CN109075196A - 半导体开关元件 - Google Patents

半导体开关元件 Download PDF

Info

Publication number
CN109075196A
CN109075196A CN201680082465.3A CN201680082465A CN109075196A CN 109075196 A CN109075196 A CN 109075196A CN 201680082465 A CN201680082465 A CN 201680082465A CN 109075196 A CN109075196 A CN 109075196A
Authority
CN
China
Prior art keywords
region
concentration region
insulating layer
semiconductor substrate
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680082465.3A
Other languages
English (en)
Other versions
CN109075196B (zh
Inventor
斋藤顺
青井佐智子
浦上泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Publication of CN109075196A publication Critical patent/CN109075196A/zh
Application granted granted Critical
Publication of CN109075196B publication Critical patent/CN109075196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/047Making n or p doped regions or layers, e.g. using diffusion using ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0882Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

提供了一种沟槽栅半导体开关元件。该元件的半导体衬底包括:第二导电类型的底部区,其在沟槽的底表面处与栅极绝缘层接触;以及第一导电类型的第二半导体区,其从与体区的下表面接触的位置延伸到与底部区的下表面接触的位置,并且在体区的下侧与栅极绝缘层接触。底部区包括:低浓度区,其在底表面之中的位于沟槽在纵向上的端部处的第一范围中与栅极绝缘层接触;以及高浓度区,其在底表面之中的与第一范围相邻的第二范围中与栅极绝缘层接触。

Description

半导体开关元件
技术领域
本公开涉及一种开关元件。
背景技术
专利文献1公开了一种开关元件。该开关元件包括在其上表面上设置有沟槽的半导体衬底。沟槽的内表面被栅极绝缘层覆盖。栅电极被布置在沟槽内。栅电极通过栅极绝缘层与半导体衬底绝缘。在半导体衬底中设置n型源区、p型体区、n型漂移区和p型底部区(p扩散区)。源区与栅极绝缘层接触。体区在源区的下侧与栅极绝缘层接触。底部区在沟槽的底表面处与栅极绝缘层接触。漂移区从与体区的下表面接触的位置延伸到与底部区的下表面接触的位置。漂移区在体区的下侧与栅极绝缘层接触。
当专利文献1的开关元件关断时,耗尽层从体区与漂移区之间的界面扩展。在这种场合,耗尽层也从底部区与漂移区之间的界面扩展。大范围的漂移区被这些耗尽层耗尽。
[引用列表]
[专利文献]
[专利文献1]日本专利申请公布No.2007-242852
发明内容
如上所述,当专利文献1的开关元件关断时,耗尽层从底部区与漂移区之间的界面扩展到漂移区。此外,该耗尽层也扩展到底部区。作为其结果,在漂移区与底部区之间的耗尽的半导体区中产生电位差。在这种场合,由于栅电极整体具有基本上相同的电位,与不存在沟槽的区域相比,在容纳有栅电极的沟槽下方等电位线分布在更下侧。因此,等电位线在沟槽的底表面与其侧表面之间的拐角周围弯曲。结果,等电位线之间的间隔在拐角周围局部变窄。因此,在拐角周围发生电场集中。
通过平行设置多个沟槽,可减轻沟槽在短方向上的端部(即,拐角)周围的电场集中。与此相反,难以减轻沟槽在纵向上的端部(即,拐角)周围的电场集中。因此,本文的公开提供了一种通过抑制沟槽在纵向上的端部周围的电场集中来改进开关元件的耐压性的技术。
本文所公开的开关元件包括:半导体衬底,在其上表面上设置有沟槽;栅极绝缘层,其覆盖沟槽的内表面;以及栅电极,其被布置在沟槽中并通过栅极绝缘层与半导体衬底绝缘。半导体衬底包括:第一导电类型的第一半导体区,其与栅极绝缘层接触;第二导电类型的体区,其在第一半导体区的下侧与栅极绝缘层接触;第二导电类型的底部区,其在沟槽的底表面处与栅极绝缘层基础;以及第一导电类型的第二半导体区,其从与体区的下表面接触的位置延伸至与底部区的下表面接触的位置,在体区的下侧与栅极绝缘层接触,并通过体区与第一半导体区分离。底部区包括:低浓度区,其在底表面的位于沟槽在纵向上的端部处的第一范围内与栅极绝缘层接触;以及高浓度区,其在底表面的与第一范围相邻的第二范围内与栅极绝缘层接触,并且其第二导电类型的杂质浓度高于低浓度区的杂质浓度。
值得注意的是,第一导电类型和第二导电类型中的一个为n型,另一个为p型。
当该开关元件关断时,耗尽层从体区与第二半导体区之间的界面扩展。此外,耗尽层还从底部区与第二半导体区之间的界面(即,从底部区的下表面)扩展。第二半导体区被这些耗尽层耗尽。此外,从底部区与第二半导体区之间的界面扩展的耗尽层也扩展到底部区。耗尽层趋向于在低浓度区中比在高浓度区中扩展更多。因此,在低浓度区中扩展的耗尽层的宽度变得比在高浓度区中扩展的耗尽层的宽度宽。因此,与低浓度区中的耗尽层的上端相比,高浓度区中的耗尽层的上端结果位于更下侧。由于在耗尽区中产生电场,所以与在低浓度区内的耗尽范围中相比,在高浓度区内的耗尽范围中,等电位线分布在更下侧。因此,在低浓度区内的耗尽范围中,等电位线在从高浓度区向上朝着沟槽在纵向上的端部逐渐转变的状态下分布。结果,沟槽在纵向上的端面(侧表面)与沟槽的底表面之间的拐角周围的等电位线的弯曲减轻。因此,抑制了等电位线之间的间隔在拐角周围变窄,并且抑制了拐角周围的电场集中。因此,该开关元件表现出高耐压性。
附图说明
图1是第一实施例的MOSFET 10的平面图。
[图2]图2是沿图1中的线II-II的MOSFET 10的垂直横截面图。
[图3]图3是沿图1中的线III-III的MOSFET 10的垂直横截面图。
[图4]图4是底部区36的放大横截面图。
[图5]图5是与图4对应的比较例的MOSFET的放大横截面图。
[图6]图6是与图4对应的放大横截面图,其示出对第一实施例的MOSFET 10施加的电压较大的情况。
[图7]图7是与图3对应的第二实施例的MOSFET的垂直横截面图。
[图8]图8是与图4对应的第二实施例的MOSFET的放大横截面图。
[图9]图9是第一和第二实施例的形成底部区36的方法的说明图。
[图10]图10是第一和第二实施例的形成底部区36的方法的说明图。
具体实施方式
(第一实施例)
图1至图3示出第一实施例的MOSFET(金属氧化物半导体场效应晶体管)10。如图2和图3所示,MOSFET 10包括半导体衬底12、电极、绝缘层等。值得注意的是,为了更清楚的示图,图1省略了半导体衬底12的上表面12a上的电极和绝缘层的描绘。下文中,与半导体衬底12的上表面12a平行的方向将被称为x方向,与半导体衬底12的上表面12a平行并与x方向正交的方向将被称为y方向,半导体衬底12的厚度方向将被称为z方向。半导体衬底12由SiC(碳化硅)构成。
如图2所示,半导体衬底12的上表面12a设置有多个沟槽22。如图1所示,每个沟槽22沿着y方向线性地延伸。多个沟槽22在x方向上以间隔布置。如图2所述,每个沟槽22的内表面被栅极绝缘层24覆盖。每个栅极绝缘层24包括底部绝缘层24a和侧部绝缘层24b。每个底部绝缘层24a覆盖其对应沟槽22的底表面。每个侧部绝缘层24b覆盖其对应沟槽22的侧表面。底部绝缘层24a的厚度比侧部绝缘层24b的厚度厚。栅电极26被布置在每个沟槽22内。每个栅电极26通过其对应栅极绝缘层24与半导体衬底12绝缘。每个栅电极26的上表面被层间绝缘膜28覆盖。
上部电极70被布置在半导体衬底12的上表面12a上。上部电极70在未设置层间绝缘膜28的部分处与半导体衬底12的上表面12a接触。上部电极70通过层间绝缘膜28与栅电极26绝缘。下部电极72被布置在半导体衬底12的下表面12b上。下部电极72与半导体衬底12的下表面12b接触。
如图1至图3所示,在半导体衬底12中设置多个源区30、体区32、漏区34、多个底部区36和多个端部区38。
每个源区30是n型区。如图2所示,每个源区30被布置在半导体衬底12的上表面12a处暴露的位置处,并与上部电极70欧姆接触。此外,每个源区30在其沟槽22的上端部分处与其对应侧部绝缘层24b接触。
体区32是p型区。如图2所示,体区32与每个源区30接触。体区32从介于相邻源区30之间的范围延伸至比各个源区更下侧。在介于相邻源区30之间的范围中,体区32中的p型杂质浓度较高。体区32在介于相邻源区30之间的范围中与上部电极70欧姆接触。在比源区30更下侧,体区32中的p型杂质浓度较低。体区32在比源区30更下侧与侧部绝缘层24b接触。体区32的下表面位于栅电极26的下端上方。此外,如图1和图3所示,在y方向上与沟槽22相邻的范围中也设置有体区32。
每个底部区36是p型区。如图2和图3所示,每个底部区36被布置在对应沟槽22的底表面处暴露的范围中。每个底部区36在其沟槽22的底表面处与对应底部绝缘层24a接触。如图3所示,每个底部区36在y方向上沿着其对应沟槽22的底表面延伸。每个底部区36在其沟槽22的整个底表面上与其对应底部绝缘层24a接触。每个底部区36包括低浓度区36a和高浓度区36b。
低浓度区36a的p型杂质浓度低于高浓度区36b的p型杂质浓度。每个低浓度区36a被布置在对应沟槽22在纵向(即,y方向)上的端部22a的下部。即,每个低浓度区36a在位于其沟槽22的底表面的每个端部22a处的第一范围23a中与其对应底部绝缘层24a接触。值得注意的是,尽管未示出,低浓度区36a还设置在位于图3所示的端部22a的相对端部处的底表面处。通过底部区36的p型杂质浓度与底部区36的n型杂质浓度之差来计算底部区36的有效载流子密度。此外,通过在z方向上对沟槽22下方(紧接沟槽22下方)的底部区36的有效载流子密度积分而获得的值将被称为有效载流子表面密度。低浓度区36a的有效载流子表面密度小于1.4×1013(cm-2)。低浓度区36a在y方向上的宽度大于低浓度区36a在z方向上的厚度。
每个高浓度区36b被布置在沟槽22的纵向(即,y方向)上与其对应低浓度区36a相邻的位置处。即,高浓度区36b在每个沟槽22的底表面内与对应第一范围23a相邻的每个第二范围23b中与底部绝缘层24a接触。因此,与低浓度区36a相比,高浓度区36b被布置在更远离其对应沟槽22的端部22a的位置处。除了其端部22a附近之外,高浓度区36b与对应沟槽22的整个底表面接触。高浓度区36b的有效载流子表面密度大于1.4×1013(cm-2)。高浓度区36b在y方向上的宽度大于低浓度区36a在y方向上的宽度。
漏区34是n型区。如图2和图3所示,漏区34被布置在体区32下方。漏区34包括具有低n型杂质浓度的漂移区34a以及具有比漂移区34a高的n型杂质浓度的漏极接触区34b。漂移区34a被布置在体区32下方。漂移区34a通过体区32与源区30分离。漂移区34a从与体区32的下表面接触的位置延伸至比各个底部区36更下侧。漂移区34a与每个底部区36(即,低浓度区36a和高浓度区36b)的下表面和侧表面接触。如图2所示,漂移区34a在体区32下方与侧部绝缘层24b接触。漏极接触区34b被布置在漂移区34a下方。漏极接触区34b在半导体衬底12的下表面12b处暴露。漏极接触区34b与下部电极72欧姆接触。
如图1和图3所示,每个端部区38沿着对应沟槽22在纵向上的每个端部22a设置。每个端部区38是p型区。如图3所示,每个端部区38的下端连接到对应低浓度区36a。每个端部区38的上端连接到体区32。如前所述,体区32连接到上部电极70。因此,各个低浓度区36a经由端部区38和体区32连接到上部电极70。
接下来,将描述MOSFET 10的操作。当使用MOSFET 10时,MOSFET 10、负载(例如,电机)和电源串联连接。电源电压被施加到MOSFET 10和负载的该串联电路。在MOSFET 10中沿着漏极侧(下部电极72侧)的电位高于源极侧(上部电极70侧)的方向施加电源电压。MOSFET10的栅极电位(栅电极26的电位)由控制器(未示出)控制。
将描述MOSFET 10截止时的状态。当栅极电位低于阈值时,MOSFET 10截止。在这种状态下,下部电极72的电位高于上部电极70的电位。由于体区32连接到上部电极70并且漂移区34a经由漏极接触区34b连接到下部电极72,所以反向电压被施加到体区32与漂移区34a之间的界面处的pn结33。因此,耗尽层从pn结33延伸。此外,底部区36经由端部区38和体区32连接到上部电极70。因此,反向电压也被施加到底部区36与漂移区34a之间的界面处的pn结37。因此,耗尽层也从pn结37延伸。由于漂移区34a的n型杂质浓度较低,所以耗尽层在漂移区34a内大大扩展。因此,基本上整个漂移区34a被耗尽。此外,耗尽层也从pn结33扩展到体区32。此外,耗尽层从pn结37扩展到底部区36。
图4示出图3所示的低浓度区36a和高浓度区36b的放大图。此外,图5示出比较例中的MOSFET的与图4对应的放大横截面图。在图5所示的比较例的MOSFET中,底部区36全部具有与低浓度区36a基本上相同的p型杂质浓度。比较例的MOSFET的其它配置与第一实施例的MOSFET 10相似。在图4和图5中的每一个中,由点加阴影的半导体区是未耗尽的半导体区(下文中称为非耗尽区)。在图4和图5中的每一个中,未由点加阴影的半导体区是耗尽半导体区。由于在耗尽半导体区中没有电流流动,所以在耗尽半导体区中产生电位差。在图4和图5中的每一个中,耗尽半导体区中的电位分布由等电位线100示出。
如图4和图5中由等电位线100所示,等电位线100在沟槽22下方主要在横向方向(y方向)上延伸。在沟槽22的纵向(y方向)上与沟槽22相邻的区域中,与沟槽22下方相比,等电位线分布在更上侧。因此,等电位线100在沟槽22的端面(限定沟槽22的端部22a的侧表面)与沟槽22的底表面之间的拐角25附近倾斜地向上弯曲。因此,在图4和图5中,在每个拐角25附近的范围25a中等电位线100之间的间隔局部变窄。因此,在范围25a中,与其周围相比电场较高。然而,与图5中相比,在图4中范围25a中的电场更多减轻。下文中,将详细描述这一点。
在比较例的MOSFET中,整个底部区36的p型杂质浓度较低。因此,如图5所示,从pn结37延伸到底部区36中的耗尽层的宽度在底部区36中基本上均匀。换言之,底部区36中的非耗尽区的下端分布在恒定深度处。因此,在底部区36的非耗尽区下方,等电位线100在基本上恒定的深度处在横向方向上延伸。等电位线100在拐角25附近的范围25a突然弯曲。因此,在该范围25a中,等电位线100的间隔极窄。即,在比较例的MOSFET中,在范围25a中产生极高的电场。
另一方面,在第一实施例的MOSFET 10中,如上面所提及的,低浓度区36a的p型杂质浓度低于高浓度区36b的p型杂质浓度。因此,与到高浓度区36b相比,耗尽层更容易扩展到低浓度区36a。因此,如图4所示,从pn结37扩展到低浓度区36a中的耗尽层的宽度比从pn结37延伸到高浓度区36b中的耗尽层的宽度宽。换言之,与低浓度区36a中的非耗尽区的下端相比,高浓度区36b中的非耗尽区的下端更向下突出。因此,与低浓度区36a中的非耗尽区下面相比,在高浓度区36b中的非耗尽区下面等电位线100更向下压。结果,等电位线100在每个低浓度区36a中的非耗尽区下面分布,使得等电位线100从高浓度区36b侧朝着对应拐角25逐渐向上转变。因此,与图5相比,在每个拐角25附近的范围25中等电位线100的弯曲程度被缓和。因此,与图5相比,范围25a中的等电位线100之间的间隔较宽。即,对于第一实施例的MOSFET 10,与比较例的MOSFET相比,范围25a中的电场减轻。
如上,在第一实施例的MOSFET 10中,由于在每个低浓度区36a中的非耗尽区下方,等电位线100分布为从高浓度区36b侧朝着对应拐角25逐渐向上转变,每个拐角25附近的等电位线100的弯曲程度可缓和。因此,可抑制等电位线100的间隔在每个拐角25附近变窄,结果,可抑制每个拐角25附近的电场集中。特别是,由于每个拐角25靠近厚度较薄的对应侧部绝缘层24b,所以抑制每个拐角25附近的电场集中允许减轻施加到对应侧部绝缘层24b的电场。因此,可抑制侧部绝缘层24b的绝缘性质的劣化。因此,第一实施例的MOSFET 10具有高耐压性。
此外,如图4所示,在第一实施例的MOSFET 10中,在拐角25附近的范围25a中电场减轻,而另一方面,在沟槽22下方(低浓度区36a与高浓度区36b之间的界面周围的范围25b)电场与比较例的MOSFET相比略微变强。然而,沟槽22的底表面被厚的底部绝缘层24a覆盖。厚的底部绝缘层24a的绝缘性质不太可能劣化。因此,即使施加到底部绝缘层24a的电场变高,也不会发生与绝缘性质劣化有关的问题。因此,允许沟槽22下方的范围25b中(即,厚的底部绝缘层24a附近)的电场增加可减小拐角25附近的范围25a中(即,薄的侧部绝缘层24b附近)的电场,结果,整个MOSFET 10的耐压性改进。
接下来,将描述使MOSFET导通的情况。当栅极电位达到高于阈值的电位时,体区32在与侧部绝缘层24b相邻的范围中反转为n型,并且在这些范围中生成沟道。然后,耗尽层从漂移区34a朝着体区32侧收缩,并且电子流过漂移区34a。即,MOSFET导通。因此,电子从上部电极70通过源区30、沟道和漏区34朝着下部电极72流动。即,电流从下部电极72流到上部电极70。
此外,当MOSFET导通时,下部电极72的电位下降到与上部电极70基本上相同的电位。然后,底部区36的电位通过下部电极72与底部区36之间的电容耦合而下降。在这种状态下,底部区36的电位低于漂移区34a的电位,因此耗尽层从底部区36扩展到漂移区34a。然而,当底部区36的电位下降时,电荷从上部电极70通过体区32和端部区38流到底部区36中。通过如上所述这些电荷流到底部区36中,底部区36的电位上升到与上部电极70基本上相同的电位。底部区36的电位的增加使得从底部区36扩展到漂移区34a的耗尽层朝着底部区36侧收缩。结果,漂移区34a的电阻下降,并且MOSFET的导通电阻下降。在图5所示的比较例的MOSFET中,由于整个底部区36的p型杂质浓度低,所以整个底部区36的电阻高。因此,当比较例的MOSFET导通时,电荷在整个每个底部区36上彻底散射需要更长时间。因此,在比较例的MOSFET中,从底部区36扩展到漂移区34a的耗尽层朝着底部区36侧收缩需要更长时间。因此,比较例的MOSFET从产生沟道直至导通电阻下降花费时间。另一方面,在第一实施例的MOSFET 10中,尽管每个底部区36的一部分是低浓度区36a,其另一部分是高浓度区36b。高浓度区36b的电阻低。因此,当MOSFET 10导通时,电荷在短时间段内在整个底部区36上彻底散射。因此,在第一实施例的MOSFET 10中,从底部区36扩展到漂移区34a的耗尽层在短时间段内朝着底部区36侧收缩。因此,在第一实施例的MOSFET10中,导通电阻在自产生沟道起的短时间段内下降。因此,与比较例的MOSFET相比,第一实施例的MOSFET 10可以更小的损失操作。
值得注意的是,在SiC中,当半导体区的有效载流子表面密度大于1.4×1013cm-2时,不管对半导体区的施加电压被设定为多高,不能耗尽整个半导体区。另一方面,在半导体区的有效载流子表面密度小于1.4×1013cm-2的情况下,通过将对半导体区的施加电压设定得高,整个半导体区可耗尽。在上述第一实施例中,高浓度区36b的有效载流子表面密度大于1.4×1013cm-2。因此,即使在MOSFET 10截止期间施加在上部电极70与下部电极72之间的电压较大,沟槽22下方的高浓度区36b也绝不会在厚度方向(z方向)上完全耗尽。即,即使上部电极70与下部电极72之间施加的电压较大,在沟槽22下方的高浓度区36b中也保留非耗尽区。因此,当MOSFET 10导通时,电荷更容易被供应给整个底部区36。因此,在第一实施例的MOSFET 10中,即使在MOSFET 10截止期间施加在上部电极70与下部电极72之间的电压较大,当MOSFET 10导通时导通电阻在短时间段内下降。
此外,在上述第一实施例中,低浓度区36a中的有效载流子表面密度小于1.4×1013cm-2。因此,当上部电极70与下部电极72之间的施加电压从图4的状态进一步增加时,低浓度区36a在厚度方向(z方向)上完全耗尽。如上,当低浓度区36a在厚度方向上完全耗尽时,如图6所示,耗尽层到达低浓度区36a中的底部绝缘层24a。当这发生时,如图6所示,等电位线100从耗尽的低浓度区36a延伸过底部绝缘层24a,因此与图4中相比,等电位线100的弯曲程度进一步缓和。因此,可进一步减轻拐角25附近的电场集中。
值得注意的是,在上述第一实施例中,可在每一对低浓度区36a和高浓度区36b之间设置中等浓度区(即,p型杂质浓度高于低浓度区36a的杂质浓度但低于高浓度区36b的杂质浓度的p型半导体区)。根据该配置,可进一步减轻电场。
(第二实施例)
图7和图8每个示出第二实施例的MOSFET。在第二实施例的MOSFET中,高浓度区36b的厚度比低浓度区36a的厚度厚。即,每个低浓度区36a从对应沟槽22的底表面向下延伸到第一位置(低浓度区36a的下表面的位置),并且每个高浓度区36b从对应沟槽22的底表面延伸到低于第一位置的第二位置(高浓度区36b的下表面的位置)。如图7所示,在沿着沟槽22的纵向的横截面中,每个低浓度区36a的下表面平行于y方向线性地延伸,并且每个高浓度区36b的下表面平行于y方向线性地延伸。每个高浓度区36b的下表面低于每个低浓度区36a的下表面。即,每个底部区36的下表面的位置从其低浓度区36a朝着其高浓度区36b按照阶梯状形状向下转变。同样在第二实施例中,低浓度区36a的p型杂质浓度低于高浓度区36b的p型杂质浓度。第二实施例的MOSFET的其它配置与第一实施例的MOSFET 10相似。
如上所述,在第二实施例的MOSFET中,高浓度区36b的下表面低于低浓度区36a的下表面。因此,如图8所示,与第一实施例(图4)的情况相比,当第二实施例的MOSFET截止时高浓度区36b中的非耗尽区的下端相对于低浓度区36a中的非耗尽区的下端向下突出的量更大。因此,在图8中,与图4相比,低浓度区36a的非耗尽区下方的等电位线100的倾角较大。因此,在图8中,与图4相比,每个拐角25附近的等电位线100的弯曲程度可进一步缓和。因此,在图8中,每个拐角25附近的等电位线100之间的间隔与图4相比更宽。因此,根据第二实施例的MOSFET,每个拐角25附近的电场集中可进一步减轻。
值得注意的是,在上述第二实施例中,可在每一对低浓度区36a和高浓度区36b之间设置中等浓度区(即,p型杂质浓度高于低浓度区36a的杂质浓度但低于高浓度区36b的杂质浓度的半导体区)。在这种情况下,中等浓度区的厚度可比低浓度区36a厚,但比高浓度区36b薄。根据该配置,可进一步减轻电场。
接下来,将描述第一和第二实施例的低浓度区36a和高浓度区36b的形成方法。首先,如图9所示,在半导体衬底12的上表面12a中形成沟槽22。然后,形成覆盖半导体衬底12的上表面12a的掩模12c。然后,如图9所示,在离子植入方向相对于半导体衬底的上表面12a关于x轴倾斜的状态下,向沟槽22的底表面植入p型杂质(第一植入)。在第一植入中,向沟槽22的每个底表面在纵向(y方向)上的一端附近的范围110的离子植入被上表面12a中断。接下来,如图10所示,在离子植入方向相对于半导体衬底12的上表面12a围绕x轴向第一植入的相对侧倾斜的状态下,向沟槽22的底表面植入p型杂质(第二植入)。在第二植入中,向沟槽22的每个底表面在纵向(y方向)上的另一端附近的范围120的离子植入被上表面12a中断。在第一和第二植入二者中,p型杂质均被植入到介于范围110和120之间的范围130(每个沟槽22的底表面的中心部分)。因此,对范围110、120的离子植入量小于对范围130的离子植入量。此后,通过对半导体衬底12进行退火来激活植入的p型杂质。因此,低浓度区36a形成为在沟槽22的底表面的端部附近的范围110、120处暴露,并且高浓度区36b形成在位于沟槽22的底表面的中心部分处的范围130中。值得注意的是,低浓度区36a和高浓度区36b的下端的位置(即,p型杂质的扩散距离)可根据退火条件来调节。因此,根据该方法,可制造第一和第二实施例的MOSFET。此外,根据该方法,范围110、120、130不需要单独的掩模,但是与范围110、120中相比,仍可在范围130中以更高的浓度植入p型杂质。由于不再需要为范围110、120、130形成掩模并从其移除掩模,所以可高效地制造MOSFET。值得注意的是,第一和第二实施例的MOSFET也可通过其它方法来制造。
值得注意的是,在上述实施例中,在沟槽22在纵向上的端部处设置用于将底部区36连接到体区32的p型区(即,端部区38)。然而,用于将底部区36连接到体区32的p型区可被设置在其它位置。此外,用于将底部区36连接到体区32的p型区可连接到高浓度区36b。此外,底部区36可在没有体区32介入的情况下连接到上部电极70。此外,可不设置用于将底部区36连接到上部电极70的p型区。在这种情况下,底部区36的电位变得浮置。
此外,在上述实施例中,半导体衬底12由SiC构成。然而,半导体衬底12可由Si(硅)构成。如果半导体衬底12由Si构成,则优选将高浓度区36b的有效载流子表面密度设定为大于2.0×1012(cm-2)。根据该配置,可抑制高浓度区36b在厚度方向上完全耗尽。此外,如果半导体衬底12由Si构成,则优选将低浓度区36a的有效载流子表面密度设定为小于2.0×1012(cm-2)。根据该配置,当对MOSFET的施加电压高时,低浓度区36a可在厚度方向上完全耗尽。
此外,在上述第一和第二实施例中,基于n沟道型MOSFET给出描述,然而,本文所公开的技术可适应p沟道型MOSFET。在上述第一和第二实施例中,可通过替换n型和p型来配置p沟道型MOSFET。此外,本文所公开的技术可适应诸如IGBT(绝缘栅双极晶体管)的其它开关元件。
将描述上述实施例的各个构成特征与权利要求的各个构成特征之间的关系。实施例中的源区是权利要求的第一半导体区的示例。实施例中的漂移区是权利要求中的第二半导体区的示例。实施例的端部区和体区是连接区的示例。
本文中将列出下面所描述的技术元件特有的一些特征。应该注意的是,各个技术元件彼此独立,并且可单独使用。
在本文所公开的配置的示例中,开关元件包括上部电极,其被设置在半导体衬底的上表面上并与第一半导体区接触。半导体衬底包括连接底部区和上部电极的第二导电类型的连接区。
根据该配置,由于底部区连接到上部电极,所以底部区的电位可稳定。因此,可稳定开关元件的电位。此外,当开关元件导通时,电荷通过连接区被供应到底部区。由于电荷被供应到底部区,从底部区扩展到第二半导体区的耗尽层朝着底部区侧收缩。因此,第二半导体区的电阻下降。由于底部区包括高浓度区(即,具有低电阻的区域),所以当开关元件导通时,电荷可被快速地供应到整个底部区。因此,耗尽层可迅速地从第二半导体区收缩到底部区。因此,当开关元件导通时,开关元件的导通电阻可迅速地减小。
在本文所公开的配置的示例中,栅极绝缘层包括覆盖沟槽的底表面的底部绝缘层以及覆盖沟槽的侧表面并且厚度比底部绝缘层的厚度薄的侧部绝缘层。
根据该配置,即使当低浓度区与高浓度区之间的边界附近的沟槽下方的电场变高时,厚底部绝缘层的绝缘性质也几乎不劣化。
在本文所公开的配置的示例中,低浓度区从沟槽的底表面延伸到低于底表面的第一位置,并且高浓度区从底表面延伸到低于第一位置的第二位置。
根据该配置,可进一步减轻沟槽在纵向上的端部附近的电场集中。
在本文所公开的配置的示例中,半导体衬底由碳化硅构成。通过在半导体衬底的厚度方向上对位于沟槽下面的高浓度区中的有效载流子密度积分而获得的有效载流子表面密度大于1.4×1013(cm-2)。
值得注意的是,在本公开中,有效载流子密度意指通过从特定半导体区中的第一导电类型杂质浓度和第二导电类型杂质浓度中较大的一个减去第一导电类型杂质浓度和第二导电类型杂质浓度中较小的一个而获得的值。
根据该配置,位于沟槽下面的高浓度区将不在厚度方向上整个耗尽。因此,当开关元件导通时,电荷可更快速地被供应到整个底部区。因此,耗尽层可更迅速地从第二半导体区收缩到底部区。因此,在开关元件导通时导通电阻可更迅速地减小。
在本文所公开的配置的示例中,半导体衬底由碳化硅构成。通过在半导体衬底的厚度方向上对位于沟槽下面的低浓度区中的有效载流子密度积分而获得的有效载流子表面密度小于1.4×1013(cm-2)。
根据该配置,通过调节开关元件截止期间的施加电压,位于沟槽下方的低浓度区可在厚度方向上完全耗尽。当低浓度区在厚度方向上完全耗尽时,等电位线也可从低浓度区延伸到位于其上方的栅极绝缘层。因此,可进一步减轻沟槽在纵向上的端部附近的电场。
在本文所公开的配置的示例中,半导体衬底由硅构成。通过在半导体衬底的厚度方向上对位于沟槽下面的高浓度区中的有效载流子密度积分而获得的有效载流子表面密度大于2.0×1012(cm-2)。
根据该配置,位于沟槽下面的高浓度区将不在厚度方向上整个耗尽。因此,当开关元件导通时,导通电阻可更迅速地减小。
在本文所公开的配置的示例中,半导体衬底由硅构成。通过在半导体衬底的厚度方向上对位于沟槽下面的低浓度区中的有效载流子密度积分而获得的有效载流子表面密度小于2.0×1012(cm-2)。
根据该配置,通过调节开关元件截止期间的施加电压,位于沟槽下方的低浓度区可在厚度方向上完全耗尽。因此,可进一步减轻沟槽在纵向上的端部附近的电场。
已详细描述了本发明的特定示例,然而,这些仅仅是示例性指示,因此不限制权利要求的范围。权利要求中描述的技术包括上面所呈现的特定示例的修改和变化。说明书和附图中所描述的技术特征在技术上可单独使用或按照各种组合使用,并且不限于最初要求保护的组合。此外,说明书和附图中所描述的技术可同时实现多个目的,其技术意义在于实现这些目的中的任一个。
[标号列表]
10:MOSFET
12:半导体衬底
22:沟槽
24:栅极绝缘层
26:栅电极
28:层间绝缘膜
30:源区
32:体区
34:漏区
34a:漂移区
34b:漏极接触区
36:底部区
36a:低浓度区
36b:高浓度区
38:端部区
70:上部电极
72:下部电极

Claims (8)

1.一种开关元件,所述开关元件包括:
半导体衬底,在所述半导体衬底的上表面上设置有沟槽;
栅极绝缘层,所述栅极绝缘层覆盖所述沟槽的内表面;以及
栅电极,所述栅电极被布置在所述沟槽中,并且通过所述栅极绝缘层而与所述半导体衬底绝缘,
其中,
所述半导体衬底包括:
第一导电类型的第一半导体区,所述第一半导体区与所述栅极绝缘层接触;
第二导电类型的体区,所述体区在所述第一半导体区的下侧与所述栅极绝缘层接触;
第二导电类型的底部区,所述底部区与在所述沟槽的底表面处的所述栅极绝缘层接触;以及
第一导电类型的第二半导体区,所述第二半导体区从与所述体区的下表面相接触的位置延伸到与所述底部区的下表面相接触的位置,所述第二半导体区在所述体区的下侧与所述栅极绝缘层接触,并且所述第二半导体区通过所述体区而与所述第一半导体区分离,并且所述底部区包括:
低浓度区,所述低浓度区在所述底表面之中的位于所述沟槽的纵向上的端部处的第一范围内与所述栅极绝缘层接触;以及
高浓度区,所述高浓度区在所述底表面之中的与所述第一范围相邻的第二范围内与所述栅极绝缘层接触,并且所述高浓度区的第二导电类型的杂质浓度高于所述低浓度区的第二导电类型的杂质浓度。
2.根据权利要求1所述的开关元件,所述开关元件还包括:
上部电极,所述上部电极被设置在所述半导体衬底的所述上表面上,并且与所述第一半导体区接触,
其中,所述半导体衬底还包括第二导电类型的连接区,所述连接区连接所述底部区和所述上部电极。
3.根据权利要求1或2所述的开关元件,其中,
所述栅极绝缘层包括:
底部绝缘层,所述底部绝缘层覆盖所述沟槽的所述底表面;以及
侧部绝缘层,所述侧部绝缘层覆盖所述沟槽的侧表面,并且所述侧部绝缘层的厚度比所述底部绝缘层的厚度薄。
4.根据权利要求1至3中的任一项所述的开关元件,其中,
所述低浓度区从所述底表面延伸到比所述底表面低的第一位置,并且
所述高浓度区从所述底表面延伸到比所述第一位置低的第二位置。
5.根据权利要求1至4中的任一项所述的开关元件,其中,
所述半导体衬底由碳化硅构成,并且
通过在所述半导体衬底的厚度方向上对位于所述沟槽下面的所述高浓度区中的有效载流子密度进行积分而获得的有效载流子表面密度大于1.4×1013(cm-2)。
6.根据权利要求1至5中的任一项所述的开关元件,其中,
所述半导体衬底由碳化硅构成,并且
通过在所述半导体衬底的厚度方向上对位于所述沟槽下面的所述低浓度区中的有效载流子密度进行积分而获得的有效载流子表面密度小于1.4×1013(cm-2)。
7.根据权利要求1至4中的任一项所述的开关元件,其中,
所述半导体衬底由硅构成,并且
通过在所述半导体衬底的厚度方向上对位于所述沟槽下面的所述高浓度区中的有效载流子密度进行积分而获得的有效载流子表面密度大于2.0×1012(cm-2)。
8.根据权利要求1、2、3、4和7中的任一项所述的开关元件,其中,
所述半导体衬底由硅构成,并且
通过在所述半导体衬底的厚度方向上对位于所述沟槽下面的所述低浓度区中的有效载流子密度进行积分而获得的有效载流子表面密度小于2.0×1012(cm-2)。
CN201680082465.3A 2016-02-26 2016-12-26 半导体开关元件 Active CN109075196B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016035555A JP6560141B2 (ja) 2016-02-26 2016-02-26 スイッチング素子
JP2016-035555 2016-02-26
PCT/JP2016/005221 WO2017145210A1 (en) 2016-02-26 2016-12-26 Semiconductor switching element

Publications (2)

Publication Number Publication Date
CN109075196A true CN109075196A (zh) 2018-12-21
CN109075196B CN109075196B (zh) 2021-09-03

Family

ID=57799759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680082465.3A Active CN109075196B (zh) 2016-02-26 2016-12-26 半导体开关元件

Country Status (5)

Country Link
US (1) US10374081B2 (zh)
JP (1) JP6560141B2 (zh)
CN (1) CN109075196B (zh)
DE (1) DE112016006503B4 (zh)
WO (1) WO2017145210A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6673232B2 (ja) * 2017-01-17 2020-03-25 株式会社デンソー 炭化珪素半導体装置
JP6874847B2 (ja) 2017-08-07 2021-05-19 日本電気株式会社 状態分析装置、状態分析方法及びプログラム
JP7135819B2 (ja) * 2018-12-12 2022-09-13 株式会社デンソー 半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080012026A1 (en) * 2006-07-10 2008-01-17 Fuji Electric Holdings Co., Ltd. Trench mos type silicon carbide semiconductor device and method for manufacturing the same
US20090032965A1 (en) * 2007-07-13 2009-02-05 Denso Corporation Seminconductor device having P-N column portion
JP2010114152A (ja) * 2008-11-04 2010-05-20 Toyota Motor Corp 半導体装置および半導体装置の製造方法
US20160027880A1 (en) * 2014-02-04 2016-01-28 Maxpower Semiconductor, Inc. Vertical power mosfet having planar channel and its method of fabrication

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570185B1 (en) * 1997-02-07 2003-05-27 Purdue Research Foundation Structure to reduce the on-resistance of power transistors
US6433385B1 (en) * 1999-05-19 2002-08-13 Fairchild Semiconductor Corporation MOS-gated power device having segmented trench and extended doping zone and process for forming same
US6461918B1 (en) * 1999-12-20 2002-10-08 Fairchild Semiconductor Corporation Power MOS device with improved gate charge performance
KR100958561B1 (ko) * 2002-10-04 2010-05-17 신덴겐코교 가부시키가이샤 반도체 장치, 반도체 장치의 제조 방법
DE112004001163B4 (de) * 2003-08-20 2017-12-28 Denso Corporation Halbleiteranordnung eines vertikalen Typs
US7265415B2 (en) * 2004-10-08 2007-09-04 Fairchild Semiconductor Corporation MOS-gated transistor with reduced miller capacitance
DE102005024951A1 (de) * 2005-05-31 2006-12-14 Infineon Technologies Ag Halbleiterspeicherbauelement
JP4939012B2 (ja) * 2005-08-26 2012-05-23 ルネサスエレクトロニクス株式会社 半導体装置
US7939886B2 (en) * 2005-11-22 2011-05-10 Shindengen Electric Manufacturing Co., Ltd. Trench gate power semiconductor device
JP4453671B2 (ja) * 2006-03-08 2010-04-21 トヨタ自動車株式会社 絶縁ゲート型半導体装置およびその製造方法
JP4915221B2 (ja) * 2006-11-28 2012-04-11 トヨタ自動車株式会社 半導体装置
DE102007029121B3 (de) * 2007-06-25 2008-11-20 Infineon Technologies Austria Ag Verfahren zur Herstellung eines Halbleiterbauelements, sowie Halbleiterbauelement
JP5196980B2 (ja) * 2007-12-10 2013-05-15 株式会社東芝 半導体装置
JP5525153B2 (ja) * 2008-10-23 2014-06-18 ローム株式会社 半導体装置
JP2010287743A (ja) * 2009-06-11 2010-12-24 Sony Corp 半導体装置及びその製造方法、固体撮像素子
US8735974B2 (en) * 2010-02-16 2014-05-27 Toyota Jidosha Kabushiki Kaisha Semiconductor devices
JP5190485B2 (ja) * 2010-04-02 2013-04-24 株式会社豊田中央研究所 半導体装置
JP5498431B2 (ja) * 2011-02-02 2014-05-21 ローム株式会社 半導体装置およびその製造方法
US8610204B2 (en) * 2011-03-15 2013-12-17 Toyota Jidosha Kabushiki Kaisha Semiconductor device
EP2688102A4 (en) * 2011-03-17 2014-09-03 Fuji Electric Co Ltd SEMICONDUCTOR COMPONENT AND MANUFACTURING METHOD THEREFOR
JP5673393B2 (ja) * 2011-06-29 2015-02-18 株式会社デンソー 炭化珪素半導体装置
JP6047297B2 (ja) * 2012-04-09 2016-12-21 ルネサスエレクトロニクス株式会社 半導体装置
JP5812029B2 (ja) * 2012-06-13 2015-11-11 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP5751213B2 (ja) 2012-06-14 2015-07-22 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP5556862B2 (ja) * 2012-08-06 2014-07-23 富士電機株式会社 トレンチmos型炭化珪素半導体装置の製造方法
KR20140022517A (ko) * 2012-08-13 2014-02-25 삼성전자주식회사 반도체 장치 및 그 제조 방법
KR20140022518A (ko) * 2012-08-13 2014-02-25 삼성전자주식회사 반도체 장치 및 그 제조 방법
US9029871B2 (en) 2012-11-21 2015-05-12 Toyota Jidosha Kabushiki Kaisha Semiconductor device
WO2014087499A1 (ja) * 2012-12-05 2014-06-12 トヨタ自動車株式会社 半導体装置
JP6056623B2 (ja) 2013-04-12 2017-01-11 三菱電機株式会社 半導体装置および半導体装置の製造方法
JP6077380B2 (ja) * 2013-04-24 2017-02-08 トヨタ自動車株式会社 半導体装置
JP2015056486A (ja) * 2013-09-11 2015-03-23 株式会社東芝 半導体装置およびその製造方法
JP2015072999A (ja) * 2013-10-02 2015-04-16 株式会社デンソー 炭化珪素半導体装置
JP6154292B2 (ja) * 2013-11-06 2017-06-28 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法
JP6219704B2 (ja) * 2013-12-17 2017-10-25 トヨタ自動車株式会社 半導体装置
JP6208579B2 (ja) * 2013-12-26 2017-10-04 トヨタ自動車株式会社 半導体装置
JP6169966B2 (ja) * 2013-12-26 2017-07-26 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法
JP6341074B2 (ja) * 2014-01-24 2018-06-13 株式会社デンソー 半導体装置の製造方法
JP2016025177A (ja) * 2014-07-18 2016-02-08 トヨタ自動車株式会社 スイッチング素子
US9704948B2 (en) * 2014-08-09 2017-07-11 Alpha & Omega Semiconductor (Cayman), Ltd. Power trench MOSFET with improved unclamped inductive switching (UIS) performance and preparation method thereof
JP6354525B2 (ja) * 2014-11-06 2018-07-11 株式会社デンソー 炭化珪素半導体装置の製造方法
JP6563639B2 (ja) * 2014-11-17 2019-08-21 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法
JP2016100466A (ja) * 2014-11-21 2016-05-30 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法
JP6270706B2 (ja) * 2014-12-11 2018-01-31 トヨタ自動車株式会社 半導体装置とその製造方法
JP6063915B2 (ja) * 2014-12-12 2017-01-18 株式会社豊田中央研究所 逆導通igbt
JP6698697B2 (ja) * 2015-01-27 2020-05-27 アーベーベー・シュバイツ・アーゲー 絶縁ゲートパワー半導体デバイスおよびそのデバイスの製造方法
JP2016143786A (ja) * 2015-02-03 2016-08-08 株式会社東芝 半導体装置
CN106856665B (zh) * 2015-02-20 2020-05-22 新电元工业株式会社 半导体装置
JP2016181618A (ja) * 2015-03-24 2016-10-13 株式会社デンソー 半導体装置
JP6409681B2 (ja) * 2015-05-29 2018-10-24 株式会社デンソー 半導体装置およびその製造方法
JP6472714B2 (ja) * 2015-06-03 2019-02-20 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP6367760B2 (ja) * 2015-06-11 2018-08-01 トヨタ自動車株式会社 絶縁ゲート型スイッチング装置とその製造方法
JP6301882B2 (ja) * 2015-08-21 2018-03-28 トヨタ自動車株式会社 半導体装置の製造方法と半導体装置
JP6571467B2 (ja) * 2015-09-24 2019-09-04 トヨタ自動車株式会社 絶縁ゲート型スイッチング素子とその製造方法
JP6475142B2 (ja) * 2015-10-19 2019-02-27 トヨタ自動車株式会社 半導体装置とその製造方法
US9419118B1 (en) * 2015-11-03 2016-08-16 Ixys Corporation Trench IGBT with tub-shaped floating P-well and hole drains to P-body regions
JP6115678B1 (ja) * 2016-02-01 2017-04-19 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2017139293A (ja) * 2016-02-02 2017-08-10 トヨタ自動車株式会社 ダイオード
JP2017139289A (ja) * 2016-02-02 2017-08-10 トヨタ自動車株式会社 ダイオード
JP6747195B2 (ja) * 2016-09-08 2020-08-26 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6763727B2 (ja) * 2016-09-15 2020-09-30 トヨタ自動車株式会社 スイッチング装置とその製造方法
JP2018056304A (ja) * 2016-09-28 2018-04-05 トヨタ自動車株式会社 スイッチング装置とその製造方法
JP2018060943A (ja) * 2016-10-06 2018-04-12 トヨタ自動車株式会社 スイッチング素子
JP6669628B2 (ja) * 2016-10-20 2020-03-18 トヨタ自動車株式会社 スイッチング素子
JP6493372B2 (ja) * 2016-12-07 2019-04-03 トヨタ自動車株式会社 半導体装置
JP6687504B2 (ja) * 2016-12-19 2020-04-22 トヨタ自動車株式会社 スイッチング素子の製造方法
JP6784921B2 (ja) * 2017-02-17 2020-11-18 株式会社デンソー スイッチング素子とその製造方法
US10164021B2 (en) * 2017-05-26 2018-12-25 Fuji Electric Co., Ltd. Silicon carbide semiconductor device
US10468509B2 (en) * 2017-06-07 2019-11-05 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP7029710B2 (ja) * 2017-06-16 2022-03-04 富士電機株式会社 半導体装置
JP2019040954A (ja) * 2017-08-23 2019-03-14 トヨタ自動車株式会社 半導体装置
JP7017733B2 (ja) * 2017-09-07 2022-02-09 国立研究開発法人産業技術総合研究所 半導体装置および半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080012026A1 (en) * 2006-07-10 2008-01-17 Fuji Electric Holdings Co., Ltd. Trench mos type silicon carbide semiconductor device and method for manufacturing the same
US20090032965A1 (en) * 2007-07-13 2009-02-05 Denso Corporation Seminconductor device having P-N column portion
JP2010114152A (ja) * 2008-11-04 2010-05-20 Toyota Motor Corp 半導体装置および半導体装置の製造方法
US20160027880A1 (en) * 2014-02-04 2016-01-28 Maxpower Semiconductor, Inc. Vertical power mosfet having planar channel and its method of fabrication

Also Published As

Publication number Publication date
US20190058061A1 (en) 2019-02-21
WO2017145210A1 (en) 2017-08-31
JP2017152613A (ja) 2017-08-31
JP6560141B2 (ja) 2019-08-14
US10374081B2 (en) 2019-08-06
DE112016006503B4 (de) 2023-03-30
DE112016006503T5 (de) 2018-11-29
CN109075196B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
US9318547B2 (en) Wide bandgap insulated gate semiconductor device
JP6678810B2 (ja) 炭化珪素半導体装置および電力変換装置
CN111463277B (zh) 半导体器件
US8563988B2 (en) Semiconductor element and manufacturing method therefor
CN102376709B (zh) 半导体器件
CN109155334B (zh) 半导体装置
JP6907233B2 (ja) パワー半導体デバイス
CN110462838A (zh) 半导体装置
JP6606007B2 (ja) スイッチング素子
JP5687582B2 (ja) 半導体素子およびその製造方法
KR101896332B1 (ko) 반도체 소자 및 그 제조 방법
US9954096B2 (en) Switching device and method of manufacturing the same
CN108447903A (zh) 半导体装置
JP2019079833A (ja) スイッチング素子とその製造方法
CN110034184A (zh) 半导体装置
CN107919383B (zh) 开关元件
CN109075196A (zh) 半导体开关元件
CN107833921B (zh) 开关器件和制造开关器件的方法
JP2017191817A (ja) スイッチング素子の製造方法
CN109075197A (zh) 半导体开关元件
JP7147510B2 (ja) スイッチング素子
JP7326991B2 (ja) スイッチング素子
KR101836258B1 (ko) 반도체 소자 및 그 제조 방법
JP2020047726A (ja) 半導体装置
KR20190100598A (ko) 향상된 채널 이동도를 갖는 전력 반도체 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant