (de) 2013-10-02 2014-09-08 Festelektrolytkondensator zur Verwendung unter Bedingungen hoher Temperatur und Feuchtigkeit

Country Status (8)

Country Link
US (1) US9236193B2 (de)
JP (1) JP6426962B2 (de)
KR (1) KR102244980B1 (de)
CN (2) CN104517736A (de)
DE (1) DE102014217948A1 (de)
FR (1) FR3011378A1 (de)
GB (1) GB2521499A (de)
HK (1) HK1203690A1 (de)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663542B (zh) * 2014-05-21 2019-01-08 凯米特电子公司 具有充电时间降低添加剂和功函数改良剂的电容器
US10861652B2 (en) * 2015-05-06 2020-12-08 Kemet Electronics Corporation Capacitor with volumetrically efficient hermetic packaging
US9672989B2 (en) * 2015-05-29 2017-06-06 Avx Corporation Solid electrolytic capacitor assembly for use in a humid atmosphere
US9934912B2 (en) * 2015-08-20 2018-04-03 City University Of Hong Kong Repairable electrical component
CN113990661A (zh) * 2015-12-18 2022-01-28 凯米特电子公司 利用膜进行封装物厚度控制的电容器及制造方法
US10186382B2 (en) * 2016-01-18 2019-01-22 Avx Corporation Solid electrolytic capacitor with improved leakage current
JP6928790B2 (ja) * 2016-03-09 2021-09-01 パナソニックIpマネジメント株式会社 固体電解コンデンサ
US10381165B2 (en) 2016-05-20 2019-08-13 Avx Corporation Solid electrolytic capacitor for use at high temperatures
CN105914039A (zh) * 2016-06-24 2016-08-31 苏州华冲精密机械有限公司 耐高温高湿的干式电容器
JP2018032768A (ja) * 2016-08-25 2018-03-01 株式会社村田製作所 固体電解コンデンサ素子、固体電解コンデンサ、固体電解コンデンサ素子の製造方法、及び、固体電解コンデンサの製造方法
JP6729179B2 (ja) 2016-08-25 2020-07-22 株式会社村田製作所 固体電解コンデンサ素子、固体電解コンデンサ、固体電解コンデンサ素子の製造方法、及び、固体電解コンデンサの製造方法
US10763046B2 (en) 2016-09-15 2020-09-01 Avx Corporation Solid electrolytic capacitor with improved leakage current
WO2018075327A1 (en) 2016-10-18 2018-04-26 Avx Corporation Solid electrolytic capacitor assembly
US10741333B2 (en) 2016-10-18 2020-08-11 Avx Corporation Solid electrolytic capacitor with improved leakage current
KR102449758B1 (ko) * 2016-10-18 2022-09-30 교세라 에이브이엑스 컴포넌츠 코포레이션 고온 및 고전압에서의 성능이 개선된 고체 전해질 커패시터
US20180108943A1 (en) * 2016-10-19 2018-04-19 Electronics And Telecommunications Research Institute Solid electrolyte composition, method for preparing same, and method for manufacturing all-solid-state battery using same
US10643797B2 (en) 2016-11-15 2020-05-05 Avx Corporation Casing material for a solid electrolytic capacitor
US10504657B2 (en) 2016-11-15 2019-12-10 Avx Corporation Lead wire configuration for a solid electrolytic capacitor
US10475591B2 (en) 2016-11-15 2019-11-12 Avx Corporation Solid electrolytic capacitor for use in a humid atmosphere
CN110140188B (zh) * 2016-12-28 2021-09-10 松下知识产权经营株式会社 电解电容器及其制造方法
CN108538572B (zh) * 2017-03-01 2020-09-04 钰邦电子(无锡)有限公司 电容器封装结构
WO2018165065A1 (en) 2017-03-06 2018-09-13 Avx Corporation Solid electrolytic capacitor assembly
JP7020798B2 (ja) * 2017-05-01 2022-02-16 株式会社トーキン 固体電解コンデンサ
CN110720131B (zh) 2017-07-03 2022-05-31 京瓷Avx元器件公司 固体电解质电容器组件
WO2019010122A1 (en) * 2017-07-03 2019-01-10 Avx Corporation SOLID ELECTROLYTIC CAPACITOR CONTAINING A NANOREVÊTEMENT
US11004615B2 (en) 2017-12-05 2021-05-11 Avx Corporation Solid electrolytic capacitor for use at high temperatures
US11049664B2 (en) * 2018-04-13 2021-06-29 Avx Corporation Solid electrolytic capacitor containing a vapor-deposited barrier film
WO2019230591A1 (ja) * 2018-05-29 2019-12-05 パナソニックIpマネジメント株式会社 固体電解コンデンサ
EP3811390A4 (de) 2018-06-21 2022-05-04 KYOCERA AVX Components Corporation Festelektrolytkondensator mit stabilen elektrischen eigenschaften bei hohen temperaturen
US20190392998A1 (en) * 2018-06-21 2019-12-26 Jan Petrzilek Solid Electrolytic Capacitor
US20190392995A1 (en) * 2018-06-21 2019-12-26 Avx Corporation Delamination-Resistant Solid Electrolytic Capacitor
CN112889123A (zh) 2018-08-10 2021-06-01 阿维科斯公司 包含本征导电聚合物的固体电解电容器
CN112805798A (zh) 2018-08-10 2021-05-14 阿维科斯公司 包含聚苯胺的固体电解电容器
WO2020033820A1 (en) * 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
JP7178609B2 (ja) * 2018-11-30 2022-11-28 パナソニックIpマネジメント株式会社 電解コンデンサ
CN113196429A (zh) 2018-12-11 2021-07-30 阿维科斯公司 含有本征导电聚合物的固体电解电容器
JP7310877B2 (ja) 2019-03-05 2023-07-19 株式会社村田製作所 電解コンデンサの製造方法
WO2020218319A1 (ja) 2019-04-25 2020-10-29 ローム株式会社 固体電解コンデンサ
CN111909362A (zh) * 2019-05-09 2020-11-10 深圳新宙邦科技股份有限公司 一种导电聚合物、电容器及其制备方法
US11222755B2 (en) * 2019-05-17 2022-01-11 KYOCERA AVX Components Corporation Delamination-resistant solid electrolytic capacitor
JP2022533161A (ja) 2019-05-17 2022-07-21 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 固体電解キャパシタ
DE112020004416T5 (de) 2019-09-18 2022-06-15 KYOCERA AVX Components Corporation Festelektrolytkondensator zur Verwendung bei hohen Spannungen
JP7417714B2 (ja) * 2019-09-18 2024-01-18 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション バリヤ被覆を含む固体電解キャパシタ
EP4070348A1 (de) * 2019-12-04 2022-10-12 W.L. Gore & Associates, Inc. Mit mindestens einem polymer mit hoher thermischer stabilität verkapselte kondensatoren
DE112020006024T5 (de) 2019-12-10 2022-10-06 KYOCERA AVX Components Corporation Tantalkondensator mit erhöhter Stabilität
JP7486582B2 (ja) 2019-12-10 2024-05-17 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション プレコート及び固有導電性ポリマーを含む固体電解キャパシタ
US11631548B2 (en) * 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
CN111799093B (zh) * 2020-07-30 2022-04-12 万裕三信电子(东莞)有限公司 叠层固态铝电解电容器
CN115885358A (zh) * 2020-08-28 2023-03-31 松下知识产权经营株式会社 固体电解电容器元件及固体电解电容器
US20220093344A1 (en) * 2020-09-23 2022-03-24 Avx Corporation Solid Electrolytic Capacitor Containing A Deoxidized Anode
US11837415B2 (en) 2021-01-15 2023-12-05 KYOCERA AVX Components Corpration Solid electrolytic capacitor
CN115533235B (zh) * 2022-11-24 2023-04-14 成都宏明电子股份有限公司 大端子薄膜电容器的焊接方法、工装、焊片及生产方法

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345545A (en) 1964-11-27 1967-10-03 Johnson Matthey & Mallory Ltd Solid electrolytic capacitor having minimum anode impedance
US4017302A (en) 1976-02-04 1977-04-12 Fansteel Inc. Tantalum metal powder
US4441927A (en) 1982-11-16 1984-04-10 Cabot Corporation Tantalum powder composition
US4483819A (en) 1981-07-31 1984-11-20 Hermann C. Starck Berlin Production of highly capacitive agglomerated valve metal powder and valve metal electrodes for the production of electrolytic capacitors
US4555268A (en) 1984-12-18 1985-11-26 Cabot Corporation Method for improving handling properties of a flaked tantalum powder composition
US4945452A (en) 1989-11-30 1990-07-31 Avx Corporation Tantalum capacitor and method of making same
US5082491A (en) 1989-09-28 1992-01-21 V Tech Corporation Tantalum powder with improved capacitor anode processing characteristics
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US5949639A (en) 1996-09-27 1999-09-07 Rohm Co., Ltd. Capacitor element for solid electrolytic capacitor, device and process for making the same
US5954856A (en) 1996-04-25 1999-09-21 Cabot Corporation Method of making tantalum metal powder with controlled size distribution and products made therefrom
US6191936B1 (en) 1999-04-12 2001-02-20 Vishay Sprague, Inc. Capacitor having textured pellet and method for making same
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6238456B1 (en) 1997-02-19 2001-05-29 H. C. Starck Gmbh & Co. Kg Tantalum powder, method for producing same powder and sintered anodes obtained from it
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6576038B1 (en) 1998-05-22 2003-06-10 Cabot Corporation Method to agglomerate metal particles and metal particles having improved properties
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6635729B1 (en) 2000-02-03 2003-10-21 Bayer Aktinegesellschaft Process for the preparation of water-soluble π-conjugated polymers
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US6987663B2 (en) 2003-10-17 2006-01-17 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814730A1 (de) 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
US5424907A (en) 1992-02-21 1995-06-13 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors and method for manufacturing the same
JPH07192929A (ja) * 1993-12-27 1995-07-28 Nissin Electric Co Ltd 電気機器用モールド材、モールド方法及びそれを利用したモールド電気機器
JP3070408B2 (ja) 1993-12-28 2000-07-31 日本電気株式会社 固体電解コンデンサおよびその製造方法
JP2770746B2 (ja) 1994-09-02 1998-07-02 日本電気株式会社 固体電解コンデンサ及びその製造方法
JPH09157526A (ja) * 1995-12-11 1997-06-17 Shin Etsu Chem Co Ltd シリコーン製高分子碍子
US6072694A (en) * 1998-09-30 2000-06-06 Kemet Electronics Corporation Electrolytic capacitor with improved leakage and dissipation factor
US6602741B1 (en) 1999-09-14 2003-08-05 Matsushita Electric Industrial Co., Ltd. Conductive composition precursor, conductive composition, solid electrolytic capacitor, and their manufacturing method
DE10029075A1 (de) 2000-06-13 2001-12-20 Bayer Ag Verfahren zur Herstellung von 3,4-Alkylendioxythiophen-2,5-dicarbonsäurederivaten
JP2002327115A (ja) * 2001-05-02 2002-11-15 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
DE10237577A1 (de) 2002-08-16 2004-02-26 H.C. Starck Gmbh Substituierte Poly(alkylendioxythiophene) als Feststoffelektrolyte in Elektrolytkondensatoren
DE10302086A1 (de) 2003-01-21 2004-07-29 Bayer Ag Alkylendioxythiophene und Poly(alkylendioxythiophene) mit mesogenen Gruppen
US20040231119A1 (en) 2003-05-21 2004-11-25 Brenneman Keith R. Method of electrolytic deposition of an intrinsically conductive polymer upon a non-conductive substrate
US6798644B1 (en) 2003-07-10 2004-09-28 Kemet Electronics Corporation ESR of solid electrolytic capacitors using conductive polymer cathodes
JP4315038B2 (ja) 2004-03-29 2009-08-19 パナソニック株式会社 固体電解コンデンサ
DE102004022110A1 (de) 2004-05-05 2005-12-01 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
CN1737072B (zh) 2004-08-18 2011-06-08 播磨化成株式会社 导电粘合剂及使用该导电粘合剂制造物件的方法
CN100587869C (zh) 2004-10-15 2010-02-03 三洋电机株式会社 固体电解电容器及其制造方法
JP4610382B2 (ja) * 2005-03-17 2011-01-12 三洋電機株式会社 固体電解コンデンサおよびその製造方法
DE102005016727A1 (de) 2005-04-11 2006-10-26 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung
DE102005033839A1 (de) 2005-07-20 2007-01-25 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung
DE102005043829A1 (de) 2005-09-13 2007-04-05 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit hoher Nennspannung
DE102005043828A1 (de) 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102005053646A1 (de) 2005-11-10 2007-05-16 Starck H C Gmbh Co Kg Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit
US7563290B2 (en) 2006-07-06 2009-07-21 Kemet Electronics Corporation High voltage solid electrolytic capacitors using conductive polymer slurries
JP4845645B2 (ja) 2006-08-30 2011-12-28 三洋電機株式会社 固体電解コンデンサおよびその製造方法
US7554793B2 (en) 2006-11-16 2009-06-30 Kemet Electronics Corporation Low temperature curable conductive adhesive and capacitors formed thereby
KR101083465B1 (ko) 2007-02-28 2011-11-16 산요덴키가부시키가이샤 고체 전해 콘덴서 및 그 제조 방법
US8057553B2 (en) 2007-03-15 2011-11-15 Sanyo Electric Co., Ltd. Method for manufacturing solid electrolytic capacitor and solid electrolytic capacitor
US7460358B2 (en) 2007-03-21 2008-12-02 Avx Corporation Solid electrolytic capacitor containing a protective adhesive layer
JP4877820B2 (ja) 2007-06-29 2012-02-15 三洋電機株式会社 固体電解コンデンサ
DE102007048212A1 (de) 2007-10-08 2009-04-09 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht
JP2009170897A (ja) 2007-12-21 2009-07-30 Sanyo Electric Co Ltd 固体電解コンデンサ
JP2009182157A (ja) * 2008-01-31 2009-08-13 Sanyo Electric Co Ltd 固体電解コンデンサ
JP5020120B2 (ja) * 2008-02-21 2012-09-05 三洋電機株式会社 固体電解コンデンサ及びその製造方法
US8094434B2 (en) 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
US20090279233A1 (en) 2008-05-12 2009-11-12 Yuri Freeman High volumetric efficiency anodes for electrolytic capacitors
DE102008032578A1 (de) 2008-07-11 2010-01-14 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
CN101350253B (zh) * 2008-09-17 2011-03-23 中国振华(集团)新云电子元器件有限责任公司 一种固体电解电容器及其制造方法
JP5736534B2 (ja) 2008-09-29 2015-06-17 パナソニックIpマネジメント株式会社 固体電解コンデンサ
TW201023220A (en) 2008-12-01 2010-06-16 Sanyo Electric Co Method of manufacturing solid electrolytic capacitor
JP5289033B2 (ja) 2008-12-24 2013-09-11 三洋電機株式会社 固体電解コンデンサ
JP5274268B2 (ja) 2009-01-08 2013-08-28 三洋電機株式会社 固体電解コンデンサとその製造方法
JP2010177421A (ja) * 2009-01-29 2010-08-12 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法及び固体電解コンデンサ
DE102009007594A1 (de) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht.
DE102009012660A1 (de) 2009-03-13 2010-09-16 H.C. Starck Clevios Gmbh Polymerbeschichtungen mit verbesserter Temperaturstabilität
JP5274340B2 (ja) 2009-03-31 2013-08-28 三洋電機株式会社 固体電解コンデンサ
US8310815B2 (en) 2009-04-20 2012-11-13 Kemet Electronics Corporation High voltage and high efficiency polymer electrolytic capacitors
US8503165B2 (en) * 2009-05-21 2013-08-06 Kemet Electronics Corporation Solid electrolytic capacitors with improved reliability
US8310816B2 (en) * 2009-05-21 2012-11-13 Kemet Electronics Corporation Solid electrolytic capacitors with improved reliability
JP5461110B2 (ja) * 2009-08-28 2014-04-02 三洋電機株式会社 固体電解コンデンサおよびその製造方法
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8503167B2 (en) 2010-01-27 2013-08-06 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and manufacturing method thereof
JP5312396B2 (ja) * 2010-04-26 2013-10-09 三洋電機株式会社 固体電解コンデンサの製造方法
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US8808403B2 (en) 2010-09-15 2014-08-19 Kemet Electronics Corporation Process for solid electrolytic capacitors using polymer slurries
DE102010047087A1 (de) 2010-10-01 2012-04-05 Heraeus Clevios Gmbh Verfahren zur Verbesserung der elektrischen Kenngrößen in Kondensatoren enthaltend PEDOT/PSS als Feststoffelektrolyt durch ein Polyalkylenglykol
DE102010047086A1 (de) 2010-10-01 2012-04-05 Heraeus Clevios Gmbh Schichtaufbauten mit verbesserten elektrischen Kenngrößen beinthaltend PEDOT/PSS sowie einen Stabilisator
DE102010048032A1 (de) 2010-10-12 2012-04-12 Heraeus Clevios Gmbh Polythiophene beinhaltende Dispersionen mit definiertem Gehalt an Thiophen-Monomer
DE102010048031A1 (de) 2010-10-12 2012-04-12 Heraeus Clevios Gmbh Polythiophene beinhaltende Dispersionen mit definiertem Sulfat-Gehalt
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
JP2012119427A (ja) 2010-11-30 2012-06-21 Sanyo Electric Co Ltd 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP2012174948A (ja) * 2011-02-23 2012-09-10 Nec Tokin Corp 固体電解コンデンサ及びその製造方法
JP5895177B2 (ja) * 2011-02-25 2016-03-30 パナソニックIpマネジメント株式会社 固体電解コンデンサ及びその製造方法
JP5995262B2 (ja) 2011-03-06 2016-09-21 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Pedot/pssを固体電解質として含有するコンデンサにおける電気パラメータをポリグリセロールによって改善するための方法
US8379372B2 (en) * 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
DE102011016493A1 (de) 2011-04-08 2012-10-11 Heraeus Precious Metals Gmbh & Co. Kg Verfahren zur Verbesserung der elektrischen Kenngrößen in Kondensatoren enthaltend PEDOT/PSS als Feststoffelektrolyt durch Additive
US8349030B1 (en) 2011-09-21 2013-01-08 Kemet Electronics Corporation Method for making anodes for high voltage electrolytic capacitors with high volumetric efficiency and stable D.C. leakage
US9236192B2 (en) * 2013-08-15 2016-01-12 Avx Corporation Moisture resistant solid electrolytic capacitor assembly

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345545A (en) 1964-11-27 1967-10-03 Johnson Matthey & Mallory Ltd Solid electrolytic capacitor having minimum anode impedance
US4017302A (en) 1976-02-04 1977-04-12 Fansteel Inc. Tantalum metal powder
US4483819A (en) 1981-07-31 1984-11-20 Hermann C. Starck Berlin Production of highly capacitive agglomerated valve metal powder and valve metal electrodes for the production of electrolytic capacitors
US4441927A (en) 1982-11-16 1984-04-10 Cabot Corporation Tantalum powder composition
US4555268A (en) 1984-12-18 1985-11-26 Cabot Corporation Method for improving handling properties of a flaked tantalum powder composition
US5082491A (en) 1989-09-28 1992-01-21 V Tech Corporation Tantalum powder with improved capacitor anode processing characteristics
US4945452A (en) 1989-11-30 1990-07-31 Avx Corporation Tantalum capacitor and method of making same
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
US5473503A (en) 1993-07-27 1995-12-05 Nec Corporation Solid electrolytic capacitor and method for manufacturing the same
US5457862A (en) 1993-11-10 1995-10-17 Nec Corporation Method of manufacturing solid electrolytic capacitor
US5729428A (en) 1995-04-25 1998-03-17 Nec Corporation Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US5954856A (en) 1996-04-25 1999-09-21 Cabot Corporation Method of making tantalum metal powder with controlled size distribution and products made therefrom
US5949639A (en) 1996-09-27 1999-09-07 Rohm Co., Ltd. Capacitor element for solid electrolytic capacitor, device and process for making the same
US6197252B1 (en) 1997-01-13 2001-03-06 Avx Limited Binder removal
US6238456B1 (en) 1997-02-19 2001-05-29 H. C. Starck Gmbh & Co. Kg Tantalum powder, method for producing same powder and sintered anodes obtained from it
US6576038B1 (en) 1998-05-22 2003-06-10 Cabot Corporation Method to agglomerate metal particles and metal particles having improved properties
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6527937B2 (en) 1998-09-16 2003-03-04 Cabot Corporation Method of making a capacitor anode of a pellet of niobium oxide
US6592740B2 (en) 1998-09-16 2003-07-15 Cabot Corporation Methods to make capacitors containing a partially reduced niobium metal oxide
US6191936B1 (en) 1999-04-12 2001-02-20 Vishay Sprague, Inc. Capacitor having textured pellet and method for making same
US6635729B1 (en) 2000-02-03 2003-10-21 Bayer Aktinegesellschaft Process for the preparation of water-soluble π-conjugated polymers
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6639787B2 (en) 2000-11-06 2003-10-28 Cabot Corporation Modified oxygen reduced valve metal oxides
US7220397B2 (en) 2000-11-06 2007-05-22 Cabot Corporation Modified oxygen reduced valve metal oxides
US6987663B2 (en) 2003-10-17 2006-01-17 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASTM D7490-08
ASTM F-1249

Also Published As

Publication number Publication date
JP6426962B2 (ja) 2018-11-21
HK1203690A1 (en) 2015-11-27
US20150092319A1 (en) 2015-04-02
GB2521499A (en) 2015-06-24
CN110459406A (zh) 2019-11-15
FR3011378A1 (fr) 2015-04-03
GB201415481D0 (en) 2014-10-15
US9236193B2 (en) 2016-01-12
KR102244980B1 (ko) 2021-04-27
JP2015073097A (ja) 2015-04-16
CN104517736A (zh) 2015-04-15
KR20150039580A (ko) 2015-04-10

Similar Documents

Publication Publication Date Title
DE102014217948A1 (de) Festelektrolytkondensator zur Verwendung unter Bedingungen hoher Temperatur und Feuchtigkeit
JP2023166569A (ja) 高湿度雰囲気中で用いるための固体電解キャパシタ
DE102014214945A1 (de) Feuchtigkeitsbeständige Festelektrolytkondensator-Baugruppe
DE102012205589A1 (de) Gehäusekonfiguration für einen Festelektrolytkondensator
DE102011088366A1 (de) Leitfähige Beschichtung zur Verwendung in Elektrolytkondensatoren
DE102014225816A1 (de) Stabiler Festelektrolytkondensator, der einen Nanokomposit enthält
DE102012018976A1 (de) Verwendung von Mischungen aus selbstdotierten und fremddotierten leitfähigen Polymeren in einem Kondensator
DE102012205607A1 (de) Hermetisch versiegelter Elektrolytkondensator mit verbesserter mechanischer Stabilität
DE102014204323A1 (de) Festelektrolytkondensator zur Verwendung unter extremen Bedingungen
DE102014208944A1 (de) Festelektrolytkondensator, der leitfähige Polymerteilchen enthält
JP2024029077A (ja) 固体電解キャパシタアセンブリ
DE102012221861A1 (de) Flüssigelektrolytkondensator, der einen gelierten Arbeitselektrolyten enthält
DE102011086123A1 (de) Festelektrolytkondensatorelement
DE102011117192A1 (de) Festelektrolytkondensator zur Verwendung in Hochspannungs- und Hochtemperaturanwendungen
DE202006021121U1 (de) Elektrolytkondensatoren mit hoher Nennspannung
DE102012205600A1 (de) Festelektrolytkondensatorbaugruppe mit mehreren Anoden
DE102011109752A1 (de) Festelektrolytkondensator-Baugruppe
DE102011087197A1 (de) Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren
DE102008043236A1 (de) Elektrolytkondensatoranode, mit einer metallorganischen Verbindung behandelt
DE102010048177A1 (de) Externe Beschichtung für einen Festelektrolytkondensator
DE102010047086A1 (de) Schichtaufbauten mit verbesserten elektrischen Kenngrößen beinthaltend PEDOT/PSS sowie einen Stabilisator
DE102012203422A1 (de) Festelektrolytkondensator, der eine aus einer kolloidalen Dispersion gebildete Beschichtung enthält
DE102013205881A9 (de) Festelektrolytkondensator mit erhöhter mechanischer Stabilität unter extremen Bedingungen
DE102016207610A1 (de) Festelektrolytkondensator mit hoher Kapazität
DE102016203110A1 (de) Wärmeleitendes Einbettungsmaterial für eine Kondensatorbaugruppe

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: VON KREISLER SELTING WERNER - PARTNERSCHAFT VO, DE

Representative=s name: DOMPATENT VON KREISLER SELTING WERNER - PARTNE, DE

R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: KYOCERA AVX COMPONENTS CORPORATION (N. D. GES., US

Free format text: FORMER OWNER: AVX CORPORATION, FOUNTAIN INN, SC, US