WO2015132580A1 - Antibodies, uses & methods - Google Patents
Antibodies, uses & methods Download PDFInfo
- Publication number
- WO2015132580A1 WO2015132580A1 PCT/GB2015/050614 GB2015050614W WO2015132580A1 WO 2015132580 A1 WO2015132580 A1 WO 2015132580A1 GB 2015050614 W GB2015050614 W GB 2015050614W WO 2015132580 A1 WO2015132580 A1 WO 2015132580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- fragment
- human
- antibodies
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2875—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF/TNF superfamily, e.g. CD70, CD95L, CD153, CD154
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/241—Tumor Necrosis Factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/54—Medicinal preparations containing antigens or antibodies characterised by the route of administration
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/10—Immunoglobulins specific features characterized by their source of isolation or production
- C07K2317/14—Specific host cells or culture conditions, e.g. components, pH or temperature
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/33—Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/515—Complete light chain, i.e. VL + CL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- the present invention relates to anti-human OX40L antibodies, new medical uses and methods.
- OX40L BACKGROUND OX40 ligand
- OX40L is a TNF family member; a 34 kDa type II transmembrane protein.
- the crystallized complex of human OX40 and OX40L is a trimeric configuration of one OX40L (trimer) and three OX40 monomers.
- the human extracellular domain is 42% homologous to mouse OX40L.
- OX40L is not constitutively expressed but can be induced on professional APCs such as B- cells, dendritic cells (DCs) and macrophages. Other cell types such as Langerhans cells, endothelial cells, smooth muscle cells, mast cells and natural killer (NK) cells can be induced to express OX40L. T-cells can also express OX40L.
- the OX40L receptor, OX40 is expressed on activated T cells (CD4 and CD8 T cells, Th2, Thl and Thl7 cells) and CD4 + Foxp3 + cells, even in the absence of activation.
- OX40 and OX40L occur during the T-cell-DC interaction 2 or 3 days after antigen recognition.
- the OX40-expressing T-cell may interact with an OX40L- expressing cell other than a DC and receive an OX40 signal from this cell, which may provide essential signals for the generation of memory T-cells, the enhancement of Th2 response and the prolongation of the inflammatory responses.
- OX40 signals into responder T-cells render them resistant to Treg mediated suppression.
- graft versus host disease is a major cause of mortality following allogenic bone marrow treatment.
- mature T-cells present in the bone marrow graft recognise the donor tissue as foreign in an environment of damaged tissue, which, via host APCs cause the activation and proliferation of the donor T-cells, with subsequent T-cell migration into the liver, spleen, gut, skin and lungs, causing tissue damage by the CTL effector response and inflammatory cytokine/chemokine release.
- Onset for acute disease is usually within the first 100 days post transplantation (Hill-Ferrara, Blood May 1, 2000 vol. 95 no. 9 2754-275, Reddy-Ferrara Blood, Volume 17, Issue 4, December 2003).
- Chronic GvHD usually appears 100 days post transplantation and several factors are thought to be involved, including thymic damage caused by prior acute GvHD which results in a reduced clearance of pathogenic T-cells (Zhang et al, September 1, 2007 vol. 179 no. 5 3305-3314), up- regulation of TGF- ⁇ , which causes fibrosis (McCormick etal 3 Immuno, November 15, 1999 vol. 163 no. 10 5693-5699), and a B-cell component driven by elevated B-Cell activating factor (BAFF) (Sarantopoulos etal, Clin Cancer Res October 15, 2007 13; 6107) as well as auto-antibodies against platelet derived growth factor receptor (Svegliati etal, Blood July 1, 2007 vol. 110 no. 1 237-241).
- BAFF B-Cell activating factor
- Blockade of the OX40-OX40L interaction has been shown to be efficacious in several other inflammatory disease, with anti-OX40L Ab being used to treat a mouse model of colitis (Totsuka et a/., AJP - GI April 1, 2003 vol. 284 no. 4 G595-G603), and that an anti- OX40L Ab could block the development of diabetes in NOD mice (Pakala et al European Journal of Immunology Volume 34, Issue 11, pages 3039-3046, November 2004).
- the invention provides anti-human OX40L (hOX40L) antibodies and fragments and novel medical applications for treating or preventing hOX40L-mediated diseases or conditions in humans. To this end, the invention provides:-
- hOX40 receptor expressed by human T-cells binding of hOX40 receptor expressed by human T-cells with endothelial cell expressed hOX40L.
- the method comprises administering to said human a therapeutically effective amount of an antibody or fragment that specifically binds to hOX40L.
- an antibody or a fragment thereof that specifically binds to hOX40L and competes for binding to said hOX40L with the antibody 02D10, wherein the antibody or fragment comprises a VH domain which comprises a HCDR3 comprising the motif VRGXYYY, wherein X is any amino acid.
- an antibody or a fragment thereof that specifically binds to hOX40L and competes for binding to said hOX40L with the antibody 02D10, wherein the antibody or fragment comprises a VH domain which comprises the HCDR3 sequence of SEQ ID NO:40 or 46 or the HCDR3 sequence of SEQ ID NO:40 or 46 comprising less than 5 amino acid substitutions.
- the antibody or fragment comprises a VH domain which comprises the HCDR3 sequence of SEQ ID NO:40 or 46 or the HCDR3 sequence of SEQ ID NO:40 or 46 comprising less than 5 amino acid substitutions.
- a human antibody or fragment thereof comprising a HCDR3 of from 16 to 27 amino acids and derived from the recombination of a human VH gene segment, a human D gene segment and a human JH gene segment, wherein the human JH gene segment is IGHJ6, which specifically binds to hOX40L for treating or preventing an autoimmune disease selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection.
- a human antibody or fragment thereof comprising a HCDR3 of from 16 to 27 amino acids and derived from the recombination of a human VH gene segment, a human D gene segment and a human JH gene segment, wherein the human JH gene segment is IGHJ6, which specifically binds to hOX40L in the manufacture of a medicament for administration to a human for treating or preventing a hOX40L mediated disease or condition in the human selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection.
- a method of treating or preventing a hOX40L mediated disease or condition selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection comprising administering to said human a therapeutically effective amount of a human antibody or fragment thereof comprising a HCDR3 of from 16 to 27 amino acids and derived from the recombination of a human VH gene segment, a human D gene segment and a human JH gene segment, wherein the human JH gene segment is IGHJ6, which specifically binds to hOX40L, wherein the hOX40L mediated disease or condition is thereby treated or prevented.
- the invention also provides pharmaceutical compositions, kits, nucleic acids, vectors and hosts.
- Figure 1 Profiling of fully human recombinant anti-OX40L antibodies in HTRF
- Figure 2 Determining effect of anti-OX40L antibodies in allogenic PBMC/T Mixed Lymphocyte Reaction. Data shown is from three independent donor pairings where it is assumed each donor is a different individual.
- the invention provides the following aspects 1 to 113.
- the invention is useful, for example, for treating or preventing transplant rejection, e.g., graft versus host disease (GvHD) or allogenic transplant rejection.
- the invention is also useful, for example, for treating or preventing an inflammatory bowel disease, e.g., UC or CD, or for treating or preventing an airway inflammatory disease or condition. In an example this aspect is useful for treating or preventing asthma.
- the invention is also useful, for example, for treating or preventing fibrosis.
- the invention is also useful, for example, for treating or preventing diabetes.
- the invention is also useful, for example, for treating or preventing uveitis.
- the invention is also useful, for example, for treating or preventing pyoderma gangrenosum.
- the invention is also useful, for example, for treating or preventing giant cell arteritis.
- the invention is also useful, for example, for treating or preventing Schnitzler syndrome.
- the invention is also useful, for example, for treating or preventing noninfectious scleritis.
- hOX40 receptor expressed by human T-cells binding of hOX40 receptor expressed by human T-cells with endothelial cell expressed hOX40L.
- the inventors thus identified for the first time decreases of (a), (b) and (c) as ways of treating and/or preventing OX40L-mediated disease and conditions in humans and they provide antibodies and antibody fragments for this purpose.
- the secretion is leukocyte secretion.
- (a) is indicated by a significantly elevated level of the cytokine(s) in human blood, plasma or serum.
- the cytokine is selected from (i) TNF alpha, (ii) IL-2 and (iii) interferon gamma.
- the cytokine TNF alpha In example, the cytokine is IL-2.
- the cytokine is interferon gamma.
- the cytokines are (i) and (ii); or (i) and (iii); or (ii) and (iii); or (i)-(iii).
- the decrease of (a), (b) or (c) or any other decrease disclosed herein is a decrease of at least 10 or 20% compared to the level in a human at risk of or suffering from the hOX40L-mediated disease or condition.
- the latter is the human recited in aspect 1 prior to administration of the antibody or fragment; in another example the latter human is a different human.
- said decrease is at least 10, 20, 30, 40, 50 or 60%.
- the antibody or fragment is capable of effecting a decrease of secretion of the relevant cytokine from leukocytes (eg, human T-cells) in an in vitro assay (as explained further below), and thus administration of such antibody or fragment to the human leads to decrease of (a).
- leukocytes eg, human T-cells
- the antibody or fragment is capable of effecting a decrease of the
- leukocytes eg, human PBMCs and/or human T-cells
- administration of such antibody or fragment to the human leads to decrease of (b).
- the antibody or fragment is capable of effecting a decrease of the
- assessment of said decreases can be performed using samples from the treated human.
- This publication provides an example of a generally-applicable technique of using tissue biopsies and reading out decreased cytokine levels indicative of decreased cytokine secretion after treatment with an antibody in vivo. Similar methods can be used to determine decrease of the secretion of one or more cytokines in a human having received an antibody of the invention.
- cytokine levels in patients and patient samples for example, by use of one or more of tissue biopsy, immunohistochemistry, immunofluorescence, tissue staining, cytokine mRNA quantification (e.g., using PCR, such as TaqmanTM PCR), cytokine protein detection and quantification (e.g., using cytokine-specific tool antibody and quantification, such as by ELISA or another standard protein quantification technique).
- tissue biopsy e.g., immunohistochemistry, immunofluorescence, tissue staining
- cytokine mRNA quantification e.g., using PCR, such as TaqmanTM PCR
- cytokine protein detection and quantification e.g., using cytokine-specific tool antibody and quantification, such as by ELISA or another standard protein quantification technique.
- the disease or condition is one of the GI tract (e.g., IBD)
- the result can be compared with a cytokine quantification in biopsied relevant tissue from the same patient prior to antibody administration or compared to another human patient suffering from the same disease or condition but receiving no anti-OX40L treatment or no treatment for the disease or condition.
- the skilled person can determine that the antibody of the invention decreases secretion of the cytokine in the human recipient.
- the disease or condition is one of the airways (e.g., lung)
- a Bronchoalveolar lavage (BAL) sample as will be apparent to the skilled person.
- BAL Bronchoalveolar lavage
- the term “leukocytes” includes, for example, one or more of lymphocytes, polymorphonuclear leukocyte and monocytes.
- monocytes includes, for example, peripheral blood mononuclear cells (PBMCs) or monocyte derived cells, e.g., dendritic cells (DCs).
- PBMCs peripheral blood mononuclear cells
- DCs dendritic cells
- leukocytes e.g., lamina limbal lymphocytes (LPLs)
- LPLs lamina limbal lymphocytes
- H&E stain or HE stain is, for example, commonly used in histology to look for infiltrating lymphocytes a whole range of human tissue and is one of the principal stains in histology. It is the most widely used stain in medical diagnosis and is often the gold standard, and as such can be used to assess proliferation of leukocytes as per the invention.
- GI tract tissue e.g., gut tissue
- a human that is suffering from or at risk of a hOX40L-mediated disease or condition can be obtained, stained and assessed for the extent of infiltration of LPLs. Comparison can be made between such tissue from a human that has received an antibody of the invention compared to the extent of infiltration in tissue obtained from the same human prior to administration of antibody or from another human that has not received treatment and is at risk of or suffering from the disease or condition. For example, the comparison is between human gut tissues taken from the same (or different) humans suffering from IBD.
- IBD Inflammatory bowel disease
- IBD Crohn's disease
- UC ulcerative colitis
- Granuloma formation is the one of the most important pathological characteristics of human Crohn's disease.
- Mizoguchi et al demonstrated that F4/80-positive immature CDllc + dendritic cells (DCs) produce IL-23 and contribute to granuloma formation in a murine colitis model (Mizoguchi et al., 2007).
- a Thl immune response is predominant in Crohn's disease.
- CD4 + T-cells in the LP of Crohn's disease expressed T-bet and produced large amounts of interferon (IFN)-y (Matsuoka et al., 2004).
- IFN interferon
- Cytokines are indispensable signals of the mucosa-associated immune system for maintaining normal gut homeostasis.
- An imbalance of their profile in favour of inflammation initiation may lead to disease states, such as that is observed in inflammatory bowel diseases (IBD), e.g., Crohn's disease (CD) and ulcerative colitis (UC).
- IBD inflammatory bowel diseases
- CD Crohn's disease
- UC ulcerative colitis
- pro-inflammatory cytokines such as IL-la, IL- ⁇ , IL-2, - 6, -8, -12, -17, -23, IFN-gamma, or TNF alpha in IBD is associated with the initiation and progression of UC and CD.
- CD is often described as a prototype of T-helper (Th) 1-mediated diseases because the primary inflammatory mediators are the Thl cytokines such as interleukin (IL)-12, interferon (IFN)-y, and tumour necrosis factor (TNF)-a.
- Thl cytokines such as interleukin (IL)-12, interferon (IFN)-y, and tumour necrosis factor (TNF)-a.
- TNF-a is a master cytokine in the pathogenesis of IBD. It exerts its pleiotropic effects through the expression of adhesion molecules, fibroblast proliferation, procoagulant factors, as well as the initiation of cytotoxic, apoptotic and acute-phase responses.
- the source of TNF-a in IBD is partly the innate immune cells, such as macrophages or monocytes, and also differentiated Thl cells.
- TNF-a The serum levels of TNF-a correlate with the clinical activity of UC and CD[31]. It plays an orchestrating role in colonic inflammation in IBD. The role of TNF-a in CD has been widely investigated. Binding TNF-a to serum soluble TNF receptor 1 and 2 (sTNFRl and 2) initiates proinflammatory signalling. The levels of sTNFRl and 2 are elevated in CD.
- T1A Tumour necrosis factor-like factor
- DR3 death receptor 3
- the TL1A/DR3 system is involved in the pathogenesis of CD.
- the macrophages of the lamina basement are a major producer of TL1A, which expression is markedly enhanced in CD. It has been found that TL1A and IL-23 synergistically promotes the production of IFN- ⁇ by mucosal T- cells.
- FN-Y is produced by TH1 T-cells. Once inflammation is initiated, IFN- ⁇ is produced and subsequently acts through various molecules and pathways of the immune system to intensify the inflammatory process.
- IFN- ⁇ is a prime proinflammatory cytokine in inflammation and autoimmune disease.
- Interferon-gamma is causatively involved in experimental inflammatory bowel disease in mice (Ito et al, Clinical and Experimental Immunology (2006), 146:330-338).
- IFN-v "/_ mice manifested attenuated colitis after stimulation with DSS, in terms of the degree of body weight loss, DAI, histological score and MPO activity.
- IFN- ⁇ was increasingly produced in the colon of DSS-treated WT mice that showed severe IBD-like symptoms.
- Interleukin-2 is produced by T-cells and is mostly important for T-cells to differentiate into effector T-cells. IL-2 is also important for T-cell proliferation. This is important for IBD because effector T-cells are thought to be a major cell type to cause damage in IBD.
- IL-8 (interleukin-8; aka CXCL8) primarily mediates the activation and migration of neutrophils into tissue from peripheral blood and to sites of inflammation.
- the tissue level of IL-8 has been found to be higher in active UC compared to normal colonic tissue, and its serum concentration has been related to endoscopic and histological severity of UC.
- IL-8 is important for inflammatory settings and cancer (see, e.g., "The Chemokine CXCL8 in Carcinogenesis and Drug Response" , ISRN Oncol. 2013 Oct 9;2013:859154; Gales D eta/., and Future Oncol., 2010 Jan;6(l):lll-6.
- IL-8 is thought to contribute also by supporting angiogenesis.
- the antibody or fragment antagonises the binding of hOX40L to an OX40 receptor.
- the antibody or fragment antagonises the binding of hOX40L to OX40.
- the OX40L receptor can be human OX40.
- the human is suffering from or at risk of asthma and the antibody or fragment decreases IgE in a human.
- the human is suffering from or at risk of asthma and the antibody or fragment is for decreasing IgE in a human.
- a cytokine selected from TNF alpha, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-9,IL-10, IL-13, IL-17, RANTES and interferon gamma.
- the cytokine is selected from (i) TNF alpha, (ii) IL-2 and (iii) interferon gamma.
- the cytokine is TNF alpha.
- the cytokine is IL-2.
- the cytokine is interferon gamma.
- the cytokines are (i) and (ii); or (i) and (iii); or (ii) and (iii); or (i)-(iii). 3.
- leukocytes are selected from the group consisting of polymorphonuclear leukocytes, monocytes, peripheral blood mononuclear cells (PBMCs), lymphocytes, T-cells, antigen presenting cells (APCs), dendritic cells (DC cells) and natural killer cells (NK cells).
- PBMCs peripheral blood mononuclear cells
- APCs antigen presenting cells
- DC cells dendritic cells
- NK cells natural killer cells
- the leukocytes are peripheral blood mononuclear cells (PBMCs) and T- cells (e.g. PBMCs).
- PBMCs peripheral blood mononuclear cells
- T- cells e.g. PBMCs
- lymphocytes and the disease or condition is a disease or condition of the gastrointestinal tract (GI tract).
- epithelial cells comprise cells selected from the group consisting of gastrointestinal cells, colon cells, intestinal cells and airway (e.g., lung) epithelial cells.
- the epithelial cells comprise cells selected from the group consisting of gastrointestinal cells, colon cells, intestinal cells, ocular cells and airway (e.g., lung) epithelial cells. In another embodiment, the epithelial cells comprise cells selected from the group consisting of gastrointestinal cells, colon cells, intestinal cells and ocular cells. In a further embodiment, the epithelial cells comprise ocular cells.
- the antibody or fragment is capable of effecting a decrease of the proliferation of T-cells in an in vitro assay (e.g., in a human DC cell/T-cell in vitro assay, for example as explained further below), and thus administration of such antibody or fragment to the human leads to decrease of the proliferation of T-cells in said human.
- an in vitro assay e.g., in a human DC cell/T-cell in vitro assay, for example as explained further below
- the antibody or fragment is capable of effecting a decrease of the proliferation of leukocytes (e.g., monocuclear cells) in an in vitro assay (e.g., in a MLR in vitro assay, for example as explained further below), and thus administration of such antibody or fragment to the human leads to decrease of the proliferation of leukocytes in said human.
- leukocytes e.g., monocuclear cells
- in vitro assay e.g., in a MLR in vitro assay, for example as explained further below
- the antibody or fragment is capable of effecting a decrease of the proliferation of leukocytes (e.g., monocuclear cells) in an in vitro assay wherein the antibody or fragment antagonises OX40L/OX40L receptor interaction mediated by T-cells in said assay, and thus administration of such antibody or fragment to the human leads to decrease of the proliferation of leukocytes in said human.
- leukocytes e.g., monocuclear cells
- the antibody or fragment is for treating or preventing said hOX40L-mediated disease, condition or epithelial cell damage in said human by decreasing the secretion of (i) IL-2 and interferon gamma, (ii) IL-2 and TNF alpha or (iii) interferon gamma and TNF alpha in the human.
- the antibody or fragment is capable of effecting a decrease of the secretion of a cytokine selected from IL-2, TNF alpha and interferon gamma in an in vitro assay (e.g., in a MLR in vitro assay, for example as explained further below), and thus administration of such antibody or fragment to the human leads to decrease of the secretion of said selected cytokine(s) in said human.
- the antibody or fragment is capable of effecting a decrease of the secretion of IL-8 in an in vitro assay (e.g., in a MLR in vitro assay, for example as explained further below), and thus administration of such antibody or fragment to the human leads to decrease of the secretion of IL-8 in said human.
- the antibody or fragment is capable of effecting a decrease of said cytokine(s) secretion in a DC cell/T-cell in vitro assay (for example as explained further below), and thus administration of such antibody or fragment to the human leads to decrease of the secretion of said cytokine(s) in said human.
- intestinal cell or airway (e.g., lung) cell damage is a symptom or cause of said disease or condition in humans.
- the epithelial cells comprise cells selected from the group consisting of gastrointestinal cells, colon cells, intestinal cells, ocular cells and airway (e.g., lung) epithelial cells.
- the epithelial cells comprise cells selected from the group consisting of gastrointestinal cells, colon cells, intestinal cells and ocular cells.
- the epithelial cells comprise ocular cells. 12. The antibody or fragment of any preceding aspect, wherein the human is suffering from or at risk of an inflammatory bowel disease (IBD), allogenic transplant rejection, graft-versus-host disease (GvHD), diabetes or airway inflammation and said method treats or prevents IBD, allogenic transplant rejection, GvHD, diabetes or airway inflammation in the human.
- IBD inflammatory bowel disease
- GvHD graft-versus-host disease
- diabetes or airway inflammation treats or prevents IBD, allogenic transplant rejection, GvHD, diabetes or airway inflammation in the human.
- the human is suffering from or at risk of an inflammatory bowel disease (IBD), allogenic transplant rejection, graft-versus-host disease (GvHD), uveitis, pyoderma gangrenosum, giant cell arteritis, Schnitzler syndrome, noninfectious scleritis, diabetes or airway inflammation and said method treats or prevents IBD, allogenic transplant rejection, GvHD, uveitis, pyoderma gangrenosum, giant cell arteritis, Schnitzler syndrome, non-infectious scleritis, diabetes or airway inflammation in the human.
- IBD inflammatory bowel disease
- GvHD graft-versus-host disease
- uveitis pyoderma gangrenosum
- giant cell arteritis Schnitzler syndrome
- noninfectious scleritis diabetes or airway inflammation
- the human is suffering from or at risk of an inflammatory or autoimmune disease or condition or has been diagnosed as such.
- the autoimmune disease or condition is selected from the following:- Acute disseminated encephalomyelitis (ADEM)
- AIED Autoimmune Inner Ear Disease
- APS Autoimmune Lymphoproliferative Syndrome
- CIDP Chronic inflammatory demyelinating Polyradiculoneuropathy
- CP Cictricial pemphigoid
- DLE Discoid lupus erythematosus
- Hashimoto's thyroiditis also called autoimmune thyroiditis and chronic lymphocytic thyroiditis Hypersensitivity Vasculitis (HV) or small vessel vasculitis
- MPA Microscopic Polyangiitis
- PNP Paraneoplastic pemphigus
- PAN Polyarteritis nodosa
- PBC Primary biliary Cirrhosis
- PSC Hanot Syndrome Primary sclerosing cholangitis
- Recoverin-associated retinopathy see Retinopathy Reactive Arthritis formerly known as Reiter's syndrome, Retinopathy
- RA Rheumatoid arthritis
- Type I autoimmune polyglandular syndrome (PAS)
- the human is suffering from uveitis.
- the uveitis is non-infectious and/or autoimmune in nature, i.e. is non-infectious uveitis or is autoimmune uveitis.
- the non-infectious/autoimmune uveitis is caused by and/or is associated with Behget disease, Fuchs heterochromic iridocyclitis, granulomatosis with polyangiitis, HLA-B27 related uveitis, juvenile idiopathic arthritis, sarcoidosis, spondyloarthritis, sympathetic ophthalmia, tubulointerstitial nephritis or uveitis syndrome.
- the uveitis is systemic in nature, i.e. is systemic uveitis.
- the systemic uveitis is caused by and/or is associated with ankylosing spondylitis, Behget's disease, chronic granulomatous disease, enthesitis, inflammatory bowel disease, juvenile rheumatoid arthritis, Kawasaki's disease, multiple sclerosis, polyarteritis nodosa, psoriatic arthritis, reactive arthritis, sarcoidosis, systemic lupus erythematosus, Vogt-Koyanagi-Harada syndrome or Whipple's disease.
- ankylosing spondylitis Behget's disease, chronic granulomatous disease, enthesitis, inflammatory bowel disease, juvenile rheumatoid arthritis, Kawasaki's disease, multiple sclerosis, polyarteritis nodosa, psoriatic arthritis, reactive arthritis, sarcoidosis, systemic lupus erythematosus, Vogt-Koyanag
- the human is suffering from pyoderma gangrenosum, giant cell arteritis, Schnitzler syndrome or non-infectious scleritis.
- the human is suffering from pyoderma gangrenosum.
- the human is suffering from giant cell arteritis.
- the human is suffering from Schnitzler syndrome.
- the human is suffering from non-infectious scleritis.
- the human is suffering from a hOX40L mediated disease or condition selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic transplant rejection, graft- versus-host disease (GvHD), ulcerative colitis, systemic lupus erythematosus (SLE), diabetes, uveitis, ankylosing spondylitis, contact hypersensitivity, multiple sclerosis and atherosclerosis, in particular GvHD.
- the human is suffering from or is at risk from multiviscreal organ transplant rejection.
- competition is determined by surface plasmon resonance (SPR), such techniques being readily apparent to the skilled person.
- SPR can be carried out using BiacoreTM, ProteonTM or another standard SPR technique.
- Such competition may be due, for example, to the antibodies/fragments binding to identical or overlapping epitopes of hOX40L.
- competition is determined by ELISA, such techniques being readily apparent to the skilled person.
- competition is determined by homogenous time resolved fluorescence (HTRF), such techniques being readily apparent to the skilled person.
- competition is determined by fluorescence activated cell sorting (FACS), such techniques being readily apparent to the skilled person.
- FACS fluorescence activated cell sorting
- the HTRF, ELISA and/or FACS methods are carried out as described in the Examples hereinbelow. 14.
- domains (optionally which are human).
- variable domains of the antibody or fragment are human or humanised. Additionally, optionally the antibody or fragment further comprises human or humanised constant regions (e.g., human Fc and/or human CL).
- variable domains of the antibody or fragment are produced by a transgenic animal (e.g., a rodent, mouse, rat, rabbit, chicken, sheep, Camelid or shark).
- the variable domains of the antibody or fragment are produced or identified by phage display, ribosome display or yeast display.
- the antibody or fragment is recombinant.
- the antibody or fragment is produced by a recombinant mammalian, bacterial, insect, plant or yeast cell.
- the mammalian cell is a CHO or HEK293 cell and the antibody or fragment comprises CHO or HEK293 cell glycosylation.
- the antibody or fragment is isolated.
- VH domain which comprises a HCD 1 sequence selected from the group consisting of the HCDR1 of:
- VH domain which comprises a HCDR2 sequence selected from the group consisting of the HCDR2 of:
- VH domain which comprises a HCDR3 sequence selected from the group consisting of the HCDR3 of:
- VH domain which comprises (i) the CDR1 and 2, (ii) CDR1 and 3, (Hi) CDR2 and 3 or (iv) CDR1, 2 and 3 sequences: a. recited in (a) of aspects 16-18, and wherein the antibody or fragment competes with 02D10 for binding to said hOX40L;
- the invention provides an anti-hOX40L antibody or fragment (optionally according to any other aspect recited herein) comprising a VH domain which comprises an amino acid sequence selected from the group consisting of the VH amino acid sequences in the sequence listing.
- the VH domain comprises an amino acid sequence selected from Seq ID No:2, Seq ID No:34, Seq ID No:66, Seq ID No:94, Seq ID No:122, Seq ID No:124, Seq ID NO:126, Seq ID No: 128, Seq ID No: 132 or Seq ID No: 134.
- the antibody or fragment comprises a VH domain amino acid sequence set out in the sequence listing below. Additionally or alternatively, the antibody or fragment comprises a HCDR1 domain amino acid sequence set out in the sequence listing below (i.e. Seq ID No:4, Seq ID No: 10, Seq ID No:36, Seq ID No:42, Seq ID No:68, Seq ID No:74, Seq ID No:96 or Seq ID No: 102, in particular, Seq ID No:36 or Seq ID No:42). Additionally or alternatively, the antibody or fragment comprises a HCDR2 domain amino acid sequence set out in the sequence listing below (i.e.
- the antibody or fragment comprises a HCDR3 domain amino acid sequence set out in the sequence listing below (i.e. Seq ID No:8, Seq ID No: 14, Seq ID No:40, Seq ID No:46, Seq ID No:72, Seq ID No:78, Seq ID No: 100 or Seq ID No: 106, in particular Seq ID No:40 or Seq ID No:46).
- the antibody or fragment comprises a VL domain amino acid sequence set out in the sequence listing below. Additionally or alternatively, the antibody or fragment comprises a LCDR1 domain amino acid sequence set out in the sequence listing below (i.e. Seq ID No:18, Seq ID No:24, Seq ID No:50, Seq ID No:56, Seq ID No:82, Seq ID No:88, Seq ID No:110 or Seq ID No:116, in particular Seq ID No:50 or Seq ID No:56). Additionally or alternatively, the antibody or fragment comprises a LCDR2 domain amino acid sequence set out in the sequence listing below (i.e.
- the antibody or fragment comprises a LCDR3 domain amino acid sequence set out in the sequence listing below (i.e. Seq ID No:22, Seq ID No:28, Seq ID No:54, Seq ID No:60, Seq ID No;86, Seq ID No:92, Seq ID No: 114 or Seq ID No: 120, in particular Seq ID No:54 or Seq ID No:60).
- the antibody or fragment comprises a heavy chain comprising a constant region selected from the group consisting of the heavy chain constant region SEQ ID NOs in the sequence listing (i.e. any of Seq ID Nos: 126, 128, 132, or 134, in particular the constant region of Seq ID No: 128); and optionally a VH domain as recited in aspect 19 or 20.
- the antibody or fragment comprises two copies of such a heavy chain.
- the heavy chain comprise a rodent, rat, mouse, human, rabbit, chicken, Camelid, sheep, bovine, non- human primate or shark constant region (e.g., Fc), in particular a mouse constant region.
- the antibody or fragment comprises a heavy chain comprising a gamma (e.g., human gamma) constant region, e.g., a human gammal constant region.
- the antibody of fragment comprises a human gamma 4 constant region.
- the heavy chain constant region does not bind Fc- ⁇ receptors, and e.g. comprises a Leu235Glu mutation (i.e. where the wild type leucine residue is mutated to a glutamic acid residue).
- the heavy chain constant region comprises a Ser228Pro mutation to increase stability.
- the heavy chain constant region is IgG4 comprising both the Leu235Glu mutation and the Ser228Pro mutation. This heavy chain constant region is referred to as "IgG4-PE" herein.
- the antibody or fragment is chimaeric, e.g., it comprises human variable domains and non-human (e.g., rodent, mouse or rat, such as mouse) constant regions.
- non-human e.g., rodent, mouse or rat, such as mouse
- the antibody or fragment of any preceding aspect comprising a VL domain which comprises a LCDR2 sequence selected from the group consisting of the LCDR2 of:
- the antibody or fragment of any preceding aspect comprising a VL domain which comprises (i) the CDR1 and 2, (ii) CDR1 and 3, (iii) CDR2 and 3 or (iv) CDR1, 2 and 3 sequences:
- an anti-hOX40L antibody or fragment (optionally according to any other aspect herein), comprising a VL domain which comprises an amino acid sequence selected from the group consisting of the VL amino acid sequences in the sequence listing (i.e. Seq ID No: 16, Seq ID No:48, Seq ID No:80 or Seq ID No: 108, in particular Seq ID No:48).
- the antibody or fragment comprises a light chain (e.g., lambda light chain) comprising a constant region selected from the group consisting of the light chain constant region sequences in the sequence listing (i.e. Seq ID No: 136, Seq ID No: 138, Seq ID No: 140, Seq ID No: 142, Seq ID No: 144, Seq ID No: 146, Seq ID No: 148, Seq ID No: 152, Seq ID No: 154, Seq ID No: 156, Seq ID No: 158, Seq ID No: 160, Seq ID No: 162, Seq ID No: 164 or Seq ID No: 166); and optionally a VL domain (e.g., lambda VL) as recited in aspect 25 or 26.
- a VL domain e.g., lambda VL
- the antibody or fragment comprises two copies of such a light chain (optionally also two copies of the heavy chain described above).
- the light chain comprise a rodent, rat, mouse, human, rabbit, chicken, Camelid, sheep, bovine, non-human primate or shark constant region.
- the antibody or fragment comprises a light chain (e.g., kappa light chain) comprising a constant region selected from the group consisting of the light chain constant region sequences in the sequence listing (i.e. Seq ID No: 136, Seq ID No: 138, Seq ID No: 140, Seq ID No: 142, Seq ID No: 144, Seq ID No: 146, Seq ID No: 148, Seq ID No: 152, Seq ID No: 154, Seq ID No: 156, Seq ID No: 158, Seq ID No: 160, Seq ID No: 162, Seq ID No: 164 or Seq ID No: 166); and optionally a VL domain (e.g., kappa VL) as recited in aspect 25 or 26.
- a VL domain e.g., kappa VL
- the antibody or fragment comprises two copies of such a light chain (optionally also two copies of the heavy chain described above).
- the light chain comprise a rodent, rat, mouse, human, rabbit, chicken, Camelid, sheep, bovine, non-human primate or shark constant region.
- the antibody or fragment comprises a lambda light chain comprising a constant region selected from the group consisting of the light chain constant region sequences in the sequence listing (i.e. Seq ID No: 146, Seq ID No: 148, Seq ID No: 152, Seq ID No: 154, Seq ID No: 156, Seq ID No: 158, Seq ID No: 160, Seq ID No: 162, Seq ID No: 164 or Seq ID No: 166); and optionally a lambda VL domain.
- a lambda light chain comprising a constant region selected from the group consisting of the light chain constant region sequences in the sequence listing (i.e. Seq ID No: 146, Seq ID No: 148, Seq ID No: 152, Seq ID No: 154, Seq ID No: 156, Seq ID No: 158, Seq ID No: 160, Seq ID No: 162, Seq ID No: 164 or Seq ID No: 166); and optionally a lambd
- the antibody or fragment comprises a kappa light chain comprising a constant region selected from the group consisting of the light chain constant region sequences in the sequence listing (i.e. i.e. Seq ID No: 136, Seq ID No: 138, Seq ID No: 140, Seq ID No: 142 or Seq ID No: 144); and optionally a kappa VL domain,
- the VL domains of the antibody or fragment are lambda Light chain variable domains. In an example, the VL domains of the antibody or fragment are kappa Light chain variable domains.
- the hOX40L is human cell surface- expressed hOX40L, e.g., on endothelial cells (e.g., an airway or GI tract endothelial cell).
- endothelial cells e.g., an airway or GI tract endothelial cell.
- the epithelial cells comprise cells selected from the group consisting of gastrointestinal cells, colon cells, intestinal cells, ocular cells and airway (e.g., lung) epithelial cells.
- the epithelial cells comprise cells selected from the group consisting of gastrointestinal cells, colon cells, intestinal cells and ocular cells.
- the epithelial cells comprise ocular cells.
- the antibody or fragment the decrease in NF- ⁇ activity is determined by detecting a decrease in IL-8 secretion by HT-1080 cells (ATCC® CCL-121) (optionally transfected with hOX40 Receptor, in the presence of hOX40) in vitro.
- the antibody or fragment of any preceding aspect decreases cytokine secretion mediated by the interaction of human dendritic cells (DC cells) with human T- cells, wherein the cytokine is selected from one, two, more or all of TNF alpha, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-9,IL-10, IL-13, IL-17, RA TES and interferon gamma.
- DC cells human dendritic cells
- MLR in vitro assay e.g., a DC/T-cell MLR in vitro assay.
- a suitable assay is provided in the examples below.
- the DC cells are mismatched to the T-cells, e.g., MHC mis-matched, as is possible for example when the DC cells are from a human that is different from the T-cell human source.
- the DC cells are produced by in vitro induction of human monocytes with GMCSF and IL-4.
- the antibody or fragment of any preceding aspect wherein the antibody or fragment decreases TNF alpha secretion by at least 20, 30, 40, 50 or 60% compared to the production of TNF alpha mediated by the interaction of human dendritic cells (DC cells) with human T-cells in the absence of an antibody that is specific for hOX40L.
- DC cells human dendritic cells
- the antibody or fragment of any preceding aspect wherein the antibody or fragment decreases IL-2 secretion by at least 10, 20, 30, 40, 50 or 60% compared to the production of IL-2 mediated by the interaction of human dendritic cells (DC cells) with human T-cells in the absence of an antibody that is specific for hOX40L.
- DC cells human dendritic cells
- cytokine secretion e.g., leukocyte cytokine secretion
- PBMC peripheral blood mononuclear cell
- MLR mixed lymphocyte
- the antibody or fragment of any preceding aspect wherein the antibody or fragment decreases interferon gamma secretion by at least 20, 30, 40, 50 or 60% compared to the production of interferon gamma in a human PBMC MLR assay in the absence of an antibody that is specific for hOX40L
- the comparison is to the production of interferon gamma in a human PBMC MLR assay in the absence of antibody. 42.
- the antibody or fragment of any preceding aspect wherein the antibody or fragment decreases TNF alpha secretion by at least 20, 30, 40, 50 or 60% compared to the production of TNF alpha in a human PBMC MLR assay in the absence of an antibody that is specific for hOX40L 43.
- the antibody or fragment of any preceding aspect wherein the antibody or fragment decreases IL-2 secretion by at least 10, 20, 30, 40, 50 or 60% compared to the production of IL-2 in a human PBMC MLR assay in the absence of an antibody that is specific for hOX40L.
- a “primary cell” refers to a cell in a human or such a cell that has been taken from the patient for binding to the antibody or fragment of the invention in vitro (as may be useful, for example, in a method of diagnosis of OX40L status or disease/condition status in the human).
- Primary cells as used herein are not cells of human cell lines, which typically have undergone many cultures in vitro.
- the ability of the antibody or fragment of the invention to specifically inhibit hOX40L binding to receptor in this embodiment is advantageous since it provides a direct indication of the utility for addressing cells in human patients suffering or at risk of a hOX40L-mediated disease or condition.
- hOX40L binding of hOX40L to a hOX40L receptor (e.g., hOX40) with an ICso of IxlO '8 or less in a HTRF (homogenous time resolved fluorescence) assay.
- a hOX40L receptor e.g., hOX40
- the ICso is in the range from lxl0 ⁇ 8 to IxlO -11 or in the range from lxl0 _9 to
- composition comprising an antibody or fragment of any preceding aspect and a diluent, excipient or carrier; and optionally further comprising an anti-inflammatory drug.
- the anti-inflammatory drug is independently selected from the group consisting of corticosteroids (e.g. methylprednisolone), anti-IL12/IL-23 antibodies (e.g. ustekinumab), anti-VLA4 antibodies (e.g. natalizumab), anti-LFAl antibodies, anti-complement C5 antibodies (e.g. eculizumab), anti-a4b7 integrin antibodies (e.g. vedolizumab), anti-IL6 antibodies (e.g. tocilizumab), anti-IL2R antibodies (e.g. basilixumab) or anti-TNFa antibodies/TNFa-Fc molecules (e.g.
- corticosteroids e.g. methylprednisolone
- anti-IL12/IL-23 antibodies e.g. ustekinumab
- anti-VLA4 antibodies e.g. natalizumab
- anti-LFAl antibodies anti-complement C5 antibodies
- the anti-inflammatory drug is independently selected from the group consisting of corticosteroids (e.g. methylprednisolone) and anti-LFAl antibodies.
- composition or kit comprising an antibody or fragment of the invention (and optionally an anti-inflammatory drug) optionally in combination with a label or instructions for use to treat and/or prevent said disease or condition in a human; optionally wherein the label or instructions comprise a marketing authorisation number (e.g., an FDA or EMA authorisation number); optionally wherein the kit comprises an IV or injection device that comprises the antibody or fragment.
- a marketing authorisation number e.g., an FDA or EMA authorisation number
- kit comprises an IV or injection device that comprises the antibody or fragment.
- the HCDRs herein are according to Kabat nomenclature. In another embodiment, the HCDRs herein are according to the IMGT nomenclature.
- nucleic acid of aspect 48 comprising a nucleotide sequence that is at least 80, 85, 90, 95, 96, 97, 98 or 99% identical or is 100% identical to a HCDR3 sequence in the sequence listing.
- the invention provides a nucleic acid comprising a nucleotide sequence that encodes a VH domain of an anti-hOX40L antibody, wherein the nucleotide sequence comprises a HCDR3 sequence that is at least 80, 85, 90, 95, 96, 97, 98 or 99% identical or is 100% identical to a HCDR3 sequence in the sequence listing.
- the antibody is according to any other aspect herein.
- nucleic acid of aspect 48 comprising a nucleotide sequence that is 100% identical to a HCDR3 sequence in the sequence listing, except for 1, 2 or 3 nucleotide substitutions, wherein each substitution produces no amino acid change or produces a conservative amino acid change (i.e., the nucleotide substitution is a synonymous substitution) in the corresponding protein sequence.
- each substitution produces no amino acid change or produces a conservative amino acid change (i.e., the nucleotide substitution is a synonymous substitution) in the corresponding protein sequence.
- the skilled person will be familiar with conservative amino acid changes.
- Amino acid substitutions include alterations in which an amino acid is replaced with a different naturally-occurring amino acid residue. Such substitutions may be classified as "conservative", in which case an amino acid residue contained in a polypeptide is replaced with another naturally occurring amino acid of similar character either in relation to polarity, side chain functionality or size. Such conservative substitutions are well known in the art.
- substitutions encompassed by the present invention may also be "non-conservative", in which an amino acid residue which is present in a peptide is substituted with an amino acid having different properties, such as naturally-occurring amino acid from a different group (e.g., substituting a charged or hydrophobic amino; acid with alanine), or alternatively, in which a naturally-occurring amino acid is substituted with a non- conventional amino acid.
- nucleic acid of aspect 49 comprising a nucleotide sequence that is 100% identical to a HCDR3 sequence in the sequence listing, except for 1, 2, 3, 4, 5, 6 or 7 synonymous nucleotide substitutions and no, 1, 2 or 3 nucleotide substitutions that produce conservative amino acid changes in the corresponding protein sequence.
- the nucleic acid of aspect 50 comprising a nucleotide sequence that is at least 80, 85, 90, 95, 96, 97, 98 or 99% identical or is 100% identical to a HCDR2 sequence in the sequence listing.
- the invention provides a nucleic acid comprising a nucleotide sequence that encodes a VH domain of an anti-hOX40L antibody, wherein the nucleotide sequence comprises a HCDR2 sequence that is at least 80, 85, 90, 95, 96, 97, 98 or 99% identical or is 100% identical to a HCDR2 sequence in the sequence listing.
- the antibody is according to any other aspect herein.
- nucleic acid of aspect 51 comprising a nucleotide sequence that is 100% identical to a HCDR2 sequence in the sequence listing, except for 1, 2 or 3 nucleotide substitutions, wherein each substitution produces no amino acid change or produces a conservative amino acid change (i.e., the nucleotide substitution is a synonymous substitution) in the corresponding protein sequence.
- each substitution produces no amino acid change or produces a conservative amino acid change (i.e., the nucleotide substitution is a synonymous substitution) in the corresponding protein sequence.
- the skilled person will be familiar with conservative amino acid changes.
- nucleic acid of aspect 50 comprising a nucleotide sequence that is 100% identical to a HCDR2 sequence in the sequence listing, except for 1, 2, 3, 4, 5, 6 or 7 synonymous nucleotide substitutions and no, 1, 2 or 3 nucleotide substitutions that produce conservative amino acid changes in the corresponding protein sequence.
- nucleic acid of aspect 52 comprising a nucleotide sequence that is at least 80, 85, 90, 95, 96, 97, 98 or 99% identical to or is 100% identical to a HCDRl sequence in the sequence listing.
- the invention provides a nucleic acid comprising a nucleotide sequence that encodes a VH domain of an anti-hOX40L antibody, wherein the nucleotide sequence comprises a HCDRl sequence that is at least 80, 85, 90, 95, 96, 97, 98 or 99% identical or is 100% identical to a HCDRl sequence in the sequence listing.
- the antibody is according to any other aspect herein.
- nucleic acid of aspect 52 comprising a nucleotide sequence that is 100% identical to a HCDRl sequence in the sequence listing, except for 1, 2 or 3 nucleotide substitutions, wherein each substitution produces no amino acid change or produces a conservative amino acid change (i.e., the nucleotide substitution is a synonymous substitution) in the corresponding protein sequence.
- each substitution produces no amino acid change or produces a conservative amino acid change (i.e., the nucleotide substitution is a synonymous substitution) in the corresponding protein sequence.
- the skilled person will be familiar with conservative amino acid changes.
- nucleic acid of aspect 52 comprising a nucleotide sequence that is 100% identical to a HCDRl sequence in the sequence listing, except for 1, 2, 3, 4, 5, 6 or 7 synonymous nucleotide substitutions and no, 1, 2 or 3 nucleotide substitutions that produce conservative amino acid changes in the corresponding protein sequence.
- the nucleic acid of aspect 54 comprising a nucleotide sequence that is at least 80, 85, 90, 95, 96, 97, 98 or 99% identical to or is 100% identical to a VH domain nucleotide sequence in the sequence listing.
- nucleic acid of aspect 54 comprising a nucleotide sequence that is 100% identical to a VH domain nucleotide sequence in the sequence listing, except for 1, 2 or 3 nucleotide substitutions, wherein each substitution produces no amino acid change or produces a conservative amino acid change (i.e., the nucleotide substitution is a synonymous substitution) in the corresponding protein sequence.
- each substitution produces no amino acid change or produces a conservative amino acid change (i.e., the nucleotide substitution is a synonymous substitution) in the corresponding protein sequence.
- the skilled person will be familiar with conservative amino acid changes.
- nucleic acid of aspect 54 comprising a nucleotide sequence that is 100% identical to a VH domain nucleotide sequence in the sequence listing, except for 1, 2, 3, 4, 5, 6 or 7 synonymous nucleotide substitutions and no, 1, 2 or 3 nucleotide substitutions that produce conservative amino acid changes in the corresponding protein sequence.
- nucleic acid of aspect 54 or 55 comprising a nucleotide sequence that is at least 80, 85, 90, 95, 96, 97, 98 or 99% identical to or is 100% identical to a VL domain nucleotide sequence in the sequence listing.
- nucleic acid of aspect 54 or 55 comprising a nucleotide sequence that is 100% identical to a VL domain nucleotide sequence in the sequence listing, except for 1, 2 or 3 nucleotide substitutions, wherein each substitution produces no amino acid change or produces a conservative amino acid change (i.e., the nucleotide substitution is a synonymous substitution) in the corresponding protein sequence.
- each substitution produces no amino acid change or produces a conservative amino acid change (i.e., the nucleotide substitution is a synonymous substitution) in the corresponding protein sequence.
- the skilled person will be familiar with conservative amino acid changes.
- nucleic acid of aspect 54 or 55 comprising a nucleotide sequence that is 100% identical to a VL domain nucleotide sequence in the sequence listing, except for 1, 2, 3, 4, 5, 6 or 7 synonymous nucleotide substitutions and no, 1, 2 or 3 nucleotide substitutions that produce conservative amino acid changes in the corresponding protein sequence.
- a vector e.g., a mammalian expression vector
- the vector is a yeast vector, e.g., a Saccharomyces or Pichia vector.
- a host comprising the nucleic acid of any one of aspects 48 to 58 or the vector of aspect 59.
- the host is a mammalian (e.g., human, e.g., CHO or HEK293) cell line or a yeast or bacterial cell line.
- hOX40 receptor expressed by human T-cells binding of hOX40 receptor expressed by human T-cells with endothelial cell expressed hOX40L.
- the human is suffering from or at risk of asthma and the antibody or fragment is for decreasing IgE in the human, thereby treating, preventing or reducing asthma in the human.
- the method comprises administering to said human a therapeutically effective amount of an antibody or fragment that specifically binds to hOX40L
- the method of the invention treats or prevents said disease or condition in the human.
- a "therapeutically effective amount" of the antibody or fragment is that amount (administered in one or several doses, which may be spaced in time, e.g., substantially monthly administration) that is effective to bring about said treatment or prevention. This will be readily apparent to the skilled person and may vary according to the particular human patient and disease or condition being addressed.
- the human is suffering from or at risk of asthma and the antibody or fragment decreases IgE in the human, thereby treating, preventing or reducing asthma in the human.
- intestinal cell or airway (e.g., lung) cell damage is a symptom or cause of said disease or condition in humans.
- the epithelial cells comprise cells selected from the group consisting of gastrointestinal cells, colon cells, intestinal cells, ocular cells and airway (e.g., lung) epithelial cells. In another embodiment, the epithelial cells comprise cells selected from the group consisting of gastrointestinal cells, colon cells, intestinal cells and ocular cells. In a further embodiment, the epithelial cells comprise ocular cells.
- any one of aspects 61 to 68 wherein the human is suffering from or at risk of an inflammatory bowel disease (IBD), allogenic transplant rejection, graft-versus-host disease (GvHD), uveitis, pyoderma gangrenosum, giant cell arteritis, Schnitzler syndrome, noninfectious scleritis, diabetes or airway inflammation and said method treats or prevents IBD, allogenic transplant rejection, GvHD, uveitis, pyoderma gangrenosum, giant cell arteritis,
- the human is suffering from or at risk of a hOX40L-mediated disease or condition selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic transplant rejection, graft- versus-host disease (GvHD), ulcerative colitis, systemic lupus erythematosus (SLE), diabetes, uveitis, ankylosing spondylitis, contact hypersensitivity, multiple sclerosis and atherosclerosis, in particular GvHD.
- a hOX40L-mediated disease or condition selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic transplant rejection, graft- versus-host disease (GvHD), ulcerative colitis, systemic lupus ery
- the disease or condition is selected from the group consisting of an inflammatory bowel disease (IBD), Chrohn's disease, rheumatoid arthritis, psoriasis, bronchiolitis, gingivitis, transplant rejection, allogenic transplant rejection, graft-versus-host disease (GvHD), asthma, adult respiratory distress syndrome (ARDS), septic shock, ulcerative colitis, Sjorgen's syndrome, airway inflammation, systemic lupus erythematosus (SLE), diabetes, contact hypersensitivity, multiple sclerosis and atherosclerosis.
- IBD inflammatory bowel disease
- Chrohn's disease rheumatoid arthritis
- psoriasis psoriasis
- bronchiolitis gingivitis
- transplant rejection transplant rejection
- allogenic transplant rejection transplant rejection
- graft-versus-host disease GvHD
- asthma adult respiratory distress syndrome
- ARDS adult respiratory distress syndrome
- SLE systemic lupus erythematosus
- the disease or condition is selected from the group consisting of an inflammatory bowel disease (IBD), Chrohn's disease, rheumatoid arthritis, psoriasis, bronchiolitis, gingivitis, transplant rejection, allogenic transplant rejection, graft-versus-host disease (GvHD), asthma, adult respiratory distress syndrome (ARDS), septic shock, ulcerative colitis, Sjorgen's syndrome, airway inflammation, systemic lupus erythematosus (SLE), uveitis, pyoderma gangrenosum, giant cell arteritis, Schnitzler syndrome, non-infectious scleritis, diabetes, contact hypersensitivity, multiple sclerosis and atherosclerosis.
- IBD inflammatory bowel disease
- Chrohn's disease rheumatoid arthritis
- psoriasis psoriasis
- bronchiolitis gingivitis
- transplant rejection transplant rejection
- allogenic transplant rejection transplant rejection
- the human is suffering from or at risk of a hOX40L-mediated disease or condition selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic transplant rejection, graft- versus-host disease (GvHD), ulcerative colitis, systemic lupus erythematosus (SLE), diabetes, uveitis, ankylosing spondylitis, contact hypersensitivity, multiple sclerosis and atherosclerosis, in particular GvHD.
- a hOX40L-mediated disease or condition selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic transplant rejection, graft- versus-host disease (GvHD), ulcerative colitis, systemic lupus ery
- the disease or condition is an OX40L-mediated disease or condition disclosed in US7812133 or EP1791869.
- the disease or condition is an inflammatory or autoimmune disease or condition.
- the disease or condition is transplant rejection.
- inflammatory disease or condition refers to pathological states resulting in inflammation, for example caused by neutrophil chemotaxis.
- disorders include inflammatory skin diseases including psoriasis; responses associated with inflammatory bowel disease (such as Crohn's disease and ulcerative colitis); ischemic reperfusion; adult respiratory distress syndrome; dermatitis; meningitis; encephalitis; uveitis; autoimmune diseases such as rheumatoid arthritis, Sjorgen's syndrome, vasculitis; diseases involving leukocyte diapedesis; central nervous system (CNS) inflammatory disorder, multiple organ injury syndrome secondary to septicaemia or trauma; alcoholic hepatitis, bacterial pneumonia, antigen-antibody complex mediated diseases; inflammations of the lung, including pleurisy, alveolitis, vasculitis, pneumonia, chronic bronchitis, bronchiectasis, and cystic fibrosis; etc.
- the preferred indications are bacterial pneumonia and inflammatory
- the disease or condition is cancer.
- the disease is uveitis, such as systemic uveitis or autoimmune/non-infectious uveitis.
- the antibodies of any of the aspects, configurations, examples or embodiments described herein optionally apply mutatis mutandis to these anitbodies, e.g the antibody may be a human antibody or chimeric antibody having functional features as described herein.
- Competition may be determined as described in any aspect, embodiment, example or configuration described herein, e.g. as determined by SPR, ELISA, HTRF or FACS.
- the antibody or fragment competes with the variable regions of 02D10
- the antibody or fragment competes with 02D10 IgG4-PE having a heavy chain amino acid sequence of SEQ ID No:62 and a light chain amino acid sequence of SEQ ID No:64.
- the ability of an antibody or fragment to compete for binding to hOX40L with the antibody 02D10 may be determined by SPR (as described herein) using an IgG4-PE antibody having a heavy chain amino acid sequence of SEQ ID No:62 and a light chain amino acid sequence of SEQ ID No:64 as the reference 02D10 antibody.
- the antibody or fragment additionally or alternatively competes with 10A7.
- the antibody or fragment competes with the variable regions of 10A7 (e.g. competes with an antibody comprising the heavy chain variable region of SEQ ID No: 2 and the light chain variable region of SEQ ID No: 16).
- the antibody or fragment competes with 02D10 IgG4-PE having a heavy chain amino acid sequence of SEQ ID No:30 and a light chain amino acid sequence of SEQ ID No:32.
- the amino acid is any naturally-occurring amino acid.
- X is P or G. In an embodiment, X is selected from P, N, A or G. In another embodiment, X is selected from P, G or N. In another embodiment, X is selected from P, G or A.
- An antibody or a fragment thereof that specifically binds to hOX40L and competes for binding to said hOX40L with the antibody 02D10, wherein the antibody or fragment comprises a VH domain which comprises the HCDR3 sequence of SEQ ID NO:40 or 46 or the HCDR3 sequence of SEQ ID NO:40 or 46 comprising less than 5 amino acid substitutions.
- the antibodies of any of the aspects, configurations, examples or embodiments described herein optionally apply mutatis mutandis to these anitbodies, e.g the antibody may be a human antibody or chimeric antibody having functional features as described herein.
- Competition may be determined as described in any aspect, embodiment, example or configuration described herein, e.g. as determined by SPR, ELISA, HTRF or FACS.
- the HCDR3 sequence of SEQ ID NO:40 or 46 comprises less than 4 amino acid substitutions (i.e. 3 or fewer). In an embodiment, the HCDR3 sequence of SEQ ID NO:40 or 46 comprises less than 3 amino acid substitutions (i.e. 2 or 1 substitutions). In an embodiment, the HCDR3 sequence of SEQ ID NO:40 or 46 comprises less than 2 amino acid substitutions (i.e. one substitution).
- the antibody or fragment competes with the variable regions of 02D10 (e.g. competes with an antibody comprising the heavy chain variable region of SEQ ID No: 34 and the light chain variable region of SEQ ID No:48). In another embodiment, the antibody or fragment competes with 02D10 IgG4-PE having a heavy chain amino acid sequence of SEQ ID No:62 and a light chain amino acid sequence of SEQ ID No:64.
- the antibody or fragment additionally or alternatively competes with 10A7.
- the antibody or fragment competes with the variable regions of 10A7 (e.g. competes with an antibody comprising the heavy chain variable region of SEQ ID No: 2 and the light chain variable region of SEQ ID No: 16).
- the antibody or fragment competes with 02D10 IgG4-PE having a heavy chain amino acid sequence of SEQ ID No:30 and a light chain amino acid sequence of SEQ ID No:32.
- VH domain comprising a HCDR3 of from 16 to 27 amino acids and which is derived from the recombination of a human VH gene segment, a human D gene segment and a human JH gene segment, wherein the human JH gene segment is IGHJ6 (eg. IGHJ6*02).
- the human JH gene segment is selected from IGHJ6*01, IGHJ6*02, IGHJ6*03 and IGHJ6*04. In another embodiment, the human JH gene segment is selected from IGHJ6*01, IGHJ6*02 and IGHJ6*04. In another embodiment, the JH gene segment is IGHJ6*02.
- the human VH gene segment is IGHV3-23, for example selected from IGHV3-23*01, IGHV3-23*02, IGHV3-23*03, IGHV3-23*04 or IGHV3-23*05.
- the human VH gene segment is IGHV3-23*01 or IGHV3-23*04, in particular IGHV3- 23*04.
- the human DH gene segment is IGHD3-10, for example selected from IGHD3-10*01 or IGHD3-10*02. In one embodiment, the human DH gene segment is IGHD3- 10*01. In one embodiment, the human DH gene segment is IGHD3-10*02.
- the HCDR1 sequence of SEQ ID NO:36 or 42 comprises less than 3 amino acid substitutions (i.e. 2 or 1 substitutions). In an embodiment, the HCDR1 sequence of SEQ ID NO:36 or 42 comprises less than 2 amino acid substitutions (i.e. one substitution).
- the HCDR2 sequence of SEQ ID NO:38 or 44 comprises less than 4 amino acid substitutions (i.e. 3 or fewer). In an embodiment, the HCDR2 sequence of SEQ ID NO:38 or 44 comprises less than 3 amino acid substitutions (i.e. 2 or 1 substitutions). In an embodiment, the HCDR2 sequence of SEQ ID NO:38 or 44 comprises less than 2 amino acid substitutions (i.e. one substitution).
- the heavy chain variable domain amino acid sequence is at least 85%, at least 90%, at least 95%, least 96% at least 97% at least 98% or at least 99% identical to SEQ ID NO:34.
- the antibody or fragment according to any one of aspects 73 to 80 comprising a VL domain which comprises the LCDRl sequence of SEQ ID NO: 54 or 60, or the LCRD3 sequence of SEQ ID NO: 54 or 60 comprising less than 5 amino acid substitutions.
- the LCRD3 sequence of SEQ ID NO:54 or 60 comprises less than 4 amino acid substitutions (i.e. 3 or fewer). In an embodiment, the LCRD3 sequence of SEQ ID NO;54 or 60 comprises less than 3 amino acid substitutions (i.e. 2 or 1 substitutions). In an embodiment, the LCRD3 sequence of SEQ ID NO:54 or 60 comprises less than 2 amino acid substitutions (i.e. one substitution). 82.
- the LCDRl sequence of SEQ ID NO: 54 or 60 comprises less than 3 amino acid substitutions (i.e. 2 or 1 substitutions). In an embodiment, the LCDRl sequence of SEQ ID NO:54 or 60 comprises less than 2 amino acid substitutions (i.e. one substitution).
- the light chain variable domain amino acid sequence is at least 85%, at least 90%, at least 95%, least 96% at least 97% at least 98% or at least 99% identical to SEQ ID NO:48.
- the VL domain is a kappa VL domain.
- the kappa VL domain is derived from the recombination of a human VL gene segment, and a human JL gene segment, wherein the human VL gene segment is IGKVlD-39.
- the VL gene segment is IGKV1D-39*01.
- the human JL gene segment is IGKJ1 or IGKJ3. In another embodiment, the JL gene segment is IGKJ1*01. In another embodiment, the JL gene segment is 1003*01.
- the conservative amino acid substitutions are as described herein.
- the substitution may be of Y with F, T with S or K, P with A, E with D or Q, N with D or G, R with K, G with N or A, T with S or K, D with N or E, I with L or V, F with Y, S with T or A, R with K, G with N or A, K with R, A with S, K or P.
- the conservative amino acid substitutions may be wherein Y is substituted with F, T with A or S, I with L or V, W with Y, M with L, N with D, G with A, T with A or S, D with N, I with L or V, F with Y or L, S with A or T and A with S, G, T or V.
- the antibody or fragment according to any one of aspects 73 to 87, wherein the antibody or fragment comprises a constant region, e.g. an IgG4 constant region, optionally wherein the constant region is IgG4-PE (Seq ID No: 128).
- the antibody of fragment comprises a human gamma 4 constant region.
- the heavy chain constant region does not bind Fc- ⁇ receptors, and e.g. comprises a Leu235Glu mutation (i.e. where the wild type leucine residue is mutated to a glutamic acid residue).
- the heavy chain constant region comprises a Ser228Pro mutation to increase stability.
- a hOX40L-mediated disease or condition selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic transplant rejection, graft-versus-host disease (GvHD), ulcerative colitis, systemic lupus erythematosus (SLE), diabetes, uveitis, ankylosing spondylitis, contact hypersensitivity, multiple sclerosis or atherosclerosis, in particular GvHD.
- IBD inflammatory bowel disease
- Crohn's disease Crohn's disease
- rheumatoid arthritis transplant rejection
- allogenic transplant rejection graft-versus-host disease
- GvHD graft-versus-host disease
- Ulative colitis systemic lupus erythematosus
- SLE systemic lupus erythematosus
- diabetes uveitis
- a hOX40L mediated disease or condition in the human selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant/host rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic transplant rejection, graft-versus-host disease (GvHD), ulcerative colitis, systemic lupus erythematosus (SLE), diabetes, uveitis, ankylosing spondylitis, contact hypersensitivity, multiple sclerosis or atherosclerosis, in particular GvHD.
- IBD inflammatory bowel disease
- Crohn's disease rheumatoid arthritis
- transplant rejection allogenic transplant rejection
- GvHD graft-versus-host disease
- Ulative colitis systemic lupus erythematosus
- SLE systemic lupus erythematosus
- diabetes uveitis
- ankylosing spondylitis contact hypersensitivity
- IBD inflammatory bowel disease
- Crohn's disease rheumatoid arthritis
- transplant rejection allogenic transplant rejection
- GvHD
- the antibody or fragment is capable of treating or preventing GvHD.
- the prophylaxis prevents the onset of the disease or condition or of the symptoms of the disease or condition. In one embodiment, the prophylactic treatment prevents the worsening, or onset, of the disease or condition. In one embodiment, the prophylactic treatment prevents the worsening of the disease or condition.
- said antibody is administered intravenously. In another embodiment, said antibody is administered at a dose of about 5-10 mg/kg (e.g. at about 8 mg/kg). In another embodiment, said antibody is administered at a dose selected from about 0.1 mg/kg, about 0.5 mg/kg, about 1 mg/kg, 3 mg/kg, 5 mg/kg, about 10 mg/kg, about 15 mg/kg, about 20 mg/kg, about 25 mg/kg, about 30 mg/kg, about 40 mg/kg, about 50 mg/kg, about 60 mg/kg, about 70 mg/kg, about 80 mg/kg about 90 mg/kg or about 100 mg/kg, in particular about 1 mg/kg, or about 3 mg/kg.
- said antibody is administered 1-4 days before transplant, e.g. 1-3 days before transplant or 1-2 days before transplant.
- said antibody is administered weekly, bi-weekly or monthly following transplant, e.g. bi-weekly.
- said antibody is administered intravenously prophylactically 1-3 days before transplant at a dose of about 5-10 mg/kg (e.g. about 8 mg/kg) and then intravenously, bi-weekly at a dose of about 5-10 mg/kg (e.g. about 8 mg/kg).
- the patient is monitored periodically post-transplant, for the presence of a biomarker predictive for the development of GvHD (e.g. acute GvHD), and the anti-OX40L antibody of the invention is administered once the biomarker levels are such that the patient is determined to be at risk of developing GvHD (e.g. acute GvHD).
- a biomarker predictive for the development of GvHD e.g. acute GvHD
- the anti-OX40L antibody of the invention is administered once the biomarker levels are such that the patient is determined to be at risk of developing GvHD (e.g. acute GvHD).
- biomarkers which may be useful as predictive biomarkers of actue GvHD may be those identified in Levine et ah, "A prognostic score for acute graft-versus-host disease based on biomarkers: a multicentre study, Lancet Haematol 2015; 2:e21-29.
- biomarkers include, but are not limited to TNFR1, ST-2
- a human antibody or fragment thereof comprising a HCDR3 of from 16 to 27 amino acids and derived from the recombination of a human VH gene segment, a human D gene segment and a human JH gene segment, wherein the human JH gene segment is IGHJ6 (e.g.
- IGHJ6*02 which specifically binds to hOX40L for treating or preventing a hOX40L-mediated disease or condition selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic transplant rejection, graft-versus-host disease (GvHD), ulcerative colitis, systemic lupus erythematosus (SLE), diabetes, uveitis, ankylosing spondylitis, contact hypersensitivity, multiple sclerosis or atherosclerosis, in particular GvHD (e.g. wherein the antibody is for the prevention of GvHD).
- a hOX40L-mediated disease or condition selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic
- a human antibody or fragment thereof comprising a HCDR3 of from 16 to 27 amino acids and derived from the recombination of a human VH gene segment, a human D gene segment and a human JH gene segment, wherein the human JH gene segment is IGHJ6 (e.g.
- IGHJ6*02 which specifically binds to hOX40L in the manufacture of a medicament for administration to a human for treating or preventing a hOX40L mediated disease or condition in the human selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic transplant rejection, graft-versus-host disease (GvHD), ulcerative colitis, systemic lupus erythematosus (SLE), diabetes, uveitis, ankylosing spondylitis, contact hypersensitivity, multiple sclerosis or atherosclerosis, in particular GvHD.
- IBD inflammatory bowel disease
- Crohn's disease Crohn's disease
- rheumatoid arthritis transplant rejection
- allogenic transplant rejection graft-versus-host disease
- GvHD graft-versus-host disease
- Ulative colitis systemic l
- the human JH gene segment is selected from IGHJ6*01, IGHJ6*02, IGHJ6*03 and IGHJ6*04. In another embodiment of any one of aspects 95 to 97, the human JH gene segment is selected from IGHJ6*01, IGHJ6*02 and IGHJ6*04. In another embodiment of any one of aspects 95 to 97, the JH gene segment is IGHJ6*02.
- the human VH gene segment is
- IGHV3-23 for example selected from IGHV3-23*01, IGHV3-23*02, IGHV3-23*03, IGHV3-23*04 or IGHV3-23*05.
- the human VH gene segment is IGHV3-23*01 or IGHV3-23*04, in particular IGHV3-23*04.
- the human DH gene segment is IGHD3-10, for example selected from IGHD3-10*01 or IGHD3-10*02. In one embodiment of any one of aspects 95 to 97, the human DH gene segment is IGHD3-10*01. In one embodiment of any one of aspects 95 to 97, the human DH gene segment is IGHD3-10*02.
- the antibody is capable of treating or preventing GvHD.
- the antibody or fragment is used for the treatment or prevention of a disease other than GvD, but the antibody or fragment is capable of treating or preventing GvHD.
- the VL domain is a kappa VL domain.
- the kappa VL domain is derived from the recombination of a human VL gene segment, and a human JL gene segment, wherein the human VL gene segment is IGKV1D-39.
- the VL gene segment is IGKV1D-39*01.
- the human JL gene segment is IGKJ1. In another embodiment, the JL gene segment is IGKJ1*01. In a further embodiment, the human JL gene segment is IGKJ3. In another embodiment, the JL gene segment is IGKJ3*01 99.
- the antibody or fragment according to any one of aspects 73 to 89, 98, 101 or 102, or the antibody or fragment use or method according to any one of aspects 90 to 98, wherein the antibody or fragment enables greater than 80% stem cell donor chimerism by day 12 in a Rhesus macaque model of haploidentical hematopoietic stem cell transplantation, optionally wherein the antibody is for the prevention of GvHD.
- an antibody or fragment use or method according to any one of aspects 95 to 98, wherein the antibody or fragment is for treating or preventing transplant rejection (e.g. GvHD) in a human by enabling greater than 80% stem cell donor chimerism by day 12 in said human following donor human hematopoietic stem cell transplantation.
- transplant rejection e.g. GvHD
- an antibody or fragment according to any one of aspects 73 to 89, 98, 101 or 102, wherein the antibody or fragment enables greater than 80% stem cell donor chimerism by day 12 in a Rhesus macaque model of haploidentical hematopoietic stem cell transplantation.
- the chimerism is T cell (CD3 + /CD20 " ) chimerism. In another embodiment, the chimerism is peripheral blood chimerism. In another embodiment, the chimerism is peripheral blood or T cell (CD3 + /CD20 " ) chimerism.
- the stem cell donor chimerism (e.g. the peripheral blood or T cell (CD3 + /CD20 " ) chimerism) is determined using divergent donor- and recipient-specific MHC-linked microsatellite markers, by comparing peak heights of the donor- and recipient-specific amplicons.
- stem cell donor chimerism is determined as described in Kean, LS, et a/., "Induction of chimerism in rhesus macaques through stem cell transplant and costimulation blockade- based immunosuppression" , Am J Transplant. 2007 Feb;7(2):320-35.
- stem cell donor chimerism is determined as described in Example 7.
- the Rhesus macaque model of haploidentical haematopoietic stem cell is performed by the transplant (HSCT) recipient animals undergoing a conditioning procedure together with anti-OX40L antibody administration, followed by infusion of a peripheral blood product isolated from a half-sibling donor animal, following which animals continue to receive weekly doses of the anti- OX40L antibody of the invention, and blood samples are taken and analysed for chimerism.
- transplant transplant
- recipient animals receive a conditioning radiation dose of 1020 cGy in 4 dose fractions over 2 days (experimental Day -2 and Day -1) to ablate the host haematopoietic system before intravenous administration of an anti-OX40L antibody of the invention (Day -2, with subsequent intravenous doses on Days 5, 12, 19, 26, 33, 40, 47) and transplant of white blood cell- and stem cell-enriched peripheral blood from an MHC half-matched (half-sibling) donor animal to reconstitute the recipient's immune system, together with provision of continuous supportive care, blood sampling and monitoring for signs of GVHD.
- the antibody or fragment, use or method is for the prevention of GvHD.
- the anti-hOX40L antibody of the invention is administered prophylactically.
- the prophylactic treatment prevents the worsening or onset of the disease or condition.
- said antibody is administered intravenously. In another embodiment, said antibody is administered at a dose of about 5-10 mg/kg (e.g. at about 8 mg/kg). In another embodiment, said antibody is administered intravenously. In another embodiment, said antibody is administered at a dose of about 5-10 mg/kg (e.g. at about 8 mg/kg).
- said antibody is administered at a dose selected from about 0.1 mg/kg, about 0.5 mg/kg, about 1 mg/kg, 3 mg/kg, 5 mg/kg, about 10 mg/kg, about 15 mg/kg, about 20 mg/kg, about 25 mg/kg, about 30 mg/kg, about 40 mg/kg, about 50 mg/kg, about 60 mg/kg, about 70 mg/kg, about 80 mg/kg about 90 mg/kg or about 100 mg/kg, in particular about 1 mg/kg, or about 3 mg/kg.
- said antibody is administered 1-4 days before transplant, e.g. 1-3 days before transplant or 1-2 days before transplant.
- said antibody is administered weekly, bi-weekly or monthly following transplant, e.g. bi-weekly.
- said antibody is administered intravenously prophylactically 1-3 days before transplant at a dose of about 5-10 mg/kg (e.g. about 8 mg/kg) and then intravenously, bi-weekly at a dose of about 5-10 mg/kg (e.g. about 8 mg/kg).
- the patient is monitored periodically post-transplant, for the presence of a biomarker predictive for the development of GvHD (e.g. acute GvHD), and the anti-OX40L antibody of the invention is administered once the biomarker levels are such that the patient is determined to be at risk of developing GvHD (e.g. acute GvHD).
- a biomarker predictive for the development of GvHD e.g. acute GvHD
- the anti-OX40L antibody of the invention is administered once the biomarker levels are such that the patient is determined to be at risk of developing GvHD (e.g. acute GvHD).
- biomarkers which may be useful as predictive biomarkers of actue GvHD may be those identified in Levine et al., "A prognostic score for acute graft-versus-host disease based on biomarkers: a multicentre study", Lancet Haematol 2015; 2:e21-29.
- biomarkers include, but are not limited to TNFR1, ST-2,
- the HSCT model is conducted as described in Miller, Weston P., et al. "GVHD after haploidentlcal transplantation: a novel, MHC-defined rhesus macaque model identifies CD28 ⁇ CDS 1' T cells as a reservoir of breakthrough T-cell proliferation during costimulation blockade and sirolimus-based immunosuppression.” Blood, 116, 24(2010): 5403-5418.
- the HSCr model is carried out as described in Example 7.
- the expression level is greater than l.Og/L, greater than l.lg/L, greater than 1.2g/L, greater than 1.3g/L or greater than 1.4g/L.
- an antibody or fragment according to any one of aspects 73 to 89, 98, 99 or 101, or an antibody or fragment, use or method according to any one of aspects 90 to 101, wherein the antibody or fragment is for treating or preventing transplant rejection in a human by maintaining a na ' ive population of donor CD4 + T cells of >20% of total CD4 + T cell population at day 12 in said human following donor human hematopoietic stem cell transplantation
- the HSCT model is as described in any embodiment contemplated hereinabove, e.g. as described in connection with aspect 99.
- the na ' ive population is measured by evaluating the relative proportion of specific T cell phenotypes using flow cytometry where cell subsets are identified by labelling with fluorescent antibody probes and whereby na ' ive CD4 or CD8 T cells are labelled CD4 + /CD28 + /CD95- or CD8 + /CD28 + /CD95 " , respectively, central memory CD4 or CD8 T cells are labelled CD4 + /CD28 + /CD95 + or CD8 + /CD28 + /CD95 + , respectively, and effector memory CD4 or CD8 T cells are labelled CD4 + /CD28 " /CD95 + or CD8 + /CD28 " /CD95 + , respectively.
- CCR5 receptor antagonists e.g. maraviroc
- anti-CD40L antibodies e.g. natalizumab
- anti-VLA4 antibodies e.g. natalizumab
- anti-LFAl antibodies fludarabine
- anti-CD52 antibodies e.g. alemtuzumab
- anti-CD45 antibodies cyclophosphamide
- anti-thymocyte globulins anti- complement C5 antibodies (e.g. eculizumab), anti-a4b7 integrin antibodies (e.g. vedolizumab), anti-IL6 antibodies (e.g. tocilizumab), anti-IL2R antibodies (e.g. basilixumab), anti-CD25 antibodies (e.g.
- daclizumab anti-T Fa / TNFa-Fc molecules
- etanercept e.g. etanercept, adalimumab, infliximab, golimumab or certolizumab pegol
- Vorinostat in particular rapamycin (sirolimus), racrolimus, ciclosporin, corticosteroids (e.g. methylprednisolone), methotrexate, mycophenolate mofetil, anti-CD28 antibodies, CTLA4-Fc molecules (e.g. abatacept), anti-CD40L antibodies, anti- LFAl antibodies, anti-CD52 antibodies (e.g. alemtuzumab), cyclophosphamide and anti-thymocyte globulins.
- rapamycin sirolimus
- racrolimus racrolimus
- ciclosporin corticosteroids
- methotrexate mycophenolate mofetil
- the further therapeutic agent is an anti-inflammatory drug.
- the anti-inflammatory drug is independently selected from the group consisting of corticosteroids (e.g. methylprednisolone), anti-IL12/IL-23 antibodies (e.g. ustekinumab), anti-VLA4 antibodies (e.g. natalizumab), anti-LFAl antibodies, anti-complement C5 antibodies (e.g. eculizumab), anti-a4b7 integrin antibodies (e.g. vedolizumab), anti-IL6 antibodies (e.g. tocilizumab), anti-IL2R antibodies (e.g.
- the anti-inflammatory drug is independently selected from the group consisting of corticosteroids (e.g. methylprednisolone) and anti-LFAl antibodies.
- a pharmaceutical composition comprising an antibody of fragment as defined in any one of aspects 73 to 89, 98, 99, 101 or 102 and a pharmaceutically acceptable excipient, diluent or carrier and optionally further comprising a further therapeutic agent independently selected from the group consisting of rapamycin (sirolimus), racrolimus, ciclosporin, corticosteroids (e.g. methylprednisolone), methotrexate, mycophenolate mofetil, anti-CD28 antibodies, anti-IL12/IL- 23 antibodies (e.g. ustekinumab), anti-CD20 antibodies (e.g.rituximab), anti-CD30 antibodies (e.g.
- CTLA4-Fc molecules e.g. abatacept
- CCR5 receptor antagonists e.g. maraviroc
- anti-CD40L antibodies anti-VLA4 antibodies (e.g. natalizumab), anti-LFAl antibodies, fludarabine, anti-CD52 antibodies (e.g. alemtuzumab), anti-CD45 antibodies, cyclophosphamide, anti- thymocyte globulins, anti-complement C5 antibodies (e.g. eculizumab), anti-a4b7 integrin antibodies (e.g. vedolizumab), anti-IL6 antibodies (e.g. tocilizumab), anti-IL2R antibodies (e.g.
- anti-CD25 antibodies e.g. daclizumab
- anti-TNFa / TNFa-Fc molecules e.g. etanercept, adalimumab, infliximab, golimumab or certolizumab pegol
- Vorinostat in particular rapamycin (sirolimus), racrolimus, ciclosporin, corticosteroids (e.g. methylprednisolone), methotrexate, mycophenolate mofetil
- anti-CD28 antibodies CTLA4-Fc molecules (e.g. abatacept)
- anti-CD40L antibodies anti-LFAl antibodies
- anti-CD52 antibodies e.g. alemtuzumab
- cyclophosphamide anti-thymocyte globulins.
- compositions The pharmaceutically acceptable excipients, diluents or carriers as described herein apply mutatis mutandis to these compositions.
- the further therapeutic agent is an anti-inflammatory drug.
- the anti-inflammatory drug is independently selected from the group consisting of corticosteroids (e.g. methylprednisolone), anti-IL12/IL-23 antibodies (e.g. ustekinumab), anti-VLA4 antibodies (e.g. natalizumab), anti-LFAl antibodies, anti-complement C5 antibodies (e.g. eculizumab), anti-a4b7 integrin antibodies (e.g. vedolizumab), anti-IL6 antibodies (e.g. tocilizumab), anti-IL2R antibodies (e.g.
- the anti-inflammatory drug is independently selected from the group consisting of corticosteroids (e.g. methylprednisolone) and anti-LFAl antibodies.
- a hOX40L-mediated condition or disease selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic transplant rejection,
- hOX40L-mediated diseases of any of the aspects, configurations, examples or embodiments described herein optionally apply mutatis mutandis to this combination.
- a pharmaceutical composition according to aspect 105 or aspect 106 in combination with, or kit according to aspect 106 comprising a label or instructions for use to treat and/or prevent said disease or condition in a human; optionally wherein the label or instructions comprise a marketing authorisation number (e.g., an FDA or EMA authorisation number); optionally wherein the kit comprises an IV or injection device that comprises the antibody or fragment.
- a marketing authorisation number e.g., an FDA or EMA authorisation number
- the kit comprises an IV or injection device that comprises the antibody or fragment.
- a nucleic acid according to aspect 109 comprising a nucleotide sequence that is at least 80% identical to the sequence of SEQ ID NO: 33 and/or SEQ ID NO: 47.
- the nuecleotide sequence is at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical or at least 99% identical to the sequence of SEQ ID NO: 33 and/or SEQ ID NO: 47.
- a host comprising the nucleic acid of any one of aspects 108 to 111 or the vector of claim 112.
- the inventors devised a set of criteria that is particularly useful for identifying antibodies and fragments of the invention, these criteria being :-
- the antibody or fragment meets criteria (a), (b) and (c).
- criterion (a) is set so that the antibody or fragment shows ⁇ 70% receptor binding by FACS to hOX40L expressed by CHO-S cells.
- criterion (a) is set so that the antibody or fragment shows ⁇ 90% of receptor binding to OX40L in the HTRF assay. In an example, criterion (a) is set so that the antibody or fragment shows at least a 20% effect in the HTRF assay.
- OX40 is used in criterion (b).
- assaying or testing of an antibody or fragment of the invention is carried out at or substantially at pH7 (e.g., for in vitro tests and assays,) and at or substantially at rtp.
- the antibody or fragment specifically binds hOX40L with an affinity (apparent affinity, Kd) of less than 1 microM, 1000 nM to 100 nM, 100 nM to 10 nM, 10 nM to 1 nM, 1000 pM to 500 pM, 500 pM to 200 pM, less than 200 pM, 200 pM to 150 pM, 200 pM to 100 pM, 100 pM to 10 pM, 10 pM to 1 pM, e.g., in the range of ImM to IpM (e.g., ImM to ⁇ ; ⁇ to lOOpM; InM to lOpM; or lOOpM to IpM) as determined by SPR, e.g., under SPR conditions disclosed herein).
- Kd apparent affinity
- the antibody or fragment specifically binds rhesus monkey OX40L with an affinity (apparent affinity, Kd) of less than 1 microM, 1000 nM to 100 nM, 100 nM to 10 nM, 10 nM to 1 nM, 1000 pM to 500 pM, 500 pM to 200 pM, less than 200 pM, 200 pM to 150 pM, 200 pM to 100 pM, 100 pM to 10 pM, 10 pM to 1 pM, e.g., in the range of ImM to IpM (e.g., ImM to ⁇ ; ⁇ to lOOpM; InM to lOpM; or lOOpM to IpM) as determined by SPR, e.g., under SPR conditions disclosed herein).
- an affinity apparent affinity, Kd
- binding measurements can be made using a variety of binding assays known in the art, e.g., using surface plasmon resonance (SPR), such as by BiacoreTM or using the ProteOn XPR36TM (Bio-Rad®), using KinExA® (Sapidyne Instruments, Inc), or using ForteBio Octet (Pall ForteBio Corp.).
- SPR surface plasmon resonance
- OX40L binding ability, specificity and affinity can be determined by any routine method in the art, e.g., by surface plasmon resonance (SPR).
- SPR surface plasmon resonance
- Kd is intended to refer to the equilibrium dissociation constant of a particular antibody-antigen interaction.
- the surface plasmon resonance (SPR) is carried out at 25°C. In another embodiment, the SPR is carried out at 37°C.
- the SPR is carried out at physiological pH, such as about pH7 or at pH7.6 (e.g., using Hepes buffered saline at pH7.6 (also referred to as HBS-EP)).
- physiological pH such as about pH7 or at pH7.6
- HBS-EP Hepes buffered saline at pH7.6
- the SPR is carried out at a physiological salt level, e.g., 150mM NaCI. In one embodiment, the SPR is carried out at a detergent level of no greater than 0.05% by volume, e.g., in the presence of P20 (polysorbate 20; e.g., Tween-20TM) at 0.05% and EDTA at 3mM.
- a physiological salt level e.g. 150mM NaCI.
- the SPR is carried out at a detergent level of no greater than 0.05% by volume, e.g., in the presence of P20 (polysorbate 20; e.g., Tween-20TM) at 0.05% and EDTA at 3mM.
- the SPR is carried out at 25°C or 37°C in a buffer at pH7.6, 150mM NaCI, 0.05% detergent (e.g., P20) and 3mM EDTA.
- the buffer can contain lOmM Hepes.
- the SPR is carried out at 25°C or 37°C in HBS-EP.
- HBS-EP is available from Teknova Inc (California; catalogue number H8022).
- the affinity of the antibody or fragment is determined using SPR by
- SPR surface plasmon resonance
- Regeneration of the capture surface can be carried out with lOmM glycine at pH1.7. This removes the captured antibody and allows the surface to be used for another interaction.
- the binding data can be fitted to 1:1 model inherent using standard techniques, e.g., using a model inherent to the ProteOn XPR36TM analysis software.
- the antibody or fragment of the invention is contained in a medical container, e.g., a vial, syringe, IV container or an injection device (e.g., an intraocular or intravitreal injection device).
- a medical container e.g., a vial, syringe, IV container or an injection device (e.g., an intraocular or intravitreal injection device).
- the antibody or fragment is in vitro, e.g., in a sterile container.
- the invention provides a kit comprising the antibody or fragment of the invention, packaging and instructions for use in treating or preventing or diagnosing in a human a disease or condition mediated by the OX40L.
- the instructions indicate that the human should be genotyped for an OX40L variant sequence of the invention before administering the antibody or fragment to the human.
- the instructions indicate that the human should be phenotyped for an OX40L variant of the invention before administering the antibody or fragment to the human.
- the human is of Chinese (e.g., Han or CHS) ethnicity and the instructions are in Chinese (e.g., Mandarin).
- the binding site(s) of the antibody or fragment are selected from a plurality (e.g., library) of binding sites.
- the plurality of binding sites comprises or consists of a plurality of 4-chain antibodies or fragments thereof, e.g., dAbs, Fabs or scFvs.
- Suitable methods for producing pluralities of binding sites for screening include phage display (producing a phage display library of antibody binding sites), ribosome display (producing a ribosome display library of antibody binding sites), yeast display (producing a yeast display library of antibody binding sites), or immunisation of a non-human vertebrate (e.g., a rodent, e.g., a mouse or rat, e.g., a VelocimouseTM, KymouseTM, XenomouseTM, Aliva MouseTM, HuMab MouseTM, OmnimouseTM, OmniratTM or MeMo MouseTM) with hOX40L or a hOX40L epitope and isolation of a repertoire of antibody-producing cells (e.g., a B-cell, plasma cell or plasmablast repertoire) and/or a repertoire of isolated antibodies, fragments or binding sites.
- a non-human vertebrate e.g., a rodent, e.g., a
- epitope is a region of an antigen that is bound by an antibody or fragment.
- Epitopes may be defined as structural or functional. Functional epitopes are generally a subset of the structural epitopes and have those residues that directly contribute to the affinity of the interaction. Epitopes may also be conformational, that is, composed of non-linear amino acids.
- epitopes may include determinants that are chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl groups, or sulfonyl groups, and, in certain embodiments, may have specific three-dimensional structural characteristics, and/or specific charge characteristics.
- isolated with reference to any aspect of the invention, e.g., an antibody or fragment, means that a subject antibody or fragment etc. (1) is free of at least some other proteins with which it would normally be found, (2) is essentially free of other proteins from the same source, e.g., from the same species, (3) is expressed by a cell from a different species, (4) has been separated from at least about 50 percent of polynucleotides, lipids, carbohydrates, or other materials with which it is associated in nature, (5) is operably associated (by covalent or noncovalent interaction) with a polypeptide with which it is not associated in nature, or (6) does not occur in nature.
- Genomic DNA, cDNA, mRNA or other RNA, of synthetic origin, or any combination thereof can encode such an isolated antibody, fragment, etc.
- the isolated antibody, fragment, etc. is substantially free from proteins or polypeptides or other contaminants that are found in its natural environment that would interfere with its therapeutic, diagnostic, prophylactic, research or other use.
- an "isolated" antibody is one that has been identified, separated and/or recovered from a component of its production environment (e.g., naturally or recombinantly).
- the isolated polypeptide is free of association with all other components from its production environment, e.g., so that the antibody has been isolated to an FDA-approvable or approved standard.
- Contaminant components of its production environment such as that resulting from recombinant transfected cells, are materials that would typically interfere with research, diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or non- proteinaceous solutes.
- the polypeptide will be purified: (1) to greater than 95% by weight of antibody as determined by, for example, the Lowry method, and in some embodiments, to greater than 99% by weight; (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain.
- Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, an isolated polypeptide or antibody will be prepared by at least one purification step.
- the invention encompasses the antibody or fragment conjugated to a therapeutic moiety
- immunoconjugate such as a cytotoxin, a chemotherapeutic drug, an immunosuppressant or a radioisotope.
- Cytotoxin agents include any agent that is detrimental to cells. Examples of suitable cytotoxin agents and chemotherapeutic agents for forming immunoconjugates are known in the art, see for example, WO 05/103081, which is incorporated by reference herein in its entirety.
- the antibodies and fragments of the present invention may be monospecific, bispecific, or multispecific.
- Multispecific mAbs may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for more than one target polypeptide. See, e.g., Tutt et a/., (1991) J. Immunol. 147:60-69.
- the human anti-hOX40L antibodies or fragments can be linked to or co-expressed with another functional molecule, e.g., another peptide or protein.
- an antibody or fragment thereof can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody or antibody fragment, to produce a bispecific or a multispecific antibody with a second binding specificity.
- An exemplary bi-specific antibody format that can be used in the context of the present invention involves the use of a first immunoglobulin (Ig) CH3 domain and a second Ig CH3 domain, wherein the first and second Ig CH3 domains differ from one another by at least one amino acid, and wherein at least one amino acid difference reduces binding of the bispecific antibody to Protein A as compared to a bi-specific antibody lacking the amino acid difference.
- the first Ig CH3 domain binds Protein A and the second Ig CH3 domain contains a mutation that reduces or abolishes Protein A binding such as an H95R modification (by IMGT exon numbering; H435R by EU numbering).
- the second CH3 may further comprise a Y96F modification (by IMGT; Y436F by EU). Further modifications that may be found within the second CH3 include: D16E, L18M, N44S, K52N, V57M, and V821 (by IMGT; D356E, L358M, N384S, K392N, V397M, and V422I by EU) in the case of IgGl antibodies; N44S, K52N, and V82I (IMGT; N384S, K392N, and V422I by EU) in the case of IgG2 antibodies; and Q15R, N44S, K52N, V57M, R69K, E79Q, and V82I (by IMGT; Q355R, N3845, K392N, V397M, R409K, E419Q, and V422I by EU) in the case of IgG4 antibodies. Variations on the bi-specific antibody format described above are contemplate
- the antibody or OX40L binding fragment thereof comprises less than six CDRs.
- the antibody or antigen binding fragment thereof comprises or consists of one, two, three, four, or five CDRs selected from the group consisting of HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3.
- the antibody or antigen binding fragment thereof comprises or consists of one, two, three, four, or five CDRs selected from the group consisting of the HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and LCDR3 sequences in the sequence listing (i.e.
- Seq ID No:4 Seq ID No: 10, Seq ID No:36, Seq ID No:42, Seq ID No:68, Seq ID No:74, Seq ID No:96 or Seq ID No: 102, in particular, Seq ID No:36 or Seq ID No:42 for HCDR1; Seq ID No:6, Seq ID No:12, Seq ID No:38, Seq ID No:44, Seq ID No:70, Seq ID No:76, Seq ID No:98 or Seq ID No: 104, in particular Seq ID No:38 or Seq ID No:44 for HCDR2; Seq ID No:8, Seq ID No: 14, Seq ID No:40, Seq ID No:46, Seq ID No:72, Seq ID No:78, Seq ID No: 100 or Seq ID No: 106, in particular Seq ID No:40 or Seq ID No:46 for HCDR3; Seq ID No: 18, Seq ID No:24, Seq ID No:50, Seq ID No
- an antibody of the invention is a fully human antibody, a monoclonal antibody, a recombinant antibody, an antagonist antibody, a hOX40L-neutralising antibody or any combination thereof or the invention provides a hOX40L binding fragment thereof.
- the antibody is a chimaeric antibody comprising human variable domains and non-human (e.g., mouse or rat or rabbit) constant domains.
- the antibody is a fully human antibody, such as a fully human monoclonal antibody, or antigen binding fragment thereof, that specifically binds to hOX40L
- the antibody is an antagonist antibody.
- the antibody is a neutralising antibody.
- the antibody or fragment is a lambda-type antibody or fragment (i.e., whose variable domains are lambda variable domains).
- the antibody or fragment also comprises lambda constant domains.
- the antibody competes (e.g., in a dose dependent manner) with OX40 or a fusion protein thereof (e.g., Fc:OX40), for binding to hOX40L, such as a cell surface- expressed hOX40L or soluble hOX40L.
- hOX40L such as a cell surface- expressed hOX40L or soluble hOX40L.
- Exemplary competitive blocking tests are provided in the Examples herein.
- nucleic acids encoding antibodies that specifically bind to a hOX40L polypeptide (e.g., a cell surface-expressed or soluble hOX40L), a hOX40L polypeptide fragment, or a hOX40L epitope.
- the nucleic acid encodes a VH chain, VL chain, VH domain, VL domain, HCDRl, HCDR2, HCDR3, LCDRl, LCDR2, and LCDR3 as disclosed in the sequence listing (i.e.
- vectors and host-cells comprising nucleic acids encoding antibodies or fragments of the invention.
- the antibody specifically binds to one or more single nucleotide polymorphism (SNP) variants of hOX40L.
- SNP single nucleotide polymorphism
- the hOX40L is a trimer of monomers.
- a method for decreasing e.g., by at least 20, 30, 40 50 or 60%, or 70%, 80%, 90%, 95% or >90%) or completely inhibiting binding of hOX40L to OX40 in a subject (e.g., a human subject), comprising administering to the subject an effective amount of an antibody or fragment thereof of the invention that specifically binds to hOX40L (e.g., a cell surface- expressed or soluble hOX40L).
- an antibody or fragment thereof of the invention that specifically binds to hOX40L (e.g., a cell surface- expressed or soluble hOX40L).
- a method of treating or preventing a hOX40L-mediated disease or condition in a subject comprising administering to the subject an effective amount of an antibody or fragment thereof of the invention that specifically binds to hOX40L (e.g., a cell surface-expressed or soluble hOX40L), wherein the disease or condition is treated or prevented by the antibody or fragment.
- the method comprises decreasing or inhibiting a hOX40L biological activity, such as secretion of one, more or all of IL-2, IL-8, TNF alpha and interferon gamma, in the subject.
- the biological activity is selected from the secretion of one, more or all of IL-2, TNF alpha and interferon gamma. In an example, the biological activity is selected from the secretion of one, more or all of IL-8, CCL20 and RANTES.
- a method of decreasing or inhibiting a hOX40L biological activity such as secretion of one, more or all of IL-2, IL-8, TNF alpha and interferon gamma, in a subject (e.g., a human subject), the method comprising administering to the subject an effective amount of an antibody or fragment thereof of the invention that specifically binds to hOX40L (e.g., a cell surface-expressed or soluble hOX40L), wherein hOX40L biological activity is decreased by the antibody or fragment.
- the biological activity is selected from the secretion of one, more or all of IL-2, TNF alpha and interferon gamma.
- the biological activity is selected from the secretion of one, more or all of IL-8, CCL20 and RANTES.
- administer refers to the act of injecting or otherwise physically delivering a substance as it exists outside the body (e.g., an anti-hOX40L antibody provided herein) into a patient, such as by mucosal, intradermal, intravenous, intramuscular delivery and/or any other method of physical delivery described herein or known in the art.
- a disease, or a symptom thereof is being treated, administration of the substance typically occurs after the onset of the disease or symptoms thereof.
- administration of the substance typically occurs before the onset of the disease or symptoms thereof.
- the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino acid or nucleic acid sequence).
- the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position.
- the determination of percent identity between two sequences can also be accomplished using a mathematical algorithm.
- a preferred, non- limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul, 1990, Proc. Natl. Acad. Sci. U.S.A. 87:2264 2268, modified as in Karlin and Altschul, 1993, Proc. Natl. Acad. Sci. U.S.A. 90:5873 5877.
- Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul et al., 1990, J. Mol. Biol. 215:403.
- Gapped BLAST can be utilized as described in Altschul et al., 1997, Nucleic Acids Res. 25:3389 3402.
- PSI BLAST can be used to perform an iterated search which detects distant relationships between molecules (Id.).
- the default parameters of the respective programs e.g., of XBLAST and NBLAST
- NCBI National Center for Biotechnology Information
- Another preferred, non- limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, 1988, CABIOS 4: 11 17.
- Such an algorithm is incorporated in the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package.
- ALIGN program version 2.0
- an "antagonist” or “inhibitor” of hOX40L refers to a ligand (e.g., antibody or fragment) that is capable of inhibiting or otherwise decreasing one or more of the biological activities of hOX40L, such as in a cell expressing hOX40L or in a cell expressing a hOX40L ligand.
- antibodies of the invention are antagonist antibodies that inhibit or otherwise decrease secretion of CCL20, IL-8 and/or RANTES from a cell having a cell surface-expressed OX40 when said antibody is contacted with said cell.
- an antagonist of hOX40L e.g., an antagonistic antibody of the invention
- the antibodies provided herein are fully human, antagonistic anti-hOX40L antibodies, preferably fully human, monoclonal, antagonistic anti-hOX40L antibodies.
- an antibody or a fragment thereof that specifically binds to a hOX40L antigen may be cross-reactive with related antigens.
- an antibody or a fragment thereof that specifically binds to a hOX40L antigen does not cross-react with other antigens (but may optionally cross-react with OX40L of a different species, e.g., rhesus, or murine).
- An antibody or a fragment thereof that specifically binds to a hOX40L antigen can be identified, for example, by immunoassays, BIAcoreTM, or other techniques known to those of skill in the art.
- An antibody or a fragment thereof binds specifically to a hOX40L antigen when it binds to a hOX40L antigen with higher affinity than to any cross-reactive antigen as determined using experimental techniques, such as radioimmunoassays (RIA) and enzyme-linked immunosorbent assays (ELISAs).
- RIA radioimmunoassays
- ELISAs enzyme-linked immunosorbent assays
- a specific or selective reaction will be at least twice background signal or noise and more typically more than 10 times background. See, e.g., Paul, ed., 1989, Fundamental Immunology Second Edition, Raven Press, New York at pages 332-336 for a discussion regarding antibody specificity.
- Antibodies of the invention include, but are not limited to, synthetic antibodies, monoclonal antibodies, recombinantly produced antibodies, multispecific antibodies (including bi-specific antibodies), human antibodies, humanized antibodies, chimeric antibodies, intrabodies, single-chain Fvs (scFv) (e.g., including monospecific, bispecific, etc.), camelized antibodies, Fab fragments, F(ab') fragments, disulfide-linked Fvs (sdFv), anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.
- scFv single-chain Fvs
- sdFv single-chain Fvs
- sdFv disulfide-linked Fvs
- anti-Id anti-idiotypic antibodies
- antibodies of the present invention include immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., antigen binding domains or molecules that contain an antigen-binding site that specifically binds to a hOX40L antigen (e.g., one or more complementarity determining regions (CDRs) of an anti-hOX40L antibody).
- immunoglobulin molecules i.e., antigen binding domains or molecules that contain an antigen-binding site that specifically binds to a hOX40L antigen (e.g., one or more complementarity determining regions (CDRs) of an anti-hOX40L antibody).
- CDRs complementarity determining regions
- the antibodies of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), any class (e.g., IgGl, IgG2, IgG3, IgG4, IgAl and IgA2, in particular IgG4), or any subclass (e.g., IgG2a and IgG2b) of immunoglobulin molecule.
- the hOX40L antibodies are fully human, such as fully human monoclonal hOX40L antibodies.
- antibodies of the invention are IgG antibodies, or a class (e.g., human IgGl or IgG4) or subclass thereof.
- the antibodies of the invention comprise a human gamma 4 constant region.
- the heavy chain constant region does not bind Fc- ⁇ receptors, and e.g. comprises a Leu235Glu mutation.
- the heavy chain constant region comprises a Ser228Pro mutation to increase stability.
- the heavy chain constant region is IgG4-PE.
- antigen binding domain refers to that portion of an antibody which comprises the amino acid residues that interact with an antigen and confer on the binding agent its specificity and affinity for the antigen (e.g., the complementarity determining regions (CDRs)).
- the antigen binding region can be derived from any animal species, such as rodents (e.g., rabbit, rat or hamster) and humans. Preferably, the antigen binding region will be of human origin.
- composition is intended to encompass a product containing the specified ingredients (e.g., an antibody of the invention) in, optionally, the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in, optionally, the specified amounts.
- specified ingredients e.g., an antibody of the invention
- derivative refers to a polypeptide that comprises an amino acid sequence of a hOX40L polypeptide, a fragment of a hOX40L polypeptide, or an antibody that specifically binds to a hOX40L polypeptide which has been altered by the introduction of amino acid residue substitutions, deletions or additions.
- derivative as used herein also refers to a hOX40L polypeptide, a fragment of a hOX40L polypeptide, or an antibody that specifically binds to a hOX40L polypeptide which has been chemically modified, e.g., by the covalent attachment of any type of molecule to the polypeptide.
- a hOX40L polypeptide, a fragment of a hOX40L polypeptide, or a hOX40L antibody may be chemically modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc.
- the derivatives are modified in a manner that is different from naturally occurring or starting peptide or polypeptides, either in the type or location of the molecules attached. Derivatives further include deletion of one or more chemical groups which are naturally present on the peptide or polypeptide.
- a derivative of a hOX40L polypeptide, a fragment of a hOX40L polypeptide, or a hOX40L antibody may be chemically modified by chemical modifications using techniques known to those of skill in the art, including, but not limited to specific chemical cleavage, acetylation, formulation, metabolic synthesis of tunicamycin, etc. Further, a derivative of a hOX40L polypeptide, a fragment of a hOX40L polypeptide, or a hOX40L antibody may contain one or more non-classical amino acids.
- a polypeptide derivative possesses a similar or identical function as a hOX40L polypeptide, a fragment of a hOX40L polypeptide, or a hOX40L antibody described herein.
- the term "effective amount” as used herein refers to the amount of a therapy (e.g., an antibody or pharmaceutical composition provided herein) which is sufficient to reduce and/or ameliorate the severity and/or duration of a given disease and/or a symptom related thereto.
- the effective amount of an antibody of the invention is from about 0.1 mg/kg (mg of antibody per kg weight of the subject) to about 100 mg/kg.
- an effective amount of an antibody provided therein is about 0.1 mg/kg, about 0.5 mg/kg, about 1 mg/kg, 3 mg/kg, 5 mg/kg, about 10 mg/kg, about 15 mg/kg, about 20 mg/kg, about 25 mg/kg, about 30 mg/kg, about 35 mg/kg, about 40 mg/kg, about 45 mg/kg, about 50 mg/kg, about 60 mg/kg, about 70 mg/kg, about 80 mg/kg about 90 mg/kg or about 100 mg/kg (or a range therein).
- "effective amount” as used herein also refers to the amount of an antibody of the invention to achieve a specified result (e.g., inhibition of a hOX40L biological activity of a cell, such as inhibition of secretion of CCL20, IL-8 or ANTES, or INF- ⁇ , T F-a or IL-2, in particular INF- ⁇ from the cell).
- a specified result e.g., inhibition of a hOX40L biological activity of a cell, such as inhibition of secretion of CCL20, IL-8 or ANTES, or INF- ⁇ , T F-a or IL-2, in particular INF- ⁇ from the cell.
- epitope refers to a localized region on the surface of an antigen, such as hOX40L polypeptide or hOX40L polypeptide fragment, that is capable of being bound to one or more antigen binding regions of an antibody, and that has antigenic or immunogenic activity in an animal, preferably a mammal, and most preferably in a human, that is capable of eliciting an immune response.
- An epitope having immunogenic activity is a portion of a polypeptide that elicits an antibody response in an animal.
- An epitope having antigenic activity is a portion of a polypeptide to which an antibody specifically binds as determined by any method well known in the art, for example, by the immunoassays described herein.
- Antigenic epitopes need not necessarily be immunogenic. Epitopes usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and have specific three dimensional structural characteristics as well as specific charge characteristics. A region of a polypeptide contributing to an epitope may be contiguous amino acids of the polypeptide or the epitope may come together from two or more non-contiguous regions of the polypeptide. The epitope may or may not be a three-dimensional surface feature of the antigen. In certain embodiments, a hOX40L epitope is a three-dimensional surface feature of a hOX40L polypeptide (e.g., in a trimeric form of a hOX40L polypeptide).
- a hOX40L epitope is linear feature of a hOX40L polypeptide (e.g., in a trimeric form or monomeric form of the hOX40L polypeptide).
- Antibodies provided herein may specifically bind to an epitope of the monomeric (denatured) form of hOX40L, an epitope of the trimeric (native) form of hOX40L, or both the monomeric (denatured) form and the trimeric (native) form of hOX40L.
- the antibodies provided herein specifically bind to an epitope of the trimeric form of hOX40L but do not specifically bind the monomeric form of hOX40L.
- excipients refers to inert substances which are commonly used as a diluent, vehicle, preservatives, binders, or stabilizing agent for drugs and includes, but not limited to, proteins (e.g., serum albumin, etc.), amino acids (e.g., aspartic acid, glutamic acid, lysine, arginine, glycine, histidine, etc.), fatty acids and phospholipids (e.g., alkyl sulfonates, caprylate, etc.), surfactants (e.g., SDS, polysorbate, nonionic surfactant, etc.), saccharides (e.g., sucrose, maltose, trehalose, etc.) and polyols (e.g., mannitol, sorbitol, etc.). See, also, Remington's Pharmaceutical Sciences (1990) Mack Publishing Co., Easton, Pa., which is hereby incorporated by reference in its entirety.
- proteins e.g
- fragment refers to a peptide or polypeptide that comprises less than the full length amino acid sequence. Such a fragment may arise, for example, from a truncation at the amino terminus, a truncation at the carboxy terminus, and/or an internal deletion of a residue(s) from the amino acid sequence. Fragments may, for example, result from alternative RNA splicing or from in vivo protease activity.
- hOX40L fragments include polypeptides comprising an amino acid sequence of at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 40 contiguous amino acid residues, at least 50 contiguous amino acid residues, at least 60 contiguous amino residues, at least 70 contiguous amino acid residues, at least 80 contiguous amino acid residues, at least 90 contiguous amino acid residues, at least contiguous 100 amino acid residues, at least 125 contiguous amino acid residues, at least 150 contiguous amino acid residues, at least 175 contiguous amino acid residues, at least 200 contiguous amino acid residues, or at least 250 contiguous amino acid residues of the amino acid sequence of a hOX40L polypeptide or an antibody that specifically binds to a hOX40L polypeptide.
- Fully human antibody or “human antibody” are used interchangeably herein and refer to an antibody that comprises a human variable region and, most preferably a human constant region. In specific embodiments, the terms refer to an antibody that comprises a variable region and constant region of human origin.
- Fully human anti-hOX40L antibodies in certain embodiments, can also encompass antibodies which bind hOX40L polypeptides and are encoded by nucleic acid sequences which are naturally occurring somatic variants of human germline immunoglobulin nucleic acid sequence. In a specific embodiment, the anti-hOX40L antibodies provided herein are fully human antibodies.
- Fully human antibody includes antibodies having variable and constant regions corresponding to human germline immunoglobulin sequences as described by Kabat et al. (See Kabat et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242). Exemplary methods of producing fully human antibodies are provided, e.g., in the Examples herein, but any method known in the art may be used.
- recombinant human antibody includes human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell, antibodies isolated from a recombinant, combinatorial human antibody library, antibodies isolated from an animal (e.g., a mouse or cow) that is transgenic and/or transchromosomal for human immunoglobulin genes (see e.g., Taylor, L D. et al. (1992) Nucl. Acids Res. 20:6287-6295) or antibodies prepared, expressed, created or isolated by any other means that involves splicing of human immunoglobulin gene sequences to other DNA sequences.
- recombinant means such as antibodies expressed using a recombinant expression vector transfected into a host cell, antibodies isolated from a recombinant, combinatorial human antibody library, antibodies isolated from an animal (e.g., a mouse or cow) that is transgenic and/or transchromosomal for
- Such recombinant human antibodies can have variable and constant regions derived from human germline immunoglobulin sequences (See Kabat, E. A. et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242).
- such recombinant human antibodies are subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo.
- fusion protein refers to a polypeptide that comprises an amino acid sequence of an antibody and an amino acid sequence of a heterologous polypeptide or protein (i.e., a polypeptide or protein not normally a part of the antibody (e.g., a non-anti-hOX40L antigen antibody)).
- fusion when used in relation to hOX40L or to an anti-hOX40L antibody refers to the joining of a peptide or polypeptide, or fragment, variant and/or derivative thereof, with a heterologous peptide or polypeptide.
- the fusion protein retains the biological activity of the hOX40L or anti-hOX40L antibody.
- the fusion protein comprises a hOX40L antibody VH domain, VL domain, VH CDR (one, two or three VH CDRs), and/or VL CDR (one, two or three VL CDRs), wherein the fusion protein specifically binds to a hOX40L epitope.
- heavy chain when used in reference to an antibody refers to five distinct types, called alpha (a), delta ( ⁇ ), epsilon ( ⁇ ), gamma ( ⁇ ) and mu ( ⁇ ), based on the amino acid sequence of the heavy chain constant domain.
- These distinct types of heavy chains are well known and give rise to five classes of antibodies, IgA, IgD, IgE, IgG and IgM, respectively, including four subclasses of IgG, namely IgGl, IgGl, IgG3 and IgG4.
- the heavy chain is a human heavy chain.
- the heavy chain is a disabled IgG isotype, e.g. a disabled IgG4.
- the antibodies of the invention comprise a human gamma 4 constant region.
- the heavy chain constant region does not bind Fc- ⁇ receptors, and e.g. comprises a Leu235Glu mutation.
- the heavy chain constant region comprises a Ser228Pro mutation to increase stability.
- the heavy chain constant region is IgG4-PE.
- host refers to an animal, preferably a mammal, and most preferably a human.
- host cell refers to the particular subject cell transfected with a nucleic acid molecule and the progeny or potential progeny of such a cell. Progeny of such a cell may not be identical to the parent cell transfected with the nucleic acid molecule due to mutations or environmental influences that may occur in succeeding generations or integration of the nucleic acid molecule into the host cell genome.
- immunomodulatory agent and variations thereof including, but not limited to, immunomodulatory agents, as used herein refer to an agent that modulates a host's immune system.
- an immunomodulatory agent is an immunosuppressant agent.
- an immunomodulatory agent is an immunostimulatory agent.
- an immunomodulatory agent used in the combination therapies of the invention does not include an anti-hOX40L antibody or antigen-binding fragment.
- Immunomodulatory agents include, but are not limited to, small molecules, peptides, polypeptides, proteins, fusion proteins, antibodies, inorganic molecules, mimetic agents, and organic molecules.
- the term "in combination" in the context of the administration of other therapies refers to the use of more than one therapy.
- the use of the term “in combination” does not restrict the order in which therapies are administered to a subject with an infection.
- a first therapy can be administered before (e.g., 1 minute, 45 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks), concurrently, or after (e.g., 1 minute, 45 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks) the administration of a second therapy to a subject which had, has, or is susceptible to a hOX40L-mediated disease.
- any additional therapy can be administered in any order with the other additional therapies.
- the antibodies of the invention can be administered in combination with one or more therapies (e.g., therapies that are not the antibodies of the invention that are currently administered to prevent, treat, manage, and/or ameliorate a hOX40L-mediated disease.
- therapies e.g., therapies that are not the antibodies of the invention that are currently administered to prevent, treat, manage, and/or ameliorate a hOX40L-mediated disease.
- therapies that can be administered in combination with an antibody of the invention include analgesic agents, anesthetic agents, antibiotics, or immunomodulatory agents or any other agent listed in the U.S. Pharmacopoeia and/or Physician's Desk Reference.
- an “isolated” or “purified” antibody is for example substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the antibody is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized.
- the language “substantially free of cellular material” includes preparations of an antibody in which the antibody is separated from cellular components of the cells from which it is isolated or recombinantly produced.
- an antibody that is substantially free of cellular material includes preparations of antibody having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a "contaminating protein").
- the antibody When the antibody is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation.
- culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation.
- the antibody When the antibody is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the antibody have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the antibody of interest.
- antibodies of the invention are isolated or purified.
- nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule.
- an "isolated" nucleic acid molecule such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
- a nucleic acid molecule(s) encoding an antibody of the invention is isolated or purified.
- human OX40L refers to the polypeptides ("polypeptides,” “peptides” and “proteins” are used interchangeably herein) comprising the amino acid sequence in the sequence listing and related polypeptides, including SNP variants thereof.
- Related polypeptides include allelic variants (e.g., SNP variants); splice variants; fragments; derivatives; substitution, deletion, and insertion variants; fusion polypeptides; and interspecies homologs, preferably, which retain hOX40L activity and/or are sufficient to generate an anti-hOX40L immune response.
- an anti-hOX40L antibody of the invention can bind to a hOX40L polypeptide, polypeptide fragment, antigen, and/or epitope, as an epitope is part of the larger antigen, which is part of the larger polypeptide fragment, which, in turn, is part of the larger polypeptide hOX40L can exist in a trimeric (native) or monomeric (denatured) form.
- Kabat numbering and like terms are recognized in the art and refer to a system of numbering amino acid residues which are more variable (i.e. hypervariable) than other amino acid residues in the heavy chain variable regions of an antibody, or an antigen binding portion thereof (Kabat et al. (1971) Ann. NY Acad. Sci. 190:382-391 and, Kabat et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242).
- the hypervariable region typically ranges from amino acid positions 31 to 35 for CDR1, amino acid positions 50 to 65 for CDR2, and amino acid positions 95 to 102 for CDR3.
- a “monoclonal antibody” refers to an antibody obtained from a population of homogenous or substantially homogeneous antibodies, and each monoclonal antibody will typically recognize a single epitope on the antigen.
- a “monoclonal antibody,” as used herein is an antibody produced by a single hybridoma or other cell, wherein the antibody specifically binds to only a hOX40L epitope as determined, e.g., by ELISA or other antigen-binding or competitive binding assay known in the art or in the Examples provided herein.
- the term “monoclonal” is not limited to any particular method for making the antibody.
- monoclonal antibodies of the invention may be made by the hybridoma method as described in Kohler et al.; Nature, 256:495 (1975) or may be isolated from phage libraries using the techniques as described herein, for example.
- Other methods for the preparation of clonal cell lines and of monoclonal antibodies expressed thereby are well known in the art (see, for example, Chapter 11 in: Short Protocols in Molecular Biology, (2002) 5th Ed., Ausubel eta/., eds., John Wiley and Sons, New York).
- Other exemplary methods of producing other monoclonal antibodies are provided in the Examples herein.
- Naturally occurring or “native” when used in connection with biological materials such as nucleic acid molecules, polypeptides, host cells, and the like, refers to those which are found in nature and not manipulated by a human being.
- pharmaceutically acceptable means being approved by a regulatory agency of the Federal or a state government, or listed in the U.S. Pharmacopeia, European Pharmacopeia or other generally recognized Pharmacopeia for use in animals, and more particularly in humans.
- Polyclonal antibodies refers to an antibody population generated in an immunogenic response to a protein having many epitopes and thus includes a variety of different antibodies directed to the same and to different epitopes within the protein. Methods for producing polyclonal antibodies are known in the art (See, e.g., see, for example, Chapter 11 in: Short Protocols in Molecular Biology, (2002) 5th Ed., Ausubel eta/., eds., John Wiley and Sons, New York).
- nucleic acid nucleic acid molecule
- polynucleotide As used herein, the term “polynucleotide,” “nucleotide,” nucleic acid” “nucleic acid molecule” and other similar terms are used interchangeable and include DNA, RNA, mRNA and the like.
- the terms “prevent,” “preventing,” and “prevention” refer to the total or partial inhibition of the development, recurrence, onset or spread of a hOX40L-mediated disease and/or symptom related thereto, resulting from the administration of a therapy or combination of therapies provided herein (e.g., a combination of prophylactic or therapeutic agents, such as an antibody of the invention).
- prolactic agent refers to any agent that can totally or partially inhibit the development, recurrence, onset or spread of a hOX40L-mediated disease and/or symptom related thereto in a subject.
- prolactic agent refers to an antibody of the invention.
- prolactic agent refers to an agent other than an antibody of the invention.
- a prophylactic agent is an agent which is known to be useful to or has been or is currently being used to prevent a hOX40L-mediated disease and/or a symptom related thereto or impede the onset, development, progression and/or severity of a hOX40L-mediated disease and/or a symptom related thereto.
- the prophylactic agent is a fully human anti-hOX40L antibody, such as a fully human anti-hOX40L monoclonal antibody.
- the prophylaxis prevents the onset of the disease or condition or of the symptoms of the disease or condition. In one embodiment, the prophylactic treatment prevents the worsening, or onset, of the disease or condition. In one embodiment, the prophylactic treatment prevents the worsening of the disease or condition.
- an anti-OX40L antibody of the invention is administered intravenously (e.g. before or concomitantly with a transplant, e.g. blood or organ transplant).
- said antibody is administered at a dose of about 5-10 mg/kg (e.g. at about 8 mg/kg).
- said antibody is administered at a dose selected from about 0.1 mg/kg, about 0.5 mg/kg, about 1 mg/kg, 3 mg/kg, 5 mg/kg, about 10 mg/kg, about 15 mg/kg, about 20 mg/kg, about 25 mg/kg, about 30 mg/kg, about 40 mg/kg, about 50 mg/kg, about 60 mg/kg, about 70 mg/kg, about 80 mg/kg about 90 mg/kg or about 100 mg/kg, in particular about 1 mg/kg, or about 3 mg/kg.
- said antibody is administered 1-4 days before transplant (e.g. of blood or organs), e.g. 1-3 days before transplant or 1-2 days before transplant.
- said antibody is administered weekly, bi-weekly or monthly following transplant, e.g. biweekly.
- said antibody is administered intravenously prophylactically 1-3 days before transplant at a dose of about 5-10 mg/kg (e.g. about 8 mg/kg) and then intravenously, bi-weekly at a dose of about 5-10 mg/kg (e.g. about 8 mg/kg).
- the patient is monitored periodically post-transplant, for the presence of a biomarker predictive for the development of transplant rejection or of GvHD (e.g. acute GvHD), and the anti-OX40L antibody of the invention is administered once the biomarker levels are such that the patient is determined to be at risk of developing transplant rejection or of GvHD (e.g. acute GvHD).
- a biomarker predictive for the development of transplant rejection or of GvHD e.g. acute GvHD
- the anti-OX40L antibody of the invention is administered once the biomarker levels are such that the patient is determined to be at risk of developing transplant rejection or of GvHD (e.g. acute GvHD).
- biomarkers which may be useful as predictive biomarkers of actue GvHD may be those identified in Levine et al., "A prognostic score for acute graft-versus-host disease based on biomarkers: a multicentre study", Lancet Haematol 2015; 2:e21-29. These biomarkers include, but are not limited to TNFR1, ST- 2, elafin and IL2Ra and Reg3a.
- a region of a hOX40L contributing to an epitope may be contiguous amino acids of the polypeptide or the epitope may come together from two or more non-contiguous regions of the polypeptide.
- the epitope may or may not be a three-dimensional surface feature of the antigen.
- a localized region on the surface of a hOX40L antigen that is capable of eliciting an immune response is a hOX40L epitope.
- the epitope may or may not be a three-dimensional surface feature of the antigen.
- hOX40L-mediated disease and "hOX40L-mediated condition” are used interchangeably and refer to any disease or condition that is completely or partially caused by or is the result of hOX40L.
- hOX40L is aberrantly (e.g., highly) expressed on the surface of a cell.
- hOX40L may be aberrantly upregulated on a particular cell type.
- normal, aberrant or excessive cell signaling is caused by binding of hOX40L to a hOX40L ligand.
- the hOX40L ligand is OX40, for example, that is expressed on the surface of a cell, such as a colonic epithelial cell.
- the hOX40L-mediated disease is an inflammatory bowel disease (IBD), such as Crohn's disease (CD) or ulcerative colitis (UC).
- the hOX40L-mediated disease is graft-versus-host disease (GVHD).
- the hOX40L-mediated disease is selected from pyoderma gangrenosum, giant cell arteritis, Schnitzler syndrome, non-infectious scleritis and uveitis (non-infectious/autoimmune and/or systemic).
- a hOX40L mediated disease or condition selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic transplant rejection, graft-versus-host disease (GvHD), ulcerative colitis, systemic lupus erythematosus (SLE), diabetes, uveitis, ankylosing spondylitis, contact hypersensitivity, multiple sclerosis and atherosclerosis, in particular GvHD.
- IBD inflammatory bowel disease
- Crohn's disease Crohn's disease
- rheumatoid arthritis transplant rejection
- allogenic transplant rejection graft-versus-host disease
- GvHD graft-versus-host disease
- ulcerative colitis systemic lupus erythematosus
- SLE systemic lupus erythematosus
- diabetes uveitis
- hOX40L receptor or "hOX40L binding receptor” are used interchangeably herein and refer to a receptor polypeptide that binds to hOX40L.
- the hOX40L receptor is Hox40.
- the hOX40L receptor is expressed on the surface of a cell, such as a colonic epithelial cell; or on graft or transplant tissue or on host tissue.
- a subject is preferably a mammal such as a non-primate (e.g., cows, pigs, horses, cats, dogs, rats, etc.) or a primate (e.g., monkey and human), most preferably a human.
- the subject is a mammal, preferably a human, having a hOX40L-mediated disease.
- the subject is a mammal, preferably a human, at risk of developing a hOX40L-mediated disease.
- substantially all refers to refers to at least about 60%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or about 100%.
- substantially free of surfactant refers to a formulation of an antibody that specifically binds to a hOX40L antigen, said formulation containing less than 0.0005%, less than 0.0003%, or less than 0.0001% of surfactants and/or less than 0.0005%, less than 0.0003%, or less than 0.0001% of surfactants.
- substantially free of salt refers to a formulation of an antibody that specifically binds to a hOX40L antigen, said formulation containing less than 0.0005%, less than 0.0003%, or less than 0.0001% of inorganic salts.
- surfactant refers to organic substances having amphipathic structures; namely, they are composed of groups of opposing solubility tendencies, typically an oil- soluble hydrocarbon chain and a water-soluble ionic group. Surfactants can be classified, depending on the charge of the surface-active moiety, into anionic, cationic, and nonionic surfactants. Surfactants are often used as wetting, emulsifying, solubilizing, and dispersing agents for various pharmaceutical compositions and preparations of biological materials.
- the term "tag” refers to any type of moiety that is attached to, e.g., a polypeptide and/or a polynucleotide that encodes a hOX40L or hOX40L antibody or antigen binding fragment thereof.
- a polynucleotide that encodes a hOX40L, hOX40L antibody or antigen binding fragment thereof can contain one or more additional tag-encoding nucleotide sequences that encode a, e.g., a detectable moiety or a moiety that aids in affinity purification.
- the tag and the antibody can be in the form of a fusion protein.
- detectable or “detection” with reference to a tag refers to any tag that is capable of being visualized or wherein the presence of the tag is otherwise able to be determined and/or measured (e.g., by quantitation).
- a non-limiting example of a detectable tag is a fluorescent tag.
- the term “therapeutic agent” refers to any agent that can be used in the treatment, management or amelioration of a hOX40L-mediated disease and/or a symptom related thereto.
- the term “therapeutic agent” refers to an antibody of the invention.
- the term “therapeutic agent” refers to an agent other than an antibody of the invention.
- a therapeutic agent is an agent which is known to be useful for, or has been or is currently being used for the treatment, management or amelioration of a hOX40L-mediated disease or one or more symptoms related thereto.
- the therapeutic agent is a fully human anti-hOX40L antibody, such as a fully human anti-hOX40L monoclonal antibody.
- the combination of therapies (e.g., use of prophylactic or therapeutic agents) which is more effective than the additive effects of any two or more single therapy.
- a synergistic effect of a combination of prophylactic and/or therapeutic agents permits the use of lower dosages of one or more of the agents and/or less frequent administration of said agents to a subject with a hOX40L- mediated disease.
- the ability to utilize lower dosages of prophylactic or therapeutic therapies and/or to administer said therapies less frequently reduces the toxicity associated with the administration of said therapies to a subject without reducing the efficacy of said therapies in the prevention, management, treatment or amelioration of a hOX40L-mediated disease.
- synergistic effect can result in improved efficacy of therapies in the prevention, or in the management, treatment or amelioration of a hOX40L-mediated disease.
- synergistic effect of a combination of therapies e.g., prophylactic or therapeutic agents
- the combination comprises an anti-OX40L antibody of the invention and a further therapeutic agents independently selected from the group consisting of rapamycin (sirolimus), racrolimus, ciclosporin, corticosteroids (e.g. methylprednisolone), methotrexate, mycophenolate mofetil, anti-CD28 antibodies, anti-IL12/IL-23 antibodies (e.g. ustekinumab), anti-CD20 antibodies (e.g.rituximab), anti-CD30 antibodies (e.g. brentuximab), CTLA4-Fc molecules (e.g. abatacept), CCR5 receptor antagonists (e.g.
- anti-CD40L antibodies anti-VLA4 antibodies (e.g. natalizumab), anti-LFAl antibodies, fludarabine, anti-CD52 antibodies (e.g. alemtuzumab), anti-CD45 antibodies, cyclophosphamide, anti- thymocyte globulins, anti-complement C5 antibodies (e.g. eculizumab), anti-a4b7 integrin antibodies (e.g. vedolizumab), anti-IL6 antibodies (e.g. tocilizumab), anti-IL2R antibodies (e.g. basilixumab), anti-CD25 antibodies (e.g.
- the combination comprises an anti-OX40L antibody of the invention and a further therapeutic agents independently selected from the group consisting of rapamycin (sirolimus), racrolimus, ciclosporin, corticosteroids (e.g. methylprednisolone), methotrexate, mycophenolate mofetil, anti-CD28 antibodies, CTL_A4-Fc molecules (e.g. abatacept), anti-CD40L antibodies, anti-LFAl antibodies, anti-CD52 antibodies (e.g. alemtuzumab), cyclophosphamide and anti-thymocyte globulins.
- the term “therapy” refers to any protocol, method and/or agent that can be used in the prevention, management, treatment and/or amelioration of a hOX40L-mediated disease (e.g., IBD or GVHD).
- the terms “therapies” and “therapy” refer to a biological therapy, supportive therapy, and/or other therapies useful in the prevention, management, treatment and/or amelioration of a hOX40L-mediated disease known to one of skill in the art such as medical personnel.
- the terms “treat,” “treatment” and “treating” refer to the reduction or amelioration of the progression, severity, and/or duration of a hOX40L-mediated disease (e.g., IBD or GVHD) resulting from the administration of one or more therapies (including, but not limited to, the administration of one or more prophylactic or therapeutic agents, such as an antibody of the invention).
- a hOX40L-mediated disease e.g., IBD or GVHD
- therapies including, but not limited to, the administration of one or more prophylactic or therapeutic agents, such as an antibody of the invention.
- such terms refer to the reduction or inhibition of the binding of hOX40L to OX40, the reduction or inhibition of the production or secretion of CCL20 from a cell expressing hOX40 or hOX40L, the reduction or inhibition of the production or secretion of IL-8 from a cell expressing hOX40 or hOX40L, the reduction or inhibition of the production or secretion of RANTES from a cell expressing hOX40 or hOX40L, and/or the inhibition or reduction of one or more symptoms associated with a hOX40L-mediated disease, such as an IBD or GVHD.
- such terms refer to the reduction or inhibition of the binding of hOX40L to OX40, the reduction or inhibition of the production or secretion of INF- ⁇ from a cell expressing hOX40 or hOX40L, the reduction or inhibition of the production or secretion of TNF-a from a cell expressing hOX40 or hOX40L, the reduction or inhibition of the production or secretion of IL-2 from a cell expressing hOX40 or hOX40L, and/or the inhibition or reduction of one or more symptoms associated with a hOX40L-mediated disease, such as an IBD or GVHD (in particular GvHD).
- the cell is a human cell.
- a prophylactic agent is a fully human anti-hOX40L antibody, such as a fully human anti-hOX40L monoclonal antibody.
- variable region refers to a portion of the OX40L and heavy chains, typically about the amino-terminal 120 to 130 amino acids in the heavy chain and about 100 to 110 amino acids in the light chain, which differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. T e variability in sequence is concentrated in those regions called complimentarily determining regions (CDRs) while the more highly conserved regions in the variable domain are called framework regions (FR).
- CDRs of the OX40L and heavy chains are primarily responsible for the interaction of the antibody with antigen. Numbering of amino acid positions used herein is according to the EU Index, as in Kabat et al. (1991) Sequences of proteins of immunological interest. (U.S. Department of Health and Human Services, Washington, D.C.) 5th ed. ("Kabat et al.”).
- the variable region is a human variable region.
- Antibodies of the invention include, but are not limited to, synthetic antibodies, monoclonal antibodies, recombinantly produced antibodies, multispecific antibodies (including bi-speciflc antibodies), human antibodies, humanized antibodies, chimeric antibodies, intrabodies, single-chain Fvs (scFv) (e.g., including monospecific, bispecific, etc.), camelized antibodies, Fab fragments, F(ab') fragments, disulflde-linked Fvs (sdFv), anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.
- scFv single-chain Fvs
- sdFv single-chain Fvs
- sdFv disulflde-linked Fvs
- anti-Id anti-idiotypic antibodies
- antibodies provided herein include immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that specifically binds to a hOX40L antigen.
- the immunoglobulin molecules provided herein can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgGl, IgG2, IgG3, IgG4, IgAl and IgA2) or subclass of immunoglobulin molecule.
- an antibody provided herein is an IgG antibody, preferably an IgGl or IgG4.
- the antibodies of the invention comprise a human gamma 4 constant region.
- the heavy chain constant region does not bind Fc- ⁇ receptors, and e.g. comprises a Leu235Glu mutation.
- the heavy chain constant region comprises a Ser228Pro mutation to increase stability.
- the heavy chain constant region is IgG4-PE.
- Variants and derivatives of antibodies include antibody fragments that retain the ability to specifically bind to an epitope.
- Preferred fragments include Fab fragments; Fab' (an antibody fragment containing a single anti-binding domain comprising an Fab and an additional portion of the heavy chain through the hinge region); F(ab') 2 (two Fab' molecules joined by interchain disulfide bonds in the hinge regions of the heavy chains; the Fab' molecules may be directed toward the same or different epitopes); a bispecific Fab (a Fab molecule having two antigen binding domains, each of which may be directed to a different epitope); a single chain Fab chain comprising a variable region, also known as, a sFv; a disulfide-linked Fv, or dsFv; a camelized VH (the variable, antigen-binding determinative region of a single heavy chain of an antibody in which some amino acids at the VH interface are those found in the heavy chain of naturally occurring camel antibodies); a bispecific
- Derivatives of antibodies also include one or more CD sequences of an antibody combining site.
- the CDR sequences may be linked together on a scaffold when two or more CDR sequences are present.
- the antibody to be used with the invention comprises a single-chain Fv ("scFv").
- scFvs are antibody fragments comprising the VH and VL domains of an antibody, wherein these domains are present in a single polypeptide chain.
- the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding.
- the antibodies of the invention may be from any animal origin including birds and mammals
- the antibodies of the invention are human or humanized monoclonal antibodies.
- "human” antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries or from mice that express antibodies from human genes.
- the antibodies of the invention are fully human antibodies, such as fully human antibodies that specifically bind a hOX40L polypeptide, a hOX40L polypeptide fragment, or a hOX40L epitope.
- Such fully human antibodies would be advantageous over fully mouse (or other full or partial non-human species antibodies), humanized antibodies, or chimeric antibodies to minimize the development of unwanted or unneeded side effects, such as immune responses directed toward non-fully human antibodies (e.g., anti-hOX40L antibodies derived from other species) when administered to the subject.
- the antibodies of the present invention may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of a hOX40L polypeptide or may be specific for both a hOX40L polypeptide as well as for a heterologous epitope, such as a heterologous polypeptide or solid support material. In preferred embodiments, the antibodies provided herein are monospecific for a given epitope of a hOX40L polypeptide and do not specifically bind to other epitopes.
- B-cell e.g., an immortalised B-cell
- hybridoma that produces an anti-hOX40L antibody or fragment described herein.
- an isolated antibody is provided herein that specifically binds to a hOX40L epitope wherein the binding to the hOX40L epitope by the antibody is competitively blocked (e.g., in a dose-dependent manner) by an antibody or fragment of the invention.
- the antibody may or may not be a fully human antibody.
- the antibody is a fully human monoclonal anti-hOX40L antibody, and even more preferably a fully human, monoclonal, antagonist anti-hOX40L antibody.
- Exemplary competitive blocking tests that can be used are provided in the Examples herein.
- the antibody or fragment of the invention competes (e.g., in a dose-dependent manner) with OX40 Receptor (or a fusion protein thereof) for binding to cell surface- expressed hOX40L. In other embodiments, the antibody or fragment of the invention competes (e.g., in a dose-dependent manner) with OX40 Receptor (or a fusion protein thereof) for binding to soluble hOX40L Exemplary competitive binding assays that can be used are provided in the Examples herein.
- the antibody or fragment partially or completely inhibits binding of hOX40 to cell surface-expressed OX40L, such as hOX40L In another embodiment, the antibody partially or completely inhibits binding of hOX40 to soluble hOX40L In some embodiments, the antibody or fragment partially or completely inhibits the secretion of CCL20, IL-8, and/or RANTES, or INF- ⁇ , TNF- a or IL-2, in particular INF- ⁇ from a cell having cell surface-expressed OX40. In certain embodiments, the cell expressing the OX40 is a colonic epithelial cell.
- the antibodies of the invention are fully human, monoclonal antibodies, such as fully human, monoclonal antagonist antibodies, that specifically bind to hOX40L
- the antibody or fragment provided herein binds to a hOX40L epitope that is a three-dimensional surface feature of a hOX40L polypeptide (e.g., in a trimeric form of a hOX40L polypeptide).
- a region of a hOX40L polypeptide contributing to an epitope may be contiguous amino acids of the polypeptide or the epitope may come together from two or more non-contiguous regions of the polypeptide
- a hOX40L epitope may be present in (a) the trimeric form ("a trimeric hOX40L epitope") of hOX40L, (b) the monomeric form fa monomeric hOX40L epitope") of hOX40L, (c) both the trimeric and monomeric form of hOX40L, (d) the trimeric form, but not the monomeric form of hOX40L, or (e) the monomeric form, but not the trimeric form of hOX40L
- the epitope is only present or available for binding in the trimeric (native) form, but is not present or available for binding in the monomeric (denatured) form by an anti-hOX40L antibody.
- the hOX40L epitope is linear feature of the hOX40L polypeptide (e.g., in a trimeric form or monomeric form of the hOX40L polypeptide).
- Antibodies provided herein may specifically bind to (a) an epitope of the monomeric form of hOX40L, (b) an epitope of the trimeric form of hOX40L, (c) an epitope of the monomeric but not the trimeric form of hOX40L, (d) an epitope of the trimeric but not the monomeric form of hOX40L, or (e) both the monomeric form and the trimeric form of hOX40L
- the antibodies provided herein specifically bind to an epitope of the trimeric form of hOX40L but do not specifically bind to an epitope the monomeric form of hOX40L
- the present invention also provides antibodies that specifically bind to a hOX40L epitope, the antibodies comprising derivatives of the VH domains, VH CDRs, VL domains, and VL CDRs described herein that specifically bind to a hOX40L antigen.
- the present invention also provides antibodies comprising derivatives of antibodies disclosed in the Examples, wherein said antibodies specifically bind to a hOX40L epitope.
- Standard techniques known to those of skill in the art can be used to introduce mutations in the nucleotide sequence encoding a molecule of the invention, including, for example, site-directed mutagenesis and PCR-mediated mutagenesis which results in amino acid substitutions.
- the derivatives include less than 25 amino acid substitutions, less than 20 amino acid substitutions, less than 15 amino acid substitutions, less than 10 amino acid substitutions, less than 5 amino acid substitutions, less than 4 amino acid substitutions, less than 3 amino acid substitutions, or less than 2 amino acid substitutions relative to the original molecule.
- the derivatives have conservative amino acid substitutions.
- the derivatives have conservative amino acid substitutions are made at one or more predicted nonessential amino acid residues.
- mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed and the activity of the protein can be determined.
- an antibody that specifically binds to a hOX40L epitope comprises a variable domain amino acid sequence that is at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to a variable domain amino acid sequence of the sequence listing.
- the antibody is a fully human anti-human antibody, such as a fully human monoclonal antibody.
- Fully human antibodies may be produced by any method known in the art. Exemplary methods include immunization with a hOX40L antigen (any hOX40L polypeptide capable of eliciting an immune response, and optionally conjugated to a carrier) of transgenic animals (e.g., mice) that are capable of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production; see, e.g., Jakobovits et a/., (1993) Proc. Natl. Acad.
- Fully human antibodies may be generated through the in vitro screening of phage display antibody libraries; see e.g., Hoogenboom eta/., 1 Mol. Biol., 227:381 (1991); Marks eta/., J. Mol. Biol., 222:581 (1991), incorporated herein by reference.
- phage display antibody libraries see e.g., Hoogenboom eta/., 1 Mol. Biol., 227:381 (1991); Marks eta/., J. Mol. Biol., 222:581 (1991), incorporated herein by reference.
- Various antibody-containing phage display libraries have been described and may be readily prepared by one skilled in the art. Libraries may contain a diversity of human antibody sequences, such as human Fab, Fv, and scFv fragments, that may be screened against an appropriate target.
- the antibodies and fragments of the invention include antibodies and fragments that are chemically modified, i.e., by the covalent attachment of any type of molecule to the antibody.
- the antibody derivatives include antibodies that have been chemically modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formulation, metabolic synthesis of tunicamycin, etc. Additionally, the antibody may contain one or more non-classical amino acids.
- the present invention also provides antibodies that specifically bind to a hOX40L antigen which comprise a framework region known to those of skill in the art (e.g., a human or non-human fragment).
- the framework region may, for example, be naturally occurring or consensus framework regions.
- the framework region of an antibody of the invention is human (see, e.g., Chothia et a/., 1998, J. Mol. Biol. 278:457-479 for a listing of human framework regions, which is incorporated by reference herein in its entirety). See also Kabat eta/. (1991) Sequences of Proteins of Immunological Interest (U.S. Department of Health and Human Services, Washington, D.C.) 5th ed.
- the present invention provides for antibodies that specifically bind to a hOX40L antigen, said antibodies comprising the amino acid sequence of one or more of the CDRs in the sequence listing (i.e. Seq ID No:4, Seq ID No:10, Seq ID No:36, Seq ID No:42, Seq ID No:68, Seq ID No;74, Seq ID No:96 or Seq ID No: 102, in particular, Seq ID No:36 or Seq ID No:42 for HCDR1; Seq ID No:6, Seq ID No: 12, Seq ID No:38, Seq ID No:44, Seq ID No:70, Seq ID No:76, Seq ID No:98 or Seq ID No: 104, in particular Seq ID No:38 or Seq ID No:44 for HCDR2; Seq ID No:8, Seq ID No: 14, Seq ID No:40, Seq ID No:46, Seq ID No:72, Seq ID No:78, Seq ID No: 100 or
- the present invention encompasses antibodies that specifically bind to a hOX40L antigen, said antibodies comprising the amino acid sequence of the VH domain and/or VL domain in the sequence listing (i.e. Seq ID No:2, Seq ID No:34, Seq ID No:66 or Seq ID No:94, in particular Seq ID No:34 for VH domains; Seq ID No: 16, Seq ID No:48, Seq ID No:80, or Seq ID No: 108, in particular Seq ID No:48 for VL domains) but having mutations (e.g., one or more amino acid substitutions) in the framework regions.
- sequence listing i.e. Seq ID No:2, Seq ID No:34, Seq ID No:66 or Seq ID No:94, in particular Seq ID No:34 for VH domains; Seq ID No: 16, Seq ID No:48, Seq ID No:80, or Seq ID No: 108, in particular Seq ID No:48 for VL domains
- mutations
- antibodies that specifically bind to a hOX40L antigen comprise the amino acid sequence of the VH domain and/or VL domain or an antigen-binding fragment thereof of an antibody disclosed in the Examples with one or more amino acid residue substitutions in the framework regions of the VH and/or VL domains.
- antibodies provided herein decrease or inhibit binding of hOX40L hOX40, and/or decrease or inhibit a hOX40L biological activity, such as secretion of CCL20, IL8 and/or RANTES , or INF- ⁇ , TNF-a or IL-2, in particular INF- ⁇ , in subject (e.g., a human subject).
- antibodies provided herein decreases or inhibits binding of a soluble or cell-surface expressed hOX40L to hOX40, and/or decreases or inhibits secretion of CCL20 and/or RANTES, or INF- ⁇ , TNF-a or IL-2, in particular INF- ⁇ after contact with a soluble or cell-surface expressed hOX40L, in a subject.
- Blocking activity of an antibody provided herein of hOX40L binding to hOX40 can be detected using an assay as described in the Examples.
- Inhibition of biological activity of cells expressing OX40 by a hOX40L antibody provided herein can be detected using an assay as described in the Examples.
- the present invention also provides for fusion proteins comprising an antibody provided herein that specifically binds to a hOX40L antigen and a heterologous polypeptide.
- the heterologous polypeptide to which the antibody is fused is useful for targeting the antibody to cells having cell surface-expressed hOX40L.
- antibodies of the invention are conjugated or recombinantly fused to a diagnostic, detectable or therapeutic agent or any other molecule.
- the conjugated or recombinantly fused antibodies can be useful, e.g., for monitoring or prognosing the onset, development, progression and/or severity of a hOX40L-mediated disease as part of a clinical testing procedure, such as determining the efficacy of a particular therapy.
- Such diagnosis and detection can be accomplished, for example, by coupling the antibody to detectable substances including, but not limited to, various enzymes, such as, but not limited to, horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; prosthetic groups, such as, but not limited to, streptavidin/biotin and avidin/biotin; fluorescent materials, such as, but not limited to, umbelliferone, fluorescein, fluorescein isothiocynate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; luminescent materials, such as, but not limited to, luminol; bioluminescent materials, such as but not limited to, luciferase, luciferin, and aequorin; radioactive materials, such as, but not limited to, iodine ( 131 1, 125 1, 123 I
- the present invention further encompasses uses of the antibodies of the invention conjugated or recombinantly fused to a therapeutic moiety (or one or more therapeutic moieties).
- the antibody may be conjugated or recombinantly fused to a therapeutic moiety, such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters.
- a cytotoxin or cytotoxic agent includes any agent that is detrimental to cells.
- Therapeutic moieties include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine); alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BCNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cisdichlorodiamine platinum (II) (DDP), and cisplatin); anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin); antibiotics (e.g., d actinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)); Auristatin molecules (e.g
- hormones e.g., glucocorticoids, progestins, androgens, and estrogens
- DNA-repair enzyme inhibitors e.g., etoposide or topotecan
- kinase inhibitors e.g., compound ST1571, imatinib mesylate (Kantarjian et al., Clin Cancer Res.
- cytotoxic agents e.g., paclitaxel, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogues or homologs thereof and those compounds disclosed in U.S. Pat. Nos.
- an antibody of the invention may be conjugated or recombinantly fused to a therapeutic moiety or drug moiety that modifies a given biological response.
- Therapeutic moieties or drug moieties are not to be construed as limited to classical chemical therapeutic agents.
- the drug moiety may be a protein, peptide, or polypeptide possessing a desired biological activity.
- Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, cholera toxin, or diphtheria toxin; a protein such as tumor necrosis factor, ⁇ -interferon, a-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNF- ⁇ , AIM I (see, International Publication No. WO 97/33899), AIM II (see, International Publication No.
- a toxin such as abrin, ricin A, pseudomonas exotoxin, cholera toxin, or diphtheria toxin
- a protein such as tumor necrosis factor, ⁇ -interferon, a-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNF- ⁇ , AIM I
- WO 97/34911 Fas Ligand (Takahashi eta/,, 1994, 1 Immunol., 6:1567-1574), and VEGF (see, International Publication No. WO 99/23105), an anti-angiogenic agent, e.g., angiostat!n, endostatin or a component of the coagulation pathway (e.g., tissue factor); or, a biological response modifier such as, for example, a lymphokine (e.g., interferon gamma, interleukin-1 ("H-l"), interleukin-2 ("IL- 2"), interleukin-5 ("IL-5"), interleukin-6 Q ll-6"), interleukin-7 HL-7”), interleukin 9 (“IL-9”), interleukin-10 ("U--10"), interleukin-12 ("IL-12”), interleukin-15 (“IL-15”), interleukin-23 CIL-23”), granulocyte macrophage colony stimulating factor ("GM-CSF
- the present invention encompasses antibodies of the invention recombinant ⁇ fused or chemically conjugated (covalent or non-covalent conjugations) to a heterologous protein or polypeptide (or fragment thereof, preferably to a polypeptide of about 10, about 20, about 30, about 40, about 50, about 60, about 70, about 80, about 90 or about 100 amino acids) to generate fusion proteins.
- the invention provides fusion proteins comprising an antigen-binding fragment of an antibody of the invention (e.g., a Fab fragment, Fd fragment, Fv fragment, F(ab)2 fragment, a VH domain, a VH CDR, a VL domain or a VL CDR) and a heterologous protein, polypeptide, or peptide.
- the heterologous protein, polypeptide, or peptide that the antibody is fused to is useful for targeting the antibody to a particular cell type, such as a cell that expresses hOX40L or an hOX40L receptor.
- a particular cell type such as a cell that expresses hOX40L or an hOX40L receptor.
- an antibody that specifically binds to a cell surface receptor expressed by a particular cell type may be fused or conjugated to a modified antibody of the invention.
- a conjugated or fusion protein of the invention comprises any antibody of the invention described herein and a heterologous polypeptide.
- a conjugated or fusion protein of the invention comprises the variable domains of an antibody disclosed in the .Examples and a heterologous polypeptide.
- an antibody of the invention can be conjugated to therapeutic moieties such as a radioactive metal ion, such as alpha-emitters such as 213 Bi or macrocyclic chelators useful for conjugating radiometal ions, including but not limited to, 131 In, 131 Lu, 131 Y, 131 Ho, 131 Sm, to polypeptides.
- the macrocyclic chelator is 1,4,7, 10-tetraazacyclododecane- N,N',N",N"'-tetraacetic acid (DOTA) which can be attached to the antibody via a linker molecule.
- linker molecules are commonly known in the art and described in Denardo et a/., 1998, Clin Cancer Res.
- antibodies of the invention can be fused to marker sequences, such as a peptide to facilitate purification.
- the marker amino acid sequence is a hexa- histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc.), among others, many of which are commercially available.
- hexa-histidine provides for convenient purification of the fusion protein.
- peptide tags useful for purification include, but are not limited to, the hemagglutinin ("HA") tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson eta/., 1984, Cell 37:767), and the "FLAG" tag.
- HA hemagglutinin
- FLAG FLAG
- Fusion proteins may be generated, for example, through the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as "DNA shuffling").
- DNA shuffling may be employed to alter the activities of antibodies of the invention (e.g., antibodies with higher affinities and lower dissociation rates). See, generally, U.S. Pat. Nos. 5,605,793, 5,811,238, 5,830,721, 5,834,252, and 5,837,458; Patten etal, 1997, Curr. Opinion Biotechnol. 8:724- 33; Harayama, 1998, Trends Biotechnol.
- Antibodies, or the encoded antibodies may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination.
- a polynucleotide encoding an antibody of the invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.
- An antibody of the invention can also be conjugated to a second antibody to form an antibody heteroconjugate as described in U.S. Pat. No. 4,676,980, which is incorporated herein by reference in its entirety.
- the therapeutic moiety or drug conjugated or recombinantly fused to an antibody of the invention that specifically binds to a hOX40L antigen should be chosen to achieve the desired prophylactic or therapeutic effect(s).
- the antibody is a modified antibody.
- a clinician or other medical personnel should consider the following when deciding on which therapeutic moiety or drug to conjugate or recombinantly fuse to an antibody of the invention: the nature of the disease, the severity of the disease, and the condition of the subject.
- Antibodies of the invention may also be attached to solid supports, which are particularly useful for immunoassays or purification of the target antigen.
- solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.
- compositions also applies to fragments so that disclosure mentioning antibodies can also apply mutatis mutandis to fragments of the invention.
- Therapeutic formulations containing one or more antibodies of the invention provided herein can be prepared for storage by mixing the antibody having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences (1990) Mack Publishing Co., Easton, Pa.), in the form of lyophilized formulations or aqueous solutions.
- Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine,
- the antibodies of the invention provided herein can also, for example, be formulated in liposomes.
- Liposomes containing the molecule of interest are prepared by methods known in the art, such as described in Epstein et a/. (1985) Proc. Natl. Acad. Sci. USA 82:3688; Hwang et a/. (1980) Proc. Natl. Acad. Sci. USA 77:4030; and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.
- Particularly useful immunoliposomes can be generated by the reverse phase evaporation method with a lipid composition containing phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter.
- Fab' fragments of an antibody provided herein can be conjugated to the liposomes as described in Martin et al. (1982) I Biol. Chem. 257:286-288 via a disulfide interchange reaction.
- a chemotherapeutic agent such as Doxorubicin is optionally contained within the liposome; See Gabizon et al., (1989) 1. National Cancer Inst. 81(19): 1484.
- Formulations such as those described herein, can also contain more than one active compound as necessary for the particular indication being treated.
- formulations comprise an antibody of the invention and one or more active compounds with complementary activities that do not adversely affect each other.
- Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
- an antibody of the invention can be combined with one or more other therapeutic agents. Such combined therapy can be administered to the patient serially or simultaneously or in sequence.
- the combination comprises an anti-OX40L antibody of the invention and a further therapeutic agents independently selected from the group consisting of rapamycin (sirolimus), racrolimus, ciclosporin, corticosteroids (e.g. methylprednisolone), methotrexate, mycophenolate mofetil, anti-CD28 antibodies, anti-IL12/IL-23 antibodies (e.g. ustekinumab), anti- CD20 antibodies (e.g.rituximab), anti-CD30 antibodies (e.g. brentuximab), CTLA4-Fc molecules (e.g. abatacept), CCR5 receptor antagonists (e.g.
- anti-CD40L antibodies anti-VLA4 antibodies (e.g. natalizumab), anti-LFAl antibodies, fludarabine, anti-CD52 antibodies (e.g. alemtuzumab), anti- CD45 antibodies, cyclophosphamide, anti-thymocyte globulins, anti-complement C5 antibodies (e.g. eculizumab), anti-a4b7 integrin antibodies (e.g. vedolizumab), anti-IL6 antibodies (e.g. tocilizumab), anti-IL2R antibodies (e.g. basilixumab), anti-CD25 antibodies (e.g.
- the combination comprises an anti-OX40L antibody of the invention and a further therapeutic agents independently selected from the group consisting of rapamycin (sirolimus), racrolimus, ciclosporin, corticosteroids (e.g. methylprednisolone), methotrexate, mycophenolate mofetil, anti-CD28 antibodies, CTI_A4-Fc molecules (e.g. abatacept), anti-CD40L antibodies, anti-LFAl antibodies, anti-CD52 antibodies (e.g. alemtuzumab), cyclophosphamide and anti-thymocyte globulins.
- rapamycin sirolimus
- racrolimus racrolimus
- ciclosporin e.g. methylprednisolone
- corticosteroids e.g. methylprednisolone
- methotrexate mycophenolate mofetil
- anti-CD28 antibodies e.g. abatacept
- An antibody of the invention can also be entrapped in microcapsule prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions.
- colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
- the formulations to be used for in vivo administration can be sterile. This is readily accomplished by filtration through, e.g., sterile filtration membranes.
- Sustained-release preparations can also be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antagonist, which matrices are in the form of shaped articles, e.g., films, or microcapsule. Examples of sustained- release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No.
- copolymers of L-glutamic acid and ethyl-L- glutamate non-degradable ethylene-vinyl acetate
- degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate)
- poly-D-(-)-3-hydroxybutyric acid While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.
- encapsulated antibodies When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S— S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
- compositions provided herein contain therapeutically effective amounts of one or more of the antibodies of the invention provided herein, and optionally one or more additional prophylactic of therapeutic agents, in a pharmaceutically acceptable carrier.
- Such pharmaceutical compositions are useful in the prevention, treatment, management or amelioration of a hOX40L-mediated disease, such as an inflammatory bowl disease, transplant rejection, GvHD or one or more of the symptoms thereof.
- Pharmaceutical carriers suitable for administration of the compounds provided herein include any such carriers known to those skilled in the art to be suitable for the particular mode of administration.
- antibodies of the invention may be formulated as the sole pharmaceutically active ingredient in the composition or may be combined with other active ingredients (such as one or more other prophylactic or therapeutic agents).
- compositions can contain one or more antibodies of the invention.
- the antibodies are formulated into suitable pharmaceutical preparations, such as solutions, suspensions, tablets, dispersible tablets, pills, capsules, powders, sustained release formulations or elixirs, for oral administration or in sterile solutions or suspensions for parenteral administration, as well as transdermal patch preparation and dry powder inhalers.
- the antibodies described above are formulated into pharmaceutical compositions using techniques and procedures well known in the art (see, e.g., Ansel (1985) Introduction to Pharmaceutical Dosage Forms, 4th Ed., p. 126).
- compositions effective concentrations of one or more antibodies or derivatives thereof is (are) mixed with a suitable pharmaceutical carrier.
- concentrations of the compounds in the compositions are effective for delivery of an amount, upon administration, that treats, prevents, or ameliorates a hOX40L-mediated disease or symptom thereof.
- compositions are formulated for single dosage administration.
- the weight fraction of compound is dissolved, suspended, dispersed or otherwise mixed in a selected carrier at an effective concentration such that the treated condition is relieved, prevented, or one or more symptoms are ameliorated.
- An antibody of the invention is included in the pharmaceutically acceptable carrier in an effective amount sufficient to exert a therapeutically useful effect in the absence of undesirable side effects on the patient treated.
- the therapeutically effective concentration can be determined empirically by testing the compounds in in vitro and in vivo systems using routine methods and then extrapolated therefrom for dosages for humans.
- the concentration of antibody in the pharmaceutical composition will depend on, e.g., the physicochennical characteristics of the antibody, the dosage schedule, and amount administered as well as other factors known to those of skill in the art.
- a therapeutically effective dosage produces a serum concentration of antibody of from about 0.1 ng/ml to about 50-100 Mg/nnl.
- the pharmaceutical compositions in another embodiment, provide a dosage of from about 0.001 mg to about 2000 mg of antibody per kilogram of body weight per day.
- Pharmaceutical dosage unit forms can be prepared to provide from about 0.01 mg, 0.1 mg or 1 mg to about 500 mg, 1000 mg or 2000 mg, and in one embodiment from about 10 mg to about 500 mg of the antibody and/or a combination of other optional essential ingredients per dosage unit form.
- the antibody can be administered at once, or may be divided into a number of smaller doses to be administered at intervals of time. It is understood that the precise dosage and duration of treatment is a function of the disease being treated and can be determined empirically using known testing protocols or by extrapolation from in vivo or in vitro test data. It is to be noted that concentrations and dosage values can also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens can be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed compositions.
- the resulting mixture can be a solution, suspension, emulsion or the like.
- the form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected carrier or vehicle.
- the effective concentration is sufficient for ameliorating the symptoms of the disease, disorder or condition treated and may be empirically determined.
- the pharmaceutical compositions are provided for administration to humans and animals in unit dosage forms, such as tablets, capsules, pills, powders, granules, sterile parenteral solutions or suspensions, and oral solutions or suspensions, and oil-water emulsions containing suitable quantities of the compounds or pharmaceutically acceptable derivatives thereof.
- the antibody is, in one embodiment, formulated and administered in unit-dosage forms or multiple-dosage forms.
- Unit-dose forms as used herein refers to physically discrete units suitable for human and animal subjects and packaged individually as is known in the art. Each unit-dose contains a predetermined quantity of the antibody sufficient to produce the desired therapeutic effect, in association with the required pharmaceutical carrier, vehicle or diluent.
- unit-dose forms include ampoules and syringes and individually packaged tablets or capsules.
- Unit-dose forms can be administered in fractions or multiples thereof.
- a multiple-dose form is a plurality of identical unit-dosage forms packaged in a single container to be administered in segregated unit-dose form.
- Examples of multiple-dose forms include vials, bottles of tablets or capsules or bottles of pints or gallons.
- multiple dose form is a multiple of unit-doses which are not segregated in packaging.
- one or more anti-hOX40L antibodies of the invention are in a liquid pharmaceutical formulation.
- Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, or otherwise mixing an active compound as defined above and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline, aqueous dextrose, glycerol, glycols, ethanol, and the like, to thereby form a solution or suspension.
- the pharmaceutical composition to be administered can also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like, for example, acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents.
- nontoxic auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like, for example, acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents.
- Dosage forms or compositions containing antibody in the range of 0.005% to 100% with the balance made up from non-toxic carrier can be prepared. Methods for preparation of these compositions are known to those skilled in the art.
- Oral pharmaceutical dosage forms are either solid, gel or liquid.
- the solid dosage forms are tablets, capsules, granules, and bulk powders.
- Types of oral tablets include compressed, chewable lozenges and tablets which may be enteric-coated, sugar-coated or film-coated.
- Capsules can be hard or soft gelatin capsules, while granules and powders can be provided in non-effervescent or effervescent form with the combination of other ingredients known to those skilled in the art.
- the formulations are solid dosage forms. In certain embodiments, the formulations are capsules or tablets.
- the tablets, pills, capsules, troches and the like can contain one or more of the following ingredients, or compounds of a similar nature: a binder; a lubricant; a diluent; a glidant; a disintegrating agent; a colouring agent; a sweetening agent; a flavouring agent; a wetting agent; an emetic coating; and a film coating.
- binders include microcrystalline cellulose, gum tragacanth, glucose solution, acacia mucilage, gelatin solution, molasses, polyinylpyrrolidine, povidone, crospovidones, sucrose and starch paste.
- Lubricants include talc, starch, magnesium or calcium stearate, lycopodium and stearic acid.
- Diluents include, for example, lactose, sucrose, starch, kaolin, salt, mannitol and dicalcium phosphate.
- Glidants include, but are not limited to, colloidal silicon dioxide.
- Disintegrating agents include crosscarmellose sodium, sodium starch glycolate, alginic acid, corn starch, potato starch, bentonite, methyl cellulose, agar and carboxymethylcellulose.
- Colouring agents include, for example, any of the approved certified water soluble FD and C dyes, mixtures thereof; and water insoluble FD and C dyes suspended on alumina hydrate.
- Sweetening agents include sucrose, lactose, mannitol and artificial sweetening agents such as saccharin, and any number of spray dried flavours.
- Flavouring agents include natural flavours extracted from plants such as fruits and synthetic blends of compounds which produce a pleasant sensation, such as, but not limited to peppermint and methyl salicylate.
- Wetting agents include propylene glycol monostearate, sorbitan monooleate, diethylene glycol monolaurate and polyoxyethylene laural ether.
- Emetic-coatings include fatty acids, fats, waxes, shellac, ammoniated shellac and cellulose acetate phthalates.
- Film coatings include hydroxyethylcellulose, sodium carboxymethylcellulose, polyethylene glycol 4000 and cellulose acetate phthalate.
- the antibodies of the invention can be provided in a composition that protects it/them from the acidic environment of the stomach.
- the composition can be formulated in an enteric coating that maintains its integrity in the stomach and releases the active compound in the intestine.
- the composition can also be formulated in combination with an antacid or other such ingredient.
- dosage unit form When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil.
- dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar and other enteric agents.
- the compounds can also be administered as a component of an elixir, suspension, syrup, wafer, sprinkle, chewing gum or the like.
- a syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colourings and flavours.
- the antibody can also be mixed with other active materials which do not impair the desired action, or with materials that supplement the desired action, such as antacids, H2 blockers, and diuretics.
- the active ingredient is an antibody or pharmaceutically acceptable derivative thereof as described herein. Higher concentrations, up to about 98% by weight of the active ingredient may be included.
- tablets and capsules formulations can be coated as known by those of skill in the art in order to modify or sustain dissolution of the active ingredient.
- they may be coated with a conventional enterically digestible coating, such as phenylsalicylate, waxes and cellulose acetate phthalate.
- the formulations are liquid dosage forms.
- Liquid oral dosage forms include aqueous solutions, emulsions, suspensions, solutions and/or suspensions reconstituted from non-effervescent granules and effervescent preparations reconstituted from effervescent granules.
- Aqueous solutions include, for example, elixirs and syrups.
- Emulsions are either oil-in-water or water- in-oil.
- Elixirs are clear, sweetened, hydroalcoholic preparations.
- Pharmaceutically acceptable carriers used in elixirs include solvents. Syrups are concentrated aqueous solutions of a sugar, for example, sucrose, and may contain a preservative.
- An emulsion is a two-phase system in which one liquid is dispersed in the form of small globules throughout another liquid.
- Pharmaceutically acceptable carriers used in emulsions are non-aqueous liquids, emulsifying agents and preservatives. Suspensions use pharmaceutically acceptable suspending agents and preservatives.
- Pharmaceutically acceptable substances used in non-effervescent granules, to be reconstituted into a liquid oral dosage form include diluents, sweeteners and wetting agents.
- Pharmaceutically acceptable substances used in effervescent granules, to be reconstituted into a liquid oral dosage form include organic acids and a source of carbon dioxide. Colouring and flavouring agents are used in all of the above dosage forms.
- Solvents include glycerin, sorbitol, ethyl alcohol and syrup.
- EExamples of preservatives include glycerin, methyl and propylparaben, benzoic acid, sodium benzoate and alcohol.
- nonaqueous liquids utilized in emulsions include mineral oil and cottonseed oil.
- emulsifying agents include gelatin, acacia, tragacanth, bentonite, and surfactants such as polyoxyethylene sorbitan monooleate.
- Suspending agents include sodium carboxymethylcellulose, pectin, tragacanth, Veegum and acacia.
- Sweetening agents include sucrose, syrups, glycerin and artificial sweetening agents such as saccharin.
- Wetting agents include propylene glycol monostearate, sorbitan monooleate, diethylene glycol monolaurate and polyoxyethylene lauryl ether.
- Organic acids include citric and tartaric acid.
- Sources of carbon dioxide include sodium bicarbonate and sodium carbonate.
- Colouring agents include any of the approved certified water soluble FD and C dyes, and mixtures thereof.
- Flavouring agents include natural flavours extracted from plants such fruits, and synthetic blends of compounds which produce a pleasant taste sensation.
- the solution or suspension in for example propylene carbonate, vegetable oils or triglycerides, is, in one embodiment, encapsulated in a gelatin capsule.
- a gelatin capsule Such solutions, and the preparation and encapsulation thereof, are disclosed in U.S. Pat. Nos. 4,328,245; 4,409,239; and 4,410,545.
- the solution e.g., for example, in a polyethylene glycol
- a pharmaceutically acceptable liquid carrier e.g., water
- liquid or semi-solid oral formulations can be prepared by dissolving or dispersing the active compound or salt in vegetable oils, glycols, triglycerides, propylene glycol esters (e.g., propylene carbonate) and other such carriers, and encapsulating these solutions or suspensions in hard or soft gelatin capsule shells.
- Other useful formulations include those set forth in U.S. Patent Nos. RE28,819 and 4,358,603.
- such formulations include, but are not limited to, those containing a compound provided herein, a dialkylated mono- or poly-alkylene glycol, including, but not limited to, 1,2-dimethoxymethane, diglyme, triglyme, tetraglyme, polyethylene glycol-350- dimethyl ether, polyethylene glycol-550-dimethyl ether, polyethylene glycol-750-dimethyl ether wherein 350, 550 and 750 refer to the approximate average molecular weight of the polyethylene glycol, and one or more antioxidants, such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), propyl gallate, vitamin E, hydroquinone, hydroxycoumarins, ethanolamine, lecithin, cephalin, ascorbic acid, malic acid, sorbitol, phosphoric acid, thiodipropionic acid and its esters, and dithiocarbamates.
- BHT butylated
- formulations include, but are not limited to, aqueous alcoholic solutions including a pharmaceutically acceptable acetal.
- Alcohols used in these formulations are any pharmaceutically acceptable water-miscible solvents having one or more hydroxyl groups, including, but not limited to, propylene glycol and ethanol.
- Acetals include, but are not limited to, di(lower alkyl) acetals of lower alkyl aldehydes such as acetaldehyde diethyl acetal.
- Parenteral administration in one embodiment, is characterized by injection, either subcutaneously, intramuscularly or intravenously is also contemplated herein.
- injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions.
- the injectables, solutions and emulsions also contain one or more excipients. Suitable excipients are, for example, water, saline, dextrose, glycerol or ethanol.
- compositions to be administered can also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents, stabilizers, solubility enhancers, and other such agents, such as for example, sodium acetate, sorbitan monolaurate, triethanolamine oleate and cyclodextrins.
- auxiliary substances such as wetting or emulsifying agents, pH buffering agents, stabilizers, solubility enhancers, and other such agents, such as for example, sodium acetate, sorbitan monolaurate, triethanolamine oleate and cyclodextrins.
- a compound provided herein is dispersed in a solid inner matrix, e.g., polymethylmethacrylate, polybutylmethacrylate, plasticized or unplasticized polyvinylchloride, plasticized nylon, plasticized polyethyleneterephthalate, natural rubber, polyisoprene, polyisobutylene, polybutadiene, polyethylene, ethylene-vinylacetate copolymers, silicone rubbers, polydimethylsiloxanes, silicone carbonate copolymers, hydrophilic polymers such as hydrogels of esters of acrylic and methacrylic acid, collagen, cross-linked polyvinylalcohol and cross-linked partially hydrolyzed polyvinyl acetate, that is surrounded by an outer polymeric membrane, e.g., polyethylene,
- Preparations for parenteral administration include sterile solutions ready for injection, sterile dry soluble products, such as lyophilized powders, ready to be combined with a solvent just prior to use, including hypodermic tablets, sterile suspensions ready for injection, sterile dry insoluble products ready to be combined with a vehicle just prior to use and sterile emulsions.
- the solutions may be either aqueous or nonaqueous.
- suitable carriers include physiological saline or phosphate buffered saline (PBS), and solutions containing thickening and solubilizing agents, such as glucose, polyethylene glycol, and polypropylene glycol and mixtures thereof.
- Pharmaceutically acceptable carriers used in parenteral preparations include aqueous vehicles, nonaqueous vehicles, antimicrobial agents, isotonic agents, buffers, antioxidants, local anaesthetics, suspending and dispersing agents, emulsifying agents, sequestering or chelating agents and other pharmaceutically acceptable substances.
- aqueous vehicles examples include Sodium Chloride Injection, Ringers Injection, Isotonic Dextrose Injection, Sterile Water Injection, Dextrose and Lactated Ringers Injection.
- Nonaqueous parenteral vehicles include fixed oils of vegetable origin, cottonseed oil, corn oil, sesame oil and peanut oil.
- Antimicrobial agents in bacteriostatic or fungistatic concentrations can be added to parenteral preparations packaged in multiple-dose containers which include phenols or cresols, mercurials, benzyl alcohol, chlorobutanol, methyl and propyl p-hydroxybenzoic acid esters, thimerosal, benzalkonium chloride and benzethonium chloride.
- Isotonic agents include sodium chloride and dextrose. Buffers include phosphate and citrate. Antioxidants include sodium bisulfate. Local anesthetics include procaine hydrochloride. Suspending and dispersing agents include sodium carboxymethylcelluose, hydroxypropyl methylcellulose and polyvinylpyrrolidone. Emulsifying agents include Polysorbate 80 (TWEEN® 80). A sequestering or chelating agent of metal ions includes EDTA. Pharmaceutical carriers also include ethyl alcohol, polyethylene glycol and propylene glycol for water miscible vehicles; and sodium hydroxide, hydrochloric acid, citric acid or lactic acid for pH adjustment.
- the concentration of the pharmaceutically active compound is adjusted so that an injection provides an effective amount to produce the desired pharmacological effect.
- the exact dose depends on the age, weight and condition of the patient or animal as is known in the art.
- the unit-dose parenteral preparations can be packaged in an ampoule, a vial or a syringe with a needle. All preparations for parenteral administration can be sterile, as is known and practiced in the art.
- intravenous or intraarterial infusion of a sterile aqueous solution containing an active compound is an effective mode of administration.
- Another embodiment is a sterile aqueous or oily solution or suspension containing an active material injected as necessary to produce the desired pharmacological effect.
- Injectables are designed for local and systemic administration.
- a therapeutically effective dosage is formulated to contain a concentration of at least about 0.1% w/w up to about 90% w/w or more, in certain embodiments more than 1% w/w of the active compound to the treated tissue(s).
- the antibody can be suspended in micronized or other suitable form.
- the form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected carrier or vehicle.
- the effective concentration is sufficient for ameliorating the symptoms of the condition and may be empirically determined.
- the pharmaceutical formulations are lyophilized powders, which can be reconstituted for administration as solutions, emulsions and other mixtures. They may also be reconstituted and formulated as solids or gels.
- the lyophilized powder is prepared by dissolving an antibody provided herein, or a pharmaceutically acceptable derivative thereof, in a suitable solvent.
- the lyophilized powder is sterile.
- the solvent may contain an excipient which improves the stability or other pharmacological component of the powder or reconstituted solution, prepared from the powder. Excipients that may be used include, but are not limited to, dextrose, sorbital, fructose, corn syrup, xylitol, glycerin, glucose, sucrose or other suitable agent.
- the solvent may also contain a buffer, such as citrate, sodium or potassium phosphate or other such buffer known to those of skill in the art at, in one embodiment, about neutral pH.
- the resulting solution will be apportioned into vials for lyophilization.
- Each vial will contain a single dosage or multiple dosages of the compound.
- the lyophilized powder can be stored under appropriate conditions, such as at about 4° C. to room temperature.
- Reconstitution of this lyophilized powder with water for injection provides a formulation for use in parenteral administration.
- the lyophilized powder is added to sterile water or other suitable carrier. The precise amount depends upon the selected compound. Such amount can be empirically determined.
- Topical mixtures are prepared as described for the local and systemic administration.
- the resulting mixture can be a solution, suspension, emulsions or the like and can be formulated as creams, gels, ointments, emulsions, solutions, elixirs, lotions, suspensions, tinctures, pastes, foams, aerosols, irrigations, sprays, suppositories, bandages, dermal patches or any other formulations suitable for topical administration.
- the antibodies of the invention can be formulated as aerosols for topical application, such as by inhalation (see, e.g., U.S. Pat. Nos. 4,044,126, 4,414,209, and 4,364,923, which describe aerosols for delivery of a steroid useful for treatment of inflammatory diseases, particularly asthma).
- These formulations for administration to the respiratory tract can be in the form of an aerosol or solution for a nebulizer, or as a microfine powder for insufflations, alone or in combination with an inert carrier such as lactose.
- the particles of the formulation will, in one embodiment, have diameters of less than 50 microns, in one embodiment less than 10 microns.
- the compounds can be formulated for local or topical application, such as for topical application to the skin and mucous membranes, such as in the eye, in the form of gels, creams, and lotions and for application to the eye or for intracisternal or intraspinal application.
- Topical administration is contemplated for transdermal delivery and also for administration to the eyes or mucosa, or for inhalation therapies.
- Nasal solutions of the active compound alone or in combination with other pharmaceutically acceptable excipients can also be administered.
- solutions particularly those intended for ophthalmic use, may be formulated as 0.01%- 10% isotonic solutions, pH about 5-7, with appropriate salts.
- transdermal patches including iontophoretic and electrophoretic devices, and rectal administration, are also contemplated herein.
- Transdermal patches including iotophoretic and electrophoretic devices, are well known to those of skill in the art.
- such patches are disclosed in U.S. Pat. Nos. 6,267,983, 6,261,595, 6,256,533, 6,167,301, 6,024,975, 6,010715, 5,985,317, 5,983,134, 5,948,433, and 5,860,957.
- rectal suppositories are used herein mean solid bodies for insertion into the rectum which melt or soften at body temperature releasing one or more pharmacologically or therapeutically active ingredients.
- Pharmaceutically acceptable substances utilized in rectal suppositories are bases or vehicles and agents to raise the melting point. Examples of bases include cocoa butter (theobroma oil), glycerin-gelatin, carbowax (polyoxyethylene glycol) and appropriate mixtures of mono-, di- and triglycerides of fatty acids. Combinations of the various bases may be used.
- spermaceti and wax agents to raise the melting point of suppositories include spermaceti and wax.
- Rectal suppositories may be prepared either by the compressed method or by moulding.
- the weight of a rectal suppository in one embodiment, is about 2 to 3 gm,
- Tablets and capsules for rectal administration can be manufactured using the same pharmaceutically acceptable substance and by the same methods as for formulations for oral administration.
- compositions provided herein may also be formulated to be targeted to a particular tissue, receptor, or other area of the body of the subject to be treated. Many such targeting methods are well known to those of skill in the art. All such targeting methods are contemplated herein for use in the instant compositions. For non-limiting examples of targeting methods, see, e.g., U.S. Pat. Nos.
- the anti-hOX40L antibodies of the invention are targeted (or otherwise administered) to the colon, such as in a patient having or at risk of having an IBD. In some embodiments, the anti-hOX40L antibodies of the invention are targeted (or otherwise administered) to the eye, such as in a patient having or at risk of having uveitis.
- liposomal suspensions including tissue-targeted liposomes, such as tumour-targeted liposomes, may also be suitable as pharmaceutically acceptable carriers.
- tissue-targeted liposomes such as tumour-targeted liposomes
- liposome formulations can be prepared according to methods known to those skilled in the art.
- liposome formulations can be prepared as described in U.S. Pat. No. 4,522,811. Briefly, liposomes such as multilamellar vesicles (MLV's) may be formed by drying down egg phosphatidyl choline and brain phosphatidyl serine (7:3 molar ratio) on the inside of a flask.
- MLV's multilamellar vesicles
- a solution of a compound provided herein in phosphate buffered saline lacking divalent cations (PBS) is added and the flask shaken until the lipid film is dispersed.
- PBS phosphate buffered saline lacking divalent cations
- the present invention further provides for compositions comprising one or more antibodies or fragments of the invention for use in the prevention, management, treatment and/or amelioration of a hOX40L-mediated disease (or symptom thereof). Discussion in respect of antibodies also applies mutatis mutandis to fragments of the invention.
- the present invention further provides for compositions comprising one or more antibodies or fragments of the invention for use in the prevention, management, treatment and/or amelioration of an OX40L-mediated disease (or symptom thereof) in a subject, wherein the OX40L is non-human (e.g., canine, feline, equine, bovine, ovine or porcine) and the subject is respectively a dog, cat, horse, cow, sheep or pig.
- OX40L is non-human (e.g., canine, feline, equine, bovine, ovine or porcine) and the subject is respectively a dog, cat, horse, cow, sheep or pig.
- compositions comprising one or more antibodies of the invention for use in the prevention, management, treatment and/or amelioration of a hOX40L- mediated disease, such as IBD (e.g., ulcerative colitis or Crohn's disease), or a symptom thereof.
- IBD symptoms may range from mild to severe and generally depend upon the part of the intestinal tract involved. Exemplary symptoms of IBD include abdominal cramps and pain, bloody diarrhoea, severe urgency to have a bowel movement, fever, loss of appetite, weight loss, anaemia, fatigue, and/or sores on lower legs, ankles, calves, thighs, and arms.
- Exemplary intestinal complications of IBD include profuse bleeding from the ulcers, perforation or rupture of the bowel, strictures and obstruction, flstulae (abnormal passage) and perianal disease, toxic megacolon (e.g., acute nonobstructive dilation of the colon), and/or malignancy (e.g., cancer of the colon or small intestine).
- Exemplary extraintestinal complications of IBD include arthritis, skin conditions, inflammation of the eye, liver and kidney disorders, and/or bone loss. Any combination of these symptoms may be prevented, managed, treated, and/or ameliorated using the compositions and methods provided herein.
- compositions comprising one or more antibodies of the invention for use in the prevention, management, treatment and/or amelioration of an hOX40L- mediated disease, such as GVHD, or a symptom thereof.
- GVHD generally occurs following allogeneic or matched unrelated bone marrow transplants (BMT).
- the GVHD is acute GVHD.
- the symptoms of acute GVHD can happen quickly and can be mild or severe. In certain instances, acute GVHD develops within about three months after transplant, such as when blood counts recover after transplant. It certain instances, the acute GVHD affects the skin, gastrointestinal (GI) tract and/or liver.
- GI gastrointestinal
- acute skin GVHD begins with a rash, for example, on the palms of the patient's hands, soles of the feet, or shoulders. However, the rash can become widespread, and may be itchy and painful and/or might blister and peel.
- Acute liver GVHD may affect normal functions of the liver, such as liver enzymes, and may in turn, cause jaundice.
- Acute liver GVHD may also cause the patient's abdomen to become swollen and painful if the liver becomes enlarged.
- symptoms of acute gut GVHD can include diarrhoea, mucus or blood in the stool, cramping or abdominal pain, indigestion, nausea and/or loss of appetite.
- Other general symptoms of acute GVHD can include anaemia, low grade fever, and/or being more prone to infections. Any combination of these symptoms of acute GVHD may be prevented, managed, treated, and/or ameliorated using the compositions and methods provided herein.
- the GVHD is chronic GVHD.
- Chronic GVHD can occur from about three months to about a year or longer after transplant.
- Chronic GVHD can be mild or severe, and generally includes symptoms similar to those of acute GVHD.
- Chronic GVHD can affect the skin and digestive system, including the liver but can also involve other organs and the immune system (e.g., making the patient more prone to infections) and/or connective tissues.
- Symptoms of chronic skin GVHD include a rash, dry skin, tight skin, itchy skin, darkening of the colour of the skin, thickening of the skin, and/or may affect hair (e.g., hair loss, turning grey) or nails (e.g., hard or brittle nails).
- Chronic gut GVHD can affect the digestive system, mouth, oesophagus, lining of the stomach, and/or lining of the bowel, and symptoms can include diarrhoea, dry or sore mouth, painful swallowing, low nutrient absorption by the stomach, bloating, stomach cramps.
- Chronic liver GVHD can cause damage and scarring of the liver (cirrhosis).
- Chronic GVHD of the eyes can affect the glands that make tears, causing eyes to become dry, burning and painful or difficult to tolerate bright light.
- Chronic lung GVHD can cause shortness of breath, wheezing, persistent cough, and/or being more prone to chest infections.
- Chronic GVHD affects tendons (e.g., inflammation) that connect muscle to bone causing difficulty straightening or bending your arms and legs. Any combination of these symptoms of chronic GVHD may be prevented, managed, treated, and/or ameliorated using the compositions and methods provided herein.
- compositions comprising one or more antibodies of the invention for use in the prevention, management, treatment and/or amelioration of a hOX40L- mediated disease, such as uveitis, or a symptom thereof.
- compositions comprising one or more antibodies of the invention for use in the prevention, management, treatment and/or amelioration of a hOX40L- mediated disease, such as pyoderma gangrenosum, giant cell arteritis, Schnitzler syndrome or noninfectious scleritis.
- a hOX40L- mediated disease such as pyoderma gangrenosum, giant cell arteritis, Schnitzler syndrome or noninfectious scleritis.
- compositions comprising one or more antibodies of the invention for use in the prevention, management, treatment and/or amelioration of a hOX40L mediated disease or condition selected from an autoimmune disease or condition, a systemic inflammatory disease or condition, or transplant rejection; for example inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, transplant rejection, allogenic transplant rejection, graft- versus-host disease (GvHD), ulcerative colitis, systemic lupus erythematosus (SLE), diabetes, uveitis, ankylosing spondylitis, contact hypersensitivity, multiple sclerosis and atherosclerosis, in particular GvHD.
- IBD inflammatory bowel disease
- Crohn's disease Crohn's disease
- rheumatoid arthritis transplant rejection
- allogenic transplant rejection graft- versus-host disease
- GvHD graft- versus-host disease
- ulcerative colitis systemic lupus erythematosus
- composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-mediated disease comprises the OX40L binding sites of an antibody of the invention, e.g., an antibody disclosed in the Examples.
- a composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-mediated disease comprises one or more antibodies comprising one or more VH domains having an amino acid sequence of any one of the VH domains in the sequence listing (i.e. Seq ID No:2, Seq ID No:34, Seq ID No;66 or Seq ID No:94, in particular Seq ID No:34).
- a composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-mediated disease comprises one or more antibodies comprising one or more VH CDRls having an amino acid sequence of any one of the VH CDRls in the sequence listing (i.e.
- a composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-mediated disease comprises one or more antibodies comprising one or more VH CDR2s having an amino acid sequence of any one of the VH CDR2s in the sequence listing (i.e.
- a composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-mediated disease comprises one or more antibodies comprising one or more VH CDR3s having an amino acid sequence of any one of the VH CDR3s in the sequence listing (i.e.
- Seq ID No:8 Seq ID No: 14, Seq ID No:40, Seq ID No:46, Seq ID No:72, Seq ID No:78, Seq ID No:100 or Seq ID No:106, in particular Seq ID No:40 or Seq ID No:46).
- a composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-mediated disease comprises one or more antibodies comprising one or more VL domains having an amino acid sequence of any one of the VL domains in the sequence listing (i.e. Seq ID No: 16, Seq ID No:48, Seq ID No:80, or Seq ID No: 108, in particular Seq ID No:48) (optionally comprising also the cognate VH domain as set out in the sequence listing (i.e. Seq ID No:2/16, Seq ID No:34/48, Seq ID No:66/80 or Seq ID No:94/108, in particular Seq ID No:34/48).
- a composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-mediated disease comprises one or more antibodies comprising one or more VL CDRls having an amino acid sequence of any one of the VL CDRls in the sequence listing (i.e. Seq ID No:18, Seq ID No:24, Seq ID No:50, Seq ID No:56, Seq ID No:82, Seq ID No:88, Seq ID No:110 or Seq ID No: 116, in particular Seq ID No:50 or Seq ID No:56).
- a composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-mediated disease comprises one or more antibodies comprising one or more VL CDR2s having an amino acid sequence of any one of the VL CDR2s in the sequence listing (i.e. Seq ID No:20, Seq ID No:26, Seq ID No:52, Seq ID No:58, Seq ID No:84, Seq ID No;90, Seq ID No:112 or Seq ID No: 118, in particular Seq ID No;52 or Seq ID No:58).
- a composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-nnediated disease comprises one or more antibodies comprising one or more VL CDR3s having an amino acid sequence of any one of the VL CDR3s in the sequence listing (i.e. Seq ID No:22, Seq ID No:28, Seq ID No:54, Seq ID No:60, Seq ID No:86, Seq ID No:92, Seq ID No:114 or Seq ID No:120, in particular Seq ID No:54 or Seq ID No:60).
- a composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-nnediated disease comprises one or more antibodies comprising one or more VH domains having an amino acid sequence of any one of the VH domains in the sequence listing (i.e. Seq ID No:2, Seq ID No:34, Seq ID No;66 or Seq ID No:94, in particular Seq ID No;34), and one or more VL domains having an amino acid sequence of any one of the VL domains in the sequence listing (i.e. Seq ID No: 16, Seq ID No:48, Seq ID No:80, or Seq ID No: 108, in particular Seq ID No:48).
- a composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-nnediated disease comprises one or more antibodies comprising one or more VH CDRls having an amino acid sequence of any one of the VH CDRls in the sequence listing (i.e. Seq ID No:4, Seq ID No; 10, Seq ID No:36, Seq ID No:42, Seq ID No:68, Seq ID No:74, Seq ID No;96 or Seq ID No: 102, in particular, Seq ID No:36 or Seq ID No:42), and one or more VL CDRls having an amino acid sequence of any one of the VL CDRls in the sequence listing (i.e.
- a composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-nnediated disease comprises one or more antibodies comprising one or more VH CDRls having an amino acid sequence of any one of the VH CDRls in the sequence listing (i.e.
- Seq ID No:4 Seq ID No: 10, Seq ID No:36, Seq ID No:42, Seq ID No:68, Seq ID No:74, Seq ID No:96 or Seq ID No:102, in particular, Seq ID No:36 or Seq ID No;42), and one or more VL CDR2s having an amino acid sequence of any one of the VL CDR2s in the sequence listing (i.e. Seq ID No:20, Seq ID No:26, Seq ID No:52, Seq ID No:58, Seq ID No:84, Seq ID No:90, Seq ID No:112 or Seq ID No: 118, in particular Seq ID No:52 or Seq ID No:58).
- composition for use in the prevention, management, treatment and/or amelioration of a hOX40L-nnediated disease comprises one or more antibodies comprising one or more VH CDRls having an amino acid sequence of any one of the VH CDRls in the sequence listing (i.e.
- Seq ID No:4 Seq ID No: 10, Seq ID No:36, Seq ID No:42, Seq ID No:68, Seq ID No:74, Seq ID No:96 or Seq ID No: 102, in particular, Seq ID No:36 or Seq ID No:42), and one or more VL CDR3s having an amino acid sequence of any one of the VL CDR3s having an amino acid sequence of any one of the VL CDR3s in the sequence listing (i.e.
- a composition of the invention may be used either alone or in combination with other compounds or compositions.
- the antibodies may further be recombinants fused to a heterologous polypeptide at the N- or C-terminus or chemically conjugated (including covalently and non-covalently conjugations) to polypeptides or other compositions.
- antibodies of the present invention may be recombinantly fused or conjugated to molecules useful as labels in detection assays and effector molecules such as heterologous polypeptides, drugs, radionucleotides, or toxins. See, e.g., PCT publications WO 92/08495; WO 91/14438; WO 89/12624; U.S. Pat. No. 5,314,995; and EP 396,387.
- kits for decreasing or inhibiting binding of hOX40L to an OX40L receptor or cognate ligand (e.g., OX40) in a subject comprising administering to the subject an effective amount of an antibody that specifically binds to a hOX40L polypeptide (e.g., a cell surface-expressed or soluble hOX40L).
- OX40L receptor or cognate ligand e.g., OX40
- a hOX40L biological activity such as secretion of CCL20, IL8 and/or RANTES, or INF- ⁇ , TNF-a or IL-2, in particular INF- ⁇ or another cytokine disclosed herein, is also decreased in the subject, for example decreased by at least 10, 20, 30, 40, 50 or 60%, or 70%, or 80%, or 90% or 95% or >95%.
- a hOX40L biological activity such as secretion of interferon gamma, IL-2, CCL20, IL8 and/or RANTES or other cytokine, , or INF- ⁇ , TNF-a or IL-2, in particular INF- ⁇ in a subject (e.g., a human subject), comprising administering to the subject an effective amount of an antibody that specifically binds to a hOX40L polypeptide (e.g., a cell surface-expressed hOX40L), wherein hOX40L biological activity is decreased by the antibody.
- a hOX40L biological activity such as secretion of interferon gamma, IL-2, CCL20, IL8 and/or RANTES or other cytokine, , or INF- ⁇ , TNF-a or IL-2, in particular INF- ⁇ in a subject (e.g., a human subject)
- hOX40L to an OX40L receptor or cognate ligand (e.g., OX40) in a cell having cell surface-expressed hOX40L
- contacting the cell with an effective amount of an antibody that specifically binds to a hOX40L polypeptide e.g., a cell surface-expressed or soluble hOX40L
- a hOX40L polypeptide e.g., a cell surface-expressed or soluble hOX40L
- a hOX40L polypeptide e.g., a cell surface-expressed or soluble hOX40L
- a hOX40L biological activity such as secretion of interferon gamma, IL-2, CCL20, IL8 and/or RANTES, or INF- ⁇ , TNF-a or IL-2, in particular INF- ⁇ or other cytokine disclosed herein, is also decreased in the cell.
- hOX40L biological activity such as secretion of interferon gamma, IL-2, CCL20, IL8 and/or RANTES or other cytokine disclosed herein, in a cell having a cell surface-expressed hOX40L receptor (such as OX40), contacting the cell with an effective amount of an antibody that specifically binds to a hOX40L polypeptide (e.g., a cell surface-expressed or soluble hOX40L) wherein hOX40L biological activity is decreased by the antibody.
- a hOX40L biological activity such as secretion of interferon gamma, IL-2, CCL20, IL8 and/or RANTES or other cytokine disclosed herein
- Antibodies of the present invention may be used, for example, to purify, detect, and target hOX40L antigens, in both in vitro and in vivo diagnostic and therapeutic methods.
- the modified antibodies have use in immunoassays for qualitatively and quantitatively measuring levels of hOX40L in biological samples. See, e.g., Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988) (incorporated by reference herein in its entirety).
- the invention also provides methods of preventing, managing, treating and/or ameliorating a hOX40L-mediated disease by administrating to a subject of an effective amount of an antibody, or pharmaceutical composition comprising an antibody of the invention.
- an antibody is substantially purified (i.e., substantially free from substances that limit its effect or produce undesired side-effects).
- the antibody is a fully human monoclonal antibody, such as a fully human monoclonal antagonist antibody.
- the subject administered a therapy is preferably a mammal such as non-primate (e.g., cows, pigs, horses, cats, dogs, rodents, mice or rats) or a primate (e.g., a monkey, such as a rhesus or cynomolgous monkey, or a human).
- a mammal such as non-primate (e.g., cows, pigs, horses, cats, dogs, rodents, mice or rats) or a primate (e.g., a monkey, such as a rhesus or cynomolgous monkey, or a human).
- the subject is a human.
- the subject is a human infant or a human infant born prematurely.
- the subject is a human with a hOX40L-mediated disease.
- a prophylactic or therapeutic agent e.g., an antibody of the invention
- a prophylactic or therapeutic agent e.g., an antibody of the invention
- encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the antibody, receptor-mediated endocytosis see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)
- construction of a nucleic acid as part of a retroviral or other vector etc.
- Methods of administering a prophylactic or therapeutic agent include, but are not limited to, parenteral administration (e.g., intradermal, intramuscular, intraperitoneal, intravenous and subcutaneous), epidural, and mucosal (e.g., intranasal and oral routes).
- parenteral administration e.g., intradermal, intramuscular, intraperitoneal, intravenous and subcutaneous
- epidural e.g., intranasal and oral routes
- mucosal e.g., intranasal and oral routes.
- a prophylactic or therapeutic agent e.g., an antibody of the present invention
- a pharmaceutical composition is administered intranasally, intramuscularly, intravenously, or subcutaneously.
- the prophylactic or therapeutic agents or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, intranasal mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local.
- pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. See, e.g., U.S. Pat. Nos.
- a prophylactic or therapeutic agent or a pharmaceutical composition of the invention locally to the area in need of treatment.
- This may be achieved by, for example, and not by way of limitation, local infusion, by topical administration (e.g., by intranasal spray), by injection, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.
- care must be taken to use materials to which the antibody does not absorb.
- a prophylactic or therapeutic agent, or a composition of the invention can be delivered in a vesicle, in particular a liposome (see Langer, 1990, Science 249: 1527-1533; Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.).
- a prophylactic or therapeutic agent, or a composition of the invention can be delivered in a controlled release or sustained release system.
- a pump may be used to achieve controlled or sustained release (see Langer, supra; Sefton, 1987, C C Crit. Ref. Biomed. Eng. 14:20; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:574).
- polymeric materials can be used to achieve controlled or sustained release of a prophylactic or therapeutic agent (e.g., an antibodies of the invention) or a composition of the invention (see e.g., Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla. (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, 1983, 1, Macromol. Sci. Rev. Macromol. Chem. 23:61; see also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol.
- a prophylactic or therapeutic agent e.g., an antibodies of the invention
- a composition of the invention see e.g., Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla. (1974); Controlled Drug Bioava
- polymers used in sustained release formulations include, but are not limited to, poly(2-hydroxy ethyl methacrylate), poly(methyl methacrylate), poly(acrylic acid), poly(ethylene-co-vinyl acetate), poly(methacrylic acid), polyglycolides (PLG), polyanhydrides, poly(N-vinyl pyrrolidone), polyvinyl alcohol), polyacrylamide, poly(ethylene glycol), polylactides (PLA), poly(lactide-co-glycolides) (PLGA), and polyorthoesters.
- the polymer used in a sustained release formulation is inert, free of leachable impurities, stable on storage, sterile, and biodegradable.
- a controlled or sustained release system can be placed in proximity of the therapeutic target, i.e., the nasal passages or lungs, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)). Controlled release systems are discussed in the review by Langer (1990, Science 249:1527-1533). Any technique known to one of skill in the art can be used to produce sustained release formulations comprising one or more antibodies of the invention. See, e.g., U.S. Pat. No.
- the composition of the invention is a nucleic acid encoding a prophylactic or therapeutic agent (e.g., an antibody of the invention)
- the nucleic acid can be administered in vivo to promote expression of its encoded prophylactic or therapeutic agent, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Pat. No.
- a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression by homologous recombination.
- a composition of the invention comprises one, two or more antibodies or fragments of the invention.
- a composition of the invention comprises one, two or more antibodies or fragments of the invention and a prophylactic or therapeutic agent other than an antibody of the invention.
- the agents are known to be useful for or have been or are currently used for the prevention, management, treatment and/or amelioration of a hOX40L-mediated disease.
- the compositions of the invention may also comprise a carrier.
- compositions of the invention include bulk drug compositions useful in the manufacture of pharmaceutical compositions (e.g., compositions that are suitable for administration to a subject or patient) that can be used in the preparation of unit dosage forms.
- a composition of the invention is a pharmaceutical composition.
- Such compositions comprise a prophylactically or therapeutically effective amount of one or more prophylactic or therapeutic agents (e.g., an antibody of the invention or other prophylactic or therapeutic agent), and a pharmaceutically acceptable carrier.
- the pharmaceutical compositions are formulated to be suitable for the route of administration to a subject.
- the term “carrier” refers to a diluent, adjuvant (e.g., Freund's adjuvant (complete and incomplete)), excipient, or vehicle with which the therapeutic is administered.
- adjuvant e.g., Freund's adjuvant (complete and incomplete)
- excipient or vehicle with which the therapeutic is administered.
- Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously.
- Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
- Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
- the composition if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like.
- Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences (1990) Mack Publishing Co., Easton, Pa. Such compositions will contain a prophylactically or therapeutically effective amount of the antibody, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.
- the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings.
- compositions for intravenous administration are solutions in sterile isotonic aqueous buffer.
- the composition may also include a solubilizing agent and a local anaesthetic such as lignocamne to ease pain at the site of the injection.
- Such compositions may be administered by a route other than intravenous.
- compositions of the invention are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
- a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
- the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline.
- an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- the invention also provides that an antibody of the invention is packaged in a hermetically sealed container such as an ampoule or sachette indicating the quantity of antibody.
- the antibody is supplied as a dry sterilized lyophilized powder or water free concentrate in a hermetically sealed container and can be reconstituted, e.g., with water or saline to the appropriate concentration for administration to a subject.
- the antibody is supplied as a dry sterile lyophilized powder in a hermetically sealed container at a unit dosage of at least 0.1 mg, at least 0.5 mg, at least 1 mg, at least 2 mg, or at least 3 mg, and more preferably at least 5 mg, at least 10 mg, at least 15 mg, at least 25 mg, at least 30 mg, at least 35 mg, at least 45 mg, at least 50 mg, at least 60 mg, at least 75 mg, at least 80 mg, at least 85 mg, at least 90 mg, at least 95 mg, or at least 100 mg.
- the lyophilized antibody can be stored at between 2 and 8° C.
- an antibody in its original container and the antibody can be administered within 12 hours, preferably within 6 hours, within 5 hours, within 3 hours, or within 1 hour after being reconstituted.
- an antibody is supplied in liquid form in a hermetically sealed container indicating the quantity and concentration of the antibody.
- the liquid form of the antibody is supplied in a hermetically sealed container at least 0.1 mg/ml, at least 0.5 mg/ml, or at least 1 mg/ml, and more preferably at least 5 mg/ml, at least 10 mg/ml, at least 15 mg/ml, at least 25 mg/ml, at least 30 mg/ml, at least 40 mg/ml, at least 50 mg/ml, at least 60 mg/ml, at least 70 mg/ml, at least 80 mg/ml, at least 90 mg/ml, or at least 100 mg/ml.
- compositions of the invention can be formulated as neutral or salt forms.
- Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2- ethylamino ethanol, histidine, procaine, etc.
- a prophylactic or therapeutic agent e.g., an antibody of the invention
- a dosage of an antibody or a composition that results in a serum titer of from about 0.1 Mg/ml to about 450 Mg/ml, and in some embodiments at least 0.1 Mg/ml, at least 0.2 Mg/ml, at least 0.4 Mg/ml, at least 0.5 M9/ml, at least 0.6 M9/ml, at least 0.8 Mg/ml, at least 1 M9/ml, at least 1.5 Mg/ml, and preferably at least 2 M9/ml, at least 5 M9/ml, at least 10 M9/ml, at least 15 M9/ml, at least 20 Mg/ml, at least 25 Mg/ml, at least 30 Mg/ml, at least 35 Mg/ml, at least 40 M9/ml, at least 50 M9/ml, at least 75 M9/ml, at least 100 M9/ml, at least 125 M9/ml, at least 150 M9/ml
- in vitro assays may optionally be employed to help identify optimal dosage ranges.
- the precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of a hOX40L-mediated disease, and should be decided according to the judgment of the practitioner and each patient's circumstances.
- Effective doses may be extrapolated from dose-response curves derived from in vitroox animal model test systems.
- the dosage administered to a patient is typically 0.1 mg/kg to 100 mg/kg of the patient's body weight. In some embodiments, the dosage administered to the patient is about 1 mg/kg to about 75 mg/kg of the patient's body weight. Preferably, the dosage administered to a patient is between 1 mg/kg and 20 mg/kg of the patient's body weight, more preferably 1 mg/kg to 5 mg/kg of the patient's body weight.
- human antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible. Further, the dosage and frequency of administration of the antibodies of the invention may be reduced by enhancing uptake and tissue penetration of the antibodies by modifications such as, for example, lipidation.
- approximately 100 mg/kg or less, approximately 75 mg/kg or less, approximately 50 mg/kg or less, approximately 25 mg/kg or less, approximately 10 mg/kg or less, approximately 5 mg/kg or less, approximately 1 mg/kg or less, approximately 0.5 mg/kg or less, or approximately 0.1 mg/kg or less of an antibody or fragment the invention is administered 5 times, 4 times, 3 times, 2 times or, preferably, 1 time to manage a hOX40L-mediated disease.
- an antibody of the invention is administered about 1-12 times, wherein the doses may be administered as necessary, e.g., weekly, biweekly, monthly, bimonthly, trimonthly, etc., as determined by a physician.
- a lower dose e.g., 1-15 mg/kg
- a higher dose e.g., 25-100 mg/kg
- other dosing amounts and schedules are easily determinable and within the scope of the invention.
- approximately 100 mg/kg, approximately 75 mg/kg or less, approximately 50 mg/kg or less, approximately 25 mg/kg or less, approximately 10 mg/kg or less, approximately 5 mg/kg or less, approximately 1 mg/kg or less, approximately 0.5 mg/kg or less, approximately 0.1 mg/kg or less of an antibody or fragment the invention in a sustained release formulation is administered to a subject, preferably a human, to prevent, manage, treat and/or ameliorate a hOX40L-mediated disease.
- an approximately 100 mg/kg, approximately 75 mg/kg or less, approximately 50 mg/kg or less, approximately 25 mg/kg or less, approximately 10 mg/kg or less, approximately 5 mg/kg or less, approximately 1 mg/kg or less, approximately 0.5 mg/kg or less, or approximately 0.1 mg/kg or less bolus of an antibody the invention not in a sustained release formulation is administered to a subject, preferably a human, to prevent, manage, treat and/or ameliorate a hOX40L-mediated disease, and after a certain period of time, approximately 100 mg/kg, approximately 75 mg/kg or less, approximately 50 mg/kg or less, approximately 25 mg/kg or less, approximately 10 mg/kg or less, approximately 5 mg/kg or less, approximately 1 mg/kg or less, approximately 0.5 mg/kg or less, or approximately 5 mg/kg or less of an antibody of the invention in a sustained release is administered to said subject (e.g., intranasally or intramuscularly) two, three or four times (preferably one time).
- said subject e
- a single dose of an antibody or fragment of the invention is administered to a patient to prevent, manage, treat and/or ameliorate a hOX40L-mediated disease two, three, four, five, six, seven, eight, nine, ten, eleven, twelve times, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, twenty-one, twenty-two, twenty-three, twenty-four, twenty five, or twenty six at bi-weekly (e.g., about 14 day) intervals over the course of a year, wherein the dose is selected from the group consisting of about 0.1 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 5 mg/kg, about 10 mg/kg, about 15 mg/kg, about 20 mg/kg, about 25 mg/kg, about 30 mg/kg, about 35 mg/kg, about 40 mg/kg, about 45 mg/kg, about 50 mg/kg, about 55 mg/kg, about 60 mg/kg, about 65 mg/kg, about 70 mg/kg, about 75 mg/
- a single dose of an antibody of the invention is administered to patient to prevent, manage, treat and/or ameliorate a hOX40L-mediated disease two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve times at about monthly (e.g., about 30 day) intervals over the course of a year, wherein the dose is selected from the group consisting of about 0.1 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 5 mg/kg, about 10 mg/kg, about 15 mg/kg, about 20 mg/kg, about 25 mg/kg, about 30 mg/kg, about 35 mg/kg, about 40 mg/kg, about 45 mg/kg, about 50 mg/kg, about 55 mg/kg, about 60 mg/kg, about 65 mg/kg, about 70 mg/kg, about 75 mg/kg, about 80 mg/kg, about 85 mg/kg, about 90 mg/kg, about 95 mg/kg, about 100 mg/kg, or a combination thereof (i.e., each dose monthly dose may
- a single dose of an antibody or fragment of the invention is administered to a patient to prevent, manage, treat and/or ameliorate a hOX40L-mediated disease two, three, four, five, or six times at about bi-monthly (e.g., about 60 day) intervals over the course of a year, wherein the dose is selected from the group consisting of about 0.1 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 5 mg/kg, about 10 mg/kg, about 15 mg/kg, about 20 mg/kg, about 25 mg/kg, about 30 mg/kg, about 35 mg/kg, about 40 mg/kg, about 45 mg/kg, about 50 mg/kg, about 55 mg/kg, about 60 mg/kg, about 65 mg/kg, about 70 mg/kg, about 75 mg/kg, about 80 mg/kg, about 85 mg/kg, about 90 mg/kg, about 95 mg/kg, about 100 mg/kg, or a combination thereof (i.e., each bi-monthly dose may or may not be
- a single dose of an antibody or fragment of the invention is administered to a patient to prevent, manage, treat and/or ameliorate a hOX40L-mediated disease two, three, or four times at about tri-monthly (e.g., about 120 day) intervals over the course of a year, wherein the dose is selected from the group consisting of about 0.1 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 5 mg/kg, about 10 mg/kg, about 15 mg/kg, about 20 mg/kg, about 25 mg/kg, about 30 mg/kg, about 35 mg/kg, about 40 mg/kg, about 45 mg/kg, about 50 mg/kg, about 55 mg/kg, about 60 mg/kg, about 65 mg/kg, about 70 mg/kg, about 75 mg/kg, about 80 mg/kg, about 85 mg/kg, about 90 mg/kg, about 95 mg/kg, about 100 mg/kg, or a combination thereof (i.e., each tri-monthly dose may or may not be identical).
- the route of administration for a dose of an antibody or fragment of the invention to a patient is intranasal, intramuscular, intravenous, or a combination thereof, but other routes described herein are also acceptable.
- the route of administration is intraocular.
- Each dose may or may not be administered by an identical route of administration.
- an antibody or fragment of the invention may be administered via multiple routes of administration simultaneously or subsequently to other doses of the same or a different antibody or fragment of the invention.
- antibodies or fragments of the invention are administered prophylactically or therapeutically to a subject.
- Antibodies or fragments of the invention can be prophylactically or therapeutically administered to a subject so as to prevent, lessen or ameliorate a hOX40L-mediated disease or symptom thereof.
- nucleic acids or nucleotide sequences of the invention are administered to prevent, manage, treat and/or ameliorate a hOX40L-mediated disease by way of gene therapy.
- Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid.
- the nucleic acids produce their encoded antibody, and the antibody mediates a prophylactic or therapeutic effect.
- Labelled antibodies or of the invention and derivatives and analogues thereof, which specifically bind to a hOX40L antigen can be used for diagnostic purposes to detect, diagnose, or monitor a hOX40L-mediated disease.
- the invention provides methods for the detection of a hOX40L- mediated disease comprising: (a) assaying the expression of a hOX40L antigen in cells or a tissue sample of a subject using one or more antibodies of the invention that specifically bind to the hOX40L antigen; and (b) comparing the level of the hOX40L antigen with a control level, e.g., levels in normal tissue samples (e.g., from a patient not having a hOX40L-mediated disease, or from the same patient before disease onset), whereby an increase in the assayed level of hOX40L antigen compared to the control level of the hOX40L antigen is indicative of a hOX40L-mediated disease
- the invention provides a diagnostic assay for diagnosing a hOX40L-mediated disease comprising: (a) assaying for the level of a hOX40L antigen in cells or a tissue sample of an individual using one or more antibodies of the invention that specifically bind to a hOX40L antigen; and (b) comparing the level of the hOX40L antigen with a control level, e.g., levels in normal tissue samples, whereby an increase in the assayed hOX40L antigen level compared to the control level of the hOX40L antigen is indicative of a hOX40L-mediated disease.
- a more definitive diagnosis of a hOX40L-mediated disease may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the hOX40L-mediated disease.
- Antibodies of the invention can be used to assay hOX40L antigen levels in a biological sample using classical immunohistological methods as described herein or as known to those of skill in the art (e.g., see Jalkanen et a/., 1985, J. Cell. Biol. 101:976-985; and Jalkanen et a/., 1987, J. Cell. Biol. 105:3087-3096).
- Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).
- ELISA enzyme linked immunosorbent assay
- RIA radioimmunoassay
- Suitable antibody assay labels include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine ( 125 I, m I) carbon ( 14 C), sulfur ( 35 S), tritium ( 3 H), indium ( m In), and technetium ( 99 Tc); luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.
- enzyme labels such as, glucose oxidase
- radioisotopes such as iodine ( 125 I, m I) carbon ( 14 C), sulfur ( 35 S), tritium ( 3 H), indium ( m In), and technetium ( 99 Tc)
- luminescent labels such as luminol
- fluorescent labels such as fluorescein and rhodamine, and biotin.
- diagnosis comprises: a) administering (for example, parenterally, subcutaneously, or intraperitoneally) to a subject an effective amount of a labelled antibody that specifically binds to a hOX40L antigen; b) waiting for a time interval following the administering for permitting the labelled antibody to preferentially concentrate at sites in the subject where the hOX40L antigen is expressed (and for unbound labelled molecule to be cleared to background level); c) determining background level; and d) detecting the labelled antibody in the subject, such that detection of labelled antibody above the background level indicates that the subject has a hOX40L- mediated disease.
- Background level can be determined by various methods including, comparing the amount of labelled molecule detected to a standard value previously determined for a particular system.
- the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images.
- the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of "Tc.
- the labelled antibody will then preferentially accumulate at the location of cells which contain the specific protein.
- In vivo tumour imaging is described in S. W. Burchiel eta/., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments.” (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S. W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).
- the time interval following the administration for permitting the labelled antibody to preferentially concentrate at sites in the subject and for unbound labelled antibody to be cleared to background level is 6 to 48 hours or 6 to 24 hours or 6 to 12 hours. In another embodiment the time interval following administration is 5 to 20 days or 5 to 10 days.
- monitoring of a hOX40L-mediated disease is carried out by repeating the method for diagnosing the a hOX40L-mediated disease, for example, one month after initial diagnosis, six months after initial diagnosis, one year after initial diagnosis, etc.
- Presence of the labelled molecule can be detected in the subject using methods known in the art for in vivo scanning. These methods depend upon the type of label used. Skilled artisans will be able to determine the appropriate method for detecting a particular label. Methods and devices that may be used in the diagnostic methods of the invention include, but are not limited to, computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging (MRI), and sonography.
- CT computed tomography
- PET position emission tomography
- MRI magnetic resonance imaging
- sonography sonography
- the molecule is labelled with a radioisotope and is detected in the patient using a radiation responsive surgical instrument (Thurston et al., U.S. Pat. No. 5,441,050).
- the molecule is labelled with a fluorescent compound and is detected in the patient using a fluorescence responsive scanning instrument.
- the molecule is labelled with a positron emitting metal and is detected in the patient using positron emission- tomography.
- the molecule is labelled with a paramagnetic label and is detected in a patient using magnetic resonance imaging (MRI).
- MRI magnetic resonance imaging
- Antibodies and fragments of the invention that specifically bind to an antigen can be produced by any method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or preferably, by recombinant expression techniques.
- the practice of the invention employs, unless otherwise indicated, conventional techniques in molecular biology, microbiology, genetic analysis, recombinant DNA, organic chemistry, biochemistry, PCR, oligonucleotide synthesis and modification, nucleic acid hybridization, and related fields within the skill of the art. These techniques are described in the references cited herein and are fully explained in the literature. See, e.g., Maniatis etal.
- Polyclonal antibodies that specifically bind to an antigen can be produced by various procedures well-known in the art.
- a human antigen can be administered to various host animals including, but not limited to, rabbits, mice, rats, etc. to induce the production of sera containing polyclonal antibodies specific for the human antigen.
- adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminium hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette- Guerin) and corynebacterium parvum. Such adjuvants are also well known in the art.
- Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof.
- monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., Antibodies; A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling et al, in: Monoclonal Antibodies and T-Cell Hybridomas 563 681 (Elsevier, N.Y., 1981) (said references incorporated by reference in their entireties).
- the term "monoclonal antibody” as used herein is not limited to antibodies produced through hybridoma technology. Other exemplary methods of producing monoclonal antibodies are discussed elsewhere herein, such as e.g., use of the KM MouseTM. Additional exemplary methods of producing monoclonal antibodies are provided in the Examples herein.
- mice can be immunized with a hOX40L antigen and once an immune response is detected, e.g., antibodies specific for hOX40L antigen are detected in the mouse serum, the mouse spleen is harvested and splenocytes isolated. The splenocytes are then fused by well known techniques to any suitable myeloma cells, for example cells from cell line SP20 available from the ATCC. Hybridomas are selected and cloned by limited dilution.
- a RIMMS (repetitive immunization multiple sites) technique can be used to immunize an animal (Kilptrack et al, 1997 Hybridoma 16:381-9, incorporated by reference in its entirety).
- the hybridoma clones are then assayed by methods known in the art for cells that secrete antibodies capable of binding a polypeptide of the invention.
- Ascites fluid which generally contains high levels of antibodies, can be generated by immunizing mice with positive hybridoma clones.
- the present invention provides methods of generating antibodies by culturing a hybridoma cell secreting a modified antibody of the invention wherein, preferably, the hybridoma is generated by fusing splenocytes isolated from a mouse immunized with a hOX40L antigen with myeloma cells and then screening the hybridomas resulting from the fusion for hybridoma clones that secrete an antibody able to bind to a hOX40L antigen.
- Antibody fragments which recognize specific hOX40L antigens may be generated by any technique known to those of skill in the art.
- Fab and F(ab')2 fragments of the invention may be produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments).
- F(ab')2 fragments contain the variable region, the Light chain constant region and the CHI domain of the heavy chain.
- the antibodies of the present invention can also be generated using various phage display methods known in the art.
- antibodies can also be generated using various phage display methods.
- phage display methods functional antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them.
- DNA sequences encoding VH and VL domains are amplified from animal cDNA libraries (e.g., human or murine cDNA libraries of affected tissues).
- the DNA encoding the VH and VL domains are recombined together with an scFv linker by PCR and cloned into a phagemid vector.
- the vector is electroporated in E. coli and the E. coli is infected with helper phage.
- Phage used in these methods are typically filamentous phage including fd and M13 and the VH and VL domains are usually recombinantly fused to either the phage gene III or gene VIII.
- Phage expressing an antigen binding domain that binds to a particular antigen can be selected or identified with antigen, e.g., using labelled antigen or antigen bound or captured to a solid surface or bead.
- Examples of phage display methods that can be used to make the antibodies of the present invention include those disclosed in Brinkman et a/., 1995, 1 Immunol. Methods 182:41-50; Ames et a/., 1995, J. Immunol.
- the antibody coding regions from the phage can be isolated and used to generate whole antibodies, including human antibodies, or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described below.
- Techniques to recombinantly produce Fab, Fab' and F(ab')2 fragments can also be employed using methods known in the art such as those disclosed in PCT publication No.
- PCR primers including VH or VL nucleotide sequences, a restriction site, and a flanking sequence to protect the restriction site can be used to amplify the VH or VL sequences in scFv clones.
- VH constant region e.g., the human gamma 4 constant region
- VL constant region e.g., human kappa or lambda constant regions.
- VH and VL domains may also cloned into one vector expressing the necessary constant regions.
- the heavy chain conversion vectors and light chain conversion vectors are then co-transfected into cell lines to generate stable or transient cell lines that express full-length antibodies, e.g., IgG, using techniques known to those of skill in the art.
- human or chimeric antibodies For some uses, including in vivo use of antibodies in humans and in vitro detection assays, it may be preferable to use human or chimeric antibodies. Completely human antibodies are particularly desirable for therapeutic treatment of human subjects.
- Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences. See also U.S. Pat. Nos. 4,444,887 and 4,716,111; and International Publication Nos. WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO 96/34096, WO 96/33735, and WO 91/10741; each of which is incorporated herein by reference in its entirety.
- human antibodies are produced.
- Human antibodies and/or fully human antibodies can be produced using any method known in the art, including the Examples provided herein.
- transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes.
- the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells.
- the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and light chain genes.
- the mouse heavy and light chain immunoglobulin genes may be rendered non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination.
- homozygous deletion of the JH region prevents endogenous antibody production.
- the modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice.
- the chimeric mice are then bred to produce homozygous offspring which express human antibodies.
- the transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention.
- Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology.
- the human immunoglobulin transgenes harbored by the transgenic mice rearrange during B-cell differentiation, and subsequently undergo class switching and somatic mutation.
- a chimeric antibody is a molecule in which different portions of the antibody are derived from different immunoglobulin molecules.
- Methods for producing chimeric antibodies are known in the art. See, e.g., Morrison, 1985, Science 229:1202; Oi eta/., 1986, BioTechniques 4:214; Gillies eta/., 1989, J. Immunol. Methods 125:191-202; and U.S. Pat. Nos. 5,807,715, 4,816,567, 4,816,397, and 6,331,415, which are incorporated herein by reference in their entirety.
- a humanized antibody is an antibody or its variant or fragment thereof which is capable of binding to a predetermined antigen and which comprises a framework region having substantially the amino acid sequence of a human immunoglobulin and a CDR having substantially the amino acid sequence of a non-human immunoglobulin.
- a humanized antibody comprises substantially all of at least one, and typically two, variable domains (Fab, Fab', F(ab')2, Fabc, Fv) in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin (i.e., donor antibody) and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence.
- a humanized antibody also comprises at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- the antibody will contain both the light chain as well as at least the variable domain of a heavy chain.
- the antibody also may include the CHI, hinge, CH2, CH3, and CH4 regions of the heavy chain.
- the humanized antibody can be selected from any class of immunoglobulins, including IgM, IgG, IgD, IgA and IgE, and any isotype, including IgGl, IgG2, IgG3 and IgG4.
- the constant domain is a complement fixing constant domain where it is desired that the humanized antibody exhibit cytotoxic activity, and the class is typically IgGl.
- the constant domain may be of the IgG2 class.
- the antibodies of the invention comprise a human gamma 4 constant region.
- the heavy chain constant region does not bind Fc- ⁇ receptors, and e.g. comprises a Leu235Glu mutation.
- the heavy chain constant region comprises a Ser228Pro mutation to increase stability.
- the heavy chain constant region is IgG4-PE. Examples of VL and VH constant domains that can be used in certain embodiments of the invention include, but are not limited to, C-kappa and C-gamma-1 (nGlm) described in Johnson eta/. (1997) J. Infect. Dis.
- the humanized antibody may comprise sequences from more than one class or isotype, and selecting particular constant domains to optimize desired effector functions is within the ordinary skill in the art.
- the framework and CDR regions of a humanized antibody need not correspond precisely to the parental sequences, e.g., the donor CDR or the consensus framework may be mutagenized by substitution, insertion or deletion of at least one residue so that the CDR or framework residue at that site does not correspond to either the consensus or the import antibody. Such mutations, however, will not be extensive. Usually, at least 75% of the humanized antibody residues will correspond to those of the parental FR and CDR sequences, more often 90%, and most preferably greater than 95%.
- Humanized antibodies can be produced using variety of techniques known in the art, including but not limited to, CDR-grafting (European Patent No. EP 239,400; International publication No. WO 91/09967; and U.S. Pat. Nos. 5,225,539, 5,530,101, and 5,585,089), veneering or resurfacing (European Patent Nos. EP 592,106 and EP 519,596; Padlan, 1991, Molecular Immunology 28(4/5):489-498; Studnicka eta/., 1994, Protein Engineering 7(6):805-814; and Roguska eta/., 1994, PNAS 91:969-973), chain shuffling (U.S. Pat. No.
- framework substitutions are identified by methods well known in the art, e.g., by modelling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., Queen etal., U.S. Pat. No. 5,585,089; and Reichmann et al, 1988, Nature 332:323, which are incorporated herein by reference in their entireties.)
- Single domain antibodies for example, antibodies lacking the light chains, can be produced by methods well-known in the art. See Riechmann etal, 1999, J. Immunol. 231:25-38; Nuttall etal, 2000, Curr. Pharm. Biotechnol. l(3):253-263; Muylderman, 2001, J. Biotechnol. 74(4):277302; U.S. Pat. No. 6,005,079; and International Publication Nos. WO 94/04678, WO 94/25591, and WO 01/44301, each of which is incorporated herein by reference in its entirety.
- the antibodies that specifically bind to a hOX40L antigen can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" an antigen using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1989, FASEB J. 7(5):437-444; and Nissinoff, 1991, J. Immunol., 147(8): 2429-2438).
- the invention also provides a pharmaceutical or diagnostic pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention, such as one or more antibodies or fragments provided herein.
- a pharmaceutical or diagnostic pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention, such as one or more antibodies or fragments provided herein.
- Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration, e.g., an authorisation number.
- kits that can be used in the above methods.
- a kit comprises an antibody of the invention, preferably a purified antibody, in one or more containers.
- the kits of the present invention contain a substantially isolated hOX40L antigen as a control.
- the kits of the present invention further comprise a control antibody which does not react with the hOX40L antigen.
- kits of the present invention contain a means for detecting the binding of a modified antibody to a hOX40L antigen (e.g., the antibody may be conjugated to a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate).
- the kit may include a recombinantly produced or chemically synthesized hOX40L antigen.
- the hOX40L antigen provided in the kit may also be attached to a solid support.
- the detecting means of the above described kit includes a solid support to which HOX40L antigen is attached.
- Such a kit may also include a non-attached reporter-labelled anti-human antibody. In this embodiment, binding of the antibody to the hOX40L antigen can be detected by binding of the said reporter-labelled antibody.
- Constant amino acid substitutions result from replacing one amino acid with another having similar structural and/or chemical properties, such as the replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, or a threonine with a serine.
- a “conservative substitution” of a particular amino acid sequence refers to substitution of those amino acids that are not critical for polypeptide activity or substitution of amino acids with other amino acids having similar properties (e.g., acidic, basic, positively or negatively charged, polar or non-polar, etc.) such that the substitution of even critical amino acids does not reduce the activity of the peptide, (i.e. the ability of the peptide to penetrate the blood brain barrier (BBB)).
- BBB blood brain barrier
- Conservative substitution tables providing functionally similar amino acids are well known in the art. For example, the following six groups each contain amino acids that are conservative substitutions for one another: 1) Alanine (A), Serine (S), Threonine (T); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W). (See also Creighton, Proteins, W. H.
- Selection of such conservative amino acid substitutions are well known in the art, for example as disclosed in Dordo eta/, 3. Mol Biol, 1999, 217, 721-739 and Taylor eta/., 3. Theor. Biol. 119(1986); 205-218 and S. French and B. Robson, J. Mol. Evol., 19(1983)171.
- substitutions suitable for amino acids on the exterior of a protein or peptide for example, but not limited to, the following substitutions can be used: substitution of Y with F, T with S or K, P with A, E with D or Q, N with D or G, R with K, G with N or A, T with S or K, D with N or E, I with L or V, F with Y, S with T or A, R with K, G with N or A, K with R, A with S, K or P.
- an “antibody” refers to IgG, IgM, IgA, IgD or IgE molecules or antigen-specific antibody fragments thereof (including, but not limited to, a Fab, F(ab') 2 , Fv, disulphide linked Fv, scFv, single domain antibody, closed conformation multispecific antibody, disulphide-linked scfv, diabody), whether derived from any species that naturally produces an antibody, or created by recombinant DNA technology; whether isolated from serum, B-cells, hybridomas, transfectomas, yeast or bacteria. Antibodies can be humanized using routine technology.
- an "antigen” is a molecule that is bound by a binding site on an antibody agent.
- antigens are bound by antibody ligands and are capable of raising an antibody response in vivo.
- An antigen can be a polypeptide, protein, nucleic acid or other molecule or portion thereof.
- antigenic determinant refers to an epitope on the antigen recognized by an antigen-binding molecule, and more particularly, by the antigen-binding site of said molecule.
- an antibody fragment refers to a polypeptide that includes at least one immunoglobulin variable domain or immunoglobulin variable domain sequence and which specifically binds a given antigen.
- An antibody fragment can comprise an antibody or a polypeptide comprising an antigen-binding domain of an antibody.
- an antibody fragment can comprise a monoclonal antibody or a polypeptide comprising an antigen-binding domain of a monoclonal antibody.
- an antibody can include a heavy (H) chain variable region (abbreviated herein as VH), and an OX40L (L) chain variable region (abbreviated herein as VL).
- an antibody in another example, includes two heavy (H) chain variable regions and two OX40L (L) chain variable regions.
- antibody fragment encompasses antigen-binding fragments of antibodies (e.g., single chain antibodies, Fab and sFab fragments, F(ab')2, Fd fragments, Fv fragments, scFv, and domain antibodies (dAb) fragments (see, e.g. de Wildt eta/., Eur J. Immunol., 1996; 26(3):629- 39; which is incorporated by reference herein in its entirety)) as well as complete antibodies.
- antibodies e.g., single chain antibodies, Fab and sFab fragments, F(ab')2, Fd fragments, Fv fragments, scFv, and domain antibodies (dAb) fragments (see, e.g. de Wildt eta/., Eur J. Immunol., 1996; 26(3):629- 39; which is incorporated by reference herein in its entirety)
- An antibody can have the structural features of IgA, IgG, IgE, IgD, IgM (as well as subtypes and combinations thereof).
- Antibodies can be from any source, including mouse, rabbit, pig, rat, and primate (human and non-human primate) and primatized antibodies.
- Antibodies also include midibodies, humanized antibodies, chimeric antibodies, and the like.
- antibody variable domain refers to the portions of the OX40L and heavy chains of antibody molecules that include amino acid sequences of Complementarity Determining Regions (CDRs; i.e., CDR1, CDR2, and CDR3), and Framework Regions (FRs).
- CDRs Complementarity Determining Regions
- FRs Framework Regions
- VH refers to the variable domain of the heavy chain.
- VL refers to the variable domain of the Light chain.
- the amino acid positions assigned to CDRs and FRs may be defined according to Kabat (Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md., 1987 and 1991)) or according to IMGT nomenclature.
- the term "antibody binding site” refers to a polypeptide or domain that comprises one or more CDRs of an antibody and is capable of binding an antigen.
- the polypeptide comprises a CD 3 (e.g., HCDR3).
- the polypeptide comprises CDRs 1 and 2 (e.g., HCDR1 and 2) or CDRs 1-3 of a variable domain of an antibody (e.g., HCDRsl-3).
- the antibody binding site is provided by a single variable domain (e.g., a VH or VL domain).
- the binding site comprises a VH/VL pair or two or more of such pairs.
- genotyping refers to a process of determining the specific allelic composition of a cell and/or subject at one or more position within the genome, e.g. by determining the nucleic acid sequence at that position. Genotyping refers to a nucleic acid analysis and/or analysis at the nucleic acid level. As used herein, “phenotyping” refers a process of determining the identity and/or composition of an expression product of a cell and/or subject, e.g. by determining the polypeptide sequence of an expression product. Phenotyping refers to a protein analysis and/or analysis at the protein level.
- the terms “treat,” “treatment,” “treating,” or “amelioration” refer to therapeutic treatments, wherein the object is to reverse, alleviate, ameliorate, inhibit, slow down or stop the progression or severity of a condition associated with a disease or disorder.
- the term “treating” includes reducing or alleviating at least one adverse effect or symptom of a condition, disease or disorder.
- Treatment is generally “effective” if one or more symptoms or clinical markers are reduced.
- treatment is “effective” if the progression of a disease is reduced or halted. That is, “treatment” includes not just the improvement of symptoms or markers, but also a cessation of, or at least slowing of, progress or worsening of symptoms compared to what would be expected in the absence of treatment.
- Beneficial or desired clinical results include, but are not limited to, alleviation of one or more symptom(s), diminishment of extent of disease, stabilized ⁇ i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, remission (whether partial or total), and/or decreased mortality, whether detectable or undetectable.
- treatment also includes providing relief from the symptoms or side-effects of the disease (including palliative treatment). For treatment to be effective a complete cure is not contemplated. The method can in certain aspects include cure as well.
- the term "pharmaceutical composition” refers to the active agent in combination with a pharmaceutically acceptable carrier e.g. a carrier commonly used in the pharmaceutical industry.
- a pharmaceutically acceptable carrier e.g. a carrier commonly used in the pharmaceutical industry.
- pharmaceutically acceptable is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- administering refers to the placement of a compound as disclosed herein into a subject by a method or route which results in at least partial delivery of the agent at a desired site.
- Pharmaceutical compositions comprising the compounds disclosed herein can be administered by any appropriate route which results in an effective treatment in the subject.
- compositions can be administered separately or simultaneously. Separate administration refers to the two compositions being administered at different times, e.g. at least 10, 20, 30, or 10-60 minutes apart, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 hours apart. One can also administer compositions at 24 hours apart, or even longer apart. Alternatively, two or more compositions can be administered simultaneously, e.g. less than 10 or less than 5 minutes apart. Compositions administered simultaneously can, in some aspects, be administered as a mixture, with or without similar or different time release mechanism for each of the components.
- authorization number or "marketing authorization number” refers to a number issued by a regulatory agency upon that agency determining that a particular medical product and/or composition may be marketed and/or offered for sale in the area under the agency's jurisdiction.
- regulatory agency refers to one of the agencies responsible for evaluating, e.g., the safety and efficacy of a medical product and/or composition and controlling the sales/marketing of such products and/or compositions in a given area.
- the Food and Drug Administration (FDA) in the US and the European Medicines Agency (EPA) in Europe are but two examples of such regulatory agencies.
- Other non-limiting examples can include SDA, MPA, MHP A, IMA, AN MAT, Hong Kong Department of Health-Drug Office, CDSCO, Medsafe, and KFDA.
- an injection device refers to a device that is designed for carrying out injections, an injection including the steps of temporarily fluidically coupling the injection device to a person's tissue, typically the subcutaneous tissue. An injection further includes administering an amount of liquid drug into the tissue and decoupling or removing the injection device from the tissue.
- an injection device can be an intravenous device or IV device, which is a type of injection device used when the target tissue is the blood within the circulatory system, e.g., the blood in a vein.
- a common, but non-limiting example of an injection device is a needle and syringe.
- a "buffer” refers to a chemical agent that is able to absorb a certain quantity of acid or base without undergoing a strong variation in pH.
- Packaging refers to how the components are organized and/or restrained into a unit fit for distribution and/or use.
- Packaging can include, e.g., boxes, bags, syringes, ampoules, vials, tubes, clamshell packaging, barriers and/or containers to maintain sterility, labeling, etc.
- instructions refers to a display of written, printed or graphic matter on the immediate container of an article, for example the written material displayed on a vial containing a pharmaceutically active agent, or details on the composition and use of a product of interest included in a kit containing a composition of interest. Instructions set forth the method of the treatment as contemplated to be administered or performed.
- the term “comprising” or “comprises” is used in reference to antibodies, fragments, uses, compositions, methods, and respective component(s) thereof, that are essential to the method or composition, yet open to the inclusion of unspecified elements, whether essential or not.
- the term "consisting essentially of” refers to those elements required for a given embodiment. The term permits the presence of elements that do not materially affect the basic and novel or functional characteristic(s) of that embodiment.
- the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), "including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
- compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in OX40L of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
- mice containing a large number of human immunoglobulin genes were immunized with soluble recombinant human OX40L (commercial or in- house produced) or surface expressed human OX40L displayed on mouse embryonic fibroblast (MEF) cells.
- soluble recombinant human OX40L commercial or in- house produced
- surface expressed human OX40L displayed on mouse embryonic fibroblast (MEF) cells.
- immunization regimes including conventional intraperitoneal injections as well as a rapid immunisation at multiple sites regime were set up, boosting animals over several weeks.
- lymphoid tissue such as the spleen, and in some cases, the lymph nodes were removed. Tissues were prepared into a single cell suspension and fused with SP2/0 cells to generate a stable hybridoma cell line.
- cDNA encoding the extracellular domain of human OX40L was cloned into a pREP4 expression plasmid (Invitrogen) using standard molecular biology techniques.
- the constructs also contained a FLAG peptide motif to aid purification and an isoleucine zipper motif to aid trimerisation. Constructs were sequenced to ensure their correct sequence composition.
- OX40L was created using the human OX40L plasmid created above as a template and using site directed mutagenesis to introduce the amino acid changes.
- Human OX40L well as Rhesus monkey OX40L were expressed transiently to produce recombinant protein using Invitrogen's FreestyleTM CHO-S suspension adapted cell line. Plasmids were transfected into the cells using PEI (polyethylenimine MW 40000) and left to overgrow for a period of 13 days before harvesting the supernatant for purification. Cells were fed during the overgrow process with ActiCHOTM Feeds A and B from GE Healthcare to help boost productivity and promote longevity of the cells. During the overgrow process samples were taken regularly to monitor cell growth and viability.
- PEI polyethylenimine MW 40000
- FLAG-tagged OX40L proteins were purified in a two-step process; firstly the clarified tissue culture supernatants from the CHO-S expression were purified using M2 anti-FLAG affinity chromatography. The eluted fractions containing the OX40L protein were then subjected to size exclusion chromatography and assessed for purity by SDS-PAGE analysis and quantified by spectrophotometer reading at OD280nm.
- cDNA encoding the extracellular domain of human OX40 Receptor was cloned into a pREP4 expression plasmid (Invitrogen) using standard restriction enzyme digestion and ligation.
- the construct contained a human Fc portion to aid purification. Constructs were sequenced to ensure their correct sequence composition.
- Human OX40 Receptor was expressed transiently to produce recombinant protein using
- Plasmids were transfected into the cells using PEI (polyethylenimine MW 40000) and left to overgrow for a period of 13 days before harvesting the supernatant for purification. Cells were fed during the overgrow process with ActiCHOTM Feeds A and B from GE Healthcare to help boost productivity and promote longevity of the cells. During the overgrow process, samples were taken regularly to monitor cell growth and viability.
- PEI polyethylenimine MW 40000
- the Fc tagged OX40 Receptor protein was purified in a two-step process; firstly the clarified tissue culture supernatants from the CHO-S expression were purified using Protein G affinity chromatography. The eluted fractions containing the OX40 Receptor protein were then subjected to size exclusion chromatography and assessed for purity by SDS-PAGE analysis and quantified by spectrophotometer reading at OD280nm. Generation of stably transfected MEF and CHO-S cells expressing human OX40L
- the full human OX40L sequences were codon optimized (Seq ID No: 173) for mammalian expression and cloned into an expression vector under the CMV promoter flanked by 3' and 5' piggyBac specific terminal repeat sequences facilitating stable integration into the cell genome (see: "A hyperactive piggyBac transposase for mammalian applications”; Yusa K, Zhou L, Li MA, Bradley A, Craig NL Proc Natl Acad Sci U S A. 2011 Jan 25). Furthermore, the expression vector contained either a puromycin or neomycin selection cassette to facilitate stable cell line generation.
- the hOX40L expression plasmid was co-transfected with a plasmid encoding piggyBac transposase into an in-house derived mouse embryonic fibroblast (MEF) cell line (embryos used to generate this line were obtained from a 129S5 crossed to C57BL6 female mouse) and CHO-S cells using the FreeStyie Max transfection reagent (Invitrogen) according to manufacturer instructions. 24 hours after transfection, the media was supplemented with G418 or neomycin and grown for at least 2 weeks to select a stable cell line, with media being exchanged every 3-4 days.
- MEF mouse embryonic fibroblast
- hOX40L was assessed by flow cytometry using an anti-human OX40L-PE conjugated antibody (eBioscience).
- Complete MEF media was made up of Dulbecco's Modified Eagle's Medium (Gibco) supplemented with 10% v/v fetal bovine serum (Gibco).
- Complete CHO-S media was made up of CD-CHO media supplemented with 8mM glutamax (Gibco).
- the full human OX40 receptor sequence was codon optimized (Seq ID No: 175) for mammalian expression and cloned into an expression vector under the CMV promoter flanked by 3' and 5' piggyBac specific terminal repeat sequences facilitating stable integration into the cell genome (see: "A hyperactive piggyBac transposase for mammalian applications”; Yusa K, Zhou L, Li MA, Bradley A, Craig NL. Proc Natl Acad Sci U S A. 2011 Jan 25). Furthermore, the expression vector contained either a puromycin selection cassette to facilitate stable cell line generation.
- the hOX40 receptor expression plasmid was co-transfected with a plasmid encoding piggyBac transposase into HT1080 cells (ATCC® CCL-121) using the FreeStyie Max transfection reagent (Invitrogen) according to manufacturer instructions. 24 hours after transfection, the media was supplemented with puromycin and grown for at least 2 weeks to select a stable cell line with media being exchanged every 3-4 days. The expression of OX40 receptor was assessed by flow cytometry using an anti-human OX40 receptor -PE conjugated antibody (R&D, clone 443318).
- telomeres were transfected with the pNiFty-2-SEAP plasmid (invivogen) containing 5 repeated NFkB transcription factor binding sites followed by secreted alkaline phosphatase. Stable cells were selected with the addition to zeocin to the media with fresh media being added every 3-4 days. Complete HT1080 media was made up of MEM supplemented with 10% fetal calf serum.
- Cell culture medium was removed and cells washed once with lxPBS. Cells were treated for 5 minutes with trypsin to loosen cells from tissue culture surface. Cells were collected and trypsin neutralized by the addition of complete media containing 10% v/v fetal bovine serum (FCS). Cells were then centrifuged at 300 xgfor 10 minutes and washed with 25 ml_ of lxPBS. Cells were counted and resuspended at the appropriate concentration in 1XPBS.
- FCS v/v fetal bovine serum
- Transgenic Kymice were immunized with hOX40L in either soluble recombinant form, expressed by CHO-S cells, or membrane bound form, expressed by stably transfected MEF cells.
- the adjuvant When immunizing with cells, the adjuvant was mixed with cells at a 1:1 v/v ratio and gently mixed by pipetting before injecting intraperitoneally. When immunizing with protein, the adjuvant was mixed with protein at a 1:1 v/v ratio and vortexed repeatedly. All mice were bled before being primed and then boosted every three weeks. At least 3 serial bleeds spaced apart at least 2 weeks were collected and analysed for hOX40L specific IgG titre using an ELISA or flow cytometry based assay Determination of serum titers by FACS using CHO-S expressed hOX40L
- CHO-S cells expressing hOX40L or untransfected CHO-S cells were distributed to a 96 well V-bottom plate (Greiner) at a density of 1x10 s cells per well. Cells were washed with 150 ⁇ _ of PBS and centrifuged at 300 xg for 3 min. Supernatant was aspirated and 150 il of PBS added. This wash step was repeated. A titration of mouse serum was prepared, diluting samples in FACS buffer. 50 pL well of this titration was then added to the cell plate.
- FACS buffer PBS + 1% w/v BSA + 0.1% w/v aN3
- serum from each animal prior to immunization was diluted to 1 in 100 in FACS buffer and 50 L well added to the cells.
- a suitable reference antibody anti-OX40L antibody MAB10541, R&D systems
- mouse IgGl control antibody Sigma
- APC goat-anti-mouse IgG (Jackson ImmunoResearch) was diluted 1 in 500 in FACS buffer and 50 il was added to the cells. Cells were incubated 30 minutes at 4 °C in dark. Cells were washed twice with 150 ⁇ _ of PBS centrifuging after each wash step and aspirating supernatant (centrifuged at 300 xg for 3 minutes). To fix cells 100 il 2% v/v paraformaldehyde was added and cells incubated for 30 minutes at 4°C, cells were pelleted by centrifugation at 300 xg and the plates resuspended in 50 il of FACS buffer. APC signal intensity (geomean) was measured by flow cytometry using a BD FACS Array instrument.
- mice serum samples were determined using a reverse OX40L ELISA protocol.
- Anti- mouse IgG capture antibody (Southern Biotech) (4 Mg/mL diluted in PBS, 50 L/well) was adsorbed to 96 well low auto-fluorescent, high protein binding plates (Costar) overnight at 4° C. Excess IgG was removed by washing with PBS-Tween (0.1% v/v) and the wells were blocked with 1% w/v bovine serum albumin (BSA, Sigma) in PBS for 1 hr at RT, after which plates were washed as described previously. A titration of mouse serum was prepared, diluting samples in reagent diluent (0.1% w/v BSA/PBS).
- serum sample from a mouse immunized with a non-relevant antigen was diluted 1 in 1000 and 50 L/well was added to the ELISA plate. The plates were incubated at room temperature for at least 1 hour. Following incubation, plates were washed as before to remove unbound proteins. Biotinylated OX40L (100 ng/mL in reagent diluent; 50 L/well) was then added to the plates and incubated at RT for 1 hour.
- TMB (Sigma) was added to the plate. Then the reaction was stopped by adding 50 ⁇ of 1M sulfuric acid (Fluka analytical). The OD at 450 nm was measured on an Envision plate reader (PerkinElmer).
- Spleens were excised from immunised mice and washed in lxPBS and kept on ice until further processing. Tissues were prepared in buffer containing lxPBS (Invitrogen) and 3% heat-inactivated FBS (Invitrogen). Splenocytes were dispersed by mashing the tissue through a 45 ⁇ strainer (BD Falcon) and rinsing with 30 mL 3%FBS/PBS buffer before centrifugation at 700 g for 10 minutes at 4 °C. To remove red blood cells, the pelleted splenocytes were resuspended in 4 mL of Red Blood Cell Lysis Buffer (Sigma). After 4 minutes of incubation, the lysis reaction was stopped by addition of 3% FBS/lxPBS buffer. Cell clumps were filtered out with a 45 ⁇ strainer. The remaining splenocytes were pelleted for further procedures
- pelleted splenocytes were progressed directly to fusion without any selection or overnight CpG stimulation.
- B-cells were subjected to a positive selection method using the MACS® Separation system. Cells were resuspended in 80 ⁇ 3% FBS/PBS buffer per lxlO 7 cells, before adding the anti-mouse IgGl plus anti-mouse IgG2a+b MicroBeads (Miltenyi Biotec) and incubated for 15 minutes at 4 °C.
- the cells/MicroBeads mixture was then applied to a pre-wetted LS column placed in a magnetic MACS Separator and washed with 3% FBS/PBS buffer. IgG positive cells were collected in the labelled, column-bound fraction in 3% FBS/PBS buffer.
- BSA fusion buffer 0.11 mM calcium acetate hydrate, 0.5 mM magnesium acetate tetrahydrate and 0.1% BSA (v/w), adjusted to pH7.2.
- pelleted splenocytes from red blood cell lysis were washed once in BSA fusion buffer on the same day as tissue preparation. Fusion proceeded in the same way for both experiments after this point. Washed cells were resuspended in 200 ⁇ of BSA fusion buffer and cell count determined.
- SP2/0 cells were treated in the same way, but washed twice with BSA fusion buffer.
- B-cells were fused at a ratio of 3:1 with SP2/0 myeloma cells by electrofusion using a BTX ECM 2001 Electro Cell Manipulator (Harvard Apparatus). Each fusion was left overnight in recovery medium (Dulbecco's Modified Eagle's Medium - high glucose (no phenol red, no L-G) containing OPI (Sigma), L-Glutamax (Gibco), 20% FBS (Gibco, batch-tested for hybridoma) and 2-mercaptoethanol).
- recovery medium Dulbecco's Modified Eagle's Medium - high glucose (no phenol red, no L-G) containing OPI (Sigma), L-Glutamax (Gibco), 20% FBS (Gibco, batch-tested for hybridoma) and 2-mercaptoethanol).
- hybridoma supernatant was assessed in a sequential primary and secondary screen and appropriate hybridoma clones selected based on criteria of antibody binding to CHO expressed hOX40L and receptor neutralization activity (see details in materials and methods) (Table 1).
- the inventors devised the following selection criteria: wells containing hybridoma clones were selected if antibodies present in the supernatant could bind to natively displayed hOX40L expressed on the cell surface.
- This assay was set up by plating CHO-S cells expressing hOX40L on the cell surface, followed by incubation with hybridoma supernatant, followed by a fluorescent detection antibody. The presence of an anti-OX40L antibody in the supernatant was read-out using a plate reader capable of reading the appropriate fluorescence.
- the inventors assessed hybridoma supernatant for binding to recombinantly expressed human OX40L using an HTRF (Homogeneous Time Resolved Fluorescence) assay. The inventors also determined whether the hybridoma supernatant had the ability to reduce the binding of human recombinant OX40L to human OX40R Fc. Clones meeting certain selection criteria (see further detailed description below), using data from the above mentioned three primary screen assays, were then cherry-picked and moved on to a secondary screen where the ability of each antibody to neutralize hOX40L binding to its receptors, OX40 Receptor (aka CD134), was determined.
- HTRF Homogeneous Time Resolved Fluorescence
- the inventors decided to assess this using a receptor neutralization HTRF assay and a flow cytometry-based receptor neutralization assay. Lastly, the inventors decided to analyse hybridoma supernatant by SPR to evaluate apparent affinity of the antibodies to recombinant trimeric human OX40L as well as cross-reactivity to Rhesus monkey OX40L.
- Antibodies were defined as a secondary hit when antibodies in hybridoma supernatant bound to hOX40L, with high apparent affinity as well as cross-reacted with recombinant Rhesus monkey OX40L. Additionally, antibodies in the supernatant had to show the ability to neutralize OX40L binding to its receptor, i.e. OX40 Receptor (aka CD134) in either HTRF or flow cytometry based assay.
- OX40 Receptor aka CD134
- CHO-S hOX40L binding cells were plated in clear bottom tissue culture treated 384-well plates (Costar or BRAND) at 2xl0 4 cells/well in F12 media (GIBCO) supplemented with 10% v/v FBS (GIBCO) and cultured overnight. Culture media was removed from 384-well assay plates.
- At least 40 pL of hybridoma supernatant or positive control anti-human OX40L reference antibody (at a final concentration of 1 pg/mL) or isotype IgGl control antibody (referred to in some instances as Cm7, Sigma M9269, at a final concentration of 1 pg/mL) diluted in hybridoma maintaining media (HMM) were added to each well.
- Hybridoma maintaining media was made up of, Advanced DMEM (Gibco) supplemented with lx Glutamax (Gibco), 20% v/v FBS (Gibco), 0.05 mM ⁇ -Mercaptoethanol, lxHT supplement (Gibco), and lxpenicillin/streptomycin (Gibco). Plates were incubated for 1 hour at 4 °C.
- Culture media was aspirated and 50 pL of goat anti-mouse Alexa Fluor 790 (Jackson ImmunoResearch, 115-655-071) at 1000 ng/mL supplemented with 0.2 ⁇ DRAQ5 (Biostatus) diluted in FACS Buffer (PBS+1% w/v BSA+0.1% v/v alVh) were added. Plates were again incubated for 1 hour at 4 °C. Supernatant was aspirated and 25 pL of 4% v/v paraformaldehyde added and plates were incubated 15 minutes at room temperature. Plates were washed twice with 100 pL PBS and then the wash buffer was completely removed.
- Fluorescence intensity was read by scanning plates using an Odyssey Infrared Imaging System (LI-COR®). Anti-mouse binding (800 nm channel) was normalised to cell number (700 nm channel) according to LI-COR® recommended algorithm. Percent effect was calculated as detailed below (Equation 1). Total binding was defined using reference antibody at a final assay concentration of lpg/ml. Non specific binding was defined using mouse IgGl isotype control (Sigma) at a final assay concentration of 1 pg/mL. Wells were defined as hits where percent effect was greater than or equal to 5%.
- LI-COR® Odyssey Infrared Imaging System
- Equation 1 Calculation of Percentage Effect from Primary Screen (LI-COR) and HTRF
- the concentration of goat anti-mouse IgG (Southern Biotech) labelled with europium cryptate was batch dependent and in some cases a dilution of 1:1000 was performed to achieve a final assay concentration of 1:4000.
- 5 ⁇ _ of HTRF assay buffer was added to all wells.
- addition of positive control antibody or hybridoma media was replaced with HTRF assay buffer or HMM.
- the plate was left to incubate in dark for 3 hours prior to reading time resolved fluorescence at 620 nm and 665 nm emission wavelengths using an EnVision plate reader (Perkin Elmer). More details of the HTRF® assay technology can be found in Mathis (1995) Clinical Chemistry 41(9), 1391-1397. Data were analysed by calculating 665/620 ratio and percent effect for each sample according to Equation 2 and Equation 1 respectively.
- Streptavidin cryptate (CISBIO) and anti-human Fc D2 (CISBIO) were diluted in HTRF assay buffer to working concentration of 1:100 and 5nM respectively. Plates were covered, protected from light and incubated at room temperature for 3 hrs prior to reading time resolved fluorescence at 620 nm and 665 nm emission wavelengths using an EnVision plate reader (Perkin Elmer). Data were analysed by calculating 665/620 ratio and percent effect for each sample according to Equation 2 and Equation 5 respectively.
- Hybridoma clones selected as hits from primary screening were cultured for 3 days and the supernatants collected from hybridoma cells were tested to assess whether the secreted antibodies that bind to CHO-S expressed hOX40L, in some case bind to untransfected CHO-S cells and whether they neutralise recombinant OX40R Fc binding to CHO-S hOX40L and ability to neutralise OX40R binding to recombinant biotinylated hOX40L
- CHO-S cells expressing hOX40L or untransfected CHO-S cells were distributed to a 96 well V-bottom plate (Greiner) at a density of lxlO 5 cells per well. Cells were washed with 150 ⁇ . of PBS and centrifuged at 300 xg for 3 min. Supernatant was aspirated and 150 ⁇ . of PBS added. This wash step was repeated.
- FACS buffer was added to the washed cells and incubated for 10-15 minutes.
- Reference Antibody or mouse IgGl control antibody (Sigma) were diluted in FACS buffer to 20 Mg/mL and 25 ⁇ . added to cells.
- 25 pL of human OX40R Fc (in-house) diluted to 1000 ng/mL in FACS buffer were then added to wells. Cells were incubated at 4 °C for 30 minutes.
- % of control binding was calculated using geomean fluorescence as described in equation 1 where total binding was defined as reference antibody at 10 g/mL and non-specific binding as mouse IgGl antibody at 10 g/mL. % receptor binding was calculated using Equation 3.
- Equation 3 Percentage of receptor binding (FACS)
- Non-specific binding No antibody, no receptor
- Equation 4 Calculation of % DeltaF
- Equation 5 Percentage of receptor binding (HTRF)
- a panel of hits were selected based on binding and neutralisation assays.
- Hits in CHO-S OX40L binding assay were defined by the inventors as significant binding to CHO-S OX40L cells and no binding to CHO-S cells by FACS. Hits were further defined as having the ability to significantly reduce OX40RFc binding to recombinant OX40L (HTRF) and significantly reduce OX40RFC binding to hOX40L expressed on CHO cells. Data is summarised in Table 1. Apparent affinity measurements by SPR were also considered.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Endocrinology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Transplantation (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Priority Applications (70)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IL304772A IL304772B2 (en) | 2014-03-04 | 2015-03-03 | Antibodies, uses and methods |
| DE112015001085.8T DE112015001085T5 (de) | 2014-03-04 | 2015-03-03 | Antikörper, Verwendungen und Verfahren |
| SI201531860T SI3113797T1 (sl) | 2014-03-04 | 2015-03-03 | Protitelesa, uporabe in postopki |
| DK15714253.0T DK3113797T3 (da) | 2014-03-04 | 2015-03-03 | Antistoffer, anvendelser og fremgangsmåder |
| EP19191981.0A EP3590539A1 (en) | 2014-03-04 | 2015-03-03 | Antibodies, uses & methods |
| RS20220691A RS63408B1 (sr) | 2014-03-04 | 2015-03-03 | Antitela, upotrebe i metode |
| CN202010943831.8A CN112048020B (zh) | 2014-03-04 | 2015-03-03 | 抗体、用途和方法 |
| HRP20220891TT HRP20220891T1 (hr) | 2014-03-04 | 2015-03-03 | Protutijela, primjene i postupci |
| EP15714253.0A EP3113797B1 (en) | 2014-03-04 | 2015-03-03 | Antibodies, uses&methods |
| NZ723858A NZ723858A (en) | 2014-03-04 | 2015-03-03 | Anti-human ox40l antibodies, uses & methods |
| CN201580023098.5A CN106459196B (zh) | 2014-03-04 | 2015-03-03 | 抗体、用途和方法 |
| PL15714253.0T PL3113797T3 (pl) | 2014-03-04 | 2015-03-03 | Przeciwciała, zastosowania i metody |
| IL247582A IL247582B2 (en) | 2014-03-04 | 2015-03-03 | Antibodies, uses and methods |
| CA2941066A CA2941066C (en) | 2014-03-04 | 2015-03-03 | Anti-ox40l antibodies, uses & methods |
| SG11201607030PA SG11201607030PA (en) | 2014-03-04 | 2015-03-03 | Antibodies, uses & methods |
| US15/122,298 US10669342B2 (en) | 2014-03-04 | 2015-03-03 | Anti-OX40L antibodies and methods of treating graft versus host disease |
| JP2016555520A JP6795398B2 (ja) | 2014-03-04 | 2015-03-03 | 抗体、使用、及び方法 |
| LTEPPCT/GB2015/050614T LT3113797T (lt) | 2014-03-04 | 2015-03-03 | Antikūnai, panaudojimai ir būdai |
| AU2015225926A AU2015225926B2 (en) | 2014-03-04 | 2015-03-03 | Antibodies, uses & methods |
| ES15714253T ES2922734T3 (es) | 2014-03-04 | 2015-03-03 | Anticuerpos, usos y métodos |
| PCT/GB2016/050565 WO2016139482A1 (en) | 2015-03-03 | 2016-03-03 | Antibodies, uses & methods |
| HRP20230046TT HRP20230046T1 (hr) | 2015-03-03 | 2016-03-03 | Protutijela, upotreba i postupci |
| CN201680008817.0A CN108064169B (zh) | 2015-03-03 | 2016-03-03 | 抗体、用途和方法 |
| SG11201704160XA SG11201704160XA (en) | 2015-03-03 | 2016-03-03 | Antibodies, uses & methods |
| RU2017118985A RU2725221C2 (ru) | 2015-03-03 | 2016-03-03 | Антитела, их применение и способы применения |
| SI201631656T SI3265123T1 (sl) | 2015-03-03 | 2016-03-03 | Protitelesa, uporabe in postopki |
| SG10201907901X SG10201907901XA (en) | 2015-03-03 | 2016-03-03 | Antibodies, uses & methods |
| PL16715337.8T PL3265123T3 (pl) | 2015-03-03 | 2016-03-03 | Przeciwciała, zastosowania i sposoby |
| JP2017537300A JP7094698B2 (ja) | 2015-03-03 | 2016-03-03 | 抗体、使用、及び方法 |
| KR1020177025436A KR102740384B1 (ko) | 2015-03-03 | 2016-03-03 | 항체, 용도 및 방법 |
| PT167153378T PT3265123T (pt) | 2015-03-03 | 2016-03-03 | Anticorpos, usos e métodos |
| ES16715337T ES2937020T3 (es) | 2015-03-03 | 2016-03-03 | Anticuerpos, usos y métodos |
| DK16715337.8T DK3265123T5 (da) | 2015-03-03 | 2016-03-03 | Antistoffer, anvendelser og fremgangsmåder |
| EP16715337.8A EP3265123B1 (en) | 2015-03-03 | 2016-03-03 | Antibodies, uses & methods |
| CN202210103864.0A CN114504652A (zh) | 2015-03-03 | 2016-03-03 | 抗体、用途和方法 |
| CA2968642A CA2968642A1 (en) | 2015-03-03 | 2016-03-03 | Antibodies, uses & methods |
| FIEP16715337.8T FI3265123T3 (fi) | 2015-03-03 | 2016-03-03 | Vasta-aineita, käyttöjä & menetelmiä |
| RS20230045A RS63903B1 (sr) | 2015-03-03 | 2016-03-03 | Antitela, upotrebe i metode |
| DE112016001013.3T DE112016001013T5 (de) | 2015-03-03 | 2016-03-03 | Antikörper, verwendungen und verfahren |
| HUE16715337A HUE061070T2 (hu) | 2015-03-03 | 2016-03-03 | Ellenanyagok, alkalmazások és eljárások |
| LTEPPCT/GB2016/050565T LT3265123T (lt) | 2015-03-03 | 2016-03-03 | Antikūnai, naudojimas ir būdai |
| AU2016227493A AU2016227493B2 (en) | 2015-03-03 | 2016-03-03 | Antibodies, uses & methods |
| BR112017015880-9A BR112017015880B1 (pt) | 2015-03-03 | 2016-03-03 | Anticorpos, usos e métodos |
| EP22161983.6A EP4137157A1 (en) | 2015-03-03 | 2016-03-03 | Antibodies, uses and methods |
| CN202210103585.4A CN114504651A (zh) | 2015-03-03 | 2016-03-03 | 抗体、用途和方法 |
| KR1020247040279A KR20250005465A (ko) | 2015-03-03 | 2016-03-03 | 항체, 용도 및 방법 |
| MX2017011194A MX2017011194A (es) | 2015-03-03 | 2016-03-03 | Anticuerpos, usos y métodos. |
| US15/142,538 US9512229B2 (en) | 2015-03-03 | 2016-04-29 | Synergistic combinations of OX40L antibodies for the treatment of GVHD |
| US15/259,553 US9587030B2 (en) | 2014-03-04 | 2016-09-08 | Anti-hOX40L antibodies, uses, and methods |
| US15/333,517 US20170037137A1 (en) | 2015-03-03 | 2016-10-25 | Synergistic combinations of ox40l antibodies for the treatment of gvhd |
| US15/340,497 US10654935B2 (en) | 2014-03-04 | 2016-11-01 | Methods of treating SLE with anti-OX40L antibodies |
| ZA2017/03510A ZA201703510B (en) | 2015-03-03 | 2017-05-22 | Antibodies, uses & methods |
| IL252430A IL252430A0 (en) | 2015-03-03 | 2017-05-22 | Antibodies, uses and methods |
| US15/604,495 US9868789B2 (en) | 2015-03-03 | 2017-05-24 | Synergistic combinations of OX40L antibodies for the treatment of GvHD |
| US15/661,584 US9868790B2 (en) | 2015-03-03 | 2017-07-27 | Synergistic combinations of OX40L antibodies for the treatment of GvHD |
| US15/661,658 US11396550B2 (en) | 2014-03-04 | 2017-07-27 | Methods of treating comprising administering anti-OX40L antibodies |
| MX2023006416A MX2023006416A (es) | 2015-03-03 | 2017-08-31 | Anticuerpos, usos y metodos. |
| MX2023006415A MX2023006415A (es) | 2015-03-03 | 2017-08-31 | Anticuerpos, usos y metodos. |
| US16/188,541 US20190276547A1 (en) | 2014-03-04 | 2018-11-13 | Antibodies, uses & methods |
| US17/115,021 US11753479B2 (en) | 2014-03-04 | 2020-12-08 | Nucleic acids encoding anti-OX40L antibodies |
| AU2020294246A AU2020294246B2 (en) | 2014-03-04 | 2020-12-23 | Antibodies, uses & methods |
| AU2020294247A AU2020294247B2 (en) | 2014-03-04 | 2020-12-23 | Antibodies, uses & methods |
| US17/390,413 US11773175B2 (en) | 2014-03-04 | 2021-07-30 | Antibodies, uses and methods |
| AU2022202539A AU2022202539A1 (en) | 2015-03-03 | 2022-04-19 | Antibodies, uses & methods |
| US17/725,228 US20220372153A1 (en) | 2015-03-03 | 2022-04-20 | Synergistic combinations of ox40l antibodies for the treatment of gvhd |
| JP2022100443A JP7472198B2 (ja) | 2015-03-03 | 2022-06-22 | 抗体、使用、及び方法 |
| US18/364,906 US20240132605A1 (en) | 2014-03-04 | 2023-08-03 | Antibodies, uses & methods |
| AU2024227793A AU2024227793A1 (en) | 2014-03-04 | 2024-10-31 | Antibodies, uses & methods |
| US19/030,346 US20250263492A1 (en) | 2014-03-04 | 2025-01-17 | Antibodies, uses & methods |
| IL320713A IL320713A (en) | 2014-03-04 | 2025-05-06 | Antibodies, uses and methods |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB1403775.8 | 2014-03-04 | ||
| GB201403775A GB201403775D0 (en) | 2014-03-04 | 2014-03-04 | Antibodies, uses & methods |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/935,937 Continuation-In-Part US9434785B1 (en) | 2015-03-03 | 2015-11-09 | Anti-human OX40L antibodies and methods of treating graft versus host disease with the same |
Related Child Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/122,298 A-371-Of-International US10669342B2 (en) | 2014-03-04 | 2015-03-03 | Anti-OX40L antibodies and methods of treating graft versus host disease |
| PCT/GB2016/050565 Continuation-In-Part WO2016139482A1 (en) | 2015-03-03 | 2016-03-03 | Antibodies, uses & methods |
| US15/259,553 Continuation US9587030B2 (en) | 2014-03-04 | 2016-09-08 | Anti-hOX40L antibodies, uses, and methods |
| US15/340,497 Continuation US10654935B2 (en) | 2014-03-04 | 2016-11-01 | Methods of treating SLE with anti-OX40L antibodies |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015132580A1 true WO2015132580A1 (en) | 2015-09-11 |
Family
ID=50490750
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2015/050614 Ceased WO2015132580A1 (en) | 2014-03-04 | 2015-03-03 | Antibodies, uses & methods |
Country Status (21)
| Country | Link |
|---|---|
| US (9) | US10669342B2 (enExample) |
| EP (2) | EP3113797B1 (enExample) |
| JP (4) | JP6795398B2 (enExample) |
| CN (2) | CN112048020B (enExample) |
| AU (4) | AU2015225926B2 (enExample) |
| CA (1) | CA2941066C (enExample) |
| DE (1) | DE112015001085T5 (enExample) |
| DK (1) | DK3113797T3 (enExample) |
| ES (1) | ES2922734T3 (enExample) |
| GB (1) | GB201403775D0 (enExample) |
| HR (1) | HRP20220891T1 (enExample) |
| HU (1) | HUE059338T2 (enExample) |
| IL (3) | IL304772B2 (enExample) |
| LT (1) | LT3113797T (enExample) |
| NZ (1) | NZ723858A (enExample) |
| PL (1) | PL3113797T3 (enExample) |
| PT (1) | PT3113797T (enExample) |
| RS (1) | RS63408B1 (enExample) |
| SG (1) | SG11201607030PA (enExample) |
| SI (1) | SI3113797T1 (enExample) |
| WO (1) | WO2015132580A1 (enExample) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9587030B2 (en) | 2014-03-04 | 2017-03-07 | Kymab Limited | Anti-hOX40L antibodies, uses, and methods |
| US9868789B2 (en) | 2015-03-03 | 2018-01-16 | Kymab Limited | Synergistic combinations of OX40L antibodies for the treatment of GvHD |
| JP2018510128A (ja) * | 2015-03-03 | 2018-04-12 | カイマブ・リミテッド | 抗体、使用、及び方法 |
| US10604576B2 (en) | 2016-06-20 | 2020-03-31 | Kymab Limited | Antibodies and immunocytokines |
| EP3762400A4 (en) * | 2018-03-08 | 2022-03-16 | Magenta Therapeutics, Inc. | ANTI-CD252 ANTIBODIES, CONJUGATES AND METHODS OF USE |
| US11440960B2 (en) | 2017-06-20 | 2022-09-13 | Kymab Limited | TIGIT antibodies, encoding nucleic acids and methods of using said antibodies in vivo |
| WO2023001987A2 (en) | 2021-07-22 | 2023-01-26 | University Of Dundee | Therapeutic muteins |
| WO2023017252A1 (en) | 2021-08-10 | 2023-02-16 | Kymab Limited | Treatment of atopic dermatitis |
| US11629189B2 (en) | 2017-12-19 | 2023-04-18 | Kymab Limited | Bispecific antibody for ICOS and PD-L1 |
| US11779604B2 (en) | 2016-11-03 | 2023-10-10 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses and methods |
| US11858996B2 (en) | 2016-08-09 | 2024-01-02 | Kymab Limited | Anti-ICOS antibodies |
| WO2024213774A1 (en) | 2023-04-14 | 2024-10-17 | Kymab Limited | Pharmaceutical formulations containing anti-ox40l antibodies |
| US12209128B2 (en) | 2016-06-20 | 2025-01-28 | Kymab Limited | Anti-PD-L1 antibodies |
| WO2025099280A1 (en) | 2023-11-08 | 2025-05-15 | Oxion Biologics Ab | Improved anti-ox40l antibodies |
| US12404330B2 (en) | 2017-12-19 | 2025-09-02 | Kymab Limited | Antibodies to ICOS |
| WO2025233445A1 (en) | 2024-05-08 | 2025-11-13 | Kymab Limited | Treatment of head and neck atopic dermatitis |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9897378B2 (en) | 2015-10-08 | 2018-02-20 | Nyc Designed Inspirations Llc | Cosmetic makeup sponge/blender container |
| CA3034267A1 (en) * | 2016-08-18 | 2018-02-22 | Mitchell Lawrence Jones | Systems for obtaining samples using ingestible devices |
| AU2019233581B2 (en) * | 2018-03-13 | 2025-08-28 | Cancer Research Technology Limited | Anti-CD25 for tumour specific cell depletion |
| WO2019178852A1 (zh) * | 2018-03-23 | 2019-09-26 | 苏州丁孚靶点生物技术有限公司 | Ox40抗原多肽及其用途 |
| WO2020112773A1 (en) * | 2018-11-27 | 2020-06-04 | The General Hospital Corporation | Targeting intraepithelial lymphocytes for treatment of metabolic syndrome |
| CA3163764A1 (en) * | 2019-12-06 | 2021-06-10 | Ablynx Nv | Polypeptides comprising immunoglobulin single variable domains targeting tnfa and ox40l |
| CN111529753A (zh) * | 2020-04-28 | 2020-08-14 | 宁夏医科大学总医院 | 氧化苦参碱-胎盘间充质干细胞水凝胶、制备方法及应用 |
| WO2022060798A1 (en) * | 2020-09-15 | 2022-03-24 | 10X Genomics, Inc. | Methods of releasing an extended capture probe from a substrate and uses of the same |
| WO2022123293A1 (ko) * | 2020-12-09 | 2022-06-16 | 에이치케이이노엔 주식회사 | 항 OX40L 항체, 항 OX40L 및 항 TNFα 이중 특이성 항체 및 이들의 용도 |
| CN112852743B (zh) * | 2021-01-25 | 2021-11-02 | 江苏荃信生物医药有限公司 | 用于生产乌司奴单抗的生物类似药的细胞株及生产方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006029879A2 (en) * | 2004-09-17 | 2006-03-23 | F.Hoffmann-La Roche Ag | Anti-ox40l antibodies |
| WO2011073180A1 (en) * | 2009-12-14 | 2011-06-23 | Ablynx N.V. | Single variable domain antibodies against ox40l, constructs and therapeutic use |
| WO2013008171A1 (en) * | 2011-07-11 | 2013-01-17 | Glenmark Pharmaceuticals S.A. | Antibodies that bind to ox40 and their uses |
Family Cites Families (595)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
| US3710795A (en) | 1970-09-29 | 1973-01-16 | Alza Corp | Drug-delivery device with stretched, rate-controlling membrane |
| US4044126A (en) | 1972-04-20 | 1977-08-23 | Allen & Hanburys Limited | Steroidal aerosol compositions and process for the preparation thereof |
| GB1429184A (en) | 1972-04-20 | 1976-03-24 | Allen & Hanburys Ltd | Physically anti-inflammatory steroids for use in aerosols |
| USRE28819E (en) | 1972-12-08 | 1976-05-18 | Syntex (U.S.A.) Inc. | Dialkylated glycol compositions and medicament preparations containing same |
| US4444887A (en) | 1979-12-10 | 1984-04-24 | Sloan-Kettering Institute | Process for making human antibody producing B-lymphocytes |
| US4410545A (en) | 1981-02-13 | 1983-10-18 | Syntex (U.S.A.) Inc. | Carbonate diester solutions of PGE-type compounds |
| US4328245A (en) | 1981-02-13 | 1982-05-04 | Syntex (U.S.A.) Inc. | Carbonate diester solutions of PGE-type compounds |
| US4358603A (en) | 1981-04-16 | 1982-11-09 | Syntex (U.S.A.) Inc. | Acetal stabilized prostaglandin compositions |
| US4485045A (en) | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
| US4409239A (en) | 1982-01-21 | 1983-10-11 | Syntex (U.S.A.) Inc. | Propylene glycol diester solutions of PGE-type compounds |
| ATE37983T1 (de) | 1982-04-22 | 1988-11-15 | Ici Plc | Mittel mit verzoegerter freigabe. |
| US4522811A (en) | 1982-07-08 | 1985-06-11 | Syntex (U.S.A.) Inc. | Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides |
| US4716111A (en) | 1982-08-11 | 1987-12-29 | Trustees Of Boston University | Process for producing human antibodies |
| US4741900A (en) | 1982-11-16 | 1988-05-03 | Cytogen Corporation | Antibody-metal ion complexes |
| GB8308235D0 (en) | 1983-03-25 | 1983-05-05 | Celltech Ltd | Polypeptides |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| US4544545A (en) | 1983-06-20 | 1985-10-01 | Trustees University Of Massachusetts | Liposomes containing modified cholesterol for organ targeting |
| US4663281A (en) | 1984-03-22 | 1987-05-05 | Mass Institute Of Technology | Enhanced production of proteinaceous materials in eucaryotic cells |
| US4789633A (en) | 1984-04-19 | 1988-12-06 | University Of Tennessee Research Corporation | Fused liposome and acid induced method for liposome fusion |
| US5807715A (en) | 1984-08-27 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin |
| US5128326A (en) | 1984-12-06 | 1992-07-07 | Biomatrix, Inc. | Drug delivery systems based on hyaluronans derivatives thereof and their salts and methods of producing same |
| US4980286A (en) | 1985-07-05 | 1990-12-25 | Whitehead Institute For Biomedical Research | In vivo introduction and expression of foreign genetic material in epithelial cells |
| US4676980A (en) | 1985-09-23 | 1987-06-30 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Target specific cross-linked heteroantibodies |
| US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
| GB8607679D0 (en) | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
| AU600575B2 (en) | 1987-03-18 | 1990-08-16 | Sb2, Inc. | Altered antibodies |
| US4880078A (en) | 1987-06-29 | 1989-11-14 | Honda Giken Kogyo Kabushiki Kaisha | Exhaust muffler |
| US5677425A (en) | 1987-09-04 | 1997-10-14 | Celltech Therapeutics Limited | Recombinant antibody |
| GB8720833D0 (en) | 1987-09-04 | 1987-10-14 | Celltech Ltd | Recombinant dna product |
| US5336603A (en) | 1987-10-02 | 1994-08-09 | Genentech, Inc. | CD4 adheson variants |
| AU631802B2 (en) | 1988-06-14 | 1992-12-10 | Cetus Oncology Corporation | Coupling agents and sterically hindered disulfide linked conjugates prepared therefrom |
| US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
| EP1997891A1 (en) | 1988-09-02 | 2008-12-03 | Dyax Corporation | Generation and selection of recombinant varied binding proteins |
| GB8823869D0 (en) | 1988-10-12 | 1988-11-16 | Medical Res Council | Production of antibodies |
| KR900005995A (ko) | 1988-10-31 | 1990-05-07 | 우메모또 요시마사 | 변형 인터류킨-2 및 그의 제조방법 |
| US5734033A (en) | 1988-12-22 | 1998-03-31 | The Trustees Of The University Of Pennsylvania | Antisense oligonucleotides inhibiting human bcl-2 gene expression |
| US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
| EP0394827A1 (en) | 1989-04-26 | 1990-10-31 | F. Hoffmann-La Roche Ag | Chimaeric CD4-immunoglobulin polypeptides |
| ZA902949B (en) | 1989-05-05 | 1992-02-26 | Res Dev Foundation | A novel antibody delivery system for biological response modifiers |
| US5112946A (en) | 1989-07-06 | 1992-05-12 | Repligen Corporation | Modified pf4 compositions and methods of use |
| US5413923A (en) | 1989-07-25 | 1995-05-09 | Cell Genesys, Inc. | Homologous recombination for universal donor cells and chimeric mammalian hosts |
| EP0493418B1 (en) | 1989-09-20 | 1997-04-23 | Abbott Laboratories | Method of producing fusion proteins |
| WO1991005548A1 (en) | 1989-10-10 | 1991-05-02 | Pitman-Moore, Inc. | Sustained release composition for macromolecular proteins |
| US5013556A (en) | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
| WO1991006570A1 (en) | 1989-10-25 | 1991-05-16 | The University Of Melbourne | HYBRID Fc RECEPTOR MOLECULES |
| AU642932B2 (en) | 1989-11-06 | 1993-11-04 | Alkermes Controlled Therapeutics, Inc. | Protein microspheres and methods of using them |
| GB8928874D0 (en) | 1989-12-21 | 1990-02-28 | Celltech Ltd | Humanised antibodies |
| US5585112A (en) | 1989-12-22 | 1996-12-17 | Imarx Pharmaceutical Corp. | Method of preparing gas and gaseous precursor-filled microspheres |
| WO1991010737A1 (en) | 1990-01-11 | 1991-07-25 | Molecular Affinities Corporation | Production of antibodies using gene libraries |
| US5780225A (en) | 1990-01-12 | 1998-07-14 | Stratagene | Method for generating libaries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
| DE69133566T2 (de) | 1990-01-12 | 2007-12-06 | Amgen Fremont Inc. | Bildung von xenogenen Antikörpern |
| US5314995A (en) | 1990-01-22 | 1994-05-24 | Oncogen | Therapeutic interleukin-2-antibody based fusion proteins |
| CA2077348A1 (en) | 1990-03-02 | 1991-09-03 | Stephen D. Gillies | Antibody constructs with enhanced binding affinity |
| WO1991014438A1 (en) | 1990-03-20 | 1991-10-03 | The Trustees Of Columbia University In The City Of New York | Chimeric antibodies with receptor binding ligands in place of their constant region |
| IT1246382B (it) | 1990-04-17 | 1994-11-18 | Eurand Int | Metodo per la cessione mirata e controllata di farmaci nell'intestino e particolarmente nel colon |
| US5427908A (en) | 1990-05-01 | 1995-06-27 | Affymax Technologies N.V. | Recombinant library screening methods |
| US5349053A (en) | 1990-06-01 | 1994-09-20 | Protein Design Labs, Inc. | Chimeric ligand/immunoglobulin molecules and their uses |
| GB9015198D0 (en) | 1990-07-10 | 1990-08-29 | Brien Caroline J O | Binding substance |
| WO1992002551A1 (en) | 1990-08-02 | 1992-02-20 | B.R. Centre Limited | Methods for the production of proteins with a desired function |
| US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
| US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
| US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| US5770429A (en) | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| KR100272077B1 (ko) | 1990-08-29 | 2000-11-15 | 젠팜인터내셔날,인코포레이티드 | 이종 항체를 생산할 수 있는 전이유전자를 가진 인간이외의 동물 |
| US5814318A (en) | 1990-08-29 | 1998-09-29 | Genpharm International Inc. | Transgenic non-human animals for producing heterologous antibodies |
| US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
| US5698426A (en) | 1990-09-28 | 1997-12-16 | Ixsys, Incorporated | Surface expression libraries of heteromeric receptors |
| US5543390A (en) | 1990-11-01 | 1996-08-06 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University | Covalent microparticle-drug conjugates for biological targeting |
| CA2095842A1 (en) | 1990-11-09 | 1992-05-10 | Stephen D. Gillies | Bridging antibody fusion constructs |
| ATE218889T1 (de) | 1990-11-09 | 2002-06-15 | Stephen D Gillies | Cytokine immunokonjugate |
| WO1992009690A2 (en) | 1990-12-03 | 1992-06-11 | Genentech, Inc. | Enrichment method for variant proteins with altered binding properties |
| AU643109B2 (en) | 1990-12-14 | 1993-11-04 | Cell Genesys, Inc. | Chimeric chains for receptor-associated signal transduction pathways |
| DE69233750D1 (de) | 1991-04-10 | 2009-01-02 | Scripps Research Inst | Bibliotheken heterodimerer Rezeptoren mittels Phagemiden |
| JPH06507404A (ja) | 1991-05-01 | 1994-08-25 | ヘンリー エム.ジャクソン ファウンデイション フォー ザ アドバンスメント オブ ミリタリー メディスン | 感染性の呼吸性疾患の治療方法 |
| DE69233482T2 (de) | 1991-05-17 | 2006-01-12 | Merck & Co., Inc. | Verfahren zur Verminderung der Immunogenität der variablen Antikörperdomänen |
| GB9112536D0 (en) | 1991-06-11 | 1991-07-31 | Celltech Ltd | Chemical compounds |
| EP0590058B1 (en) | 1991-06-14 | 2003-11-26 | Genentech, Inc. | HUMANIZED Heregulin ANTIBODy |
| WO1992022324A1 (en) | 1991-06-14 | 1992-12-23 | Xoma Corporation | Microbially-produced antibody fragments and their conjugates |
| US5844095A (en) | 1991-06-27 | 1998-12-01 | Bristol-Myers Squibb Company | CTLA4 Ig fusion proteins |
| US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
| ATE408012T1 (de) | 1991-12-02 | 2008-09-15 | Medical Res Council | Herstellung von autoantikörpern auf phagenoberflächen ausgehend von antikörpersegmentbibliotheken |
| DE69233204T2 (de) | 1991-12-13 | 2004-07-15 | Xoma Corp., Berkeley | Verfahren und materialien zur herstellung von modifizierten variablen antikörperdomänen und ihre therapeutische verwendung |
| US5869619A (en) | 1991-12-13 | 1999-02-09 | Xoma Corporation | Modified antibody variable domains |
| CA2124967C (en) | 1991-12-17 | 2008-04-08 | Nils Lonberg | Transgenic non-human animals capable of producing heterologous antibodies |
| US5824307A (en) | 1991-12-23 | 1998-10-20 | Medimmune, Inc. | Human-murine chimeric antibodies against respiratory syncytial virus |
| US5622929A (en) | 1992-01-23 | 1997-04-22 | Bristol-Myers Squibb Company | Thioether conjugates |
| US6271242B1 (en) | 1992-02-10 | 2001-08-07 | Bristol-Myers Squibb Co. | Method for treating cancer using a tyrosine protein kinase inhibitor |
| GB9203459D0 (en) | 1992-02-19 | 1992-04-08 | Scotgen Ltd | Antibodies with germ-line variable regions |
| US5912015A (en) | 1992-03-12 | 1999-06-15 | Alkermes Controlled Therapeutics, Inc. | Modulated release from biocompatible polymers |
| US5733743A (en) | 1992-03-24 | 1998-03-31 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
| US6010715A (en) | 1992-04-01 | 2000-01-04 | Bertek, Inc. | Transdermal patch incorporating a polymer film incorporated with an active agent |
| US5447851B1 (en) | 1992-04-02 | 1999-07-06 | Univ Texas System Board Of | Dna encoding a chimeric polypeptide comprising the extracellular domain of tnf receptor fused to igg vectors and host cells |
| US6024975A (en) | 1992-04-08 | 2000-02-15 | Americare International Diagnostics, Inc. | Method of transdermally administering high molecular weight drugs with a polymer skin enhancer |
| US5229109A (en) | 1992-04-14 | 1993-07-20 | Board Of Regents, The University Of Texas System | Low toxicity interleukin-2 analogues for use in immunotherapy |
| EP0656946B2 (en) | 1992-08-21 | 2010-03-31 | Vrije Universiteit Brussel | Immunoglobulins devoid of light chains |
| US6005079A (en) | 1992-08-21 | 1999-12-21 | Vrije Universiteit Brussels | Immunoglobulins devoid of light chains |
| US5639641A (en) | 1992-09-09 | 1997-06-17 | Immunogen Inc. | Resurfacing of rodent antibodies |
| US5441050A (en) | 1992-12-18 | 1995-08-15 | Neoprobe Corporation | Radiation responsive surgical instrument |
| US5934272A (en) | 1993-01-29 | 1999-08-10 | Aradigm Corporation | Device and method of creating aerosolized mist of respiratory drug |
| US6274552B1 (en) | 1993-03-18 | 2001-08-14 | Cytimmune Sciences, Inc. | Composition and method for delivery of biologically-active factors |
| WO1994021679A1 (en) | 1993-03-25 | 1994-09-29 | Merck & Co., Inc. | Inhibitor of vascular endothelial cell growth factor |
| US5985307A (en) | 1993-04-14 | 1999-11-16 | Emory University | Device and method for non-occlusive localized drug delivery |
| US5523092A (en) | 1993-04-14 | 1996-06-04 | Emory University | Device for local drug delivery and methods for using the same |
| DE69427974T2 (de) | 1993-04-29 | 2001-12-06 | Unilever N.V., Rotterdam | Herstellung von antikörpern oder funktionstüchtig gemachten teilen davon, abgeleitet von schweren ketten von immunglobulinen von camelidae |
| US5728868A (en) | 1993-07-15 | 1998-03-17 | Cancer Research Campaign Technology Limited | Prodrugs of protein tyrosine kinase inhibitors |
| US6004534A (en) | 1993-07-23 | 1999-12-21 | Massachusetts Institute Of Technology | Targeted polymerized liposomes for improved drug delivery |
| WO1995015982A2 (en) | 1993-12-08 | 1995-06-15 | Genzyme Corporation | Process for generating specific antibodies |
| US5925376C1 (en) | 1994-01-10 | 2001-03-20 | Madalene C Y Heng | Method for treating psoriasis using selected phosphorylase kinase inhibitor and additional compounds |
| US5618709A (en) | 1994-01-14 | 1997-04-08 | University Of Pennsylvania | Antisense oligonucleotides specific for STK-1 and method for inhibiting expression of the STK-1 protein |
| DK1231268T3 (da) | 1994-01-31 | 2005-11-21 | Univ Boston | Polyklonale antistofbiblioteker |
| US6242566B1 (en) | 1994-02-10 | 2001-06-05 | Board Of Trustees Of The Leland Stanford Junior University | Ligand (ACT-4-L) to a receptor on the surface of activated CD4+ T-cells |
| US5605793A (en) | 1994-02-17 | 1997-02-25 | Affymax Technologies N.V. | Methods for in vitro recombination |
| US5834252A (en) | 1995-04-18 | 1998-11-10 | Glaxo Group Limited | End-complementary polymerase reaction |
| US5837458A (en) | 1994-02-17 | 1998-11-17 | Maxygen, Inc. | Methods and compositions for cellular and metabolic engineering |
| GB9410534D0 (en) | 1994-05-26 | 1994-07-13 | Lynxvale Ltd | Improvements in or relating to growth factor inhibitors |
| US5516637A (en) | 1994-06-10 | 1996-05-14 | Dade International Inc. | Method involving display of protein binding pairs on the surface of bacterial pili and bacteriophage |
| GB9415379D0 (en) | 1994-07-29 | 1994-09-21 | Smithkline Beecham Plc | Novel compounds |
| AU3382595A (en) | 1994-07-29 | 1996-03-04 | Smithkline Beecham Corporation | Novel compounds |
| US5759542A (en) | 1994-08-05 | 1998-06-02 | New England Deaconess Hospital Corporation | Compositions and methods for the delivery of drugs by platelets for the treatment of cardiovascular and other diseases |
| US5587459A (en) | 1994-08-19 | 1996-12-24 | Regents Of The University Of Minnesota | Immunoconjugates comprising tyrosine kinase inhibitors |
| US5911995A (en) | 1994-08-19 | 1999-06-15 | Regents Of The University Of Minnesota | EGF-genistein conjugates for the treatment of cancer |
| US5541087A (en) | 1994-09-14 | 1996-07-30 | Fuji Immunopharmaceuticals Corporation | Expression and export technology of proteins as immunofusins |
| US5660854A (en) | 1994-11-28 | 1997-08-26 | Haynes; Duncan H | Drug releasing surgical implant or dressing material |
| EP0805678B1 (en) | 1995-01-05 | 2003-10-29 | THE BOARD OF REGENTS acting for and on behalf of THE UNIVERSITY OF MICHIGAN | Surface-modified nanoparticles and method of making and using same |
| US6030613A (en) | 1995-01-17 | 2000-02-29 | The Brigham And Women's Hospital, Inc. | Receptor specific transepithelial transport of therapeutics |
| ATE238668T1 (de) | 1995-01-17 | 2003-05-15 | Brigham & Womens Hospital | Rezeptorspezifischer transepithelialer transport von immunogenen |
| GB9501567D0 (en) | 1995-01-26 | 1995-03-15 | Pharmacia Spa | Hydrosoluble 3-arylidene-2-oxindole derivatives as tyrosine kinase inhibitors |
| US5998596A (en) | 1995-04-04 | 1999-12-07 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibition of protein kinase activity by aptameric action of oligonucleotides |
| US6019968A (en) | 1995-04-14 | 2000-02-01 | Inhale Therapeutic Systems, Inc. | Dispersible antibody compositions and methods for their preparation and use |
| US6121022A (en) | 1995-04-14 | 2000-09-19 | Genentech, Inc. | Altered polypeptides with increased half-life |
| US5869046A (en) | 1995-04-14 | 1999-02-09 | Genentech, Inc. | Altered polypeptides with increased half-life |
| US5983134A (en) | 1995-04-23 | 1999-11-09 | Electromagnetic Bracing Systems Inc. | Electrophoretic cuff apparatus drug delivery system |
| JP4312259B2 (ja) | 1995-04-27 | 2009-08-12 | アムジェン フレモント インク. | 免疫したゼノマウス(XenoMouse)に由来するヒト抗体 |
| EP0823941A4 (en) | 1995-04-28 | 2001-09-19 | Abgenix Inc | HUMAN ANTIBODIES DERIVED FROM IMMUNIZED XENO MOUSES |
| AU5779696A (en) | 1995-06-01 | 1996-12-18 | Kishimoto, Tadamitsu | Leukemic cell growth inhibitor containing antisense oligonuc leotide derivative against wilms' tumor gene (wt1) |
| US6316652B1 (en) | 1995-06-06 | 2001-11-13 | Kosta Steliou | Drug mitochondrial targeting agents |
| GB9515975D0 (en) | 1995-08-04 | 1995-10-04 | Zeneca Ltd | Chemical compounds |
| US6167301A (en) | 1995-08-29 | 2000-12-26 | Flower; Ronald J. | Iontophoretic drug delivery device having high-efficiency DC-to-DC energy conversion circuit |
| AU710347B2 (en) | 1995-08-31 | 1999-09-16 | Alkermes Controlled Therapeutics, Inc. | Composition for sustained release of an agent |
| US5863904A (en) | 1995-09-26 | 1999-01-26 | The University Of Michigan | Methods for treating cancers and restenosis with P21 |
| GB9601081D0 (en) | 1995-10-06 | 1996-03-20 | Cambridge Antibody Tech | Specific binding members for human transforming growth factor beta;materials and methods |
| US6039975A (en) | 1995-10-17 | 2000-03-21 | Hoffman-La Roche Inc. | Colon targeted delivery system |
| US6576754B2 (en) | 1995-11-09 | 2003-06-10 | Dana-Farber Cancer Institute | CD100 antigen and uses therefor |
| US6127366A (en) | 1995-11-22 | 2000-10-03 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| EE03484B1 (et) | 1995-12-08 | 2001-08-15 | Janssen Pharmaceutica N.V. | Farnesüülproteiintransferaasi inhibeerivad (5-imidasolüül)metüül-2-kinolinooni derivaadid ja nende kasutamine |
| US5723125A (en) | 1995-12-28 | 1998-03-03 | Tanox Biosystems, Inc. | Hybrid with interferon-alpha and an immunoglobulin Fc linked through a non-immunogenic peptide |
| US5958769A (en) | 1996-01-18 | 1999-09-28 | Fred Hutchinson Cancer Research Center | Compositions and methods for mediating cell cycle progression |
| JP2978435B2 (ja) | 1996-01-24 | 1999-11-15 | チッソ株式会社 | アクリロキシプロピルシランの製造方法 |
| JP2000504017A (ja) | 1996-01-30 | 2000-04-04 | メルク エンド カンパニー インコーポレーテッド | ファルネシル―タンパク質転移酵素の阻害剤 |
| WO1997027852A1 (en) | 1996-01-30 | 1997-08-07 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| US6750334B1 (en) | 1996-02-02 | 2004-06-15 | Repligen Corporation | CTLA4-immunoglobulin fusion proteins having modified effector functions and uses therefor |
| ATE508733T1 (de) | 1996-03-04 | 2011-05-15 | Penn State Res Found | Materialien und verfahren zur steigerung der zellulären internalisierung |
| WO1997033899A1 (en) | 1996-03-14 | 1997-09-18 | Human Genome Sciences, Inc. | Apoptosis inducing molecule i |
| WO1997034631A1 (en) | 1996-03-18 | 1997-09-25 | Board Of Regents, The University Of Texas System | Immunoglobin-like domains with increased half lives |
| EP0904278A4 (en) | 1996-03-22 | 1999-09-15 | Human Genome Sciences Inc | MOLECULE II INDUCER OF APOPTOSIS |
| US5883105A (en) | 1996-04-03 | 1999-03-16 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| US6080870A (en) | 1996-04-03 | 2000-06-27 | Merck & Co., Inc. | Biaryl substituted imidazole compounds useful as farnesyl-protein transferase inhibitors |
| US5891889A (en) | 1996-04-03 | 1999-04-06 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| US6063930A (en) | 1996-04-03 | 2000-05-16 | Merck & Co., Inc. | Substituted imidazole compounds useful as farnesyl-protein transferase inhibitors |
| US6100071A (en) | 1996-05-07 | 2000-08-08 | Genentech, Inc. | Receptors as novel inhibitors of vascular endothelial growth factor activity and processes for their production |
| US6300501B1 (en) | 1996-05-22 | 2001-10-09 | Warner-Lambert Company | Histidine-(N-benzyl glycinamide) inhibitors of protein farnesyl transferase |
| US5985309A (en) | 1996-05-24 | 1999-11-16 | Massachusetts Institute Of Technology | Preparation of particles for inhalation |
| US5874064A (en) | 1996-05-24 | 1999-02-23 | Massachusetts Institute Of Technology | Aerodynamically light particles for pulmonary drug delivery |
| US5855913A (en) | 1997-01-16 | 1999-01-05 | Massachusetts Instite Of Technology | Particles incorporating surfactants for pulmonary drug delivery |
| TW345603B (en) | 1996-05-29 | 1998-11-21 | Gmundner Fertigteile Gmbh | A noise control device for tracks |
| US5648239A (en) | 1996-06-21 | 1997-07-15 | Incyte Pharmaceuticals, Inc. | Human camp-dependent protein kinase inhibitor homolog |
| CA2258518C (en) | 1996-06-27 | 2011-11-22 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Recognition molecules interacting specifically with the active site or cleft of a target molecule |
| CA2259222A1 (en) | 1996-06-27 | 1997-12-31 | Pfizer Inc. | Derivatives of 2-(2-oxo-ethylidene)-imidazolidin-4-one and their use as farnesyl protein transferase inhibitors |
| US6028176A (en) | 1996-07-19 | 2000-02-22 | Bayer Corporation | High-affinity interleukin-4 muteins |
| NL1003648C2 (nl) | 1996-07-19 | 1998-01-21 | Carino Cornelis Sunderman | Werkwijze en inrichting voor het bevorderen van de rookgasafvoer van een openhaardvuur. |
| ES2286834T5 (es) | 1996-08-12 | 2011-01-31 | Mitsubishi Tanabe Pharma Corporation | Medicamentos que comprenden un inhibidor de la rho quinasa. |
| US5985317A (en) | 1996-09-06 | 1999-11-16 | Theratech, Inc. | Pressure sensitive adhesive matrix patches for transdermal delivery of salts of pharmaceutical agents |
| US6030982A (en) | 1996-09-13 | 2000-02-29 | Schering Corporationm | Compounds useful for inhibition of farnesyl protein transferase |
| US6040305A (en) | 1996-09-13 | 2000-03-21 | Schering Corporation | Compounds useful for inhibition of farnesyl protein transferase |
| US5945429A (en) | 1996-09-13 | 1999-08-31 | Schering Corporation | Compounds useful for inhibition of farnesyl protein transferase |
| ES2274549T3 (es) | 1996-09-24 | 2007-05-16 | MERCK & CO., INC. | Compuestos para la inhibicion de la angiogenesis por terapia de genes . |
| US5885834A (en) | 1996-09-30 | 1999-03-23 | Epstein; Paul M. | Antisense oligodeoxynucleotide against phosphodiesterase |
| US6139865A (en) | 1996-10-01 | 2000-10-31 | Eurand America, Inc. | Taste-masked microcapsule compositions and methods of manufacture |
| US5916771A (en) | 1996-10-11 | 1999-06-29 | Abgenix, Inc. | Production of a multimeric protein by cell fusion method |
| US5980898A (en) | 1996-11-14 | 1999-11-09 | The United States Of America As Represented By The U.S. Army Medical Research & Material Command | Adjuvant for transcutaneous immunization |
| US6131570A (en) | 1998-06-30 | 2000-10-17 | Aradigm Corporation | Temperature controlling device for aerosol drug delivery |
| DE69738539T2 (de) | 1996-12-03 | 2009-03-26 | Amgen Fremont Inc. | Vollkommen humane Antikörper die EGFR binden |
| GB9625640D0 (en) | 1996-12-10 | 1997-01-29 | Celltech Therapeutics Ltd | Biological products |
| US6093737A (en) | 1996-12-30 | 2000-07-25 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| US5939439A (en) | 1996-12-30 | 1999-08-17 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| US6013662A (en) | 1996-12-30 | 2000-01-11 | Rhone-Poulenc Rorer S.A. | Farnesyl transferase inhibitors, their preparation, the pharmaceutical compositions which contain them and their use in the preparation of medicaments |
| WO1998031346A1 (en) | 1997-01-16 | 1998-07-23 | Massachusetts Institute Of Technology | Preparation of particles for inhalation |
| JP2001509156A (ja) | 1997-01-29 | 2001-07-10 | ゼネカ・リミテッド | ファルネシルプロテイントランスフェラーゼの阻害剤 |
| US5860957A (en) | 1997-02-07 | 1999-01-19 | Sarcos, Inc. | Multipathway electronically-controlled drug delivery system |
| ZA981080B (en) | 1997-02-11 | 1998-08-12 | Warner Lambert Co | Bicyclic inhibitors of protein farnesyl transferase |
| US7112655B1 (en) | 1997-02-27 | 2006-09-26 | Japan Tobacco, Inc. | JTT-1 protein and methods of inhibiting lymphocyte activation |
| JP3521382B2 (ja) | 1997-02-27 | 2004-04-19 | 日本たばこ産業株式会社 | 細胞間接着及びシグナル伝達を媒介する細胞表面分子 |
| US7968689B2 (en) | 1997-03-07 | 2011-06-28 | Human Genome Sciences, Inc. | Antibodies to HSDEK49 polypeptides |
| US20070015696A1 (en) | 1997-03-07 | 2007-01-18 | Rosen Craig A | 621 human secreted proteins |
| US20060223088A1 (en) | 1997-03-07 | 2006-10-05 | Rosen Craig A | Human secreted proteins |
| US20060223090A1 (en) | 1997-03-07 | 2006-10-05 | Rosen Craig A | Polynucleotides encoding human secreted proteins |
| US7411051B2 (en) | 1997-03-07 | 2008-08-12 | Human Genome Sciences, Inc. | Antibodies to HDPPA04 polypeptide |
| US20060246483A1 (en) | 1997-03-07 | 2006-11-02 | Rosen Craig A | 337 human secreted proteins |
| US20070055056A1 (en) | 1997-03-07 | 2007-03-08 | Rosen Craig A | 251 human secreted proteins |
| US20080103090A1 (en) | 1997-03-07 | 2008-05-01 | Human Genome Sciences, Inc. | Human Secreted Proteins |
| US20050197285A1 (en) | 1997-03-07 | 2005-09-08 | Rosen Craig A. | Human secreted proteins |
| US7368531B2 (en) | 1997-03-07 | 2008-05-06 | Human Genome Sciences, Inc. | Human secreted proteins |
| US20070224663A1 (en) | 1997-03-07 | 2007-09-27 | Human Genome Sciences, Inc. | Human Secreted Proteins |
| TW591030B (en) | 1997-03-10 | 2004-06-11 | Janssen Pharmaceutica Nv | Farnesyl transferase inhibiting 1,8-annelated quinolinone derivatives substituted with N- or C-linked imidazoles |
| US6120751A (en) | 1997-03-21 | 2000-09-19 | Imarx Pharmaceutical Corp. | Charged lipids and uses for the same |
| BRPI9809391B8 (pt) | 1997-04-14 | 2021-05-25 | Amgen Res Munich Gmbh | processo para a produção de um receptor de antígeno anti-humano, anticorpo humano e composição farmacêutica |
| US6060082A (en) | 1997-04-18 | 2000-05-09 | Massachusetts Institute Of Technology | Polymerized liposomes targeted to M cells and useful for oral or mucosal drug delivery |
| US6235883B1 (en) | 1997-05-05 | 2001-05-22 | Abgenix, Inc. | Human monoclonal antibodies to epidermal growth factor receptor |
| US6051582A (en) | 1997-06-17 | 2000-04-18 | Schering Corporation | Compounds useful for inhibition of farnesyl protein transferase |
| US6159984A (en) | 1997-06-17 | 2000-12-12 | Schering Corporation | Farnesyl protein transferase inhibitors |
| US6225322B1 (en) | 1997-06-17 | 2001-05-01 | Schering Corporation | Compounds useful for inhibition of farnesyl protein transferase |
| US6211193B1 (en) | 1997-06-17 | 2001-04-03 | Schering Corporation | Compounds useful for inhibition of farnesyl protein transferase |
| US6239140B1 (en) | 1997-06-17 | 2001-05-29 | Schering Corporation | Compounds useful for inhibition of farnesyl protein transferase |
| US6228865B1 (en) | 1997-06-17 | 2001-05-08 | Schering Corporation | Compounds useful for inhibition of farnesyl protein transferase |
| KR100634847B1 (ko) | 1997-06-20 | 2006-10-17 | 바이오겐 아이덱 엠에이 인코포레이티드 | 췌장도 조직 이식을 위한 cd154 차단 요법 |
| US6075007A (en) | 1997-07-17 | 2000-06-13 | Regeneron Pharmaceuticals, Inc. | Modified noggin polypeptide and compositions |
| AR013184A1 (es) | 1997-07-18 | 2000-12-13 | Astrazeneca Ab | Aminas heterociclicas espiroazobiciclicas, composicion farmaceutica, uso de dichas aminas para preparar medicamentos y metodo de tratamiento o profilaxis |
| ES2163293T5 (es) | 1997-08-15 | 2006-01-16 | Cephalon, Inc. | Combinacion de un inhibidor de tirosina quinasas y castracion quimica para tratar el cancer de prostata. |
| US5948433A (en) | 1997-08-21 | 1999-09-07 | Bertek, Inc. | Transdermal patch |
| DE19821060A1 (de) | 1997-09-23 | 1999-04-15 | Bundesrepublik Deutschland Let | Ko-stimulierendes Polypeptid von T-Zellen, monoklonale Antikörper sowie die Herstellung und deren Verwendung |
| US7259247B1 (en) | 1997-09-23 | 2007-08-21 | Bundersrespublik Deutschaland Letztvertreten Durch Den Direktor Des Robert-Koch-Institutes | Anti-human T-cell costimulating polypeptide monoclonal antibodies |
| US5989463A (en) | 1997-09-24 | 1999-11-23 | Alkermes Controlled Therapeutics, Inc. | Methods for fabricating polymer-based controlled release devices |
| US6103723A (en) | 1997-10-17 | 2000-08-15 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| EP1025089A1 (en) | 1997-10-22 | 2000-08-09 | Zeneca Limited | Imidazole derivatives and their use as farnesyl protein transferase inhibitors |
| DE69801590T2 (de) | 1997-10-22 | 2002-07-11 | Astrazeneca Ab, Soedertaelje | Imidazolderivate und ihre verwendung als farnesylproteintransferase inhibitoren |
| SE512663C2 (sv) | 1997-10-23 | 2000-04-17 | Biogram Ab | Inkapslingsförfarande för aktiv substans i en bionedbrytbar polymer |
| EP0968711B9 (en) | 1997-10-28 | 2008-05-28 | Bando Chemical Industries, Ltd. | Dermatological patch sheet and process for producing base sheet therefor |
| ES2303358T3 (es) | 1997-11-03 | 2008-08-01 | Human Genome Sciences, Inc. | Vegi, un inhibidor de la angiogenesis y el crecimiento tumoral. |
| US6124465A (en) | 1997-11-25 | 2000-09-26 | Rhone-Poulenc S.A. | Farnesyl transferase inhibitors, their preparation, the pharmaceutical compositions which contain them and their use in the preparation of medicaments |
| EP1045846B1 (en) | 1997-11-28 | 2003-05-02 | Lg Chemical Limited | Imidazole derivatives having an inhibitory activity for farnesyl transferase and process for preparation thereof |
| US6054466A (en) | 1997-12-04 | 2000-04-25 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| ES2590912T3 (es) | 1997-12-08 | 2016-11-24 | Merck Patent Gmbh | Proteínas de fusión heterodiméricas útiles para inmunoterapia dirigida y estimulación general del sistema inmunitario |
| US6242196B1 (en) | 1997-12-11 | 2001-06-05 | Dana-Farber Cancer Institute | Methods and pharmaceutical compositions for inhibiting tumor cell growth |
| US6335156B1 (en) | 1997-12-18 | 2002-01-01 | The Johns Hopkins University School Of Medicine | 14-3-3σ arrests the cell cycle |
| AU745855B2 (en) | 1998-02-02 | 2002-04-11 | Lg Chemical Ltd. | Farnesyl transferase inhibitors having a piperidine structure and process for preparation thereof |
| CA2320403A1 (en) | 1998-02-25 | 1999-09-02 | Lexigen Pharmaceuticals Corporation | Enhancing the circulating half-life of antibody-based fusion proteins |
| WO1999048927A1 (en) | 1998-03-25 | 1999-09-30 | Cornell Research Foundation, Inc. | Methods for designing specific ion channel blockers |
| HK1038882A1 (zh) | 1998-04-15 | 2002-04-04 | 利思进药品公司 | 通过共同给予血管生成抑制剂增强抗体-细胞因子融合蛋白介导的免疫应答 |
| MXPA00010151A (es) | 1998-04-17 | 2002-08-06 | Lexigen Pharm Corp | Mejoramiento de las respuestas inmunes mediadas por proteina de fusion de anticuerpo-citocina mediante la soadministracion con inhibidores de prostaglandina. |
| JP2002513031A (ja) | 1998-04-27 | 2002-05-08 | ワーナー−ランバート・カンパニー | ファルネシルトランスフェラーゼ阻害剤としての機能化されたアルキルおよびアルケニル側鎖を有するグリシンアミド誘導体 |
| US6048736A (en) | 1998-04-29 | 2000-04-11 | Kosak; Kenneth M. | Cyclodextrin polymers for carrying and releasing drugs |
| DZ2788A1 (fr) | 1998-05-15 | 2003-12-01 | Bayer Ag | Agonistes et antagonistes selectifs à IL-2. |
| CA2336139C (en) | 1998-06-24 | 2008-10-14 | Advanced Inhalation Research, Inc. | Large porous particles emitted from an inhaler |
| HRP20000904A2 (en) | 1998-07-06 | 2001-12-31 | Janssen Pharmaceutica Nv | Farnesyl protein transferase inhibitors for treating arthropathies |
| US6034053A (en) | 1998-07-13 | 2000-03-07 | Wayne Hughes Institute | EGF-isoflavone conjugates for the prevention of restenosis |
| US6696550B2 (en) | 1998-07-23 | 2004-02-24 | Millennium Pharmaceuticals, Inc. | Humanized anti-CCR2 antibodies and methods of use therefor |
| PL202057B1 (pl) | 1998-08-25 | 2009-05-29 | Merck Patent Gmbh | Homodimeryczne białko fuzyjne będące inhibitorem angiogenezy, sposób jego otrzymywania oraz cząsteczka DNA i wektor ekspresyjny zawierający to DNA |
| US6372747B1 (en) | 1998-12-18 | 2002-04-16 | Schering Corporation | Farnesyl protein transferase inhibitors |
| US6362188B1 (en) | 1998-12-18 | 2002-03-26 | Schering Corporation | Farnesyl protein transferase inhibitors |
| FR2787327B1 (fr) | 1998-12-21 | 2003-01-17 | Aventis Pharma Sa | Compositions contenant des inhibiteurs de farnesyle transferase |
| US6432959B1 (en) | 1998-12-23 | 2002-08-13 | Schering Corporation | Inhibitors of farnesyl-protein transferase |
| JP2002534962A (ja) | 1999-01-07 | 2002-10-22 | レキシジェン ファーマシューティカルズ コーポレイション | Fc融合タンパク質としての抗肥満症タンパク質の発現および輸送 |
| DE1140938T1 (de) | 1999-01-11 | 2003-01-09 | Princeton University, Princeton | Kinase-inhibitoren mit hoher affinität zur ziel detektion und ihre verwendung |
| AU2507700A (en) | 1999-01-15 | 2000-08-01 | Biogen, Inc. | Antagonists of tweak and of tweak receptor and their use to treat immunological disorders |
| US6399633B1 (en) | 1999-02-01 | 2002-06-04 | Aventis Pharmaceuticals Inc. | Use of 4-H-1-benzopryan-4-one derivatives as inhibitors of smooth muscle cell proliferation |
| RU2236251C2 (ru) | 1999-02-12 | 2004-09-20 | Дзе Скриппс Рисерч Инститьют | Способы лечения опухолей и метастазов с использованием комбинации антиангиогенной терапии и иммунотерапии |
| US6245759B1 (en) | 1999-03-11 | 2001-06-12 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
| GB9907965D0 (en) | 1999-04-09 | 1999-06-02 | Glaxo Group Ltd | Medical use |
| US6271359B1 (en) | 1999-04-14 | 2001-08-07 | Musc Foundation For Research Development | Tissue-specific and pathogen-specific toxic agents and ribozymes |
| US6143766A (en) | 1999-04-16 | 2000-11-07 | Warner-Lambert Company | Benzopyranone and quinolone inhibitors of ras farnesyl transferase |
| CN1308347C (zh) | 1999-04-28 | 2007-04-04 | 德克萨斯大学董事会 | 用于通过选择性抑制vegf来治疗癌症的组合物和方法 |
| US7306799B2 (en) | 1999-06-08 | 2007-12-11 | Regeneron Pharmaceuticals, Inc. | Use of VEGF inhibitors for treatment of eye disorders |
| US7070959B1 (en) | 1999-06-08 | 2006-07-04 | Regeneron Pharmaceuticals, Inc. | Modified chimeric polypeptides with improved pharmacokinetic properties |
| US7303746B2 (en) | 1999-06-08 | 2007-12-04 | Regeneron Pharmaceuticals, Inc. | Methods of treating eye disorders with modified chimeric polypeptides |
| US6256533B1 (en) | 1999-06-09 | 2001-07-03 | The Procter & Gamble Company | Apparatus and method for using an intracutaneous microneedle array |
| US6833268B1 (en) | 1999-06-10 | 2004-12-21 | Abgenix, Inc. | Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions |
| US6458935B1 (en) | 1999-06-23 | 2002-10-01 | Merck & Co., Inc. | Radiolabeled farnesyl-protein transferase inhibitors |
| EP1514933A1 (en) | 1999-07-08 | 2005-03-16 | Research Association for Biotechnology | Secretory protein or membrane protein |
| US7129338B1 (en) | 1999-07-08 | 2006-10-31 | Research Association For Biotechnology | Secretory protein or membrane protein |
| SK782002A3 (en) | 1999-07-21 | 2003-08-05 | Lexigen Pharm Corp | FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens |
| AU778611B2 (en) | 1999-08-09 | 2004-12-16 | Merck Patent Gmbh | Multiple cytokine-antibody complexes |
| EP1212422B1 (en) | 1999-08-24 | 2007-02-21 | Medarex, Inc. | Human ctla-4 antibodies and their uses |
| JP3871503B2 (ja) | 1999-08-30 | 2007-01-24 | 日本たばこ産業株式会社 | 免疫性疾患治療剤 |
| US20030119038A1 (en) | 1999-09-09 | 2003-06-26 | Bingham Brendan William | NARC1, novel subtilase-like homologs |
| US20100291099A1 (en) | 1999-09-27 | 2010-11-18 | Millennium Pharmaceuticals, Inc. | Novel 27411, 23413, 22438, 23553, 25278, 26212, narc sc1, narc 10a, narc 1, narc 12, narc 13, narc17, narc 25, narc 3, narc 4, narc 7, narc 8, narc 11, narc 14a, narc 15, narc 16, narc 19, narc 20, narc 26, narc 27, narc 28, narc 30, narc 5, narc 6, narc 9, narc 10c, narc 8b, narc 9, narc2a, narc 16b, narc 1c, narc 1a, narc 25, 86604 and 32222 molecules and uses therefor |
| US7029895B2 (en) | 1999-09-27 | 2006-04-18 | Millennium Pharmaceuticals, Inc. | 27411, a novel human PGP synthase |
| US20020081679A1 (en) | 1999-10-22 | 2002-06-27 | Millennium Pharmaceuticals, Inc. | NARC8 programmed cell-death-associated molecules and uses thereof |
| CA2388617A1 (en) | 1999-10-22 | 2001-05-03 | Millennium Pharmaceuticals, Inc. | Nucleic acid molecules derived from rat brain and programmed cell death models |
| US20110230392A1 (en) | 1999-10-22 | 2011-09-22 | Millennium Pharmaceuticals, Inc. | Novel narc sc1, narc 10a, narc 1, narc 12, narc 13, narc17, narc 25, narc 3, narc 4, narc 7, narc 8, narc 11, narc 14a, narc 15, narc 16, narc 19, narc 20, narc 26, narc 27, narc 28, narc 30, narc 5, narc 6, narc 9, narc 10c, narc 8b, narc 9, narc2a, narc 16b, narc 1c, narc 1a, and narc 25 molecules and uses therefor |
| ATE440111T1 (de) | 1999-11-29 | 2009-09-15 | Bac Ip B V | Immobilisierte antigenbindende moleküle aus einer domäne |
| TWI263496B (en) | 1999-12-10 | 2006-10-11 | Novartis Ag | Pharmaceutical combinations and their use in treating gastrointestinal disorders |
| US6403581B1 (en) | 2000-01-19 | 2002-06-11 | American Cyanamid Company | Method of inhibition of farnesyl-protein transferase using substituted benz (cd) indol-2-imine and-amine derivatives |
| EP1257572A2 (en) | 2000-02-07 | 2002-11-20 | Millennium Pharmaceuticals, Inc. | Narc-1, subtilase-like homologs |
| ATE336514T1 (de) | 2000-02-11 | 2006-09-15 | Merck Patent Gmbh | Steigerung der zirkulierenden halbwertzeit von auf antikörpern basierenden fusionsproteinen |
| US6261595B1 (en) | 2000-02-29 | 2001-07-17 | Zars, Inc. | Transdermal drug patch with attached pocket for controlled heating device |
| JP3597140B2 (ja) | 2000-05-18 | 2004-12-02 | 日本たばこ産業株式会社 | 副刺激伝達分子ailimに対するヒトモノクローナル抗体及びその医薬用途 |
| US7094874B2 (en) | 2000-05-26 | 2006-08-22 | Bristol-Myers Squibb Co. | Soluble CTLA4 mutant molecules |
| US6680315B2 (en) | 2000-06-15 | 2004-01-20 | Synta Pharmaceuticals Corp. | Triazine compounds |
| AU2001269836A1 (en) | 2000-06-16 | 2002-01-02 | Incyte Genomics, Inc. | Proteases |
| US6689353B1 (en) | 2000-06-28 | 2004-02-10 | Bayer Pharmaceuticals Corporation | Stabilized interleukin 2 |
| ATE368475T1 (de) | 2000-06-29 | 2007-08-15 | Emd Lexigen Res Ct Corp | Steigerung von durch antikörper-zytokin- fusionsproteine mediierten immunantworten durch eine kombinierte behandlung mit mitteln zur erhöhung der immunzytokinaufnahme |
| WO2002014358A2 (en) | 2000-08-11 | 2002-02-21 | Eli Lilly And Company | Novel secreted proteins and their uses |
| CN1203857C (zh) | 2000-09-18 | 2005-06-01 | 威克斯医药有限公司 | 局部麻醉与镇痛的新方法 |
| CN1284536C (zh) | 2000-09-18 | 2006-11-15 | 威克斯医药有限公司 | 河豚毒素或蛤蚌毒素及其类似物在制备用于全身镇痛的镇痛药中的应用 |
| AU2001296908A1 (en) | 2000-09-29 | 2002-04-08 | Geneva Pharmaceuticals, Inc. | Proton pump inhibitor formulation |
| IL155002A0 (en) | 2000-10-12 | 2003-10-31 | Genentech Inc | Reduced-viscosity concentrated protein formulations |
| EP1358325A2 (en) | 2000-12-08 | 2003-11-05 | Incyte Genomics, Inc. | Protein modification and maintenance molecules |
| HUP0401300A3 (en) | 2001-01-18 | 2005-06-28 | Merck Patent Gmbh | Bifunctional fusion proteins with glucocerebrosidase activity |
| AU2002233340B2 (en) | 2001-02-19 | 2008-05-22 | Merck Patent Gmbh | Artificial fusion proteins with reduced immunogenicity |
| JP4212278B2 (ja) | 2001-03-01 | 2009-01-21 | 日本たばこ産業株式会社 | 移植片拒絶反応抑制剤 |
| BR0207854A (pt) | 2001-03-07 | 2004-08-24 | Merck Patent Gmbh | Tecnologia de expressão para proteìnas contendo uma porção de anticorpo de isotipo hìbrido |
| EP1414845A4 (en) | 2001-03-21 | 2009-07-08 | Human Genome Sciences | SEPARATE HUMAN PROTEINS |
| WO2002079415A2 (en) | 2001-03-30 | 2002-10-10 | Lexigen Pharmaceuticals Corp. | Reducing the immunogenicity of fusion proteins |
| WO2002086083A2 (en) | 2001-04-20 | 2002-10-31 | Mayo Foundation For Medical Education And Research | Methods of enhancing cell responsiveness |
| DK1383785T3 (da) | 2001-05-03 | 2011-05-23 | Merck Patent Gmbh | Rekombinant tumorspecifikt antistof og anvendelse deraf |
| ATE390931T1 (de) | 2001-05-23 | 2008-04-15 | Bristol Myers Squibb Co | Verfahren zum schützen eines allogenen inseltransplantats mit löslichen ctla4- mutationsmolekülen |
| US20040023243A1 (en) | 2001-06-13 | 2004-02-05 | Yue Henry | Proteases |
| IL159177A0 (en) | 2001-06-20 | 2004-06-01 | Prochon Biotech Ltd | Antibodies that block receptor protein tyrosine kinase activation, methods of screening for and uses thereof |
| US20030124149A1 (en) | 2001-07-06 | 2003-07-03 | Shalaby Shalaby W. | Bioactive absorbable microparticles as therapeutic vaccines |
| US20040038242A1 (en) | 2001-07-30 | 2004-02-26 | Edmonds Brian Taylor | Novel secreted proteins and their uses |
| WO2003015697A2 (en) | 2001-08-13 | 2003-02-27 | University Of Southern California | Interleukin-2 mutants with reduced toxicity |
| EP1441758A2 (de) | 2001-11-09 | 2004-08-04 | MediGene Aktiengesellschaft | Allogene vakzine enthaltend eine ein costimulatorisches polypeptid exprimierende tumorzelle |
| PT1454138E (pt) | 2001-12-04 | 2012-03-28 | Merck Patent Gmbh | Imunocitoquinas com seletividade modulada |
| GB0129105D0 (en) | 2001-12-05 | 2002-01-23 | Celltech R&D Ltd | Expression control using variable intergenic sequences |
| AU2002351896A1 (en) | 2001-12-11 | 2003-06-23 | Ablynx N.V. | Method for displaying loops from immunoglobulin domains in different contexts |
| WO2003059245A2 (en) * | 2001-12-18 | 2003-07-24 | J & J Research Pty Ltd | Method of treating asthma |
| US20060093771A1 (en) | 2002-02-15 | 2006-05-04 | Frantisek Rypacek | Polymer coating for medical devices |
| US7659082B2 (en) | 2002-02-19 | 2010-02-09 | Xenon Pharmaceuticals Inc. | Methods for identifying analgesic agents |
| WO2003074679A2 (en) * | 2002-03-01 | 2003-09-12 | Xencor | Antibody optimization |
| AU2003281200A1 (en) | 2002-07-03 | 2004-01-23 | Tasuku Honjo | Immunopotentiating compositions |
| US6875433B2 (en) | 2002-08-23 | 2005-04-05 | The United States Of America As Represented By The Secretary Of The Army | Monoclonal antibodies and complementarity-determining regions binding to Ebola glycoprotein |
| US7291331B1 (en) | 2002-09-11 | 2007-11-06 | La Jolla Institute For Allergy And Immunology | Methods of treating OX40 medicated recall immune responses |
| US7261893B2 (en) | 2002-10-22 | 2007-08-28 | Wyeth | Neutralizing antibodies against GDF-8 and uses therefor |
| EP1570267B1 (en) | 2002-12-03 | 2011-10-12 | UCB Pharma, S.A. | Assay for identifying antibody producing cells |
| DK1572748T3 (da) | 2002-12-17 | 2010-08-23 | Merck Patent Gmbh | Humaniseret antistof (H14.18) af muse-14.18-antistof der binder til GD2 og dets fusionsprotein med IL-2 |
| AU2003299971A1 (en) | 2002-12-30 | 2004-07-29 | Amgen Inc. | Combination therapy with co-stimulatory factors |
| US7608260B2 (en) | 2003-01-06 | 2009-10-27 | Medimmune, Llc | Stabilized immunoglobulins |
| EP1618181B1 (en) | 2003-04-22 | 2014-10-15 | IBC Pharmaceuticals | Polyvalent protein complex |
| EP1471152A1 (en) | 2003-04-25 | 2004-10-27 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Mutations in the human PCSK9 gene associated to hypercholesterolemia |
| JP4999158B2 (ja) | 2003-05-21 | 2012-08-15 | メダレツクス・インコーポレーテツド | 炭疽菌(bachillusanthracis)の感染防御抗原に対するヒトモノクローナル抗体 |
| GB0312481D0 (en) | 2003-05-30 | 2003-07-09 | Celltech R&D Ltd | Antibodies |
| WO2005007809A2 (en) | 2003-05-30 | 2005-01-27 | Alexion Pharmaceuticals, Inc. | Antibodies and fusion proteins that include engineered constant regions |
| US7354578B2 (en) | 2003-06-06 | 2008-04-08 | Regeneron Pharmaceuticals, Inc. | Method of tumor regression with VEGF inhibitors |
| GB0315450D0 (en) | 2003-07-01 | 2003-08-06 | Celltech R&D Ltd | Biological products |
| CA2527020A1 (en) | 2003-07-01 | 2005-01-13 | Celltech R & D Limited | Modified antibody fab fragments |
| GB0315457D0 (en) | 2003-07-01 | 2003-08-06 | Celltech R&D Ltd | Biological products |
| WO2005007121A2 (en) | 2003-07-18 | 2005-01-27 | Massachusetts Institute Of Technology | Mutant interleukin-2(il-2) polypeptides |
| US8147832B2 (en) | 2003-08-14 | 2012-04-03 | Merck Patent Gmbh | CD20-binding polypeptide compositions and methods |
| AU2004280333A1 (en) | 2003-08-22 | 2005-04-21 | Medimmune, Llc | Humanization of antibodies |
| US20050069521A1 (en) | 2003-08-28 | 2005-03-31 | Emd Lexigen Research Center Corp. | Enhancing the circulating half-life of interleukin-2 proteins |
| US20050118625A1 (en) | 2003-10-02 | 2005-06-02 | Mounts William M. | Nucleic acid arrays for detecting gene expression associated with human osteoarthritis and human proteases |
| JP2005130764A (ja) | 2003-10-30 | 2005-05-26 | Pharmaceuticals & Medical Devices Agency | Narc−1遺伝子上の多型を利用した脂質代謝異常に起因する疾患の検査方法、および創薬のための用途 |
| ES2305886T3 (es) | 2003-12-30 | 2008-11-01 | Merck Patent Gmbh | Proteinas de fusion de il-7 con porciones de anticuerpo, su preparacion y su empleo. |
| KR20060124656A (ko) | 2003-12-31 | 2006-12-05 | 메르크 파텐트 게엠베하 | 개선된 약물동태를 가지는 Fc-에리스로포이에틴 융합단백질 |
| US8420087B2 (en) | 2004-01-05 | 2013-04-16 | Antisoma Research Limited | Interleukin-12 targeted to oncofoetal fibronectin |
| AU2005227263A1 (en) | 2004-03-05 | 2005-10-06 | Novartis Vaccines And Diagnostics, Inc. | In vitro test system for predicting patient tolerability of therapeutic agents |
| JP2007530045A (ja) | 2004-03-23 | 2007-11-01 | アムジエン・インコーポレーテツド | ヒトox40l(cd134l)特異性モノクローナル抗体 |
| US7998481B2 (en) | 2004-04-05 | 2011-08-16 | The Regents Of The University Of California | Modulation of NKG2D for treating or preventing solid organ allograft rejection |
| EP1740946B1 (en) | 2004-04-20 | 2013-11-06 | Genmab A/S | Human monoclonal antibodies against cd20 |
| AU2005235718B2 (en) | 2004-04-23 | 2011-09-22 | Bundesrepublik Deutschland Letztvertreten Durch Das Robert-Koch-Institut Vertreten Durch Seinen Prasidenten | Method for the treatment of T cell mediated conditions by depletion of icos-positive cells in vivo |
| GB0411186D0 (en) | 2004-05-19 | 2004-06-23 | Celltech R&D Ltd | Biological products |
| GB0412181D0 (en) | 2004-06-01 | 2004-06-30 | Celltech R&D Ltd | Biological products |
| GB0412986D0 (en) | 2004-06-10 | 2004-07-14 | Xention Discovery Ltd | Compounds |
| EP1755645A2 (en) | 2004-06-18 | 2007-02-28 | Regeneron Pharmaceuticals, Inc. | Vegf inhibitors for the treatment of malignant pleural effusion |
| AU2005259958A1 (en) | 2004-06-29 | 2006-01-12 | The Johns Hopkins University | Amelioration of drug-induced toxicity |
| US7563443B2 (en) | 2004-09-17 | 2009-07-21 | Domantis Limited | Monovalent anti-CD40L antibody polypeptides and compositions thereof |
| CN101023102B (zh) | 2004-09-17 | 2013-05-29 | 霍夫曼-拉罗奇有限公司 | 抗-ox40l抗体 |
| ES2579805T3 (es) | 2004-09-23 | 2016-08-16 | Genentech, Inc. | Anticuerpos y conjugados modificados por ingeniería genética con cisteína |
| PT3428191T (pt) | 2004-10-06 | 2024-12-30 | Mayo Found Medical Education & Res | B7-h1 e tratamento do carcinona de células renais |
| JP4937132B2 (ja) | 2004-12-09 | 2012-05-23 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 免疫原性の低下したil−7変種 |
| HRP20110859T1 (hr) | 2004-12-21 | 2011-12-31 | Medimmune Limited | Protutijela usmjerena na angiopoietin-2 i njihova upotreba |
| US20060147945A1 (en) | 2005-01-06 | 2006-07-06 | Edmonds Brian T | Novel secreted proteins and their uses |
| TW200641353A (en) | 2005-02-14 | 2006-12-01 | Wyeth Corp | Interleukin-17F antibodies and other IL-17F signaling antagonists and uses therefor |
| KR20070106029A (ko) | 2005-02-24 | 2007-10-31 | 암젠 인코포레이티드 | 상피세포 성장 인자 수용체 돌연변이 |
| CA2598452A1 (en) | 2005-03-11 | 2006-09-21 | Regeneron Pharmaceuticals, Inc. | Treating anemia by inhibition of vegf |
| CN109485727A (zh) | 2005-05-09 | 2019-03-19 | 小野药品工业株式会社 | 程序性死亡-1(pd-1)的人单克隆抗体及使用抗pd-1抗体来治疗癌症的方法 |
| EP3130350A1 (en) | 2005-06-08 | 2017-02-15 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (pd-1)pathway |
| KR101411165B1 (ko) | 2005-07-01 | 2014-06-25 | 메다렉스, 엘.엘.시. | 예정 사멸 리간드 1 (피디-엘1)에 대한 인간 모노클로날항체 |
| MX2008001966A (es) | 2005-08-12 | 2008-03-26 | Regeneron Pharma | Tratamiento de enfermedades mediante administracion subcutanea de un antagonista vegf. |
| GB0517487D0 (en) | 2005-08-26 | 2005-10-05 | Isis Innovation | Antibodies |
| US7972813B2 (en) | 2005-09-30 | 2011-07-05 | Vertex Pharmaceuticals Incorporated | Tetrodotoxin-resistant sodium channel alpha subunit |
| TWI461436B (zh) | 2005-11-25 | 2014-11-21 | Kyowa Hakko Kirin Co Ltd | 人類cd134(ox40)之人類單株抗體及其製造及使用方法 |
| AR057253A1 (es) | 2005-12-16 | 2007-11-21 | Genentech Inc | Anticuerpos anti-ox40l y metodos que los utilizan |
| TWI423986B (zh) | 2005-12-20 | 2014-01-21 | 必治妥美雅史谷比公司 | 組合物及製造組合物之方法 |
| WO2007109324A2 (en) | 2006-03-21 | 2007-09-27 | Xenon Pharmaceuticals, Inc. | Potent and selective nav 1.7 sodium channel blockers |
| EP2007423A2 (en) | 2006-04-05 | 2008-12-31 | Pfizer Products Incorporated | Ctla4 antibody combination therapy |
| EP2021467A4 (en) | 2006-05-08 | 2010-01-20 | Adaerata Ltd Partnership | CHIMERIC PCSK9 PROTEINS, THESE INCLUDING CELLS AND TEST METHODS THEREWITH |
| SG171676A1 (en) | 2006-05-11 | 2011-06-29 | Alnylam Pharmaceuticals Inc | Compositions and methods for inhibiting expression of the pcsk9 gene |
| US7572618B2 (en) | 2006-06-30 | 2009-08-11 | Bristol-Myers Squibb Company | Polynucleotides encoding novel PCSK9 variants |
| CA2656700A1 (en) | 2006-07-06 | 2008-01-10 | Merck Patent Gesellschaft Mit Beschraenkter Haftung | Compositions and methods for enhancing the efficacy of il-2 mediated immune responses |
| EP2484696B1 (en) | 2006-08-28 | 2017-08-16 | Kyowa Hakko Kirin Co., Ltd. | Antagonistic hLIGHT-specific human monoclonal antibodies |
| GB0619291D0 (en) | 2006-09-29 | 2006-11-08 | Ucb Sa | Altered antibodies |
| WO2008050962A1 (en) | 2006-10-24 | 2008-05-02 | College Of Medicine Pochon Cha University Industry-Academic Cooperation Foundation | Composition for in vivo transplantation for treatment of human cervical cancer comprising mononuclear cells derived from umbilical cord blood |
| CA2668131A1 (en) | 2006-11-07 | 2008-05-15 | Merck & Co., Inc. | Antagonists of pcsk9 |
| CA2667869A1 (en) | 2006-11-07 | 2008-05-15 | Merck & Co., Inc. | Antagonists of pcsk9 |
| JP5588175B2 (ja) | 2006-11-07 | 2014-09-10 | メルク・シャープ・アンド・ドーム・コーポレーション | Pcsk9のアンタゴニスト |
| CA2667989A1 (en) | 2006-11-07 | 2008-11-06 | Merck & Co., Inc. | Antagonists of pcsk9 |
| NZ720288A (en) | 2006-12-27 | 2020-02-28 | Harvard College | Compositions and methods for the treatment of infections and tumors |
| CN101600457B (zh) | 2007-01-09 | 2014-01-08 | 惠氏公司 | 抗il-13抗体调配物和其用途 |
| WO2008090958A1 (ja) | 2007-01-24 | 2008-07-31 | Kyowa Hakko Kirin Co., Ltd. | ドメイン交換された遺伝子組換え抗体組成物 |
| AU2008219666A1 (en) | 2007-02-27 | 2008-09-04 | Genentech, Inc. | Antagonist OX40 antibodies and their use in the treatment of inflammatory and autoimmune diseases |
| WO2008109871A2 (en) | 2007-03-08 | 2008-09-12 | Irm Llc | Crystal structure of proprotein convertase 9 (pcsk9) and uses thereof |
| TW200906439A (en) | 2007-04-13 | 2009-02-16 | Novartis Ag | Molecules and methods for modulating proprotein convertase subtilisin/kexin type 9 (PCSK9) |
| BRPI0810374A2 (pt) | 2007-04-17 | 2014-10-29 | Imclone Llc | Inibidores específicos do pdgfrbeta |
| BRPI0811466A2 (pt) | 2007-05-07 | 2014-10-14 | Medimmune Llc | Anticorpo anti-icos isolado, ácido nucleico, vetor, célula isolada, métodos para produzir um anticorpo, para tratar uma doença ou distúrbio, para tratar ou prevenir a rejeição em um paciente de transplante humano, para tratar uma malignidade de célula t em um ser humano, para esgotar células t que expressam icos em um paciente humano, para romper a arquitetura do centro germinal em um órgão linfóide secundário de um primata, para esgotar células b centrais germinais de órgão linfóide secundário de um primata, e para esgotar células b comutadas em classes circulantes em um primata, e, composição farmacêutica. |
| JOP20080381B1 (ar) | 2007-08-23 | 2023-03-28 | Amgen Inc | بروتينات مرتبطة بمولدات مضادات تتفاعل مع بروبروتين كونفيرتاز سيتيليزين ككسين من النوع 9 (pcsk9) |
| US20130072665A1 (en) | 2007-08-23 | 2013-03-21 | Simon Mark Jackson | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (pcsk9) |
| WO2009033027A2 (en) | 2007-09-05 | 2009-03-12 | Medtronic, Inc. | Suppression of scn9a gene expression and/or function for the treatment of pain |
| CA2704713A1 (en) | 2007-10-09 | 2009-04-16 | Silvagas Corporation | Systems and methods for oxidation of synthesis gas tar |
| CN102232088A (zh) | 2007-10-26 | 2011-11-02 | 先灵公司 | 用于治疗脂类和胆固醇疾病的抗pcsk9及方法 |
| WO2009061853A2 (en) | 2007-11-05 | 2009-05-14 | Massachusetts Institute Of Technology | Mutant interleukin-2 (il-2) polypeptides |
| US9308257B2 (en) | 2007-11-28 | 2016-04-12 | Medimmune, Llc | Protein formulation |
| AR070316A1 (es) | 2008-02-07 | 2010-03-31 | Merck & Co Inc | Antagonistas de pcsk9 (proproteina subtilisina-kexina tipo 9) |
| AR070315A1 (es) | 2008-02-07 | 2010-03-31 | Merck & Co Inc | Anticuerpos 1b20 antagonistas de pcsk9 |
| US9176122B2 (en) | 2008-03-24 | 2015-11-03 | University Of South Florida | Biomarkers for predicting response to immunosuppressive therapy |
| MX2010011088A (es) | 2008-04-09 | 2010-11-05 | Genentech Inc | Composiciones y metodos novedosos para el tratamiento de las enfermedades relacionadas con la inmunidad. |
| WO2009131740A2 (en) | 2008-04-23 | 2009-10-29 | Amgen Inc. | Neutralizing proprotein convertase subtilisin kexin type 9 (pcsk9) variants and uses thereof |
| WO2009141239A1 (en) | 2008-05-20 | 2009-11-26 | F. Hoffmann-La Roche Ag | A pharmaceutical formulation comprising an antibody against ox40l, uses thereof |
| TWI516501B (zh) | 2008-09-12 | 2016-01-11 | 禮納特神經系統科學公司 | Pcsk9拮抗劑類 |
| SG2014011365A (en) * | 2008-09-19 | 2014-05-29 | Hoffmann La Roche | Novel antibody formulation |
| ES2592216T3 (es) | 2008-09-26 | 2016-11-28 | Dana-Farber Cancer Institute, Inc. | Anticuerpos anti-PD-1, PD-L1 y PD-L2 humanos y sus usos |
| WO2010035012A1 (en) | 2008-09-26 | 2010-04-01 | Ucb Pharma S.A. | Biological products |
| EP2356270B1 (en) * | 2008-11-07 | 2016-08-24 | Fabrus Llc | Combinatorial antibody libraries and uses thereof |
| EP2358392B1 (en) | 2008-11-12 | 2019-01-09 | MedImmune, LLC | Antibody formulation |
| WO2010077634A1 (en) | 2008-12-09 | 2010-07-08 | Genentech, Inc. | Anti-pd-l1 antibodies and their use to enhance t-cell function |
| US20130064834A1 (en) | 2008-12-15 | 2013-03-14 | Regeneron Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia using antibodies to pcsk9 |
| JO3672B1 (ar) | 2008-12-15 | 2020-08-27 | Regeneron Pharma | أجسام مضادة بشرية عالية التفاعل الكيماوي بالنسبة لإنزيم سبتيليسين كنفرتيز بروبروتين / كيكسين نوع 9 (pcsk9). |
| US8357371B2 (en) | 2008-12-15 | 2013-01-22 | Regeneron Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia using antibodies to PCSK9 |
| WO2010073180A1 (en) | 2008-12-23 | 2010-07-01 | Koninklijke Philips Electronics N.V. | Combining body-coupled communication and radio frequency communication |
| US8741295B2 (en) | 2009-02-09 | 2014-06-03 | Universite De La Mediterranee | PD-1 antibodies and PD-L1 antibodies and uses thereof |
| AU2010216152B2 (en) | 2009-02-17 | 2015-05-14 | Ucb Biopharma Sprl | Antibody molecules having specificity for human OX40 |
| JP2012521216A (ja) | 2009-03-24 | 2012-09-13 | テバ バイオファーマスーティカルズ ユーエスエー,インコーポレーテッド | Lightに対するヒト化抗体およびその使用 |
| WO2010117448A2 (en) | 2009-04-05 | 2010-10-14 | Provenance Biopharmaceuticals Corp. | Chimeric immunocytokines and methods of use thereof |
| WO2011003780A1 (en) | 2009-07-06 | 2011-01-13 | F. Hoffmann-La Roche Ag | Bi-specific digoxigenin binding antibodies |
| EP3028565B1 (en) | 2009-07-08 | 2017-09-27 | Kymab Limited | Animal models and therapeutic molecules |
| JP5883384B2 (ja) | 2009-08-13 | 2016-03-15 | ザ ジョンズ ホプキンス ユニバーシティー | 免疫機能を調節する方法 |
| PE20120630A1 (es) | 2009-08-17 | 2012-05-26 | Roche Glycart Ag | Inmunoconjugados dirigidos |
| CN102481348A (zh) | 2009-08-31 | 2012-05-30 | Ibc药品公司 | 双特异性免疫细胞因子停靠-和-加锁(dnl)复合物及其治疗性用途 |
| US20120283116A1 (en) | 2009-09-11 | 2012-11-08 | Leppert Mark F | Mutant Sodium Channel Nav1.7 and Methods Related Thereto |
| WO2011037791A1 (en) | 2009-09-25 | 2011-03-31 | Merck Sharp & Dohme Corp. | Antagonists of pcsk9 |
| CA2775761C (en) | 2009-09-30 | 2018-08-28 | Memorial Sloan-Kettering Cancer Center | Combination immunotherapy for the treatment of cancer |
| GB0922435D0 (en) | 2009-12-22 | 2010-02-03 | Ucb Pharma Sa | Method |
| WO2011051350A1 (en) | 2009-10-27 | 2011-05-05 | Ucb Pharma S.A. | Function modifying nav 1.7 antibodies |
| US20120208208A1 (en) | 2009-10-30 | 2012-08-16 | Ni Yan G | Pcsk9 immunoassay |
| JP2013509591A (ja) | 2009-10-30 | 2013-03-14 | メルク・シャープ・エンド・ドーム・コーポレイション | Pcsk9イムノアッセイ |
| US8802827B2 (en) | 2009-10-30 | 2014-08-12 | Merck Sharp & Dohme Corp. | AX1 PCSK9 antagonists |
| IN2012DN03824A (enExample) | 2009-10-30 | 2015-08-28 | Merck Sharp & Dohme | |
| US20120316071A1 (en) * | 2009-11-04 | 2012-12-13 | Vaughn Smider | Methods for affinity maturation-based antibody optimization |
| NZ599405A (en) | 2009-11-24 | 2014-09-26 | Medimmune Ltd | Targeted binding agents against b7-h1 |
| KR101853702B1 (ko) | 2009-12-07 | 2018-05-03 | 더 보드 오브 트러스티스 오브 더 리랜드 스탠포드 쥬니어 유니버시티 | 항-종양 항체 치료를 향상시키는 방법 |
| AR079336A1 (es) | 2009-12-11 | 2012-01-18 | Irm Llc | Antagonistas de la pro-proteina convertasa-subtilisina/quexina tipo 9 (pcsk9) |
| US9133436B2 (en) | 2010-02-04 | 2015-09-15 | The Trustees Of The University Of Pennsylvania | ICOS critically regulates the expansion and function of inflammatory human Th17 cells |
| CN105218674A (zh) | 2010-03-11 | 2016-01-06 | 瑞纳神经科学公司 | 呈pH依赖性抗原结合的抗体 |
| EP2371857A1 (en) | 2010-04-01 | 2011-10-05 | CSL Behring GmbH | Factor XII inhibitors for treating interstitial lung disease |
| EP3424949A1 (en) | 2010-04-13 | 2019-01-09 | Bristol-Myers Squibb Company | Fibronectin based scaffold domain proteins that bind pcsk9 |
| PT2558499T (pt) | 2010-04-16 | 2017-07-14 | Biogen Ma Inc | Anticorpos anti-vla-4 |
| US8871996B2 (en) | 2010-06-09 | 2014-10-28 | Regeneron Pharmaceuticals, Inc. | Mice expressing human voltage-gated sodium channels |
| US8486647B2 (en) | 2010-06-09 | 2013-07-16 | Regeneron Pharmaceuticals, Inc. | Neuropeptide release assay for sodium channels |
| NZ605966A (en) | 2010-06-17 | 2015-04-24 | Kymab Ltd | Animal models and therapeutic molecules |
| EA029793B1 (ru) | 2010-08-23 | 2018-05-31 | Борд Оф Риджентс, Дзе Юниверсити Оф Техас Систем | Антитела к ох40 и способы их применения |
| CA2805054A1 (en) * | 2010-08-25 | 2012-03-01 | F. Hoffmann-La Roche Ag | Antibodies against il-18r1 and uses thereof |
| WO2012054438A1 (en) | 2010-10-22 | 2012-04-26 | Schering Corporation | Anti-pcsk9 |
| CU23923B1 (es) | 2010-11-12 | 2013-07-31 | Ct De Inmunología Molecular | Polipéptidos derivados de la il-2 con actividad agonista |
| WO2012088446A1 (en) | 2010-12-22 | 2012-06-28 | Board Of Trustees Of The Leland Stanford Junior University | Superagonists and antagonists of interleukin-2 |
| WO2012088313A1 (en) | 2010-12-22 | 2012-06-28 | Genentech, Inc. | Anti-pcsk9 antibodies and methods of use |
| EA201370161A1 (ru) | 2011-01-18 | 2013-12-30 | Амген Инк. | НОКАУТНЫЕ ПО Na1.7 МЫШИ И ИХ ПРИМЕНЕНИЕ |
| HRP20180959T1 (hr) | 2011-01-28 | 2018-07-27 | Sanofi Biotechnology | Ljudska protutijela za pcsk9 za uporabu u postupcima liječenja određenih skupina subjekata |
| EP2650016A1 (en) | 2011-01-28 | 2013-10-16 | Sanofi | Human antibodies to PSCK9 for use in methods of treatment based on particular dosage regimens (11565) |
| EP2481758A1 (en) | 2011-01-28 | 2012-08-01 | Sanofi | Human antibodies to PSCK9 for use in methods of treating particular groups of subjects (11566) |
| LT3075745T (lt) | 2011-02-10 | 2018-11-26 | Roche Glycart Ag | Mutavę interleukino-2 polipeptidai |
| AU2012215572A1 (en) | 2011-02-10 | 2013-05-02 | Roche Glycart Ag | Improved immunotherapy |
| EP2673302A1 (en) | 2011-02-11 | 2013-12-18 | Irm Llc | Pcsk9 antagonists |
| WO2012132067A1 (ja) * | 2011-03-30 | 2012-10-04 | 中外製薬株式会社 | 抗原結合分子の血漿中滞留性と免疫原性を改変する方法 |
| HUE065915T2 (hu) | 2011-03-11 | 2024-06-28 | Beth Israel Deaconess Medical Ct Inc | Anti-CD40 antitestek és alkalmazásaik |
| CN106749662B (zh) | 2011-03-31 | 2021-06-18 | 国家医疗保健研究所 | 抗icos的抗体及其用途 |
| PL2699264T3 (pl) | 2011-04-20 | 2018-08-31 | Medimmune, Llc | Przeciwciała i inne cząsteczki wiążące B7-H1 i PD-1 |
| EA201892619A1 (ru) | 2011-04-29 | 2019-04-30 | Роше Гликарт Аг | Иммуноконъюгаты, содержащие мутантные полипептиды интерлейкина-2 |
| JOP20200043A1 (ar) | 2011-05-10 | 2017-06-16 | Amgen Inc | طرق معالجة أو منع الاضطرابات المختصة بالكوليسترول |
| US9732196B2 (en) | 2011-05-10 | 2017-08-15 | Sabic Global Technologies B.V. | Adhesive for bonding polyimide resins |
| WO2012162583A1 (en) | 2011-05-26 | 2012-11-29 | Ibc Pharmaceuticals, Inc. | Design and construction of novel multivalent antibodies |
| US9574002B2 (en) * | 2011-06-06 | 2017-02-21 | Amgen Inc. | Human antigen binding proteins that bind to a complex comprising β-Klotho and an FGF receptor |
| WO2012170607A2 (en) | 2011-06-10 | 2012-12-13 | Novartis Ag | Use of pcsk9 antagonists |
| WO2012168491A1 (en) | 2011-06-10 | 2012-12-13 | Novartis Ag | Pharmaceutical formulations of pcsk9 antagonists |
| US20140170157A1 (en) | 2011-06-15 | 2014-06-19 | Glaxosmithkline Intellectual Property (No.2) Limited | Method of selecting therapeutic indications |
| CN103717615A (zh) | 2011-06-20 | 2014-04-09 | 霍夫曼-拉罗奇有限公司 | 结合pcsk9的多肽及使用方法 |
| ES2758884T3 (es) | 2011-06-24 | 2020-05-06 | Stephen D Gillies | Proteínas de fusión de inmunoglobulina a través de cadena ligera y métodos de uso de ellas |
| HK1202804A1 (en) | 2011-07-14 | 2015-10-09 | 辉瑞公司 | Treatment with anti-pcsk9 antibodies |
| AR087305A1 (es) | 2011-07-28 | 2014-03-12 | Regeneron Pharma | Formulaciones estabilizadas que contienen anticuerpos anti-pcsk9, metodo de preparacion y kit |
| CA2845810C (en) * | 2011-08-23 | 2017-03-28 | Board Of Regents, The University Of Texas System | Anti-ox40 antibodies and methods of using the same |
| CA2848201C (en) | 2011-09-16 | 2020-10-27 | Regeneron Pharmaceuticals, Inc. | Methods for reducing lipoprotein(a) levels by administering an inhibitor of proprotein convertase subtilisin kexin-9 (pcsk9) |
| AR087715A1 (es) | 2011-09-16 | 2014-04-09 | Lilly Co Eli | Anticuerpos anti pcsk9 y usos de los mismos |
| EP2757875B2 (en) | 2011-09-19 | 2023-03-22 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
| SMT202000091T1 (it) | 2011-10-13 | 2020-05-08 | Bristol Myers Squibb Co | Polipeptidi anticorpali che antagonizzano cd40l |
| JP6526414B2 (ja) * | 2011-10-26 | 2019-06-05 | アムジエン・インコーポレーテツド | Uv光曝露から生じるタンパク質の改変と分解を減ずるまたは排除する方法 |
| GB2496375A (en) | 2011-10-28 | 2013-05-15 | Kymab Ltd | A non-human assay vertebrate comprising human antibody loci and human epitope knock-in, and uses thereof |
| US20130115171A1 (en) | 2011-11-09 | 2013-05-09 | Stefan I. McDonough | Nav1.7-related assays |
| EP2785375B1 (en) | 2011-11-28 | 2020-07-22 | Merck Patent GmbH | Anti-pd-l1 antibodies and uses thereof |
| US9253965B2 (en) | 2012-03-28 | 2016-02-09 | Kymab Limited | Animal models and therapeutic molecules |
| AU2012369202A1 (en) | 2012-02-06 | 2014-09-25 | Providence Health & Services - Oregon | Cancer treatment and monitoring methods using OX40 agonists |
| WO2013148350A2 (en) | 2012-03-26 | 2013-10-03 | Sanofi | Anti-light antibody therapy for inflammatory bowel disease |
| WO2013148284A1 (en) | 2012-03-29 | 2013-10-03 | Genentech, Inc. | Antibodies that bind to a pcsk9 cleavage site and methods of use |
| US9856320B2 (en) | 2012-05-15 | 2018-01-02 | Bristol-Myers Squibb Company | Cancer immunotherapy by disrupting PD-1/PD-L1 signaling |
| WO2013172933A1 (en) | 2012-05-15 | 2013-11-21 | University Of Southern California | Ethnic gene profile of genes involved in angiogenesis may predict regional bevacizumab efficacy difference in gastric cancer |
| WO2013170367A1 (en) | 2012-05-17 | 2013-11-21 | The University Of British Columbia | Methods and uses for proprotein convert ase subtilisin kexin 9 (pcsk9) inhibitors |
| US9102751B2 (en) | 2012-05-18 | 2015-08-11 | Janssen Biotech, Inc. | Huwentoxin-IV variants and methods of use |
| DK2857419T3 (da) * | 2012-05-30 | 2021-03-29 | Chugai Pharmaceutical Co Ltd | Antigen-bindende molekyle til eliminering af aggregerede antigener |
| CN104736168B (zh) | 2012-05-31 | 2018-09-21 | 索伦托治疗有限公司 | 与pd-l1结合的抗原结合蛋白 |
| EP2854845B1 (en) | 2012-06-01 | 2018-03-28 | IBC Pharmaceuticals, Inc. | Multimeric complexes with improved in vivo stability, pharmacokinetics and efficacy |
| AU2013301582B2 (en) | 2012-08-07 | 2018-09-06 | Roche Glycart Ag | Composition comprising two antibodies engineered to have reduced and increased effector function |
| US20140044675A1 (en) | 2012-08-10 | 2014-02-13 | Roche Glycart Ag | Interleukin-2 fusion proteins and uses thereof |
| ES2684552T3 (es) | 2012-09-03 | 2018-10-03 | Inserm - Institut National De La Santé Et De La Recherche Médicale | Anticuerpos dirigidos contra ICOS para tratar la enfermedad de injerto contra hospedador |
| BR112015005772A2 (pt) | 2012-09-17 | 2017-08-08 | Galectin Therapeutics Inc | método para a intensificação de imunoterapias específicas no tratamento de câncer |
| JP6461800B2 (ja) | 2012-10-04 | 2019-01-30 | デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド | ヒトモノクローナル抗pd−l1抗体および使用方法 |
| DK2925350T3 (da) | 2012-12-03 | 2019-05-13 | Bristol Myers Squibb Co | Øgning af virksomheden mod cancer af immunomodulatoriske fc- fusionsproteiner |
| AR093984A1 (es) | 2012-12-21 | 2015-07-01 | Merck Sharp & Dohme | Anticuerpos que se unen a ligando 1 de muerte programada (pd-l1) humano |
| US20140193410A1 (en) | 2013-01-09 | 2014-07-10 | University Of Miami | Compositions and Methods for the Regulation of T Regulatory Cells Using TL1A-Ig Fusion Protein |
| JO3405B1 (ar) | 2013-01-09 | 2019-10-20 | Regeneron Pharma | الأجسام المضادة لمضاد مستقبل عامل النمو المشتق من الصفائح الدموية - بيتا واستخداماتها |
| EP2948475A2 (en) | 2013-01-23 | 2015-12-02 | AbbVie Inc. | Methods and compositions for modulating an immune response |
| WO2014165082A2 (en) | 2013-03-13 | 2014-10-09 | Medimmune, Llc | Antibodies and methods of detection |
| CA2906003C (en) | 2013-03-13 | 2021-07-06 | Bioasis Technologies Inc. | Fragments of p97 and uses thereof |
| ES2644022T3 (es) | 2013-03-14 | 2017-11-27 | Bristol-Myers Squibb Company | Combinación de un agonista de DR5 y un antagonista de anti-PD-1 y métodos de uso |
| WO2014159595A2 (en) | 2013-03-14 | 2014-10-02 | Regeneron Pharmaceuticals, Inc. | Human antibodies to nav1.7 |
| TWI682780B (zh) | 2013-05-30 | 2020-01-21 | 美商再生元醫藥公司 | 醫藥組成物用於製造治療與pcsk9功能獲得性突變有關之體染色體顯性高膽固醇血症的藥物之用途 |
| RU2701327C2 (ru) | 2013-09-11 | 2019-09-25 | Медиммьюн Лимитед | Антитела к b7-h1 для лечения опухолей |
| GB201316644D0 (en) | 2013-09-19 | 2013-11-06 | Kymab Ltd | Expression vector production & High-Throughput cell screening |
| GB201317622D0 (en) | 2013-10-04 | 2013-11-20 | Star Biotechnology Ltd F | Cancer biomarkers and uses thereof |
| US10202454B2 (en) | 2013-10-25 | 2019-02-12 | Dana-Farber Cancer Institute, Inc. | Anti-PD-L1 monoclonal antibodies and fragments thereof |
| EP3091991B1 (en) | 2013-12-13 | 2019-11-06 | IsletOne AB | Immunomodulatory compositions |
| CN105263521B (zh) | 2014-01-15 | 2021-06-29 | 卡德门企业有限公司 | 免疫调节剂 |
| TWI681969B (zh) | 2014-01-23 | 2020-01-11 | 美商再生元醫藥公司 | 針對pd-1的人類抗體 |
| TWI680138B (zh) | 2014-01-23 | 2019-12-21 | 美商再生元醫藥公司 | 抗pd-l1之人類抗體 |
| JOP20200094A1 (ar) | 2014-01-24 | 2017-06-16 | Dana Farber Cancer Inst Inc | جزيئات جسم مضاد لـ pd-1 واستخداماتها |
| PE20161324A1 (es) | 2014-02-06 | 2016-11-25 | Hoffmann La Roche | Proteinas de fusion de interleucina-2 y usos de las mismas |
| GB201403775D0 (en) | 2014-03-04 | 2014-04-16 | Kymab Ltd | Antibodies, uses & methods |
| ES3040431T3 (en) | 2014-03-12 | 2025-10-31 | Yeda Res & Dev | Reducing systemic regulatory t cell levels or activity for treatment of disease and injury of the cns |
| RU2016142476A (ru) | 2014-03-31 | 2018-05-07 | Дженентек, Инк. | Комбинированная терапия, включающая антиангиогенезные агенты и агонисты, связывающие ох40 |
| US20150307620A1 (en) | 2014-04-16 | 2015-10-29 | University Of Connecticut | Linked immunotherapeutic agonists that costimulate multiple pathways |
| EP3603748A1 (en) | 2014-05-13 | 2020-02-05 | MedImmune Limited | Anti-b7-h1 and anti-ctla-4 antibodies for treating non-small cell lung cancer |
| WO2015179654A1 (en) | 2014-05-22 | 2015-11-26 | Mayo Foundation For Medical Education And Research | Distinguishing antagonistic and agonistic anti b7-h1 antibodies |
| US9885721B2 (en) | 2014-05-29 | 2018-02-06 | Spring Bioscience Corporation | PD-L1 antibodies and uses thereof |
| CN106604742B (zh) | 2014-07-03 | 2019-01-11 | 百济神州有限公司 | 抗pd-l1抗体及其作为治疗剂及诊断剂的用途 |
| EP3309174B1 (en) | 2014-07-11 | 2022-05-11 | Ventana Medical Systems, Inc. | Anti-pd-l1 antibodies and diagnostic uses thereof |
| CN107074951B (zh) | 2014-08-04 | 2021-08-03 | 贝勒研究院 | 拮抗性抗-ox40l抗体及其使用方法 |
| SG10201901057UA (en) | 2014-08-05 | 2019-03-28 | Cb Therapeutics Inc | Anti-pd-l1 antibodies |
| KR102050082B1 (ko) | 2014-08-19 | 2019-11-29 | 머크 샤프 앤드 돔 코포레이션 | 항-tigit 항체 |
| AU2015308527C1 (en) | 2014-08-29 | 2021-07-15 | F. Hoffmann-La Roche Ag | Combination therapy of tumor-targeted IL-2 variant immunocytokines and antibodies against human PD-L1 |
| MX389663B (es) | 2014-10-14 | 2025-03-20 | Novartis Ag | Moleculas de anticuerpo que se unen a pd-l1 y usos de las mismas. |
| US20160145344A1 (en) | 2014-10-20 | 2016-05-26 | University Of Southern California | Murine and human innate lymphoid cells and lung inflammation |
| SG10202006538TA (en) | 2014-12-23 | 2020-08-28 | Bristol Myers Squibb Co | Antibodies to tigit |
| GB201500319D0 (en) | 2015-01-09 | 2015-02-25 | Agency Science Tech & Res | Anti-PD-L1 antibodies |
| MA41414A (fr) | 2015-01-28 | 2017-12-05 | Centre Nat Rech Scient | Protéines de liaison agonistes d' icos |
| US9139653B1 (en) | 2015-04-30 | 2015-09-22 | Kymab Limited | Anti-human OX40L antibodies and methods of treatment |
| US9434785B1 (en) | 2015-04-30 | 2016-09-06 | Kymab Limited | Anti-human OX40L antibodies and methods of treating graft versus host disease with the same |
| US20220372153A1 (en) | 2015-03-03 | 2022-11-24 | Kymab Limited | Synergistic combinations of ox40l antibodies for the treatment of gvhd |
| US9512229B2 (en) * | 2015-03-03 | 2016-12-06 | Kymab Limited | Synergistic combinations of OX40L antibodies for the treatment of GVHD |
| ES2937020T3 (es) | 2015-03-03 | 2023-03-23 | Kymab Ltd | Anticuerpos, usos y métodos |
| MX2017011644A (es) | 2015-03-13 | 2017-12-04 | Cytomx Therapeutics Inc | Anticuerpos anti-pdl1, anticuerpos anti-pdl1 activables y metodos de uso de los mismos. |
| RS60614B1 (sr) | 2015-03-23 | 2020-08-31 | Jounce Therapeutics Inc | Antitela za icos |
| JP6936784B2 (ja) | 2015-03-30 | 2021-09-22 | エスティーキューブ,インコーポレイテッド | グリコシル化pd−l1に特異的な抗体およびその使用方法 |
| TWI715587B (zh) | 2015-05-28 | 2021-01-11 | 美商安可美德藥物股份有限公司 | Tigit結合劑和彼之用途 |
| EP3307777A4 (en) | 2015-06-11 | 2019-02-13 | Wuxi Biologics (Shanghai) Co. Ltd. | NOVEL ANTI-PD-L1 ANTIBODIES |
| CN106397592A (zh) | 2015-07-31 | 2017-02-15 | 苏州康宁杰瑞生物科技有限公司 | 针对程序性死亡配体(pd-l1)的单域抗体及其衍生蛋白 |
| WO2017020291A1 (en) | 2015-08-06 | 2017-02-09 | Wuxi Biologics (Shanghai) Co. Ltd. | Novel anti-pd-l1 antibodies |
| US10766957B2 (en) | 2015-08-14 | 2020-09-08 | Merck Sharp & Dohme Corp | Anti-TIGIT antibodies |
| AR105654A1 (es) | 2015-08-24 | 2017-10-25 | Lilly Co Eli | Anticuerpos pd-l1 (ligando 1 de muerte celular programada) |
| ES2924071T3 (es) | 2015-09-02 | 2022-10-04 | Yissum Res Dev Co Of Hebrew Univ Jerusalem Ltd | Anticuerpos específicos para inmunoglobulina de células T humanas y dominio ITIM (TIGIT) |
| EP3353210B8 (en) | 2015-09-25 | 2024-12-18 | F. Hoffmann-La Roche AG | Anti-tigit antibodies and methods of use |
| SG10201912736UA (en) | 2015-10-01 | 2020-02-27 | Potenza Therapeutics Inc | Anti-tigit antigen-binding proteins and methods of use thereof |
| US10968277B2 (en) | 2015-10-22 | 2021-04-06 | Jounce Therapeutics, Inc. | Gene signatures for determining ICOS expression |
| US20180346571A1 (en) | 2015-11-17 | 2018-12-06 | Oncomed Pharmaceuticals, Inc. | Pd-l1-binding agents and uses thereof |
| CN109071639B (zh) | 2015-11-18 | 2022-07-08 | 默沙东公司 | Pd1/ctla4结合剂 |
| JP2018531278A (ja) | 2015-11-24 | 2018-10-25 | イーライ リリー アンド カンパニー | 癌のための併用療法 |
| CN106939047B (zh) | 2016-01-04 | 2021-08-31 | 江苏怀瑜药业有限公司 | 一种pd-l1抗体及其制备方法 |
| BR112018015480A2 (pt) | 2016-01-29 | 2019-05-21 | Sorrento Therapeutics, Inc. | proteínas de ligação ao antígeno que se ligam a pd-l1 |
| AU2017226510C1 (en) | 2016-03-04 | 2019-05-16 | Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. | A pdl-1 antibody, pharmaceutical composition thereof and use thereof |
| WO2017196867A1 (en) | 2016-05-09 | 2017-11-16 | Igm Biosciences, Inc. | Anti-pd-l1 antibodies |
| CN105968200B (zh) | 2016-05-20 | 2019-03-15 | 瑞阳(苏州)生物科技有限公司 | 抗人pd-l1人源化单克隆抗体及其应用 |
| EP3463482B1 (en) | 2016-06-07 | 2021-10-06 | The Brigham and Women's Hospital, Inc. | Methods relating to t peripheral helper cells in autoantibody-associated conditions |
| MX2018015584A (es) | 2016-06-13 | 2019-09-18 | I Mab | Anticuerpos anti-pd-l1 y usos de los mismos. |
| CN109414500B (zh) | 2016-06-13 | 2022-02-25 | 奥美药业有限公司 | 治疗和诊断用pd-l1特异性单克隆抗体 |
| BR112018076260A2 (pt) | 2016-06-20 | 2019-03-26 | Kymab Limited | anticorpo ou fragmento do mesmo que se liga especificamente a hpd-l1, anticorpo biespecífico ou proteína de fusão, uso de um anticorpo ou fragmento, método, composição farmacêutica, método de modulação, método de inibição, método de tratamento, ácido nucleico, vetor, hospedeiro e imunocitocina |
| US11214620B2 (en) | 2016-06-20 | 2022-01-04 | F-Star Therapeutics Limited | Binding molecules binding PD-L1 and LAG-3 |
| US9567399B1 (en) | 2016-06-20 | 2017-02-14 | Kymab Limited | Antibodies and immunocytokines |
| IL321335A (en) | 2016-06-29 | 2025-08-01 | Checkpoint Therapeutics Inc | PD-L1-specific antibodies and methods of using them |
| SG11201900138TA (en) | 2016-07-07 | 2019-02-27 | Iovance Biotherapeutics Inc | Programmed death 1 ligand 1 (pd-l1) binding proteins and methods of use thereof |
| WO2018024237A1 (zh) | 2016-08-04 | 2018-02-08 | 信达生物制药(苏州)有限公司 | 抗pd-l1纳米抗体及其应用 |
| EP3494140A1 (en) | 2016-08-04 | 2019-06-12 | GlaxoSmithKline Intellectual Property Development Ltd | Anti-icos and anti-pd-1 antibody combination therapy |
| US10919966B2 (en) | 2016-08-05 | 2021-02-16 | Y-Biologics Inc. | Antibody to programmed death-ligand 1 (PD-L1) and use thereof |
| WO2018045110A1 (en) | 2016-08-30 | 2018-03-08 | Xencor, Inc. | Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors |
| KR20250158824A (ko) | 2016-09-10 | 2025-11-06 | 예다 리서치 앤드 디벨럽먼트 캄파니 리미티드 | Cns의 질병 또는 손상의 치료를 위한 전신 조절 t 세포 수준 또는 활성 감소 |
| AU2017329780B2 (en) | 2016-09-20 | 2024-11-14 | Merck Patent Gmbh | Diagnostic anti-PD-L1 antibody and use thereof |
| RU2770590C2 (ru) | 2016-10-30 | 2022-04-18 | Шанхай Хенлиус Байотек, Инк. | Антитела против pd-l1 и их варианты |
| TWI781120B (zh) | 2016-11-02 | 2022-10-21 | 美商永斯醫療股份有限公司 | Pd-1之抗體及其用途 |
| US11779604B2 (en) | 2016-11-03 | 2023-10-10 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses and methods |
| WO2018115859A1 (en) | 2016-12-20 | 2018-06-28 | Kymab Limited | Multispecific antibody with combination therapy for immuno-oncology |
| RU2766582C2 (ru) | 2016-12-23 | 2022-03-15 | Ремд Биотерапьютикс, Инк. | Иммунотерапия с применением антител, связывающих лиганд 1 белка программируемой смерти клеток (PD-L1) |
| WO2018136553A1 (en) | 2017-01-18 | 2018-07-26 | Genentech, Inc. | Idiotypic antibodies against anti-pd-l1 antibodies and uses thereof |
| CN116836285A (zh) | 2017-03-09 | 2023-10-03 | 健玛保 | 针对pd-l1的抗体 |
| US20200024351A1 (en) | 2017-04-03 | 2020-01-23 | Jounce Therapeutics, Inc. | Compositions and Methods for the Treatment of Cancer |
| TWI788340B (zh) | 2017-04-07 | 2023-01-01 | 美商必治妥美雅史谷比公司 | 抗icos促效劑抗體及其用途 |
| CA3059447A1 (en) | 2017-04-18 | 2018-10-25 | R-Pharm Overseas Inc. | Anti-pd-l1 antibody and use thereof |
| EP3630838A1 (en) | 2017-06-01 | 2020-04-08 | CytomX Therapeutics, Inc. | Activatable anti-pdl1 antibodies, and methods of use thereof |
| US11053309B2 (en) | 2017-08-04 | 2021-07-06 | Regeneron Pharmaceuticals, Inc. | Methods for treating active eosinophilic esophagitis |
| US10442866B1 (en) | 2019-01-23 | 2019-10-15 | Beijing Mabworks Biotech Co. Ltd | Antibodies binding OX40 and uses thereof |
-
2014
- 2014-03-04 GB GB201403775A patent/GB201403775D0/en not_active Ceased
-
2015
- 2015-03-03 IL IL304772A patent/IL304772B2/en unknown
- 2015-03-03 CN CN202010943831.8A patent/CN112048020B/zh active Active
- 2015-03-03 WO PCT/GB2015/050614 patent/WO2015132580A1/en not_active Ceased
- 2015-03-03 HR HRP20220891TT patent/HRP20220891T1/hr unknown
- 2015-03-03 DK DK15714253.0T patent/DK3113797T3/da active
- 2015-03-03 LT LTEPPCT/GB2015/050614T patent/LT3113797T/lt unknown
- 2015-03-03 IL IL247582A patent/IL247582B2/en unknown
- 2015-03-03 US US15/122,298 patent/US10669342B2/en active Active
- 2015-03-03 JP JP2016555520A patent/JP6795398B2/ja active Active
- 2015-03-03 PT PT157142530T patent/PT3113797T/pt unknown
- 2015-03-03 CN CN201580023098.5A patent/CN106459196B/zh active Active
- 2015-03-03 RS RS20220691A patent/RS63408B1/sr unknown
- 2015-03-03 PL PL15714253.0T patent/PL3113797T3/pl unknown
- 2015-03-03 HU HUE15714253A patent/HUE059338T2/hu unknown
- 2015-03-03 EP EP15714253.0A patent/EP3113797B1/en active Active
- 2015-03-03 CA CA2941066A patent/CA2941066C/en active Active
- 2015-03-03 SG SG11201607030PA patent/SG11201607030PA/en unknown
- 2015-03-03 EP EP19191981.0A patent/EP3590539A1/en active Pending
- 2015-03-03 ES ES15714253T patent/ES2922734T3/es active Active
- 2015-03-03 AU AU2015225926A patent/AU2015225926B2/en active Active
- 2015-03-03 SI SI201531860T patent/SI3113797T1/sl unknown
- 2015-03-03 NZ NZ723858A patent/NZ723858A/en unknown
- 2015-03-03 DE DE112015001085.8T patent/DE112015001085T5/de active Pending
-
2016
- 2016-09-08 US US15/259,553 patent/US9587030B2/en active Active
- 2016-11-01 US US15/340,497 patent/US10654935B2/en active Active
-
2017
- 2017-07-27 US US15/661,658 patent/US11396550B2/en active Active
-
2018
- 2018-11-13 US US16/188,541 patent/US20190276547A1/en not_active Abandoned
-
2020
- 2020-09-10 JP JP2020151955A patent/JP7022181B2/ja active Active
- 2020-12-08 US US17/115,021 patent/US11753479B2/en active Active
- 2020-12-23 AU AU2020294246A patent/AU2020294246B2/en active Active
- 2020-12-23 AU AU2020294247A patent/AU2020294247B2/en active Active
-
2021
- 2021-07-30 US US17/390,413 patent/US11773175B2/en active Active
-
2022
- 2022-02-04 JP JP2022016536A patent/JP7375062B2/ja active Active
-
2023
- 2023-08-03 US US18/364,906 patent/US20240132605A1/en active Pending
- 2023-10-25 JP JP2023183313A patent/JP2024012374A/ja active Pending
-
2024
- 2024-10-31 AU AU2024227793A patent/AU2024227793A1/en active Pending
-
2025
- 2025-01-17 US US19/030,346 patent/US20250263492A1/en active Pending
- 2025-05-06 IL IL320713A patent/IL320713A/en unknown
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006029879A2 (en) * | 2004-09-17 | 2006-03-23 | F.Hoffmann-La Roche Ag | Anti-ox40l antibodies |
| WO2011073180A1 (en) * | 2009-12-14 | 2011-06-23 | Ablynx N.V. | Single variable domain antibodies against ox40l, constructs and therapeutic use |
| WO2013008171A1 (en) * | 2011-07-11 | 2013-01-17 | Glenmark Pharmaceuticals S.A. | Antibodies that bind to ox40 and their uses |
Non-Patent Citations (1)
| Title |
|---|
| MICHAEL CROFT: "Control of Immunity by the TNFR-Related Molecule OX40 (CD134)", ANNUAL REVIEW OF IMMUNOLOGY, vol. 28, no. 1, 1 March 2010 (2010-03-01), pages 57 - 78, XP055039398, ISSN: 0732-0582, DOI: 10.1146/annurev-immunol-030409-101243 * |
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11396550B2 (en) | 2014-03-04 | 2022-07-26 | Kymab Limited | Methods of treating comprising administering anti-OX40L antibodies |
| US10654935B2 (en) | 2014-03-04 | 2020-05-19 | Kymab Limited | Methods of treating SLE with anti-OX40L antibodies |
| US10669342B2 (en) | 2014-03-04 | 2020-06-02 | Kymab Limited | Anti-OX40L antibodies and methods of treating graft versus host disease |
| US11753479B2 (en) | 2014-03-04 | 2023-09-12 | Kymab Limited | Nucleic acids encoding anti-OX40L antibodies |
| US11773175B2 (en) | 2014-03-04 | 2023-10-03 | Kymab Limited | Antibodies, uses and methods |
| US9587030B2 (en) | 2014-03-04 | 2017-03-07 | Kymab Limited | Anti-hOX40L antibodies, uses, and methods |
| JP7472198B2 (ja) | 2015-03-03 | 2024-04-22 | カイマブ・リミテッド | 抗体、使用、及び方法 |
| US9868790B2 (en) | 2015-03-03 | 2018-01-16 | Kymab Limited | Synergistic combinations of OX40L antibodies for the treatment of GvHD |
| JP2018510128A (ja) * | 2015-03-03 | 2018-04-12 | カイマブ・リミテッド | 抗体、使用、及び方法 |
| JP7094698B2 (ja) | 2015-03-03 | 2022-07-04 | カイマブ・リミテッド | 抗体、使用、及び方法 |
| US9868789B2 (en) | 2015-03-03 | 2018-01-16 | Kymab Limited | Synergistic combinations of OX40L antibodies for the treatment of GvHD |
| JP2022130519A (ja) * | 2015-03-03 | 2022-09-06 | カイマブ・リミテッド | 抗体、使用、及び方法 |
| US10604576B2 (en) | 2016-06-20 | 2020-03-31 | Kymab Limited | Antibodies and immunocytokines |
| US11965026B2 (en) | 2016-06-20 | 2024-04-23 | Kymab Limited | Anti-PD-L1 and IL-2 cytokines |
| US12209128B2 (en) | 2016-06-20 | 2025-01-28 | Kymab Limited | Anti-PD-L1 antibodies |
| US11858996B2 (en) | 2016-08-09 | 2024-01-02 | Kymab Limited | Anti-ICOS antibodies |
| US11779604B2 (en) | 2016-11-03 | 2023-10-10 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses and methods |
| US11440960B2 (en) | 2017-06-20 | 2022-09-13 | Kymab Limited | TIGIT antibodies, encoding nucleic acids and methods of using said antibodies in vivo |
| US11629189B2 (en) | 2017-12-19 | 2023-04-18 | Kymab Limited | Bispecific antibody for ICOS and PD-L1 |
| US12404330B2 (en) | 2017-12-19 | 2025-09-02 | Kymab Limited | Antibodies to ICOS |
| EP3762400A4 (en) * | 2018-03-08 | 2022-03-16 | Magenta Therapeutics, Inc. | ANTI-CD252 ANTIBODIES, CONJUGATES AND METHODS OF USE |
| WO2023001987A2 (en) | 2021-07-22 | 2023-01-26 | University Of Dundee | Therapeutic muteins |
| WO2023017252A1 (en) | 2021-08-10 | 2023-02-16 | Kymab Limited | Treatment of atopic dermatitis |
| WO2024213774A1 (en) | 2023-04-14 | 2024-10-17 | Kymab Limited | Pharmaceutical formulations containing anti-ox40l antibodies |
| WO2025099280A1 (en) | 2023-11-08 | 2025-05-15 | Oxion Biologics Ab | Improved anti-ox40l antibodies |
| WO2025233445A1 (en) | 2024-05-08 | 2025-11-13 | Kymab Limited | Treatment of head and neck atopic dermatitis |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11773175B2 (en) | Antibodies, uses and methods | |
| US9234043B1 (en) | Anti-human OX40L antibodies | |
| EP3265123B1 (en) | Antibodies, uses & methods | |
| US9868790B2 (en) | Synergistic combinations of OX40L antibodies for the treatment of GvHD | |
| US9434785B1 (en) | Anti-human OX40L antibodies and methods of treating graft versus host disease with the same | |
| US20220372153A1 (en) | Synergistic combinations of ox40l antibodies for the treatment of gvhd | |
| Class et al. | Patent application title: ANTIBODIES, USES & METHODS | |
| HK40018127A (en) | Antibodies, uses & methods | |
| HK1229239B (en) | Antibodies, uses&methods | |
| HK1229239A1 (en) | Antibodies, uses&methods |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15714253 Country of ref document: EP Kind code of ref document: A1 |
|
| REEP | Request for entry into the european phase |
Ref document number: 2015714253 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2015714253 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2941066 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 15122298 Country of ref document: US |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 247582 Country of ref document: IL |
|
| ENP | Entry into the national phase |
Ref document number: 2016555520 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 112015001085 Country of ref document: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2015225926 Country of ref document: AU Date of ref document: 20150303 Kind code of ref document: A |
|
| WWD | Wipo information: divisional of initial pct application |
Ref document number: 320713 Country of ref document: IL |