CN110214186B - 用于基于微滴的单细胞条形编码的方法和系统 - Google Patents

用于基于微滴的单细胞条形编码的方法和系统 Download PDF

Info

Publication number
CN110214186B
CN110214186B CN201880008233.2A CN201880008233A CN110214186B CN 110214186 B CN110214186 B CN 110214186B CN 201880008233 A CN201880008233 A CN 201880008233A CN 110214186 B CN110214186 B CN 110214186B
Authority
CN
China
Prior art keywords
beads
nucleic acid
cell
cells
barcode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880008233.2A
Other languages
English (en)
Other versions
CN110214186A (zh
Inventor
扎哈拉·卡米拉·贝尔霍钦
拉吉夫·巴拉德瓦杰
克里斯多佛·辛德森
迈克尔·史诺-莱文
比尔·林
安东尼·马卡若维茨
普拉纳夫·帕特尔
凯瑟琳·法伊弗
安德鲁·D·普莱斯
穆罕默德·拉希米伦吉
托拜厄斯·丹尼尔·惠勒
尹沂峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
10X Genomics Inc
Original Assignee
10X Genomics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 10X Genomics Inc filed Critical 10X Genomics Inc
Priority to CN202311497245.5A priority Critical patent/CN117512066A/zh
Publication of CN110214186A publication Critical patent/CN110214186A/zh
Application granted granted Critical
Publication of CN110214186B publication Critical patent/CN110214186B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1065Preparation or screening of tagged libraries, e.g. tagged microorganisms by STM-mutagenesis, tagged polynucleotides, gene tags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/021Identification, e.g. bar codes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics

Abstract

本文提供了用于样品制备技术的方法和系统,所述样品制备技术允许可能目标单细胞的扩增例如全基因组扩增、逆转录、细胞核酸的扩增等和测序。所述方法和系统通常通过将包含多个生物颗粒的第一液相、包含凝胶珠粒的第二液相和第三不混溶相集合在一起来操作。所述液相可相互作用以形成分区。所述方法和系统可被配置来允许在所述分区内实施单个操作或多个操作化学和/或生物化学加工。本公开的另一方面提供了一种组合物,所述组合物包含多个细胞珠粒的细胞珠粒和多个条形码珠粒的条形码珠粒。本文还提供了用于分析单独细胞或病毒或者细胞或病毒小群体的试剂盒。

Description

用于基于微滴的单细胞条形编码的方法和系统
交叉引用
本申请要求2017年1月30日提交的美国临时专利申请号62/452,261、2017年5月3日提交的美国临时专利申请号62/500,943以及2017年10月11日提交的美国临时专利申请号62/570,783的优先权,所述临时专利申请各自出于所有目的以引用的方式整体并入本文。
背景技术
全基因组扩增和测序技术开始得到更广泛的应用。这些技术可能不考虑样品的异质性;相反,它们可能假设所有待扩增或测序的物质来自同质细胞群体或其它生物材料(如病毒)。然而,某些应用可能受益于从自更大群体获得的单细胞获得的物质的扩增或测序。在一些情况下,目标单细胞可能非常罕见。例如,癌细胞可在其脱氧核糖核酸(DNA)序列中经历连续突变。癌症研究人员或肿瘤学家可能希望对此类细胞或其它单独细胞的基因组进行扩增和测序。然而,他们可能会发现,归属于目标单细胞的测序数据被更普遍的细胞所产生的测序数据遮蔽。因此,需要允许对目标单细胞进行部分或全基因组扩增和测序的样品制备技术。
发明内容
本文提供了用于样品制备技术的方法和系统,所述样品制备技术允许可能目标单细胞的扩增(例如,全基因组扩增、逆转录、细胞核酸的扩增等)和测序。所述方法和系统通常通过将包含多个生物颗粒(例如,包含细胞或细胞组分的颗粒)的第一液相、包含凝胶珠粒的第二液相和第三不混溶相集合在一起来操作。所述液相可相互作用以形成分区(例如,微滴)。所述分区中的一些可含有单个生物颗粒或多个生物颗粒以及一个或多个凝胶珠粒。所述方法和系统可被配置来允许在所述分区内实施单个操作或多个操作化学和/或生物化学加工。
本公开的方法和系统可允许特定生物化学操作在允许其它生物化学操作在微滴中发生之前在所述微滴中发生。所述微滴可含有凝胶珠粒,所述凝胶珠粒可含有可用于对单个生物颗粒的大分子成分(例如,核酸分子)进行条形编码的标签(如条形码)。
本公开的方法和系统可用于以比非靶标特异性读数更高的速率产生对目标大分子成分具有特异性的靶序列或测序读数(“读数”)。例如,所述方法和系统的特征在于它们抑制无模板对照(NTC)效应。
在一个方面,本公开提供了一种用于分析单个生物颗粒的方法,所述方法包括(a)提供包含多个生物颗粒的第一液相;(b)提供包含多个珠粒的第二液相,所述多个珠粒各自包括用于对所述多个生物颗粒中的每一个的一种或多种大分子成分进行条形编码的标签;(c)使来自所述第一液相的多个生物颗粒和来自所述第二液相的多个珠粒与同所述第一或第二液相不混溶的第三液相接触,以将所述多个生物颗粒和所述多个珠粒中的每一个分配到多个分区(例如,微滴)中,其中在分配后,所述多个分区中的给定分区包括来自所述多个生物颗粒的单个生物颗粒和来自所述多个珠粒的单个珠粒;(d)在所述给定分区(例如,微滴)中,使用来自所述单个珠粒的标签对所述单个生物颗粒的一种或多种大分子成分进行条形编码,从而形成一个或多个带条形码大分子;以及(e)对所述带条形码大分子进行测序以产生读数,所述读数的特征在于特异性靶标读数与非靶标特异性读数比率大于1,所述读数的特异性靶标读数指示所述一种或多种大分子成分。
在一些实施方案中,所述测序是核酸测序。在一些实施方案中,所述核酸测序是大规模平行测序。在一些实施方案中,所述核酸测序是数字聚合酶链式反应(PCR)。
在一些实施方案中,所述特异性靶标读数与非靶标特异性读数比率大于100。在一些实施方案中,所述特异性靶标读数与非靶标特异性读数比率大于1,000。在一些实施方案中,所述特异性靶标读数与非靶标特异性读数比率大于10,000。在一些实施方案中,所述特异性靶标读数与非靶标特异性读数比率大于100,000。在一些实施方案中,所述特异性靶标读数与非靶标特异性读数比率大于1,000,000。在一些实施方案中,所述特异性靶标读数与非靶标特异性读数比率大于10,000,000。在一些实施方案中,所述特异性靶标读数与非靶标特异性读数比率大于100,000,000。在一些实施方案中,所述特异性靶标读数与非靶标特异性读数比率大于1,000,000,000。
在一些实施方案中,所述特异性靶标读数对应于来自单个生物颗粒的一个或多个核酸序列。在一些实施方案中,所述非靶标特异性读数对应于一个或多个外源核酸序列。
在一些实施方案中,所述多个分区是多个微滴。在一些实施方案中,所述多个分区是多个孔。
在一些实施方案中,所述多个珠粒中的给定珠粒包括与其表面偶联和/或封闭在所述给定珠粒内的一个或多个标签。
在一些实施方案中,所述多个分区是分区群体的一部分,所述分区群体包括未被生物颗粒和/或珠粒占用的一个或多个分区。
在另一方面,本公开提供了一种用于分析单个生物颗粒的方法,所述方法包括(a)提供包含多个生物颗粒的第一液相;(b)提供包含多个珠粒的第二液相,所述多个珠粒各自包括用于对所述多个生物颗粒中的每一个的一种或多种大分子成分进行条形编码的标签;以及(c)使来自所述第一液相的多个生物颗粒和来自所述第二液相的多个珠粒与同所述第一或第二液相不混溶的第三液相接触,以将所述多个生物颗粒和所述多个珠粒中的每一个分配到多个分区中,其中在分配后,所述多个分区中的给定分区包括来自所述多个生物颗粒的单个生物颗粒和来自所述多个珠粒的单个珠粒,其中所述单个生物颗粒包括或被封闭在聚合物或凝胶基质内。
在一些实施方案中,所述第一液相还包含能够聚合或胶凝的前体。在一些实施方案中,所述方法包括使所述第一液相经受足以使所述前体聚合或胶凝的条件,以便将所述单个生物颗粒包封在所述聚合物或凝胶基质中。在一些实施方案中,所述聚合物或凝胶基质是可扩散地渗透试剂的,同时保留所述一种或多种大分子成分。
在一些实施方案中,所述方法包括使所述单个生物颗粒经受足以裂解单个生物颗粒的条件,以提供裂解的单个生物颗粒。在一些实施方案中,所述方法包括使所述裂解的单个生物颗粒经受足以使从所述裂解的单个生物颗粒释放的一种或多种大分子成分变性的条件。在一些实施方案中,所述方法包括使所述裂解的单个生物颗粒经受足以从所述聚合物或凝胶基质释放所述一种或多种大分子成分的条件。
在一些实施方案中,所述方法包括使用来自所述单个珠粒的标签来对所述一种或多种大分子成分进行条形编码,从而形成一个或多个带条形码大分子。在一些实施方案中,所述方法包括对所述带条形码大分子进行测序。
在一些实施方案中,所述聚合物或凝胶基质包括以下中的一种或多种:二硫化物交联的聚丙烯酰胺、琼脂糖、藻酸盐、聚乙烯醇、PEG-二丙烯酸酯、PEG-丙烯酸酯/硫醇、PEG-叠氮化物/炔烃、其它丙烯酸酯、壳聚糖、透明质酸、胶原、纤维蛋白、明胶和弹性蛋白。
在一些实施方案中,所述足以裂解单个生物颗粒的条件包括暴露于氢氧化钠(NaOH)。在一些实施方案中,所述足以使一种或多种大分子成分变性的条件包括暴露于氢氧化钠(NaOH)。在一些实施方案中,所述足以释放一种或多种大分子成分的条件包括暴露于二硫苏糖醇(DTT)。在一些实施方案中,使从所述裂解的单个生物颗粒释放的一种或多种大分子成分在(c)之前变性。
在一些实施方案中,所述测序是核酸测序。在一些实施方案中,所述核酸测序是大规模平行测序。在一些实施方案中,所述核酸测序是数字聚合酶链式反应(PCR)。
在一些实施方案中,所述第三液相包含油。在一些实施方案中,油包括氟化烃。在一些实施方案中,所述第一液相和第二液相是相同的相。
在一些实施方案中,将所述第一液相和第二液相混合以提供混合相,并且使所述混合相与油相接触。
在一些实施方案中,所述单个生物颗粒包含细胞器。在一些实施方案中,所述单个生物颗粒包含病毒。在一些实施方案中,所述单个生物颗粒包含细胞。在一些实施方案中,所述细胞包含来自细胞群体的稀有细胞。
在一些实施方案中,所述稀有细胞以在所述细胞群体的102个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的103个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的104个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的105个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的106个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的107个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的108个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的109个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的1010个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的1011个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的1012个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的1013个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的1014个细胞中至少约1个的浓度存在于样品中。在一些实施方案中,所述稀有细胞以在所述细胞群体的1015个细胞中至少约1个的浓度存在于样品中。
在一些实施方案中,所述稀有细胞是癌性细胞。在一些实施方案中,癌细胞是循环肿瘤细胞。在一些实施方案中,所述稀有细胞是从体外受精过程获得的细胞。在一些实施方案中,所述稀有细胞是从显示遗传镶嵌性的个体获得的细胞。在一些实施方案中,所述稀有细胞是从使用合成生物学技术产生的生物体获得的细胞。在一些实施方案中,所述细胞群体是异质细胞群体。
在一些实施方案中,所述方法包括获得多个生物颗粒。在一些实施方案中,所述多个生物颗粒从受试者的血液获得。在一些实施方案中,所述多个生物颗粒包括细胞。在一些实施方案中,所述细胞是癌性细胞。在一些实施方案中,所述多个生物颗粒从受试者的组织获得。
在一些实施方案中,所述一种或多种大分子成分包括脱氧核糖核酸(DNA)。在一些实施方案中,所述一种或多种大分子成分包括核糖核酸(RNA)。在一些实施方案中,所述一种或多种大分子成分包括肽或蛋白质。
在一些实施方案中,所述标签是引物。在一些实施方案中,(d)还包括使单个生物颗粒经受足以进行核酸扩增的条件。在一些实施方案中,所述足以进行核酸扩增的条件包括无引发扩增。在一些实施方案中,无引发扩增包括通过在切口位点聚合来无引发扩增。
在一些实施方案中,所述方法还包括使用标签来鉴定来自多个生物颗粒的单个生物颗粒的一种或多种大分子成分。在一些实施方案中,所述方法还包括对带条形码大分子进行核酸测序以鉴定所述一种或多种大分子成分。在一些实施方案中,所述核酸测序是非靶向测序。在一些实施方案中,所述核酸测序是靶向测序。
在一些实施方案中,所述多个分区是多个微滴。在一些实施方案中,所述多个分区是多个孔。
在一些实施方案中,所述多个珠粒中的给定珠粒包括与其表面偶联和/或封闭在所述给定珠粒内的一个或多个标签。
在一些实施方案中,所述多个分区是分区群体的一部分,所述分区群体包括未被生物颗粒和/或珠粒占用的一个或多个分区。
在另一方面,本发明提供了一种用于分析单个生物颗粒的方法,所述方法包括(a)提供多个生物颗粒和多个珠粒,所述多个珠粒各自包括用于对所述多个生物颗粒中的每一个的一种或多种大分子成分进行条形编码的标签;以及(b)将所述多个生物颗粒和所述多个珠粒分配到多个分区中,其中在分配后,所述多个分区中的给定分区包括来自所述多个生物颗粒的单个生物颗粒和来自所述多个珠粒的单个珠粒,其中所述单个生物颗粒包括或被封闭在所述给定分区内的凝胶或聚合物基质内。
在一些实施方案中,所述多个分区是多个微滴。在一些实施方案中,所述多个分区是多个孔。
在一些实施方案中,所述多个珠粒中的给定珠粒包括与其表面偶联和/或封闭在所述给定珠粒内的一个或多个标签。
在一些实施方案中,所述多个分区是分区群体的一部分,所述分区群体包括未被生物颗粒和/或珠粒占用的一个或多个分区。
在另一方面,本发明提供了一种用于分析单个生物颗粒的系统,所述系统包括分区发生器,所述分区发生器包括(i)包含多个生物颗粒的第一液相的第一来源,(ii)包含多个珠粒的第二液相的第二来源,所述多个珠粒各自包括用于对所述多个生物颗粒中的每一个的一种或多种大分子成分进行条形编码的标签,和(iii)与所述第一或第二液相不混溶的第三液相的第三来源;以及可操作地耦接至所述分区发生器的控制器,其中所述控制器被编程为(i)使来自所述第一来源的第一液相和来自所述第二来源的第二液相与来自所述第三来源的第三液相沿着第一通道接触以用于将所述多个生物颗粒和所述多个珠粒中的每一个分配到沿第二通道流动的多个分区中,其中在分配后,所述多个分区中的给定分区包括来自所述多个生物颗粒的单个生物颗粒和来自所述多个珠粒的单个珠粒;和(ii)在所述给定分区中,使用来自所述单个珠粒的标签对所述单个生物颗粒的一种或多种大分子成分进行条形编码,从而形成一个或多个带条形码大分子;以及(iii)对所述带条形码大分子进行测序以产生读数,所述读数的特征在于特异性靶标读数与非靶标特异性读数比率大于1,所述读数的特异性靶标读数指示所述一种或多种大分子成分。
在另一方面,本公开提供了一种用于分析单个生物颗粒的系统,所述系统包括分区发生器,所述分区发生器包括(i)包含多个生物颗粒的第一液相的第一来源,(ii)包含多个珠粒的第二液相的第二来源,所述多个珠粒各自包括用于对所述多个生物颗粒中的每一个的一种或多种大分子成分进行条形编码的标签,和(iii)与所述第一或第二液相不混溶的第三液相的第三来源,其中所述第一液相还包含能够聚合或胶凝的前体;以及可操作地耦接至所述分区发生器的控制器,其中所述控制器被编程为使来自所述第一液相的多个生物颗粒和来自所述第二液相的多个珠粒与同所述第一或第二液相不混溶的第三液相接触,以将所述多个生物颗粒和所述多个珠粒中的每一个分配到多个分区中,其中在分配后,所述多个分区中的给定分区包括来自所述多个生物颗粒的单个生物颗粒和来自所述多个珠粒的单个珠粒,其中所述单个生物颗粒包括或被封闭在聚合物或凝胶基质内。
在一些实施方案中,所述第三液相包含油。在一些实施方案中,所述第一液相和第二液相是相同的相。
在一些实施方案中,所述多个生物颗粒包括细胞。在一些实施方案中,所述多个生物颗粒从受试者的组织获得。
在一些实施方案中,所述一种或多种大分子成分包括脱氧核糖核酸(DNA)。在一些实施方案中,所述一种或多种大分子成分包括核糖核酸(RNA)。在一些实施方案中,所述标签是引物。
在一些实施方案中,所述控制器使所述单个生物颗粒经受足以进行核酸扩增的条件。在一些实施方案中,所述控制器被编程为使所述单个生物颗粒经受足以用来自单个珠粒的至少一个标签对来自单个生物颗粒的至少一种大分子成分进行条形编码的条件。
在另一方面,本公开提供了一种包括机器可执行代码的非暂时性计算机可读介质,所述机器可执行代码在由一个或多个计算机处理器执行时实现用于分析单个生物颗粒的方法,所述方法包括(a)提供包含多个生物颗粒的第一液相;(b)提供包含多个珠粒的第二液相,所述多个珠粒各自包括用于对所述多个生物颗粒中的每一个的一种或多种大分子成分进行条形编码的标签;(c)使来自所述第一液相的多个生物颗粒和来自所述第二液相的多个珠粒与同所述第一或第二液相不混溶的第三液相接触,以将所述多个生物颗粒和所述多个珠粒中的每一个分配到多个分区中,其中在分配后,所述多个分区中的给定分区包括来自所述多个生物颗粒的单个生物颗粒和来自所述多个珠粒的单个珠粒,其中所述单个生物颗粒包括或被封闭在聚合物或凝胶基质内。
在另一方面,本公开提供了一种用于细胞分析的方法,所述包括:
(a)将多个细胞或其衍生物分配到多个分区中,其中在分配后,所述多个分区中的给定分区包括来自所述多个细胞或其衍生物的单个细胞或其衍生物以及一组标签,所述标签能够对所述单个细胞或其衍生物的一种或多种大分子成分进行条形编码,其中所述单个细胞或其衍生物包括或被封闭在所述给定分区内的凝胶或聚合物基质内;
(b)使用所述标签组对来自单个细胞的一种或多种大分子成分进行条形编码,从而提供一种或多种带条形码大分子;以及(c)分析所述一种或多种带条形码大分子或其衍生物。
在一些实施方案中,所述一种或多种大分子成分包括脱氧核糖核酸。在一些实施方案中,所述一种或多种大分子成分包括核糖核酸。
在一些实施方案中,所述多个分区是多个微滴。在一些实施方案中,所述多个分区是多个孔。在一些实施方案中,所述标签组偶联至所述给定分区中的珠粒。
在一些实施方案中,所述方法还包括在分析之前从所述给定分区释放所述一种或多种带条形码大分子或其衍生物。
在一些实施方案中,所述方法还包括在将多个细胞分配到多个分区中之前,加工单个细胞以包括或被封闭在凝胶或聚合物基质内。在一些实施方案中,所述方法还包括在将多个细胞分配到多个分区中之后,加工单个细胞以包括或被封闭在凝胶或聚合物基质内。在一些实施方案中,所述细胞是活细胞。
在一些实施方案中,所述活细胞能够被培养。在一些实施方案中,所述活细胞能够在封闭在凝胶或聚合物基质中时或在包含凝胶或聚合物基质时进行培养。
标签(例如,条形码)可被封闭在多个珠粒内。作为替代或补充,标签可偶联至所述多个珠粒的表面。给定珠粒可包括多个标签。
在另一方面,本公开提供了一种用于加工或分析来自细胞的一种或多种组分的方法,所述方法包括:(a)提供多个细胞珠粒和多个条形码珠粒,其中(i)所述多个细胞珠粒的细胞珠粒包含所述细胞的一种或多种组分,所述一种或多种组分包含核酸分子,并且(ii)所述多个条形码珠粒的条形码珠粒包含多个核酸条形码分子以用于对所述核酸分子进行条形编码;以及(b)将所述多个细胞珠粒和所述多个条形码珠粒分配到多个分区中,其中在分配后,所述多个分区的分区包括所述细胞珠粒和条形码珠粒。
在一些实施方案中,所述方法还包括对所述核酸分子进行一种或多种反应。在一些实施方案中,所述一种或多种反应包括核酸修饰、核酸扩增、核酸插入、核酸裂解、逆转录或其任何组合。在一些实施方案中,所述核酸修饰包括连接、消化、甲基化、随机诱变、亚硫酸氢盐转化、尿嘧啶水解、核酸修复、加帽、脱帽或其任何组合。在一些实施方案中,所述核酸扩增包括等温扩增或聚合酶链式反应。在一些实施方案中,核酸插入包括转座子介导的插入、CRISPR/Cas9介导的插入或其任何组合。在一些实施方案中,所述核酸裂解包括转座子介导的裂解、CRISPR/Cas9介导的裂解或其任何组合。在一些实施方案中,所述一种或多种反应在分区中进行。在一些实施方案中,所述一种或多种反应在分区外进行。在一些实施方案中,所述一种或多种反应在(a)之前进行。在一些实施方案中,所述一种或多种反应在(a)之后进行。
在一些实施方案中,所述方法还包括使用多个核酸条形码分子来由核酸分子产生带条形码的核酸分子。在一些实施方案中,产生带条形码的核酸分子包括核酸扩增。在一些实施方案中,产生带条形码的核酸分子包括连接。在一些实施方案中,所述方法还包括从所述分区释放所述带条形码的核酸分子。在一些实施方案中,所述方法还包括对所述带条形码的核酸分子或其衍生物进行测序。在一些实施方案中,所述方法还包括在测序之前,使所述带条形码的核酸分子或其衍生物进行核酸扩增。在一些实施方案中,所述核酸扩增是等温扩增或聚合酶链式反应。在一些实施方案中,所述聚合酶链式反应包括数字聚合酶链式反应。
在一些实施方案中,所述细胞珠粒包含细胞,并且使包含所述细胞的细胞珠粒经受足以裂解所述细胞以产生一种或多种组分的条件。在一些实施方案中,使所述细胞珠粒经受足以裂解所述分区中的细胞的条件。在一些实施方案中,所述足以裂解细胞的条件包括将所述细胞珠粒暴露于裂解剂。在一些实施方案中,所述足以裂解细胞的条件包括将细胞珠粒暴露于氢氧化钠、氢氧化钾、十二烷基硫酸钠、非离子型表面活性剂、皂苷、蛋白酶、裂解酶、冻融、紫外线、热或其任何组合。在一些实施方案中,非离子型表面活性剂是4-(1,1,3,3-四甲基丁基)苯基-聚乙二醇(Triton X-100)。
在一些实施方案中,所述细胞珠粒包括或被封闭在所述分区内的凝胶或聚合物基质内。在一些实施方案中,所述条形码珠粒包括或被封闭在所述分区内的凝胶或聚合物基质内。在一些实施方案中,所述聚合物或凝胶基质包括选自由以下组成的组的一种或多种成员:二硫化物交联的聚丙烯酰胺、琼脂糖、藻酸盐、聚乙烯醇、PEG-二丙烯酸酯、PEG-丙烯酸酯/硫醇、PEG-叠氮化物/炔烃、其它丙烯酸酯、壳聚糖、透明质酸、胶原、纤维蛋白、明胶和弹性蛋白。
在一些实施方案中,所述多个分区是多个微滴。在一些实施方案中,所述多个分区是多个孔。在一些实施方案中,所述多个核酸条形码分子中的一个或多个核酸条形码分子偶联至条形码珠粒的表面和/或封闭在条形码珠粒内。
在一些实施方案中,所述细胞珠粒还包含另外的试剂。在一些实施方案中,所述分区还包含另外的试剂。在一些实施方案中,所述另外的试剂包括引物、逆转录酶、聚合酶、核苷酸、蛋白酶、转座子、核酸内切酶、转换寡核苷酸、裂解试剂或其任何组合。在一些实施方案中,所述核酸分子是脱氧核糖核酸分子。在一些实施方案中,所述脱氧核糖核酸分子是基因组脱氧核糖核酸。在一些实施方案中,所述脱氧核糖核酸分子是互补脱氧核糖核酸。在一些实施方案中,所述核酸分子是核糖核酸分子。在一些实施方案中,所述核糖核酸分子是信使核糖核酸。在一些实施方案中,所述方法还包括从所述分区回收所述核酸分子或其衍生物。
在一些实施方案中,所述条形码珠粒在施加刺激时可降解。在一些实施方案中,所述方法还包括在施加刺激时释放多个核酸条形码分子。在一些实施方案中,所述刺激是化学刺激、生物刺激、温度变化、暴露于光、pH变化或其任何组合。在一些实施方案中,化学刺激是还原剂。在一些实施方案中,还原剂是二硫苏糖醇、β-巯基乙醇、(2S)-2-氨基-1,4-二巯基丁烷、三(2-羧乙基)膦或其任何组合。在一些实施方案中,所述刺激是化学或生物刺激,并且所述分区包括所述刺激。在一些实施方案中,所述细胞珠粒在施加刺激后可降解。在一些实施方案中,所述刺激是化学刺激、生物刺激、温度变化、暴露于光、pH变化或其任何组合。在一些实施方案中,化学刺激是还原剂。在一些实施方案中,还原剂是二硫苏糖醇、β-巯基乙醇、(2S)-2-氨基-1,4-二巯基丁烷、三(2-羧乙基)膦或其任何组合。在一些实施方案中,所述刺激是化学或生物刺激,并且所述分区包括所述刺激。
在一些实施方案中,所述多个分区是分区群体的一部分,所述分区群体包括未被细胞珠粒和/或条形码珠粒占用的一个或多个分区。
在另一方面,本公开提供了一种用于加工或分析来自细胞的一种或多种组分的系统,所述系统包括:第一通道,所述第一通道与包含多个细胞珠粒的第一来源流体连通,其中所述多个细胞珠粒的细胞珠粒包含所述细胞的一种或多种组分,所述一种或多种组分包含核酸分子;第二通道,所述第二通道与包含多个条形码珠粒的第二来源流体连通,其中所述多个条形码珠粒的条形码珠粒包含多个核酸条形码分子以用于对所述核酸分子进行条形编码;以及接点,所述接点使包含来自所述第一通道的多个细胞珠粒和来自所述第二通道的多个条形码珠粒的第一相与同所述第一相不混溶的第二相接触,以产生包含所述多个细胞珠粒和所述多个条形码珠粒的多个微滴,其中所述多个微滴的微滴包含所述细胞珠粒和所述条形码珠粒。
在一些实施方案中,所述第一通道和所述第二通道是相同的通道。在一些实施方案中,所述系统还包括与包含另外的试剂的第三来源流体连通的第三通道,其中所述第一相包含所述另外的试剂。在一些实施方案中,所述系统还包括与包含另外的试剂的第四来源流体连通的第四通道,其中所述第一相包含所述另外的试剂。在一些实施方案中,另外的试剂是用于核酸扩增的试剂、可降解或溶解细胞珠粒和/或条形码珠粒的试剂、降解条形码与条形码珠粒之间的连键的试剂或其任何组合。
本公开的另一方面提供了一种组合物,所述组合物包含多个细胞珠粒的细胞珠粒和多个条形码珠粒的条形码珠粒,其中所述细胞珠粒包含来自细胞的一种或多种组分,所述一种或多种组分包含核酸分子,并且其中所述条形码珠粒包含多个核酸条形码分子以用于对所述核酸分子进行条形编码。在一些实施方案中,所述细胞珠粒还包含另外的试剂。在一些实施方案中,所述另外的试剂包括引物、逆转录酶、聚合酶、核苷酸、蛋白酶、转座子、核酸内切酶、转换寡核苷酸或其任何组合。在一些实施方案中,所述核酸分子是脱氧核糖核酸分子。在一些实施方案中,所述脱氧核糖核酸分子是基因组脱氧核糖核酸。在一些实施方案中,所述脱氧核糖核酸分子是互补脱氧核糖核酸。在一些实施方案中,所述核酸分子是核糖核酸分子。在一些实施方案中,所述核糖核酸分子是信使核糖核酸。
在另一方面,本发明提供了一种用于产生细胞珠粒的方法,所述方法包括:(a)提供多个细胞和多种聚合物或凝胶前体;(b)将所述多个细胞和所述多种聚合物或凝胶前体分配到多个分区中,其中在分配后,所述多个分区的分区包含所述多个细胞的细胞和所述聚合物或凝胶前体的至少一部分;以及(c)使所述分区经受适于使所述聚合物或凝胶前体交联或聚合以产生细胞珠粒的条件,其中所述细胞珠粒包封所述细胞。在一些实施方案中,所述方法还包括,在(b)之后,使所述细胞珠粒经受足以裂解所述细胞的条件。在一些实施方案中,所述足以裂解细胞的条件包括将所述细胞珠粒暴露于裂解剂。在一些实施方案中,所述足以裂解细胞的条件包括将细胞珠粒暴露于氢氧化钠、氢氧化钾、十二烷基硫酸钠、非离子型表面活性剂、皂苷、蛋白酶、裂解酶、冻融、紫外线、热或其任何组合。在一些实施方案中,非离子型表面活性剂是4-(1,1,3,3-四甲基丁基)苯基-聚乙二醇(Triton X-100)。在一些实施方案中,在(b)中,所述分区包含珠粒。在一些实施方案中,所述珠粒是磁珠。在一些实施方案中,磁珠是顺磁性颗粒。
本公开的另一方面提供了一种用于加工来自细胞的一种或多种核酸分子的方法,所述方法包括(a)提供多个细胞和多种聚合物或凝胶前体;(b)将所述多个细胞和所述多种聚合物或凝胶前体分配到多个分区中,其中在分配后,所述多个分区的分区包含(i)核酸分子、(ii)所述多个细胞的细胞和(iii)所述聚合物或凝胶前体的至少一部分;(c)使所述多个分区经受足以使所述聚合物或凝胶前体交联或聚合以形成多个细胞珠粒的条件;以及(d)将所述多个细胞珠粒和包含多个核酸条形码分子的多个条形码珠粒分配到另外的多个分区中,其中在分配后,所述另外的多个分区的分区包含所述细胞珠粒和所述条形码珠粒。在一些实施方案中,所述方法还包括,在(a)之后,使所述多个分区经受足以裂解所述多个细胞的条件,从而将所述核酸分子从所述细胞释放到所述分区中。在一些实施方案中,所述核酸分子是脱氧核糖核酸分子。在一些实施方案中,所述核酸分子是核糖核酸分子。在一些实施方案中,在(b)中,所述分区包含珠粒。在一些实施方案中,所述珠粒是磁珠。在一些实施方案中,磁珠是顺磁性颗粒。在一些实施方案中,所述方法还包括对所述核酸分子进行一种或多种反应。在一些实施方案中,所述方法还包括对所述核酸分子进行条形编码以产生带条形码的核酸分子。在一些实施方案中,所述方法还包括在(d)之后,从所述分区释放所述带条形码的核酸分子。在一些实施方案中,所述方法还包括对所述带条形码的核酸分子或其衍生物进行测序。
本公开的另一方面提供了一种包括机器可执行代码的非暂时性计算机可读介质,所述机器可执行代码在由一个或多个计算机处理器执行时实现上文或本文其它地方的任何方法。
本公开的另一方面提供了一种系统,所述系统包括一个或多个计算机处理器和与所述一个或多个计算机处理器耦接的计算机存储器。所述计算机存储器包括机器可执行代码,所述机器可执行代码在由所述一个或多个计算机处理器执行时实现上文或本文其它地方的任何方法。
本公开的额外方面和优点从以下详细说明变得为本领域技术人员显而易知,其中仅示出并描述本公开的说明性实施方案。应当认识到,本公开能够具有其它以及不同的实施方案,并且其若干细节能够在各种不同方面做出修改,所有均不脱离公开内容。因此,附图和说明书本质上被认为是说明性的而不是限制性的。
通过引用结合
本说明书中所提及的所有公开、专利以及专利申请在此通过引用结合,达到如同每一个单独的公开、专利或专利申请被专门地并且单独地指示通过引用结合的相同的程度。在以引用的方式并入的公布和专利或专利申请与本说明书中包含的公开内容相矛盾的程度上,本说明书意图取代和/或优先于任何这种矛盾的材料。
附图说明
本发明的新颖特征在附属权利要求中具体阐述。通过参考阐述说明性实施方案的以下详细描述和附图(在本文中也为“图(Figure)”和“图(FIG.)”)获得对本发明的特征和优点的更好理解,在所述说明性实施方案中利用本发明的原理,其中:
图1A示意性地示出用于产生包含带条形码珠粒和细胞珠粒(例如,包含细胞或细胞组分)的微滴的示例性方法;
图1B以照片方式示出用于产生细胞珠粒的示例性微流体构造;
图1C以照片方式示出用于产生包含带条形码珠粒和细胞珠粒的微滴的示例性微流体构造;
图1D以照片方式示出包含带条形码珠粒和用图1C所示的构造产生的细胞珠粒的微滴;
图2示意性地示出用于分配单独细胞或细胞小群组或细胞珠粒的微流体通道结构;
图3示意性地示出用于扩增和条形编码细胞的核酸的示例性过程;
图4提供在将序列数据归属于单独细胞或细胞组以用于其表征中使用细胞核酸的条形编码的示意图;
图5提供与标记的细胞结合配体缔合的细胞的示意图;
图6示出被编程或以其它方式配置来实现本文提供的方法的示例性计算机控制系统;
图7示出产生含有细胞珠粒和条形码珠粒的微滴并且从所述细胞珠粒的大分子组分产生序列读数的方法的流程图;
图8示出使用图7的方法产生的含有细胞珠粒和条形码珠粒的微滴;
图9示出产生含有细胞和条形码珠粒的微滴并且从所述细胞的大分子组分产生序列读数的方法的流程图;
图10示出产生含有细胞和条形码珠粒的微滴并且从所述细胞的大分子组分产生序列读数的方法的流程图;
图11示出产生含有交联的细胞和条形码珠粒的微滴并且从所述交联的细胞的大分子组分产生序列读数的方法的流程图;
图12示出使用图11的方法产生的含有交联的细胞和条形码珠粒的微滴;
图13示出产生含有细胞珠粒和条形码珠粒的微滴并且从所述细胞珠粒的大分子组分产生序列读数的方法的流程图;
图14示出使用图13的方法产生的含有细胞珠粒和条形码珠粒的微滴;
图15示出产生含有细胞珠粒、条形码珠粒的微滴并且从所述细胞珠粒的大分子组分产生序列读数的方法的流程图;
图16示出使用图15的方法产生的含有在其自身微滴中的细胞珠粒和条形码珠粒的微滴;
图17示出产生含有包被的细胞和条形码珠粒的微滴并且从所述包被的细胞的大分子组分产生序列读数的方法的流程图;
图18示出使用图17的方法产生的含有包被的细胞和条形码珠粒的微滴;
图19示出产生含有细胞和条形码珠粒的微滴并且从所述细胞的大分子组分产生序列读数的方法的流程图;
图20示出使用图19的方法产生的含有细胞和条形码珠粒的微滴;
图21示出使用模板的无引发扩增的文库制备的示例性方法;
图22A示出使用扩展条形编码方法对通过无引发扩增产生的扩增的模板进行条形编码的示例性方法;
图22B示出使用条形码连接方法的单链或双链模板对通过无引发扩增产生的扩增的模板进行条形编码的示例性方法;
图22C示出通过将单链DNA分子(具有条形码或引物序列)从3'端附接至珠粒而对通过无引发扩增产生的扩增的模板进行条形编码的示例方法;
图23示出用于保留长核酸区段和除去短核酸区段的示例性方法的示意图;
图24示出用于对来自细胞珠粒的核酸基因座进行扩增和条形编码的示例性方法的示意图;
图25显示出产生含有细胞珠粒的微滴的示例性方法的流程图;
图26A示意性地描绘包含细胞珠粒的示例性微滴;
图26B示意性地描绘包含第二细胞珠粒的示例性第一细胞珠粒;
图27示意性地描绘用于在细胞珠粒中产生细胞珠粒的示例性方法;
图28A和图28B是示出在细胞珠粒中示例性产生细胞珠粒的照片;
图29描绘从在细胞珠粒方法中的细胞珠粒中制备的样品获得的示例性测序数据;
图30描绘使用不同的轨道振荡条件描绘细胞珠粒中的细胞珠粒中的细胞的定中心的示例性数据;并且
图31示出用于将细胞珠粒和条形编码珠粒递送至微滴的微流体通道结构的实例。
具体实施方式
尽管本文已示出和描述了本发明的各种实施方案,但对于本领域技术人员来说将显而易见,此类实施方案仅作为举例提供。在不偏离本发明的情况下本领域的技术人员可想到众多变体、变化、以及替代。应了解可使用本文描述的本发明的实施方案的各种替代方案。
在将值描述为范围的情况下,应理解,这种公开内容包括在此类范围内的所有可能的子范围的公开内容,以及落入此类范围内的特定数值,而不管特定数值或特定子范围是否明确说明。
如本文所用,术语“条形码”通常是指传达关于分析物的信息或能够传达关于所述分析物的信息的标记或标识符。条形码可以是分析物的一部分。除了分析物的内源性特征(例如,分析物的大小或末端序列)之外,条形码可以是附接至分析物(例如,核酸分子)的标签或标签的组合。条形码可以是唯一的。条形码可具有各种不同的格式,例如,条形码可包括:多核苷酸条形码;随机核酸和/或氨基酸序列;和合成的核酸和/或氨基酸序列。条形码可以可逆或不可逆的方式附接至分析物。在样品测序之前、期间和/或之后,可将条形码添加至例如脱氧核糖核酸(DNA)或核糖核酸(RNA)样品的片段。条形码可允许实时鉴定和/或定量单独测序读数。
如本文所用,术语“受试者”通常是指动物,如哺乳动物物种(例如人)或禽类(例如鸟)物种,或其它生物体,如植物。受试者可以是脊椎动物、哺乳动物、小鼠、灵长类动物、猿猴或人。动物可包括但不限于农场动物、运动动物和宠物。受试者可以是健康或无症状的个体、患有或疑似患有疾病(例如癌症)或所述疾病倾向的个体或需要治疗或疑似需要治疗的个体。受试者可以是患者。
如本文所用,术语“基因组”通常是指受试者的遗传信息的整体。基因组可以在DNA或RNA中编码。基因组可包含编码蛋白质的编码区以及非编码区。基因组可包含生物体中所有染色体一起的序列。例如,人基因组具有总计46个染色体。所有这些的序列一起可构成人基因组。
术语“衔接子(adaptor)”、“衔接子(adapter)”和“标签”可同义使用。衔接子或标签可偶联至多核苷酸序列以通过任何方法(包括连接、杂交或其它方法)“标记”。
如本文所用,术语“测序”通常是指用于确定一种或多种多核苷酸中的核苷酸碱基的序列的方法和技术。多核苷酸可以是例如脱氧核糖核酸(DNA)或核糖核酸(RNA),包括其变体或衍生物(例如,单链DNA)。测序可通过目前可用的各种系统进行,如但不限于Illumina、Pacific Biosciences、Oxford Nanopore或Life Technologies(Ion Torrent)的测序系统。此类装置可提供对应于受试者(例如人)的遗传信息的多个原始遗传数据,如通过所述装置从受试者提供的样品产生的。在一些情况下,本文提供的系统和方法可与蛋白质组学信息一起使用。
如本文所用,术语“变体”通常是指遗传变体,如包含多态性的核酸分子。变体可以是结构变体或拷贝数变体,其可以是大于单核苷酸变体或短插入缺失的基因组变体。变体可以是受试者的核酸样品或基因组中的改变或多态性。单核苷酸多态性(SNP)是多态性的一种形式。多态性可包括单核苷酸变异(SNV)、插入、缺失、重复、小插入、小缺失、小重复、结构变体连接、可变长度串联重复和/或侧翼序列。拷贝数变体(CNV)、颠换和其它重排也是遗传变异的形式。基因组改变可以是碱基变化、插入、缺失、重复、拷贝数变异或颠换。
如本文所用,术语“珠粒”通常是指颗粒。珠粒可以是固体或半固体颗粒。珠粒可以是凝胶。珠粒可以由聚合物材料形成。珠粒可以是磁性的或非磁性的。
如本文所用,术语“样品”通常是指受试者的生物样品。所述生物样品可以是核酸样品或蛋白质样品。所述生物样品可源自另一样品。样品可以是组织样品,如活组织检查、芯活组织检查、针抽吸物或细针抽吸物。样品可以是流体样品,如血液样品、尿液样品或唾液样品。样品可以是皮肤样品。样品可以是面颊拭子。样品可以是血浆或血清样品。样品可以是无细胞或无细胞样品。无细胞样品可包括细胞外多核苷酸。细胞外多核苷酸可从身体样品分离,所述身体样品可选自由以下组成的组:血液、血浆、血清、尿液、唾液、粘膜分泌物、痰液、粪便和泪液。
如本文所用,术语“细胞珠粒”通常是指包含(例如,包封、含有等)细胞(例如,细胞、固定细胞、交联细胞)、病毒、细胞或病毒的组分或源自细胞或病毒的大分子成分的微粒材料。例如,细胞珠粒可包含病毒和/或细胞。在一些情况下,细胞珠粒包含单个细胞。在一些情况下,细胞珠粒可包含粘附在一起的多个细胞。细胞珠粒可包括任何类型的细胞,包括但不限于原核细胞、真核细胞、细菌、真菌、植物、哺乳动物或其它动物细胞类型、支原体、正常组织细胞、肿瘤细胞、T细胞(例如,CD4T细胞、包含人免疫缺陷病毒(HIV)的休眠拷贝的CD4T细胞)、固定细胞、交联细胞、来自细胞群体的稀有细胞或任何其它细胞类型,无论是源自单细胞还是多细胞生物体。此外,细胞珠粒可包含活细胞,例如像,细胞可能能够被培养。此外,在一些实例中,细胞珠粒可包含细胞的衍生物,如细胞的一种或多种组分(例如,细胞器、细胞蛋白、细胞核酸、基因组核酸、信使核糖核酸、核糖体、细胞酶等)。在一些实例中,细胞珠粒可包含从生物组织获得的材料,例如像从受试者获得的材料。在一些情况下,细胞、病毒或其大分子成分被包封在细胞珠粒内。包封可在形成细胞珠粒的结构组分的聚合物或凝胶基质内。在一些情况下,通过将细胞固定在固定培养基中或通过细胞的交联元件(如细胞膜、细胞骨架等)产生细胞珠粒。在一些情况下,珠粒可以或可以不在未包封在较大细胞珠粒内的情况下产生。
如本文所用,术语“稀有细胞”通常是指以相对低的浓度存在于样品中的细胞。稀有细胞可以是癌性细胞。癌性细胞可以是循环肿瘤细胞。稀有细胞可从体外受精(IVF)程序获得。稀有细胞可从显示遗传镶嵌性的个体获得。稀有细胞可从使用合成生物学技术产生的生物体获得。稀有细胞可以在所述细胞群体的102个细胞中至多约1个、103个细胞中至多约1个、104个细胞中至多约1个、105个细胞中至多约1个、106个细胞中至多约1个、107个细胞中至多约1个、108个细胞中至多约1个、109个细胞中至多约1个、1010个细胞中至多约1个、1011个细胞中至多约1个、1012个细胞中至多约1个、1013个细胞中至多约1个、1014个细胞中至多约1个或1015个细胞中至多约1个的浓度存在。稀有细胞可以再由任何两个前述值限定的范围内的浓度存在。
如本文所用,术语“大分子成分”通常是指为生物材料(例如,细胞、固定细胞、交联细胞、病毒等)的组分或源自所述生物材料的大分子。大分子成分可包含核酸。这种大分子可包封在细胞珠粒中。大分子成分可包含核酸。大分子成分可包括脱氧核糖核酸(DNA)或其变体或衍生物。大分子成分可包括核糖核酸(RNA)或其变体或衍生物。RNA可以是编码的或非编码的。例如,RNA可以是信使RNA(mRNA)、核糖体RNA(rRNA)或转移RNA(tRNA)。RNA可以是转录物。RNA可以是长度小于200个核酸碱基的小RNA,或长度大于200个核酸碱基的大RNA。小RNA可包括5.8S核糖体RNA(rRNA)、5S rRNA、转移RNA(tRNA)、微小RNA(miRNA)、小干扰RNA(siRNA)、小核仁RNA(snoRNA)、Piwi相互作用RNA(piRNA)、tRNA来源的小RNA(tsRNA)和小rDNA来源的RNA(srRNA)。RNA可以是双链RNA或单链RNA。RNA可以是环状RNA。大分子成分可包括蛋白质或其变体或衍生物。大分子成分可包括多核苷酸。大分子成分可包括多种多核苷酸。大分子成分可损害染色质或功能等效物。大分子成分可包括肽。大分子成分可包括多肽。大分子成分可包括多核苷酸/多肽复合物。
如本文所用,术语“标签”通常是指能够结合至大分子成分(例如,DNA、RNA或蛋白质)的材料。标签可以高亲和力结合至大分子成分。标签可以高特异性结合至大分子成分。标签可包含核苷酸序列。标签可包含寡核苷酸或多肽序列。标签可包含DNA适体。标签可以是或包含引物。标签可以是或包含蛋白质。标签可包含多肽。标签可以是或包括条形码,如条形码序列。标签可以是分子物质或原子物质(例如,原子粒子、原子粒子的集合或量子点)。
如本文所用,术语“微流体装置”通常是指被配置用于流体输送并具有流体可流动通过其的流体通道的装置,所述流体通道具有不大于约10毫米(mm)的至少一个尺寸。所述尺寸可以是长度、宽度或高度中的任一个。在一些情况下,微流体装置包括具有不大于约10mm的多个尺寸的流体通道。微流体装置还可包括多个流体通道,所述多个流体通道各自具有不大于约10mm的尺寸。微流体装置的给定流体通道的尺寸可根据例如通道和/或多个通道的特定构型以及装置中还包括的其它特征而变化。
在一些实例中,微流体装置的流体通道的尺寸可以是至多约10mm、至多约9mm、至多约8mm、至多约7mm、至多约6mm、至多约5mm、至多约4mm、至多约3mm、至多约2mm、至多约1mm、至多约900微米(μm)、至多约800μm、至多700μm、至多约600μm、至多约500μm、至多约400μm、至多约300μm、至多约200μm、至多约100μm、至多约90μm、至多约70μm、至多约60μm、至多约50μm、至多约40μm、至多约30μm、至多约20μm、至多约10μm、至多约8μm、至多约6μm、至多约4μm、至多约2μm、至多约1μm或更小。在一些实例中,微流体装置的流体通道的尺寸可以是至少约1μm、至少约2μm、至少约4μm、至少约6μm、至少约8μm、至少约10μm、至少约20μm、至少约30μm、至少约40μm、至少约50μm、至少约60μm、至少约70μm、至少约80μm、至少约90μm、至少约100μm、至少约200μm、至少约300μm、至少约400μm、至少约500μm、至少约600μm、至少约700μm、至少约800μm、至少约900μm、至少约1mm、至少约2mm、至少约3mm、至少约4mm、至少约5mm、至少约6mm、至少约7mm、至少约8mm、至少约9mm、至少约10mm或更大。
本文所述的微流体装置还可包括可例如有助于调节流体流动的任何另外的部件,如流体流动调节器(例如,泵、压力源等);有助于防止堵塞流体通道的特征(例如,通道中的漏斗特征;位于通道之间的储库、向流体通道提供流体的储库等)和/或从流体流中除去碎屑的特征,例如像过滤器。另外的微流体特征描述于美国专利公布号2015/0292988中,其以引用的方式整体并入本文。此外,微流体装置可被配置为流体芯片,所述流体芯片包括一个或多个储库,所述储库将流体供应至微流体通道的布置;并且还包括接收已经穿过微流体装置的流体的一个或多个储库。另外,微流体装置可由任何合适的材料(包括聚合物物质和玻璃)构成。
核酸测序技术在测序生物材料方面取得了实质性结果,包括提供关于个体生物体以及相对纯的生物样品的实质性序列信息。然而,这些系统传统上不能有效地鉴定和表征单细胞水平的细胞。
许多核酸测序技术衍生出它们从自组织或其它样品(如生物流体(例如血液、血浆等))获得的细胞集合测序的核酸。可加工细胞(例如,全部一起)以提取代表细胞群体的平均值的遗传材料,然后可将其加工成被配置用于给定测序技术的测序简易DNA文库。尽管经常就DNA或核酸而言论述,但是源自细胞的核酸可包括可进行加工以产生用于测序的cDNA的DNA或RNA,包括例如mRNA、总RNA等。在加工之后,在没有细胞特异性标志物的情况下,在这种整体方法中,可能有可能的是遗传物质归属为由细胞子集或单独细胞贡献的。
除了不能将特征归属于细胞或单独细胞的特定子集外,此类整体样品制备方法可从一开始就倾向于主要鉴定和表征细胞样品中的大多数成分,并且可能不被设计成挑选少数成分,例如,样品中由一个细胞、一些细胞或一小部分总细胞贡献的遗传物质。同样地,在分析例如mRNA的表达水平时,整体方法可倾向于从就表达水平而言不均匀的细胞群体呈现潜在不准确的数据。在一些情况下,在所分析的群体中的少数细胞中表达高并且在所述群体的大多数细胞中不存在时,整体方法可指示整个群体的低水平表达。
通过用于从这些样品产生测序文库的加工操作,可进一步放大这些不准确性。特别地,许多下一代测序技术(例如,大规模平行测序)可依赖于核酸片段的几何扩增(如经由聚合酶链式反应),以产生用于测序文库的足够DNA。然而,这种扩增可偏向于扩增样品中的大多数成分,并且可能无法保持此类少数成分和多数成分的起始比例。
虽然这些困难中的一些可通过利用不同的测序系统(如不需要扩增的单分子系统)来解决,但单分子系统以及其它下一代测序系统的整体测序方法也可具有大的输入DNA要求。例如,一些单分子测序系统可具有500纳克(ng)至高于10微克(μg)的样品输入DNA要求,这可能不能从单独细胞或甚至细胞小亚群获得。同样地,例如,可优化其它NGS系统以使样品中的样品DNA的起始量为大约50ng至约1μg。
本文公开了用于表征来自生物材料(例如细胞或病毒)的小群体的大分子成分、并且在一些情况下,用于表征来自单细胞的大分子成分的方法和系统。本文描述的方法可划分单独细胞或细胞小群体(包括例如来自单独细胞或细胞小群组的核酸)的分析,并且然后允许所述分析归属回至所述核酸所来源于的单独细胞或细胞小群组。无论细胞群体是代表细胞类型的50/50混合物、细胞类型的90/10混合物还是几乎任何细胞类型比例以及不同细胞类型的完全异质混合物或者这些之间的任何混合物,都可实现这一点。不同的细胞类型可包括来自个体的不同组织类型或来自不同个体的相同组织类型或生物有机体如来自不同属、种、菌株、变体或任何或所有前述的任何组合的微生物的细胞。例如,不同的细胞类型可包括来自个体的正常和肿瘤组织、从人受试者获得的各种细胞类型如各种免疫细胞(例如,B细胞、T细胞等)、来自环境、法医、微生物组或其它样品的多种不同的细菌物种、菌株和/或变体或细胞类型的任何各种其它混合物。
在一个方面,本文描述的方法和系统提供将来自样品的细胞或病毒(例如,细胞)或细胞或病毒的大分子成分从划分、沉积或分配到离散的区室或分区(在本文中可互换地称为分区)中,其中每个分区保持其自己的内容午与其它分区的内容物的分离。这些分区本身可被分配到另外的分区,例如像微滴或孔中。可在先前、随后或同时将独特标识符(例如条形码)递送至所述细胞或病毒或者所述细胞或病毒的大分子成分,以便允许稍后将所述细胞或病毒的特征归属于特定区室。条形码可经由任何合适的机制例如在寡核苷酸上递送至分区。
用于产生包括包封细胞(例如,固定细胞、交联细胞)或病毒或其大分子成分的分区和条形码的分区的示例性方法100的概述在图1A中示意性地描绘。方法100包括三个不同的阶段110、120和130,其对应于包含细胞或病毒或其大分子成分的细胞珠粒的产生(110);溶剂交换以使产生的分区进入水相,细胞或病毒裂解和所述细胞或病毒或者所述细胞或病毒的大分子成分的变性(120);以及产生包含产生的细胞珠粒和条形码以及随后的标记(例如,条形编码)的分区(130)。关于阶段110,将油101、聚合物或凝胶前体102和细胞103提供至微流体芯片104。图1B中示出示例性微流体芯片104的照片。如图1B所示,微流体芯片104包括用于油101、聚合物或凝胶前体102和细胞或病毒试剂103的多个储库。聚合物或凝胶前体102和细胞或病毒试剂103从它们的储库流动(例如,经由施加的力的作用,如经由真空的负压或经由泵的正压)至第一通道接点,在所述接点处它们组合以形成水性流。然后使此水性流流动至第二通道接点,油101也被提供至所述接点。从所述第一通道接点提供的水性流与油101不混溶,从而导致在油中产生水性微滴的悬浮液,所述悬浮液然后流动至储库105并代表来自微流体过程的产物105。可经由任何合适的策略在微流体芯片104内控制流动,所述合适的策略包括在通道或各种通道中使用一个或多个流量调节器、微流体通道的尺寸设定等。如图1A和图1B所示,产品包含微滴105,所述微滴包含来自细胞103的细胞和聚合物或凝胶前体102。
继续图1A,然后使微滴105经受适于使微滴105中的聚合物或凝胶前体102聚合或胶凝的条件,其产生包封微滴105中的细胞或病毒试剂103(例如,细胞、固定细胞、交联的细胞、细胞的组分)的细胞珠粒106。当所得细胞珠粒106悬浮在油中时,引发相120,所述相包括溶剂交换111以将细胞珠粒106重悬于水相中。关于溶剂交换的另外细节和实例在本文其它地方提供。
然后,重悬浮的细胞珠粒106可本体地经受适合裂解与细胞珠粒106相关的细胞或病毒的条件,并且单独地或同时地还本体地经受使源自与细胞珠粒106相关的细胞或病毒的核酸变性的条件。细胞珠粒106的聚合物基质有效地阻碍或阻止较大分子(如核酸)从细胞珠粒106扩散。细胞珠粒106对于变性剂是足够多孔的,所述变性剂允许细胞珠粒106内的捕获的核酸变性。在一些情况下,然后可将细胞珠粒本体地经受适于对源自与细胞珠粒106相关的细胞或病毒的核酸进行一种或多种反应的条件。关于对核酸的反应的另外细节和实例在本文其它地方提供。然后收集114所得细胞珠粒113,并且可在开始阶段130之前储存。
在阶段130中,产生包含细胞珠粒113的微滴和包含条形码序列的条形码珠粒(例如,凝胶珠粒)122。如图1A所示,将油121、各自包含条形码序列(例如,每个珠粒包含唯一条形码序列)的细胞珠粒113和条形码珠粒122提供至微流体芯片123。图1C中示出示例性微流体芯片123的照片。如图1C所示,微流体芯片123包括用于油121、细胞珠粒113和条形码珠粒122的多个储库。所述芯片还包括可用于将另外的试剂(例如,用于核酸扩增的试剂、可降解或溶解细胞珠粒113和/或条形码珠粒122的试剂、降解条形码与条形码珠粒122之间的连键的试剂等)提供至阶段130的另外储库127和128。细胞珠粒113和条形码珠粒122从它们的储库流动(例如,经由施加的力的作用,如经由真空的负压或经由泵的正压)至第一通道接点,在所述接点处它们组合以形成水性混合物。来自储库127和128的材料也可在第一通道接点处提供至混合物。
或者,细胞珠粒和条形码珠粒可在引入微流体芯片中之前混合。在这种情况下,微流体芯片123的单个储库包括细胞珠粒和条形码珠粒的混合物。可改变所述混合物中细胞珠粒与条形码珠粒的比例,以改变所产生的包含单个细胞珠粒和单个条形码珠粒的微滴的数量。细胞珠粒和条形码珠粒的混合物可从储库流动(例如,经由施加的力的作用,如经由真空的负压或经由泵的正压)至第一通道接点,在一些情况下与来自储库127和/或128的材料一起。作为替代或补充,细胞可与条形码珠粒混合。例如,细胞和细胞珠粒的集合可与条形码珠粒混合,或者细胞集合可与条形码珠粒混合。
在一些实例中,然后使包含细胞珠粒(或细胞)、条形码珠粒和在一些情况下另外的试剂的混合物流动至第二通道接点,还向所述接点提供油121。从所述第一通道接点提供的水性混合物与油121不混溶,从而导致在油中产生水性微滴125的悬浮液,所述悬浮液然后流动至储库125并代表来自微流体过程的产物。微流体芯片还可以包括储库129,所述储库可接收来自从第二通道出来的流的过量油。可经由任何合适的策略在微流体芯片123内控制流量,包括在通道中使用一个或多个流量调节器(参见图1C和图1D)或连接通道、使用各种通道、通道的尺寸设定等。如图1A和图1C所示,除了由储库127和128提供的任何其它试剂外,产品还包含含有细胞珠粒113和条形码珠粒122的微滴125。在一些情况下,微滴125的给定微滴包含单个细胞珠粒和单个条形码珠粒。
当降解或溶解细胞珠粒113、条形码珠粒122和/或条形码与条形码珠粒122之间的连键的试剂存在于微滴中时,这些试剂可从细胞珠粒113释放捕获在细胞珠粒113中的核酸并释放来自条形码珠粒122的条形码。释放的条形码然后可与释放的核酸相互作用以产生用于核酸测序的带条形码构建体,如本文其它地方所述。当给定微滴包含单个细胞珠粒和含有具有共同条形码序列的寡核苷酸的单个条形码珠粒时,由给定微滴125产生的给定测序构建体可经由其条形码序列与给定细胞珠粒的细胞或病毒相关联。
图1D以照片方式描绘两个示例性运行,其展示使用图1A中所示的示例性方法以及图1B和图1C中描绘的微流体装置产生包含细胞珠粒和条形码珠粒的微滴125。在图1D(图A)中,示出包含细胞珠粒和条形码珠粒的微滴,并且在图1D(图B)中示出包含含有磁性材料和条形码珠粒的细胞珠粒的微滴。
图31示出用于将携带珠粒子的条形码递送至微滴的微流体通道结构3100的实例。通道结构3100可包括在通道接点3110处连通的通道区段3101、3102、3104、3106和3108。在操作中,通道区段3101可将包含多个珠粒3114(例如,具有核酸分子、寡核苷酸、分子标签)的水性流体3112沿着通道区段3101输送至接点3110中。多个珠粒3114可源自珠粒的悬浮液。例如,通道区段3101可连接至包括珠粒3114的水性悬浮液的储库。通道区段3102可将包含多个细胞珠粒3116的水性流体3112沿着通道区段3102输送至接点3110中。多个细胞珠粒3116可源自细胞珠粒的悬浮液。例如,通道区段3102可连接至包括细胞珠粒3116的水性悬浮液的储库。在一些情况下,第一通道区段3101或第二通道区段3102中或两个区段中的水性流体3112可包含一种或多种试剂,如下文进一步描述的。与水性流体3112(例如油)不混溶的第二流体3118可从通道区段3104和3106中的每一个递送至接点3110。在来自通道区段3101和3102中的每一个的水性流体3112以及来自通道区段3104和3106中的每一个的第二流体3118在通道接点3110处汇合时,水性流体3112可被分配为第二流体3118中的离散微滴3120并且沿着通道区段3108流动远离接点3110。通道区段3108可将离散的微滴递送至流体连接至通道区段3108的出口储库,它们可被收获在其中。
作为替代方案,通道区段3101和3102可在接点3110上游的另一个接点处汇合。在这种接点处,珠粒和细胞珠粒可形成混合物,所述混合物沿着另一个通道被引导至接点3110以产生微滴3120。所述混合物可交替方式提供珠粒和细胞珠粒,以使得例如微滴包含单个珠粒和单个细胞珠粒。
珠粒、细胞珠粒和微滴可以基本上规则的流动剖面(例如,以常规流速)沿着通道流动。此类规则的流动剖面可允许微滴包含单个珠粒和单个细胞珠粒。此类规则的流动剖面可允许微滴具有大于5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或95%的占用率(例如,具有珠粒和细胞珠粒的微滴)。在例如美国专利公布号2015/0292988中提供了此类规则流动剖面和可用于提供此类规则流动剖面的装置,所述专利以引用的方式整体并入本文。
第二流体3118可包含油,如氟化油,其包括用于稳定所得微滴、例如抑制所得微滴3120的随后聚结的含氟表面活性剂。
所产生的离散微滴可包含单个细胞珠粒3116。所产生的离散微滴可包含条形码或携带珠粒3114的其它试剂。所产生的离散微滴可包含单独细胞珠粒和携带珠粒的条形码,如微滴3120。在一些情况下,离散的微滴可包含多于一个单独细胞珠粒或不含细胞珠粒。在一些情况下,离散的微滴可包含多于一个珠粒或不含珠粒。离散的微滴可未被占用(例如,没有珠粒、没有细胞珠粒)。
有利地,分配细胞珠粒和携带条形码的珠粒的离散微滴可有效地允许条形码归属于分区内的细胞珠粒的大分子成分。分区的内容物可与其它分区的内容物保持离散。
如应了解,可将本文所述的通道区段联接至多种不同流体来源或接收部件(包括储库、管道、歧管)或其它系统的流体部件中的任一种。如将理解的,微流体通道结构3100可具有其它几何形状。例如,微流体通道结构可具有多于一个通道接点。例如,微流体通道结构可具有2、3、4或5个通道区段,所述通道区段各自携带在通道接点处汇合的珠粒。可经由一个或多个流体流动单元引导流体沿一个或多个通道或储库流动。流体流动单元可包括压缩机(例如,提供正压)、泵(例如,提供负压)、致动器等以控制流体的流动。还可或另外经由施加的压力差、离心力、电动泵送、真空、毛细管或重力流等控制流体。
分区可以是微滴。可通过使第一相与同第一相不混溶的第二相接触来形成微滴。作为替代方案,所述分区可以是作为多个孔的一部分的孔。作为另一个替代方案,所述分区可以是作为多个腔室的一部分的腔室。分区可彼此流体地隔离。
在一些实施方案中,将带条形码寡核苷酸经由微胶囊(如珠粒(例如凝胶珠粒)或微滴)递送至分区。在一些情况下,带条形码寡核苷酸最初与微胶囊缔合,并且然后在施加刺激时从所述微胶囊释放,所述刺激允许所述寡核苷酸解离或从所述微胶囊释放。
在一些实施方案中,微胶囊包含珠粒,如包含珠粒的微滴。作为替代方案,微胶囊可以是珠粒(例如,凝胶珠粒)。在一些实施方案中,珠粒可以是多孔的、无孔的、固体的、半固体的、半流体的或流体的。在一些实施方案中,珠粒可以是可溶解的、可破裂的或可降解的。在一些情况下,珠粒可能不可降解。珠粒可以是固体或半固体颗粒。在一些实施方案中,珠粒可以是凝胶珠粒。凝胶珠粒可以是水凝胶珠粒。凝胶珠粒可由分子前体,如聚合物或单体物质形成。半固体珠粒可以是脂质体珠粒。固体珠粒可包含金属,包括氧化铁、金和银。在一些情况下,珠粒可以是二氧化硅珠粒。在一些情况下,珠粒是刚性的。在一些情况下,珠粒可以是柔性的和/或可压缩的。
在一些实施方案中,珠粒可含有分子前体(例如,单体或聚合物),其可经由所述前体的聚合形成聚合物网络。在一些情况下,前体可以是能够经由例如化学交联进行进一步聚合的已经聚合的物质。在一些情况下,前体包含丙烯酰胺或甲基丙烯酰胺单体、低聚物或聚合物中的一种或多种。在一些情况下,珠粒可包含预聚物,所述预聚物是能够进一步聚合的低聚物。例如,可使用预聚物制备聚氨酯珠粒。在一些情况下,珠粒可含有可进一步聚合在一起的单独聚合物。在一些情况下,可经由不同前体的聚合产生珠粒,以使得它们包含混合聚合物、共聚物和/或嵌段共聚物。
珠粒可包含天然和/或合成材料。例如,聚合物可以是天然聚合物或合成聚合物。在一些情况下,珠粒包含天然聚合物和合成聚合物。天然聚合物的实例包括蛋白质和糖,如脱氧核糖核酸、橡胶、纤维素、淀粉(例如,直链淀粉、支链淀粉)、蛋白质、酶、多糖、丝、聚羟基烷酸酯、壳聚糖、葡聚糖、胶原、角叉菜胶、卵叶车前子、阿拉伯树胶、琼脂、明胶、虫胶、刺梧桐胶、黄原胶、玉米糖胶、瓜尔胶、刺梧桐树胶、琼脂糖、海藻酸、藻酸盐或其天然聚合物。合成聚合物的实例包括丙烯酸、尼龙、硅酮、氨纶、粘胶人造丝、聚羧酸、聚乙酸乙烯酯、聚丙烯酰胺、聚丙烯酸酯、聚乙二醇、聚氨酯、聚乳酸、二氧化硅、聚苯乙烯、聚丙烯腈、聚丁二烯、聚碳酸酯、聚乙烯、聚对苯二甲酸乙二醇酯、聚(氯三氟乙烯)、聚(环氧乙烷)、聚(对苯二甲酸乙二醇酯)、聚乙烯、聚异丁烯、聚(甲基丙烯酸甲酯)、聚(甲醛)、聚甲醛、聚丙烯、聚苯乙烯、聚(四氟乙烯)、聚(乙酸乙烯酯)、聚(乙烯醇)、聚(氯乙烯)、聚(偏二氯乙烯)、聚(偏二氟乙烯)、聚(氟乙烯)以及其组合(例如共聚物)。珠粒也可由除聚合物以外的材料,包括脂质、胶束、陶瓷、玻璃陶瓷、材料复合物、金属、其它无机材料等形成。
在一些情况下,化学交联剂可以是用于在单体聚合期间交联单体的前体和/或可用于将寡核苷酸(例如,带条形码寡核苷酸)附接至珠粒。在一些情况下,聚合物可进一步与交联剂物质或其它类型的单体聚合以产生另外的聚合物网络。化学交联剂(本文中也称为“交联剂(crosslinker)”或“交联剂(crosslinker agent)”)的非限制性实例包括胱胺、戊二醛、辛二亚氨酸二甲酯、N-羟基琥珀酰亚胺交联剂BS3、甲醛、碳二亚胺(EDC)、SMCC、磺基-SMCC、乙烯基硅烷、N,N’二烯丙基酒石酸二酰胺(DATD)、N,N’-双(丙烯酰基)胱胺(BAC)或其同系物。在一些情况下,本公开中使用的交联剂含有胱胺。
交联可以是永久性的或可逆的,这取决于所用的特定交联剂。可逆交联可允许聚合物在适当条件下线性化或解离。在一些情况下,可逆交联还可允许结合至珠粒表面的材料的可逆附接。在一些情况下,交联剂可形成二硫连键。在一些情况下,形成二硫连键的化学交联剂可以是胱胺或改性的胱胺。
在一些实施方案中,二硫连键可在分子前体单元(例如,单体、低聚物或线性聚合物)或并入珠粒中的前体与寡核苷酸之间形成。胱胺(包括改性的胱胺)例如是包含二硫键的有机剂,其可用作珠粒的单独单体或聚合物前体之间的交联剂。聚丙烯酰胺可在胱胺或包含胱胺(例如,改性的胱胺)的物质存在下聚合,以产生包含二硫连键的聚丙烯酰胺凝胶珠粒(例如,包含可化学还原的交联剂的可化学降解的珠粒)。所述二硫连键可允许珠粒在所述珠粒暴露于还原剂时降解(或溶解)。
在一些实施方案中,壳聚糖(线性多糖聚合物)可经由亲水链与戊二醛交联以形成珠粒。壳聚糖聚合物的交联可通过化学反应来实现,所述化学反应通过热、压力、pH的变化和/或辐射引发。
在一些实施方案中,珠粒可包含聚合物前体(例如,单体、低聚物、线性聚合物)、寡核苷酸、引物和其它实体之间的共价键或离子键。在一些情况下,共价键包含碳-碳键或硫醚键。
在一些情况下,珠粒可包含acrydite部分,其在某些方面可用于将一种或多种寡核苷酸(例如条形码序列、带条形码寡核苷酸、引物或其它寡核苷酸)附接至珠粒。在一些情况下,acrydite部分可指由acrydite与一种或多种物质的反应,如acrydite与其它单体和交联剂在聚合反应期间的反应产生的acrydite类似物。Acrydite部分可被修饰为与待附接的物质如寡核苷酸(例如条形码序列、带条形码寡核苷酸、引物或其它寡核苷酸)形成化学键。Acrydite部分可用能够形成二硫键的硫醇基团修饰,或者可用已经包含二硫键的基团修饰。硫醇或二硫化物(经由二硫化物交换)可用作待附接的物质的锚定点,或者acrydite部分的另一部分可用于附接。在一些情况下,附接是可逆的,以使得当二硫键断裂时(例如,在还原剂存在下),附接的物质从珠粒释放。在其它情况下,acrydite部分包含可用于附接的反应性羟基。
用于附接寡核苷酸的珠粒的官能化可通过多种不同的方法实现,所述方法包括活化聚合物内的化学基团、在聚合物结构中并入活性或可活化的官能团或者在珠粒生产中的预聚物或单体阶段附接。
例如,聚合以形成珠粒的前体(例如单体、交联剂)可包含acrydite部分,以使得当产生珠粒时,所述珠粒也包含acrydite部分。所述acrydite部分可附接至寡核苷酸如引物(例如,用于扩增靶核酸的引物、带条形码寡核苷酸等)以并入珠粒中。在一些情况下,所述引物包含用于附接至用于Illumina测序的测序流动池的P5序列。在一些情况下,所述引物包含用于附接至用于Illumina测序的测序流动池的P7序列。在一些情况下,所述引物包含条形码序列。在一些情况下,所述引物还包含独特分子标识符(UMI)。在一些情况下,所述引物包含用于Illumina测序的R1引物序列。在一些情况下,所述引物包含用于Illumina测序的R2引物序列。
在一些情况下,包含反应性或能够被活化以使其变得反应性的官能团的前体可与其它前体聚合以产生包含活化的或可活化官能团的凝胶珠粒。然后可使用官能团来将另外的物质(例如,二硫化物接头、引物、其它寡核苷酸等)附接至凝胶珠粒。例如,包含羧酸(COOH)基团的一些前体可与其它前体共聚合以形成也包含COOH官能团的凝胶珠粒。在一些情况下,丙烯酸(包含游离COOH基团的物质)、丙烯酰胺和双(丙烯酰基)胱胺可共聚合在一起以产生包含游离COOH基团的凝胶珠粒。可活化凝胶珠粒的COOH基团(例如,经由1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)或氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉鎓(DMTMM)),以使得它们是反应性的(例如,与胺官能团反应,其中EDC/NHS或DMTMM用于活化)。活化的COOH基团然后可与适当的物质(例如,包含胺官能团的物质,其中羧酸基团被活化以与胺官能团反应)反应,所述物质包含待连接至珠粒的部分。
在其聚合物网络中包含二硫连键的珠粒可经由将一些二硫连键还原成游离硫醇而用另外的物质官能化。二硫连键可经由例如还原剂(例如DTT、TCEP等)的作用来还原以产生游离硫醇基团而不溶解珠粒。珠粒的游离硫醇然后可与物质或包含另一个二硫键的物质的游离硫醇(例如,经由硫醇-二硫化物交换)反应,以使得所述物质可连接至珠粒(例如,经由产生的二硫键)。在一些情况下,珠粒的游离硫醇可与任何其它合适的基团反应。例如,珠粒的游离硫醇可与包含acrydite部分的物质反应。珠粒的游离硫醇基团可经由迈克尔加成化学与丙烯酸酯反应,以使得包含acrydite的物质连接至珠粒。在一些情况下,可通过包含硫醇封端剂如N-乙基马来酰胺或碘乙酸酯来防止不受控制的反应。
可控制珠粒内二硫连键的活化,以使得活化少量二硫连键。可例如通过控制用于产生游离硫醇基团的还原剂的浓度和/或用于在珠粒聚合中形成二硫键的试剂的浓度来施加控制。在一些情况下,可使用低浓度(例如,小于约10,000、小于约100,000、小于约1,000,000、小于约10,000,000、小于约100,000,000、小于约1,000,000,000、小于约10,000,000,000或小于约100,000,000,000还原剂分子:凝胶珠粒比率)的还原剂进行还原。控制被还原为游离硫醇的二硫连键的数量可用于确保官能化期间的珠粒结构完整性。在一些情况下,光学活性剂(如荧光染料)可经由珠粒的游离硫醇基团与珠粒偶联,并用于量化珠粒中存在的游离硫醇的数量和/或追踪珠粒。
在一些情况下,在凝胶珠粒形成后向凝胶珠粒添加部分可以是有利的。例如,在凝胶珠粒形成后添加寡核苷酸(例如,带条形码寡核苷酸)可避免在聚合期间可能发生的链转移终止期间物质的损失。此外,较小的前体(例如,不包含侧链基团和连接的部分的单体或交联剂)可用于聚合,并且由于粘性效应可最小程度地阻止生长链端。在一些情况下,在凝胶珠粒合成后的官能化可使物质(例如,寡核苷酸)的暴露最小化,以负载潜在的破坏剂(例如,自由基)和/或化学环境。在一些情况下,所产生的凝胶可具有上临界溶解温度(UCST),其可允许温度驱动的溶胀和珠粒的塌陷。在随后用寡核苷酸官能化珠粒期间,这种功能可帮助寡核苷酸(例如,引物)渗入珠粒中。生产后官能化也可用于控制珠粒中物质的负载比例,以使得例如负载比例的可变性最小化。物质负载也可在分批过程中进行,以使得多个珠粒可在单个批次中用所述物质官能化。
在一些情况下,珠粒可非共价地负载一种或多种试剂。珠粒可通过例如使珠粒经受足以使珠粒溶胀的条件而非共价负载,从而允许试剂有足够的时间扩散到珠粒的内部,并使珠粒经受足以使珠粒消溶胀的条件。珠粒的溶胀可例如通过将珠粒置于热力学上有利的溶剂中、使珠粒经受更高或更低的温度或温度变化、使珠粒经受更高或更低的离子浓度和/或使珠粒经受电场来实现。珠粒的消溶胀可例如通过在热力学上不利的溶剂中转移珠粒、使珠粒经受不同于用于使珠粒溶胀的更低或更高的温度或温度变化、使珠粒经受不同于用于使珠粒溶胀的更低或更高的离子浓度和/或除去电场来实现。
转移珠粒可导致珠粒中的孔隙收缩。这种收缩然后可阻碍珠粒内的试剂扩散出珠粒的内部。阻碍可能是由于试剂与珠粒内部之间的空间相互作用。转移可微流体地完成。例如,可通过将珠粒从一种共流动溶剂流移动至不同的共流动溶剂流中来实现转移。可通过改变珠粒的聚合物组成来调节珠粒的溶胀性和/或孔径。
在一些情况下,连接至前体的acrydite部分、连接至前体的另一种物质或前体本身包含不稳定键,如化学、热或光敏感键,例如二硫键、UV敏感键等。一旦acrydite部分或包含不稳定键的其它部分并入到珠粒中,所述珠粒也可包含不稳定键。不稳定键可例如用于将物质(例如,条形码、引物等)可逆地连接(例如,共价连接)至珠粒。在一些情况下,热不稳定键可包括基于核酸杂交的附接,例如,其中寡核苷酸与附接至珠粒的互补序列杂交,以使得杂合体的热解链从所述珠粒或微胶囊释放寡核苷酸,例如含条形码的序列。
向凝胶珠粒添加多种类型的不稳定键可导致产生能够响应于不同刺激的珠粒。每种类型的不稳定键可对相关的刺激(例如,化学刺激、光、温度等)敏感,以使得可通过施加适当的刺激来控制经由每个不稳定键附接至珠粒的物质的释放。这种功能可用于从凝胶珠粒中控制释放物质。在一些情况下,包含不稳定键的另一种物质可在凝胶珠粒形成后经由例如如上所述的凝胶珠粒的活化的官能团连接至凝胶珠粒。可释放地、可裂解地或可逆地附接至本文所述的珠粒的条形码包括通过裂解条形码分子与珠粒之间的连键而释放或可释放或通过下面的珠珠粒本身的降解释放的条形码,从而允许条形码通过其它试剂访问或可访问,或两者。
如本文所述可释放的条形码有时可被称为可活化的,因为它们一旦释放就可用于反应。因此,例如,可通过从珠粒(或本文所述的其它合适类型的分区)释放条形码来活化可活化的条形码。在所描述的方法和系统的背景下还设想了其它可活化配置。
除了热可裂解的键、二硫键和UV敏感键以外,可偶联至前体或珠粒的不稳定键的其它非限制性实例包括酯连键(例如,可用酸、碱或羟胺裂解)、邻位二醇连键(例如,可经由高碘酸钠裂解)、狄尔斯-阿尔德(Diels-Alder)连键(例如,可经由热裂解)、砜连键(例如,可经由碱裂解)、甲硅烷基醚连键(例如,可经由酸裂解)、糖苷连键(例如,可经由淀粉酶裂解)、肽连键(例如,可经由蛋白酶裂解)或磷酸二酯连键(例如,可经由核酸酶(例如,DNA酶)裂解)。
不参与聚合的物质也可在珠粒产生期间(例如,在前体聚合期间)包封在珠粒中。此类物质可进入聚合反应混合物中,以使得产生的珠粒在珠粒形成时包含所述物质。在一些情况下,可在形成后将此类物质添加至凝胶珠粒。此类物质可包括例如,寡核苷酸、包括本文所述的那些的用于核酸扩增反应的试剂(例如,引物(例如随机引物、对给定DNA基因座具有特异性的引物)、聚合酶、核苷酸(例如未修饰的核苷酸、修饰的核苷酸或非规范)、辅因子(例如,离子辅因子))、用于酶促反应的试剂(例如,酶、辅因子、底物)、用于逆转录的试剂(例如寡核苷酸引物或逆转录酶)或用于核酸修饰反应如聚合、连接、消化、甲基化、随机诱变、亚硫酸氢盐转化、尿嘧啶水解、核酸修复、核酸插入或裂解(例如经由CRISPR/Cas9介导的或转座子介导的插入或裂解)、加帽或脱帽的试剂。捕获此类物质可通过在前体聚合期间产生的聚合物网络密度、控制凝胶珠粒内的离子电荷(例如,经由连接至聚合物质的离子物质)或通过释放其它物质来进行控制。在珠粒降解时和/或通过施加能够从珠粒释放物质的刺激,可从珠粒释放包封的物质。在一些情况下,条形码序列(例如,包含条形码序列的寡核苷酸)也可包封在珠粒内,并且在一些情况下,可经由珠粒降解和/或通过施加能够从珠粒释放物种的刺激而从珠粒释放。
珠粒可具有均匀的尺寸或不均匀的尺寸。在一些情况下,珠粒的直径可以是约1μm、5μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、250μm、500μm或1mm。在一些情况下,珠粒可具有至少约1μm、5μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、250μm、500μm、1mm或更大的直径。在一些情况下,珠粒可具有小于约1μm、5μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、250μm、500μm或1mm的直径。在一些情况下,珠粒可具有在约40-75μm、30-75μm、20-75μm、40-85μm、40-95μm、20-100μm、10-100μm、1-100μm、20-250μm或20-500μm的范围内。
在某些方面,珠粒被提供为一群或多个具有相对单分散尺寸分布的珠粒。为了在分区内提供相对一致量的试剂,保持相对一致的珠粒特性(如尺寸)可有助于整体一致性。特别地,本文所述的珠粒可具有尺寸分布,所述尺寸分布具有小于50%、小于40%、小于30%、小于20%并且在一些情况下小于15%、小于10%或小于5%的其横截面尺寸的变异系数。
珠粒可具有任何合适的形状。珠粒形状的实例包括但不限于球形、非球形、卵形、椭圆形、无定形、圆形、圆柱形以及其变化。
除了珠粒与相关分子(例如,以上所述的含有条形码的寡核苷酸)之间的可裂解连键之外或作为其替代,珠粒可自发地或在暴露于一种或多种刺激(例如,温度变化、pH变化、暴露于特定化学物质或相、暴露于光、还原剂等)时可降解、可破坏或可溶解。在一些情况下,珠粒可以是可溶解的,以使得珠粒的材料组分在暴露于特定化学物质或环境变化(如变化温度或pH变化)时溶解。在一些情况下,凝胶珠粒在升高的温度和/或在碱性条件下降解或溶解。在一些情况下,珠粒可以是可热降解的,以使得当珠粒暴露于适当的温度变化(例如,热)时,所述珠粒降解。结合至物质(例如,寡核苷酸,例如带条形码寡核苷酸)的珠粒的降解或溶解可导致所述物质从所述珠粒释放。
可降解珠粒可包含一种或多种具有不稳定键的物质,以使得当所述珠粒/物质暴露于适当的刺激时,键被破坏并且珠粒降解。不稳定键可以是化学键(例如,共价键、离子键)或者可以是另一种类型的物理相互作用(例如,范德华相互作用、偶极-偶极相互作用等)。在一些情况下,用于产生珠粒的交联剂可包含不稳定键。在暴露于适当的条件下,可破坏不稳定的键并且珠粒降解。例如,在将包含胱胺交联剂的聚丙烯酰胺凝胶珠粒暴露于还原剂时,可破坏胱胺的二硫键并且珠粒降解。
与不降解的珠粒相比,当将适当的刺激施加至珠粒时,可降解的珠粒可用于更快地从珠粒释放附接的物质(例如,寡核苷酸、条形码序列、引物等)。例如,对于与多孔珠粒的内表面结合的物质或在包封的物质的情况下,所述物质在珠粒降解后可具有更大的迁移率和对溶液中其它物质的可接近性。在一些情况下,物质也可经由可降解的接头(例如,二硫化物接头)附接至可降解的珠粒。可降解的接头可与可降解珠粒响应于相同的刺激,或者两种可降解物质可响应于不同的刺激。例如,条形码序列可经由二硫键附接至包含胱胺的聚丙烯酰胺珠粒。在带条形码珠粒暴露于还原剂后,所述珠粒降解并且条形码序列在条形码序列与珠粒之间的二硫连键以及珠粒中胱胺的二硫连键两者断裂时释放。
可将可降解珠粒引入分区,如乳液或孔的微滴,以使得所述珠粒在分区内降解,并且当施加适当的刺激时,任何缔合的物质(例如,寡核苷酸)在所述微滴内释放。游离物质(例如,寡核苷酸)可与分区中包含的其它试剂相互作用。例如,包含胱胺并经由二硫键连接至条形码序列的聚丙烯酰胺珠粒可与油包水乳液的微滴内的还原剂组合。在微滴内,还原剂使各种二硫键断裂,从而导致珠粒降解并将条形码序列释放到微滴的水性内部环境中。在另一个实例中,在碱性溶液中加热包含珠粒结合的条形码序列的微滴也可导致珠粒降解并将附接的条形码序列释放到微滴的水性内部环境中。
虽然被称为珠粒的降解,但在如上所述的许多情况下,降解可指结合或夹带的物质从珠粒解离,有或没有结构上降解物理珠粒本身。例如,由于例如改变化学环境,可通过渗透压差从珠粒释放夹带的物质。举例来说,由于渗透压差所致的珠粒孔径的改变通常可在没有珠粒本身的结构降解的情况下发生。在一些情况下,由于珠粒的渗透膨胀所致的孔径增加可允许珠粒内的夹带物质的释放。在其它情况下,由于孔径收缩,珠粒的渗透收缩可使得珠粒更好地保留夹带的物质。
在提供可降解珠粒的情况下,避免使此类珠粒暴露于在必要的时间之前引起这种降解的一种或多种刺激可能是有帮助的,以避免过早珠粒降解和由这种降解引起的问题,包括例如较差流动特性和聚集。举例来说,其中珠粒包含可还原的交联基团,如二硫化物基团,避免使此类珠粒与还原剂,例如DTT或其它二硫化物裂解试剂接触可能是有帮助的。在此类情况下,对本文所述珠粒的处理在一些情况下将在不含还原剂如DTT的情况下提供。因为通常在商业酶制剂中提供还原剂,所以提供不含还原剂(或不含DTT)的酶制剂来处理本文所述的珠粒可能是有帮助的。此类酶的实例包括例如聚合酶制剂、逆转录酶制剂、连接酶制剂以及可用于处理本文所述珠粒的许多其它酶制剂。术语“不含还原剂”或“不含DTT”制剂可指具有小于1/10、小于1/50且甚至小于1/100的用于降解珠粒的此类材料的较低范围。例如,对于DTT,不含还原剂的制剂通常将具有小于0.01mM、0.005mM、0.001mM DTT、0.0005mM DTT或甚至小于0.0001mM DTT。在许多情况下,DTT的量将不可检测到。
可使用许多化学触发剂来触发珠粒的降解。这些化学变化的实例可包括但不限于pH介导的珠粒内组分的完整性的变化、珠粒的组分经由交联键裂解的降解和珠粒的组分的解聚。
在一些实施方案中,珠粒可由包含可降解化学交联剂如BAC或胱胺的材料形成。此类可降解交联剂的降解可通过许多机制完成。在一些实例中,珠粒可与化学降解剂接触,所述化学降解剂可诱导氧化、还原或其它化学变化。例如,化学降解剂可以是还原剂,如二硫苏糖醇(DTT)。还原剂的另外实例可包括β-巯基乙醇、(2S)-2-氨基-1,4-二巯基丁烷(二硫代丁胺或DTBA)、三(2-羧乙基)膦(TCEP)或其组合。还原剂可降解在形成珠粒的凝胶前体之间形成的二硫键,并且因此降解珠粒。在其它情况下,溶液的pH变化(如pH的增加)可触发珠粒的降解。在其它情况下,暴露于水溶液(如水)可触发水解降解,并且因此触发珠粒的降解。
在施加热刺激时,还可诱导珠粒释放其内容物。温度的变化可引起珠粒的各种变化。例如,热可引起固体珠粒液化。热的变化可引起珠粒熔融,以使得珠粒的一部分降解。在其它情况下,热可增加珠粒组分的内部压力,以使得珠粒破裂或爆炸。热还可作用于用作构建珠粒的材料的热敏聚合物。
本公开的方法、组合物、装置和试剂盒可与任何合适的剂一起使用以降解珠粒。在一些实施方案中,温度或pH的变化可用于降解珠粒内的热敏性或pH敏感性键。在一些实施方案中,化学降解剂可用于通过氧化、还原或其它化学变化降解珠粒内的化学键。例如,化学降解剂可以是还原剂,如DTT,其中DTT可降解在交联剂与凝胶前体之间形成的二硫键,从而降解珠粒。在一些实施方案中,可添加还原剂以降解珠粒,其可以或可以不引起珠粒释放其内容物。还原剂的实例可包括二硫苏糖醇(DTT)、β-巯基乙醇、(2S)-2-氨基-1,4-二巯基丁烷(二硫代丁胺或DTBA)、三(2-羧乙基)膦(TCEP)或其组合。还原剂可以约0.1mM、0.5mM、1mM、5mM或10mM的浓度存在。还原剂可以至少约0.1mM、0.5mM、1mM、5mM、10mM或大于10mM的浓度存在。还原剂可以至多约0.1mM、0.5mM、1mM、5mM或10mM的浓度存在。
任何合适数量的条形码分子(例如,引物,例如带条形码寡核苷酸)可与珠粒缔合,以使得在从珠粒释放时,所述条形码分子(例如,引物,例如带条形码寡核苷酸)以预定浓度存在于分区中。可选择这种预定浓度以促进用于在分区内产生测序文库(例如扩增)的某些反应。在一些情况下,预定浓度的引物受到产生带有寡核苷酸的珠粒的方法的限制。
区室或分区可包括可在流体流内流动的分区。这些分区可包括例如具有包围内部流体中心或核心的外部屏障的微囊泡,或在一些情况下它们可包括能够夹带和/或保留其基质内的材料的多孔基质。分区可包括非水性连续相(例如油相)内的水性流体的微滴。不同器皿的各种实例描述于例如美国专利申请公布号2014/0155295中,所述专利申请出于所有目的以引用的方式整体并入本文。用于在非水性或油连续相中产生稳定微滴的乳液体系详细描述于例如美国专利申请公布号2010/0105112中,所述专利申请出于所有目的以引用的方式整体并入本文。
在乳液中的微滴的情况下,将单独细胞珠粒分派至离散分区通常可通过以下方式来实现:将细胞珠粒于水性流体中的流动流引入非水性流体的流动流中,以使得在两种流的接点处产生微滴。通过在一定浓度的细胞珠粒中提供水性细胞的流,可控制所得分区的占用率(例如,每个分区的细胞珠粒数)。在实现单细胞珠粒分区的情况下,可选择流体的相对流速,以使得所述分区平均每个分区含有少于一个细胞珠粒,以便确保那些被占用的分区主要是单一占用的。在一些实施方案中,可选择流体的相对流速,以使得大多数分区被占用,例如,从而允许一小部分未占用的分区。可控制流量和通道结构以确保所需数目的单一占用分区、低于某一水平的未占用分区以及低于某一水平的多重占用分区。
可操作本文描述的系统和方法,以使得大多数被占用的分区包括每个被占用的分区不超过一个细胞珠粒。在一些情况下,进行分配过程,以使得少于40%的被占用分区含有多于一个细胞珠粒、少于35%的被占用分区含有多于一个细胞珠粒、少于30%的被占用分区含有多于一个细胞珠粒、少于25%的被占用分区含有多于一个细胞珠粒、少于20%的被占用分区含有多于一个细胞珠粒、少于15%的被占用分区含有多于一个细胞珠粒、少于10%的被占用分区含有多于一个细胞珠粒或少于5%的被占用分区含有多于一个细胞珠粒。
在一些情况下,避免创建过量的空分区或不包含细胞珠粒的分区可能是有帮助的。例如,从成本角度和/或效率角度来看,最小化空分区的数量可能是有帮助的。虽然这可通过将足够数量的细胞珠粒提供至分配区中来实现,但泊松分布(Poissoniandistribution)预期可增加可包括多个细胞珠粒的分区的数量。因此,根据本文所述的方面,可操纵一个或多个细胞珠粒或被引导至分配区的其它流体的流动以控制具有细胞珠粒的分区的占用率,以使得不超过60%的所产生的分区未被占用、不超过50%的所产生的分区未被占用、不超过45%的所产生的分区未被占用、不超过40%的所产生的分区未被占用、不超过35%的所产生的分区未被占用、不超过30%的所产生的分区未被占用、不超过25%的所产生的分区未被占用、不超过20%的所产生的分区未被占用或不超过10%的所产生的分区未被占用。可控制这些流以便呈现单个占用分区的非泊松分布,同时提供较低水平的未占用分区。
可实现未占用分区的上述范围,同时仍然提供上述任何单一占用率。例如,在许多情况下,使用本文所述的系统和方法产生所得分区(例如,包含细胞珠粒的微滴),所述分区具有小于50%、小于45%、小于40%、小于35%、小于30%、小于25%、小于20%、小于15%、小于10%、小于5%或小于1%的多重占用率。
上述占用率也适用于包括细胞珠粒和另外试剂的分区,包括但不限于携带带条形码寡核苷酸的微胶囊或颗粒(例如珠粒、凝胶珠粒)。被占用的分区(例如,至少约10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或99%的被占用的分区)可包括包含带条形码寡核苷酸的微胶囊(例如珠粒)和细胞珠粒两者。
虽然在上文中就提供大体上单一占用的分区进行了描述,但在某些情况下,提供例如在单一分区内含有包含带条形码寡核苷酸的两个、三个、四个或更多个细胞和/或微胶囊(例如,珠粒、凝胶珠粒)的多重占用分区可能是有帮助的。因此,如上所述,可控制含有细胞珠粒和/或珠粒的流体和分配流体的流动特征以提供此类多重占用分区。特别地,可控制流参数以提供大于50%的分区、大于55%的分区、大于60%的分区、大于65%的分区、大于70%的分区、大于75%的分区、大于80%的分区、大于85%的分区、大于90%的分区、大于95%的分区或更高的必要占用率。
在一些情况下,使用另外的微胶囊来将另外的试剂递送至分区。在此类情况下,可能有利的是从不同珠粒来源(即含有不同的所缔合的试剂)通过进入共同的通道或微滴产生接点的不同通道入口将不同珠粒引入这种共同的通道或微滴产生接点中。在此类情况下,可控制不同珠粒进入通道或接点的流量和频率以从各来源提供所需比率的微胶囊,同时确保所需配对或组合的此类珠粒进入具有所需数量的细胞珠粒的分区。
本文所描述的分区可包括小体积,例如小于10μL、小于5μL、小于1μL、小于900皮升(pL)、小于800pL、小于700pL、小于600pL、小于500pL、小于400pL、小于300pL、小于200pL、小于100pL、小于50pL、小于20pL、小于10pL、小于1pL、小于500纳升(nL)或甚至小于100nL、50nL或甚至更小。
例如,在基于微滴的分区的情况下,微滴可具有小于1000pL、小于900pL、小于800pL、小于700pL、小于600pL、小于500pL、小于400pL、小于300pL、小于200pL、小于100pL、小于50pL、小于20pL、小于10pL或甚至小于1pL的总体积。在与微胶囊共分配的情况下,应了解,分区内例如包括共分配的细胞珠粒的样品流体体积可以是上文所描述的体积的少于90%、少于80%、少于70%、少于60%、少于50%、少于40%、少于30%、少于20%或甚至为上文所描述的体积的少于10%。
如本文其它地方所述,分配物质可产生群体或多个分区。在此类情况下,可产生任何合适数量的分区以产生多个分区。例如,在本文所描述的方法中,可产生包含至少约1,000个分区、至少约5,000个分区、至少约10,000个分区、至少约50,000个分区、至少约100,000个分区、至少约500,000个分区、至少约1,000,000个分区、至少约5,000,000个分区、至少约10,000,000个分区、至少约50,000,000个分区、至少约100,000,000个分区、至少约500,000,000个分区或至少约1,000,000,000个分区的多个分区。此外,多个分区可包含未占用的分区(例如空分区)与被占用的分区两者。
图2示出用于分配单独细胞珠粒(例如,固定细胞、交联的细胞、包含细胞的聚合物颗粒)的简化微流体通道结构的实例。如本文其它地方所述,在一些情况下,大多数被占用的分区包括每个被占用的分区不超过一个细胞珠粒,并且在一些情况下,所产生的分区中的一些未被占用。但是,在一些情况下,所述被占用的分区中的一些可包括多于一个细胞珠粒。在一些情况下,可控制分配过程,以使得少于25%的被占用的分区含有超过一个细胞珠粒,少于20%的被占用的分区具有超过一个细胞珠粒,而在一些情况下,少于10%或甚至少于5%的被占用的分区每个分区包括超过一个细胞珠粒。如所示,所述通道结构可包括在通道接点240处连通的通道区段232、234、236和238。在操作中,包括悬浮细胞珠粒244的第一水性流体242可沿着通道区段232输送到接点240中,而与水性流体242不混溶的第二流体246从通道区段234和236递送到接点240以产生包括单独细胞珠粒244的水性流体的离散微滴118,从而流入通道区段238中。
此第二流体246可包含油,如氟化油,其包括用于稳定所得微滴、例如抑制所得微滴的随后聚结的含氟表面活性剂。特别有用的分配流体和含氟表面活性剂的实例描述于例如美国专利申请公布号2010/0105112中,所述专利申请出于所有目的以引用的方式整体并入本文。
在另一方面,除了基于微滴的分配之外或作为其替代方案,可将细胞、病毒、其组分或其大分子成分包封在细胞珠粒内。细胞、病毒、其组分或其大分子成分的包封可通过多种方法进行。此类方法将含有待分析的细胞、病毒、其组分或其大分子成分的水性流体与聚合物前体材料组合,所述聚合物前体材料在对聚合物前体施加特定刺激时能够形成凝胶或其它固体或半固体基质。此类刺激包括例如热刺激(加热或冷却)、光刺激(例如,通过光固化)、化学刺激(例如,通过前体的交联、聚合引发(例如,通过添加的引发剂)等。
包含细胞、病毒、其组分或其大分子成分的细胞珠粒的制备可通过多种方法进行。例如,气刀微滴或气溶胶发生器可用于将前体流体的微滴分配到胶凝溶液中,以形成包括单独细胞、病毒、其组分或其大分子成分的细胞珠粒。同样地,基于膜的包封系统可用于产生细胞珠粒,所述细胞珠粒包含如本文所述的包封的细胞、病毒、其组分或其大分子成分。本公开的微流体系统,如图2中所示的微流体系统,可容易地用于包封如本文所述的细胞。特别地并且参考图2,包含细胞和聚合物前体材料的水性流体流入通道接点240中,其中其通过非水性流体246的流动分配成包含单独细胞244的微滴248。在包封方法的情况下,非水性流体246还可包括引发剂,以引起聚合物前体的聚合和/或交联,以形成包括夹带的细胞的微胶囊。聚合物前体/引发剂对的实例包括描述于美国专利申请公布号2014/0378345中的那些,所述专利申请出于所有目的以引用的方式整体并入本文。
例如,在聚合物前体材料包含线性聚合物材料(例如线性聚丙烯酰胺、PEG或其它线性聚合物材料)的情况下,活化剂可包含交联剂或活化所形成的微滴内的交联剂的化学品。同样,对于包含可聚合单体的聚合物前体,活化剂可包含聚合引发剂。例如,在某些情况下,当聚合物前体包含丙烯酰胺单体与N,N’-双-(丙烯酰基)胱胺(BAC)共聚单体的混合物时,可在通道区段234和236中的第二流体流内提供诸如四乙基亚甲基二胺(TEMED)的剂,所述剂引发丙烯酰胺和BAC共聚成交联聚合物网络或水凝胶。
在第二流体流246与第一流体流242在接点240处接触形成微滴后,TEMED可从第二流体246扩散到包含线性聚丙烯酰胺的水性第一流体242中,其将活化所述微滴内的聚丙烯酰胺的交联,从而导致形成呈夹带细胞244的固体或半固体珠粒或颗粒形式的凝胶(例如水凝胶)、微胶囊248。尽管就聚丙烯酰胺包封而言进行了描述,但是其它‘可活化的’包封组合物也可用于本文所述的方法和组合物的背景中。例如,形成藻酸盐微滴、然后暴露于二价金属离子(例如Ca2+)可用作使用所述方法的包封过程。同样地,琼脂糖微滴也可通过基于温度的胶凝(例如在冷却后等)转化成胶囊。
在一些情况下,包封的细胞、病毒、其组分或其大分子成分可选择性地从微胶囊释放,例如,通过时间推移或者在施加特定刺激后,使所述微胶囊充分降解以允许细胞或其内容物从所述微胶囊例如释放到分区(如微滴)中。例如,在上述聚丙烯酰胺聚合物的情况下,微胶囊的降解可通过引入适当的还原剂如DTT等来完成,以裂解使聚合物基质交联的二硫键(参见例如,美国专利申请公布号2014/0378345,所述专利申请出于所有目的以引用的方式整体并入本文)。
根据某些方面,细胞珠粒可与裂解试剂接触,以释放与细胞珠粒相关的细胞或病毒的内容物。在一些情况下,裂解剂可在细胞珠粒形成后与细胞珠粒悬浮液接触。裂解剂的实例包括生物活性试剂,如用于裂解不同细胞类型(例如革兰氏阳性或阴性细菌、植物、酵母、哺乳动物等)的裂解酶,如溶菌酶、无色肽酶、溶葡球菌素、labiase、kitalase、溶细胞酶和可从例如Sigma-Aldrich,Inc.(St Louis,MO)获得的各种其它裂解酶、基于表面活性剂的裂解溶液(例如,TritonX-100、Tween 20、十二烷基硫酸钠(SDS)),例如以及其它可商购的裂解酶。在某些情况下也可使用电穿孔、热、声学或机械细胞破坏。在一些情况下,此类方法产生足够小以在细胞破坏后保留特定大小的核酸片段的孔径。
其它试剂也可与细胞珠粒接触,包括例如DNA酶和RNA酶灭活剂或抑制剂,如蛋白酶K、螯合剂(如EDTA)和用于除去或以其它方式降低不同细胞裂解物组分对核酸的随后加工的负面活性或影响的其它试剂。另外,在包封的细胞珠粒的情况下,可使细胞珠粒暴露于适当的刺激以从共分配的微胶囊释放细胞珠粒或其内容物。例如,在一些情况下,化学刺激可与包封的细胞珠粒共分配,以允许微胶囊的降解和细胞或其内容物释放到更大的分区中。在一些情况下,这种刺激可与本文其它地方描述的用于从其各自的微胶囊(例如珠粒)释放寡核苷酸的刺激相同。在替代方面,这可以是不同的和非重叠的刺激,以允许包封的细胞珠粒在与寡核苷酸释放到同一分区中的不同时间将其内容物释放到分区中。
另外的试剂也可与细胞珠粒共分配。在一些情况下,试剂可被包封在细胞珠粒内。在其它情况下,试剂可在细胞珠粒外部。试剂可以是在细胞珠粒的核酸(例如,DNA、RNA等)的修饰中有用的那些,其中这种修饰可包括连接、消化、甲基化、随机诱变、亚硫酸氢盐转化、尿嘧啶水解、核酸修复、加帽或脱帽。另外的试剂还可包括用于扩增细胞珠粒的核酸的试剂,包括引物(例如随机引物、对给定DNA基因座具有特异性的引物)、聚合酶、核苷酸(例如未修饰的核苷酸、修饰的核苷酸或非规范核苷酸)或辅因子(例如,离子辅因子)。另外的试剂还可包括蛋白酶,以除去与细胞珠粒的核酸结合的蛋白质和转座子,以将已知序列片段化或插入细胞珠粒的DNA中。另外的试剂还可包括核酸、Cas9核酸酶和引导RNA以介导细胞珠粒的DNA的编辑。另外的试剂还可包括用于使细胞珠粒的DNA片段化的核酸内切酶、用于扩增细胞珠粒的核酸片段并将条形码附接至扩增的片段的DNA聚合酶和核苷酸。另外的试剂还可包括逆转录酶,包括具有末端转移酶活性的酶、引物和寡核苷酸,以及可用于模板转换的转换寡核苷酸(在本文中也称为“转换寡核苷酸(switch oligos)”或“模板转换寡核苷酸”)。在一些情况下,模板转换可用于增加cDNA的长度。在一些情况下,模板转换可用于将预定义的核酸序列附加至cDNA。在模板转换的一个实例中,cDNA可从模板(例如细胞mRNA)的逆转录产生,其中具有末端转移酶活性的逆转录酶可以模板独立方式向cDNA添加额外的核苷酸,例如聚C。转换寡核苷酸可包括与另外的核苷酸(例如聚G)互补的序列。cDNA上的另外核苷酸(例如聚C)可与转换寡核苷酸上的另外核苷酸(例如聚G)杂交,由此所述转换寡核苷酸可被逆转录酶用作模板以进一步延伸cDNA。模板转换寡核苷酸可包含杂交区和模板区。杂交区可包含能够与靶标杂交的任何序列。在一些情况下,如前所述,杂交区包含一系列G碱基以补充cDNA分子的3'端的突出C碱基。所述系列G碱基可包含1个G碱基、2个G碱基、3个G碱基、4个G碱基、5个G碱基或多于5个G碱基。模板序列可包含待并入cDNA中的任何序列。在一些情况下,模板区包含至少1个(例如,至少2、3、4、5个或更多个)标签序列和/或功能序列。转换寡核苷酸可包含脱氧核糖核酸;核糖核酸;修饰的核酸,包括2-氨基嘌呤、2,6-二氨基嘌呤(2-氨基-dA)、反向dT、5-甲基dC、2'-脱氧肌苷、Super T(5-羟基丁炔基-2'-脱氧尿苷)、Super G(8-氮杂-7-脱氮杂鸟苷)、锁核酸(LNA)、解锁核酸(UNA,例如UNA-A、UNA-U、UNA-C、UNA-G)、Iso-dG、Iso-dC、2'氟碱基(例如,氟C、氟U、氟A和氟G)或任何组合。
可在产生细胞珠粒之前加工(例如,进行核酸扩增)大分子组分。或者或另外,可进一步加工细胞珠粒内包含的大分子组分。在一些情况下,进一步加工可在将细胞珠粒分配到离散分区中之前发生。在将细胞珠粒分配到离散分区中之后并且在将细胞珠粒的内容物释放到它们各自的分区中之前,也可进行进一步加工。替代地或另外地,一旦细胞珠粒的内容物被释放到它们各自的分区中,就可进行进一步加工。进一步加工可包括例如核酸修饰,其中这种修饰可包括连接、消化、甲基化、随机诱变、亚硫酸氢盐转化、尿嘧啶水解、核酸修复、加帽或脱帽。进一步加工还可包括核酸扩增,包括等温扩增(例如,环介导的等温扩增或多重置换扩增)或PCR(例如DOP-PCR),其中扩增可并入未修饰的碱基、修饰的碱基或非规范碱基。另外的加工还可包括核酸插入或裂解(例如,通过CRISPR/Cas9介导的或转座子介导的插入或裂解)。另外的加工还可包括逆转录,其中逆转录可并入未修饰的碱基、修饰的碱基或非规范碱基。
核酸扩增可包括进行一个或多个延伸反应。可使用引物或多个引物进行此类一个或多个延伸反应。核酸扩增可产生起始分子的一个或多个拷贝。在一些实例中,核酸扩增包括单一延伸反应而没有任何另外的延伸反应。在这种情况下,例如,核酸扩增可从较小的起始分子产生较大的分子,而不产生较小起始分子或较大分子的拷贝。然而,在一些情况下,核酸扩增可包括产生较大分子并随后产生较大分子的一个或多个拷贝。核酸扩增可以是指数扩增。或者,核酸扩增可以不是指数扩增(例如,可以是线性扩增)。
核酸扩增的实例在本文其它地方提供。例如,核酸扩增可以是等温扩增、PCR(例如DOP-PCR)或PHASE。在一些情况下,核酸扩增可以不是PCR。
在一些情况下,可在分区(例如,微滴)中提供包含核酸分子的细胞珠粒,可从所述分区中的细胞珠粒释放核酸分子,并且可从所述分区回收核酸分子而无任何加工。一旦从分区中回收,然后就可加工核酸分子。例如,可对核酸分子进行核酸扩增和/或测序。
根据本文所述的方法和系统,可为单独细胞珠粒的大分子组分内容物提供独特的标识符,以使得在表征那些大分子组分时,它们可归属为源自同一细胞珠粒或颗粒(并且因此,最初与细胞珠粒相关的细胞或病毒)。通过将独特标识符特异性地分配至单独细胞珠粒或多组细胞珠粒来提供将特征归属于单独细胞珠粒或多组细胞珠粒的细胞、病毒、其组分或其大分子成分的能力。可将例如呈核酸条形码形式的独特标识符指定或与单独细胞珠粒或细胞珠粒群体相关联,以便用所述独特标识符标记(tag)或标记(label)细胞珠粒的大分子组分(并且因此标记其特征)。然后可使用这些独特标识符将细胞珠粒的组分和特征归属于与细胞珠粒相关的原始细胞或病毒。在一些方面,这通过将单独细胞珠粒或多组细胞珠粒与独特标识符共分配来进行。在一些方面,独特标识符以寡核苷酸的形式提供,所述寡核苷酸包含核酸条形码序列,所述核酸条形码序列可附接至单独细胞珠粒的核酸内容物或以其它方式与单独细胞珠粒的核酸内容物相关联,或附接至细胞珠粒的其它组分,并且特别是那些核酸的片段。分配寡核苷酸,以使得在给定分区中的寡核苷酸之间,其中包含的核酸条形码序列是相同的,但是在不同分区之间,所述寡核苷酸可以并且确实具有不同的条形码序列,或者至少代表大量在给定分析中跨越所有分区的不同条形码序列。在一些方面,仅一个核酸条形码序列可与给定分区相关联,尽管在一些情况下,可存在两个或更多个不同的条形码序列。
核酸条形码序列可包含在寡核苷酸的序列内的6至约20个或更多个核苷酸。在一些情况下,条形码序列的长度可以是6、7、8、9、10、11、12、13、14、15、16、17、18、19、20个核苷酸或更长。在一些情况下,条形码序列的长度可以是至少6、7、8、9、10、11、12、13、14、15、16、17、18、19、20个核苷酸或更长。在一些情况下,条形码序列的长度可以是至多6、7、8、9、10、11、12、13、14、15、16、17、18、19、20个核苷酸或更短。这些核苷酸可以是完全连续的,即在单个相邻核苷酸区段中,或者它们可分成两个或多个分开的子序列,所述子序列被1个或多个核苷酸分开。在一些情况下,分开的条形码子序列的长度可以是约4至约16个核苷酸。在一些情况下,条形码子序列可以是4、5、6、7、8、9、10、11、12、13、14、15、16个核苷酸或更长。在一些情况下,条形码子序列可以是至少4、5、6、7、8、9、10、11、12、13、14、15、16个核苷酸或更长。在一些情况下,条形码子序列可以是至多4、5、6、7、8、9、10、11、12、13、14、15、16个核苷酸或更短。
共分配的寡核苷酸还可包含可用于加工来自共分配的细胞珠粒的核酸的其它功能序列。这些序列包括例如靶向或随机/通用扩增引物序列,所述序列用于扩增来自分区内的单独细胞珠粒的基因组DNA、同时附接相关联的条形码序列、对引物或引物识别位点进行测序、杂交或探测序列,例如用于鉴定序列的存在或用于提取带条形码的核酸;或任何许多其它潜在的功能序列。也可使用共分配寡核苷酸的其它机制,包括例如两个或更多个微滴的聚结,其中一个微滴含有寡核苷酸,或寡核苷酸微分配到分区,例如微流体系统内的微滴中。
在一个实例中,提供微胶囊如珠粒,其各自包含可释放地附接至珠粒的大量上述带条形码寡核苷酸,其中附接至特定珠粒的所有寡核苷酸将包含相同的核酸条形码序列,但是其中大量不同的条形码序列在所使用的珠粒群体中表示。在一些实施方案中,水凝胶珠粒(例如,包含聚丙烯酰胺聚合物基质)用作寡核苷酸进入分区的固体载体和递送媒介物,因为它们能够携带大量寡核苷酸分子,并且可被配置为在暴露于特定刺激时释放那些寡核苷酸,如本文其它地方所描述。在一些情况下,珠粒群体将提供多样的条形码序列文库,所述条形码序列文库包括至少100个不同的条形码序列、至少500个不同的条形码序列、至少1,000个不同的条形码序列、至少5,000个不同的条形码序列、至少10,000个不同的条形码序列、至少50,000个不同的条形码序列、至少100,000个不同的条形码序列、至少1,000,000个不同的条形码序列、至少5,000,000个不同的条形码序列或至少10,000,000个不同的条形码序列。另外,每个珠粒可提供有大量附接的寡核苷酸分子。特别地,单独珠粒上的包含条形码序列的寡核苷酸分子的数量可以是至少100个寡核苷酸分子、至少500个寡核苷酸分子、至少1,000个寡核苷酸分子、至少5,000个寡核苷酸分子、至少10,000个寡核苷酸分子、至少50,000个寡核苷酸分子、至少100,000个寡核苷酸分子、至少500,000个寡核苷酸、至少1,000,000个寡核苷酸分子、至少5,000,000个寡核苷酸分子、至少10,000,000个寡核苷酸分子、至少50,000,000个寡核苷酸分子、至少100,000,000个寡核苷酸分子,并且在一些情况下至少10亿个寡核苷酸分子。
此外,当分配珠粒群体时,所得到的分区群体还可包括多样的条形码文库,所述条形码文库包括至少100个不同的条形码序列、至少500个不同的条形码序列、至少1,000个不同的条形码序列、至少5,000个不同的条形码序列、至少10,000个不同的条形码序列、至少50,000个不同的条形码序列、至少100,000个不同的条形码序列、至少1,000,000个不同的条形码序列、至少5,000,000个不同的条形码序列或至少10,000,000个不同的条形码序列。另外,所述群体的每个分区可包括至少100个寡核苷酸分子、至少500个寡核苷酸分子、至少1,000个寡核苷酸分子、至少5,000个寡核苷酸分子、至少10,000个寡核苷酸分子、至少50,000个寡核苷酸分子、至少100,000个寡核苷酸分子、至少500,000个寡核苷酸、至少1,000,000个寡核苷酸分子、至少5,000,000个寡核苷酸分子、至少10,000,000个寡核苷酸分子、至少50,000,000个寡核苷酸分子、至少100,000,000个寡核苷酸分子,并且在一些情况下至少10亿个寡核苷酸分子。
在一些情况下,在给定分区内并入多个不同的条形码可能是有帮助的,所述条形码附接至所述分区内的单个或多个珠粒。例如,在一些情况下,混合的但已知的条形码序列集可在后续加工中提供更大的鉴定保证,例如通过向给定分区提供更强的条形码地址或属性,作为来自给定分区的输出的重复或独立的确认。
在向珠粒施加特定刺激时,寡核苷酸可从所述珠粒释放。在一些情况下,所述刺激可以是光刺激,例如通过释放寡核苷酸的光不稳定性连键的裂解。在其它情况下,可使用热刺激,其中珠粒环境的温度升高将导致连键的裂解或寡核苷酸从珠粒的其它释放。在仍然其它情况下,使用化学刺激,所述化学刺激裂解寡核苷酸与珠粒的连键,或以其它方式使得寡核苷酸从珠粒释放。在一种情况下,此类组合物包含上述用于包封细胞、病毒、其组分或其大分子成分的聚丙烯酰胺基质,并且可通过暴露于还原剂如DTT而降解以释放附接的寡核苷酸。
如本文所述,细胞珠粒的细胞或病毒可包括任何核酸,包括例如细胞或病毒的DNA,例如基因组DNA、RNA,例如信使RNA等。例如,在一些情况下,本文描述的方法和系统用于表征表达的mRNA,包括例如这种mRNA的存在和定量,并且可包括RNA测序过程作为表征过程。或者或另外,与细胞珠粒一起分配的试剂可包括用于将mRNA转化为cDNA的试剂,例如逆转录酶和试剂,以促进使用DNA测序的测序过程。试剂可包含在细胞珠粒中。可在分配之前使用试剂(例如,用于将mRNA转化成cDNA)。或者或另外,可在分配后使用试剂。在一些情况下,其中待表征的核酸包含DNA(例如gDNA),这一点的一个实例的示意图在图3中示出。
如所示,包含条形码序列的寡核苷酸与样品核酸304一起共分配在例如乳液中的微滴302中。样品核酸可来自细胞珠粒。如本文其它地方所述,寡核苷酸308可提供在与样品核酸304共分配的珠粒306上,所述寡核苷酸可从珠粒306释放,如图A所示。除了一个或多个功能序列(例如序列310、314和316)外,寡核苷酸308还包含条形码序列312。例如,寡核苷酸308被示出为包含条形码序列312,以及可用作给定测序系统的附接或固定序列的序列310,例如用于附接于Illumina 或/>系统的流动池中的P5序列。如所示,寡核苷酸还包含引物序列316,其可包含用于引发样品核酸304的部分的复制的随机或靶向N-聚体。寡核苷酸308内还包含序列314,其可提供用于通过测序系统中的合成反应引发聚合酶介导的模板指导的测序的测序引发区,如“读段1”或R1引发区。可选择功能序列以与各种不同的测序系统,例如454测序、Ion Torrent Proton或PGM、Illumina X10等以及其要求兼容。在许多情况下,条形码序列312、固定序列310和R1序列314可为附接至给定珠粒的所有寡核苷酸共有。引物序列316对于随机N-聚体引物可变化,或者对于某些靶向应用可为给定珠粒上的寡核苷酸共有。
在一些情况下,功能序列可包括可用于RNA-seq应用的引物序列。例如,在一些情况下,所述寡核苷酸可包含用于引发RNA-seq的RNA逆转录的聚-T引物。在其它情况下,除了常见的条形码序列之外,给定分区中的寡核苷酸(例如包含在单独珠粒上)可包含多种类型的引物序列,如DNA测序或RNA测序引物,例如包含在与珠粒偶联的寡核苷酸内的聚-T引物序列。在这种情况下,源自单个分配的细胞珠粒的材料可进行DNA或RNA测序过程。
基于引物序列316的存在,寡核苷酸可引发样品核酸,如图B所示,其允许使用也与珠粒306和样品核酸304共分配的聚合酶和其它延伸试剂延伸寡核苷酸308和308a。如图C所示,对于随机N-聚体引物在可与样品核酸304的多个不同区域退火的寡核苷酸延伸之后;产生核酸的多个重叠互补序列或片段,例如片段318和320。尽管包含与样品核酸的部分互补的序列部分,例如序列322和324,但这些构建体在本文中通常称为包含样品核酸304的片段,其具有附接的条形码序列。
如图D所示,然后可例如通过序列分析对带条形码的核酸片段进行表征,或者可在所述过程中进一步扩增它们。例如,也从珠粒306释放的另外的寡核苷酸(例如寡核苷酸308b)可引发片段318和320。这对于片段318示出。特别地,再次,基于寡核苷酸308b中的随机N-聚体引物316b(其在许多情况下可与给定分区中的其它随机N-聚体,例如引物序列316不同)的存在,寡核苷酸与片段318退火并且延伸以产生片段318的至少一部分的互补序列326,所述片段318包含序列328,其包含样品核酸序列的一部分的重复。继续延伸寡核苷酸308b,直至其通过片段318的寡核苷酸部分308复制。如本文其它地方所述,并且如图D所示,寡核苷酸可被配置成例如在通过片段318内包含的寡核苷酸308的序列316和314复制之后在特定点通过聚合酶促使复制的终止。如本文所述,这可通过包括例如并入不能被所用聚合酶加工的不同核苷酸和/或核苷酸类似物在内的不同的方法实现。例如,这可包括在序列区312内包含含尿嘧啶的核苷酸,以防止非尿嘧啶耐受性聚合酶停止所述区域的复制。结果,产生片段326,其在一端包含全长寡核苷酸308b,包括条形码序列312、附接序列310、R1引物区314和随机N-聚体序列316b。在所述序列的另一端可包括第一寡核苷酸308的随机N-聚体的互补序列316',以及R1序列的全部或一部分的互补序列,如序列314'所示。R1序列314及其互补序列314'然后能够一起杂交以形成部分发夹结构328。因为随机N-聚体在不同寡核苷酸之间不同,这些序列及其互补序列可能不预期参与发夹形成,例如序列316'(其是随机N-聚体316的互补序列)可能不预期与随机N-聚体序列316b互补。对于其它应用,例如靶向引物,情况可能并非如此,其中N-聚体可能在给定分区内的寡核苷酸中是共有的。
通过形成这些部分发夹结构,它允许从进一步复制中除去样品序列的第一级重复,例如防止拷贝的迭代复制。部分发夹结构还为随后加工所产生的片段(例如片段326)提供有用的结构。
通常,可进行细胞珠粒的核酸的扩增,直到分区内的带条形码的重叠片段构成相关细胞或病毒的基因组的特定部分或全部的至少1X覆盖,所述基因组或其相关目标部分的至少2X、至少3X、至少4X、至少5X、至少10X、至少20X、至少40X或更多覆盖。一旦产生带条形码片段,它们就可在适当的测序系统(例如Illumina 或X10系统)上直接测序,或者它们可进行另外的加工,如进一步扩增、附接用于反向读数的其它功能序列(例如第二测序引物)、样品索引序列等。
然后可汇集来自多个不同分区的所有片段以在如本文所述的高通量测序仪上进行测序,其中汇集的片段包含源自不同细胞珠粒或小细胞珠粒群体的核酸的大量片段,但其中来自给定细胞珠粒的核酸将共享相同的条形码序列。特别地,因为每个片段关于其原始分区编码,并且因此编码其单个细胞珠粒或小细胞珠粒群体,所以所述片段的序列可基于条形码的存在归属回至所述细胞珠粒或那些细胞珠粒(以及因此细胞或病毒的原始细胞或群体),其还将有助于将来自多个分区的各种序列片段应用于不同细胞珠粒的单独基因组的组装。这在图4中示意性地示出。如一个实例中所示,来自第一细胞珠粒400的第一核酸404和来自第二细胞珠粒402的第二核酸406各自与它们自身的多组条形码寡核苷酸一起分配,如上所述。核酸可包含染色体、整个基因组、转录物或来自细胞珠粒的其它核酸。
在每个分区内,然后加工每个细胞珠粒的核酸404和406以分别提供一个或多个第一片段的第二片段的重叠集,例如第二片段集408和410。这种加工还为第二片段提供条形码序列,所述条形码序列对于源自特定第一片段的每个第二片段是相同的。如所示,第二片段集408的条形码序列由“1”表示,而片段集410的条形码序列由“2”表示。可使用条形码的多样文库来差异地条形编码化大量不同的片段集。然而,不必将来自不同第一片段的每个第二片段集用不同的条形码序列进行条形编码。事实上,在许多情况下,可同时加工多个不同的第一片段以包含相同的条形码序列。本文其它地方详细描述了不同的条形码文库。
然后可汇集例如来自片段集408和410的带条形码片段以用于使用例如可通过从Illumina或Thermo-Fisher,Inc的Ion Torrent分部获得的合成技术的序列进行测序。一旦测序,序列读数412可归属于它们各自的片段集,例如,如聚集的读数414和416所示,至少部分地基于所包含的条形码,并且在一些情况下,部分地基于片段本身的序列。然后组装每个片段集的归属序列读数以提供每个细胞珠粒的核酸的组装序列,例如序列418和420,其进而可归属于单独细胞珠粒和包封在所述细胞珠粒内的细胞或病毒(例如细胞)。
虽然在分析细胞或病毒内存在或来自细胞或病毒的遗传物质方面进行了描述,但本文所述的方法和系统可具有更广泛的适用性,包括通过允许将试剂分配至单独细胞或病毒并响应于那些试剂提供那些细胞或病毒的归属分析或表征来表征单独细胞或病毒或者细胞或病毒群体的其它方面的能力。这些方法和系统在能够表征细胞、病毒、其组分或其大分子成分方面特别有价值,例如用于研究、诊断、病原体鉴定和许多其它目的。
本文所述的细胞珠粒方法的特别有价值的应用是与细胞珠粒相关的患病细胞的测序和表征。患病细胞可具有改变的代谢性质、基因表达和/或形态特征。示例性疾病包括炎性病症、代谢病症、神经系统病症和癌症。
特别感兴趣的是癌细胞。特别地,传统的分析技术(包括上文提到的整体测序方法)在挑选癌细胞的基因组构成的小变异方面不是很擅长,特别是其中那些存在于大量正常组织细胞中。此外,即使在肿瘤细胞之间,也可存在广泛变异并且可通过测序的整体方法掩蔽(参见,例如,Patel等人,Single-cell RNA-seq highlights intratumoralheterogeneity in primary glioblastoma,Science DOI:10.1126/science.1254257(2014年6月12日在线公开),所述文献出于所有目的以引用的方式完全并入)。癌细胞可源自实体瘤、血液恶性肿瘤、细胞系,或作为循环肿瘤细胞获得,并进行上述分配过程。通过分析,可将单独细胞序列鉴定为源自单个细胞或细胞小群组,并区分那些与正常组织细胞序列。
癌细胞的非限制性实例包括诸如以下的癌症的细胞:棘皮瘤、腺泡细胞癌、听神经瘤、肢端黑色素瘤、肢端汗腺瘤、急性嗜酸性粒细胞白血病、急性成淋巴细胞性白血病、急性成巨核细胞性白血病、急性单核细胞性白血病、急性成髓细胞白血病伴成熟、急性髓系树突状细胞白血病、急性髓系白血病、急性前髓细胞性白血病、成釉细胞瘤、腺癌、腺样囊性癌、腺瘤、牙源性腺样瘤、肾上腺皮质癌、成人T细胞性白血病、侵袭性NK细胞白血病、AIDS相关癌症、AIDS相关淋巴瘤、腺泡状软组织肉瘤、成釉细胞纤维瘤、肛门癌、间变性大细胞淋巴瘤、间变性甲状腺癌、血管免疫母细胞性T细胞淋巴瘤、血管肌脂瘤、血管肉瘤、阑尾癌、星形细胞瘤、非典型性畸胎样/横纹肌样肿瘤、基底细胞癌、基底细胞样癌、B细胞白血病、B细胞淋巴瘤、Bellini导管癌、胆道癌、膀胱癌、胚细胞瘤、骨癌、骨肿瘤、脑干胶质瘤、脑肿瘤、乳腺癌、布伦纳瘤、支气管肿瘤、细支气管肺泡癌、棕色瘤、伯基特淋巴瘤、原发部位不明的癌症、类癌瘤、瘤、原位癌、阴茎癌、原发部位不明癌、癌肉瘤、卡斯特莱曼病、中枢神经系统胚胎肿瘤、小脑星形细胞瘤、大脑星形细胞瘤、子宫颈癌、胆管癌、软骨瘤、软骨肉瘤、脊索瘤、绒毛膜癌、脉络丛乳头状瘤、慢性淋巴细胞性白血病、慢性单核细胞性白血病、慢性髓细胞性白血病、慢性骨髓增生性病症、慢性中性粒细胞性白血病、透明细胞瘤、结肠癌、结肠直肠癌、颅咽管瘤、皮肤T细胞淋巴瘤、德戈斯病、隆凸性皮肤纤维肉瘤、皮样囊肿、促纤维增生性小圆细胞瘤、弥漫性大B细胞淋巴瘤、胚胎发育不良性神经上皮肿瘤、胚胎性癌、内胚层窦瘤、子宫内膜癌、子宫内膜子宫癌、内膜样瘤、与肠病相关的T细胞淋巴瘤、成室管膜细胞瘤、室管膜瘤、上皮样肉瘤、红白血病、食管癌、成感觉神经细胞瘤、尤文氏家族肿瘤、尤文氏家族肉瘤、尤文氏肉瘤、颅外生殖细胞瘤、性腺外生殖细胞肿瘤、肝外胆管癌、乳腺外佩吉特病、输卵管癌、胎中胎、纤维瘤、纤维肉瘤、滤泡性淋巴瘤、滤泡性甲状腺癌、胆囊癌、胆囊癌、神经节神经胶质瘤、神经节瘤、胃癌、胃淋巴瘤、胃肠癌、胃肠道类癌瘤、胃肠道间质瘤、胃肠道间质瘤、生殖细胞瘤、胚组织瘤、妊娠性绒毛膜癌、妊娠性滋养层细胞瘤、骨巨细胞瘤、多形性成胶质细胞瘤、神经胶质瘤、大脑神经胶质瘤病、血管球瘤、胰高血糖素瘤、性腺胚细胞瘤、粒层细胞瘤、毛细胞性白血病、毛细胞性白血病、头颈癌、头颈癌、心脏癌、成血管细胞瘤、血管外皮细胞瘤、血管肉瘤、血液系统恶性肿瘤、肝细胞癌、肝脾T细胞淋巴瘤、遗传性乳腺-卵巢癌综合征、霍奇金淋巴瘤、霍奇金氏淋巴瘤、下咽癌、下丘脑胶质瘤、炎性乳腺癌、眼内黑素瘤、胰岛细胞癌、胰岛细胞瘤、幼年型粒-单核细胞白血病、卡波西肉瘤、卡波西氏肉瘤、肾癌、肝门胆管癌、库肯勃瘤、喉癌、喉癌、恶性雀斑样痣黑素瘤、白血病、白血病、唇及口腔癌、脂肉瘤、肺癌、黄体瘤、淋巴管瘤、淋巴管肉瘤、淋巴上皮瘤、淋巴系白血病、淋巴瘤、巨球蛋白血症、恶性纤维组织细胞瘤、恶性纤维组织细胞瘤、骨恶性纤维组织细胞瘤、恶性胶质瘤、恶性间皮瘤、恶性外周神经鞘瘤、恶性横纹肌样瘤、恶性蝾螈瘤、MALT淋巴瘤、外套细胞淋巴瘤、肥大细胞白血病、纵膈生殖细胞瘤、纵膈肿瘤、甲状腺髓样癌、成神经管细胞瘤、成神经管细胞瘤、髓上皮瘤、黑素瘤、黑素瘤、脑膜瘤、麦克尔细胞癌、间皮瘤、间皮瘤、原发灶不明的颈部转移性鳞癌、转移性膀胱上皮癌、苗勒氏混合瘤、单核细胞白血病、口腔癌、粘液性瘤、多发性内分泌肿瘤综合征、多发性骨髓瘤、多发性骨髓瘤、蕈样肉芽肿病、蕈样肉芽肿病、骨髓增生异常疾病、骨髓增生异常综合征、髓系白血病、髓系肉瘤、骨髓增生性疾病、粘液瘤、鼻腔癌、鼻咽癌、鼻咽癌、赘生瘤、神经细胞瘤、成神经细胞瘤、成神经细胞瘤、神经纤维瘤、神经瘤、结节性黑素瘤、非霍奇金淋巴瘤、非霍奇金淋巴瘤、非黑素瘤皮肤癌、非小细胞肺癌、眼肿瘤、少突星形细胞瘤、少突神经胶质瘤、嗜酸细胞瘤、视神经鞘脑膜瘤、口腔癌、口腔癌、口咽癌、骨肉瘤、骨肉瘤、卵巢癌、卵巢癌、卵巢上皮癌、卵巢生殖细胞瘤、卵巢低度潜在恶性肿瘤、乳房佩吉特病、肺上沟瘤、胰腺癌、胰腺癌、乳头状甲状腺癌、乳头状瘤病、神经节细胞瘤、鼻窦癌、甲状旁腺癌、阴茎癌、血管周围上皮样细胞瘤、鼻咽癌、嗜铬细胞瘤、中分化松果体实质肿瘤、成松果体细胞瘤、垂体细胞瘤、垂体腺瘤、垂体肿瘤、浆细胞瘤、胸膜肺母细胞瘤、多胚瘤、前驱T-淋巴母细胞淋巴瘤、原发性中枢神经系统淋巴瘤、原发性渗出性淋巴瘤、原发性肝细胞癌、原发性肝癌、原发性腹膜癌、原始神经外胚层瘤、前列腺癌、腹膜假性粘液瘤、直肠癌、肾细胞癌、涉及染色体15上的NUT基因的呼吸道癌、成视网膜细胞瘤、横纹肌瘤、横纹肌肉瘤、里希特转化、骶尾部畸胎瘤、唾液腺癌、肉瘤、雪旺氏细胞瘤、皮脂腺癌、继发性瘤、精原细胞瘤、浆液瘤、塞-莱二氏细胞瘤、性索-间质肿瘤、塞泽里综合征、印戒细胞癌、皮肤癌、蓝色小圆形细胞瘤、小细胞癌、小细胞肺癌、小细胞淋巴瘤、小肠癌、软组织肉瘤、生长抑素瘤、煤烟疣、脊髓瘤、脊髓肿瘤、脾边缘区淋巴瘤、鳞状细胞癌、胃癌、浅表扩展性黑素瘤、幕上原始神经外胚层肿瘤、表面上皮-间质瘤、滑膜肉瘤、T细胞急性成淋巴细胞性白血病、T细胞大颗粒淋巴细胞白血病、T细胞白血病、T细胞淋巴瘤、T细胞幼淋巴细胞白血病、畸胎瘤、末期淋巴癌、睾丸癌、泡膜细胞瘤、喉癌、胸腺癌、胸腺瘤、甲状腺癌、肾盂和输尿管的移行细胞癌、移行细胞癌、脐尿管癌、尿道癌、泌尿生殖系统肿瘤、子宫肉瘤、葡萄膜黑素瘤、阴道癌、凡-莫二氏综合征、疣状癌、视路胶质瘤、外阴癌、华氏巨球蛋白血症、沃辛瘤、维尔姆斯肿瘤以及其组合。
与癌细胞分析一样,通过分析胎儿细胞来分析和诊断胎儿健康或异常是使用常规技术的困难任务。特别地,在不存在相对侵入性程序的情况下,如获得胎儿细胞样品的羊膜穿刺术可采用从母体循环收获那些细胞。此类循环胎儿细胞构成所述循环的总体细胞群体的极小部分。结果,进行复杂分析以表征所获得的数据可能来源于胎儿细胞而不是母体细胞。然而,通过采用本文所述的单细胞表征方法和系统,可将遗传构成归属于单独细胞,并基于它们各自的遗传构成将那些细胞分类为母体或胎儿。此外,胎儿细胞的遗传序列可用于鉴定许多遗传病症中的任一种,包括例如非整倍性如唐氏综合症、爱德华兹综合征和帕陶综合征(Patau syndrome)。
同样感兴趣的是免疫细胞。本文公开的方法和组合物可用于免疫组库的序列分析。对免疫组库的潜在序列信息的分析可在理解免疫系统的状态和功能方面提供显著改进。
可使用本文描述的方法分析的免疫细胞的非限制性实例包括B细胞、T细胞(例如,细胞毒性T细胞、天然杀伤T细胞、调控性T细胞和T辅助细胞)、天然杀伤细胞、细胞因子诱导的杀伤(CIK)细胞;骨髓细胞,如粒细胞(嗜碱性粒细胞、嗜酸性粒细胞、嗜中性粒细胞/多叶核嗜中性粒细胞)、单核细胞/巨噬细胞、肥大细胞、血小板/巨核细胞和树突细胞。在一些情况下,可单独分析(即,作为单个细胞)免疫细胞。在一些情况下,可与可附着于免疫细胞(例如,经由免疫受体)的任何相关病原体(例如,微生物)一起分析单个免疫细胞。在一些实施方案中,使用本文公开的方法分析单独T细胞。在一些实施方案中,使用本文公开的方法分析单独B细胞。
免疫细胞表达与免疫功能相关的各种适应性免疫受体,如T细胞受体和B细胞受体。T细胞受体和B细胞受体通过特异性地识别和结合至抗原并帮助其破坏而在免疫应答中起作用。
T细胞受体(TCR)是在T细胞表面上发现的分子,其通常负责识别作为与主要组织相容性复合物(MHC)分子结合的肽的抗原片段。TCR通常是两条链的异二聚体,所述链各自是免疫球蛋白超家族的成员,具有N-末端可变(V)结构域和C末端恒定结构域。在人中,在95%的T细胞中,TCR由α(α)和β(β)链组成,而在5%的T细胞中,TCR由γ和δ(γ/δ)链组成。此比例可在个体发生和患病状态以及不同物种中变化。当TCR与抗原肽和MHC(肽/MHC)接合时,通过信号转导活化T淋巴细胞。
TCR的两条链各自含有基因区段的多个拷贝-可变‘V’基因区段、多样性‘D’基因区段和连接‘J’基因区段。TCRα链通过V和J区段的重组产生,而β链通过V、D和J区段的重组产生。类似地,TCRγ链的产生涉及V和J基因区段的重组,而TCRδ链的产生通过V、D和J基因区段的重组发生。这些特定区域(对于α或γ链为V和J,或对于β或δ链为V、D和J)的交叉对应于对抗原-MHC识别重要的CDR3区。互补决定区(例如,CDR1、CDR2和CDR3)或高变区是抗原受体(例如,T细胞受体和免疫球蛋白)的可变结构域中可补充抗原的序列。在CDR3中发现大多数多样性CDR,其中多样性由T淋巴细胞发育期间的体细胞重组事件产生。在基因排列过程中出现的独特核苷酸序列可称为克隆型。
B细胞受体或BCR是在B细胞表面上发现的分子。BCR的抗原结合部分由膜结合抗体组成,所述膜结合抗体与大多数抗体(例如免疫球蛋白)一样具有独特且随机确定的抗原结合位点。BCR的抗原结合部分包括一种同种型的膜结合的免疫球蛋白分子(例如,IgD、IgM、IgA、IgG或IgE)。当B细胞通过其与同源抗原首次相遇活化时,所述细胞增殖并分化以产生分泌抗体的血浆B细胞和记忆B细胞群体。各种免疫球蛋白同种型的生物学特征、结构、靶特异性和分布不同。存在多种分子机制以产生初始多样性,包括多个位点处的遗传重组。
BCR由编码抗体重链和轻链的两种基因IgH和IgK(或IgL)组成。免疫球蛋白通过基因区段之间的重组、这些区段的接点处的序列多样化以及整个基因的点突变形成。每个重链基因含有三个不同基因区段的多个拷贝-可变‘V’基因区段、多样性‘D’基因区段和连接‘J’基因区段。每个轻链基因含有蛋白质的可变区的两个不同基因区段的多个拷贝-可变‘V’基因区段和连接‘J’基因区段。重组可产生具有V、D和J区段中的每一个之一的分子。此外,可缺失若干碱基,并且在两个接点中的每一个处添加其它碱基(称为N和P核苷酸),从而产生进一步多样性。在B细胞活化后,发生通过体细胞超突变的亲和力成熟过程。在此过程中,活化的B细胞的子代细胞在整个基因中累积不同的体细胞突变,在CDR区中具有更高的突变浓度,从而导致产生对抗原具有更高亲和力的抗体。除了体细胞超突变之外,活化的B细胞经历同种型转换过程。具有相同可变区段的抗体可具有不同的形式(同种型),这取决于恒定区段。尽管所有初始B细胞表达IgM(或IgD),但活化的B细胞主要表达IgG,但也表达IgM、IgA和IgE。从IgM(和/或IgD)转换为IgG、IgA或IgE的这种表达通过重组事件发生,从而引起一个细胞专门产生特定同种型。在基因排列过程中出现的独特核苷酸序列可类似地称为克隆型。
在一些实施方案中,本文公开的方法、组合物和系统用于分析来自免疫细胞的各种TCR和BCR序列,例如各种克隆型。在一些实施方案中,本文公开的方法、组合物和系统用于分析TCRα链、TCRβ链、TCRδ链、TCRγ链或其任何片段(例如,包括VDJ或VJ区的可变区、恒定区、跨膜区、其片段、其组合以及其片段的组合)的序列。在一些实施方案中,本文公开的方法、组合物和系统用于分析B细胞受体重链、B细胞受体轻链或其任何片段(例如,包括VDJ或VJ区的可变区、恒定区、跨膜区、其片段、其组合以及其片段的组合)的序列。
在待分析免疫细胞的情况下,可用于附接条形码序列和/或扩增反应的任何各种操作中的引物序列可包含靶向免疫细胞蛋白(例如免疫受体)的基因或基因区域的基因特异性序列。此类基因序列包括但不限于以下各项的序列:各种T细胞受体α可变基因(TRAV基因)、T细胞受体α连接基因(TRAJ基因)、T细胞受体α恒定基因(TRAC基因)、T细胞受体β可变基因(TRBV基因)、T细胞受体β多样性基因(TRBD基因)、T细胞受体β连接基因(TRBJ基因)、T细胞受体β恒定基因(TRBC基因)、T细胞受体γ可变基因(TRGV基因)、T细胞受体γ连接基因(TRGJ基因)、T细胞受体γ恒定基因(TRGC基因)、T细胞受体δ可变基因(TRDV基因)、T细胞受体δ多样性基因(TRDD基因)、T细胞受体δ连接基因(TRDJ基因)以及T细胞受体δ恒定基因(TRDC基因)。
从这些实体的较大不同群体表征单独细胞、病毒、其组分或其大分子成分的能力在环境测试以及法医学分析中也具有重要价值,其中样品可就其本质而言相对于正针对其测试样品的细胞或病毒由不同的细胞或病毒群体和其它“污染”样品的物质组成,例如在性侵犯和其它暴力犯罪等的法医学分析中用于例如环境和食品安全测试、受害者和/或犯罪者细胞的环境指示生物、有毒生物等。
上述细胞珠粒测序和表征方法的其它有用应用是在神经科学研究和诊断领域。特别地,神经细胞可包含长散布核元件(LINE)或可在基因组周围移动的‘跳跃’基因,其引起每个神经元与其相邻细胞不同。研究已经表明,人脑中LINE的数量超过其它组织(例如心脏和肝脏组织),具有80与300个之间的独特插入(参见,例如,参见例如,Coufal,N.G.等人Nature 460,1127–1131(2009),所述文献出于所有目的以引用的方式整体并入本文)。这些差异被认为与个人对神经系统病症的易感性有关(参见例如,Muotri,A.R.等人Nature468,443–446(2010),所述文献出于所有目的以引用的方式整体并入本文),或者为大脑提供响应于挑战的多样性。因此,本文所述的方法可用于单独神经细胞的测序和表征。
本文所述的细胞珠粒分析方法也可用于分析基因表达,如上所述,包括就RNA转录物的鉴定和它们的定量而言。特别地,使用本文所述的单细胞水平分析方法,可分离和分析单独细胞或病毒、细胞或病毒群体或细胞或病毒群体的子集中存在的RNA转录物。特别地,在一些情况下,条形码寡核苷酸可被配置为引发、复制并因此从单独细胞或病毒产生RNA的带条形码片段。例如,在一些情况下,条形码寡核苷酸可包含mRNA特异性引发序列,例如允许在逆转录反应中引发和复制mRNA的聚-T引物区段或其它靶向引发序列。或者或另外,可使用条形码寡核苷酸的随机N-聚体引物区段进行随机RNA引发。用于RNA、mRNA和细胞特征分析的方法提供于美国专利公布号2015/0376609中,所述专利以引用的方式整体并入本文。
在一些情况下,可使用用于测序(PHASE)方法的部分发夹扩增来进行扩增。在PHASE方法中,随机N-聚体序列可用于随机引发样品,如基因组DNA(gDNA)。在一些实施方案中,随机N-聚体可包含引物。在一些情况下,随机N-聚体可引发样品。在一些情况下,随机N-聚体可引发基因组DNA。在一些情况下,随机N-聚体可引发DNA片段。示例性PHASE方法在图3中示意性地示出。PHASE的另外实例提供于美国专利公布号2014/0378345中,所述专利以引用的方式整体并入本文。
另外,随机N-聚体序列也可与附接至另一种寡核苷酸。这种寡核苷酸可以是通用序列和/或可含有可与测序装置相容的一个或多个引物读取序列(例如读数1引物位点、读数2引物位点、索引引物位点)、一个或多个条形码序列以及可与测序装置相容的一个或多个衔接子区段(例如P5、P7)。或者,所述寡核苷酸可不包含这些中的任一种,并且可包含另一序列。
经由随后的扩增方法,用随机N-聚体引发样品核酸可用于将与随机N-聚体连接的寡核苷酸序列(例如,包含条形码序列的寡核苷酸序列)附接至样品核酸,包括待测序的样品核酸。利用随机引物来引发样品可引入显著序列读数错误,这是由于例如产生不需要的扩增产物。示例性PHASE方法在图3中示意性地示出。PHASE的另外实例提供于美国专利公布号2014/0378345中,所述专利以引用的方式整体并入本文。
为了减轻不需要的扩增产物,用于PHASE扩增的寡核苷酸序列(例如,包含引物的寡核苷酸)的至少一个子部分可分别用含尿嘧啶的核苷酸取代以代替含胸腺嘧啶的核苷酸。在一些情况下,取代可以是完全的(例如,所有含胸腺嘧啶的核苷酸被含尿嘧啶的核苷酸取代),或者可以是部分的,以使得寡核苷酸的含胸腺嘧啶的核苷酸的一部分被含尿嘧啶的核苷酸取代。在一些情况下,用含尿嘧啶的核苷酸或其功能等小物取代与随机N-聚体序列相邻的寡核苷酸序列的所有(除了最后约10至20、最后约10至30、最后约10至40或最后约5至40个核苷酸)中的含胸腺嘧啶的核苷酸。另外,不接收或加工含尿嘧啶模板的聚合酶可用于扩增样品核酸。在这种情况下,可扩增约10至约20个核苷酸的不含尿嘧啶的部分,并且可不扩增含有含尿嘧啶的核苷酸的剩余部分。在一些情况下,包含含尿嘧啶核苷酸的寡核苷酸序列的部分可与N-聚体序列相邻。在一些情况下,包含含尿嘧啶核苷酸的寡核苷酸序列的部分可与条形码序列相邻。寡核苷酸序列的任何部分(包括衔接子区段、条形码或读取引物序列)可包含含尿嘧啶的核苷酸(例如,取代含胸腺嘧啶的核苷酸),这取决于寡核苷酸序列的构型。在一些情况下,可在PHASE扩增期间将含尿嘧啶的核苷酸引入寡核苷酸,其中在扩增反应中包含dUTP核苷酸来代替dTTP或与dTTP组合。
dUTP浓度可随时间推移而增加。例如,可通过在扩增反应混合物中包含dCTP脱氨酶来以受控速率增加dUTP浓度。可通过dCTP介导的dCTP向dUTP的转化来随时间推移增加dUTP浓度。这可能导致dUTP向子DNA片段中的并入增加。可切除尿嘧啶碱基。随着dUTP浓度在反应过程中增加,反应产物可能变短并因此可用于条形编码。可通过调节反应参数来修饰dCTP氨基酶活性。例如,可通过改变反应温度、pH、dCTP浓度、无机磷酸盐浓度和/或dTTP浓度来改变dCTP氨基酶活性。还可通过在反应混合物中产生dUTP来改变dUTP浓度。例如,可向反应提供脱氧胞苷一磷酸(dCMP)或脱氧胞苷二磷酸(dCDP)。然后脱氨酶和/或激酶可作用于dCMP或dCDP以产生dUTP。
在一些情况下,包含条形码序列的多个靶向构建体和包含聚-T序列的靶向N-聚体可偶联至珠粒(例如,凝胶珠粒)。在一些情况下,所述多个构建体可包含相同的条形码序列。珠粒可用包含RNA的样品核酸分配(例如,在流体微滴中),每个分区中的珠粒被降解以将偶联的构建体释放到分区中,并且样品RNA经由所述构建体的靶向的N-聚体捕获。分区还可包含条形码构建体(例如,具有与靶向构建体相同的条形码序列),所述条形码构建体包含随机N-聚体。在第一扩增循环中,靶向构建体的延伸可经由每个分区内的逆转录发生,以产生包含靶向构建体的延伸产物。然后可用包含随机N-聚体的条形码构建体引发每个分区中的延伸产物,以产生如上所述的部分发夹扩增子。所产生的扩增子的后加工(例如,添加额外序列(例如,P7、R2)、添加样品索引等)可用本文描述的任何方法实现,包括本体扩增方法(例如,本体PCR)和本体连接。
在一些情况下,也可在不使用靶向条形码构建体的情况下使用样品中RNA的逆转录。例如,可首先使包含RNA的样品核酸与其它类型的逆转录引物进行逆转录反应,以使得从RNA产生cDNA。然后,如本文所述,所产生的cDNA可经历靶向或非靶向扩增。例如,可使包含RNA的样品核酸进行逆转录反应,以使得从RNA产生cDNA。所述cDNA然后可使用如上所述的具有随机N-聚体的条形码构建体进入PHASE扩增反应,以产生包含构建体的条形码序列的部分发夹扩增子。所产生的部分发夹扩增子的后加工(例如,添加额外序列(例如,P7、R2)、添加样品索引等)可用本文描述的任何方法实现,包括本体扩增方法(例如,本体PCR)和本体连接。
还可针对核酸的特定链上的特定序列(例如,基因序列)产生靶向条形码构建体,以使得保留针对每条链产生的测序仪就绪产物的链型信息。例如,样品核酸可包含双链核酸(例如,双链DNA),以使得每条核酸链包含一种或多种不同的靶基因序列。由于每条链的相反的5'至3'方向性和/或碱基组成,所以互补DNA链可包含不同的基因序列。基于靶向N-聚体和条形码构建体的构型,可针对每条链(基于链的5'至3'方向性)产生靶向条形码构建体。
第一和第二组靶向条形码构建体可靶向双链样品核酸的正向链和反向链中的任一个。第一组可包含靶向条形码构建体,所述构建体包含P5序列、条形码序列和第一靶序列或第二靶序列中的任一个的靶向N-聚体。第二组可包含靶向条形码构建体,所述构建体包含P5序列、条形码序列乙基第一靶序列和第二靶序列中的任一个的靶向N-聚体。每个构建体还可包含条形码与靶向N-聚体之间的任何另外序列。
第一组中的条形码构建体可被配置来在双链样品核酸的正向链上引发它们各自的靶序列。第二组的条形码构建体可被配置来在双链样品核酸的反向链上引发它们各自的靶序列。每组中的靶向条形码构建体可以相反的方向性配置,其对应于双链样品核酸的正向链和反向链的相反方向性。每个条形码构建体可在其各自的样品核酸链上引发其各自的靶序列,以经由扩增反应(如本文所述的任何扩增反应)产生带条形码扩增子。
可使用本文所述的扩增方法(包括本体扩增、本体连接或其组合)将另外的序列添加至带条形码扩增子。第一引物组对应于第一靶向条形码构建体组,并且第二引物组对应于第二靶向条形码构建体组。每个引物可在其各自的链上引发其各自的靶序列并开始本体扩增(例如,本体PCR)以便以与本文其它地方所述的本体扩增方法类似的方式产生包含P7和样品索引序列的测序仪就绪构建体。基于每个测序仪就绪构建体的各种组分(例如,P5、条形码、靶向N聚体、样品插入物等)的构型和方向性,可确定/保留自其产生测序仪就绪产物的链。
本文描述的方法可用于全基因组扩增。在全基因组扩增的一些实施方案中,随机引物(例如,随机N-聚体序列)可与基因组核酸杂交。随机引物可以是较大寡核苷酸的组分,所述较大寡核苷酸还可包含通用核酸序列(包括本文所述的任何类型的通用核酸序列)和核酸条形码序列。在一些情况下,通用核酸序列可包含一个或多个含尿嘧啶的核苷酸。此外,在一些情况下,通用核酸序列可包含至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或更多个不含尿嘧啶的核苷酸的区段。随机引物可延伸(例如,在引物延伸反应或任何其它合适类型的核酸扩增反应中)以形成扩增的产物。
在全基因组扩增的一些实施方案中,基因组组分(例如,染色体、基因组核酸如基因组DNA,生物体的全基因组,或本文所述的任何其它类型的基因组组分)可在多个第一片段中进行片段化。可将第一片段共分配到具有多个寡核苷酸的多个分区中。每个分区中的寡核苷酸可包含引物序列(包括本文其它地方描述类型的引物序列)和共同序列(例如条形码序列)。然后可将每个分区中的引物序列与每个分区内的第一片段的多个不同区域退火。然后可沿第一片段延伸引物序列,以在多个分区的每个分区内产生扩增的第一片段。所述分区内的扩增的第一片段可包含基因组组分的任何合适的覆盖率(如本文其它地方所述)。在一些情况下,所述分区内的扩增的第一片段可包含基因组组分的至少1X覆盖、至少2X覆盖、至少5X覆盖、至少10X覆盖、至少20X覆盖、至少40X覆盖或更大覆盖。
在一些实例中,施用在美国专利申请公布号2016/0257984中公开的方法进行扩增,所述专利申请出于所有目的以引用的方式整体并入本文。在一些情况下,可使用通过在缺口位点聚合的无引发扩增(如美国专利申请公布号2016/0257984中公开的无引发聚合方法,所述专利申请出于所有目的以引用的方式整体并入本文)来进行扩增。当与常规的基于引物的扩增文库制备方法相比时,经由无引发扩增产生的测序文库可提供优异的测序结果。例如,当与基于引物的扩增结果相比时,无引发扩增方法可在宽范围的GC碱基含量上产生更均匀的测序覆盖。当与使用基于引物的扩增获得的分布相比时,可在无引发扩增中实现改进的测序覆盖均匀度,从而导致更多的泊松分布。
图21示出使用模板的无引发扩增的文库制备过程。尽管在图21中示出为一系列图,但所示的反应过程可在通过聚合过程进行无引发扩增期间与反应混合物中一起存在的所有试剂同时进行。这种过程可与用于制备测序文库的标准引发扩增过程形成对比。
在图21中的(i)处,DNA聚合酶如phi29DNA聚合酶(New England Inc.(NEB),Ipswich,MA)可用于进行等温扩增。等温扩增可包括使用六聚体(短箭头)和phi29DNA聚合酶(椭圆形)引发,所述聚合酶具有可产生均匀覆盖和低错误率的非常高的持续合成能力和保真度。当聚合酶沿着靶序列(长线)加工时,产生拷贝的DNA模板。在存在所有脱氧核糖核苷酸三磷酸(核苷酸)和少量脱氧核糖尿嘧啶三磷酸盐的情况下,基于聚合酶的dUTP并入导致在图21中的(ii)处的生长模板链(长箭头)。所述反应可包括能够切除dUTP并在拷贝的模板DNA链中产生切口但不在原始靶序列中产生切口的酶(具有螺栓的椭圆形)。在图21中的(iii)处,通过能够切除dUTP的酶的切口可导致产生多个扩增的链(短箭头),所述扩增的链各自可比原始模板链短。另外,phi29DNA聚合酶可在切口位点接合,以在引发独立的扩增过程中进行额外的扩增。在图21中的(v)处,由于phi29DNA聚合酶的高度持续性质,原始靶序列可在释放的扩增片段的链置换后作为模板再循环。随后的扩增可反映先前描述的过程以产生另外的释放的扩增片段。
例如,如图22A-C所示,可扩展无引发扩增方法以提供条形编码能力。
图22A示出使用扩展条形编码方法对通过无引发扩增产生的扩增的模板进行条形编码的方法。链置换和phi29DNA聚合酶的高持续合成能力可允许扩增的片段的释放,从而使模板能够再循环以进一步扩增。在链置换期间产生的单链片段可通过六聚体或相同聚合酶的N聚体部分转化为dsDNA。
图22B示出使用条形码连接方法的单链或双链模板对通过无引发扩增产生的扩增的模板进行条形编码的方法。模板DNA分子可转化为单链(使用例如温度或酶的变化)或双链(使用例如酶)。可使用ssDNA连接酶、dsDNA连接酶或另一种核酸修饰酶通过连接过程附接分子条形码(如寡核苷酸)。可在随后的连接中将用作分子柄的另外的寡核苷酸添加至第一条形码标签。
图22C示出通过将单链DNA分子(具有条形码或引物序列)从3'端附接至珠粒而对通过无引发扩增产生的扩增的模板进行条形编码的方法。寡核苷酸的5'端可以是预腺苷酸化的(化学地或酶促地)。可使用Hotstart-IT结合蛋白来敖合寡核苷酸,所述Hotstart-IT结合蛋白可使用热而释放。对于对单链文库分子(通过热处理或解旋酶产生的单链)进行条形编码,APP DNA/RNA连接酶可将5'预腺苷酸化的寡核苷酸与文库分子的3'端连接。这一过程可能非常特异,因为可通过阻断3'端来避免寡核苷酸-寡核苷酸连接。文库分子可能不能自我连接,因为它们没有腺苷酸化。APP DNA/RNA连接酶可以是热稳定的5'App DNA/RNA连接酶,包括来自嗜热自养甲烷杆菌(Methanobacterium thermoautotrophicum)的RNA连接酶的催化赖氨酸的点突变体。这种酶可不依赖于ATP。可能需要5'预腺苷酸化接头用于连接至RNA或单链DNA(ssDNA)的3'-OH端。
用于无引发扩增后分子条形编码的另一种方法是使用拓扑异构酶。例如,来自痘苗病毒的拓扑异构酶I可在特定位点结合至双链DNA,并在一条链中的5'-CCCTT后裂解磷酸二酯主链。当衔接子序列(如寡核苷酸)与拓扑异构酶预结合时,可实现分子条形编码。可使用例如DNA聚合酶的Klenow片段制备扩增的模板用于平末端连接。
在一些情况下,可使用简并寡核苷酸引引发的聚合酶链式反应(DOP-PCR)方法进行扩增。DOP-PCR在具有两种不同退火温度的PCR方案中使用部分简并序列。使用低退火温度进行第一PCR循环。然后在这些循环之后进行大量具有较高退火温度的PCR循环。使用较低的第一退火温度可确保在较高的第二退火温度下扩展在第一PCR循环中特异性标记的片段。DOP-PCR方法可允许从任何来源随机扩增DNA。
除了使用两个退火温度之外,DOP-PCR的特征在于使用修饰的PCR引物。DOP-PCR引物由三个区域组成。5'-端携带XhoI(C·TCGAG)的识别序列,XhoI是一种在人类基因组中很少切割的限制性核酸内切酶。所述序列然后之后是含有简并序列的6个核苷酸(NNNNNN,其中N=A、C、G或T处于大致相等的比例)的中间部分和大约每4kb引发反应的含有6个特定碱基(ATGTGG)的3'端序列。在足够低的退火温度下,包含在简并寡核苷酸的3'端的六个特定核苷酸将与基因组链退火,从而允许引物起始PCR。然后产生PCR片段,所述PCR片段在一端含有寡聚引物的全长,并且在另一端含有其互补序列。随后,将温度升高至简并引物的全长退火所需的水平。
与传统PCR中使用的靶特异性引物序列对相比,在此使用在其5'端(含有XhoI限制性位点)和3'-端具有确定的序列以及在它们之间的随机六聚体序列的单个引物。DOP-PCR包括两个不同的循环阶段。在第一低严格性阶段,前五至八个循环中的低温退火和延伸发生在基因组中的许多结合位点。引物的3'端在基因组中与引物3'端的6-bp明确定义的序列互补的位点(人类基因组中的约10(6)位点)处结合。相邻的随机六聚体序列(显示核苷酸A、G、C和T的所有可能组合)然后可退火并用DOP引物标记这些序列。在第二阶段,升高PCR退火温度,这增加了在标记的序列的扩增期间的引发特异性。
例如,DOP-PCR方法的另外实例在例如Arneson等人,Whole-genomeamplification by degenerate oligonucleotide primed PCR(DOP-PCR),CSH ProtocDOI:10.1101/pdb.prot4919(2008年1月1日出版)中提供,所述文献出于所有目的以引用的方式整体并入本文。
尽管已经单独讨论了具有各种条形码设计的操作,但是单独珠粒可包括各种设计的条形码寡核苷酸以供同时使用。
除了表征来自较大群体的单独细胞或病毒或者细胞或病毒亚群之外,本文所述的方法和系统还可用于表征单独细胞或病毒,作为提供细胞或其它生物群体的总体概况的方式。各种应用需要评价细胞或病毒群体内的不同细胞或病毒或生物类型的存在和量化,包括例如微生物组分析和表征、环境测试、食品安全测试、流行病学分析,例如在追踪污染等中。特别地,上述分析过程可用于单独表征、测序和/或鉴定群体内的大量单独细胞或病毒。然后可使用这种表征来组装起源群体的整体概况,其可提供重要的预后和诊断信息。
例如,人类微生物组(包括例如肠、口腔、表皮微生物组等)的变化已经被鉴定为不同病状或一般健康状态的诊断和预后。使用本文所述的细胞珠粒分析方法和系统,可再次表征、测序和鉴定总体群体中的单独细胞,并鉴定所述群体内可能指示诊断相关因子的变化。举例来说,细菌16S核糖体RNA基因的测序已被用作细菌的分类学分类的高度准确的方法。使用上述靶向扩增和测序过程可提供细胞群体内单独细胞的鉴定。可进一步量化群体内不同细胞的数量,以鉴定当前状态或状态随时间的变化。参见例如,Morgan等人,PLoSComput.Biol.,Ch.12,2012年12月,8(12):e1002808和Ram等人,Syst.Biol.Reprod.Med.,2011年6月,57(3):162-170,所述文献各自出于所有目的以引用的方式整体并入本文。同样,感染或潜在感染的鉴定和诊断也可受益于本文所述的细胞珠粒分析,例如,以鉴定存在于其它细胞和/或核酸的大混合物(来自任何诊断相关的环境例如脑脊液、血液、粪便或肠样品等)中的微生物物种。
前述分析也可通过不同抗性标志物/突变跨给定样品的细胞群体的分布的分析和剖析而特别适用于表征不同细胞或病原体(例如癌细胞、细菌病原体等)的潜在耐药性等。另外,随时间推移表征这些标志物/突变跨细胞群体的变化可提供对以此类抗药性问题为特征的各种疾病的进展、改变、预防和治疗的有价值的见解。
同样,分析不同环境样品以剖析此类样品中存在的微生物、病毒或其它生物污染物可提供有关疾病流行病学的重要信息,并且可能有助于预测疾病爆发、时疫和流行病。
如上所述,本文所述的方法、系统和组合物还可用于分析和表征单独细胞或病毒或细胞或病毒群体的其它方面。在一种示例性方法中,提供样品,所述样品含有与有待关于其细胞表面蛋白进行分析和表征的细胞珠粒相关的细胞。还提供了抗体、抗体片段或对细胞表面蛋白或抗原(或其它细胞特征)具有结合亲和力的其它分子的文库,其中所述细胞将针对所述文库进行表征(在本文中也称为细胞表面特征结合基团)。为了便于讨论,这些亲和力基团在本文中称为结合基团。所述结合基团可包括报告寡核苷酸,所述报告寡核苷酸指示结合基团所结合的细胞表面特征。特别地,对一种类型的细胞表面特征具有特异性的结合基团类型将包含第一报告分子,而对不同细胞表面特征具有特异性的结合基团类型将具有与其相关的不同报告分子。在一些方面,这些报告分子将包含寡核苷酸序列。基于寡核苷酸的报告分子可提供以下优点:能够在序列方面产生显著多样性,同时还容易地可附接至大多数生物分子,例如抗体等,以及容易地例如使用测序或阵列技术检测。在示例性方法中,结合基团包括与其附接的寡核苷酸。因此,第一结合基团类型(例如针对第一类型的细胞表面特征的抗体)将具有与其缔合的具有第一核苷酸序列的报告寡核苷酸。不同的结合基团类型(例如对其它不同细胞表面特征具有结合亲和力的抗体)将具有与其缔合的包含不同核苷酸序列(例如具有部分或完全不同的核苷酸序列)的报告寡核苷酸。在一些情况下,对于每种类型的细胞表面特征结合基团,例如抗体或抗体片段,报告寡核苷酸序列可以是已知的并且容易地可鉴定为与已知的细胞表面特征结合基团缔合。这些寡核苷酸可直接与结合基团偶联,或者它们可附接至珠粒、分子晶格(例如线性、球状、交联或其它聚合物),或与结合基团附接或以其它方式缔合的其它框架,其允许将多个报告寡核苷酸附接至单一结合基团。
在多个报告分子与单一结合基团偶联的情况下,此类报告分子可包含相同的序列,或特定的结合基团将包含一组已知的报告寡核苷酸序列。在例如对不同细胞表面特征具有特异性的不同的结合基团之间,报告分子可以是不同的并且可归属于特定结合基团。
报告基团与结合基团的附接可通过多种直接或间接、共价或非共价缔合或附接中的任一种来实现。例如,在与基于抗体的结合基团缔合的寡核苷酸报告基团的情况下,可使用化学缀合技术(例如,可从Innova Biosciences获得的Lightning-抗体标记试剂盒)以及其它非共价附接机制,例如使用生物素化的抗体和寡核苷酸(或与寡核苷酸偶联的包含一个或多个生物素化的接头的珠粒)与抗生物素蛋白或链霉抗生物素蛋白接头将此类寡核苷酸共价附接至抗体或抗体片段的一部分。可获得抗体和寡核苷酸生物素化技术(参见例如,Fang等人,Fluoride-Cleavable Biotinylation Phosphoramidite for 5′-end- Labeling and Affinity Purification of Synthetic Oligonucleotides,NucleicAcids Res.2003年1月15日,2003;31(2):708-715,可从Thermo Scientific获得的DNA 3’端生物素化试剂盒,所述文献出于所有目的以引用的方式整体并入本文)。同样,蛋白质和肽生物素化技术已经开发并且容易获得(参见例如美国专利号6,265,552,所述专利出于所有目的以引用的方式整体并入本文)。
报告寡核苷酸可被提供为具有一系列不同长度中的任一者,这取决于报告分子的多样性或给定分析、所采用的序列检测方案等。在一些情况下,这些报告序列可以是长度大于约5个核苷酸、长度大于或等于约10个核苷酸、长度大于或等于约20、30、40、50、60、70、80、90、100、120、150或200个核苷酸。在一些情况下,这些报告核苷酸可以是长度小于约250个核苷酸、长度小于或等于约200、180、150、120、100、90、80、70、60、50、40或30个核苷酸。在许多情况下,可选择报告寡核苷酸以提供已经设定大小的带条形码产物,并且另外配置为在测序系统上进行分析。例如,这些序列可以理想地为特定测序系统产生长度的可测序产物的长度提供。同样地,除了报告序列之外,这些报告寡核苷酸可包括另外的序列元件,如测序仪附接序列、测序引物序列、扩增引物序列或这些中的任一者的互补序列。
在操作中,将含有细胞的样品与结合分子及其相关的报告寡核苷酸一起孵育,以获得待分析的任何细胞表面特征。在孵育后,洗涤细胞以除去未结合的结合基团。在洗涤后,将细胞(或组分)包封至细胞珠粒中,并且将细胞珠粒分配到单独的分区(例如微滴)中,以及上述携带条形码的珠粒,其中每个分区包括有限数量的细胞,例如,在一些情况下,单个细胞。在从珠粒释放条形码和从细胞珠粒释放细胞或细胞组分后,它们将引发报告寡核苷酸的扩增和条形编码。如上所述,报告分子的带条形码重复可另外包括功能序列,如引物序列、附接序列等。
然后可对带条形码的报告寡核苷酸进行序列分析以鉴定哪些报告寡核苷酸与分区内的细胞结合。此外,还通过对相关条形码序列进行测序,可鉴定给定细胞表面特征可能与其它不同细胞表面特征来自相同的细胞,其报告序列包含相同的条形码序列,即它们源自同一分区。
基于从基于条形码序列的存在从单独分区发出的报告分子,然后可从细胞群体产生单独细胞的细胞表面概况。可将单独细胞或细胞群体的概况与来自其它细胞(例如,‘正常’细胞)的概况进行比较,以鉴定细胞表面特征的变化,其可提供诊断相关信息。特别地,这些概况可特别适用于诊断以细胞表面受体的变化为特征的各种病症,如癌症和其它病症。
在一种应用中,本文描述的方法和系统可用于表征细胞或病毒特征,如细胞表面特征,例如蛋白质、受体等。特别地,本文所述的方法可用于将报告分子附接至这些细胞特征,所述细胞特征当如上所述分配时可例如使用DNA测序技术进行条形编码并分析,以确定单独细胞或病毒或者细胞或病毒群体内的此类细胞或病毒特征的存在并且在一些情况下相对丰度或量。
在特定实例中,可提供与第一组核酸报告分子相关的潜在细胞结合配体(例如抗体、抗体片段、细胞表面受体结合分子等)的文库,例如,其中不同的报告寡核苷酸序列与特定配体相关,并且因此能够结合至特定细胞表面特征。在一些方面,所述文库的不同成员可通过不同的寡核苷酸序列标记的存在来表征,例如,针对第一类型的细胞表面蛋白或受体的抗体可具有与其缔合的第一已知的报告寡核苷酸序列,而针对第二受体蛋白的抗体可具有与其缔合的不同的已知报告寡核苷酸序列。在共分配之前,可将细胞与配体文库一起孵育,所述标记剂文库可代表针对广泛的不同细胞表面特征(例如受体,蛋白质等)的抗体,并且包含它们相关的报告寡核苷酸。可从细胞洗去未结合的配体,并且然后将细胞与上述条形码寡核苷酸一起共分配。结果,分区将包含一种或多种细胞,以及结合的配体和它们已知的相关报告寡核苷酸。
然后可使报告寡核苷酸进行上述用于细胞核酸的条形编码操作,以产生带条形码的报告寡核苷酸,其中报告寡核苷酸的存在可指示特定细胞表面特征的存在,并且条形码序列将允许基于与给定单独细胞或细胞群体共分配的条形码序列将不同细胞表面特征的范围归属于所述细胞或细胞群体。结果,可在更广泛的细胞群体内产生细胞表面特征的逐细胞概况。下文更详细地描述本文所述述的方法和系统的这个方面。
此实例在图5中示意性地示出。如所示,将由细胞或细胞组分502和504代表的细胞群体与细胞表面相关试剂(例如抗体、细胞表面结合蛋白、配体等)的文库一起孵育,其中每种不同类型的结合基团包含与其缔合的相关核酸报告分子,显示为配体和相关的报告分子506、508、510和512(其中报告分子由不同阴影的圆圈表示)。当细胞表达由所述文库结合的表面特征时,所述配体及其相关的报告分子可变得与细胞表面缔合或偶联。将单独细胞包封在细胞珠粒中,在一些情况下经受裂解和/或变性条件,然后将所得细胞珠粒连同它们相关的配体/报告分子以及如本文其它地方所述的单独条形码寡核苷酸珠粒(例如珠粒522和524)分配到单独的分区(例如微滴514和516)中。细胞材料从所述细胞珠粒释放,并且带条形码寡核苷酸从所述珠粒释放并用于将条形码序列与具有条形码的每个分区内存在的报告分子附接,所述条形码是给定分区共有的,但在不同的分区之间广泛变化。例如,如图5所示,与分区514中的细胞或细胞组分502缔合的报告分子用条形码序列518条形编码,而与分区516中的细胞或细胞组分504缔合的报告分子用条形码520条形编码。结果,一者提供有反映细胞的表面配体的寡核苷酸文库,如报告分子所反映的,但由于共同的条形码序列基本上可归属于单独细胞,从而允许细胞的表面特征的单细胞水平剖析。这种方法不限于细胞表面受体,而是可用于鉴定多种特定细胞结构、化学或其它特征的存在。本文描述的细胞珠粒加工和分析方法以及系统可用于多种应用,包括特定单独细胞的分析、不同细胞类型的群体内的不同细胞类型的分析、用于环境、人类健康、流行病学法医学或任何多种不同应用的大细胞群体的分析和表征。
可在加工之前用细胞表面相关试剂处理细胞,以使得细胞或细胞组分被包封在细胞珠粒内。在如本文其它地方所述用带条形码珠粒分配细胞珠粒后,来自条形码珠粒的条形码可用于产生源自与细胞表面相关试剂缔合的报告分子的条形码构建体。
本文还提供了用于分析单独细胞或病毒或者细胞或病毒小群体的试剂盒。所述试剂盒可包括一种、两种、三种、四种、五种或更多种、直至所有分配流体,包括水性缓冲液和非水性分配流体或油;如本文所述的与珠粒可释放地缔合的核酸条形码库;微流体装置;用于破坏细胞、扩增核酸以及在细胞核酸的片段或其重复上提供额外的功能序列的试剂;以及在本文描述的方法中使用前述中的任一者的说明书。
在将单个细胞珠粒和单个条形码珠粒包封在微滴内时,可能有用的是利用方法和系统,所述方法和系统允许在单个细胞珠粒的包封材料上实施的一种或多种化学或生物化学操作在允许包封材料与条形码珠粒的条形码相互作用之前进行至完成。例如,用于制备用于条形编码的细胞的化学品可与珠粒或条形码本身在化学上不相容。作为实例,在共分配细胞珠粒和条形码珠粒之前或同时,裂解剂(其可例如降解条形码)如氢氧化钠(NaOH)可用于裂解包封在细胞珠粒中的细胞以允许包封的大分子成分释放,以便稍后与珠粒及其条形码相互作用。
此外,在裂解包封在细胞珠粒中的细胞后,可使用试剂来进行一种或多种另外的化学或生物化学操作。试剂可包括适用于进行操作(例如,反应),例如像核酸修饰(例如,连接、消化、甲基化、随机诱变、亚硫酸氢盐转化、尿嘧啶水解、核酸修复、加帽或脱帽)、核酸扩增(例如,等温扩增或PCR)、核酸插入或裂解(例如,经由CRISPR/Cas9介导的或转座子介导的插入或裂解)或逆转录的任何试剂。另外,可能有用的是利用允许以比非靶特异性读数更高的速率制备对目标大分子成分具有特异性的靶序列或测序读数的方法和系统。例如,所述方法和系统的特征可在于它们抑制无模板对照(NTC)效应。
本文描述的系统和方法可允许产生包含单个细胞珠粒和单个条形码珠粒的一个或多个微滴。所述系统和方法还可允许产生含有单个细胞珠粒和多于一个条形码珠粒的一个或多个微滴、含有多于一个细胞珠粒和单个条形码珠粒的一个或多个微滴或含有多于一个细胞珠粒和多于一个条形码珠粒的一个或多个微滴。
图7示出产生含有细胞珠粒和包含条形码序列的条形码珠粒(例如凝胶珠粒)的微滴并且从所述细胞珠粒的大分子组分产生序列读数的方法700的流程图。
在操作710中,提供包含多个细胞珠粒的第一液相。第一液相可以是水性的。第一液相可包含细胞生长培养基。第一液相可包含最小生长培养基。
在操作720中,可提供包含多个条形码珠粒的第二液相。第二液相可以是水性的。第二液相可包含细胞生长培养基。第二液相可包含最小生长培养基。所述条形码珠粒各自包含条形码以对多个细胞珠粒的一种或多种大分子成分进行条形编码。在一些情况下,第一液相和第二液相是相同的相。在一些情况下,将第一液相和第二液相混合以提供混合相。
在操作730中,第一液相和第二液相可与第三液相集合在一起,所述第三液相与第一和第二液相不混溶。所述第三液相可以将多个细胞珠粒和多个条形码珠粒中的每一个分配到多个微滴中的这样的方式与第一和第二液相相互作用。所述第三液相可包含油。所述第三液相可包含氟化烃。在一些情况下,给定微滴可包含单个细胞珠粒和单个条形码珠粒。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的微滴可含有单个细胞珠粒。此外,虽然在此实例中第一液相和第二液相被分配到微滴中,但是在操作730可实现其它类型的分区,包括本文其它地方描述的那些,例如孔。
在操作740中,条形码可用于对给定微滴中的给定细胞珠粒的一种或多种大分子成分进行条形编码。在一些情况下,使细胞珠粒的大分子成分经受足以用于条形编码的核酸扩增的条件。在此类情况下,条形码可在这种扩增中用作引物。在其它情况下,连接可用于条形编码。在一些情况下,大分子成分在扩增前从细胞珠粒释放。在一些情况下,条形码用于鉴定细胞珠粒的一种或多种大分子成分。在一些情况下,对带条形码大分子进行核酸测序以鉴定一种或多种大分子组分。在一些情况下,测序是非靶向测序。在一些情况下,测序是靶向测序。在一些情况下,微滴包含可在条形编码期间或之前从细胞珠粒释放大分子成分的剂。在一些情况下,给定的带条形码测序读数可用于鉴定细胞(其可能已被包封在细胞珠粒中),从所述细胞产生带条形码测序读数。这种能力可将特定序列与特定细胞相关联。
在操作750中,可对带条形码的大分子(或其衍生物)进行测序以产生读数。可在微滴(或分区)内进行测序。可在微滴之外进行测序。例如,可通过从微滴释放带条形码大分子(例如,通过使包含微滴的乳液破乳)并使用测序仪(如Illumina测序仪或本文所述的任何其它测序仪)对带条形码大分子进行测序来进行测序。
在一些情况下,在测序之前,可进一步加工带条形码大分子。例如,在测序之前对带条形码大分子进行核酸扩增(例如PCR)。在一些情况下,将另外的序列连接至带条形码大分子。这种进一步加工可在微滴中或在微滴外部进行,如通过从微滴释放带条形码大分子。
在一些情况下,测序是核酸测序。在一些情况下,核酸测序是大规模平行测序。在一些情况下,核酸测序是数字聚合酶链式反应(PCR)测序。测序可产生来自细胞珠粒的目标大分子成分的靶特异性读数和其它大分子序列的非靶特异性读数。靶特异性读数可对应于来自细胞珠粒的一种或多种核酸序列。在一些情况下,非靶特异性读数可来自细胞珠粒外部的大分子。例如,非靶特异性读数可对应于一种或多种外源核酸序列。作为另一个实例,非靶特异性读数可由无模板对照效应产生。读数可通过靶特异性读数与非靶特异性读数比率来表征。靶特异性读数与非靶特异性读数比率可大于5、大于10、大于100、大于1,000、大于10,000、大于1,000,000、大于10,000,000、大于100,000,000或者大于1,000,000,000。
图8示出使用方法700产生的含有细胞珠粒和条形码珠粒的微滴。水性液体的微滴800形成在与水性液体不混溶的液体的体积805内。所述微滴含有条形码珠粒820。所述微滴还包含含有一种或多种大分子成分815的细胞珠粒810。
图9示出描绘产生含有细胞和包含条形码序列的条形码珠粒(例如,凝胶珠粒)的微滴并且使用本文其它地方描述的PHASE扩增技术从所述细胞的大分子组分产生序列读数的示例性方法900的流程图。在一些情况下,方法900包括以下操作。
在操作910中,提供包含多个细胞的第一液相。第一液相可以是水性的。第一液相可包含细胞生长培养基。第一液相可包含最小生长培养基。
在操作920中,可提供包含多个条形码珠粒的第二液相。第二液相可以是水性的。第二液相可包含细胞生长培养基。第二液相可包含最小生长培养基。所述条形码珠粒各自包含条形码以对多个细胞的一种或多种大分子成分进行条形编码。在一些情况下,第一液相和第二液相是相同的相。在一些情况下,将第一液相和第二液相混合以提供混合相。
在操作930中,第一液相和第二液相可与第三液相集合在一起,所述第三液相与第一和第二液相不混溶。所述第三液相可以将多个细胞和多个条形码珠粒中的每一个分配到多个微滴中的这样的方式与第一和第二液相相互作用。第三液相可包含油并且还可包含表面活性剂。所述第三液相可包含氟化烃。在一些情况下,给定微滴可包含单个细胞和单个条形码珠粒。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的微滴可含有单个细胞。在操作930中,使第一液相和第二液相与第三液相集合在一起,所述第三液相与第一和第二液相不混溶。所述第三液相可以将多个细胞和多个条形码珠粒中的每一个分配到多个微滴中的这样的方式与第一和第二液相相互作用。所述第三液相可包含油。所述第三液相可包含氟化烃。在一些情况下,给定微滴可包含单个细胞和单个条形码珠粒。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的微滴可含有单个细胞。此外,虽然在此实例中第一液相和第二液相被分配到微滴中,但是在操作930可实现其它类型的分区,包括本文其它地方描述的那些,例如孔。
在操作940中,所述细胞可经历裂解。可如本文其它地方所述完成裂解,包括用裂解剂。裂解剂可包含在微滴内,以使得在微滴内发生裂解。所述微滴内的细胞的裂解可从细胞释放大分子成分用于另外的加工,如条形编码。
在操作950中,条形码可用于对给定微滴中的给定细胞的一种或多种大分子成分进行条形编码。如本文其它地方所述,条形编码可经由PHASE扩增完成。条形码珠粒可包含具有条形码序列的寡核苷酸和与从细胞释放的大分子成分杂交的引物序列。这些寡核苷酸可从条形码珠粒释放,包括在微滴内。在一些情况下,使细胞经受足以进行核酸扩增的条件。在一些情况下,条形码用于鉴定细胞的一种或多种大分子成分。在一些情况下,对条形码进行核酸测序以鉴定一种或多种大分子组分。在一些情况下,测序是非靶向测序。在一些情况下,测序是靶向测序。
在操作960中,可对带条形码的大分子(或其衍生物)进行测序以产生读数。可在微滴内进行测序。可在微滴之外进行测序。例如,可通过从微滴释放带条形码大分子并使用测序仪(如Illumina测序仪或本文所述的任何其它测序仪)对带条形码大分子进行测序来进行测序。在一些情况下,给定的带条形码测序读数可用于鉴定自其产生带条形码测序读数的细胞。这种能力可将特定序列与特定细胞相关联。关于核酸测序方法和用于鉴定的条形码的使用的另外细节和实例在本文其它地方描述。
在一些情况下,在测序之前,可进一步加工带条形码大分子。例如,在测序之前对带条形码大分子进行核酸扩增(例如PCR)。在一些情况下,将另外的序列连接至带条形码大分子。这种进一步加工可在微滴中或在微滴外部进行,如通过从微滴释放带条形码大分子。
图10示出描绘产生含有细胞和包含条形码序列的条形码珠粒(例如,凝胶珠粒)的微滴并且使用本文其它地方描述的简并寡核苷酸引发的PCR(DOP-PCR)扩增技术从所述细胞的大分子组分产生序列读数的示例性方法1000的流程图。在一些情况下,方法1000包括以下操作。
在操作1010中,提供包含多个细胞的第一液相。第一液相可以是水性的。第一液相可包含细胞生长培养基。第一液相可包含最小生长培养基。
在操作1020中,可提供包含多个条形码珠粒的第二液相。第二液相可以是水性的。第二液相可包含细胞生长培养基。第二液相可包含最小生长培养基。所述条形码珠粒各自包含条形码以对多个细胞的一种或多种大分子成分进行条形编码。在一些情况下,第一液相和第二液相是相同的相。在一些情况下,将第一液相和第二液相混合以提供混合相。
在操作1030中,第一液相和第二液相可与第三液相集合在一起,所述第三液相与第一和第二液相不混溶。所述第三液相可以将多个细胞和多个条形码珠粒中的每一个分配到多个微滴中的这样的方式与第一和第二液相相互作用。第三液相可包含油并且还可包含表面活性剂。所述第三液相可包含氟化烃。在一些情况下,给定微滴可包含单个细胞和单个条形码珠粒。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的微滴可含有单个细胞。在操作1030中,使第一液相和第二液相与第三液相集合在一起,所述第三液相与第一和第二液相不混溶。所述第三液相可以将多个细胞和多个条形码珠粒中的每一个分配到多个微滴中的这样的方式与第一和第二液相相互作用。所述第三液相可包含油。所述第三液相可包含氟化烃。在一些情况下,给定微滴可包含单个细胞和单个条形码珠粒。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的微滴可含有单个细胞。此外,虽然在此实例中细胞被分配到微滴中,但是在操作1030可实现其它类型的分区,包括本文其它地方描述的那些,例如孔。
在操作1040中,所述细胞可经历裂解。可如本文其它地方所述完成裂解,包括用裂解剂。裂解剂可包含在微滴内,以使得在微滴内发生裂解。所述微滴内的细胞的裂解可从细胞释放大分子成分用于另外的过程,如条形编码。
在操作1050中,条形码可用于对给定微滴中的给定细胞的一种或多种大分子成分进行条形编码。条形编码可经由DOP-PCR扩增完成。条形码珠粒可包含具有条形码序列的寡核苷酸和与从细胞释放的大分子成分杂交的引物序列。这些寡核苷酸可从珠粒释放,包括在微滴内。在一些情况下,使细胞的大分子成分经受足以进行核酸扩增的条件。在一些情况下,条形码用于鉴定细胞的一种或多种大分子成分。在一些情况下,对条形码进行核酸测序以鉴定一种或多种大分子组分。在一些情况下,测序是非靶向测序。在一些情况下,测序是靶向测序。
在操作1070中,可对带条形码的大分子(或其衍生物)进行测序以产生读数。可在微滴内进行测序。可在微滴之外进行测序。例如,可通过从微滴释放带条形码大分子并使用测序仪(如Illumina测序仪或本文所述的任何其它测序仪)对带条形码大分子进行测序来进行测序。在一些情况下,给定的带条形码测序读数可用于鉴定自其产生带条形码测序读数的细胞。这种能力可将特定序列与特定细胞相关联。关于核酸测序方法和用于鉴定的条形码的使用的另外细节和实例在本文其它地方描述。
在一些情况下,在测序之前,可进一步加工带条形码大分子。例如,在测序之前对带条形码大分子进行核酸扩增(例如PCR)。在一些情况下,将另外的序列连接至带条形码大分子。这种进一步加工可在微滴中或在微滴外部进行,如通过从微滴释放带条形码大分子。
图11示出描绘产生含有细胞珠粒和包含条形码序列的条形码珠粒(例如凝胶珠粒)的微滴并且从所述细胞珠粒的大分子组分产生序列读数的示例性方法1100的流程图。通过细胞的至少一部分的交联来产生细胞珠粒。在一些情况下,方法1100可包括以下操作。
在操作1110中,提供包含多个细胞的第一液相。第一液相可以是水性的。第一液相可包含细胞生长培养基。第一液相可包含最小生长培养基。
在操作1120中,可使细胞经受足以交联至少一部分细胞的条件。在一些情况下,使细胞经受足以交联至少一部分膜的条件。在一些情况下,使细胞经受足以交联整个膜的条件。可通过将细胞暴露于二硫代双(琥珀酰亚胺基丙酸酯)(DSP)来实现交联。可通过将细胞暴露于任何交联剂来实现交联。细胞的交联部分可扩散地渗透化学或生物化学试剂。交联部分可扩散地不渗透细胞的大分子成分。以这种方式,交联部分可起作用以允许细胞经受化学或生物化学操作,同时在空间上将大分子成分限制在由交联部分限定的微滴的区域。
在操作1130中,所述交联的细胞可经受足以裂解交联的细胞的条件。在一些情况下,裂解可在微滴中完成,例如像经由微滴中的裂解剂。交联的细胞的裂解可在使交联的细胞经受足以使所述细胞交联的条件之后发生。在一些情况下,交联的细胞的裂解可与使细胞经受足以使所述细胞交联的条件同时发生。在一些情况下,裂解可在一锅中处理多个交联的细胞的情况下在本体中完成。裂解可破坏有助于含有细胞的大分子成分的交联细胞的组分。然而,细胞的交联可提供屏障,以使得“释放的”材料仍保留在交联的细胞内。可通过将交联的细胞暴露于氢氧化钠(NaOH)、氢氧化钾(KOH)或任何其它碱性剂来实现裂解。裂解可通过将交联的细胞暴露于洗涤剂如十二烷基硫酸钠(SDS)、4-(1,1,3,3-四甲基丁基)苯基-聚乙二醇(Triton X-100)或任何非离子表面活性剂或皂苷来实现。裂解可通过将交联的细胞暴露于酶,如蛋白酶或裂解酶(如溶菌酶、纤维素或消解酶)来实现。可通过将交联的细胞暴露于冻融来实现裂解。可通过将交联的细胞暴露于电磁辐射(如紫外(UV)光)来实现裂解。可通过将交联的细胞暴露于热来实现裂解。可通过将交联的细胞暴露于任何其它裂解剂来实现裂解。
在操作1140中,可使裂解的交联细胞经受足以使裂解的交联细胞的一种或多种大分子成分变性的条件。在一些情况下,变性是在本体中实现的,其中多余一个交联细胞在单个罐中经受变性条件。可通过将交联的细胞暴露于氢氧化钠(NaOH)来实现变性。可通过将交联的细胞暴露于任何其它变性剂来实现变性。在一些实例中,操作1140与操作1130同时完成。在一些实例中,变性剂可使大分子成分变性并裂解交联的细胞。
在操作1150中,可提供包含多个条形码珠粒的第二液相。第二液相可以是水性的。第二液相可包含细胞生长培养基。第二液相可包含最小生长培养基。所述条形码珠粒各自包含条形码以对多个交联的细胞的一种或多种大分子成分进行条形编码。在一些情况下,第一液相和第二液相是相同的相。在一些情况下,将第一液相和第二液相混合以提供混合相。
在操作1160中,第一液相和第二液相可与第三液相集合在一起,所述第三液相与第一和第二液相不混溶。所述第三液相可以将多个交联的细胞和多个条形码珠粒中的每一个分配到多个微滴中的这样的方式与第一和第二液相相互作用。第三液相可包含油并且还可包含表面活性剂。所述第三液相可包含氟化烃。在一些情况下,给定微滴可包含单个交联的细胞和单个条形码珠粒。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的微滴可含有单个交联的细胞。此外,虽然在此实例中交联的细胞被分配到微滴中,但是在操作1160可实现其它类型的分区,包括本文其它地方描述的那些,例如孔。
在操作1170中,可使交联的细胞经受足以逆转交联的条件。可通过将交联的细胞暴露于还原剂(例如二硫苏糖醇(DTT))来实现交联的逆转,所述还原剂可存在于微滴中。可通过将交联的细胞暴露于任何能够逆转交联的物质来实现交联的逆转。交联的逆转可将交联的细胞的大分子成分释放至微滴的内部。在一些情况下,操作1170还包括从条形码珠粒释放条形码,这可用例如像用于逆转细胞的交联的相同刺激来实现。在一些情况下,刺激是不同的。释放的条形码然后可如操作1180中参与条形编码。
在操作1180中,条形码可用于对给定微滴中的给定交联细胞的一种或多种大分子成分进行条形编码。在一些情况下,使大分子成分经受足以进行核酸扩增的条件以用于条形编码。在此类情况下,从条形码珠粒释放的条形码可在这种扩增中充当引物。在一些情况下,连接用于条形编码。在一些情况下,条形码用于鉴定交联的细胞的一种或多种大分子成分。在一些情况下,对条形码进行核酸测序以鉴定一种或多种大分子组分。在一些情况下,测序是非靶向测序。在一些情况下,测序是靶向测序。
在操作1190中,可对带条形码的大分子(或其衍生物)进行测序以产生读数。可在微滴内进行测序。可在微滴之外进行测序。例如,可通过从微滴释放带条形码大分子并使用测序仪(如Illumina测序仪或本文所述的任何其它测序仪)对带条形码大分子进行测序来进行测序。在一些情况下,给定的带条形码测序读数可用于鉴定自其产生带条形码测序读数的细胞(其可能是交联的细胞)。这种能力可将特定序列与特定细胞相关联。关于核酸测序方法和用于鉴定的条形码的使用的另外细节和实例在本文其它地方描述。
在一些情况下,在测序之前,可进一步加工带条形码大分子。例如,在测序之前对带条形码大分子进行核酸扩增(例如PCR)。在一些情况下,将另外的序列连接至带条形码大分子。这种进一步加工可在微滴中或在微滴外部进行,如通过从微滴释放带条形码大分子。
图12示出使用方法1100产生的含有交联的细胞和条形码珠粒的微滴。水性液体的微滴1200形成在与水性液体不混溶的液体的体积1205内。所述微滴含有单个凝胶珠粒1220。所述微滴还包含含有一种或多种大分子成分1215的单个交联的细胞1210。所述交联的细胞的一部分交联以形成交联的外部部分1230c。
图13示出描绘产生含有细胞珠粒(例如,包含细胞或细胞的组分)和包含条形码序列的条形码珠粒(例如凝胶珠粒)的微滴并从细胞的大分子组分产生序列读数的示例性方法1300的流程图,所述细胞或细胞组分已被聚合物或凝胶包封。在一些情况下,方法1300可包括以下操作。
在操作1310中,提供包含多个细胞的第一液相。第一液相可以是水性的。第一液相可包含细胞生长培养基。第一液相可包含最小生长培养基。第一液相还可包含能够聚合或胶凝的前体。能够聚合或胶凝的前体可包括聚(丙烯酰胺-共-丙烯酸)。第一液相还可包含完全或部分能够使前体聚合或胶凝的第一剂,如酰化剂。酰化剂可包括氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉鎓(DMTMM)。第一液相可包含4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉鎓的其它盐。前体的另外实例包括聚丙烯酰胺、包含二硫键的物质(例如,胱胺(2,2'-二硫代双(乙胺)、二硫化物交联的聚丙烯酰胺、琼脂糖、藻酸盐、聚乙烯醇、聚乙二醇(PEG)-二丙烯酸酯、PEG-丙烯酸酯、PEG-硫醇、PEG-叠氮化物、PEG-炔烃、其它丙烯酸酯、壳聚糖、透明质酸、胶原、纤维蛋白、明胶或弹性蛋白。此外,在一些情况下,前体是预形成的聚合物链,所述聚合物链可交联(例如,经由胶凝)以形成更大的结构,如珠粒。在一些情况下,前体可以是单体物质,所述单体物质聚合以形成更大的结构,如珠粒。
第一液相还可包含以下中的一种或多种:磁性颗粒、用于逆转录的试剂(例如,寡核苷酸引物或逆转录酶)、用于核酸扩增的试剂(例如,引物(例如随机引物、对给定DNA基因座具有特异性的引物)、聚合酶、核苷酸(例如未修饰的核苷酸、修饰的核苷酸或非规范核苷酸)、辅因子(例如,离子辅因子))或用于核酸修饰的试剂,所述核酸修饰包括连接、消化、甲基化、随机诱变、亚硫酸氢盐转化、尿嘧啶水解、核酸修复、核酸插入或裂解(例如经由CRISPR/Cas9介导的或转座子介导的插入或裂解)、加帽和脱帽。
在操作1320中,可使第一液相与不混溶的第二液相接触以形成多个微滴。第三液相可包含油并且还可包含表面活性剂。所述第三液相可包含氟化烃。在一些情况下,给定微滴可包含单个细胞和能够聚合或胶凝的前体。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的微滴可含有单个细胞。
在操作1330中,可使微滴经受足以使前体聚合或胶凝的条件。足以使前体聚合或胶凝的条件可包括暴露于加热、冷却、电磁辐射或光。足以使前体聚合或胶凝的条件可包括足以使前体聚合或胶凝的任何条件。在聚合或胶凝之后,可在细胞或细胞组分周围形成聚合物或凝胶,以使得它们被包封在细胞珠粒中。聚合物或凝胶可扩散地渗透化学或生物化学试剂。聚合物或凝胶可扩散地不渗透细胞或细胞组分的大分子成分。以这种方式,所述聚合物或凝胶可起作用以使细胞珠粒经受化学或生物化学操作,同时在空间上将细胞珠粒的内容物限制至由聚合物或凝胶限定的区域。
细胞珠粒可被官能化以结合至靶向分析物,如核酸、蛋白质或其它分析物。细胞珠粒的聚合物或凝胶可经由被动机制聚合或胶凝。聚合物或凝胶在碱性条件下或在升高的温度下可以是稳定的。聚合物或凝胶可具有与珠粒的机械性质(例如,拉伸强度)类似的机械性质。聚合物或凝胶可具有比油更低的密度。所述细胞珠粒可具有与缓冲液的密度大致相似的密度。所述细胞珠粒可具有可调的孔径。可选择孔径以例如保留变性的核酸。可选择孔径以保持对外源化学品如氢氧化钠(NaOH)和/或内源性化学品如抑制剂的扩散渗透性。细胞珠粒可以是生物相容的。细胞珠粒的聚合物或凝胶可维持或增强细胞活力。细胞珠粒可以是生物化学相容的。细胞珠粒的聚合物或凝胶可以热、化学、酶促和/或光学方式聚合和/或解聚。
在一些实例中,所得细胞珠粒可包含与二硫连键交联的聚(丙烯酰胺-共-丙烯酸)。这些细胞珠粒的制备可包括双操作反应。在第一次活化操作中,聚(丙烯酰胺-共-丙烯酸)可暴露于酰化剂以将羧酸转化为酯。例如,可使聚(丙烯酰胺-共-丙烯酸)暴露于氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉鎓(DMTMM)。可使聚丙烯酰胺-共-丙烯酸暴露于4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉鎓的其它盐。在第二交联操作中,可使在第一操作中形成的酯暴露于二硫化物交联剂。例如,可使酯暴露于胱胺(2,2'-二硫代双(乙胺))。在两次操作之后,包封的细胞或其组分被聚合物链包围,如通过二硫桥连接在一起的聚丙烯酰胺链,从而产生细胞珠粒。以这种方式,可使细胞包裹在细胞珠粒内部。在一些情况下,一个或多个磁性(例如,顺磁性)颗粒可包封在细胞珠粒内,例如像通过还将此类颗粒与聚合物前体一起包括在微滴内。
细胞珠粒可以是或包括细胞、细胞衍生物、细胞材料和/或源自基质(如聚合物基质)之中、之内或包裹在所述基质中的细胞的材料。由珠粒包封的细胞可以是活细胞。
在操作1340中,将由微滴中的前体产生的细胞珠粒悬浮在第二液相中并且可通过溶剂交换过程重悬浮于水性环境中。这种加工可促进用另外的水相材料加工细胞珠粒。溶剂交换过程可包括以下操作:收集微滴中的细胞珠粒(例如,在Eppendorf管或其它收集容器中)、除去过量油(例如,通过移液)、添加连接缓冲液(如3x连接缓冲液)、涡旋、添加缓冲液(如1x 1H,1H,2H,2H-全氟-1-辛醇(PFO)缓冲液)、涡旋、离心和分离。分离操作可包括经由吸引包封的磁性颗粒进行磁分离。磁性分离可通过使用磁性分离装置来将含有磁性颗粒的细胞珠粒从不想要的剩余油和溶剂中拉出来而完成。例如,磁性分离装置可用于将含有磁性颗粒的细胞珠粒从连接缓冲液和PFO中拉出,以允许除去连接缓冲液和PFO(例如通过移液)。然后可将含有磁性颗粒的细胞珠粒悬浮在连接缓冲液中并涡旋。可将含有顺磁性颗粒的细胞珠粒再次磁性分离,并且可除去连接缓冲液。可重复这种再悬浮、涡旋和磁分离的循环,直到细胞珠粒不含或基本上不含油相并悬浮在水性介质中。例如,循环可重复1、2、3、4、5、6、7、8、9、10或多于10次。然后可在水相中且用另外的材料加工细胞珠粒。
一旦细胞珠粒处于水性介质中,就可进一步处理细胞珠粒。例如,可过滤水溶液中的细胞珠粒(例如,使用70μm过滤器)以从溶液中除去团块和/或大细胞珠粒。在一些情况下,可将另外的试剂添加至水性介质和/或从水性介质中除去,以进一步加工细胞珠粒。进一步加工可包括但不限于细胞珠粒内的大分子成分的逆转录、核酸扩增和核酸修饰。
在操作1350中,可使细胞珠粒经受足以裂解包封在细胞珠粒中的细胞的条件。在一些情况下,经由微滴中存在的裂解剂完成裂解。在一些情况下,裂解是在本体中完成的,例如借助于在一锅中接触多个细胞珠粒的裂解剂。在一些情况下,细胞的裂解发生在使细胞经受足以将所述细胞包封在聚合物或凝胶中的条件之后。裂解可释放裂解的细胞的大分子成分。可通过将细胞珠粒暴露于氢氧化钠(NaOH)、氢氧化钾(KOH)或任何其它碱性剂来实现裂解。裂解可通过将细胞珠粒暴露于洗涤剂如十二烷基硫酸钠(SDS)、4-(1,1,3,3-四甲基丁基)苯基-聚乙二醇(Triton X-100)或任何非离子表面活性剂或皂苷来实现。裂解可通过将细胞珠粒暴露于酶,如蛋白酶或裂解酶(如溶菌酶、纤维素或消解酶)来实现。可通过将细胞珠粒暴露于冻融来实现裂解。可通过将细胞珠粒暴露于电磁辐射,如紫外(UV)光来实现裂解。可通过将细胞珠粒暴露于热来实现裂解。可通过将细胞珠粒暴露于任何其它裂解剂来实现裂解。细胞珠粒可保留例如像经由其聚合物或凝胶结构从细胞珠粒内的裂解的细胞释放的物质。
在操作1360中,可使细胞珠粒经受足以使由裂解的细胞释放的一种或多种大分子成分变性的条件。在一些情况下,变性发生在本体中,其中多于一个细胞珠粒在单个罐中经受变性条件。在一些情况下,经由微滴中存在的变性剂实现变性。可通过将细胞珠粒暴露于氢氧化钠(NaOH)来实现变性。可通过将细胞珠粒暴露于任何其它变性剂来实现变性。在一些情况下,操作1360与操作1350同时完成。在一些实例中,变性剂可使大分子成分变性并裂解细胞珠粒内的细胞。
在操作1370中,可提供包含多个条形码珠粒的第四液相。第四液相可以是水性的。第四液相可包含细胞生长培养基。第四液相可包含最小生长培养基。所述条形码珠粒各自包含条形码以对多个细胞珠粒的一种或多种大分子成分进行条形编码。在一些情况下,第三液相和第四液相是相同的相。在一些情况下,将第三液相和第四液相混合以提供混合相。
在操作1380中,第三液相和第四液相可与第五液相集合在一起,所述第五液相与第三和第四液相不混溶。第五液相可以将包封细胞材料的细胞珠粒和多个条形码珠粒分配到多个微滴中地这样的方式与第三和第四液相相互作用。第五液相可包含油并且还可包含表面活性剂。第五液相可包含氟化烃。在一些情况下,给定微滴可包含单个细胞珠粒和单个条形码珠粒。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的微滴可含有单个细胞珠粒。此外,虽然在此实例中细胞珠粒和条形码珠粒被分配到微滴中,但是在操作1380中可实现其它类型的分区,包括本文其它地方描述的那些,如孔。
在操作1390中,使细胞珠粒经受足以从细胞珠粒释放大分子成分的条件。大分子成分的释放可通过将细胞珠粒暴露于还原剂(例如二硫苏糖醇(DTT))来实现,所述还原剂可存在于微滴中。可通过将细胞珠粒暴露于能够释放大分子成分的任何物质来实现大分子成分的释放。在一些情况下,操作1390还包括从条形码珠粒释放条形码,其可用例如像用于从细胞珠粒释放大分子成分的相同的刺激来实现。在一些情况下,刺激是不同的。释放的条形码然后可如操作1392中参与条形编码。
在操作1392中,条形码用于对给定微滴中的给定细胞珠粒的一种或多种大分子成分进行条形编码。在一些情况下,使细胞珠粒的大分子成分经受足以用于条形编码的核酸扩增的条件。在此类情况下,条形码可在这种扩增过程期间用作引物。在其它情况下,连接可用于条形编码。在一些情况下,条形码用于鉴定细胞珠粒的一种或多种大分子成分。在一些情况下,对条形码进行核酸测序以鉴定一种或多种大分子组分。在一些情况下,测序是非靶向测序。在一些情况下,测序是靶向测序。
在操作1394中,对带条形码的大分子(或其衍生物)进行测序以产生读数。可在微滴内进行测序。可在微滴之外进行测序。例如,可通过从微滴释放带条形码大分子并使用测序仪(如Illumina测序仪或本文所述的任何其它测序仪)对带条形码大分子进行测序来进行测序。在一些情况下,给定的带条形码测序读数可用于鉴定细胞(其可能已被包封在细胞珠粒中),从所述细胞产生带条形码测序读数。这种能力可将特定序列与特定细胞相关联。关于核酸测序方法的另外细节和实例在本文别处描述。
在一些情况下,在测序之前,可进一步加工带条形码大分子。例如,在测序之前对带条形码大分子进行核酸扩增(例如PCR)。在一些情况下,将另外的序列连接至带条形码大分子。这种进一步加工可在微滴中或在微滴外部进行,如通过从微滴释放带条形码大分子。
图14示出使用方法1300产生的含有单个细胞珠粒和单个条形码珠粒的微滴。水性液体的微滴1400形成在与水性液体不混溶的液体的体积1405内。所述微滴含有单个条形码珠粒1420。所述微滴还包含含有一种或多种大分子成分1415的细胞1410。细胞可被凝胶或聚合物1430d包围,并且被包封在细胞珠粒1430d内。
图25示出描绘产生含有包含细胞的细胞珠粒和包含条形码序列的条形码珠粒(例如凝胶珠粒)的微滴并且从所述细胞的大分子组分产生序列读数的示例性方法2500的流程图。在一些情况下,方法2500包括以下操作。
在操作2510中,提供包含多个细胞的第一液相。第一液相可以是水性的。第一液相可包含细胞生长培养基。第一液相可包含最小生长培养基。第一液相还可包含能够聚合或胶凝的前体。能够聚合或胶凝的前体可包括聚(丙烯酰胺-共-丙烯酸)。第一液相还可包含完全或部分能够使前体聚合或胶凝的第一剂,如酰化剂。酰化剂可包括氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉鎓(DMTMM)。第一液相可包含4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉鎓的其它盐。前体的另外实例包括聚丙烯酰胺、包含二硫键的物质(例如,胱胺(2,2'-二硫代双(乙胺)、二硫化物交联的聚丙烯酰胺、琼脂糖、藻酸盐、聚乙烯醇、聚乙二醇(PEG)-二丙烯酸酯、PEG-丙烯酸酯、PEG-硫醇、PEG-叠氮化物、PEG-炔烃、其它丙烯酸酯、壳聚糖、透明质酸、胶原、纤维蛋白、明胶或弹性蛋白。此外,在一些情况下,前体是预形成的聚合物链,所述聚合物链可交联(例如,经由胶凝)以形成更大的结构,如珠粒。在一些情况下,前体可以是单体物质,所述单体物质聚合以形成更大的结构,如珠粒。
第一液相还可包含以下中的一种或多种:磁性颗粒、用于逆转录的试剂(例如,寡核苷酸引物或逆转录酶)、用于核酸扩增的试剂(例如,引物(例如随机引物、对给定DNA基因座具有特异性的引物)、聚合酶、核苷酸(例如未修饰的核苷酸、修饰的核苷酸或非规范核苷酸)、辅因子(例如,离子辅因子))或用于核酸修饰的试剂,所述核酸修饰包括连接、消化、甲基化、随机诱变、亚硫酸氢盐转化、尿嘧啶水解、核酸修复、核酸插入或裂解(例如经由CRISPR/Cas9介导的或转座子介导的插入或裂解)、加帽和脱帽。
在操作2520中,可提供包含多个条形码珠粒的第二液相。第二液相可以是水性的。第二液相可包含细胞生长培养基。第二液相可包含最小生长培养基。所述条形码珠粒各自包含条形码以对多个细胞珠粒的一种或多种大分子成分进行条形编码。在一些情况下,第一液相和第三液相是相同的相。在一些情况下,将第一液相和第二液相混合以提供混合相。
在操作2530中,如果尚未混合,则可将第一液相和第二液相集合在一起,并且使两者与不混溶的第二液相接触以形成多个微滴。第三液相可包含油并且还可包含表面活性剂。所述第三液相可包含氟化烃。在一些情况下,给定微滴可包含单个细胞和能够聚合或胶凝的前体。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的微滴可含有单个细胞。
在操作2540中,使微滴经受足以使前体聚合或胶凝的条件。足以使前体聚合或胶凝的条件可包括暴露于加热、冷却、电磁辐射或光。足以使前体聚合或胶凝的条件可包括足以使前体聚合或胶凝的任何条件。在聚合或胶凝之后,可在细胞和条形码珠粒周围形成聚合物或凝胶,以使得细胞和条形码珠粒被包封在细胞珠粒中。细胞珠粒的聚合物或凝胶可扩散地渗透化学或生物化学试剂。细胞珠粒的聚合物或凝胶可扩散地不渗透细胞的大分子成分。以这种方式,所述聚合物或凝胶可起作用以允许细胞经受化学或生物化学操作,同时在空间上将大分子成分限制在由聚合物或凝胶限定的微滴的区域。
细胞珠粒的聚合物或凝胶可被官能化以结合至靶向分析物,如核酸、蛋白质或其它分析物。细胞珠粒的聚合物或凝胶可经由被动机制聚合或胶凝。细胞珠粒的聚合物或凝胶在碱性条件下或在升高的温度下可以是稳定的。细胞珠粒的聚合物或凝胶可具有比油更低的密度。细胞珠粒的聚合物或凝胶可具有与缓冲液的密度大致相似的密度。细胞珠粒的聚合物或凝胶可具有可调的孔径。可选择孔径以例如保留变性的核酸。可选择孔径以保持对外源化学品如氢氧化钠(NaOH)和/或内源性化学品如抑制剂的扩散渗透性。细胞珠粒的聚合物或凝胶可以是生物相容的。细胞珠粒的聚合物或凝胶可维持或增强细胞活力。细胞珠粒的聚合物或凝胶可以是生物化学相容的。细胞珠粒的聚合物或凝胶可以热、化学、酶促和/或光学方式聚合和/或解聚。
在一些实例中,所得细胞珠粒可包含与二硫连键交联的聚(丙烯酰胺-共-丙烯酸)。这种聚合物的制备可包括双操作反应。在第一次活化操作中,聚(丙烯酰胺-共-丙烯酸)可暴露于酰化剂以将羧酸转化为酯。例如,可使聚(丙烯酰胺-共-丙烯酸)暴露于氯化4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉鎓(DMTMM)。可使聚丙烯酰胺-共-丙烯酸暴露于4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉鎓的其它盐。在第二交联操作中,可使在第一操作中形成的酯暴露于二硫化物交联剂。例如,可使酯暴露于胱胺(2,2'-二硫代双(乙胺))。在两次操作之后,包封的细胞和条形码珠粒被聚合物链(如通过二硫桥连接在一起的聚丙烯酰胺链)包围,从而产生包含细胞和条形码珠粒的细胞珠粒。以这种方式,细胞和条形码珠粒可被包裹在细胞珠粒内部。在一些情况下,一个或多个磁性(例如,顺磁性)颗粒可包封在细胞珠粒内,例如像通过还将此类颗粒与聚合物前体一起包括在微滴内。
细胞珠粒可以是或包括细胞、细胞衍生物、细胞材料和/或源自基质(如聚合物基质)之中、之内或包裹在所述基质中的细胞的材料。由珠粒包封的细胞可以是活细胞。
在操作2550中,将由微滴中的前体、细胞和条形码珠粒产生的细胞珠粒悬浮在第三液相中,并且可通过溶剂交换过程重悬浮于第四液相(例如水相)中。这种加工可促进用另外的水相材料加工细胞珠粒。溶剂交换过程可包括以下操作:收集微滴中的细胞珠粒(例如,在Eppendorf管或其它收集容器中)、除去过量油(例如,通过移液)、添加连接缓冲液(如3x连接缓冲液)、涡旋、添加缓冲液(如1x1H,1H,2H,2H-全氟-1-辛醇(PFO)缓冲液)、涡旋、离心和分离。分离操作可包括经由吸引包封的磁性颗粒进行磁分离。磁性分离可通过使用磁性分离装置来将含有磁性颗粒的细胞珠粒从不想要的剩余油和溶剂中拉出来而完成。例如,磁性分离装置可用于将含有磁性颗粒的细胞珠粒从连接缓冲液和PFO中拉出,以允许除去连接缓冲液和PFO(例如通过移液)。然后可将含有磁性颗粒的细胞珠粒悬浮在连接缓冲液中并涡旋。可将含有顺磁性颗粒的细胞珠粒再次磁性分离,并且可除去连接缓冲液。可重复这种再悬浮、涡旋和磁分离的循环,直到细胞珠粒不含或基本上不含油相并悬浮在水性介质中。例如,循环可重复1、2、3、4、5、6、7、8、9、10或多于10次。然后可在水相中且用水相中的另外的材料加工细胞珠粒。
一旦细胞珠粒处于水性介质中,就可进一步处理细胞珠粒。例如,可过滤水溶液中的细胞珠粒(例如,使用70μm过滤器)以从溶液中除去团块和/或大细胞珠粒。在一些情况下,可将另外的试剂添加至水性介质和/或从水性介质中除去,以进一步加工细胞珠粒。进一步加工可包括但不限于细胞珠粒内的大分子成分的逆转录、核酸扩增和核酸修饰。
在操作2560中,可使细胞珠粒经受足以裂解包封在细胞珠粒中的细胞的条件。在一些情况下,经由微滴中存在的裂解剂完成裂解。在一些情况下,裂解是在本体中完成的,例如借助于在一锅中接触多个细胞珠粒的裂解剂。在一些情况下,所述细胞珠粒的细胞的裂解发生在使细胞经受足以将所述细胞包封在聚合物或凝胶中的条件之后。裂解可释放细胞珠粒的裂解的细胞的大分子成分。可通过将细胞珠粒暴露于氢氧化钠(NaOH)、氢氧化钾(KOH)或任何其它碱性剂来实现裂解。裂解可通过将细胞珠粒暴露于洗涤剂如十二烷基硫酸钠(SDS)、4-(1,1,3,3-四甲基丁基)苯基-聚乙二醇(Triton X-100)或任何非离子表面活性剂或皂苷来实现。裂解可通过将细胞珠粒暴露于酶,如蛋白酶或裂解酶(如溶菌酶、纤维素或消解酶)来实现。可通过将细胞珠粒暴露于冻融来实现裂解。可通过将细胞珠粒暴露于电磁辐射,如紫外(UV)光来实现裂解。可通过将细胞珠粒暴露于热来实现裂解。可通过将细胞珠粒暴露于任何其它裂解剂来实现裂解。细胞珠粒可保留例如像经由其聚合物或凝胶结构从细胞珠粒内的裂解的细胞释放的物质。
在操作2570中,可使细胞珠粒经受足以使由所述细胞珠粒内的裂解的细胞释放的一种或多种大分子成分变性的条件。在一些情况下,变性发生在本体中,其中多于一个细胞珠粒在单个罐中经受变性条件。在一些情况下,经由微滴中存在的变性剂实现变性。可通过将细胞珠粒暴露于氢氧化钠(NaOH)来实现变性。可通过将细胞珠粒暴露于任何其它变性剂来实现变性。在一些情况下,操作2570与操作2560同时完成。在一些实例中,变性剂可使大分子成分变性并裂解细胞珠粒的细胞。
在操作2580中,使具有细胞珠粒的第四液相与第五液相接触,所述第五液相与第四液相不混溶。第五液相可以将细胞珠粒分配到多个微滴中的方式与第四液相相互作用。第五液相可包含油并且还可包含表面活性剂。第五液相可包含氟化烃。在一些情况下,给定微滴可包含单个细胞。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的微滴可含有单个细胞珠粒。在一些情况下,将另外的前体添加至第四液相,产生微滴并且前体聚合或胶凝(包括如本文所述)以产生包含细胞珠粒的甚至更大的细胞珠粒。可储存较大的细胞珠粒以备将来使用。此外,虽然在此实例中细胞珠粒被分配到微滴中,但是在操作2580可实现其它类型的分区,包括本文其它地方描述的那些,例如孔。
在操作2590中,然后可使细胞珠例经受足以从细胞珠例释放条形码珠例和细胞的大分子成分的条件。大分子成分的释放可通过将细胞珠粒暴露于还原剂(例如二硫苏糖醇(DTT))来实现,所述还原剂可存在于微滴中。可通过将细胞珠粒暴露于能够释放大分子成分的任何物质来实现大分子成分的释放。在一些情况下,操作2590还包括从条形码珠粒释放条形码,这可用例如像用于逆转细胞珠粒的交联的相同刺激来实现。在一些情况下,刺激是不同的。释放的条形码然后可如操作2592中参与条形编码。
在操作2592中,条形码用于对给定微滴中的给定细胞珠粒的一种或多种大分子成分进行条形编码。在一些情况下,使细胞珠粒的大分子成分经受足以用于条形编码的核酸扩增的条件。在此类情况下,条形码可在这种扩增过程期间用作引物。在一些情况下,连接用于条形编码。在一些情况下,条形码用于鉴定细胞珠粒的一种或多种大分子成分。在一些情况下,对条形码进行核酸测序以鉴定一种或多种大分子组分。在一些情况下,测序是非靶向测序。在一些情况下,测序是靶向测序。
在操作2594中,对带条形码的大分子(或其衍生物)进行测序以产生读数。可在微滴内进行测序。可在微滴之外进行测序。例如,可通过从微滴释放带条形码大分子并使用测序仪(如Illumina测序仪或本文所述的任何其它测序仪)对带条形码大分子进行测序来进行测序。在一些情况下,给定的带条形码测序读数可用于鉴定自其产生带条形码测序读数的细胞。这种能力可将特定序列与特定细胞相关联。关于核酸测序方法的另外细节和实例在本文别处描述。
在一些情况下,在测序之前,可进一步加工带条形码大分子。例如,在测序之前对带条形码大分子进行核酸扩增(例如PCR)。在一些情况下,将另外的序列连接至带条形码大分子。这种进一步加工可在微滴中或在微滴外部进行,如通过从微滴释放带条形码大分子。
图26A示出使用方法2500产生的含有包封细胞2630的细胞珠粒2620和包含条形码序列的单个凝胶珠粒2640的微滴2610。图26B示出较大的细胞珠粒2650,其包含图26A中的微滴2610的元件,其中较大的细胞珠粒2650由存在于微滴中的前体产生且随后聚合或胶凝。
图15示出描绘产生含有包含细胞珠粒、条形码珠粒(例如凝胶珠粒)的微滴的微滴并且从与所述细胞珠粒相关的细胞的大分子组分产生序列读数的示例性方法1500的流程图。在一些情况下,方法1500可包括以下操作。
在操作1510中,提供包含多个细胞、能够聚合或胶凝的前体和变性剂的第一液相。第一液相可以是水性的。第一液相可包含细胞生长培养基。第一液相可包含最小生长培养基。
在操作1520中,第一液相可与第二液相集合在一起,所述第二液相与第一液相不混溶。所述第一液相可以将多个细胞中的每一个分配到多个第一微滴中的这样的方式与第二液相相互作用,所述第一微滴还包含聚合物或凝胶前体和变性剂。第二液相可包含油。第二液相可包含氟化烃。在一些情况下,给定第一微滴可包含单个细胞。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的第一微滴可含有单个细胞。
在操作1530中,可使第二液相与不混溶的第三相接触,所述第三相包含含有条形码的多个条形码珠粒和变性剂中和剂。第三液相可以是水性的。所述条形码珠粒各自包含条形码以对多个细胞的一种或多种大分子成分进行条形编码。在一些情况下,第一液相和第三液相是相同的相。将第二液相和第三液相集合在一起可产生包含条形码珠粒和第一微滴的混合物。
在操作1540中,可使在操作1530中产生的混合物与不混溶的第四液相接触以形成具有第一微滴和珠粒的第二微滴(例如,微滴构造内的微滴)。第四液相可以将第一微滴和多个条形码珠粒中的每一个分配到多个第二微滴中的这样的方式与混合物相互作用。第四液相可包含油并且还可包含表面活性剂。第四液相可包含氟化烃。在一些情况下,给定第二微滴可包含单个第一微滴和单个条形码珠粒。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的第二微滴可含有单个第一微滴。
在操作1550中,可使第一微滴中的细胞经受足以裂解细胞的条件。在一些情况下,借助于微滴中的裂解剂完成裂解。裂解可将裂解的细胞珠粒的大分子成分释放到第一微滴中。裂解可经由也存在于第一微滴中的变性剂(例如,氢氧化钠(NaOH)、氢氧化钾(KOH)或任何其它碱性剂)的作用来实现。在一些情况下,裂解可通过第一微滴中存在的洗涤剂来实现,所述洗涤剂如十二烷基硫酸钠(SDS)、4-(1,1,3,3-四甲基丁基)苯基-聚乙二醇(TritonX-100)或任何非离子表面活性剂或皂苷。可用第一微滴中的酶实现裂解,所述酶如蛋白酶或裂解酶(例如溶菌酶、纤维素或消解酶)。可通过将第一微滴暴露于冻融来实现裂解。可通过将第一微滴暴露于电磁辐射(如紫外(UV)光)来实现裂解。可通过将第一微滴暴露于热来实现裂解。可通过将第一微滴的内容物暴露于任何其它裂解剂来实现裂解。
在操作1560中,然后可使裂解的细胞经受足以使由裂解的细胞释放的一种或多种大分子成分变性的条件。在一些实例中,借助于第一微滴中存在的变性剂,例如像氢氧化钠(NaOH)来完成裂解。在一些情况下,变性剂存在于第一微滴外部。在一些实例中,相同的变性剂可使大分子成分变性并裂解细胞。
在操作1570中,可使在操作1540中产生的微滴经受足以使前体在第一微滴内聚合或胶凝的条件。前体的聚合或胶凝可产生细胞珠粒,所述细胞珠粒包封来自裂解的细胞的释放/变性的大分子组分。在操作1520中产生的第一微滴包含单个细胞的情况下,由所述微滴产生的所得也将包含单个细胞的大分子成分。足以使前体聚合或胶凝的条件可包括将第一微滴暴露于加热、冷却、电磁辐射或光。足以使前体聚合或胶凝的条件可包括使第一微滴暴露于足以使前体聚合或凝胶的任何条件。在聚合或胶凝之后,可在从细胞裂解释放的材料周围形成聚合物或凝胶以产生细胞珠粒。细胞珠粒可扩散地渗透化学或生物化学试剂。细胞珠粒可扩散地不可渗透细胞珠粒的大分子成分。以这种方式,所述聚合物或凝胶可起作用以允许细胞珠粒经受化学或生物化学操作,同时在空间上将大分子成分限制在由聚合物或凝胶限定的微滴的区域。细胞珠粒的聚合物或凝胶可包括以下中的一种或多种:二硫化物交联的聚丙烯酰胺、琼脂糖、藻酸盐、聚乙烯醇、聚乙二醇(PEG)-二丙烯酸酯、PEG-丙烯酸酯、PEG-硫醇、PEG-叠氮化物、PEG-炔烃、其它丙烯酸酯、壳聚糖、透明质酸、胶原、纤维蛋白、明胶或弹性蛋白。细胞珠粒的聚合物或凝胶可包含任何其它聚合物或凝胶。在一些情况下,第一微滴中的前体的聚合产生包含细胞的大分子成分的细胞珠粒,并且还从第一微滴释放细胞珠粒并进入第二微滴的内部。在从第一微滴释放细胞珠粒后,存在于第二微滴的内部中的变性剂中和剂使也随细胞珠粒释放的变性剂中和。聚合还可与溶剂交换过程结合或在溶剂交换过程之前,所述溶剂交换过程有助于从第一微滴释放细胞珠粒并进入第二微滴的内部。
在操作1580中,可使细胞珠粒经受足以从细胞珠粒释放大分子成分的条件。大分子成分的释放可通过将细胞珠粒暴露于还原剂(例如二硫苏糖醇(DTT))来实现,所述还原剂可存在于微滴中。可通过将细胞珠粒暴露于能够释放大分子成分的任何物质来实现大分子成分的释放。在一些情况下,操作1580还包括从第二微滴中的条形码珠粒释放条形码,这可用例如像用于逆转细胞珠粒的交联的相同刺激来实现。在一些情况下,刺激是不同的。释放的条形码然后可如操作1590中参与条形编码。
在操作1590中,条形码可用于对给定第二微滴中的给定单个细胞珠粒的一种或多种大分子成分进行条形编码。在一些情况下,使细胞珠粒的大分子成分经受足以用于条形编码的核酸扩增的条件。在此类情况下,条形码可在这种扩增中用作引物。在其它情况下,连接可用于条形编码。在一些情况下,条形码用于鉴定细胞珠粒的一种或多种大分子成分。在一些情况下,对条形码进行核酸测序以鉴定一种或多种大分子组分。在一些情况下,测序是非靶向测序。在一些情况下,测序是靶向测序。
在操作1595中,对带条形码的大分子(或其衍生物)进行测序以产生读数。可在第二微滴内进行测序。可在第二微滴之外进行测序。例如,可通过从第二微滴释放带条形码大分子并使用测序仪(如Illumina测序仪或本文所述的任何其它测序仪)对带条形码大分子进行测序来进行测序。在一些情况下,给定的带条形码测序读数可用于鉴定自其产生带条形码测序读数的细胞。这种能力可将特定序列与特定细胞相关联。关于核酸测序方法的另外细节和实例在本文别处描述。
在一些情况下,在测序之前,可进一步加工带条形码大分子。例如,在测序之前对带条形码大分子进行核酸扩增(例如PCR)。在一些情况下,将另外的序列连接至带条形码大分子。这种进一步加工可在微滴中或在微滴外部进行,如通过从微滴释放带条形码大分子。
图16示出使用方法1500产生的含有单个细胞珠粒和单个条形码珠粒的微滴。水性液体的外部微滴1600形成在与水性液体不混溶的液体的第一体积1605内。所述外部微滴含有单个条形码珠粒1620。在所述外部微滴内是包含细胞珠粒的水性液体的内部微滴1640。内部微滴通过与外部微滴和内部微滴不混溶的液体的第二体积1630e与外部微滴分配。所述内部微滴含有封装在细胞珠粒内的单个细胞1610,所述细胞珠粒含有一种或多种大分子成分1615。
图17示出描绘产生含有呈聚合物包被的细胞形式的细胞珠粒和条形码珠粒(例如,凝胶珠粒)的微滴并且从与所述细胞珠粒相关的细胞的大分子组分产生序列读数的示例性方法1700的流程图。在一些情况下,方法1700可包括以下操作。
在操作1710中,提供包含多个细胞的第一液相。第一液相可以是水性的。第一液相可包含细胞生长培养基。第一液相可包含最小生长培养基。
在操作1720中,可将细胞暴露于聚合物,所述聚合物选择性地与细胞缔合以在细胞上形成涂层。所述聚合物可带电。所述聚合物可包含阳离子。所述聚合物可包含聚阳离子。所述涂层可通过细胞与带电聚合物之间的静电相互作用形成。所述聚合物可以是胆固醇。所述聚合物可以是脂质修饰的共聚物。所述涂层可通过细胞与聚合物之间的疏水相互作用形成。所述聚合物可以蛋白质修饰的共聚物。所述涂层可通过细胞的表面抗原与蛋白质修饰的共聚物之间的蛋白质相互作用形成。所述涂层可包含一层或多层涂层。所述涂层可可扩散地渗透化学或生物化学试剂。所述涂层可扩散地不可渗透细胞的大分子成分。以这种方式,所述涂层可起作用以允许包被的细胞经受化学或生物化学操作,同时在空间上将大分子成分限制在由所述涂层包封的区域。所述涂层可包含能够与细胞相互作用的任何其它聚合物。
在操作1730中,可使包被的细胞经受足以裂解细胞的条件。在一些实例中,借助于微滴中的裂解剂完成裂解。在一些情况下,包被的细胞的裂解在本体中完成。细胞的裂解可发生在使细胞经受足以将所述细胞包封在聚合物涂层中的条件之后。裂解可释放裂解的包被的细胞的大分子成分。但是,细胞的涂层可将从细胞释放的大分子成分保留在涂层的限制内。可通过将包被的细胞暴露于氢氧化钠(NaOH)、氢氧化钾(KOH)或任何其它碱性剂来实现裂解。裂解可通过将包被的细胞暴露于洗涤剂如十二烷基硫酸钠(SDS)、4-(1,1,3,3-四甲基丁基)苯基-聚乙二醇(Triton X-100)或任何非离子表面活性剂或皂苷来实现。裂解可通过将包被的细胞暴露于酶,如蛋白酶或裂解酶(如溶菌酶、纤维素或消解酶)来实现。可通过将包被的细胞暴露于冻融来实现裂解。可通过将包被的细胞暴露于电磁辐射如紫外(UV)光来实现裂解。可通过将包被的细胞暴露于热来实现裂解。可通过将包被的细胞暴露于任何其它裂解剂来实现裂解。裂解可在形成包被的细胞的涂层之后发生。
在操作1740中,可使裂解的包被的细胞经受足以使由裂解的包被的细胞释放的一种或多种大分子成分变性的条件。在一些实例中,借助于微滴中的变性剂完成变性。在一些情况下,变性在本体中完成。可通过将包被的细胞暴露于氢氧化钠(NaOH)来实现变性。可通过将包被的细胞暴露于任何其它变性剂来实现变性。在一些实例中,操作1740与操作1730同时完成。在一些实例中,变性剂可使大分子成分变性并裂解包被的细胞。
在操作1750中,可提供包含多个条形码珠粒的第二液相。第二液相可以是水性的。第二液相可包含细胞生长培养基。第二液相可包含最小生长培养基。所述条形码珠粒各自包含条形码以对多个包被的细胞的一种或多种大分子成分进行条形编码。在一些情况下,第一液相和第二液相是相同的相。在一些情况下,将第一液相和第二液相混合以提供混合相。
在操作1760中,使第一液相和第二液相与第三液相集合在一起,所述第三液相与第一和第二液相不混溶。所述第三液相可以将多个包被的细胞和多个条形码珠粒中的每一个分配到多个微滴中的这样的方式与第一和第二液相相互作用。第三液相可包含油并且还可包含表面活性剂。所述第三液相可包含氟化烃。在一些情况下,给定微滴可包含单个包被的细胞和单个条形码珠粒。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的微滴可含有单个包被的细胞。
在操作1770和微滴中,使包被的细胞经受足以使涂层解聚的条件。涂层的解聚可通过将包被的细胞暴露于还原剂(例如二硫苏糖醇(DTT))来实现,所述还原剂可在分区中。涂层的解聚可通过将包被的细胞暴露于能够使涂层解聚的任何物质来实现。在一些情况下,操作1770还包括从条形码珠粒释放条形码,这可用例如像用于逆转包被的细胞的交联的相同刺激来实现。在一些情况下,刺激是不同的。释放的条形码然后可如操作1780中参与条形编码。
在操作1780中,条形码用于对给定微滴中的给定细胞的一种或多种大分子成分进行条形编码。在一些情况下,使细胞的大分子成分经受足以用于条形编码的核酸扩增的条件。在此类情况下,条形码可在这种扩增中用作引物。在其它情况下,连接可用于条形编码。在一些情况下,条形码用于鉴定细胞的一种或多种大分子成分。在一些情况下,对条形码进行核酸测序以鉴定一种或多种大分子组分。在一些情况下,测序是非靶向测序。在一些情况下,测序是靶向测序。
在操作1790中,对带条形码的大分子(或其衍生物)进行测序以产生读数。可在微滴内进行测序。可在微滴之外进行测序。例如,可通过从微滴释放带条形码大分子并使用测序仪(如Illumina测序仪或本文所述的任何其它测序仪)对带条形码大分子进行测序来进行测序。在一些情况下,给定的带条形码测序读数可用于鉴定自其产生带条形码测序读数的细胞。这种能力可将特定序列与特定细胞相关联。关于核酸测序方法的另外细节和实例在本文别处描述。
在一些情况下,在测序之前,可进一步加工带条形码大分子。例如,在测序之前对带条形码大分子进行核酸扩增(例如PCR)。在一些情况下,将另外的序列连接至带条形码大分子。这种进一步加工可在微滴中或在微滴外部进行,如通过从微滴释放带条形码大分子。
图18示出使用方法1700产生的含有单个包被的细胞和单个条形码珠粒的微滴。水性液体的微滴1800形成在与水性液体不混溶的液体的体积1805内。所述微滴含有单个条形码珠粒1820。所述微滴还包含含有一种或多种大分子成分1815的单个包被的细胞1810。包被的细胞被涂层1830f包围。
图19示出描绘产生含有细胞和单个条形码珠粒的微滴并且从所述细胞的大分子组分产生序列读数的示例性方法1900的流程图。在此实例中,包含具有不同粘度的水性流体的微滴可将包含的细胞隔离至微滴内的特定区域。在此实例中,在微滴中提供两种可混溶相,但是所述两种可混溶相具有足够不同的物理性质(例如,具有基本上不同的粘度)以至于所述两相之间的扩散受到限制。在一些实例中,两种可混溶的相是水性两相体系(ATPS)的相。这种两种可混溶相的实例包括水相和包含甘油、聚蔗糖、葡聚糖和聚乙二醇(PEG)中的一种或多种的水相。以这种方式,不相容的化学或生物化学试剂可隔离到不同的相中。另外,减慢的扩散可允许微滴中的细胞或条形码珠粒定时暴露于化学或生物化学试剂。在一些情况下,方法1900可包括以下操作。
在操作1910中,提供包含多个细胞的第一液相。第一液相可以是水性的。第一液相可包含细胞生长培养基。第一液相可包含最小生长培养基。在一些实例中,第一液相可包含两种可混溶的液相中的一者,在所述两种液相之间,分子从一种相至另一种相的扩散受到限制。例如,第一液相可包含ATPS的一种组分或可包含一种或多种粘度增强剂,如甘油、聚蔗糖、葡聚糖或聚乙二醇(PEG)。
在操作1920中,可提供包含多个条形码珠粒的第二液相。第二液相可以是水性的。在一些实例中,第二液相可以是上述ATPS的其它组分,或者可不包含粘度增强剂,如甘油、聚蔗糖、葡聚糖和聚乙二醇(PEG)。第二液相可包含细胞生长培养基。第二液相可包含最小生长培养基。所述条形码珠粒各自包含条形码以对多个细胞的一种或多种大分子成分进行条形编码。
在操作1930中,使第一液相和第二液相与第三液相集合在一起,所述第三液相与第一和第二液相不混溶。所述第三液相可以将多个细胞和多个条形码珠粒中的每一个分配到多个微滴中的这样的方式与第一和第二液相相互作用。第三液相可包含油并且可包含表面活性剂所述第三液相可包含氟化烃。在一些情况下,给定微滴可包含单个细胞和单个条形码珠粒。在一些情况下,至少80%、至少90%、至少95%、至少99%、至少99.5%、至少99.9%、至少99.95%或至少99.99%的微滴可含有单个细胞。
在操作1940中,使细胞经受足以裂解细胞的条件。在一些实例中,通过存在于微滴内的第一液相中的裂解剂来实现裂解。裂解可释放裂解的细胞的大分子成分。然而,考虑到微滴的两种流体之间的粘度差异,这些大分子成分的扩散可能受到限制。可通过将细胞暴露于氢氧化钠(NaOH)、氢氧化钾(KOH)或可在微滴中的任何其它碱性剂来实现裂解。裂解可通过将细胞暴露于洗涤剂如十二烷基硫酸钠(SDS)、4-(1,1,3,3-四甲基丁基)苯基-聚乙二醇(Triton X-100)或可在微滴中的任何非离子表面活性剂或皂苷来实现。裂解可通过将细胞暴露于酶,如蛋白酶或裂解酶(如溶菌酶、纤维素或消解酶)来实现,所述酶可在微滴中。可通过将细胞暴露于冻融来实现裂解。可通过将细胞暴露于电磁辐射(如紫外(UV)光)来实现裂解。可通过将细胞暴露于热来实现裂解。可通过将细胞暴露于任何其它裂解剂来实现裂解。
在操作1950中,可使裂解的细胞经受足以使由裂解的细胞释放的一种或多种大分子成分变性的条件。在一些情况下,借助于存在于微滴内的第一液相中的变性剂完成变性。变性可通过将细胞暴露于氢氧化钠(NaOH)来实现,所述氢氧化钠可在微滴中。变性可通过将细胞暴露于任何其它变性剂来实现,所述变性剂可在微滴中。在一些实例中,操作1950与操作1940同时完成。在一些实例中,变性剂可使大分子成分变性并裂解细胞。
在操作1960中,条形码用于对给定微滴中的给定细胞的一种或多种大分子成分进行条形编码。条形编码可通过微滴内的两相之间的大分子成分的有限扩散来定时。在经过足够的时间以将大分子成分与条形码珠粒混合后,可进行条形编码。在一些情况下,使大分子成分经受足以进行核酸扩增的条件以用于条形编码。在此类情况下,条形码可在这种扩增中用作引物。在其它情况下,连接可用于条形编码。在一些情况下,条形码用于鉴定细胞的一种或多种大分子成分。在一些情况下,对条形码进行核酸测序以鉴定一种或多种大分子组分。在一些情况下,测序是非靶向测序。在一些情况下,测序是靶向测序。在一些情况下,操作1960还包括从条形码珠粒释放条形码,这可通过诸如还原剂(例如DTT)的刺激来实现。所释放的条形码然后可参与条形编码。
在操作1970中,对带条形码的大分子(或其衍生物)进行测序以产生读数。可在微滴内进行测序。可在微滴之外进行测序。例如,可通过从微滴释放带条形码大分子并使用测序仪(如Illumina测序仪或本文所述的任何其它测序仪)对带条形码大分子进行测序来进行测序。在一些情况下,给定的带条形码测序读数可用于鉴定自其产生带条形码测序读数的细胞。这种能力可将特定序列与特定细胞相关联。关于核酸测序方法的另外细节和实例在本文别处描述。
在一些情况下,在测序之前,可进一步加工带条形码大分子。例如,在测序之前对带条形码大分子进行核酸扩增(例如PCR)。在一些情况下,将另外的序列连接至带条形码大分子。这种进一步加工可在微滴中或在微滴外部进行,如通过从微滴释放带条形码大分子。图20示出使用方法2000产生的含有单个细胞和单个条形码珠粒的微滴。水性液体的微滴2000形成在与水性液体不混溶的液体的体积2005内。所述微滴含有单个凝胶珠粒2020。所述微滴还包含含有一种或多种大分子成分2015的单个细胞2010。微滴还包含两种不同的水相,所述水相分别限制条形码珠粒2020和细胞2010。相2030g包含细胞2010,并且相2030a包含条形码珠粒2020。
本公开还提供了用于在细胞珠粒中产生细胞珠粒的组合物、系统和方法。此类方法、组合物和系统可用于将包封在细胞珠粒中的细胞定位在细胞珠粒的中心或基本上在细胞珠粒的中心。在一些情况下,细胞的定中心可防止细胞珠粒的内容物(例如,细胞、细胞组分、来自细胞的生物分子、来自细胞的核酸)从细胞珠粒中扩散或泄漏出来。这些材料的损失可导致部分或完全丧失给定细胞珠粒的内容物的测序信息。例如,来自细胞珠粒的边缘处的细胞的核酸泄漏可导致源自测序和/或潜在假阳性调用的噪声谱。通过使细胞在细胞珠粒内定中心,更大深度的细胞珠粒材料包封细胞,从而提供更大的扩散距离,并且因此提供用于包封材料的扩散的更大扩散屏障。此外,细胞珠粒方法中的细胞珠粒本身添加围绕细胞的另外材料,从而也产生更大的扩散屏障。通常,细胞珠粒中的细胞珠粒可通过用于产生单个凝胶珠粒的类似方法产生,如本文其它地方所述。可如本文所述产生一级细胞珠粒,且然后再次进行用于细胞珠粒产生的相同过程以在细胞珠粒中产生细胞珠粒。
用于在细胞珠粒中产生细胞珠粒的示例性方法和微流体装置构造示意性地描绘于图27中。如图27所示,含有细胞2702的细胞珠粒2701可以任何合适的方式产生(包括以本文所述的方式),提供在水相中。然后将细胞珠粒2701提供2703至微流体装置2704。所述装置包括以双交叉构型布置的微流体通道。将细胞珠粒2701提供至微流体装置,其中它们在微流体装置2704的第一通道2705中流动至第一通道与第二通道2706和第三通道2707的交叉点。第二通道2706和第三通道2707提供聚合物或凝胶前体,所述聚合物或凝胶前体与来自第一微流体通道2705的细胞珠粒2701的流合并在一起。
然后,包含细胞珠粒2701和聚合物或凝胶前体的流通过第四微流体通道2708流动至第二通道与第五通道2709和第六通道2710的交叉点。所述第五通道和第六通道提供与细胞珠粒2701的水相和在通道2708中流动的聚合物或凝胶前体不混溶的相。包含细胞珠粒2701和来自第四通道2708的聚合物或凝胶前体的流流动至不混溶流中,以使得产生包含细胞珠粒和聚合物或凝胶前体的微滴2711并在第七通道2712中从第二交叉点流走。然后,微滴2711可经受适于使微滴2711中的前体聚合或胶凝的条件,并且如本文其它地方所述进行溶剂交换,并且回收细胞珠粒中的所得细胞珠粒。
图28A中示出(类似于图27中示意性地示出的)显示使用微流体装置产生包含细胞珠粒和聚合物或凝胶前体的微滴的照片。如所示,将包含从通道2705提供的细胞珠粒2701的水相提供至第一通道接点,水相聚合物或凝胶前体从通道2706流动至所述第一通道接点中。所得的包含细胞珠粒2701和聚合物或凝胶前体的水性混合物流动通过通道2708进入第二通道接点,由通道2709提供的油流动至所述第二通道接点中。油相与水相之间的相互作用产生微滴2711,所述微滴包含细胞珠粒2701和聚合物或凝胶前体,其在通道2712中流动远离第二通道接点。
图28B示出由图28A中产生的微滴产生的细胞珠粒中的细胞珠粒的照片。所述细胞珠粒中的细胞珠粒包含较大的细胞珠粒2800,所述较大的细胞珠粒包封较小的细胞珠粒2801。较小的细胞珠粒2801包封细胞2802。如图28B所示,细胞2802基本上位于较大细胞珠粒2800的中心。
图29示出跨单独细胞的深度位置变异系数(DPCV)值的直方图,所述单独细胞的核酸在细胞珠粒样品制备方法中使用细胞珠粒进行测序。DPCV是跨基因组的位置实现的测序覆盖的均匀度的量度。
另外,细胞可位于微滴的中心而不产生包含细胞珠粒的细胞珠粒。例如,可在细胞珠粒产生之前对包含聚合物或凝胶前体和细胞的微滴进行剪切。剪切可例如经由轨道振荡或在微流体通道中实现。在此类情况下,可控制前体的聚合或胶凝的动力学,以使得聚合或胶凝足够慢或延迟。较慢或延迟的聚合或胶凝可允许微滴内容物的内部循环,所述内容物可使细胞位于微滴内的中心,以使得其可在前体聚合或胶凝时固定在细胞珠粒的中心的适当位置。
图30描绘条形图,所述条形图示出随用于制备细胞珠粒的示例性条件变化的不同类别的细胞珠粒。细胞珠粒分为三类(边缘、偏心、中心),这取决于细胞相对于给定细胞珠粒的边缘或中心的位置。如上所述,在轨道振荡器上以不同的振荡时间和速度产生细胞珠粒。
此外,通过形成核-壳珠粒,细胞也可位于微滴的中心,其中细胞悬浮在形成核的溶液中。细胞可通过粘度不匹配的流动流形成,以使得细胞悬浮在具有与壳流体不同的粘度的核流体中。壳流体可以是液体和/或由交联基质如交联聚合物形成。此类核-壳珠粒的实例描述于Rossow等人,J.Am.Chem.Soc.2012,134,4983-4989中,所述文献以引用的方式并入本文。
具有悬浮在核中的细胞的核-壳珠粒也可通过由水性两相体系制备的水包水微滴的产生形成。例如,将细胞悬浮在核溶液(例如,聚合物核溶液、聚乙二醇(PEG)核溶液)中,所述核溶液然后被交联的壳(例如,交联的葡聚糖壳)包围。这种珠粒可由水包水微滴产生,其中一个水相包含交联前体,并且另一个水相包含细胞。关于由水性两相体系形成核-壳珠粒的另外细节提供于Mytnyk等人,RSC Adv.,2017,7,11331-11337中,所述文献以引用的方式并入本文。
基于本文提供的公开内容的许多变化、改变和调整是可能的。例如,可改变上面讨论的示例方法700、900、1000、1100、1300、1500、1700、1900和2500中的一个或多个的操作的顺序、除去一些操作、重复一些操作并且根据需要添加另外的操作。一些操作可连续执行。一些操作可并行执行。一些操作可执行一次。一些操作可执行多次。一些操作可包括子操作。一些操作可自动化,并且一些操作可以是手动的。如本文所述的处理器可包括一个或多个指令,以执行所述方法中的一种或多种的一个或多个操作的至少一部分。此外,虽然上文关于细胞分析描述了这些实例,但是相同的程序可扩展至含有可条形编码的大分子成分的其它生物物种,包括病毒。
本文还公开了用于细胞分析的系统,包括经由细胞珠粒。所述系统可利用微滴发生器(例如,微流体装置、具有T形接头的微滴发生器、产生具有跨通道流聚焦的微滴的微滴发生器、产生具有逐步/边缘乳化的微滴的微滴发生器、产生具有梯度生成的微滴的微滴生成、使用压电/声学产生微滴的微滴发生器)。
在一些情况下,微滴发生器是微流体装置,所述微流体装置包括在一个或多个通道的通道接点处混合不混溶流体以形成微滴。所述通道可以是微通道。所述微通道可在微流体装置上实施。这类微流体装置的实例及其操作提供在图1B、图1C、图1D和图31中,并且在本文其它地方描述。
此类系统还可包括被编程为实现本文描述的方法、包括本文描述的示例性方法100、700、900、1000、1100、1300、1500、1700、1900和2500之一的控制器。
计算机控制系统
本公开提供了被编程为实现本公开的方法的计算机控制系统。图6示出计算机系统601,所述计算机系统被编程或以其它方式配置为实现本文描述的方法或方法的部分,包括示例性方法100、700、900、1000、1100、1300、1500、1700、1900和2500。计算机系统601可调节本公开的各个方面,例如像细胞珠粒中的细胞材料的样品制备、这些材料的条形编码和/或带条形码分子的分析。计算机系统601可以是用户的电子装置或相对于电子装置远程定位的计算机系统。电子装置可以是移动电子装置。
计算机系统601包括中央处理单元(CPU,在本文中也称为“处理器”和“计算机处理器”)605,其可为单一核心或多核心处理器,或用于并行处理的多个处理器。计算机系统601还包括存储器或存储单元610(例如,随机存取存储器、只读存储器、闪速存储器)、电子存储单元615(例如,硬盘)、与一个或多个其它系统通信的通信接口620(例如,网络适配器)以及外围装置625,如高速缓冲存储器、其它存储器、数据存储和/或电子显示适配器。存储器610、存储单元615、接口620和外围装置625经由通信总线(实线)诸如母板与CPU 605通信。存储单元615可为用于存储数据的数据存储单元(或数据储存库)。计算机系统601可借助于通信接口620来可操作地耦接至计算机网络(“网络”)630。网络630可为互联网、互联网和/或外联网或与互联网通信的内部网和/或外联网。网络630在一些情况下为电信和/或数据网络。网络630可包括一个或多个计算机服务器,其可实现分布式计算,诸如云计算。网络630在一些情况下借助于计算机系统601,可实施对等网络,其可使得耦接至计算机系统601的装置能够作为客户端或服务器来运作。
CPU 605可执行序列机器可读指令,所述指令可在程序或软件中具体实现。指令可存储于存储单元,诸如存储器610中。所述指令可被引导至CPU 605,其可随后编程或以其它方式配置CPU 605来实现本公开的方法。由CPU 605执行的操作的实例可包括撷取、解码、执行和写回。
CPU 605可以是电路的一部分,如集成电路。系统601的一个或多个其它部件可包含于电路中。在一些情况下,电路是专用集成电路(ASIC)。
存储单元615可存储文件,诸如驱动程序、文库和保存程序。存储单元615可存储使用者数据,例如,使用者偏好和使用者程序。计算机系统601在一些情况下可包括一个或多个额外数据存储单元,所述单元在计算机系统601外部,诸如位于经由内部网或互联网与计算机系统601通信的远程服务器上。
计算机系统601可经由网络630与一个或多个远程计算机系统通信。例如,计算机系统601可与用户的远程计算机系统通信。远程计算机系统的实例包括个人计算机(例如,便携式PC)、平板(slate)或平板(tablet)PC(例如,iPad、/>GalaxyTab)、电话、智能手机(例如/>iPhone、支持Android的装置、/>)或个人数字助理。用户可经由网络630访问计算机系统601。
如本文描述的方法可经由机器(例如,计算机处理器)可执行代码来实施,所述代码存储于计算机系统601的电子存储单元上,例如像,存储器610或电子存储单元615。机器可执行或机器可读代码可以软件形式提供。在使用期间,代码可由处理器605执行。在一些情况下,代码可从存储单元615检索并且存储在存储器610上准备由处理器605访问。在一些情况下,可排除电子存储单元615,并且机器可执行指令存储于存储器610上。
代码可预先编译并且被配置来供具有适于执行代码的处理器的机器来使用,或可在执行时间期间加以编译。代码可以程序语言来提供,可选择所述程序语言以使得代码能够以预先编译或原样编译方式来执行。
本文提供的系统和方法,诸如计算机系统601的各个方面可在程序编制中具体实现。技术的各个方面可被认为是通常呈机器(或处理器)可执行代码和/或相关数据形式的“产品”或“制品”,所述数据承载或具体实现于一定类型的机器可读介质中。机器可执行代码可存储于电子存储单元,诸如存储器(例如,只读存储器、随机存取存储器、闪速存储器)或硬盘上。“存储”类型介质可包括计算机、处理器等的任何或所有有形存储器,或其相关联模块,诸如各种半导体存储器、磁带驱动器、磁盘驱动器等,其可在任何时候提供非暂时性存储用于软件编程。软件的全部或一部分可有时经由互联网或各种其它电信网络来传送。这类通信,例如,可使得将软件从一个计算机或处理器加载至另一个计算机或处理器,例如,从管理服务器或主机计算机加载至应用服务器的计算机平台中。因此,可承载软件元件的另一种类型的介质包括光、电和电磁波,诸如跨越本地装置之间的物理接口、经由有线和光学陆地线网络和各种空中链路所使用的光、电和电磁波。携带这些波的物理元件,诸如有线或无线链路、光链路等也可被认为是承载软件的介质。如本文使用,除非限于非暂时性、有形“存储”介质,术语诸如计算机或机器“可读介质”是指参与提供指令至处理器供执行的任何介质。
因此,机器可读介质,诸如计算机可执行代码,可采用许多形式,包括但不限于有形存储介质、载波介质或物理传输介质。非易失性存储器介质包括,例如,光盘或磁盘,诸如任何计算机等中的任何存储装置,诸如在附图中示出的可用于实施数据库等的存储装置。易失性存储器介质包括动态存储器,诸如这种计算机平台的主存储器。有形传输介质包括同轴电缆;铜线和光导纤维,包括构成计算机系统中的总线的导线。载波传输介质可采用电或电磁信号,或声或光波的形式诸如在射频(RF)和红外(IR)数据通信期间产生的信号。常见形式的计算机可读介质因此包括例如:软盘、软磁盘、硬盘、磁带、任何其它磁介质、CD-ROM、DVD或DVD-ROM、任何其它光学介质、冲孔卡纸带、具有孔图案的任何其它物理存储器介质、RAM、ROM、PROM和EPROM、快闪EPROM、任何其它存储器芯片或盒、运输数据或指令的载波、运输这类载波的电缆或链路,或计算机可读取编程代码和/或数据的任何其它介质。许多这些形式的计算机可读介质可涉及运送一个或多个指令的一个或多个序列至处理器供执行。
计算机系统601可包括电子显示器635或与所述电子显示器通信,所述电子显示器包括用户界面(UI)640。UI的实例包括但不限于图形用户界面(GUI)和基于网路的用户界面。
本公开的方法和系统可经由一个或多个算法来实施。算法可在由中央处理单元605执行时经由软件来实施。所述算法可例如实现本文描述的方法或方法的部分,包括示例性方法100、700、900、1000、1100、1300、1500、1700、1900和2500。
实施例
实施例1:感染因子的检测
本文描述的系统和方法可用于检测细胞中的感染因子。例如,所述系统和方法可用于收集微滴中的CD4T细胞,并对收集的CD4T细胞进行核酸测序。对于从HIV感染的受试者获得的CD4T细胞,核酸测序可揭示细胞中HIV来源的核酸的存在。HIV感染在HIV感染的受试者中传播的程度可通过收集从HIV感染的受试者获得的所有CD4T细胞并对所述CD4T细胞进行核酸测序来测量。所述系统和方法可用于检测细胞中的任何感染因子。
所述系统和方法可用于检测细胞中的两种或更多种感染因子的共感染。在一个实施例中,可将受试者的细胞收集在微滴中并进行核酸测序。核酸测序可揭示细胞中存在两种或更多种感染因子来源的核酸。可替代地或组合地,可对微滴中收集的细胞进行基于抗体的多重测定。所述多重测定可揭示两种或更多种感染因子的存在。
实施例2:长DNA读数的制备
本文所述的系统和方法可用于保留长核酸区段以产生长测序读数,同时除去短核酸区段。长核酸区段的保留和短核酸区段的除去可提高核酸测序技术(如本文所述的那些核酸测序技术)的准确性或速度。
图23示出描绘用于保留长核酸区段和除去短核酸区段的示例性方法2300的示意图。
在第一操作2310中,收集短DNA区段和长DNA区段的混合物。
在第二操作2320中,将长DNA区段和短DNA区段的混合物负载到细胞珠粒中。可通过本文所述的任何系统和方法将混合物负载到细胞珠粒中。可将混合物负载到细胞珠粒中,以使得一些细胞珠粒包围短核酸区段和长核酸区段的混合物。
在第三操作2330中,洗涤所述细胞珠粒。在洗涤期间,将短核酸区段从细胞珠粒中洗出,以使得细胞珠粒保留长核酸区段。可定制细胞珠粒以具有捕获细胞珠粒内的较长核酸区段但允许较短的核酸区段扩散或流出细胞珠粒的孔隙度。
在第四操作2340中,将含有长核酸区段的细胞珠粒与凝胶珠粒组合以形成含有一个或多个细胞珠粒和一个或多个凝胶珠粒的微滴。
在第五操作2350中,如本文所述对DNA区段进行核酸测序。
尽管本文关于核酸进行了描述,但方法2300可用于产生含有本文所述的任何大分子的长区段的微滴。例如,方法2300可用于产生含有长蛋白质区段的微滴。
实施例3:特异性核酸基因座的扩增
本文描述的系统和方法可用于靶向序列如核酸(例如DNA)基因座的扩增和条形编码。这些核基因座可源自与细胞珠粒缔合或包封在细胞珠粒内的核酸。此外,可在多个分区中的单独分区(如多个微滴中的微滴)中执行扩增。在实施分区的情况下,单独分区可包含具有待扩增的核酸的细胞珠粒。在一些情况下,可在分配之前完成细胞珠粒的核酸的扩增。图24示出用于扩增和条形编码靶向核酸序列的示例性过程。
在扩增的第一阶段期间,正向引物与它们各自的基因座(当存在时)杂交,并且经由聚合酶的作用且在一些情况下借助于热循环来延伸。所得构建体(图24中未示出)包含通用核酸序列和存在的靶基因座的互补序列。在扩增的第二阶段,反向引物与第一阶段中产生的靶基因座的互补序列杂交并延伸以产生包含原始基因座序列和通用核酸序列的互补序列的构建体(图24中未示出)。在一些情况下,在第二阶段中产生的构建体的长度短于在第一轮中产生的构建体,以使得存在于这些构建体中的源自所分析的核酸的序列是靶基因座序列。
如图24所示,接下来,提供了包含R1引物序列(例如,用于测序的引物)、条形码序列(BC)和通用核酸序列的带条形码的核酸分子。带条形码的核酸分子可与珠粒偶联和/或可从珠粒释放。在一些情况下,这些珠粒用细胞珠粒进行分配,其中在分配之前已完成靶基因座的扩增。在其它情况下,在这种扩增之前将这些珠粒用细胞珠粒进行分配。此外,在可从珠粒释放的情况下,带条形码的核酸分子可在参与进一步下游反应之前从珠粒释放。
带条形码的核酸分子可与上文产生的并且对应于存在的各种基因座的扩增的核酸接触。在接触时,带条形码的核酸分子的通用核酸序列可与在上面讨论的第二阶段构建体中产生的互补序列杂交。然后经由聚合酶的作用(如借助于热循环)延伸杂交的带条形码核酸分子,以产生带条形码构建体,所述带条形码构建体包含带条形码核酸分子的序列和与上述第二阶段构建体互补且对应于所分析的原始基因座序列的序列。在一些情况下,然后可进一步加工所得的带条形码构建体以添加另外的序列,且然后进行测序。如所示,上述扩增方案可产生用于测序分析的带条形码的靶特异性构建体。
尽管本文已示出和描述了本发明的优选实施方案,但对于本领域技术人员来说将显而易见,此类实施方案仅作为举例提供。并不意在本发明受本说明书内所提供的具体实例限制。尽管参照前面提及的说明书描述了本发明,但是本文实施方案的描述和说明并非从限制意义上进行解释。在不偏离本发明的情况下本领域技术人员现在将想到许多变化、改变和取代。此外,应该理解本发明的所有方面并非限制于在此阐述的取决于各种条件和变量的具体描绘、配置或相对比例。应当理解的是,可在实践本发明时采用在本文中描述的本发明的实施方案的各种替代方案。因此,应该想到的是,本发明还应该覆盖任何此类替代方案、修改、变化或等效物。以下权利要求书意图限定本发明的范围,并且这些权利要求范围内的方法和结构以及其等效物意图由其涵盖。

Claims (66)

1.一种用于加工或分析来自细胞样品的一种或多种组分的方法,所述方法包括:
(a)提供多个细胞珠粒和多个条形码珠粒,其中(i)所述多个细胞珠粒的细胞珠粒包含细胞,其中所述细胞包含核酸分子,并且(ii)所述多个条形码珠粒的条形码珠粒包含多个核酸条形码分子以用于对所述核酸分子进行条形编码;以及
(b)使所述多个细胞珠粒本体加工,所述本体加工包括使所述核酸分子变性以在所述细胞珠粒中生成变性的核酸分子;以及
(c)将所述多个细胞珠粒和所述多个条形码珠粒分配到多个分区中,其中在分配后,所述多个分区的分区包含含有所述变性的核酸分子的所述细胞珠粒和所述条形码珠粒的所述细胞珠粒。
2.如权利要求1所述的方法,其还包括对所述变性的核酸分子进行一种或多种反应。
3.如权利要求2所述的方法,其中所述一种或多种反应包括核酸修饰、核酸扩增、核酸插入、核酸连接、核酸裂解或其任何组合。
4.如权利要求3所述的方法,其中所述核酸修饰包括甲基化、随机诱变、尿嘧啶水解、核酸修复、加帽、脱帽或其任何组合。
5.如权利要求3所述的方法,其中所述核酸扩增包括等温扩增或聚合酶链式反应。
6.如权利要求3所述的方法,其中所述核酸插入包括转座子介导的插入、CRISPR/Cas9介导的插入或其任何组合。
7.如权利要求3所述的方法,其中所述核酸裂解包括转座子介导的裂解、CRISPR/Cas9介导的裂解或其任何组合。
8.如权利要求2所述的方法,其中所述一种或多种反应在所述分区中进行。
9.如权利要求2所述的方法,其中所述一种或多种反应在所述分区外进行。
10.如权利要求2所述的方法,其中所述一种或多种反应在(a)之前进行。
11.如权利要求2所述的方法,其中所述一种或多种反应在(a)之后进行。
12.如权利要求1所述的方法,其还包括使用所述多个核酸条形码分子的核酸条形码分子和所述变性的核酸分子来产生带条形码的核酸分子,所述带条形码的核酸分子包含对应所述变性的核酸分子的第一序列和对应所述核酸条形码分子的条形码序列的第二序列。
13.如权利要求12所述的方法,其中产生所述带条形码的核酸分子包括核酸扩增。
14.如权利要求12所述的方法,其中产生所述带条形码的核酸分子包括连接。
15.如权利要求12所述的方法,其还包括从所述分区释放所述带条形码的核酸分子。
16.如权利要求12所述的方法,其还包括对所述带条形码的核酸分子进行测序。
17.如权利要求16所述的方法,其还包括在所述测序之前,使所述带条形码的核酸分子进行核酸扩增。
18.如权利要求17所述的方法,其中所述核酸扩增是等温扩增或聚合酶链式反应。
19.如权利要求18所述的方法,其中所述聚合酶链式反应是数字聚合酶链式反应。
20.如权利要求1所述的方法,其中所述本体加工进一步包括使所述细胞珠粒经受足以裂解所述细胞的条件。
21.如权利要求20所述的方法,其中所述足以裂解所述细胞的条件包括将所述多个细胞珠粒暴露于裂解剂。
22.如权利要求20所述的方法,其中所述足以裂解所述细胞的条件包括将所述多个细胞珠粒暴露于氢氧化钠、氢氧化钾、十二烷基硫酸钠、非离子型表面活性剂、皂苷、蛋白酶、裂解酶、冻融、紫外线、热或其任何组合。
23.如权利要求22所述的方法,其中所述非离子型表面活性剂是4-(1,1,3,3-四甲基丁基)苯基-聚乙二醇(Triton X-100)。
24.如权利要求1所述的方法,其中在(a)中,所述细胞珠粒包括封闭在凝胶或聚合物基质内的所述细胞。
25.如权利要求24所述的方法,其中所述聚合物或凝胶基质包括选自由以下组成的组的一种或多种成员:二硫化物交联的聚丙烯酰胺、琼脂糖、藻酸盐、聚乙烯醇、PEG-二丙烯酸酯、PEG-丙烯酸酯/硫醇、PEG-叠氮化物/炔烃、其它丙烯酸酯、壳聚糖、透明质酸、胶原、纤维蛋白、明胶和弹性蛋白。
26.如权利要求1所述的方法,其中所述多个分区是多个微滴。
27.如权利要求1所述的方法,其中所述多个分区是多个孔。
28.如权利要求1所述的方法,其中所述多个核酸条形码分子中的一个或多个核酸条形码分子共价偶联至所述条形码珠粒。
29.如权利要求1所述的方法,其中所述分区还包含另外的试剂。
30.如权利要求29所述的方法,其中所述另外的试剂包括引物、逆转录酶、聚合酶、核苷酸、蛋白酶、转座子、核酸内切酶、模板转换寡核苷酸、裂解试剂或其任何组合。
31.如权利要求1所述的方法,其中所述核酸分子是脱氧核糖核酸分子。
32.如权利要求31所述的方法,其中所述脱氧核糖核酸分子是基因组脱氧核糖核酸。
33.如权利要求31所述的方法,其中所述脱氧核糖核酸分子是互补脱氧核糖核酸。
34.如权利要求1所述的方法,其还包括从所述分区回收所述变性的核酸分子。
35.如权利要求1所述的方法,其中所述条形码珠粒在施加刺激时是可降解的。
36.如权利要求35所述的方法,其中所述多个核酸条形码分子在施加化学刺激时是可从所述珠粒释放的,且其还包括在(c)之后,当施加所述刺激时释放所述多个核酸条形码分子。
37.如权利要求35所述的方法,其中所述刺激是化学刺激、生物刺激、温度变化、暴露于光、pH变化或其任何组合。
38.如权利要求37所述的方法,其中所述化学刺激是还原剂。
39.如权利要求38所述的方法,其中所述还原剂是二硫苏糖醇、β-巯基乙醇、(2S)-2-氨基-1,4-二巯基丁烷、三(2-羧乙基)膦或其任何组合。
40.如权利要求37所述的方法,其中所述刺激是化学或生物刺激,并且其中所述分区包含所述刺激。
41.如权利要求1所述的方法,其中所述细胞珠粒在施加刺激时是可降解的。
42.如权利要求41所述的方法,其中所述刺激是化学刺激、生物刺激、温度变化、暴露于光、pH变化或其任何组合。
43.如权利要求42所述的方法,其中所述化学刺激是还原剂。
44.如权利要求43所述的方法,其中所述还原剂是二硫苏糖醇、β-巯基乙醇、(2S)-2-氨基-1,4-二巯基丁烷、三(2-羧乙基)膦或其任何组合。
45.如权利要求42所述的方法,其中所述刺激是化学或生物刺激,并且其中所述分区包含所述刺激。
46.如权利要求1所述的方法,其中所述多个分区是分区群体的一部分,所述分区群体包括未被细胞珠粒和/或条形码珠粒占用的一个或多个分区。
47.如权利要求1所述的方法,其中所述条形码珠粒是凝胶珠粒。
48.如权利要求47所述的方法,其中所述凝胶珠粒当施加刺激时是可降解的。
49.如权利要求48所述的方法,其中所述刺激是化学刺激、生物刺激、温度变化、暴露于光、pH变化或其任何组合。
50.如权利要求48所述的方法,其中所述刺激是还原剂。
51.如权利要求12所述的方法,进一步包括从所述分区回收所述带条形码的核酸分子。
52.如权利要求16所述的方法,进一步包括在所述测序前使所述带条形码的核酸分子经受一种或多种反应。
53.如权利要求52所述的方法,其中所述一种或多种反应包括将功能性序列添加至所述带条形码的核酸分子,所述功能性序列选自下组:独特分子标识符(UMI)、靶特异性引物序列、随机引物序列、测序引物序列和经配置以与测序仪的流动细胞附接的序列。
54.如权利要求1所述的方法,进一步包括:
在(a)之前,将包含所述细胞的多个细胞和聚合物或凝胶前体分区为多个第一分区;并使所述多个第一分区经受足以使所述聚合物或凝胶前体在所述多个第一分区中聚合或交联的条件以生成所述多个细胞珠粒。
55.如权利要求1所述的方法,其中所述多个核酸条形码分子是多个双链核酸条形码分子。
56.如权利要求54所述的方法,进一步包括(i)对所述变性的核酸分子实施一个或多个核酸延伸反应以生成包含所述变性的核酸分子的序列的双链核酸分子和(ii)将所述核酸条形码分子与所述双链核酸分子连接以生成所述带条形码的核酸分子。
57.如权利要求1所述的方法,其中所述本体加工包括使所述多个细胞珠粒与化学剂接触。
58.如权利要求57所述的方法,其中所述化学剂是氢氧化钠。
59.如权利要求56所述的方法,其中所述一个或多个核酸延伸反应包括:
(i)使第一引物与所述变性的核酸分子退火并在尿嘧啶存在下实施第一核酸延伸反应以生成包含含有尿嘧啶的部分的第一核酸延伸产物;
(ii)切除所述含有尿嘧啶的部分以在所述第一核酸延伸产物中生成切口;
(iii)对包含所述切口的所述第一核酸延伸产物实施第二核酸延伸反应以生成多个单链核酸片段;
(iv)使第二引物与所述多个单链核酸片段的单链核酸片段退火;以及
(v)实施第三核酸延伸反应以生成第二核酸延伸产物。
60.如权利要求59所述的方法,其中所述第一引物和所述第二引物包含随机引物序列或靶引物序列。
61.如权利要求59所述的方法,其中所述第一引物和所述第二引物包含随机引物序列。
62.如权利要求59所述的方法,其中所述第二核酸延伸反应通过使用具有链置换活性的聚合酶完成。
63.如权利要求62所述的方法,其中所述聚合酶在所述切口接合所述第一核酸延伸产物且其中所述多个单链核酸片段从所述第一核酸延伸产物被置换。
64.如权利要求1所述的方法,其中所述多个细胞珠粒包含多个磁颗粒。
65.如权利要求1所述的方法,其进一步包括在(c)之前,在所述本体加工后,使用磁源纯化所述多个细胞珠粒。
66.如权利要求3所述的方法,其中所述核酸修饰包括亚硫酸氢盐转化。
CN201880008233.2A 2017-01-30 2018-01-30 用于基于微滴的单细胞条形编码的方法和系统 Active CN110214186B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311497245.5A CN117512066A (zh) 2017-01-30 2018-01-30 用于基于微滴的单细胞条形编码的方法和系统

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201762452261P 2017-01-30 2017-01-30
US62/452,261 2017-01-30
US201762500943P 2017-05-03 2017-05-03
US62/500,943 2017-05-03
US201762570783P 2017-10-11 2017-10-11
US62/570,783 2017-10-11
PCT/US2018/016019 WO2018140966A1 (en) 2017-01-30 2018-01-30 Methods and systems for droplet-based single cell barcoding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202311497245.5A Division CN117512066A (zh) 2017-01-30 2018-01-30 用于基于微滴的单细胞条形编码的方法和系统

Publications (2)

Publication Number Publication Date
CN110214186A CN110214186A (zh) 2019-09-06
CN110214186B true CN110214186B (zh) 2023-11-24

Family

ID=62978297

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201880008233.2A Active CN110214186B (zh) 2017-01-30 2018-01-30 用于基于微滴的单细胞条形编码的方法和系统
CN202311497245.5A Pending CN117512066A (zh) 2017-01-30 2018-01-30 用于基于微滴的单细胞条形编码的方法和系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202311497245.5A Pending CN117512066A (zh) 2017-01-30 2018-01-30 用于基于微滴的单细胞条形编码的方法和系统

Country Status (4)

Country Link
US (5) US10428326B2 (zh)
EP (3) EP4029939B1 (zh)
CN (2) CN110214186B (zh)
WO (1) WO2018140966A1 (zh)

Families Citing this family (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
US20130034884A1 (en) * 2011-06-22 2013-02-07 Genomatica, Inc. Microorganisms for producing 1,4-butanediol and methods related thereto
SG11201405274WA (en) 2012-02-27 2014-10-30 Cellular Res Inc Compositions and kits for molecular counting
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
MX364957B (es) 2012-08-14 2019-05-15 10X Genomics Inc Composiciones y metodos para microcapsulas.
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20150376609A1 (en) 2014-06-26 2015-12-31 10X Genomics, Inc. Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
CA2894694C (en) 2012-12-14 2023-04-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
CA2900481A1 (en) 2013-02-08 2014-08-14 10X Genomics, Inc. Polynucleotide barcode generation
WO2014210223A1 (en) 2013-06-25 2014-12-31 Prognosys Biosciences, Inc. Spatially encoded biological assays using a microfluidic device
SG10201806890VA (en) 2013-08-28 2018-09-27 Cellular Res Inc Massively parallel single cell analysis
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
AU2015243445B2 (en) 2014-04-10 2020-05-28 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US20160122817A1 (en) 2014-10-29 2016-05-05 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
SG11201705615UA (en) 2015-01-12 2017-08-30 10X Genomics Inc Processes and systems for preparing nucleic acid sequencing libraries and libraries prepared using same
EP3262407B1 (en) 2015-02-24 2023-08-30 10X Genomics, Inc. Partition processing methods and systems
EP3262188B1 (en) 2015-02-24 2021-05-05 10X Genomics, Inc. Methods for targeted nucleic acid sequence coverage
US9727810B2 (en) 2015-02-27 2017-08-08 Cellular Research, Inc. Spatially addressable molecular barcoding
EP3277843A2 (en) 2015-03-30 2018-02-07 Cellular Research, Inc. Methods and compositions for combinatorial barcoding
CN107532207B (zh) 2015-04-10 2021-05-07 空间转录公司 生物样本的空间区别、多重核酸分析
CN107580632B (zh) 2015-04-23 2021-12-28 贝克顿迪金森公司 用于全转录组扩增的方法和组合物
WO2017044574A1 (en) 2015-09-11 2017-03-16 Cellular Research, Inc. Methods and compositions for nucleic acid library normalization
US11371094B2 (en) 2015-11-19 2022-06-28 10X Genomics, Inc. Systems and methods for nucleic acid processing using degenerate nucleotides
SG11201804086VA (en) 2015-12-04 2018-06-28 10X Genomics Inc Methods and compositions for nucleic acid analysis
SG11201806757XA (en) 2016-02-11 2018-09-27 10X Genomics Inc Systems, methods, and media for de novo assembly of whole genome sequence data
DK3452591T3 (da) 2016-05-02 2023-09-18 Encodia Inc Makromolekyleanalyse under anvendelse af nukleinsyrekodning
WO2017197338A1 (en) 2016-05-13 2017-11-16 10X Genomics, Inc. Microfluidic systems and methods of use
US10301677B2 (en) 2016-05-25 2019-05-28 Cellular Research, Inc. Normalization of nucleic acid libraries
US10640763B2 (en) 2016-05-31 2020-05-05 Cellular Research, Inc. Molecular indexing of internal sequences
US10202641B2 (en) 2016-05-31 2019-02-12 Cellular Research, Inc. Error correction in amplification of samples
WO2018058073A2 (en) 2016-09-26 2018-03-29 Cellular Research, Inc. Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP4029939B1 (en) 2017-01-30 2023-06-28 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
CN110382708A (zh) 2017-02-01 2019-10-25 赛卢拉研究公司 使用阻断性寡核苷酸进行选择性扩增
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
US10400235B2 (en) 2017-05-26 2019-09-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
CN116064732A (zh) 2017-05-26 2023-05-05 10X基因组学有限公司 转座酶可接近性染色质的单细胞分析
CA3059559A1 (en) 2017-06-05 2018-12-13 Becton, Dickinson And Company Sample indexing for single cells
KR102307473B1 (ko) * 2017-08-01 2021-10-01 일루미나, 인코포레이티드 뉴클레오타이드 서열분석용 하이드로겔 비드
US10590244B2 (en) 2017-10-04 2020-03-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
WO2019071039A1 (en) 2017-10-04 2019-04-11 10X Genomics, Inc. COMPOSITIONS, METHODS AND SYSTEMS FOR PEARL FORMATION USING ENHANCED POLYMERS
WO2019084043A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. METHODS AND SYSTEMS FOR NUCLEIC ACID PREPARATION AND CHROMATIN ANALYSIS
EP3700672B1 (en) 2017-10-27 2022-12-28 10X Genomics, Inc. Methods for sample preparation and analysis
SG11202003924YA (en) 2017-10-31 2020-05-28 Encodia Inc Kits for analysis using nucleic acid encoding and/or label
SG11201913654QA (en) 2017-11-15 2020-01-30 10X Genomics Inc Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
WO2019108851A1 (en) 2017-11-30 2019-06-06 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
WO2019148042A1 (en) * 2018-01-26 2019-08-01 10X Genomics, Inc. Compositions and methods for sample processing
WO2019157529A1 (en) 2018-02-12 2019-08-15 10X Genomics, Inc. Methods characterizing multiple analytes from individual cells or cell populations
CA3067140C (en) 2018-02-13 2023-03-21 Illumina, Inc. Dna sequencing using hydrogel beads
SG11202008080RA (en) 2018-02-22 2020-09-29 10X Genomics Inc Ligation mediated analysis of nucleic acids
US11639928B2 (en) 2018-02-22 2023-05-02 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
WO2019191321A1 (en) * 2018-03-28 2019-10-03 10X Genomics, Inc. Nucleic acid enrichment within partitions
SG11202009889VA (en) 2018-04-06 2020-11-27 10X Genomics Inc Systems and methods for quality control in single cell processing
EP3781706A1 (en) 2018-04-20 2021-02-24 Illumina, Inc. Methods of encapsulating single cells, the encapsulated cells and uses thereof
US11773441B2 (en) 2018-05-03 2023-10-03 Becton, Dickinson And Company High throughput multiomics sample analysis
JP7358388B2 (ja) 2018-05-03 2023-10-10 ベクトン・ディキンソン・アンド・カンパニー 反対側の転写物末端における分子バーコーディング
US11932899B2 (en) * 2018-06-07 2024-03-19 10X Genomics, Inc. Methods and systems for characterizing nucleic acid molecules
US11703427B2 (en) 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
US11574706B2 (en) 2018-06-28 2023-02-07 10X Genomics, Inc. Systems and methods for visualization of single-cell resolution characteristics
US20200032335A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
US11639517B2 (en) 2018-10-01 2023-05-02 Becton, Dickinson And Company Determining 5′ transcript sequences
CA3113271A1 (en) 2018-10-26 2020-04-30 Illumina, Inc. Modulating polymer beads for dna processing
US11932849B2 (en) 2018-11-08 2024-03-19 Becton, Dickinson And Company Whole transcriptome analysis of single cells using random priming
US11512356B2 (en) * 2018-11-08 2022-11-29 Tokitae Llc Systems and methods for particle multiplexing in droplets
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
EP3894552A1 (en) 2018-12-13 2021-10-20 Becton, Dickinson and Company Selective extension in single cell whole transcriptome analysis
EP3899538A4 (en) * 2018-12-18 2022-11-30 MBL International Corp. COMPOSITIONS OF PMHC OCCUPANCY STREPTAVIDIN OLIGO CONJUGATES
US11926867B2 (en) 2019-01-06 2024-03-12 10X Genomics, Inc. Generating capture probes for spatial analysis
US11649485B2 (en) 2019-01-06 2023-05-16 10X Genomics, Inc. Generating capture probes for spatial analysis
CN113874521A (zh) 2019-01-06 2021-12-31 10X基因组学有限公司 用于富集条形码的方法和系统
US11845983B1 (en) 2019-01-09 2023-12-19 10X Genomics, Inc. Methods and systems for multiplexing of droplet based assays
EP3914728B1 (en) 2019-01-23 2023-04-05 Becton, Dickinson and Company Oligonucleotides associated with antibodies
EP3921081A4 (en) * 2019-02-04 2022-11-30 Illumina Inc MICROFLUIDIC DROPLET GENERATORS
US11851683B1 (en) 2019-02-12 2023-12-26 10X Genomics, Inc. Methods and systems for selective analysis of cellular samples
EP3924505A1 (en) 2019-02-12 2021-12-22 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11467153B2 (en) 2019-02-12 2022-10-11 10X Genomics, Inc. Methods for processing nucleic acid molecules
WO2020167862A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Systems and methods for transfer of reagents between droplets
US11655499B1 (en) 2019-02-25 2023-05-23 10X Genomics, Inc. Detection of sequence elements in nucleic acid molecules
SG11202111242PA (en) 2019-03-11 2021-11-29 10X Genomics Inc Systems and methods for processing optically tagged beads
WO2020198532A1 (en) 2019-03-27 2020-10-01 10X Genomics, Inc. Systems and methods for processing rna from cells
EP3947530A1 (en) 2019-04-03 2022-02-09 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
WO2020218549A1 (ja) * 2019-04-26 2020-10-29 bitBiome株式会社 単一生物単位の遺伝情報またはその他の生体分子の情報を使用した、サンプルのスクリーニング法
CA3138367A1 (en) 2019-04-30 2020-11-05 Encodia, Inc. Methods for preparing analytes and related kits
CA3138806A1 (en) * 2019-05-22 2020-11-26 Dalia Dhingra Method and apparatus for simultaneous targeted sequencing of dna, rna and protein
EP3976820A1 (en) 2019-05-30 2022-04-06 10X Genomics, Inc. Methods of detecting spatial heterogeneity of a biological sample
US20200385791A1 (en) * 2019-06-07 2020-12-10 Bio-Rad Laboratories, Inc. Multiple Beads Per Droplet Resolution
CN112301097B (zh) * 2019-07-26 2022-10-21 申翌生物科技(杭州)有限公司 样本裂解和pcr反应组合物
US11939622B2 (en) 2019-07-22 2024-03-26 Becton, Dickinson And Company Single cell chromatin immunoprecipitation sequencing assay
EP4022309B1 (en) 2019-10-11 2023-01-04 10X Genomics, Inc. Methods for analyte detection and analysis
WO2021092433A2 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Enhancing specificity of analyte binding
WO2021091611A1 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
CN114729350A (zh) 2019-11-08 2022-07-08 贝克顿迪金森公司 使用随机引发获得用于免疫组库测序的全长v(d)j信息
CN112844500A (zh) * 2019-11-28 2021-05-28 中国科学院大连化学物理研究所 一种基于双水相体系的聚电解质微囊一步制备法
SG11202106899SA (en) 2019-12-23 2021-09-29 10X Genomics Inc Methods for spatial analysis using rna-templated ligation
US20210190770A1 (en) 2019-12-23 2021-06-24 10X Genomics, Inc. Compositions and methods for using fixed biological samples in partition-based assays
CN115135984A (zh) 2019-12-23 2022-09-30 10X基因组学有限公司 可逆固定试剂及其使用方法
CN115698282A (zh) * 2020-01-13 2023-02-03 福路伦特生物科学公司 单细胞测序
WO2021146207A1 (en) 2020-01-13 2021-07-22 Becton, Dickinson And Company Methods and compositions for quantitation of proteins and rna
EP4090328A4 (en) * 2020-01-13 2024-02-14 Fluent Biosciences Inc EMULSION-BASED ACTIVE SCREENING
CN115768558A (zh) 2020-01-13 2023-03-07 福路伦特生物科学公司 用于单细胞基因谱分析的方法和系统
US11702693B2 (en) 2020-01-21 2023-07-18 10X Genomics, Inc. Methods for printing cells and generating arrays of barcoded cells
US11732299B2 (en) 2020-01-21 2023-08-22 10X Genomics, Inc. Spatial assays with perturbed cells
US11821035B1 (en) 2020-01-29 2023-11-21 10X Genomics, Inc. Compositions and methods of making gene expression libraries
US11898205B2 (en) 2020-02-03 2024-02-13 10X Genomics, Inc. Increasing capture efficiency of spatial assays
US11732300B2 (en) 2020-02-05 2023-08-22 10X Genomics, Inc. Increasing efficiency of spatial analysis in a biological sample
US11835462B2 (en) 2020-02-11 2023-12-05 10X Genomics, Inc. Methods and compositions for partitioning a biological sample
WO2021163611A1 (en) 2020-02-13 2021-08-19 10X Genomics, Inc. Methods for characterizing cells using gene expression and chromatin accessibility
US11891654B2 (en) 2020-02-24 2024-02-06 10X Genomics, Inc. Methods of making gene expression libraries
US11926863B1 (en) 2020-02-27 2024-03-12 10X Genomics, Inc. Solid state single cell method for analyzing fixed biological cells
EP4121016A1 (en) 2020-03-16 2023-01-25 Fluent Biosciences Inc. Multi-omic analysis in monodisperse droplets
WO2021194699A1 (en) * 2020-03-24 2021-09-30 Cellecta, Inc. Single cell genetic analysis
WO2021207610A1 (en) 2020-04-10 2021-10-14 10X Genomics, Inc. Cold protease treatment method for preparing biological samples
EP4136227A1 (en) 2020-04-16 2023-02-22 10X Genomics, Inc. Compositions and methods for use with fixed samples
EP4242325A3 (en) 2020-04-22 2023-10-04 10X Genomics, Inc. Methods for spatial analysis using targeted rna depletion
WO2021222302A1 (en) 2020-04-27 2021-11-04 10X Genomics, Inc. Methods and systems for increasing cell recovery efficiency
WO2021222301A1 (en) 2020-04-27 2021-11-04 10X Genomics, Inc. Methods and systems for analysis and identification of barcode multiplets
WO2021226290A1 (en) 2020-05-05 2021-11-11 10X Genomics, Inc. Methods for identification of antigen-binding molecules
US11851700B1 (en) 2020-05-13 2023-12-26 10X Genomics, Inc. Methods, kits, and compositions for processing extracellular molecules
WO2021231779A1 (en) 2020-05-14 2021-11-18 Becton, Dickinson And Company Primers for immune repertoire profiling
WO2021237087A1 (en) 2020-05-22 2021-11-25 10X Genomics, Inc. Spatial analysis to detect sequence variants
WO2021236929A1 (en) 2020-05-22 2021-11-25 10X Genomics, Inc. Simultaneous spatio-temporal measurement of gene expression and cellular activity
WO2021247543A2 (en) 2020-06-02 2021-12-09 10X Genomics, Inc. Nucleic acid library methods
EP4158054A1 (en) 2020-06-02 2023-04-05 10X Genomics, Inc. Spatial transcriptomics for antigen-receptors
WO2021252499A1 (en) 2020-06-08 2021-12-16 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
CN116034166A (zh) 2020-06-25 2023-04-28 10X基因组学有限公司 Dna甲基化的空间分析
US11761038B1 (en) 2020-07-06 2023-09-19 10X Genomics, Inc. Methods for identifying a location of an RNA in a biological sample
US11932901B2 (en) 2020-07-13 2024-03-19 Becton, Dickinson And Company Target enrichment using nucleic acid probes for scRNAseq
WO2022035729A1 (en) * 2020-08-10 2022-02-17 Dimensiongen Devices and methods for multi-dimensional genome analysis
EP4208292A1 (en) 2020-09-02 2023-07-12 10X Genomics, Inc. Flow focusing devices, systems, and methods for high throughput droplet formation
EP4208291A1 (en) 2020-09-02 2023-07-12 10X Genomics, Inc. Devices, systems, and methods for high throughput droplet formation
WO2022066760A1 (en) 2020-09-23 2022-03-31 10X Genomics, Inc. Selective enzymatic gelation
US11926822B1 (en) 2020-09-23 2024-03-12 10X Genomics, Inc. Three-dimensional spatial analysis
WO2022076912A1 (en) 2020-10-09 2022-04-14 10X Genomics, Inc. Methods and compositions for analyzing antigen binding molecules
WO2022076914A1 (en) 2020-10-09 2022-04-14 10X Genomics, Inc. Methods and compositions for profiling immune repertoire
WO2022081643A2 (en) 2020-10-13 2022-04-21 10X Genomics, Inc. Compositions and methods for generating recombinant antigen binding molecules from single cells
EP4244379A1 (en) 2020-11-13 2023-09-20 10X Genomics, Inc. Nano-partitions (encapsulated nucleic acid processing enzymes) for cell-lysis and multiple reactions in partition-based assays
US11827935B1 (en) 2020-11-19 2023-11-28 10X Genomics, Inc. Methods for spatial analysis using rolling circle amplification and detection probes
CN116635533A (zh) 2020-11-20 2023-08-22 贝克顿迪金森公司 高表达的蛋白和低表达的蛋白的谱分析
AU2021409136A1 (en) 2020-12-21 2023-06-29 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
EP4275051A1 (en) 2021-01-08 2023-11-15 10X Genomics, Inc. Methods for generating antigen-binding molecules from single cells
WO2022178304A1 (en) 2021-02-19 2022-08-25 10X Genomics, Inc. High-throughput methods for analyzing and affinity-maturing an antigen-binding molecule
CN117178061A (zh) 2021-02-23 2023-12-05 10X基因组学有限公司 单细胞聚糖谱分析
EP4298239A1 (en) 2021-02-23 2024-01-03 10X Genomics, Inc. Drug screening methods
WO2022182682A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins
WO2022182664A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. A method for epitope binning of novel monoclonal antibodies
WO2022182662A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Compositions and methods for mapping antigen-binding molecule affinity to antigen regions of interest
EP4301870A1 (en) 2021-03-18 2024-01-10 10X Genomics, Inc. Multiplex capture of gene and protein expression from a biological sample
EP4313412A1 (en) 2021-03-26 2024-02-07 10X Genomics, Inc. Devices, methods, and systems for improved droplet recovery
WO2022221428A1 (en) 2021-04-14 2022-10-20 10X Genomics, Inc. Compositions and methods for single cell analyte detection and analysis
WO2022251509A1 (en) * 2021-05-27 2022-12-01 Chan Zuckerberg Biohub, Inc. Partitioning cells for high throughput single-cell sequencing
WO2022256345A1 (en) 2021-06-01 2022-12-08 10X Genomics, Inc. Methods and systems for engineering antibodies, and antigen-binding fragments thereof, to have altered characteristics
EP4351788A1 (en) 2021-06-04 2024-04-17 Enumerix, Inc. Compositions, methods, and systems for single cell barcoding and sequencing
EP4359755A1 (en) 2021-06-23 2024-05-01 10X Genomics, Inc. Chop-fix method and chopping device for preparing biological samples
WO2023004019A1 (en) * 2021-07-21 2023-01-26 President And Fellows Of Harvard College Methods of crosslinking polymers and hydrogel microparticles and of encapsulating biologically active compounds, compositions made therefrom and devices
WO2023009988A1 (en) 2021-07-26 2023-02-02 10X Genomics, Inc. Nucleic acid processing via circularization
WO2023022925A1 (en) 2021-08-17 2023-02-23 10X Genomics, Inc. Compositions, systems and methods for enzyme optimization
WO2023034489A1 (en) 2021-09-01 2023-03-09 10X Genomics, Inc. Methods, compositions, and kits for blocking a capture probe on a spatial array
WO2023060110A1 (en) 2021-10-05 2023-04-13 10X Genomics, Inc. Methods of immune cell analysis
US11753677B2 (en) 2021-11-10 2023-09-12 Encodia, Inc. Methods for barcoding macromolecules in individual cells
WO2023114310A1 (en) 2021-12-15 2023-06-22 10X Genomics, Inc. Methods for improving sensitivity of immune profiling using oligo-tagged antigens
WO2023215861A1 (en) 2022-05-06 2023-11-09 10X Genomics, Inc. Reagents for characterizing antigen-binding molecules from immune cells
WO2023225294A1 (en) 2022-05-20 2023-11-23 10X Genomics, Inc. Improved major histocompatibility complex molecules
WO2023225201A1 (en) 2022-05-20 2023-11-23 10X Genomics, Inc. Compositions and methods for characterizing t cell, or t cell-like, receptors from single cells
WO2023225259A1 (en) 2022-05-20 2023-11-23 10X Genomics, Inc. Compositions and methods for characterizing antigen binding molecules from single cells
WO2023235570A1 (en) 2022-06-03 2023-12-07 10X Genomics, Inc. Methods and compositions for the identification of antigen binding molecules using lipoparticle-based antigen mapping
WO2023235596A1 (en) 2022-06-03 2023-12-07 10X Genomics, Inc. Systems and methods for determining antigen binding specificity of antigen binding molecules
WO2023239733A1 (en) 2022-06-06 2023-12-14 Genentech, Inc. Combinatorial indexing for single-cell nucleic acid sequencing
WO2023250422A1 (en) 2022-06-23 2023-12-28 10X Genomics, Inc. Compositions and methods for characterizing multispecific antigen binding molecules from single cells
WO2024006734A1 (en) 2022-06-27 2024-01-04 10X Genomics, Inc. Methods for preparing and using mhc multimer reagents compositions
WO2024006392A1 (en) 2022-06-29 2024-01-04 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins
WO2024015378A1 (en) 2022-07-13 2024-01-18 10X Genomics, Inc. Methods and systems for characterizing antigen-binding molecules expressed by immune cells
WO2024015733A1 (en) 2022-07-13 2024-01-18 10X Genomics, Inc. Improved methods and systems for identification and characterization of antigen-binding molecules from single cells
WO2024015856A1 (en) 2022-07-13 2024-01-18 10X Genomics, Inc. Compositions and methods for characterizing binding characteristics of antigen binding molecules from single cells
DE102022119712A1 (de) * 2022-08-05 2024-02-08 Endress+Hauser BioSense GmbH Verfahren zum Einbringen einer aufzukonzentrierenden biologischen Probe mit biologischem Material in eine zentrifugal-mikrofluidische Kartusche
WO2024050299A1 (en) 2022-08-29 2024-03-07 10X Genomics, Inc. Improved methods and compositions for characterization of antigen-binding molecules from single cells
WO2024076908A1 (en) 2022-10-03 2024-04-11 10X Genomics, Inc. Compositions and methods for analyzing genomic insertion sites of exogenous nucleic acids
CN116656787A (zh) * 2023-04-04 2023-08-29 墨卓生物科技(浙江)有限公司 一种核酸序列扩增和标记的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015164212A1 (en) * 2014-04-21 2015-10-29 President And Fellows Of Harvard College Systems and methods for barcoding nucleic acids
WO2015200541A1 (en) * 2014-06-24 2015-12-30 Bio-Rad Laboratories, Inc. Digital pcr barcoding
CN105492607A (zh) * 2013-06-27 2016-04-13 10X基因组学有限公司 用于样品处理的组合物和方法
WO2016145409A1 (en) * 2015-03-11 2016-09-15 The Broad Institute, Inc. Genotype and phenotype coupling

Family Cites Families (725)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1014495A (en) 1910-01-28 1912-01-09 Purd J Lincoln Reciprocating electric motor for drills.
US1011916A (en) 1911-03-18 1911-12-19 Carl H Carlson Butcher's-block scraper.
US1025336A (en) 1911-06-01 1912-05-07 Thomas Townson Automatic spark-timing mechanism for internal-combustion engines.
US1017431A (en) 1911-07-19 1912-02-13 Frederick Lillich Car-fender.
US1027354A (en) 1912-03-27 1912-05-21 Jakob Emil Noeggerath Railway system.
US2797149A (en) 1953-01-08 1957-06-25 Technicon International Ltd Methods of and apparatus for analyzing liquids containing crystalloid and non-crystalloid constituents
US3047367A (en) 1959-12-01 1962-07-31 Technicon Instr Automatic analysis with fluid segmentation
US3479141A (en) 1967-05-17 1969-11-18 Technicon Corp Method and apparatus for analysis
US4124638A (en) 1977-09-12 1978-11-07 Hansen John N Solubilizable polyacrylamide gels containing disulfide cross-linkages
US4253846A (en) 1979-11-21 1981-03-03 Technicon Instruments Corporation Method and apparatus for automated analysis of fluid samples
GB2097692B (en) 1981-01-10 1985-05-22 Shaw Stewart P D Combining chemical reagents
DE3230289A1 (de) 1982-08-14 1984-02-16 Bayer Ag, 5090 Leverkusen Herstellung von pharmazeutischen oder kosmetischen dispersionen
US4582802A (en) 1983-09-30 1986-04-15 The United States Of America As Represented By The Department Of Health And Human Services Stimulation of enzymatic ligation of DNA by high concentrations of nonspecific polymers
JPS60227826A (ja) 1984-04-27 1985-11-13 Sogo Yatsukou Kk pHに応答するグラフトカプセル
US4916070A (en) 1986-04-14 1990-04-10 The General Hospital Corporation Fibrin-specific antibodies and method of screening for the antibodies
US5618711A (en) 1986-08-22 1997-04-08 Hoffmann-La Roche Inc. Recombinant expression vectors and purification methods for Thermus thermophilus DNA polymerase
US4872895A (en) 1986-12-11 1989-10-10 American Telephone And Telegraph Company, At&T Bell Laboratories Method for fabricating articles which include high silica glass bodies
US5202231A (en) 1987-04-01 1993-04-13 Drmanac Radoje T Method of sequencing of genomes by hybridization of oligonucleotide probes
US5525464A (en) 1987-04-01 1996-06-11 Hyseq, Inc. Method of sequencing by hybridization of oligonucleotide probes
US5149625A (en) 1987-08-11 1992-09-22 President And Fellows Of Harvard College Multiplex analysis of DNA
US5137829A (en) 1987-10-05 1992-08-11 Washington University DNA transposon TN5SEQ1
US5185099A (en) 1988-04-20 1993-02-09 Institut National De Recherche Chimique Appliquee Visco-elastic, isotropic materials based on water, fluorinate sufactants and fluorinated oils, process for their preparation, and their use in various fields, such as optics, pharmacology and electrodynamics
US5237016A (en) 1989-01-05 1993-08-17 Siska Diagnostics, Inc. End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids
US6176962B1 (en) 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
US5756334A (en) 1990-04-26 1998-05-26 New England Biolabs, Inc. Thermostable DNA polymerase from 9°N-7 and methods for producing the same
ATE176002T1 (de) 1990-07-24 1999-02-15 Hoffmann La Roche Verringerung von nicht spezifischer amplifikation während einer (in vitro) nukleinsäure amplifikation unter verwendung von modifizierten nukleinsäure basen
US5489523A (en) 1990-12-03 1996-02-06 Stratagene Exonuclease-deficient thermostable Pyrococcus furiosus DNA polymerase I
US6582908B2 (en) 1990-12-06 2003-06-24 Affymetrix, Inc. Oligonucleotides
US5270183A (en) 1991-02-08 1993-12-14 Beckman Research Institute Of The City Of Hope Device and method for the automated cycling of solutions between two or more temperatures
US5994056A (en) 1991-05-02 1999-11-30 Roche Molecular Systems, Inc. Homogeneous methods for nucleic acid amplification and detection
DE69213240T2 (de) 1991-07-04 1997-04-24 Immunodex K S Wasserlösliche reagenzien und konjugate auf polymerbasis, die vom divinylsulfon abgeleitete reste enthalten
CA2114950A1 (en) 1991-08-10 1993-02-11 Michael J. Embleton Treatment of cell populations
US5770358A (en) 1991-09-18 1998-06-23 Affymax Technologies N.V. Tagged synthetic oligomer libraries
US5413924A (en) 1992-02-13 1995-05-09 Kosak; Kenneth M. Preparation of wax beads containing a reagent for release by heating
WO1993019205A1 (en) 1992-03-19 1993-09-30 The Regents Of The University Of California Multiple tag labeling method for dna sequencing
US5587128A (en) 1992-05-01 1996-12-24 The Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification devices
WO1993022058A1 (en) 1992-05-01 1993-11-11 Trustees Of The University Of Pennsylvania Polynucleotide amplification analysis using a microfabricated device
US5840865A (en) 1992-09-14 1998-11-24 Institute Of Molecular Biology And Biotechnology/Forth Eukaryotic transposable element
US5897783A (en) 1992-09-24 1999-04-27 Amersham International Plc Magnetic separation method
US5569364A (en) 1992-11-05 1996-10-29 Soane Biosciences, Inc. Separation media for electrophoresis
IL108497A0 (en) 1993-02-01 1994-05-30 Seq Ltd Methods and apparatus for dna sequencing
WO1994019101A1 (en) 1993-02-16 1994-09-01 Alliance Pharmaceutical Corp. Method of microemulsifying fluorinated oils
NZ265555A (en) 1993-04-19 1997-09-22 Medisorb Technologies Internat Biodegradable microparticle compositions of antisense oligodeoxyribonucleotides
DE69429038T2 (de) 1993-07-28 2002-03-21 Pe Corp Ny Norwalk Vorrichtung und Verfahren zur Nukleinsäurevervielfältigung
WO1995004069A1 (en) 1993-07-30 1995-02-09 Affymax Technologies N.V. Biotinylation of proteins
US5512131A (en) 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US20030044777A1 (en) 1993-10-28 2003-03-06 Kenneth L. Beattie Flowthrough devices for multiple discrete binding reactions
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5558071A (en) 1994-03-07 1996-09-24 Combustion Electromagnetics, Inc. Ignition system power converter and controller
US5648211A (en) 1994-04-18 1997-07-15 Becton, Dickinson And Company Strand displacement amplification using thermophilic enzymes
DE69515675T2 (de) 1994-05-11 2000-07-20 Genera Technologies Ltd Verfahren zum Einfangen von einem Ligand aus einer Flüssigkeit und Vorrichtung zur dessen Ausführung
US5705628A (en) 1994-09-20 1998-01-06 Whitehead Institute For Biomedical Research DNA purification and isolation using magnetic particles
US5846719A (en) 1994-10-13 1998-12-08 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
EP0812434B1 (en) 1995-03-01 2013-09-18 President and Fellows of Harvard College Microcontact printing on surfaces and derivative articles
US5700642A (en) 1995-05-22 1997-12-23 Sri International Oligonucleotide sizing using immobilized cleavable primers
DE69637285T2 (de) 1995-06-07 2008-07-10 Solexa, Inc., Hayward Oligonukleotid-tags zur sortierung und identifizierung
EP0832287B1 (en) 1995-06-07 2007-10-10 Solexa, Inc Oligonucleotide tags for sorting and identification
US5856174A (en) 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US6866760B2 (en) 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US5872010A (en) 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
US6057149A (en) 1995-09-15 2000-05-02 The University Of Michigan Microscale devices and reactions in microscale devices
US5851769A (en) 1995-09-27 1998-12-22 The Regents Of The University Of California Quantitative DNA fiber mapping
US5736330A (en) 1995-10-11 1998-04-07 Luminex Corporation Method and compositions for flow cytometric determination of DNA sequences
US6001571A (en) 1995-11-30 1999-12-14 Mandecki; Wlodek Multiplex assay for nucleic acids employing transponders
US6051377A (en) 1995-11-30 2000-04-18 Pharmaseq, Inc. Multiplex assay for nucleic acids employing transponders
US5736332A (en) 1995-11-30 1998-04-07 Mandecki; Wlodek Method of determining the sequence of nucleic acids employing solid-phase particles carrying transponders
US6355198B1 (en) 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
EP0832436A1 (en) 1996-04-15 1998-04-01 Dade Behring Inc. Apparatus and method for analysis
WO1997045559A1 (en) 1996-05-29 1997-12-04 Cornell Research Foundation, Inc. Detection of nucleic acid sequence differences using coupled ligase detection and polymerase chain reactions
US5846727A (en) 1996-06-06 1998-12-08 Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical College Microsystem for rapid DNA sequencing
DE69707288T2 (de) 1996-07-15 2002-07-18 Calcitech Ltd Herstellung von pulvern
US5965443A (en) 1996-09-09 1999-10-12 Wisconsin Alumni Research Foundation System for in vitro transposition
US5900481A (en) 1996-11-06 1999-05-04 Sequenom, Inc. Bead linkers for immobilizing nucleic acids to solid supports
US6133436A (en) 1996-11-06 2000-10-17 Sequenom, Inc. Beads bound to a solid support and to nucleic acids
AU746549B2 (en) 1996-11-20 2002-05-02 Becton Dickinson & Company Microfabricated isothermal nucleic acid amplification devices and methods
US5958703A (en) 1996-12-03 1999-09-28 Glaxo Group Limited Use of modified tethers in screening compound libraries
US20020172965A1 (en) 1996-12-13 2002-11-21 Arcaris, Inc. Methods for measuring relative amounts of nucleic acids in a complex mixture and retrieval of specific sequences therefrom
US20050042625A1 (en) 1997-01-15 2005-02-24 Xzillion Gmbh & Co. Mass label linked hybridisation probes
US20020034737A1 (en) 1997-03-04 2002-03-21 Hyseq, Inc. Methods and compositions for detection or quantification of nucleic acid species
US6297006B1 (en) 1997-01-16 2001-10-02 Hyseq, Inc. Methods for sequencing repetitive sequences and for determining the order of sequence subfragments
WO1998035012A2 (en) 1997-02-12 1998-08-13 Chan Eugene Y Methods and products for analyzing polymers
US6327410B1 (en) 1997-03-14 2001-12-04 The Trustees Of Tufts College Target analyte sensors utilizing Microspheres
US7622294B2 (en) 1997-03-14 2009-11-24 Trustees Of Tufts College Methods for detecting target analytes and enzymatic reactions
US6391622B1 (en) 1997-04-04 2002-05-21 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6143496A (en) 1997-04-17 2000-11-07 Cytonix Corporation Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
ATE340868T1 (de) 1997-05-02 2006-10-15 Gen Probe Inc Zwei-schritt hybridisierung und einfang von einem polynukleotid
DE69823347T2 (de) 1997-05-16 2005-05-12 Alberta Research Council, Edmonton Mikrofluidisches system und verfahren zu dessen betrieb
EP0985142A4 (en) 1997-05-23 2006-09-13 Lynx Therapeutics Inc SYSTEM AND APPARATUS FOR THE SEQUENTIAL TREATMENT OF ANALYTES
US6969488B2 (en) 1998-05-22 2005-11-29 Solexa, Inc. System and apparatus for sequential processing of analytes
US20040241759A1 (en) 1997-06-16 2004-12-02 Eileen Tozer High throughput screening of libraries
EP1019496B1 (en) 1997-07-07 2004-09-29 Medical Research Council In vitro sorting method
GB9714716D0 (en) 1997-07-11 1997-09-17 Brax Genomics Ltd Characterising nucleic acids
FI103809B (fi) 1997-07-14 1999-09-30 Finnzymes Oy In vitro -menetelmä templaattien tuottamiseksi DNA-sekventointia varten
US6974669B2 (en) 2000-03-28 2005-12-13 Nanosphere, Inc. Bio-barcodes based on oligonucleotide-modified nanoparticles
US6368871B1 (en) 1997-08-13 2002-04-09 Cepheid Non-planar microstructures for manipulation of fluid samples
CA2300940A1 (en) 1997-08-15 1999-02-25 Hyseq, Inc. Methods and compositions for detection or quantification of nucleic acid species
US6207031B1 (en) 1997-09-15 2001-03-27 Whitehead Institute For Biomedical Research Methods and apparatus for processing a sample of biomolecular analyte using a microfabricated device
US20020092767A1 (en) 1997-09-19 2002-07-18 Aclara Biosciences, Inc. Multiple array microfluidic device units
US7214298B2 (en) 1997-09-23 2007-05-08 California Institute Of Technology Microfabricated cell sorter
WO1999018438A1 (en) 1997-10-02 1999-04-15 Aclara Biosciences, Inc. Capillary assays involving separation of free and bound species
US5842787A (en) 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
JP2001519538A (ja) 1997-10-10 2001-10-23 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ 核酸アレイのレプリカ増幅
US6485944B1 (en) 1997-10-10 2002-11-26 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
US6511803B1 (en) 1997-10-10 2003-01-28 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
AU1080999A (en) 1997-10-14 1999-05-03 Luminex Corporation Precision fluorescently dyed particles and methods of making and using same
JP4318859B2 (ja) 1997-12-04 2009-08-26 ジーイー・ヘルスケア・ユーケイ・リミテッド 複合アッセイ方法
WO1999033963A1 (en) 1997-12-31 1999-07-08 Chiron Corporation Metastatic cancer regulated gene
BR9908082A (pt) 1998-02-19 2000-10-31 Harvard College Proteìna de fusão do complexo de histocompatibilidade principal classe ii, conjugado dos domìnios de ligação do complexo de histocompatibilidade principal multimérico, processos para detectar células t tendo uma especificidade do complexo definido de mhc / peptìdeo, para conferir a um indivìduo imunidade adotiva a um complexo definido de mhc / peptìdeo, para estimular ou ativar as células t reativas a um complexo definido de mhc / peptìdeo, para seletivamente matar células t reativas a um complexo definido de mhc / peptìdeo, para tolerizar um indivìduo humano a um complexo definido de mhc / peptìdeo, e, ácido nucleico isolado
AU3196099A (en) 1998-03-27 1999-10-18 President And Fellows Of Harvard College Systematic identification of essential genes by (in vitro) transposon mutagenesis
US6022716A (en) 1998-04-10 2000-02-08 Genset Sa High throughput DNA sequencing vector
EP1079967A4 (en) 1998-04-13 2003-07-23 Luminex Corp LIQUID MARKING USING FLUORESCENT MICROPARTICLES
US5997636A (en) 1998-05-01 1999-12-07 Instrumentation Technology Associates, Inc. Method and apparatus for growing crystals
US6780591B2 (en) 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US6123798A (en) 1998-05-06 2000-09-26 Caliper Technologies Corp. Methods of fabricating polymeric structures incorporating microscale fluidic elements
US6306590B1 (en) 1998-06-08 2001-10-23 Caliper Technologies Corp. Microfluidic matrix localization apparatus and methods
US6586176B1 (en) 1998-08-07 2003-07-01 Cellay, Llc Gel microdrops in genetic analysis
US6159736A (en) 1998-09-23 2000-12-12 Wisconsin Alumni Research Foundation Method for making insertional mutations using a Tn5 synaptic complex
AR021833A1 (es) 1998-09-30 2002-08-07 Applied Research Systems Metodos de amplificacion y secuenciacion de acido nucleico
KR20010089295A (ko) 1998-10-13 2001-09-29 마이클 알. 맥닐리 수동 유체 동역학에 의한 유체회로 및 유체회로내에서의방법
US6489096B1 (en) 1998-10-15 2002-12-03 Princeton University Quantitative analysis of hybridization patterns and intensities in oligonucleotide arrays
SE9803614L (sv) 1998-10-19 2000-04-20 Muhammed Mamoun Förfarande och anordning för framställning av nanopartiklar
WO2000026412A1 (en) 1998-11-02 2000-05-11 Kenneth Loren Beattie Nucleic acid analysis using sequence-targeted tandem hybridization
US6569631B1 (en) 1998-11-12 2003-05-27 3-Dimensional Pharmaceuticals, Inc. Microplate thermal shift assay for ligand development using 5-(4″dimethylaminophenyl)-2-(4′-phenyl)oxazole derivative fluorescent dyes
US5942609A (en) 1998-11-12 1999-08-24 The Porkin-Elmer Corporation Ligation assembly and detection of polynucleotides on solid-support
US6465193B2 (en) 1998-12-11 2002-10-15 The Regents Of The University Of California Targeted molecular bar codes and methods for using the same
NO986133D0 (no) 1998-12-23 1998-12-23 Preben Lexow FremgangsmÕte for DNA-sekvensering
GB9900298D0 (en) 1999-01-07 1999-02-24 Medical Res Council Optical sorting method
US6416642B1 (en) 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US6635419B1 (en) 1999-02-16 2003-10-21 Applera Corporation Polynucleotide sequencing method
US20030027214A1 (en) 1999-02-17 2003-02-06 Kamb Carl Alexander Methods for substrate-ligand interaction screening
ATE469699T1 (de) 1999-02-23 2010-06-15 Caliper Life Sciences Inc Manipulation von mikroteilchen in mikrofluiden systemen
US6171850B1 (en) 1999-03-08 2001-01-09 Caliper Technologies Corp. Integrated devices and systems for performing temperature controlled reactions and analyses
US6303343B1 (en) 1999-04-06 2001-10-16 Caliper Technologies Corp. Inefficient fast PCR
US6908737B2 (en) 1999-04-15 2005-06-21 Vitra Bioscience, Inc. Systems and methods of conducting multiplexed experiments
US20060275782A1 (en) 1999-04-20 2006-12-07 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
AU4806100A (en) 1999-04-28 2000-11-10 Board Of Trustees Of The Leland Stanford Junior University P element derived vector and methods for its use
CA2373537A1 (en) 1999-05-12 2000-11-16 Aclara Biosciences, Inc. Multiplexed fluorescent detection in microfluidic devices
WO2000070095A2 (en) 1999-05-17 2000-11-23 Dade Behring Inc. Homogeneous isothermal amplification and detection of nucleic acids using a template switch oligonucleotide
US20020051971A1 (en) 1999-05-21 2002-05-02 John R. Stuelpnagel Use of microfluidic systems in the detection of target analytes using microsphere arrays
US6846622B1 (en) 1999-05-26 2005-01-25 Oregon Health & Science University Tagged epitope protein transposable element
US20030124509A1 (en) 1999-06-03 2003-07-03 Kenis Paul J.A. Laminar flow patterning and articles made thereby
US6372813B1 (en) 1999-06-25 2002-04-16 Motorola Methods and compositions for attachment of biomolecules to solid supports, hydrogels, and hydrogel arrays
AU6068300A (en) 1999-07-06 2001-01-22 Caliper Technologies Corporation Microfluidic systems and methods for determining modulator kinetics
US6977145B2 (en) 1999-07-28 2005-12-20 Serono Genetics Institute S.A. Method for carrying out a biochemical protocol in continuous flow in a microreactor
US6524456B1 (en) 1999-08-12 2003-02-25 Ut-Battelle, Llc Microfluidic devices for the controlled manipulation of small volumes
WO2001013086A2 (en) 1999-08-13 2001-02-22 Brandeis University Detection of nucleic acids
WO2001014589A2 (en) 1999-08-20 2001-03-01 Luminex Corporation Liquid array technology
WO2001016372A1 (en) 1999-08-27 2001-03-08 Matrix Technologies Corporation Methods of immobilizing ligands on solid supports and apparatus and methods of use therefor
US6982146B1 (en) 1999-08-30 2006-01-03 The United States Of America As Represented By The Department Of Health And Human Services High speed parallel molecular nucleic acid sequencing
AU8023500A (en) 1999-10-13 2001-04-23 Mds Sciex System and method for detecting and identifying molecular events in a test sample
US6958225B2 (en) 1999-10-27 2005-10-25 Affymetrix, Inc. Complexity management of genomic DNA
AU1100201A (en) 1999-10-28 2001-05-08 Board Of Trustees Of The Leland Stanford Junior University Methods of in vivo gene transfer using a sleeping beauty transposon system
JP4721603B2 (ja) 1999-11-08 2011-07-13 栄研化学株式会社 変異および/または多型の検出方法
US6432290B1 (en) 1999-11-26 2002-08-13 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
CA2399199A1 (en) 2000-02-23 2001-08-30 Ring-Ling Chien Multi-reservoir pressure control system
WO2001062887A1 (en) 2000-02-23 2001-08-30 Zyomyx, Inc. Chips having elevated sample surfaces
IL134830A0 (en) 2000-03-01 2001-05-20 Chay 13 Medical Res Group N V Peptides and immunostimulatory and anti-bacterial pharmaceutical compositions containing them
KR20030009389A (ko) 2000-03-14 2003-01-29 브루카드 괴케 유문동-유문-십이지장 운동성에 대한 글루카곤 유사펩티드-1 (7-36)의 효과
US6409832B2 (en) 2000-03-31 2002-06-25 Micronics, Inc. Protein crystallization in microfluidic structures
AU2001250058A1 (en) 2000-04-06 2001-10-23 Caliper Technologies Corp. Methods and devices for achieving long incubation times in high-throughput systems
DK2206791T3 (en) 2000-04-10 2016-10-24 Taxon Biosciences Inc Methods of study and genetic analysis of populations
US6481453B1 (en) 2000-04-14 2002-11-19 Nanostream, Inc. Microfluidic branch metering systems and methods
US6800298B1 (en) 2000-05-11 2004-10-05 Clemson University Biological lubricant composition and method of applying lubricant composition
US20060008799A1 (en) 2000-05-22 2006-01-12 Hong Cai Rapid haplotyping by single molecule detection
EP1286913A2 (en) 2000-05-24 2003-03-05 Micronics, Inc. Microfluidic concentration gradient loop
US6645432B1 (en) 2000-05-25 2003-11-11 President & Fellows Of Harvard College Microfluidic systems including three-dimensionally arrayed channel networks
US20060263888A1 (en) 2000-06-02 2006-11-23 Honeywell International Inc. Differential white blood count on a disposable card
US6632606B1 (en) 2000-06-12 2003-10-14 Aclara Biosciences, Inc. Methods for single nucleotide polymorphism detection
ES2259666T3 (es) 2000-06-21 2006-10-16 Bioarray Solutions Ltd Analisis molecular de multiples analitos usando series de particulas aleatorias con especificidad de aplicacion.
EP1309404A2 (en) 2000-08-07 2003-05-14 Nanostream, Inc. Fluidic mixer in microfluidic system
US6610499B1 (en) 2000-08-31 2003-08-26 The Regents Of The University Of California Capillary array and related methods
US6773566B2 (en) 2000-08-31 2004-08-10 Nanolytics, Inc. Electrostatic actuators for microfluidics and methods for using same
WO2002022878A1 (en) 2000-09-14 2002-03-21 Caliper Technologies Corp. Microfluidic devices and methods for performing temperature mediated reactions
WO2002023163A1 (en) 2000-09-15 2002-03-21 California Institute Of Technology Microfabricated crossflow devices and methods
US7258774B2 (en) 2000-10-03 2007-08-21 California Institute Of Technology Microfluidic devices and methods of use
EP1364052A2 (en) 2000-10-10 2003-11-26 Diversa Corporation High throughput or capillary-based screening for a bioactivity or biomolecule
JP2002155305A (ja) 2000-11-14 2002-05-31 Akira Kawasaki 単分散粒子の製造装置及び単分散粒子の製造方法及びその製造方法で製造された単分散粒子
CA2332186A1 (en) 2001-02-08 2002-08-08 Her Majesty In Right Of Canada As Represented By The Minister Of Agricul Ture And Agri-Food Canada Replicative in vivo gene targeting
US7670559B2 (en) 2001-02-15 2010-03-02 Caliper Life Sciences, Inc. Microfluidic systems with enhanced detection systems
WO2002068383A2 (en) 2001-02-22 2002-09-06 Anika Therapeutics, Inc. Thiol-modified hyaluronan
WO2002068104A1 (en) 2001-02-23 2002-09-06 Japan Science And Technology Corporation Process for producing emulsion and microcapsules and apparatus therefor
US7211654B2 (en) 2001-03-14 2007-05-01 Regents Of The University Of Michigan Linkers and co-coupling agents for optimization of oligonucleotide synthesis and purification on solid supports
US20150329617A1 (en) 2001-03-14 2015-11-19 Dynal Biotech Asa Novel MHC molecule constructs, and methods of employing these constructs for diagnosis and therapy, and uses of MHC molecules
EP1377811B1 (en) 2001-04-03 2008-07-16 Micronics, Inc. Split focusing cytometer
US7138267B1 (en) 2001-04-04 2006-11-21 Epicentre Technologies Corporation Methods and compositions for amplifying DNA clone copy number
US20030027221A1 (en) 2001-04-06 2003-02-06 Scott Melissa E. High-throughput screening assays by encapsulation
US7572642B2 (en) 2001-04-18 2009-08-11 Ambrigen, Llc Assay based on particles, which specifically bind with targets in spatially distributed characteristic patterns
EP1399580B1 (en) 2001-05-26 2008-10-08 One Cell Systems, Inc. Secretion of proteins by encapsulated cells
US6880576B2 (en) 2001-06-07 2005-04-19 Nanostream, Inc. Microfluidic devices for methods development
US7179423B2 (en) 2001-06-20 2007-02-20 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US7262063B2 (en) 2001-06-21 2007-08-28 Bio Array Solutions, Ltd. Directed assembly of functional heterostructures
US6613523B2 (en) 2001-06-29 2003-09-02 Agilent Technologies, Inc. Method of DNA sequencing using cleavable tags
US7682353B2 (en) 2001-06-29 2010-03-23 Coloplast A/S Catheter device
US7077152B2 (en) 2001-07-07 2006-07-18 Nanostream, Inc. Microfluidic metering systems and methods
CA2454573A1 (en) 2001-07-20 2003-01-30 California Institute Of Technology Protein and nucleic acid expression systems
US6767731B2 (en) 2001-08-27 2004-07-27 Intel Corporation Electron induced fluorescent method for nucleic acid sequencing
US7297485B2 (en) 2001-10-15 2007-11-20 Qiagen Gmbh Method for nucleic acid amplification that results in low amplification bias
US20030089605A1 (en) 2001-10-19 2003-05-15 West Virginia University Research Corporation Microfluidic system for proteome analysis
US6783647B2 (en) 2001-10-19 2004-08-31 Ut-Battelle, Llc Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate
US20030149307A1 (en) 2001-10-24 2003-08-07 Baxter International Inc. Process for the preparation of polyethylene glycol bis amine
US20030182068A1 (en) 2001-10-30 2003-09-25 Battersby Bronwyn J. Device and methods for directed synthesis of chemical libraries
US7262056B2 (en) 2001-11-08 2007-08-28 Mirus Bio Corporation Enhancing intermolecular integration of nucleic acids using integrator complexes
GB0127564D0 (en) 2001-11-16 2002-01-09 Medical Res Council Emulsion compositions
US7335153B2 (en) 2001-12-28 2008-02-26 Bio Array Solutions Ltd. Arrays of microparticles and methods of preparation thereof
WO2003057010A2 (en) 2002-01-04 2003-07-17 Board Of Regents, The University Of Texas System Droplet-based microfluidic oligonucleotide synthesis engine
AU2003202026A1 (en) 2002-01-16 2003-09-02 Dynal Biotech Asa Method for isolating nucleic acids and protein from a single sample
KR100459870B1 (ko) 2002-02-22 2004-12-04 한국과학기술원 트랜스포존과 Cre/loxP 부위 특이적 재조합 방법을 이용하는 염색체의 특정부위가 제거된 미생물 변이주 제조방법
AU2003226679A1 (en) 2002-03-20 2003-09-29 Innovativebio.Biz Microcapsules with controlable permeability encapsulating a nucleic acid amplification reaction mixture and their use as reaction compartments for parallels reactions
US7901939B2 (en) 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
EP2278338B1 (en) 2002-05-09 2020-08-26 The University of Chicago Device and method for pressure-driven plug transport and reaction
US7527966B2 (en) 2002-06-26 2009-05-05 Transgenrx, Inc. Gene regulation in transgenic animals using a transposon-based vector
JP2006507921A (ja) 2002-06-28 2006-03-09 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 流体分散のための方法および装置
EP1543157A4 (en) 2002-07-24 2006-11-15 Ptc Therapeutics Inc METHODS FOR IDENTIFYING SMALL MOLECULES MODULATING PREMATURE TRANSLATION TERMINATION AND DEGRADATION OF INDUCED MRNA BY NON-SENSE MUTATION
IL151660A0 (en) 2002-09-09 2003-04-10 Univ Ben Gurion Method for isolating and culturing unculturable microorganisms
JP4201203B2 (ja) 2002-09-30 2008-12-24 エフ.ホフマン−ラ ロシュ アーゲー チミジル酸シンターゼ遺伝子の遺伝子型判別のためのオリゴヌクレオチド
US20040081962A1 (en) 2002-10-23 2004-04-29 Caifu Chen Methods for synthesizing complementary DNA
US6979713B2 (en) 2002-11-25 2005-12-27 3M Innovative Properties Company Curable compositions and abrasive articles therefrom
US20050266582A1 (en) 2002-12-16 2005-12-01 Modlin Douglas N Microfluidic system with integrated permeable membrane
US20040248299A1 (en) 2002-12-27 2004-12-09 Sumedha Jayasena RNA interference
EP1587946B1 (en) 2003-01-17 2009-07-08 The Trustees Of Boston University Haplotype analysis
ES2396245T3 (es) 2003-01-29 2013-02-20 454 Life Sciences Corporation Método de amplificación y secuenciamiento de ácidos nucleicos
US8420386B2 (en) 2003-02-10 2013-04-16 Max-Delbruck-Centrum Fur Molekulare Medizin (Mdc) Transposon-based targeting system
US7041481B2 (en) 2003-03-14 2006-05-09 The Regents Of The University Of California Chemical amplification based on fluid partitioning
US7316903B2 (en) 2003-03-28 2008-01-08 United States Of America As Represented By The Department Of Health And Human Services Detection of nucleic acid sequence variations using phase Mu transposase
US20060078893A1 (en) 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
GB0307428D0 (en) 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
GB0307403D0 (en) 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
RU2541809C2 (ru) 2003-04-04 2015-02-20 Зоетис Пи ЛЛК Микрофлюидизированные эмульсии "масло в воде" и композиции вакцины
US20100035254A1 (en) 2003-04-08 2010-02-11 Pacific Biosciences Of California, Inc. Composition and method for nucleic acid sequencing
EP2266687A3 (en) 2003-04-10 2011-06-29 The President and Fellows of Harvard College Formation and control of fluidic species
US20060275915A1 (en) 2003-05-16 2006-12-07 Global Technologies (Nz) Ltd. Method and apparatus for mixing sample and reagent in a suspension fluid
DE112004001376D2 (de) 2003-05-19 2006-04-13 Knoell Hans Forschung Ev Vorrichtung und Verfahren zur Strukturierung von Flüssigkeiten und zum zudosieren von Reaktionsflüssigkeiten zu in Separationsmedium eingebetteten Flüssigkeitskompartimenten
WO2004105734A1 (en) 2003-05-28 2004-12-09 Valorisation Recherche, Societe En Commandite Method of preparing microcapsules
GB0313170D0 (en) * 2003-06-09 2003-07-16 Qinetiq Ltd Method and apparatus for spore disruption and/or detection
WO2004113877A1 (en) 2003-06-13 2004-12-29 The General Hospital Corporation Microfluidic systems for size based removal of red blood cells and platelets from blood
GB2403475B (en) 2003-07-01 2008-02-06 Oxitec Ltd Stable integrands
GB0315438D0 (en) 2003-07-02 2003-08-06 Univ Manchester Analysis of mixed cell populations
WO2005010145A2 (en) 2003-07-05 2005-02-03 The Johns Hopkins University Method and compositions for detection and enumeration of genetic variations
CN104069784B (zh) 2003-08-27 2017-01-11 哈佛大学 流体物种的电子控制
JP4988345B2 (ja) 2003-09-04 2012-08-01 ザ・ユナイテッド・ステイツ・オブ・アメリカ・アズ・リプレゼンティッド・バイ・ザ・デパートメント・オブ・ヴェテランズ・アフェアーズ 眼用ハイドロゲルナノコンポジット
EP1663497B2 (en) 2003-09-05 2020-03-25 Stokes Bio Limited A microfluidic analysis system
US7354706B2 (en) 2003-09-09 2008-04-08 The Regents Of The University Of Colorado, A Body Corporate Use of photopolymerization for amplification and detection of a molecular recognition event
US20090004739A1 (en) 2003-09-22 2009-01-01 Taku Demura Efficient Method of Preparing Dna Inverted Repeat
DK1691196T3 (da) 2003-09-25 2013-04-15 Vivalis Chip med mikrobrøndsarray og fremgangsmåde til fremstilling heraf
JP2007512811A (ja) 2003-11-10 2007-05-24 インベスチゲン, インコーポレイテッド 検出のための核酸を調製する方法
WO2005049787A2 (en) 2003-11-24 2005-06-02 Yeda Research And Development Co.Ltd. Compositions and methods for in vitro sorting of molecular and cellular libraries
US8071364B2 (en) 2003-12-24 2011-12-06 Transgenrx, Inc. Gene therapy using transposon-based vectors
ES2432040T3 (es) 2004-01-28 2013-11-29 454 Life Sciences Corporation Amplificación de ácido nucleico con emulsión de flujo continuo
US20050181379A1 (en) 2004-02-18 2005-08-18 Intel Corporation Method and device for isolating and positioning single nucleic acid molecules
CN1950519A (zh) 2004-02-27 2007-04-18 哈佛大学的校长及成员们 聚合酶群落荧光原位测序珠子
US20100216153A1 (en) 2004-02-27 2010-08-26 Helicos Biosciences Corporation Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities
KR100552706B1 (ko) 2004-03-12 2006-02-20 삼성전자주식회사 핵산 증폭 방법 및 장치
EP1757357B1 (en) 2004-03-23 2013-04-24 Japan Science and Technology Agency Method and device for producing micro-droplets
US20050221339A1 (en) 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
EP1735668A2 (en) 2004-04-13 2006-12-27 President And Fellows Of Harvard College Methods and apparatus for manipulation and/or detection of biological samples and other objects
US20050250147A1 (en) 2004-05-10 2005-11-10 Macevicz Stephen C Digital profiling of polynucleotide populations
US20080268507A1 (en) 2004-05-25 2008-10-30 Airbus Deutschland Gmbh Recombinant Dna Nicking Endonuclease and Uses Thereof
US7799553B2 (en) 2004-06-01 2010-09-21 The Regents Of The University Of California Microfabricated integrated DNA analysis system
US7700281B2 (en) 2004-06-30 2010-04-20 Usb Corporation Hot start nucleic acid amplification
US7968085B2 (en) 2004-07-05 2011-06-28 Ascendis Pharma A/S Hydrogel formulations
CN1648671B (zh) 2005-02-06 2012-09-26 成都夸常医学工业有限公司 多反应器分析芯片检测方法和分析芯片及检测装置
US7608434B2 (en) 2004-08-04 2009-10-27 Wisconsin Alumni Research Foundation Mutated Tn5 transposase proteins and the use thereof
WO2006030993A1 (en) 2004-09-14 2006-03-23 Jin-Ho Choy Information code system using dna sequences
US7892731B2 (en) 2004-10-01 2011-02-22 Radix Biosolutions, Ltd. System and method for inhibiting the decryption of a nucleic acid probe sequence used for the detection of a specific nucleic acid
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
WO2007001448A2 (en) 2004-11-04 2007-01-04 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
WO2006051552A2 (en) 2004-11-15 2006-05-18 Yeda Research And Development Co. Ltd. At The Weizmann Institute Of Science Directed evolution and selection using in vitro compartmentalization
US7329493B2 (en) 2004-12-22 2008-02-12 Asiagen Corporation One-tube nested PCR for detecting Mycobacterium tuberculosis
US8883487B2 (en) 2004-12-23 2014-11-11 Abbott Point Of Care Inc. Molecular diagnostics system and methods
WO2006078841A1 (en) 2005-01-21 2006-07-27 President And Fellows Of Harvard College Systems and methods for forming fluidic droplets encapsulated in particles such as colloidal particles
US7579153B2 (en) 2005-01-25 2009-08-25 Population Genetics Technologies, Ltd. Isothermal DNA amplification
US7393665B2 (en) 2005-02-10 2008-07-01 Population Genetics Technologies Ltd Methods and compositions for tagging and identifying polynucleotides
US7407757B2 (en) 2005-02-10 2008-08-05 Population Genetics Technologies Genetic analysis by sequence-specific sorting
US7604938B2 (en) 2005-02-18 2009-10-20 Canon U.S. Life Sciences, Inc. Devices and methods for monitoring genomic DNA of organisms
US8062391B2 (en) 2005-02-21 2011-11-22 Kagoshima University Method for purifying biodiesel fuel
US20070054119A1 (en) 2005-03-04 2007-03-08 Piotr Garstecki Systems and methods of forming particles
EP1861194A2 (en) 2005-03-04 2007-12-05 The President and Fellows of Harvard College Method and apparatus for forming multiple emulsions
US9040237B2 (en) 2005-03-04 2015-05-26 Intel Corporation Sensor arrays and nucleic acid sequencing applications
JP2006289250A (ja) 2005-04-08 2006-10-26 Kao Corp マイクロミキサー及びそれを用いた流体混合方法
WO2006125458A1 (en) * 2005-05-27 2006-11-30 ETH Zürich Parallel sequencing of transformed nucleic acids in encapsulated cells
US8407013B2 (en) 2005-06-07 2013-03-26 Peter K. Rogan AB initio generation of single copy genomic probes
CA2611671C (en) 2005-06-15 2013-10-08 Callida Genomics, Inc. Single molecule arrays for genetic and chemical analysis
US20090264299A1 (en) 2006-02-24 2009-10-22 Complete Genomics, Inc. High throughput genome sequencing on DNA arrays
JP2006349060A (ja) 2005-06-16 2006-12-28 Ntn Corp ボールねじ
US8828209B2 (en) 2005-06-22 2014-09-09 The Research Foundation For The State University Of New York Massively parallel 2-dimensional capillary electrophoresis
WO2007002567A2 (en) 2005-06-23 2007-01-04 Nanosphere, Inc. Selective isolation and concentration of nucleic acids from complex samples
JP4927730B2 (ja) 2005-07-05 2012-05-09 一般財団法人化学及血清療法研究所 改変トランスポゾンベクター及びその利用方法
JP5051490B2 (ja) 2005-07-08 2012-10-17 独立行政法人産業技術総合研究所 マクロ生体材料を内包する無機マイクロカプセルおよびその製造方法
US20070020640A1 (en) 2005-07-21 2007-01-25 Mccloskey Megan L Molecular encoding of nucleic acid templates for PCR and other forms of sequence analysis
FR2888912B1 (fr) 2005-07-25 2007-08-24 Commissariat Energie Atomique Procede de commande d'une communication entre deux zones par electromouillage, dispositif comportant des zones isolables les unes des autres et procede de realisation d'un tel dispositif
EP1924704B1 (en) 2005-08-02 2011-05-25 Rubicon Genomics, Inc. Compositions and methods for processing and amplification of dna, including using multiple enzymes in a single reaction
WO2007024840A2 (en) 2005-08-22 2007-03-01 Critical Therapeutics, Inc. Method of quantitating nucleic acids by flow cytometry microparticle-based array
US7556776B2 (en) 2005-09-08 2009-07-07 President And Fellows Of Harvard College Microfluidic manipulation of fluids and reactions
JP2007074967A (ja) 2005-09-13 2007-03-29 Canon Inc 識別子プローブ及びそれを用いた核酸増幅方法
CA2622719A1 (en) 2005-09-16 2007-07-26 The Regents Of The University Of California A colorimetric bio-barcode amplification assay for analyte detection
US7960104B2 (en) 2005-10-07 2011-06-14 Callida Genomics, Inc. Self-assembled single molecule arrays and uses thereof
EP1954838B1 (en) 2005-11-14 2014-02-26 Life Technologies Corporation Coded molecules for detecting target analytes
US20070134277A1 (en) 2005-12-09 2007-06-14 Children's Medical Center Corporation Pharmaceutical formulation for sulfur-containing drugs in liquid dosage forms
US20070141584A1 (en) 2005-12-20 2007-06-21 Roberts Douglas N Methods for assessment of native chromatin on microarrays
US7932037B2 (en) 2007-12-05 2011-04-26 Perkinelmer Health Sciences, Inc. DNA assays using amplicon probes on encoded particles
CA2636855C (en) 2006-01-11 2016-09-27 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US7537897B2 (en) 2006-01-23 2009-05-26 Population Genetics Technologies, Ltd. Molecular counting
WO2007087310A2 (en) 2006-01-23 2007-08-02 Population Genetics Technologies Ltd. Nucleic acid analysis using sequence tokens
AU2007210152A1 (en) 2006-01-27 2007-08-09 President And Fellows Of Harvard College Fluidic droplet coalescence
EP3591068A1 (en) 2006-02-02 2020-01-08 The Board of Trustees of the Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis
WO2007092538A2 (en) 2006-02-07 2007-08-16 President And Fellows Of Harvard College Methods for making nucleotide probes for sequencing and synthesis
GB0603251D0 (en) 2006-02-17 2006-03-29 Isis Innovation DNA conformation
JP5180845B2 (ja) 2006-02-24 2013-04-10 カリダ・ジェノミックス・インコーポレイテッド Dnaアレイ上でのハイスループットゲノム配列決定
WO2007111937A1 (en) 2006-03-23 2007-10-04 Applera Corporation Directed enrichment of genomic dna for high-throughput sequencing
JP4921829B2 (ja) 2006-03-30 2012-04-25 株式会社東芝 微粒子の製造装置、乳化剤保持部、微粒子の製造方法および分子膜の製造方法
US20090181864A1 (en) 2006-03-31 2009-07-16 Nam Trung Nguyen Active control for droplet-based microfluidics
AU2007237909A1 (en) 2006-04-19 2007-10-25 Applied Biosystems, Llc. Reagents, methods, and libraries for gel-free bead-based sequencing
US7811603B2 (en) 2006-05-09 2010-10-12 The Regents Of The University Of California Microfluidic device for forming monodisperse lipoplexes
EP2047910B1 (en) 2006-05-11 2012-01-11 Raindance Technologies, Inc. Microfluidic device and method
ES2620398T3 (es) 2006-05-22 2017-06-28 Nanostring Technologies, Inc. Sistemas y métodos para analizar nanoindicadores
EP2029781A4 (en) 2006-05-26 2010-06-30 Althea Technologies Inc BIOCHEMICAL ANALYSIS OF PARTITIONED CELLS
FR2901717A1 (fr) 2006-05-30 2007-12-07 Centre Nat Rech Scient Procede de traitement de gouttes dans un circuit microfluidique.
EP4108780A1 (en) 2006-06-14 2022-12-28 Verinata Health, Inc. Rare cell analysis using sample splitting and dna tags
US8715934B2 (en) 2006-06-19 2014-05-06 The Johns Hopkins University Single-molecule PCR on microparticles in water-in-oil emulsions
WO2008005675A2 (en) 2006-06-30 2008-01-10 Applera Corporation Emulsion pcr and amplicon capture
EP1878501A1 (en) 2006-07-14 2008-01-16 Roche Diagnostics GmbH Instrument for heating and cooling
US8394590B2 (en) 2006-08-02 2013-03-12 California Institute Of Technology Capture agents and related methods and systems for detecting and/or sorting targets
EP2077912B1 (en) 2006-08-07 2019-03-27 The President and Fellows of Harvard College Fluorocarbon emulsion stabilizing surfactants
US9278321B2 (en) 2006-09-06 2016-03-08 Canon U.S. Life Sciences, Inc. Chip and cartridge design configuration for performing micro-fluidic assays
CN104774275A (zh) 2006-09-25 2015-07-15 阿彻-丹尼尔斯-米德兰德公司 超吸收性的经表面处理的羧烷基化多糖及其制备方法
US7935518B2 (en) 2006-09-27 2011-05-03 Alessandra Luchini Smart hydrogel particles for biomarker harvesting
US20080166720A1 (en) 2006-10-06 2008-07-10 The Regents Of The University Of California Method and apparatus for rapid nucleic acid analysis
WO2008052138A2 (en) 2006-10-25 2008-05-02 The Regents Of The University Of California Inline-injection microdevice and microfabricated integrated dna analysis system using same
US7910302B2 (en) 2006-10-27 2011-03-22 Complete Genomics, Inc. Efficient arrays of amplified polynucleotides
US8709787B2 (en) 2006-11-14 2014-04-29 Handylab, Inc. Microfluidic cartridge and method of using same
DK2518162T3 (en) 2006-11-15 2018-06-18 Biospherex Llc Multi-tag sequencing and ecogenomic analysis
US20080242560A1 (en) 2006-11-21 2008-10-02 Gunderson Kevin L Methods for generating amplified nucleic acid arrays
WO2008072540A1 (ja) 2006-12-13 2008-06-19 National University Corporation Nagoya University Tol1因子のトランスポザーゼ及びそれを用いたDNA導入システム
JP2008167722A (ja) 2007-01-15 2008-07-24 Konica Minolta Medical & Graphic Inc 磁性支持体上での加熱による核酸単離方法
US7844658B2 (en) 2007-01-22 2010-11-30 Comcast Cable Holdings, Llc System and method for providing an application to a device
US20080176768A1 (en) 2007-01-23 2008-07-24 Honeywell Honeywell International Hydrogel microarray with embedded metal nanoparticles
WO2008093098A2 (en) 2007-02-02 2008-08-07 Illumina Cambridge Limited Methods for indexing samples and sequencing multiple nucleotide templates
US8003312B2 (en) 2007-02-16 2011-08-23 The Board Of Trustees Of The Leland Stanford Junior University Multiplex cellular assays using detectable cell barcodes
FI20075124A0 (fi) 2007-02-21 2007-02-21 Valtion Teknillinen Menetelmä ja testikitti nukleotidivariaatioiden toteamiseksi
US9029085B2 (en) 2007-03-07 2015-05-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
US20080228268A1 (en) 2007-03-15 2008-09-18 Uluru, Inc. Method of Formation of Viscous, Shape Conforming Gels and Their Uses as Medical Prosthesis
US7776927B2 (en) 2007-03-28 2010-08-17 President And Fellows Of Harvard College Emulsions and techniques for formation
WO2008134153A1 (en) 2007-04-23 2008-11-06 Advanced Liquid Logic, Inc. Bead-based multiplexed analytical methods and instrumentation
CN101293191B (zh) 2007-04-25 2011-11-09 中国科学院过程工程研究所 一种琼脂糖凝胶微球的制备方法
WO2008135512A2 (en) 2007-05-02 2008-11-13 Jerzy Paszkowski Dna amplification method
CN101720359A (zh) 2007-06-01 2010-06-02 454生命科学公司 从多重混合物中识别个别样本的系统和方法
EP2162205A1 (en) 2007-06-05 2010-03-17 Eugenia Kumacheva Multiple continuous microfluidic reactors for the scaled up synthesis of gel or polymer particles
WO2009005680A1 (en) 2007-06-29 2009-01-08 President And Fellows Of Harvard College Methods and apparatus for manipulation of fluidic species
WO2009011808A1 (en) 2007-07-13 2009-01-22 President And Fellows Of Harvard College Droplet-based selection
WO2009015296A1 (en) 2007-07-24 2009-01-29 The Regents Of The University Of California Microfabricated dropley generator
US20130084243A1 (en) 2010-01-27 2013-04-04 Liliane Goetsch Igf-1r specific antibodies useful in the detection and diagnosis of cellular proliferative disorders
US8563527B2 (en) 2007-08-20 2013-10-22 Pharmain Corporation Oligonucleotide core carrier compositions for delivery of nucleic acid-containing therapeutic agents, methods of making and using the same
US8268564B2 (en) 2007-09-26 2012-09-18 President And Fellows Of Harvard College Methods and applications for stitched DNA barcodes
WO2009048532A2 (en) 2007-10-05 2009-04-16 President And Fellows Of Harvard College Formation of particles for ultrasound application, drug release, and other uses, and microfluidic methods of preparation
US20090099040A1 (en) 2007-10-15 2009-04-16 Sigma Aldrich Company Degenerate oligonucleotides and their uses
US20100086914A1 (en) 2008-10-03 2010-04-08 Roche Molecular Systems, Inc. High resolution, high throughput hla genotyping by clonal sequencing
US8334013B2 (en) 2007-11-02 2012-12-18 Stc.Unm Mesoporous metal oxide microspheres and method for forming same
WO2009061372A1 (en) 2007-11-02 2009-05-14 President And Fellows Of Harvard College Systems and methods for creating multi-phase entities, including particles and/or fluids
US8592150B2 (en) 2007-12-05 2013-11-26 Complete Genomics, Inc. Methods and compositions for long fragment read sequencing
CN101918590B (zh) 2007-12-10 2013-03-27 高晓莲 核酸测序
US7771944B2 (en) 2007-12-14 2010-08-10 The Board Of Trustees Of The University Of Illinois Methods for determining genetic haplotypes and DNA mapping
EP2235210B1 (en) 2007-12-21 2015-03-25 President and Fellows of Harvard College Methods for nucleic acid sequencing
EP3699291A1 (en) 2008-01-17 2020-08-26 Sequenom, Inc. Single molecule nucleic acid sequence analysis processes and compositions
EP2252625B1 (en) 2008-02-07 2017-12-20 Pacific Biosciences of California, Inc. Cis reactive oxygen quenchers integrated into linkers
JP5468271B2 (ja) 2008-02-08 2014-04-09 花王株式会社 微粒子分散液の製造方法
US20090203531A1 (en) 2008-02-12 2009-08-13 Nurith Kurn Method for Archiving and Clonal Expansion
US9011777B2 (en) 2008-03-21 2015-04-21 Lawrence Livermore National Security, Llc Monodisperse microdroplet generation and stopping without coalescence
US8961902B2 (en) 2008-04-23 2015-02-24 Bioscale, Inc. Method and apparatus for analyte processing
US9068181B2 (en) 2008-05-23 2015-06-30 The General Hospital Corporation Microfluidic droplet encapsulation
DE102008025656B4 (de) 2008-05-28 2016-07-28 Genxpro Gmbh Verfahren zur quantitativen Analyse von Nukleinsäuren, Marker dafür und deren Verwendung
GB0810051D0 (en) 2008-06-02 2008-07-09 Oxford Biodynamics Ltd Method of diagnosis
WO2009148598A1 (en) 2008-06-05 2009-12-10 President And Fellows Of Harvard College Polymersomes, colloidosomes, liposomes, and other species associated with fluidic droplets
US8198028B2 (en) 2008-07-02 2012-06-12 Illumina Cambridge Limited Using populations of beads for the fabrication of arrays on surfaces
US8388945B2 (en) 2008-07-11 2013-03-05 Eth Zurich Degradable microcapsules
WO2010009365A1 (en) 2008-07-18 2010-01-21 Raindance Technologies, Inc. Droplet libraries
US10722562B2 (en) 2008-07-23 2020-07-28 Immudex Aps Combinatorial analysis and repair
US20100062494A1 (en) 2008-08-08 2010-03-11 President And Fellows Of Harvard College Enzymatic oligonucleotide pre-adenylation
US8383345B2 (en) 2008-09-12 2013-02-26 University Of Washington Sequence tag directed subassembly of short sequencing reads into long sequencing reads
US20110218123A1 (en) 2008-09-19 2011-09-08 President And Fellows Of Harvard College Creation of libraries of droplets and related species
US9764322B2 (en) 2008-09-23 2017-09-19 Bio-Rad Laboratories, Inc. System for generating droplets with pressure monitoring
US9417190B2 (en) 2008-09-23 2016-08-16 Bio-Rad Laboratories, Inc. Calibrations and controls for droplet-based assays
US20120252015A1 (en) 2011-02-18 2012-10-04 Bio-Rad Laboratories Methods and compositions for detecting genetic material
US9156010B2 (en) 2008-09-23 2015-10-13 Bio-Rad Laboratories, Inc. Droplet-based assay system
US8709762B2 (en) 2010-03-02 2014-04-29 Bio-Rad Laboratories, Inc. System for hot-start amplification via a multiple emulsion
CA2735899A1 (en) 2008-09-25 2010-04-01 Cephalon, Inc. Liquid formulations of bendamustine
US8361299B2 (en) 2008-10-08 2013-01-29 Sage Science, Inc. Multichannel preparative electrophoresis system
US9080211B2 (en) 2008-10-24 2015-07-14 Epicentre Technologies Corporation Transposon end compositions and methods for modifying nucleic acids
DK2376517T3 (da) 2008-10-24 2013-02-11 Epict Technologies Corp Transposon-ende-sammensætninger og fremgangsmåder til at modificere nukleinsyrer
US20100113296A1 (en) 2008-11-05 2010-05-06 Joel Myerson Methods And Kits For Nucleic Acid Analysis
US8748103B2 (en) 2008-11-07 2014-06-10 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
SG171916A1 (en) 2008-12-02 2011-07-28 Bio Rad Laboratories Chromatin structure detection
EP3290531B1 (en) 2008-12-19 2019-07-24 President and Fellows of Harvard College Particle-assisted nucleic acid sequencing
KR101065807B1 (ko) 2009-01-23 2011-09-19 충남대학교산학협력단 액적 기반의 미세유체 칩을 이용한 마이크로 캡슐 제조방법
JP5457222B2 (ja) 2009-02-25 2014-04-02 エフ.ホフマン−ラ ロシュ アーゲー 小型化ハイスループット核酸分析
US9347092B2 (en) 2009-02-25 2016-05-24 Roche Molecular System, Inc. Solid support for high-throughput nucleic acid analysis
BRPI1008965B1 (pt) 2009-03-13 2018-12-18 Harvard College método para aumento de escala de dispositivos microfluídicos e sistema para a formação de gotículas em canais microfluídicos em paralelo
WO2010104604A1 (en) 2009-03-13 2010-09-16 President And Fellows Of Harvard College Method for the controlled creation of emulsions, including multiple emulsions
EP2230312A1 (en) 2009-03-19 2010-09-22 Helmholtz-Zentrum für Infektionsforschung GmbH Probe compound for detecting and isolating enzymes and means and methods using the same
WO2010111231A1 (en) 2009-03-23 2010-09-30 Raindance Technologies, Inc. Manipulation of microfluidic droplets
US20120010091A1 (en) 2009-03-30 2012-01-12 Illumina, Inc. Gene expression analysis in single cells
AU2010232439C1 (en) 2009-04-02 2017-07-13 Fluidigm Corporation Multi-primer amplification method for barcoding of target nucleic acids
US9085798B2 (en) 2009-04-30 2015-07-21 Prognosys Biosciences, Inc. Nucleic acid constructs and methods of use
US9334531B2 (en) 2010-12-17 2016-05-10 Life Technologies Corporation Nucleic acid amplification
FR2945545B1 (fr) 2009-05-14 2011-08-05 Univ Aix Marseille Ii Methode de detection d'adn procaryote extrait d'un echantillon de selles
FR2945819B1 (fr) 2009-05-19 2011-06-17 Commissariat Energie Atomique Dispositif et procede d'isolement de cibles biologiques ou chimiques
US8574835B2 (en) 2009-05-29 2013-11-05 Life Technologies Corporation Scaffolded nucleic acid polymer particles and methods of making and using
CA2765427A1 (en) 2009-06-15 2010-12-23 Complete Genomics, Inc. Methods and compositions for long fragment read sequencing
US9524369B2 (en) 2009-06-15 2016-12-20 Complete Genomics, Inc. Processing and analysis of complex nucleic acid sequence data
EP4019977A1 (en) 2009-06-26 2022-06-29 President and Fellows of Harvard College Fluid injection
US20110028412A1 (en) 2009-08-03 2011-02-03 Cappellos, Inc. Herbal enhanced analgesic formulations
US20110033548A1 (en) 2009-08-05 2011-02-10 E.I. Du Pont De Nemours And Company Degradable crosslinked aminated dextran microspheres and methods of use
WO2011021102A2 (en) 2009-08-20 2011-02-24 Population Genetics Technologies Ltd Compositions and methods for intramolecular nucleic acid rearrangement
BR112012004382A2 (pt) 2009-09-01 2016-03-22 Koninkl Philips Electronics Nv dispositivo para a seleção específica de moléculas-alvo, método para selecionar especificamente moléculas-alvo e uso de um dispositivo
JP5869482B2 (ja) 2009-09-02 2016-02-24 プレジデント アンド フェローズ オブ ハーバード カレッジ ジェッティングおよび他の技術を使用して生成された多重エマルジョン
EP2940153B1 (en) 2009-09-02 2020-05-13 Bio-Rad Laboratories, Inc. System for mixing fluids by coalescence of multiple emulsions
US9625454B2 (en) 2009-09-04 2017-04-18 The Research Foundation For The State University Of New York Rapid and continuous analyte processing in droplet microfluidic devices
GB0918564D0 (en) 2009-10-22 2009-12-09 Plasticell Ltd Nested cell encapsulation
EP3461558B1 (en) 2009-10-27 2021-03-17 President and Fellows of Harvard College Droplet creation techniques
WO2011056872A2 (en) 2009-11-03 2011-05-12 Gen9, Inc. Methods and microfluidic devices for the manipulation of droplets in high fidelity polynucleotide assembly
RU2573409C2 (ru) 2009-11-04 2016-01-20 Дзе Юниверсити Оф Бритиш Коламбиа Содержащие нуклеиновые кислоты липидные частицы и относящиеся к ним способы
CA2767028A1 (en) 2009-11-25 2011-06-03 Quantalife, Inc. Methods and compositions for detecting genetic material
EP2504448B1 (en) 2009-11-25 2016-10-19 Bio-Rad Laboratories, Inc. Methods and compositions for detecting genetic material
US9023769B2 (en) 2009-11-30 2015-05-05 Complete Genomics, Inc. cDNA library for nucleic acid sequencing
US8835358B2 (en) 2009-12-15 2014-09-16 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
WO2011074960A1 (en) 2009-12-17 2011-06-23 Keygene N.V. Restriction enzyme based whole genome sequencing
EP2517025B1 (en) 2009-12-23 2019-11-27 Bio-Rad Laboratories, Inc. Methods for reducing the exchange of molecules between droplets
JP5901046B2 (ja) 2010-02-19 2016-04-06 国立大学法人 千葉大学 OATP1B3mRNAの新規な選択的スプライシングバリアント
ES2565563T3 (es) 2010-02-25 2016-04-05 Advanced Liquid Logic, Inc. Método para preparar bibliotecas de ácidos nucleicos
US8236574B2 (en) 2010-03-01 2012-08-07 Quanterix Corporation Ultra-sensitive detection of molecules or particles using beads or other capture objects
CA2767182C (en) 2010-03-25 2020-03-24 Bio-Rad Laboratories, Inc. Droplet generation for droplet-based assays
PT2556171E (pt) 2010-04-05 2015-12-21 Prognosys Biosciences Inc Ensaios biológicos codificados espacialmente
US9255291B2 (en) 2010-05-06 2016-02-09 Bioo Scientific Corporation Oligonucleotide ligation methods for improving data quality and throughput using massively parallel sequencing
US20120000777A1 (en) 2010-06-04 2012-01-05 The Regents Of The University Of California Devices and methods for forming double emulsion droplet compositions and polymer particles
EP2580378A4 (en) 2010-06-08 2014-01-01 Nugen Technologies Inc MULTIPLEX SEQUENCING METHODS AND COMPOSITION
US8703493B2 (en) 2010-06-15 2014-04-22 Src, Inc. Location analysis using fire retardant-protected nucleic acid-labeled tags
US20120003657A1 (en) 2010-07-02 2012-01-05 Samuel Myllykangas Targeted sequencing library preparation by genomic dna circularization
WO2012012037A1 (en) 2010-07-19 2012-01-26 New England Biolabs, Inc. Oligonucleotide adaptors: compositions and methods of use
CN103202812B (zh) 2010-08-09 2015-10-28 南京大学 一种制备用于体内递送药理活性物质的蛋白纳米粒的方法
CN103328007B (zh) 2010-09-16 2016-09-21 北卡罗来纳州大学查珀尔希尔分校 作为药物试剂、化学试剂和生物试剂的递送载剂和前药的不对称双官能甲硅烷基单体及其颗粒
ES2595433T3 (es) 2010-09-21 2016-12-30 Population Genetics Technologies Ltd. Aumento de la confianza en las identificaciones de alelos con el recuento molecular
US9187783B2 (en) 2010-10-04 2015-11-17 Genapsys, Inc. Systems and methods for automated reusable parallel biological reactions
US9999886B2 (en) 2010-10-07 2018-06-19 The Regents Of The University Of California Methods and systems for on demand droplet generation and impedance based detection
US10392726B2 (en) 2010-10-08 2019-08-27 President And Fellows Of Harvard College High-throughput immune sequencing
CA2814049C (en) 2010-10-08 2021-07-13 President And Fellows Of Harvard College High-throughput single cell barcoding
US20130225623A1 (en) 2010-10-27 2013-08-29 Mount Sinai School Of Medicine Methods of Treating Psychiatric or Neurological Disorders with MGLUR Antagonists
EP2635840B1 (en) 2010-11-01 2017-01-04 Bio-Rad Laboratories, Inc. System for forming emulsions
US9074251B2 (en) 2011-02-10 2015-07-07 Illumina, Inc. Linking sequence reads using paired code tags
EP2635679B1 (en) 2010-11-05 2017-04-19 Illumina, Inc. Linking sequence reads using paired code tags
US8829171B2 (en) 2011-02-10 2014-09-09 Illumina, Inc. Linking sequence reads using paired code tags
EP2652155B1 (en) 2010-12-16 2016-11-16 Gigagen, Inc. Methods for massively parallel analysis of nucleic acids in single cells
US9163281B2 (en) 2010-12-23 2015-10-20 Good Start Genetics, Inc. Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction
CN103384725A (zh) 2010-12-23 2013-11-06 塞昆纳姆股份有限公司 胎儿遗传变异的检测
US8765455B2 (en) 2011-01-27 2014-07-01 Lawrence Livermore National Security, Llc Chip-based droplet sorting
GB201101429D0 (en) 2011-01-27 2011-03-16 Biocompatibles Uk Ltd Drug delivery system
AU2012211081B2 (en) 2011-01-28 2016-02-04 Illumina, Inc. Oligonucleotide replacement for di-tagged and directional libraries
WO2016100976A2 (en) 2014-12-19 2016-06-23 Apprise Bio, Inc. Methods for identifying multiple epitopes in selected sub-populations of cells
US10144950B2 (en) 2011-01-31 2018-12-04 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US20120196755A1 (en) * 2011-02-01 2012-08-02 University Of Washington Through Its Center For Commercializtion Compositions and methods for genome-wide mapping of chromosome breakage and other methods for manipulation of cells embedded in matrix
WO2012106546A2 (en) 2011-02-02 2012-08-09 University Of Washington Through Its Center For Commercialization Massively parallel continguity mapping
EP2673382B1 (en) 2011-02-11 2020-05-06 Bio-Rad Laboratories, Inc. Thermocycling device for nucleic acid amplification and methods of use
EP2673614B1 (en) 2011-02-11 2018-08-01 Raindance Technologies, Inc. Method for forming mixed droplets
EP2675819B1 (en) 2011-02-18 2020-04-08 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
JP2014507164A (ja) 2011-02-25 2014-03-27 イルミナ,インコーポレイテッド ハプロタイプ決定のための方法およびシステム
WO2012129363A2 (en) 2011-03-24 2012-09-27 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
US20140141442A1 (en) 2011-04-05 2014-05-22 Institut National De La Sante Et De La Recherche Medicale (Inserm) Linear dna amplification
GB2489714B (en) 2011-04-05 2013-11-06 Tracesa Ltd Fluid Identification Method
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
CN107368705B (zh) 2011-04-14 2021-07-13 完整基因有限公司 分析生物体的基因组dna的方法和计算机系统
EP2702175B1 (en) 2011-04-25 2018-08-08 Bio-Rad Laboratories, Inc. Methods and compositions for nucleic acid analysis
SI2702146T1 (sl) 2011-04-28 2019-06-28 The Board Of Trustees Of The Leland Stanford Junior University Identifikacija polinukleotidov, povezanih z vzorcem
CN106912197B (zh) 2011-04-28 2022-01-25 生命技术公司 用于多重pcr的方法和组合物
WO2012157684A1 (ja) 2011-05-16 2012-11-22 地方独立行政法人 大阪府立病院機構 血中dnaの定量的検出による悪性新生物の病勢の進行を評価する方法
US9005935B2 (en) 2011-05-23 2015-04-14 Agilent Technologies, Inc. Methods and compositions for DNA fragmentation and tagging by transposases
KR20140034242A (ko) 2011-05-23 2014-03-19 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 다중 에멀젼을 포함하는 에멀젼의 제어
EP2714938B1 (en) 2011-05-27 2017-11-15 President and Fellows of Harvard College Methods of amplifying whole genome of a single cell
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
DE202012013668U1 (de) 2011-06-02 2019-04-18 Raindance Technologies, Inc. Enzymquantifizierung
US9150916B2 (en) 2011-06-24 2015-10-06 Beat Christen Compositions and methods for identifying the essential genome of an organism
US8927218B2 (en) 2011-06-27 2015-01-06 Flir Systems, Inc. Methods and compositions for segregating target nucleic acid from mixed nucleic acid samples
US8975302B2 (en) 2011-07-07 2015-03-10 Life Technologies Corporation Polymer particles, nucleic acid polymer particles and methods of making and using the same
US20130017978A1 (en) 2011-07-11 2013-01-17 Finnzymes Oy Methods and transposon nucleic acids for generating a dna library
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
US9605304B2 (en) 2011-07-20 2017-03-28 The Hong Kong Polytechnic University Ultra-stable oligonucleotide-gold and-silver nanoparticle conjugates and method of their preparation
US20130189700A1 (en) 2011-07-25 2013-07-25 Bio-Rad Laboratories, Inc. Breakage of an emulsion containing nucleic acid
EP2737089B1 (en) 2011-07-29 2017-09-06 Bio-rad Laboratories, Inc. Library characterization by digital assay
EP2739394A2 (en) 2011-08-04 2014-06-11 Sage Science, Inc. Microfluidic systems and methods for processing fluids
US9725765B2 (en) 2011-09-09 2017-08-08 The Board Of Trustees Of The Leland Stanford Junior University Methods for obtaining a sequence
LT2768607T (lt) 2011-09-26 2021-12-27 Thermo Fisher Scientific Geneart Gmbh Daugiašulininė plokštelė didelio efektyvumo, mažo tūrio nukleorūgščių sintezei atlikti
CN106423314B (zh) 2011-09-28 2021-03-02 哈佛学院院长等 用于液滴产生和/或流体操纵的系统和方法
US9514272B2 (en) 2011-10-12 2016-12-06 Complete Genomics, Inc. Identification of DNA fragments and structural variations
US9469874B2 (en) 2011-10-18 2016-10-18 The Regents Of The University Of California Long-range barcode labeling-sequencing
US20130109576A1 (en) 2011-10-28 2013-05-02 Anthony P. Shuber Methods for detecting mutations
US9385791B2 (en) 2011-11-04 2016-07-05 Intel Corporation Signaling for configuration of downlink coordinated multipoint communications
EP2786019B1 (en) 2011-11-16 2018-07-25 International Business Machines Corporation Microfluidic device with deformable valve
US10689643B2 (en) 2011-11-22 2020-06-23 Active Motif, Inc. Targeted transposition for use in epigenetic studies
US9938524B2 (en) 2011-11-22 2018-04-10 Active Motif, Inc. Multiplex isolation of protein-associated nucleic acids
EP4108782B1 (en) 2011-12-22 2023-06-07 President and Fellows of Harvard College Compositions and methods for analyte detection
US20150125865A1 (en) 2011-12-23 2015-05-07 Gigagen, Inc. Methods And Apparatuses For Droplet Mixing
CN106883334B (zh) 2012-02-09 2019-06-18 生命技术公司 亲水性聚合物颗粒及其制备方法
WO2013122996A1 (en) 2012-02-14 2013-08-22 The Johns Hopkins University Mirna analysis methods
EP2814472A4 (en) 2012-02-15 2015-11-04 Wisconsin Alumni Res Found DITHIOAMINE REDUCING AGENTS
US10202628B2 (en) 2012-02-17 2019-02-12 President And Fellows Of Harvard College Assembly of nucleic acid sequences in emulsions
EP2817418B1 (en) 2012-02-24 2017-10-11 Raindance Technologies, Inc. Labeling and sample preparation for sequencing
EP3305918B1 (en) 2012-03-05 2020-06-03 President and Fellows of Harvard College Methods for epigenetic sequencing
NO2694769T3 (zh) 2012-03-06 2018-03-03
EP2647426A1 (en) 2012-04-03 2013-10-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Replication of distributed nucleic acid molecules with preservation of their relative distribution through hybridization-based binding
CA2870160C (en) 2012-04-16 2021-08-24 Biological Dynamics, Inc. Nucleic acid sample preparation
US20130296173A1 (en) 2012-04-23 2013-11-07 Complete Genomics, Inc. Pre-anchor wash
WO2013177046A1 (en) 2012-05-21 2013-11-28 Solulink, Inc. Methods and/or use of oligonucleotide conjugates for suppressing background due to cross-hybridization
EP3514243B1 (en) 2012-05-21 2022-08-17 The Scripps Research Institute Methods of sample preparation
JP6558830B2 (ja) 2012-06-15 2019-08-14 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 複数転写産物のハイスループットシークエンシング
JP2015523087A (ja) 2012-07-24 2015-08-13 シーケンタ インコーポレイテッド 配列タグを用いる単一細胞分析
WO2014026032A2 (en) 2012-08-08 2014-02-13 Apprise Bio, Inc. Increasing dynamic range for identifying multiple epitopes in cells
EP4001426A1 (en) 2012-08-13 2022-05-25 The Regents of The University of California Methods and systems for detecting biological components
US20150376609A1 (en) 2014-06-26 2015-12-31 10X Genomics, Inc. Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20140378345A1 (en) 2012-08-14 2014-12-25 10X Technologies, Inc. Compositions and methods for sample processing
US20150005200A1 (en) 2012-08-14 2015-01-01 10X Technologies, Inc. Compositions and methods for sample processing
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20150005199A1 (en) 2012-08-14 2015-01-01 10X Technologies, Inc. Compositions and methods for sample processing
US20140378349A1 (en) 2012-08-14 2014-12-25 10X Technologies, Inc. Compositions and methods for sample processing
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20140378322A1 (en) 2012-08-14 2014-12-25 10X Technologies, Inc. Compositions and methods for sample processing
MX364957B (es) 2012-08-14 2019-05-15 10X Genomics Inc Composiciones y metodos para microcapsulas.
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
EP2898096B1 (en) 2012-09-21 2024-02-14 The Broad Institute, Inc. Methods for labeling of rnas
US9644199B2 (en) 2012-10-01 2017-05-09 Agilent Technologies, Inc. Immobilized transposase complexes for DNA fragmentation and tagging
GB201217772D0 (en) 2012-10-04 2012-11-14 Base4 Innovation Ltd Sequencing method
CN107541546B (zh) 2012-10-15 2021-06-15 生命技术公司 用于标靶核酸富集的组合物、方法、系统和试剂盒
CA2886974C (en) 2012-10-17 2021-06-29 Spatial Transcriptomics Ab Methods and product for optimising localised or spatial detection of gene expression in a tissue sample
CA2889862C (en) 2012-11-05 2021-02-16 Rubicon Genomics, Inc. Barcoding nucleic acids
WO2014072703A1 (en) 2012-11-06 2014-05-15 Oxford Nanopore Technologies Limited Quadruplex method
WO2014074611A1 (en) 2012-11-07 2014-05-15 Good Start Genetics, Inc. Methods and systems for identifying contamination in samples
CN105026576A (zh) 2012-12-03 2015-11-04 以琳生物药物有限公司 单链多核苷酸扩增方法
US20140242664A1 (en) 2012-12-12 2014-08-28 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
CA2894694C (en) 2012-12-14 2023-04-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP2752664A1 (en) 2013-01-07 2014-07-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Label-free method for the detection of analytes
US9683230B2 (en) 2013-01-09 2017-06-20 Illumina Cambridge Limited Sample preparation on a solid support
EP3473905B1 (en) 2013-01-25 2020-07-29 Bio-rad Laboratories, Inc. System and method for performing droplet inflation
US11110458B2 (en) 2013-02-01 2021-09-07 Bio-Rad Laboratories, Inc. System for detection of spaced droplets
CA2900481A1 (en) 2013-02-08 2014-08-14 10X Genomics, Inc. Polynucleotide barcode generation
CN105050718B (zh) 2013-03-06 2018-04-24 哈佛学院院长及董事 形成相对单分散液滴的装置和方法
WO2014138711A1 (en) 2013-03-08 2014-09-12 Bio-Rad Laboratories, Inc. Compositions, methods and systems for polymerase chain reaction assays
DK3553175T3 (da) 2013-03-13 2021-08-23 Illumina Inc Fremgangsmåde til fremstilling af et nukleinsyresekvenseringsbibliotek
WO2014152155A1 (en) 2013-03-14 2014-09-25 The Broad Institute, Inc. Massively multiplexed rna sequencing
US9273349B2 (en) 2013-03-14 2016-03-01 Affymetrix, Inc. Detection of nucleic acids
US20140272996A1 (en) 2013-03-15 2014-09-18 Bio-Rad Laboratories, Inc. Droplet generator with collection tube
US20140274729A1 (en) 2013-03-15 2014-09-18 Nugen Technologies, Inc. Methods, compositions and kits for generation of stranded rna or dna libraries
CA2907050C (en) 2013-03-15 2023-09-26 Prognosys Biosciences, Inc. Methods for detecting peptide/mhc/tcr binding
EP2971080B1 (en) 2013-03-15 2018-01-03 Expedeon, S.L. Methods for amplification and sequencing using thermostable tthprimpol
GB2525568B (en) 2013-03-15 2020-10-14 Abvitro Llc Single cell barcoding for antibody discovery
AU2014233373B2 (en) 2013-03-15 2019-10-24 Verinata Health, Inc. Generating cell-free DNA libraries directly from blood
US9328382B2 (en) 2013-03-15 2016-05-03 Complete Genomics, Inc. Multiple tagging of individual long DNA fragments
EP2981349A4 (en) 2013-04-02 2016-11-16 Raindance Technologies Inc SYSTEMS AND METHODS FOR HANDLING MICROFLUIDIC DROPLETS
CN105431575B (zh) 2013-05-09 2017-08-29 生物辐射实验室股份有限公司 磁性免疫数字pcr试验
AU2014268710B2 (en) 2013-05-23 2018-10-18 The Board Of Trustees Of The Leland Stanford Junior University Transposition into native chromatin for personal epigenomics
CA2915033C (en) 2013-06-12 2023-08-29 The General Hospital Corporation Methods, kits, and systems for multiplexed detection of target molecules and uses thereof
WO2014201273A1 (en) 2013-06-12 2014-12-18 The Broad Institute, Inc. High-throughput rna-seq
BR112015031608A2 (pt) * 2013-06-17 2017-08-22 Massachusetts Inst Technology Aplicação e uso dos sistemas crispr-cas, vetores e composições para direcionamento e terapia hepáticos
US20160208323A1 (en) 2013-06-21 2016-07-21 The Broad Institute, Inc. Methods for Shearing and Tagging DNA for Chromatin Immunoprecipitation and Sequencing
WO2014210223A1 (en) 2013-06-25 2014-12-31 Prognosys Biosciences, Inc. Spatially encoded biological assays using a microfluidic device
US9840718B2 (en) 2013-07-12 2017-12-12 University Of South Alabama Minimal piggyBac vectors for genome integration
CN103394410B (zh) 2013-07-25 2016-04-20 博奥生物集团有限公司 一种位置可调节的智能磁力架
GB2516684A (en) 2013-07-30 2015-02-04 Sphere Fluidics Ltd Microfluidic devices and systems
SG10201806890VA (en) 2013-08-28 2018-09-27 Cellular Res Inc Massively parallel single cell analysis
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
CN105764490B (zh) 2013-09-24 2020-10-09 加利福尼亚大学董事会 用于生物测定和诊断的胶囊封装的传感器和感测系统及其制造和使用方法
GB201317301D0 (en) 2013-09-30 2013-11-13 Linnarsson Sten Method for capturing and encoding nucleic acid from a plurality of single cells
US10266904B2 (en) 2013-10-09 2019-04-23 Stc.Unm Synthetic long read DNA sequencing
WO2015065924A2 (en) 2013-10-28 2015-05-07 Massachusetts Institute Of Technology Hydrogel microstructures with immiscible fluid isolation for small reaction volumes
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
US20140315755A1 (en) 2013-12-26 2014-10-23 Tao Chen Genome-wide Antisense Oligonucleotide and RNAi
ES2912183T3 (es) 2013-12-30 2022-05-24 Atreca Inc Análisis de ácidos nucleicos asociados a células individuales utilizando códigos de barras de ácidos nucleicos
KR101464100B1 (ko) 2014-01-29 2014-11-21 성균관대학교산학협력단 생체 적용 가능한 리포솜-핵산형광 나노 융합체, 이의 응용, 및 이의 제조방법
WO2015113725A1 (en) 2014-02-03 2015-08-06 Thermo Fisher Scientific Baltics Uab Method for controlled dna fragmentation
CN105531408B (zh) 2014-02-13 2019-09-10 生物辐射实验室股份有限公司 染色体构象划分产物捕获
WO2015131110A1 (en) 2014-02-27 2015-09-03 Igenomx International Genomics Corporation Methods for analysis of somatic mobile elements, and uses thereof
AU2015243445B2 (en) 2014-04-10 2020-05-28 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
TWI682997B (zh) 2014-04-15 2020-01-21 美商伊路米納有限公司 用於改善插入序列傾向及增加dna輸入耐受度之經修飾的轉位酶
US20150298091A1 (en) 2014-04-21 2015-10-22 President And Fellows Of Harvard College Systems and methods for barcoding nucleic acids
US10975371B2 (en) 2014-04-29 2021-04-13 Illumina, Inc. Nucleic acid sequence analysis from single cells
WO2015179706A1 (en) 2014-05-23 2015-11-26 Fluidigm Corporation Haploidome determination by digitized transposons
AU2015271324B2 (en) 2014-06-06 2019-09-12 Herlev Hospital Determining antigen recognition through barcoding of MHC multimers
US9534215B2 (en) 2014-06-11 2017-01-03 Life Technologies Corporation Systems and methods for substrate enrichment
AU2015273480A1 (en) 2014-06-11 2016-12-08 Samplix S.A.R.L. Nucleotide sequence exclusion enrichment by droplet sorting (needls)
US11585806B2 (en) 2014-06-13 2023-02-21 Immudex Aps General detection and isolation of specific cells by binding of labeled molecules
US10480021B2 (en) 2014-06-23 2019-11-19 Yale University Methods for closed chromatin mapping and DNA methylation analysis for single cells
US20150376700A1 (en) 2014-06-26 2015-12-31 10X Genomics, Inc. Analysis of nucleic acid sequences
JP2017526046A (ja) 2014-06-26 2017-09-07 10エックス ゲノミクス,インコーポレイテッド 核酸配列アセンブルのプロセス及びシステム
US20150376605A1 (en) 2014-06-26 2015-12-31 10X Genomics, Inc. Methods and Compositions for Sample Analysis
US10017759B2 (en) 2014-06-26 2018-07-10 Illumina, Inc. Library preparation of tagged nucleic acid
DK3656875T3 (da) 2014-07-18 2021-12-13 Illumina Inc Ikke-invasiv prænatal diagnostik
US20160024558A1 (en) 2014-07-23 2016-01-28 10X Genomics, Inc. Nucleic acid binding proteins and uses thereof
EP3186418A2 (en) 2014-08-26 2017-07-05 Nugen Technologies, Inc. Compositions and methods for targeted nucleic acid sequence enrichment and high efficiency library generation
EP3191605B1 (en) 2014-09-09 2022-07-27 The Broad Institute, Inc. A droplet-based method and apparatus for composite single-cell nucleic acid analysis
AU2015318011B2 (en) 2014-09-15 2020-07-23 Abvitro Llc High-throughput nucleotide library sequencing
IL299976A (en) 2014-10-17 2023-03-01 Illumina Cambridge Ltd Continuity-preserving transposition
US20160122817A1 (en) 2014-10-29 2016-05-05 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
SG11201705615UA (en) 2015-01-12 2017-08-30 10X Genomics Inc Processes and systems for preparing nucleic acid sequencing libraries and libraries prepared using same
KR20170106979A (ko) 2015-01-13 2017-09-22 10엑스 제노믹스, 인크. 구조 변이 및 위상 조정 정보를 시각화하기 위한 시스템 및 방법
CN115011670A (zh) 2015-02-04 2022-09-06 加利福尼亚大学董事会 通过在离散实体中条形码化对核酸进行测序
US10854315B2 (en) 2015-02-09 2020-12-01 10X Genomics, Inc. Systems and methods for determining structural variation and phasing using variant call data
DK3256604T3 (da) 2015-02-10 2020-05-25 Illumina Inc Fremgangsmåder og sammensætninger til analyse af cellebestanddele
EP3262188B1 (en) 2015-02-24 2021-05-05 10X Genomics, Inc. Methods for targeted nucleic acid sequence coverage
EP3262407B1 (en) 2015-02-24 2023-08-30 10X Genomics, Inc. Partition processing methods and systems
US9727810B2 (en) 2015-02-27 2017-08-08 Cellular Research, Inc. Spatially addressable molecular barcoding
WO2016149661A1 (en) 2015-03-18 2016-09-22 The Broad Institute, Inc. Massively parallel on-chip coalescence of microemulsions
EP3277838A1 (en) 2015-03-30 2018-02-07 Verily Life Sciences LLC Methods for combining single cell profiling with combinatorial nanoparticle conjugate library screening
CN107532207B (zh) 2015-04-10 2021-05-07 空间转录公司 生物样本的空间区别、多重核酸分析
JP2018511341A (ja) 2015-04-17 2018-04-26 プレジデント アンド フェローズ オブ ハーバード カレッジ 遺伝子配列決定および他の適用のためのバーコード化システムおよび方法
WO2016169431A1 (zh) 2015-04-20 2016-10-27 深圳华大基因研究院 一种长片段dna文库构建方法
US20160314242A1 (en) 2015-04-23 2016-10-27 10X Genomics, Inc. Sample indexing methods and compositions for sequencing applications
WO2016176322A1 (en) 2015-04-27 2016-11-03 Abvitro Llc Methods of sequencing, determining, pairing, and validating therapeutic agents and disease specific antigens
CN107580627A (zh) 2015-05-18 2018-01-12 10X基因组学有限公司 用于生物化学反应和分析中的流动固相组合物
CN107532218A (zh) 2015-05-18 2018-01-02 10X基因组学有限公司 稳定化还原剂及其使用方法
WO2016187717A1 (en) 2015-05-26 2016-12-01 Exerkine Corporation Exosomes useful for genome editing
WO2016191618A1 (en) 2015-05-27 2016-12-01 Jianbiao Zheng Methods of inserting molecular barcodes
EP3314015A1 (en) 2015-06-24 2018-05-02 Oxford Biodynamics Limited Detection of chromosome interactions
JP2018527947A (ja) 2015-07-17 2018-09-27 プレジデント アンド フェローズ オブ ハーバード カレッジ 核酸配列増幅方法
PT3334841T (pt) 2015-08-12 2020-01-30 Cemm Forschungszentrum Fuer Molekulare Medizin Gmbh Métodos para estudar ácidos nucleicos
US11479805B2 (en) 2015-08-21 2022-10-25 The General Hospital Corporation Combinatorial single molecule analysis of chromatin
US20180274021A1 (en) 2015-09-24 2018-09-27 Abvitro Llc Single amplicon activated exclusion pcr
US11156611B2 (en) 2015-09-24 2021-10-26 Abvitro Llc Single cell characterization using affinity-oligonucleotide conjugates and vessel barcoded polynucleotides
EP3353550A1 (en) 2015-09-25 2018-08-01 AbVitro LLC High throughput process for t cell receptor target identification of natively-paired t cell receptor sequences
US10900031B2 (en) 2015-10-19 2021-01-26 Zhejiang Annoroad Bio-Technology Co. Ltd. Method for constructing high-resolution single cell Hi-C library with a lot of information
WO2017070056A1 (en) 2015-10-20 2017-04-27 10X Genomics, Inc. Methods and systems for high throughput single cell genetic manipulation
WO2017075265A1 (en) * 2015-10-28 2017-05-04 The Broad Institute, Inc. Multiplex analysis of single cell constituents
WO2017075294A1 (en) 2015-10-28 2017-05-04 The Board Institute Inc. Assays for massively combinatorial perturbation profiling and cellular circuit reconstruction
KR20180097536A (ko) 2015-11-04 2018-08-31 아트레카, 인크. 단일 세포와 연관된 핵산의 분석을 위한 핵산 바코드의 조합 세트
WO2017087910A1 (en) 2015-11-19 2017-05-26 10X Genomics, Inc. Transformable tagging compositions, methods, and processes incorporating same
SG11201804086VA (en) 2015-12-04 2018-06-28 10X Genomics Inc Methods and compositions for nucleic acid analysis
US11965891B2 (en) 2015-12-30 2024-04-23 Bio-Rad Laboratories, Inc. Digital protein quantification
SG11201806757XA (en) 2016-02-11 2018-09-27 10X Genomics Inc Systems, methods, and media for de novo assembly of whole genome sequence data
US20170260584A1 (en) 2016-02-11 2017-09-14 10X Genomics, Inc. Cell population analysis using single nucleotide polymorphisms from single cell transcriptomes
WO2017151828A1 (en) 2016-03-01 2017-09-08 Universal Sequencing Technology Corporation Methods and kits for tracking nucleic acid target origin for nucleic acid sequencing
US11680253B2 (en) 2016-03-10 2023-06-20 The Board Of Trustees Of The Leland Stanford Junior University Transposase-mediated imaging of the accessible genome
WO2017180420A1 (en) 2016-04-11 2017-10-19 Board Of Regents, The University Of Texas System Methods and compositions for detecting single t cell receptor affinity and sequence
DK3452591T3 (da) 2016-05-02 2023-09-18 Encodia Inc Makromolekyleanalyse under anvendelse af nukleinsyrekodning
WO2017197343A2 (en) 2016-05-12 2017-11-16 10X Genomics, Inc. Microfluidic on-chip filters
WO2017197338A1 (en) 2016-05-13 2017-11-16 10X Genomics, Inc. Microfluidic systems and methods of use
WO2018031631A1 (en) 2016-08-10 2018-02-15 President And Fellows Of Harvard College Methods of de novo assembly of barcoded genomic dna fragments
WO2018039338A1 (en) 2016-08-23 2018-03-01 10X Genomics, Inc. Microfluidic surface-mediated emulsion stability control
US10858699B2 (en) 2016-08-30 2020-12-08 Integrated Dna Technologies, Inc. Cleavable hairpin primers
CN109923216A (zh) 2016-08-31 2019-06-21 哈佛学院董事及会员团体 将生物分子的检测组合到使用荧光原位测序的单个试验的方法
EP3507379A4 (en) 2016-08-31 2020-05-13 President and Fellows of Harvard College METHOD FOR DIGITAL TOTAL GENOM AMPLIFICATION
US20180080021A1 (en) 2016-09-17 2018-03-22 The Board Of Trustees Of The Leland Stanford Junior University Simultaneous sequencing of rna and dna from the same sample
WO2018058073A2 (en) 2016-09-26 2018-03-29 Cellular Research, Inc. Measurement of protein expression using reagents with barcoded oligonucleotide sequences
CN110114520B (zh) 2016-10-01 2023-08-08 伯克利之光生命科技公司 Dna条形码组合物和在微流体装置中原位识别的方法
EP4026905B1 (en) 2016-10-19 2024-04-17 10X Genomics, Inc. Methods for barcoding nucleic acid molecules from individual cells or cell populations
GB201619458D0 (en) 2016-11-17 2017-01-04 Spatial Transcriptomics Ab Method for spatial tagging and analysing nucleic acids in a biological specimen
CN109996892B (zh) 2016-12-07 2023-08-29 深圳华大智造科技股份有限公司 单细胞测序文库的构建方法及其应用
CN110139932A (zh) 2016-12-19 2019-08-16 生物辐射实验室股份有限公司 液滴加标的相邻性保留的标签化dna
EP3571308A4 (en) * 2016-12-21 2020-08-19 The Regents of The University of California GENOMIC SEQUENCING OF SINGLE CELLS USING HYDROGEL-BASED DROPS
US20190177800A1 (en) 2017-12-08 2019-06-13 10X Genomics, Inc. Methods and compositions for labeling cells
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
CA3048863A1 (en) 2016-12-29 2018-07-05 Illumina, Inc. Analysis system for orthogonal access to and tagging of biomolecules in cellular compartments
JP7229923B2 (ja) 2017-01-06 2023-02-28 エディタス・メディシン、インコーポレイテッド ヌクレアーゼ切断を評価する方法
US20210087610A9 (en) 2017-01-12 2021-03-25 Massachusetts Institute Of Technology Methods for analyzing t cell receptors and b cell receptors
EP4029939B1 (en) 2017-01-30 2023-06-28 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
US10347365B2 (en) 2017-02-08 2019-07-09 10X Genomics, Inc. Systems and methods for visualizing a pattern in a dataset
EP4218738A1 (en) * 2017-02-24 2023-08-02 The Regents of The University of California Particle-drop structures and methods for making and using the same
GB201704402D0 (en) * 2017-03-20 2017-05-03 Blacktrace Holdings Ltd Single cell DNA sequencing
KR20190133711A (ko) 2017-03-24 2019-12-03 싱가포르국립대학교 분자의 다중 검출 방법
WO2018191563A1 (en) 2017-04-12 2018-10-18 Karius, Inc. Sample preparation methods, systems and compositions
US20210139941A1 (en) 2017-04-14 2021-05-13 The Broad Institute, Inc. High-throughput screens for exploring biological functions of microscale biological systems
US20180312822A1 (en) 2017-04-26 2018-11-01 10X Genomics, Inc. Mmlv reverse transcriptase variants
US10544413B2 (en) 2017-05-18 2020-01-28 10X Genomics, Inc. Methods and systems for sorting droplets and beads
CN117143960A (zh) 2017-05-18 2023-12-01 10X基因组学有限公司 用于分选液滴和珠的方法和系统
EP3625715A4 (en) 2017-05-19 2021-03-17 10X Genomics, Inc. DATA SET ANALYSIS SYSTEMS AND METHODS
US10914729B2 (en) 2017-05-22 2021-02-09 The Trustees Of Princeton University Methods for detecting protein binding sequences and tagging nucleic acids
US10400235B2 (en) 2017-05-26 2019-09-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
WO2018226546A1 (en) 2017-06-05 2018-12-13 10X Genomics, Inc. Gaskets for the distribution of pressures in a microfluidic system
EP3642397A4 (en) 2017-06-20 2021-03-31 10X Genomics, Inc. IMPROVED DROPLET STABILIZATION METHODS AND SYSTEMS
CN108336542B (zh) 2017-06-23 2020-02-21 番禺得意精密电子工业有限公司 电连接器
KR102307473B1 (ko) 2017-08-01 2021-10-01 일루미나, 인코포레이티드 뉴클레오타이드 서열분석용 하이드로겔 비드
US9946577B1 (en) 2017-08-14 2018-04-17 10X Genomics, Inc. Systems and methods for distributed resource management
US10357771B2 (en) 2017-08-22 2019-07-23 10X Genomics, Inc. Method of producing emulsions
US10590244B2 (en) 2017-10-04 2020-03-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
WO2019084043A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. METHODS AND SYSTEMS FOR NUCLEIC ACID PREPARATION AND CHROMATIN ANALYSIS
US20190127731A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Methods for preparing nucleic acid molecules
WO2019083852A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. MICROFLUIDIC CHANNEL NETWORKS FOR PARTITIONING
WO2019084328A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. METHODS FOR PREPARING NUCLEIC ACID MOLECULES
EP3700672B1 (en) 2017-10-27 2022-12-28 10X Genomics, Inc. Methods for sample preparation and analysis
SG11201913654QA (en) 2017-11-15 2020-01-30 10X Genomics Inc Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
WO2019108851A1 (en) 2017-11-30 2019-06-06 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
WO2019113235A1 (en) 2017-12-06 2019-06-13 10X Genomics, Inc. Methods and systems for processing nucleic acid molecules
WO2019118355A1 (en) 2017-12-12 2019-06-20 10X Genomics, Inc. Systems and methods for single cell processing
CN111712579A (zh) 2017-12-22 2020-09-25 10X基因组学有限公司 用于处理来自一个或多个细胞的核酸分子的系统和方法
WO2019148042A1 (en) 2018-01-26 2019-08-01 10X Genomics, Inc. Compositions and methods for sample processing
EP3749740B1 (en) 2018-02-05 2023-08-30 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for multiplexed measurements in single and ensemble cells
WO2019157529A1 (en) 2018-02-12 2019-08-15 10X Genomics, Inc. Methods characterizing multiple analytes from individual cells or cell populations
SG11202008080RA (en) 2018-02-22 2020-09-29 10X Genomics Inc Ligation mediated analysis of nucleic acids
WO2019169028A1 (en) 2018-02-28 2019-09-06 10X Genomics, Inc. Transcriptome sequencing through random ligation
WO2019169347A1 (en) 2018-03-02 2019-09-06 10X Genomics, Inc. Systems and apparatus for holding plates
WO2019191321A1 (en) 2018-03-28 2019-10-03 10X Genomics, Inc. Nucleic acid enrichment within partitions
SG11202009889VA (en) 2018-04-06 2020-11-27 10X Genomics Inc Systems and methods for quality control in single cell processing
WO2019217758A1 (en) 2018-05-10 2019-11-14 10X Genomics, Inc. Methods and systems for molecular library generation
US20190345636A1 (en) 2018-05-10 2019-11-14 10X Genomics, Inc. Methods and systems for molecular library generation
US20190352717A1 (en) 2018-05-18 2019-11-21 10X Genomics, Inc. Targeted non-invasive prenatal testing
US11932899B2 (en) 2018-06-07 2024-03-19 10X Genomics, Inc. Methods and systems for characterizing nucleic acid molecules
US11703427B2 (en) 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
US11574706B2 (en) 2018-06-28 2023-02-07 10X Genomics, Inc. Systems and methods for visualization of single-cell resolution characteristics
US20200032335A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
US20200033366A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
US20200263232A1 (en) 2018-08-03 2020-08-20 10X Genomics, Inc. Methods and systems to minimize barcode exchange
US20200056223A1 (en) 2018-08-20 2020-02-20 10X Genomics, Inc. Compositions and methods for cellular processing
WO2020041148A1 (en) 2018-08-20 2020-02-27 10X Genomics, Inc. Methods and systems for detection of protein-dna interactions using proximity ligation
US20200105373A1 (en) 2018-09-28 2020-04-02 10X Genomics, Inc. Systems and methods for cellular analysis using nucleic acid sequencing
CN113874521A (zh) 2019-01-06 2021-12-31 10X基因组学有限公司 用于富集条形码的方法和系统
EP3924505A1 (en) 2019-02-12 2021-12-22 10X Genomics, Inc. Methods for processing nucleic acid molecules
WO2020167862A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Systems and methods for transfer of reagents between droplets
WO2020167866A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Systems and methods for transposon loading
SG11202111242PA (en) 2019-03-11 2021-11-29 10X Genomics Inc Systems and methods for processing optically tagged beads
WO2020198532A1 (en) 2019-03-27 2020-10-01 10X Genomics, Inc. Systems and methods for processing rna from cells
EP4025709A1 (en) 2019-09-06 2022-07-13 10X Genomics, Inc. Systems and methods for barcoding cells and cell beads

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492607A (zh) * 2013-06-27 2016-04-13 10X基因组学有限公司 用于样品处理的组合物和方法
WO2015164212A1 (en) * 2014-04-21 2015-10-29 President And Fellows Of Harvard College Systems and methods for barcoding nucleic acids
WO2015200541A1 (en) * 2014-06-24 2015-12-30 Bio-Rad Laboratories, Inc. Digital pcr barcoding
WO2016145409A1 (en) * 2015-03-11 2016-09-15 The Broad Institute, Inc. Genotype and phenotype coupling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
单细胞测序技术研究进展;董燕;宋程程;黄鹤;;化学工业与工程(01);第71-78页 *

Also Published As

Publication number Publication date
CN117512066A (zh) 2024-02-06
CN110214186A (zh) 2019-09-06
EP4029939C0 (en) 2023-06-28
US10428326B2 (en) 2019-10-01
WO2018140966A1 (en) 2018-08-02
EP4310183A3 (en) 2024-02-21
US20200165603A1 (en) 2020-05-28
US20210222158A1 (en) 2021-07-22
EP4029939B1 (en) 2023-06-28
US20180216162A1 (en) 2018-08-02
US11193122B2 (en) 2021-12-07
EP3545089B1 (en) 2022-03-09
EP3545089A4 (en) 2020-08-05
US20200024596A1 (en) 2020-01-23
US20220195420A1 (en) 2022-06-23
EP3545089A1 (en) 2019-10-02
EP4310183A2 (en) 2024-01-24
EP4029939A1 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
CN110214186B (zh) 用于基于微滴的单细胞条形编码的方法和系统
US11732302B2 (en) Methods and systems for processing polynucleotides
US10480029B2 (en) Methods and systems for processing polynucleotides
US20220389503A1 (en) Methods and systems for processing polynucleotides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zahara Camilla berhochin

Inventor after: Mohammed Rashimirangi

Inventor after: Tobias Daniel Wheeler

Inventor after: Yin Yifeng

Inventor after: Rajiv Baladwaj

Inventor after: Christopher Sindson

Inventor after: Michael Snow-Levin

Inventor after: Bill Lin

Inventor after: Anthony Makarowitz

Inventor after: Pranav Patel

Inventor after: Catherine Fayver

Inventor after: Andrew D. Price

Inventor before: Camilla Belhochin

Inventor before: Mohammed Rashimirangi

Inventor before: Tobias Daniel Wheeler

Inventor before: Yin Yifeng

Inventor before: Rajiv Baladwaj

Inventor before: Christopher Sindson

Inventor before: Michael Snow-Levin

Inventor before: Bill Lin

Inventor before: Anthony Makarowitz

Inventor before: Pranav Patel

Inventor before: Catherine Fayver

Inventor before: Andrew D. Price

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant