Materialien für elektronische Vorrichtungen
Die vorliegende Anmeldung betrifft eine Verbindung mit Xanthen- Grundgerüst gemäß untenstehender Formel (I). Weiterhin betrifft die Anmeldung Verfahren zur Herstellung der Verbindung der Formel (I) und die Verwendung der Verbindung in einer elektronischen Vorrichtung.
Unter elektronischen Vorrichtungen im Sinne dieser Anmeldung werden sogenannte organische elektronische Vorrichtungen verstanden (organic electronic devices), welche organische Halbleitermaterialien als
Funktionsmaterialien enthalten. Insbesondere werden darunter organische Elektrolumineszenzvorrichtungen (OLEDs) und andere elektronische Vorrichtungen verstanden, welche weiter unten aufgeführt sind.
Der Aufbau von OLEDs, in denen organische Halbleiter als funktionelle Materialien eingesetzt werden, ist beispielsweise in US 4539507,
US 5151629, EP 0676461 und WO 98/27136 beschrieben. Allgemein werden unter der Bezeichnung OLED elektronische Vorrichtungen verstanden, welche organisches Material enthalten und unter Anlegen von elektrischer Spannung Licht emittieren.
Bei elektronischen Vorrichtungen, insbesondere OLEDs, besteht großes Interesse an der Verbesserung der Leistungsdaten, insbesondere
Lebensdauer, Effizienz und Betriebsspannung. In diesen Punkten konnte noch keine vollständig zufriedenstellende Lösung gefunden werden.
Einen großen Einfluss auf die Leistungsdaten von elektronischen
Vorrichtungen haben Schichten mit lochtransportierender Funktion, wie beispielsweise lochinjizierende Schichten, Lochtransportschichten, Elektronenblockierschichten und emittierende Schichten.
Hierfür werden kontinuierlich neue Materialien mit lochtransportierenden Eigenschaften gesucht. Sie können in den genannten Schichten als Reinmaterialien, als Hauptkomponenten oder als
Mindermengenkomponenten in Kombination mit weiteren Materialien eingesetzt werden.
ln lochinjizierenden Schichten, Lochtransportschichten und
Elektronenblockierschichten werden Materialien mit lochtransportierenden Eigenschaften typischerweise als Reinstoffe eingesetzt. Sie können jedoch in solchen Schichten auch in Mischung mit einem eindotierten weiteren Material eingesetzt werden. In emittierenden Schichten, insbesondere in phosphoreszierenden emittierenden Schichten, werden die Materialien mit lochtransportierenden Eigenschaften in vielen Fällen als eine der
Hauptkomponenten der Schicht (Matrixmaterial, Hostmaterial) in
Kombination mit weiteren Materialien, beispielsweise Emittermaterialien eingesetzt.
Es ist im Stand der Technik bekannt, Triarylamine als Materialien mit lochtransportierenden Eigenschaften in den oben genannten Schichten einzusetzen. Diese können Mono-Triarylamine darstellen, wie
beispielsweise in JP 1995/053955, WO 2006/123667 und JP 2010/222268 beschrieben, oder Bis- oder andere Oligoamine darstellen, wie
beispielsweise in US 7504163 oder US 2005/0 84657 beschrieben.
Bekannte Beispiele für Triarylamin-Verbindungen als Materialien mit lochtransportierenden Eigenschaften für OLEDs sind unter anderem Tris-p- biphenyl-amin, N,N'-Di-1-Naphthyl-N,N'-diphenyl-1 ,1'-biphenyl-4,4'-diamin (NPB) und 4,4',4"-Tris-(3-methylphenylphenylamino)triphenylamin
(MTDATA).
Im Stand der Technik bekannt ist die Verwendung von Xanthen- Verbindungen, die mit Arylgruppen substituiert sind, als Matrixmaterialien für phosphoreszierende Emitter in OLEDs (US 7014925).
Weiterhin im Stand der Technik bekannt sind Verbindungen, die ein Xanthen-Grundgerüst aufweisen, und die Arylamino-Gruppen tragen.
Beispielsweise werden in JP 2009-191232 Xanthen-Arylamin-
Verbindungen als emittierende Verbindungen in OLEDs offenbart.
Weiterhin werden in CN 101440082 Xanthen-Diamin-Verbindungen offenbart, die in OLEDs als Funktionsmaterialien in der emittierenden Schicht eingesetzt werden.
Überraschend wurde nun gefunden, dass mit einer Xanthen-Verbindung nach Formel (I), wie untenstehend definiert, welche eine einzige
Arylaminogruppe aufweist, hervorragende Leistungsdaten in
elektronischen Vorrichtungen erzielt werden können.
Gegenstand der Erfindung ist somit eine Verbindung einer Formel (I)
A ist eine Arylaminogruppe, wahlweise substituiert mit einem oder mehreren Resten R1, oder eine Carbazolgruppe, wahlweise substituiert mit einem oder mehreren Resten R ;
E ist eine Einfachbindung;
X ist O oder S; z ist bei jedem Auftreten gleich oder verschieden CR2 oder N,
wobei in dem Fall, dass eine Gruppe A an sie gebunden ist, die Gruppe Z gleich C ist;
R1 ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, C(=0)R3, CN, Si(R3)3, N(R3)2, P(=0)(R3)2, S(=0)R3, S(=0)2R3, eine geradkettige Alkyl- oder Alkoxygruppe mit 1 bis 20 C-Atomen oder eine verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 3 bis 20 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 20 C- Atomen, wobei die oben genannten Gruppen jeweils mit einem oder mehreren Resten R3 substituiert sein können und wobei eine oder
mehrere CH2-Gruppen in den oben genannten Gruppen durch
-R3C=CR3-, -CEC-, Si(R3)2l C=0, C=NR3, -C(=O)O-, -C(=O)NR3-, NR3, P(=O)(R3), -O-, -S-, SO oder SO2 ersetzt sein können und wobei ein oder mehrere H-Atome in den oben genannten Gruppen durch D, F, Cl, Br, I oder CN ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R3 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 30 aromatischen Ringatomen, die durch einen oder mehrere Reste R3 substituiert sein kann, wobei zwei oder mehr Reste R1 miteinander verknüpft sein können und einen Ring bilden können; ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, C(=O)R3, CN, Si(R3)3, P(=O)(R3)2, S(=O)R3, S(=O)2R3, eine geradkettige Alkyl- oder Alkoxygruppe mit 1 bis 20 C-Atomen oder eine verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 3 bis 20 C- Atomen oder eine Alkenyi- oder Alkinylgruppe mit 2 bis 20 C-Atomen, wobei die oben genannten Gruppen jeweils mit einem oder mehreren Resten R3 substituiert sein können und wobei eine oder mehrere CH2-Gruppen in den oben genannten Gruppen durch -R3C=CR3-, -CsC-, Si(R3)2, C=O, C=NR3, -C(=O)O-, -C(=O)NR3-, NR3, P(=O)(R3), -O-, -S-, SO oder SO2 ersetzt sein können und wobei ein oder mehrere H-Atome in den oben genannten Gruppen durch D, F, Cl, Br, I oder CN ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R3 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 30
aromatischen Ringatomen, die durch einen oder mehrere Reste R3 substituiert sein kann, wobei zwei oder mehr Reste R2 miteinander verknüpft sein können und einen Ring bilden können; ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, C(=O)R4, CN, Si(R4)3, N(R4)2, P(=O)(R4)2, S(=O)R4, S(=O)2R4, eine geradkettige Alkyl- oder Alkoxygruppe mit 1 bis 20 C-Atomen oder eine verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 3 bis 20 C-Atomen oder eine Alkenyi- oder Alkinylgruppe mit 2 bis 20 C-
Atomen, wobei die oben genannten Gruppen jeweils mit einem oder mehreren Resten R4 substituiert sein können und wobei eine oder mehrere ChVGruppen in den oben genannten Gruppen durch
-R
4C=CR
4-, -C=C-, Si(R
4)
2, C=0, C=NR
4, -C(=O)O-, -C(=0)NR
4-, NR
4, P(=0)(R
4), -O-, -S-, SO oder SO
2 ersetzt sein können und wobei ein oder mehrere H-Atome in den oben genannten Gruppen durch D, F, Cl, Br, I oder CN ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R
4 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 30 aromatischen Ringatomen, die durch einen oder mehrere Reste R
4 substituiert sein kann, wobei zwei oder mehr Reste R
3 miteinander verknüpft sein können und einen Ring bilden können; ist bei jedem Auftreten gleich oder verschieden H, D, F oder ein
aliphatischer, aromatischer oder heteroaromatischer organischer
Rest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch D oder F ersetzt sein können; dabei können zwei oder mehr Substituenten R4 miteinander verknüpft sein und einen Ring bilden; ist gleich 0 oder 1 ; n ist bei jedem Auftreten gleich oder verschieden 0 oder 1 , wobei die Summe aller Indices n gleich 1 ist.
Es gelten die folgenden Definitionen und Erläuterungen:
Eine Arylgruppe im Sinne dieser Erfindung enthält 6 bis 60 aromatische Ringatome; eine Heteroaryigruppe im Sinne dieser Erfindung enthält 5 bis 60 aromatische Ringatome, von denen mindestens eines ein Heteroatom darstellt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und S. Dies stellt die grundlegende Definition dar. Werden in der Beschreibung der vorliegenden Erfindung andere Bevorzugungen angegeben,
beispielsweise bezüglich der Zahl der aromatischen Ringatome oder der enthaltenen Heteroatome, so gelten diese.
Dabei wird unter einer Arylgruppe bzw. Heteroarylgruppe entweder ein einfacher aromatischer Cyclus, also Benzol, bzw. ein einfacher
heteroaromatischer Cyclus, beispielsweise Pyridin, Pyrimidin oder
Thiophen, oder ein kondensierter (annellierter) aromatischer bzw.
heteroaromatischer Polycyclus, beispielsweise Naphthalin, Phenanthren, Chinolin oder Carbazol verstanden. Ein kondensierter (anneliierter) aromatischer bzw. heteroaromatischer Polycyclus besteht im Sinne der vorliegenden Anmeldung aus zwei oder mehr miteinander kondensierten einfachen aromatischen bzw. heteroaromatischen Cyclen. Unter einer Aryl- oder Heteroarylgruppe, die jeweils mit den oben genannten Resten substituiert sein kann und die über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, welche abgeleitet sind von Benzol, Naphthalin, Anthracen, Phenanthren, Pyren, Dihydropyren, Chrysen, Perylen, Fluoranthen, Benzanthracen, Benzphenanthren, Tetracen,
Pentacen, Benzpyren, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen, Pyrrol, Indol, Isoindol, Carbazol, Pyridin, Chinolin, Isochinolin, Acridin,
Phenanthridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Naphthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, ,2-Thiazol, 1 ,3-Thiazol, Benzothiazol,
Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, Pyrazin, Phenazin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthrolin, 1 ,2,3- Triazol, 1 ,2,4-Triazol, Benzotriazol, 1 ,2,3-Oxadiazol, ,2,4-Oxadiazol, 1 ,2,5-Oxadiazol, 1 ,3,4-Oxadiazol, 1 ,2,3-Thiadiazol, 1 ,2,4-Thiadiazol, 1 ,2,5- Thiadiazol, 1 ,3,4-Thiadiazol, 1 ,3,5-Triazin, 1 ,2,4-Triazin, 1 ,2,3-Triazin, Tetrazol, 1 ,2,4,5-Tetrazin, 1 ,2,3,4-Tetrazin, 1 ,2,3,5-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol.
Unter einer Aryloxygruppe gemäß der Definition der vorliegenden
Erfindung wird eine Arylgruppe, wie oben definiert, verstanden, welche über ein Sauerstoffatom gebunden ist. Eine analoge Definition gilt für Heteroaryloxygmppen.
Ein aromatisches Ringsystem im Sinne dieser Erfindung enthält 6 bis 60 C- Atome im Ringsystem. Ein heteroaromatisches Ringsystem im Sinne dieser Erfindung enthält 5 bis 60 aromatische Ringatome, von denen mindestens eines ein Heteroatom darstellt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Unter einem aromatischen oder heteroaromatischen Ringsystem im Sinne dieser Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur Aryl- oder Heteroarylgruppen enthält, sondern in dem auch mehrere Aryl- oder Heteroarylgruppen durch eine nicht-aromatische Einheit (bevorzugt weniger als 10 % der von H verschiedenen Atome), wie z. B. ein sp3- hybridisiertes C-, Si-, N- oder O-Atom, ein sp2-hybridisiertes C- oder N- Atom oder ein sp-hybridisiertes C-Atom, verbunden sein können. So sollen beispielsweise auch Systeme wie 9,9'-Spirobifluoren, 9,9'-Diarylfluoren, Triarylamin, Diarylether, Stilben, etc. als aromatische Ringsysteme im Sinne dieser Erfindung verstanden werden, und ebenso Systeme, in denen zwei oder mehrere Arylgruppen beispielsweise durch eine lineare oder cyclische Alkyl-, Alkenyl- oder Alkinylgruppe oder durch eine Silylgruppe verbunden sind. Weiterhin werden auch Systeme, in denen zwei oder mehr Aryl- oder Heteroarylgruppen über Einfachbindungen miteinander verknüpft sind, als aromatische oder heteroaromatische Ringsysteme im Sinne dieser Erfindung verstanden, wie beispielsweise Systeme wie Biphenyl, Terphenyl oder Diphenyltriazin.
Unter einem aromatischen oder heteroaromatischen Ringsystem mit 5 - 60 aromatischen Ringatomen, welches noch jeweils mit Resten wie oben definiert substituiert sein kann und welches über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, die abgeleitet sind von Benzol, Naphthalin,
Anthracen, Benzanthracen, Phenanthren, Benzphenanthren, Pyren, Chrysen, Perylen, Fluoranthen, Naphthacen, Pentacen, Benzpyren, Biphenyl, Biphenylen, Terphenyl, Terphenylen, Quaterphenyl, Fluoren, Spirobifluoren, Dihydrophenanthren, Dihydropyren, Tetrahydropyren, cis- oder trans-lndenofluoren, Truxen, Isotruxen, Spirotruxen, Spiroisotruxen, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen,
Benzothiophen, Isobenzothiophen, Dibenzothiophen, Pyrrol, Indol,
Isoindol, Carbazol, Indolocarbazol, Indenocarbazol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazin- imidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Naphthoxazol,
Anthroxazol, Phenanthroxazol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, Benzo- thiazol, Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, ,5-Diazaanthracen, 2,7-Diazapyren, 2,3-Diazapyren, 1 ,6-Diazapyren, 1 ,8- Diazapyren, 4,5-Diazapyren, 4,5,9, 10-Tetraazaperylen, Pyrazin, Phenazin, Phenoxazin, Phenothiazin, Fluorubin, Naphthyridin, Azacarbazol, Benzo- carbolin, Phenanthrolin, 1,2,3-Triazol, 1,2,4-Triazol, Benzotriazol, 1 ,2,3- Oxadiazol, 1 ,2,4-Oxadiazol, 1,2,5-Oxadiazol, 1 ,3,4-Oxadiazol, 1 ,2,3- Thiadiazol, 1 ,2,4-Thiadiazol, 1 ,2,5-Thiadiazol, ,3,4-Thiadiazol, 1,3,5- Triazin, 1 ,2,4-Triazin, 1 ,2,3-Triazin, Tetrazol, 1 ,2,4,5-Tetrazin, 1,2,3,4- Tetrazin, 1 ,2,3,5-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol oder Kombinationen dieser Gruppen.
Im Rahmen der vorliegenden Erfindung werden unter einer geradkettigen Alkylgruppe mit 1 bis 40 C-Atomen bzw. einer verzweigten oder cyclischen Alkylgruppe mit 3 bis 40 C-Atomen bzw. einer Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen, in der auch einzelne H-Atome oder CH2-Gruppen durch die oben bei der Definition der Reste genannten Gruppen substituiert sein können, bevorzugt die Reste Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, Cyclopentyl, neo- Pentyl, n-Hexyl, Cyclohexyl, neo-Hexyl, n-Heptyl, Cycloheptyl, n-Octyl, Cyclooctyl, 2-Ethylhexyl, Trifluormethyl, Pentafluorethyl, 2,2,2-Trifluorethyl, Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl,
Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl, Cyclooctenyl, Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl oder Octinyl verstanden. Unter einer Alkoxy- oder Thioalkylgruppe mit 1 bis 40 C-Atomen werden bevorzugt Methoxy, Trifluormethoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy, n-Pentoxy, s-Pentoxy, 2-Methylbutoxy, n- Hexoxy, Cyclohexyloxy, n-Heptoxy, Cycloheptyloxy, n-Octyloxy,
Cyclooctyloxy, 2-Ethylhexyloxy, Pentafluorethoxy, 2,2,2-Trifluorethoxy, Methylthio, Ethylthio, n-Propylthio, i-Propylthio, n-Butylthio, i-Butylthio, s- Butylthio, t-Butylthio, n-Pentylthio, s-Pentylthio, n-Hexylthio, Cyclohexylthio,
n-Heptylthio, Cycloheptylthio, n-Octylthio, Cyclooctylthio, 2-Ethylhexylthio, Trifluormethylthio, Pentafluorethylthio, 2,2,2-Trifluorethylthio, Ethenylthio, Propenylthio, Butenylthio, Pentenylthio, Cyclopentenylthio, Hexenylthio, Cyclohexenylthio, Heptenylthio, Cycloheptenylthio, Octenylthio,
Cyclooctenylthio, Ethinylthio, Propinylthio, Butinylthio, Pentinylthio, Hexinylthio, Heptinylthio oder Octinylthio verstanden.
Unter der Formulierung, dass zwei oder mehr Reste miteinander einen Ring bilden können, soll im Rahmen der vorliegenden Anmeldung unter anderem verstanden werden, dass die beiden Reste miteinander durch eine chemische Bindung verknüpft sind. Dies wird durch das folgende Schema verdeutlicht:
Weiterhin soll unter der oben genannten Formulierung aber auch verstanden werden, dass für den Fall, dass einer der beiden Reste
Wasserstoff darstellt, der zweite Rest unter Bildung eines Rings an die Position, an die das Wasserstoffatom gebunden war, bindet. Dies soll durch das folgende Schema verdeutlicht werden:
Betreffend die Indices n ind i gilt, dass wenn ein Index gleich Null ist, die betreffende Gruppe nicht vorhanden ist. Beispielsweise ist für i=0 die Gruppe E nicht vorhanden, so dass die beiden aromatischen Sechsringe nicht über eine Einfachbindung zu einem Fluoren-Ringsystem verbunden sind.
Unter einer Arylaminogruppe als Gruppe A wird im Sinne dieser
Anmeldung eine Gruppe verstanden, in der mindestens eine Arylgruppe oder Heteroarylgruppe an ein dreibindiges Stickstoffatom gebunden ist. Wie die Gruppe weiter aufgebaut ist, oder welche weiteren Gruppen sie umfasst, ist für die Definition unerheblich.
Bevorzugt ist die Gruppe A eine Arylaminogruppe, wahlweise substituiert mit einem oder mehreren Resten R .
Bevorzugt umfasst eine Arylaminogruppe als Gruppe A eine Gruppe der folgenden Formel (A-1), wobei Ar* eine beliebige substituierte oder unsubstituierte Aryl- oder Heteroarylgruppe darstellt, und die gestrichelten Linien Bindungen zu beliebigen Substituenten darstellen.
Ar*— N
Formel (A-1) Betreffend die Bindung der Arylaminogruppe A an den Rest der
Verbindung gilt, dass diese direkt über das Stickstoffatom gebunden sein kann, oder über einen beliebigen Substituenten, oder über die Aryl- oder Heteroarylgruppe, die an das Stickstoffatom bindet. Das genannte Stickstoffatom der Arylaminogruppe als Gruppe A ist ein
Amino-Stickstoffatom. An das Stickstoffatom können außer der genannten Aryl- oder Heteroarylgruppe beliebige weitere Susbtituenten gebunden sein, wie beispielsweise Alkyl- oder Alkenylgruppen. Bevorzugt sind jedoch ausschließlich Aryl- oder Heteroarylgruppen gebunden. Die an das
Stickstoffatom gebundenen Gruppen können Bestandteile eines Rings sein, wie beispielsweise bei einer Dihydroacridingruppe. Bevorzugt ist dies jedoch nicht der Fall.
Eine Arylaminogruppe im Sinne dieser Anmeldung kann eine Mono- Arylaminogruppe, eine Di-Arylaminogruppe oder eine Triarylaminogruppe
darstellen, je nach der Anzahl an Aryl- oder Heteroarylgruppen, die an das Stickstoffatom gebunden sind (1 , 2 oder 3). Bevorzugt sind Di- oder Triarylaminogruppen.
Bevorzugt umfasst die Arylaminogruppe als Gruppe A nur eine einzige Einheit der obenstehenden Formel (A-1). Besonders bevorzugt umfasst sie nur eine einzige Aminogruppe. Ganz besonders bevorzugt umfasst sie nur ein einziges Stickstoffatom.
Unter einer Carbazolgruppe als Gruppe A wird im Sinne dieser Anmeldung eine beliebige Gruppe enthaltend eine Carbazolgruppe verstanden. Linter einer Carbazolgruppe werden im Sinne der vorliegenden Anmeldung auch Carbazolgruppen verstanden, bei denen ein oder mehrere
Kohlenstoffatome der aromatischen Sechsringe durch Stickstoff
ausgetauscht sind. Weiterhin werden darunter auch Carbazolgruppen verstanden, bei denen der Carbazol-Fünfring zu einem Sechsring erweitert ist, so dass gegenüber vom Stickstoffatom beispielsweise eine Methylen-, Silylen-, Sauerstoff- oder Schwefelbrücke angeordnet ist. Dadurch entsteht im ersten Fall beispielsweise eine Einheit, die auch als Dihydroacridin bezeichnet wird. Weiterhin werden darunter auch Carbazolgruppen mit ankondensierten Gruppen, wie beispielsweise Indenocarbazole oder Indolocarbazole, verstanden.
Betreffend die Reste R1 bis R3 gelten folgende allgemein bevorzugte Definitionen:
R ist bevorzugt bei jedem Auftreten gleich oder verschieden H, D, F, CN, Si(R3)3, eine geradkettige Alkyl- oder Alkoxygruppe mit 1 bis 20 C-Atomen oder eine verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 3 bis 20 C-Atomen, wobei die oben genannten Gruppen jeweils mit einem oder mehreren Resten R3 substituiert sein können und wobei in den oben genannten Gruppen eine oder mehrere CH2-Gruppen durch -C=C-, -R3C=CR3-, Si(R3)2, C=0, C=NR3, -NR3-, -O-, -S-, -C(=0)0- oder - C(=0)NR3- ersetzt sein können, oder ein aromatisches oder
heteroaromatisches Ringsystem mit 5 bis 20 aromatischen Ringatomen, das jeweils mit einem oder mehreren Resten R3 substituiert sein kann,
wobei zwei oder mehr Reste R miteinander verknüpft sein können und einen Ring bilden können.
R2 ist bevorzugt bei jedem Auftreten gleich oder verschieden H, D, F, CN, Si(R3>3, eine geradkettige Alkyl- oder Alkoxygruppe mit 1 bis 20 C-Atomen oder eine verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 3 bis 20 C-Atomen, wobei die oben genannten Gruppen jeweils mit einem oder mehreren Resten R3 substituiert sein können und wobei in den oben genannten Gruppen eine oder mehrere CH2-Gruppen durch -C=C-, -R3C=CR3-, Si(R3)2, C=0, C=NR3, -NR3-, -O-, -S-, -C(=0)0- oder - C(=0)NR3- ersetzt sein können, oder ein aromatisches oder
heteroaromatisches Ringsystem mit 5 bis 20 aromatischen Ringatomen, das jeweils mit einem oder mehreren Resten R3 substituiert sein kann, wobei zwei oder mehr Reste R2 miteinander verknüpft sein können und einen Ring bilden können.
R3 ist bevorzugt bei jedem Auftreten gleich oder verschieden H, D, F, CN, Si(R )3, eine geradkettige Alkyl- oder Alkoxygruppe mit 1 bis 20 C-Atomen oder eine verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 3 bis 20 C-Atomen, wobei die oben genannten Gruppen jeweils mit einem oder mehreren Resten R4 substituiert sein können und wobei in den oben genannten Gruppen eine oder mehrere CH2-Gruppen durch -C=C-, -R4C=CR4-, Si(R4)2, C=0, C=NR4, -NR4-, -O-, -S-, -C(=0)0- oder - C(=0)NR4- ersetzt sein können, oder ein aromatisches oder
heteroaromatisches Ringsystem mit 5 bis 20 aromatischen Ringatomen, das jeweils mit einem oder mehreren Resten R4 substituiert sein kann, wobei zwei oder mehr Reste R3 miteinander verknüpft sein können und einen Ring bilden können.
In Formel (I) ist X bevorzugt gleich O. Diese bevorzugte Ausführungsform ist bevorzugt mit allen bevorzugten Ausführungsformen der Gruppen und Indices in Formel (I) zu kombinieren, insbesondere mit den bevorzugten Ausführungsformen von A und den Resten R1 bis R3.
Es ist bevorzugt, dass nicht mehr als drei Gruppen Z in einem
aromatischen Ring gleich N sind. Weiterhin ist bevorzugt, dass nicht mehr
als zwei benachbarte Gruppen Z in einem aromatischen Ring gleich N sind. Weiterhin ist bevorzugt, dass nicht mehr als eine Gruppe Z pro aromatischem Ring gleich N ist.
Allgemein ist bevorzugt, dass Z gleich CR1 ist, wobei in dem Fall, dass eine Gruppe A an Z gebunden ist, die Gruppe Z gleich C ist.
Bevorzugt umfasst die Verbindung der Formel (I) keine kondensierte Arylgruppe mit mehr als 14 aromatischen Ringatomen, besonders bevorzugt keine kondensierte Arylgruppe mit mehr als 10 aromatischen Ringatomen.
Bevorzugt ist die Gruppe A eine Gruppe der folgenden Formel (A-Il)
Formel (A-Il), wobei gilt:
L1 ist bei jedem Auftreten gleich oder verschieden C=0, Si(R1)2, PR , P(=0)(R1), O, S, SO, SO2, eine Alkylengruppe mit 1 bis 20 C-Atomen oder eine Alkenylen- oder Alkinylengruppe mit 2 bis 20 C-Atomen, wobei in den genannten Gruppen eine oder mehrere CH2-Gruppen durch C=O, C=NR1, C=O-O, C=O-NR1, Si(R1)2, NR1, P(=O)(R1), O, S, SO oder SO2 ersetzt sein können und wobei ein oder mehrere
H-Atome in den oben genannten Gruppen durch D, F oder CN ersetzt sein können, oder ein aromatisches oder heteroaromatisches
Ringsystem mit 6 bis 24 aromatischen Ringatomen, welches durch einen oder mehrere Reste R substituiert sein kann;
Ar1 ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 6 bis 30 aromatischen
Ringatomen, das mit einem oder mehreren Resten R1 substituiert sein kann;
Y ist gewählt aus einer Einfachbindung, BR1, C(R1)2) C(R1)2-C(R1)2, Si(R1)2, Si(R )2-Si(R1)2, C=0, C=NR1, C=C(R1)2, C(=0)N(R1), O, S, S=O, S02 und NR1; k ist gleich 0, 1, 2 oder 3; m ist gleich 0 oder 1 ; wobei die Gruppe A über die mit * markierte Bindung an den Rest der Verbindung der Formel (I) gebunden ist.
Bevorzugt ist in Formel (A-Il) L1 bei jedem Auftreten gleich oder
verschieden Si(R )2, O, S, eine Alkylengruppe mit 1 bis 10 C-Atomen oder eine Alkenylen- oder Alkinylengruppe mit 2 bis 10 C-Atomen, wobei bei den genannten Gruppen eine oder mehrere CH2-Gruppen durch Si(R )2, O oder S ersetzt sein können und wobei ein oder mehrere H-Atome in den genannten Gruppen durch D, F oder CN ersetzt sein können, oder ein aromatisches Ringsystem mit 6 bis 24 aromatischen Ringatomen, welches durch einen oder mehrere Reste R substituiert sein kann. Besonders bevorzugt ist L1 bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 6 bis 18 aromatischen Ringatomen, welches mit einem oder mehreren Resten R1 substituiert sein kann. Ganz besonders bevorzugt ist L1 bei jedem
Auftreten gleich oder verschieden Phenyl, Biphenyl, Naphthyl, Terphenyl, Fluorenyl, Spirobifluoren, Indenofluorenyl, Carbazol, Dibenzofuran, oder Dibenzothiophen, die jeweils mit einem oder mehreren Resten R1 substituiert sein können.
Weiterhin bevorzugt ist in Formel (A-Il) k gleich 0 oder 1 , besonders bevorzugt gleich 0.
Weiterhin bevorzugt ist in Formel (A-Il) m gleich 0, d.h. die beiden Gruppen Ar1 sind nicht miteinander verbunden.
Weiterhin bevorzugt ist in Formel (A-Il) Ar1 bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 6 bis 24 aromatischen Ringatomen, das mit einem oder mehreren Resten R1 substituiert sein kann. Ganz besonders bevorzugt sind darunter Phenyl, Biphenyl, Naphthyl, Terphenyl, Fluorenyl, Spirobifluoren, Indenofluorenyl, Carbazol, Dibenzofuran, und Dibenzothiophen, die mit einem oder mehreren Resten R1 substituiert sein können.
Weiterhin ist in Formel (A-Il) die Gruppe Y bevorzugt gewählt aus einer Einfachbindung, C(R1)2, O, S und NR1. Besonders bevorzugt ist Y eine Einfachbindung.
Besonders bevorzugte Gruppen A entsprechen den Formeln (A-ll-1) bis (A-ll-50):
Formel (A-ll-31) Formel (A-ll-32)
Formel (A-ll-33) Formel (A-ll-34)
Formel (A-ll-35) Formel (A-ll-36)
wobei die Gruppen an allen freien Positionen mit einem oder mehreren Resten R , wie oben definiert, substituiert sein können. Bevorzugt ist, dass Reste R
1 dabei definiert sind gemäß ihren bevorzugten
Ausführungsformen.
In untenstehender Formel (l-num) sind die möglichen Bindungspositionen der Gruppen A nummeriert angegeben.
Entsprechend obenstehender Nummerierung ist es bevorzugt, dass die Gruppe A in Position 2, 4, 2', 4', 5, 7, 5' oder T gebunden ist. Besonders bevorzugt ist die Gruppe A in Position 2, 2', 7 oder T gebunden. Dabei kann i gleich 0 oder 1 sein. Weiterhin ist dabei bevorzugt X gleich O.
Bevorzugte Ausführungsformen der Verbindungen der Formel (I) entsprechen somit einer der Formeln (1-1) bis (I-8):
Formel (1-1) Formel (I-2)
Formel (1-3) Formel (1-4)
Formel (I-5) Formel (I-6)
Formel (I-7) Formel (I-8) wobei die auftretenden Symbole wie oben definiert sind.
Es gelten für die Verbindungen der Formeln (1-1) bis (I-8) die oben angegebenen bevorzugten Ausführungsformen der variablen Gruppen. Insbesondere bevorzugt ist für diese Verbindungen, dass Z gleich CR1 ist. Weiterhin insbesondere bevorzugt ist für diese Verbindungen, dass A Formel (A-Il) entspricht, wie oben definiert.
Besonders bevorzugte Ausführungsformen von Verbindungen der Formel (I) sind die in der folgenden Tabelle angegebenen Strukturen der Formeln (1-1-1) bis (I-8-50).
Sie setzen sich zusammen aus einem Grundkörper gewählt aus
Grundkörpern der Formeln (1-1) bis (I-8) und aus Gruppen A gewählt aus den bevorzugten Ausführungsformen der Formeln (A-ll- ) bis (A-ll-50).
Für die tabellarisch aufgeführten besonders bevorzugten
Ausführungsformen gelten die oben angegebenen bevorzugten
Ausführungsformen der variablen Gruppen, inbesondere der von Z und R1 bis R3.
Explizite Beispiele für Verbindungen der Formel (I) sind in der folgenden Tabelle abgebildet:
Die Synthese der erfindungsgemäßen Verbindungen kann gemäß im Stand der Technik bekannten Verfahren und Reaktionstypen,
beispielsweise Halogenierung, metallorganische Addition, Buchwald- Kupplung und Suzuki-Kupplung erfolgen.
Schemata 1 bis 3 zeigen mögliche Synthesewege zur Herstellung der erfindungsgemäßen Verbindungen. Sie dienen zur Erläuterung der Erfindung für den Fachmann und sind nicht einschränkend auszulegen. Der Fachmann kann im Rahmen seines allgemeinen Fachwissens die gezeigten Synthesewege abwandeln, oder völlig andere Wege entwickeln, falls dies vorteilhafter erscheint.
Schema 1 zeigt einen bevorzugten Syntheseweg zur Herstellung von erfindungsgemäßen Verbindungen, die ein Diaryl-Xanthen-Grundgerüst aufweisen (In Formel (I) Index i=0).
Die Metallierung eines 2-Halogen-substituierten Diarylethers (A) mit reaktiven Metallen (z.B. Magnesium nach Grignard) oder mit Organo- Lithium-Verbindungen und anschließende Addition an mono-halogeniertes Benzophenon (B) und anschließende säurekatalysierte Cyclisierung des intermediären Alkoholats führt zu den entsprechenden
halogensubstituierten Xanthenen (C). Die so entstandenen Halogenide (C) können anschließend nach dem Fachmann geläufigen Methoden (C-C- Kuplung wie Suzuki-, Negishi-, Yamamoto-, Grignard-Cross-, Stille-, Heck- Kupplung, etc.; C-N-Kupplung wie Buchwald- oder Ullmann-Kupplung weiter zu erfindungsgemäßen Verbindungen D und E umgesetzt werden.
chema 1
RO Ar
^B-Ar— Ar
Buchwald- O Ar/ Suzuki- H-N
Aminierung
Kupplung Ar
Ar = beliebige Aryl- oder Heteroarylgruppe
R = beliebiger organischer Rest
Y1 = Halogensubstituent, bevorzugt Br
Y2 = beliebige reaktive Gruppe, bevorzugt Halogen
Die Verbindungen können an beliebigen Positionen mit
Resten R substituiert sein. Schema 2 zeigt, wie analog zu den in Schema 1 gezeigten Diaryl-
Xanthenen die entsprechenden Spirobifluoren-Xanthen-Verbindungen hergestellt werden können (Verbindungen H und I). Dazu wird im ersten Schritt, der Addition an die Carbonylverbindung und Cyclisierung, anstelle des Benzophenon-Derivats ein Fluorenon-Derivat (Verbindung F) eingesetzt.
chema 2
(H)
Ar = beliebige Aryl- oder Heteroarylgruppe
R = beliebiger organischer Rest
Y1 = Halogensubstituent, bevorzugt Br
Y2 = beliebige reaktive Gruppe, bevorzugt Halogen
Die Verbindungen können an beliebigen Positionen mit
Resten R substituiert sein. Ein anderer bevorzugter Syntheseweg zur Herstellung der
erfindungsgemäßen Verbindungen ist in Schema 3 gezeigt. Damit können insbesondere Spirofluoren-Xanthen-Derivate hergestellt werden.
Der Syntheseweg umfasst die Metallierung einer 2-Halogen-substituierten Diaryl-Verbindung (K) mit reaktiven Metallen (z.B. Magnesium nach
Grignard) oder mit Organo-Lithium-Verbindungen. Anschließend findet eine Addition an mono-halogeniertes Xanthenon (J) und eine
säurekatalysierte Cyclisierung des intermediären Alkoholats statt. Damit werden die entsprechenden halogensubstituierten Spirofluoren-Xanthene (L) erhalten.
Die so entstandenen Halogenide (L) können anschließend nach dem Fachmann geläufigen Methoden (C-C-Kuplung wie Suzuki-, Negishi-, Yamamoto-, Grignard-Cross-, Stille-, Heck-Kupplung, etc.; C-N-Kupplung
wie Buchwald- oder Ullmann-Kupplung weiter zu erfindungsgemäßen Verbindungen (M) und (N) umgesetzt werden.
(M) (N)
Ar = beliebige Aryl- oder Heteroarylgruppe
R = beliebiger organischer Rest
Y1 = Halogensubstituent, bevorzugt Br
Y2 = beliebige reaktive Gruppe, bevorzugt Halogen
Die Verbindungen können an beliebigen Positionen mit
Resten R substituiert sein.
Synthesewege für die Ausgangsverbindungen (beispielsweise (A), (B), (F) und (K)), welche in der Synthese der erfindungsgemäßen Verbindungen eingesetzt werden, sind dem Fachmann bekannt. Die Kupplungsreaktionen stellen dabei bevorzugt Buchwald-Kupplungen und Suzuki-Kupplungen dar. Die erhaltenen Verbindungen können im Anschluss an die oben gezeigten Syntheseschritte wahlweise weiter umgesetzt und funktionalisiert werden, falls dies erforderlich ist, um zu den gewünschten erfindungsgemäßen Verbindungen zu gelangen.
Weiterer Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung einer Verbindung der Formel (I), dadurch gekennzeichnet, dass der Grundkörper durch Addition eines metallorganischen Nukleophils an eine Carbonylgruppe hergestellt wird. Die Carbonylgruppe ist dabei bevorzugt eine Diarylcarbonylgruppe. Das metallorganische Nukleophil ist dabei bevorzugt ein Diarylether oder ein Diarylthioether, besonders bevorzugt ein Diarylether.
Bevorzugt wird in einem weiteren Schritt durch Kupplungsreaktion, besonders bevorzugt Buchwald-Kupplung oder Suzuki-Kupplung, die Arylaminogruppe eingeführt.
Detailliert beschriebene Syntheseverfahren, in denen unter anderem exakte Reaktionsbedingungen angegeben sind, sind in den
Ausführungsbeispielen aufgeführt. Sie ergänzen die oben angegebenen allgemeinen Verfahren um konkrete Beispiele.
Die oben beschriebenen Verbindungen, insbesondere Verbindungen, welche mit reaktiven Abgangsgruppen, wie Brom, lod, Chlor, Boronsäure oder Boronsäureester, substituiert sind, können als Monomere zur
Erzeugung entsprechender Oligomere, Dendrimere oder Polymere
Verwendung finden. Geeignete reaktive Abgangsgruppen sind
beispielsweise Brom, lod, Chlor, Boronsäuren, Boronsäureester, Amine, Alkenyl- oder Alkinylgruppen mit endständiger C-C-Doppelbindung bzw. C- C-Dreifachbindung, Oxirane, Oxetane, Gruppen, die eine Cycloaddition, beispielsweise eine ,3-dipolare Cycloaddition, eingehen, wie
beispielsweise Diene oder Azide, Carbonsäurederivate, Alkohole und Silane. Weiterer Gegenstand der Erfindung sind daher Oligomere, Polymere oder Dendrimere enthaltend eine oder mehrere Verbindungen gemäß
Formel (I), wobei die Bindung(en) zum Polymer, Oligomer oder Dendrimer an beliebigen, in Formel (I) mit R1 oder R2 substituierten Positionen lokalisiert sein können. Je nach Verknüpfung der Verbindung gemäß Formel (I) ist die Verbindung Bestandteil einer Seitenkette des Oligomers
oder Polymers oder Bestandteil der Hauptkette. Unter einem Oligomer im Sinne dieser Erfindung wird eine Verbindung verstanden, welche aus mindestens drei Monomereinheiten aufgebaut ist. Unter einem Polymer im Sinne der Erfindung wird eine Verbindung verstanden, die aus mindestens zehn Monomereinheiten aufgebaut ist. Die erfindungsgemäßen Polymere, Oligomere oder Dendrimere können konjugiert, teilkonjugiert oder nicht- konjugiert sein. Die erfindungsgemäßen Oligomere oder Polymere können linear, verzweigt oder dendritisch sein. In den linear verknüpften Strukturen können die Einheiten gemäß Formel (I) direkt miteinander verknüpft sein oder sie können über eine bivalente Gruppe, beispielsweise über eine substituierte oder unsubstituierte Alkylengruppe, über ein Heteroatom oder über eine bivalente aromatische oder heteroaromatische Gruppe miteinander verknüpft sein. In verzweigten und dendritischen Strukturen können beispielsweise drei oder mehrere Einheiten gemäß Formel (I) über eine trivalente oder höhervalente Gruppe, beispielsweise über eine trivalente oder höhervalente aromatische oder heteroaromatische Gruppe, zu einem verzweigten bzw. dendritischen Oligomer oder Polymer verknüpft sein.
Für die Wiederholeinheiten gemäß Formel (I) in Oligomeren, Dendrimeren und Polymeren gelten dieselben Bevorzugungen wie oben für
Verbindungen gemäß Formel (I) beschrieben.
Zur Herstellung der Oligomere oder Polymere werden die erfindungsgemäßen Monomere homopolymerisiert oder mit weiteren Monomeren copolymerisiert. Geeignete und bevorzugte Comonomere sind gewählt aus Fluorenen (z. B. gemäß EP 842208 oder WO 2000/22026),
Spirobifluorenen (z. B. gemäß EP 707020, EP 894107 oder WO
2006/061181), Paraphenylenen (z. B. gemäß WO 1992/18552), Carbazolen (z. B. gemäß WO 2004/070772 oder WO 2004/113468), Thiophenen (z. B. gemäß EP 1028136), Dihydrophenanthrenen (z. B. gemäß WO
2005/014689 oder WO 2007/006383), eis- und trans-lndenofluorenen (z. B. gemäß WO 2004/041901 oder WO 2004/113412), Ketonen (z. B. gemäß WO 2005/040302), Phenanthrenen (z. B. gemäß WO 2005/104264 oder WO 2007/017066) oder auch mehreren dieser Einheiten. Die Polymere, Oligomere und Dendrimere enthalten üblicherweise noch weitere Einheiten, beispielsweise emittierende (fluoreszierende oder phosphoreszierende)
Einheiten, wie z. B. Vinyitriarylamine (z. B. gemäß WO 2007/068325) oder phosphoreszierende Metallkomplexe (z. B. gemäß WO 2006/003000), und/oder Ladungstransporteinheiten, insbesondere solche basierend auf Triarylaminen.
Die erfindungsgemäßen Polymere, Oligomere und Dendrimere weisen vorteilhafte Eigenschaften, insbesondere hohe Lebensdauern, hohe Effizienzen und gute Farbkoordinaten auf.
Die erfindungsgemäßen Polymere und Oligomere werden in der Regel durch Polymerisation von einer oder mehreren Monomersorten hergestellt, von denen mindestens ein Monomer im Polymer zu Wiederholungseinheiten der Formel (I) führt. Geeignete Polymerisationsreaktionen sind dem Fachmann bekannt und in der Literatur beschrieben. Besonders geeignete und bevorzugte Polymerisationsreaktionen, die zu C-C- bzw. C-N-Verknüpfungen führen, sind folgende:
(A) SUZUKI-Polymerisation;
(B) YAMAMOTO-Polymerisation;
(C) STILLE-Polymerisation; und
(D) HARTWIG-BUCHWALD-Polymerisation.
Wie die Polymerisation nach diesen Methoden durchgeführt werden kann und wie die Polymere dann vom Reaktionsmedium abgetrennt und aufgereinigt werden können, ist dem Fachmann bekannt und in der Literatur, beispielsweise in WO 2003/048225, WO 2004/037887 und WO 2004/037887, im Detail beschrieben.
Für die Verarbeitung der erfindungsgemäßen Verbindungen aus flüssiger Phase, beispielsweise durch Spin-Coating oder durch Druckverfahren, sind Formulierungen der erfindungsgemäßen Verbindungen erforderlich. Diese Formulierungen können beispielsweise Lösungen, Dispersionen oder Emulsionen sein. Es kann bevorzugt sein, hierfür Mischungen aus zwei oder mehr Lösemitteln zu verwenden. Geeignete und bevorzugte Lösemittel sind beispielsweise Toluol, Anisol, o-, m- oder p-Xylol,
Methylbenzoat, Mesitylen, Tetralin, Veratrol, THF, Methyl-THF, THP,
Chlorbenzol, Dioxan, Phenoxytoluol, insbesondere 3-Phenoxytoluol, (-)- Fenchon, 1,2,3,5-Tetramethylbenzol, 1 ,2,4,5-Tetramethylbenzol, 1- Methylnaphthalin, 2-Methylbenzothiazol, 2-Phenoxyethanol, 2-Pyrrolidinon, 3-Methylanisol, 4-Methylanisol, 3,4-Dimethylanisol, 3,5-Dimethylanisol, Acetophenon, ct-Terpineol, Benzothiazol, Butylbenzoat, Cumol,
Cyclohexanol, Cyclohexanon, Cyclohexylbenzol, Decalin, Dodecylbenzol, Ethylbenzoat, Indan, Methylbenzoat, NMP, p-Cymol, Phenetol, 1 ,4- Diisopropylbenzol, Dibenzylether, Diethylenglycolbutylmethylether,
Triethylenglycolbutylmethyl-ether, Diethylenglycoldibutylether,
Triethylenglycoldimethylether, Diethylenglycolmonobutylether,
Tripropylenglycoldimethylether, Tetraethylenglycoldimethylether, 2- tsopropylnaphthalin, Pentylbenzol, Hexylbenzol, Heptylbenzol,
Octylbenzol, 1 ,1-Bis(3,4-Dimethylphenyl)ethan oder Mischungen dieser Lösemittel. Gegenstand der Erfindung ist daher weiterhin eine Formulierung, insbesondere eine Lösung, Dispersion oder Emulsion, enthaltend mindestens eine Verbindung gemäß Formel (I) oder mindestens ein Polymer, Oligomer oder Dendrimer enthaltend mindestens eine Einheit gemäß Formel (I) sowie mindestens ein Lösungsmittel, bevorzugt ein organisches Lösungsmittel. Wie solche Lösungen hergestellt werden können, ist dem Fachmann bekannt und beispielsweise in WO
2002/072714, WO 2003/019694 und der darin zitierten Literatur
beschrieben. Die erfindungsgemäßen Verbindungen eignen sich für den Einsatz in elektronischen Vorrichtungen, insbesondere in organischen Elektro- lumineszenzvorrichtungen (OLEDs). Abhängig von der Substitution werden die Verbindungen in unterschiedlichen Funktionen und Schichten eingesetzt.
Weiterer Gegenstand der Erfindung ist daher die Verwendung der
Verbindung gemäß Formel (I) in einer elektronischen Vorrichtung. Dabei ist die elektronische Vorrichtung bevorzugt ausgewählt aus der Gruppe bestehend aus organischen integrierten Schaltungen (OICs), organischen Feld-Effekt-Transistoren (OFETs), organischen Dünnfilmtransistoren
(OTFTs), organischen lichtemittierenden Transistoren (OLETs), organischen Solarzellen (OSCs), organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices
(OFQDs), organischen lichtemittierenden elektrochemischen Zellen (OLECs), organischen Laserdioden (O-Laser) und besonders bevorzugt organischen Elektrolumineszenzvorrichtungen (OLEDs).
Weiterer Gegenstand der Erfindung ist, wie bereits oben ausgeführt, eine elektronische Vorrichtung, enthaltend mindestens eine Verbindung gemäß Formel (I). Dabei ist die elektronische Vorrichtung bevorzugt ausgewählt aus den oben genannten Vorrichtungen.
Besonders bevorzugt ist sie eine organische Elektrolumineszenz- vorrichtung (OLED), enthaltend Anode, Kathode und mindestens eine emittierende Schicht, dadurch gekennzeichnet, dass mindestens eine organische Schicht, die eine emittierende Schicht, eine
Lochtransportschicht oder eine andere Schicht sein kann, mindestens eine Verbindung gemäß Formel (I) enthält.
Außer Kathode, Anode und der emittierenden Schicht kann die organische Elektrolumineszenzvorrichtung noch weitere Schichten enthalten. Diese sind beispielsweise gewählt aus jeweils einer oder mehreren Lochinjektionsschichten, Lochtransportschichten, Lochblockierschichten, Elektronentransportschichten, Elektroneninjektionsschichten, Elektronen- blockierschichten, Excitonenblockierschichten, Zwischenschichten
(Interlayers), Ladungserzeugungsschichten (Charge-Generation Layers) (IDMC 2003, Taiwan; Session 21 OLED (5), T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, J. Kido, Multiphoton Organic EL Device Having Charge Generation Layer) und/oder organischen oder anorganischen p/n-Übergängen. Es sei aber darauf hingewiesen, dass nicht notwendigerweise jede dieser Schichten vorhanden sein muss und die Wahl der Schichten immer von den verwendeten Verbindungen abhängt und insbesondere auch von der Tatsache, ob es sich um eine fluoreszierende oder phosphoreszierende Elektrolumineszenzvorrichtung handelt.
Die Abfolge der Schichten der organischen Elektrolumineszenzvorrichtung ist bevorzugt die folgende:
Anode-Lochinjektionsschicht-Lochtransportschicht-emittierende Schicht- Elektronentransportschicht-Elektroneninjektionsschicht-Kathode.
Dabei soll erneut darauf hingewiesen werden, dass nicht alle der genannten Schichten vorhanden sein müssen, und/oder dass zusätzlich weitere Schichten vorhanden sein können.
Die erfindungsgemäße organische Elektrolumineszenzvorrichtung kann mehrere emittierende Schichten enthalten. Besonders bevorzugt weisen diese Emissionsschichten in diesem Fall insgesamt mehrere Emissions- maxima zwischen 380 nm und 750 nm auf, so dass insgesamt weiße Emission resultiert, d. h. in den emittierenden Schichten werden
verschiedene emittierende Verbindungen verwendet, die fluoreszieren oder phosphoreszieren können und die blaues oder gelbes oder
orangefarbenes oder rotes Licht emittieren. Insbesondere bevorzugt sind Dreischichtsysteme, also Systeme mit drei emittierenden Schichten, wobei bevorzugt mindestens eine dieser Schichten mindestens eine Verbindung gemäß Formel (I) enthält und wobei die drei Schichten blaue, grüne und orange oder rote Emission zeigen (für den prinzipiellen Aufbau siehe z. B. WO 2005/0 013). Alternativ und/oder zusätzlich können die
erfindungsgemäßen Verbindungen auch in der Lochtransportschicht oder in einer anderen Schicht vorhanden sein.
Es soll angemerkt werden, dass sich für die Erzeugung von weißem Licht anstelle mehrerer farbig emittierender Emitterverbindungen auch eine einzeln verwendete Emitterverbindung eignen kann, welche in einem breiten Wellenlängenbereich emittiert.
Es ist erfindungsgemäß bevorzugt, wenn die Verbindung gemäß Formel (I) in einer elektronischen Vorrichtung enthaltend einen oder mehrere phosphoreszierende Emitter eingesetzt wird. Dabei kann die Verbindung in unterschiedlichen Schichten, bevorzugt in einer Lochtransportschicht, einer Elektronenblockierschicht, einer Lochinjektionsschicht oder in einer emittierenden Schicht, enthalten sein.
Vom Begriff phosphoreszierende Emitter sind typischerweise
Verbindungen umfasst, bei denen die Lichtemission durch einen spinverbotenen Übergang erfolgt, beispielsweise einen Übergang aus einem angeregten Triplettzustand oder einem Zustand mit einer höheren
Spinquantenzahl, beispielsweise einem Quintett-Zustand.
Als phosphoreszierende Emitter (= Triplettemitter) eignen sich insbesondere Verbindungen, die bei geeigneter Anregung Licht, vorzugsweise im sichtbaren Bereich, emittieren und außerdem mindestens ein Atom der Ordnungszahl größer 20, bevorzugt größer 38 und kleiner 84, besonders bevorzugt größer 56 und kleiner 80 enthalten. Bevorzugt werden als
Phosphoreszenzemitter Verbindungen, die Kupfer, Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Iridium, Palladium, Platin, Silber, Gold oder Europium enthalten, verwendet, insbesondere Verbindungen, die Iridium, Platin oder Kupfer enthalten.
Dabei werden im Sinne der vorliegenden Erfindung alle lumineszierenden Iridium-, Platin- oder Kupferkomplexe als phosphoreszierende
Verbindungen angesehen. Beispiele der oben beschriebenen Emitter können den Anmeldungen
WO 00/70655, WO 01/41512, WO 02/02714, WO 02/15645, EP 1191613, EP 1191612, EP 1191614, WO 05/033244, WO 05/019373 und
US 2005/0258742 entnommen werden. Generell eignen sich alle phosphoreszierenden Komplexe, wie sie gemäß dem Stand der Technik für phosphoreszierende OLEDs verwendet werden und wie sie dem Fachmann auf dem Gebiet der organischen Elektrolumineszenzvorrichtungen bekannt sind. Auch kann der Fachmann ohne erfinderisches Zutun weitere phosphoreszierende Komplexe in Kombination mit den Verbindungen gemäß Formel (I) in organischen Elektrolumineszenzvorrichtungen einsetzen.
Explizite Beispiele für geeignete phosphoreszierende Emitterverbindungen können einer später folgenden Tabelle mit allgemein bevorzugten phosphoreszierenden Emittern entnommen werden.
Die Verbindung gemäß Formel (I) kann aber auch erfindungsgemäß in einer elektronischen Vorrichtung enthaltend einen oder mehrere
fluoreszierende Emitter eingesetzt werden.
In einer bevorzugten Ausführungsform der Erfindung werden die Verbin- düngen gemäß Formel (I) als Lochtransportmaterial eingesetzt. Die
Verbindungen werden dann bevorzugt in einer Lochtransportschicht, einer Elektronenblockierschicht oder einer Lochinjektionsschicht eingesetzt.
Eine Lochtransportschicht gemäß der vorliegenden Anmeldung ist eine Schicht mit lochtransportierender Funktion, welche sich zwischen Anode und emittierender Schicht befindet.
Lochinjektionsschichten und Elektronenblockierschichten werden im Sinne der vorliegenden Anmeldung als spezielle Ausführungsformen von
Lochtransportschichten verstanden. Eine Lochinjektionsschicht ist dabei im Fall von mehreren Lochtransportschichten zwischen Anode und
emittierender Schicht eine Lochtransportschicht, welche sich direkt an die Anode anschließt oder nur durch eine einzelne Beschichtung der Anode von ihr getrennt ist. Eine Elektronenblockierschicht ist im Fall von mehreren Lochtransportschichten zwischen Anode und emittierender
Schicht diejenige Lochtransportschicht, welche sich direkt anodenseitig an die emittierende Schicht anschließt.
Wird die Verbindung gemäß Formel (I) als Lochtransportmaterial in einer Lochtransportschicht, einer Lochinjektionsschicht oder einer
Elektronenblockierschicht eingesetzt, so kann die Verbindung als
Reinmaterial, d.h. in einem Anteil von 100 %, in der Lochtransportschicht eingesetzt werden, oder sie kann in Kombination mit einer oder mehreren weiteren Verbindungen eingesetzt werden. Gemäß einer bevorzugten Ausführungsform enthält die organische Schicht enthaltend die Verbindung der Formel (I) dann zusätzlich einen oder mehrere p-Dotanden. Als p- Dotanden werden gemäß der vorliegenden Erfindung bevorzugt solche organischen Elektronenakzeptorverbindungen eingesetzt, die eine oder mehrere der anderen Verbindungen der Mischung oxidieren können.
Besonders bevorzugte Ausführungsformen von p-Dotanden sind die in WO 2011/073149, EP 1968131 , EP 2276085, EP 2213662, EP 1722602, EP 2045848, DE 102007031220, US 8044390, US 8057712, WO
2009/003455, WO 2010/094378, WO 2011/120709, US 2010/0096600 und WO 2012/095143 offenbarten Verbindungen.
In einer weiteren bevorzugten Ausführungsform der Erfindung wird die Verbindung gemäß Formel (I) als Lochtransportmaterial in Kombination mit einem Hexaazatriphenylenderivat, wie in US 2007/0092755 beschrieben, verwendet. Besonders bevorzugt wird das Hexaazatriphenylenderivat dabei in einer separaten Schicht eingesetzt.
In einer weiteren Ausführungsform der vorliegenden Erfindung werden die Verbindungen der Formel (I) als Matrixmaterial in Kombination mit einem oder mehreren Emittern, vorzugsweise phosphoreszierenden Emittern, eingesetzt.
Der Anteil des Matrixmaterials in der emittierenden Schicht beträgt in diesem Fall zwischen 50.0 und 99.9 Vol.-%, bevorzugt zwischen 80.0 und 99.5 Vol.-% und besonders bevorzugt für fluoreszierende emittierende Schichten zwischen 92.0 und 99.5 Vol.-% sowie für phosphoreszierende emittierende Schichten zwischen 85.0 und 97.0 Vol.-%.
Entsprechend beträgt der Anteil des Emitters zwischen 0.1 und
50.0 Vol.-%, bevorzugt zwischen 0.5 und 20.0 Vol.-% und besonders bevorzugt für fluoreszierende emittierende Schichten zwischen 0.5 und 8.0 Vol.-% sowie für phosphoreszierende emittierende Schichten zwischen 3.0 und 15.0 Vol.-%.
Eine emittierende Schicht einer organischen Elektrolumineszenz- Vorrichtung kann auch Systeme umfassend mehrere Matrixmaterialien (Mixed-Matrix-Systeme) und/oder mehrere Emitier enthalten.
In einer weiteren bevorzugten Ausführungsform der Erfindung werden die Verbindungen gemäß Formel (I) als eine Komponente von Mixed-Matrix- Systemen verwendet. Die Mixed-Matrix-Systeme umfassen bevorzugt zwei
oder drei verschiedene Matrixmaterialien, besonders bevorzugt zwei verschiedene Matrixmaterialien. Bevorzugt stellt dabei eines der beiden Materialien ein Material mit lochtransportierenden Eigenschaften und das andere Material ein Material mit elektronentransportierenden
Eigenschaften dar. Die gewünschten elektronentransportierenden und lochtransportierenden Eigenschaften der Mixed-Matrix-Komponenten können jedoch auch hauptsächlich oder vollständig in einer einzigen Mixed-Matrix-Komponente vereinigt sein, wobei die weitere bzw. die weiteren Mixed-Matrix-Komponenten andere Funktionen erfüllen. Die beiden unterschiedlichen Matrixmaterialien können dabei in einem
Verhältnis von 1 :50 bis 1 :1 , bevorzugt 1 :20 bis 1 :1 , besonders bevorzugt 1:10 bis 1:1 und ganz besonders bevorzugt 1:4 bis 1 :1 vorliegen.
Bevorzugt werden Mixed-Matrix-Systeme in phosphoreszierenden organischen Elektrolumineszenzvorrichtungen eingesetzt. Genauere Angaben zu Mixed-Matrix-Systemen sind unter anderem in der Anmeldung WO 20 0/108579 enthalten.
Die Mixed-Matrix-Systeme können einen oder mehrere Emitter umfassen, bevorzugt einen oder mehrere phosphoreszierende Emitter. Allgemein werden Mixed-Matrix-Systeme bevorzugt in phosphoreszierenden organischen Elektrolumineszenzvorrichtungen eingesetzt.
Besonders geeignete Matrixmaterialien, welche in Kombination mit den erfindungsgemäßen Verbindungen als Matrixkomponenten eines Mixed- Matrix-Systems verwendet werden können, sind ausgewählt aus den unten angegebenen bevorzugten Matrixmaterialien für phosphoreszierende Emitter oder den bevorzugten Matrixmaterialien für fluoreszierende
Emitter, je nachdem welche Art von Emitterverbindung im mixed-Matrix- System eingesetzt wird. Bevorzugte phosphoreszierende Emitter zur Verwendung in Mixed-Matrix- Systemen sind die obenstehend und in die in einer folgenden Tabelle aufgeführten phosphoreszierenden Emitter.
ln einer nochmals weiteren bevorzugten Ausführungsform der Erfindung wird die Verbindung der Formel (I) als fluoreszierender Emitter in einer emittierenden Schicht eingesetzt.
Wenn die erfindungsgemäße Verbindung als emittierendes Material in einer emittierenden Schicht eingesetzt wird, wird sie bevorzugt in
Kombination mit einem oder mehreren Matrixmaterialien eingesetzt.
Bevorzugte Matrixmaterialien zur Verwendung in Kombination mit der Verbindung der Formel (I) als Emitter sind in folgenden Abschnitten angegeben.
Im Folgenden werden in den erfindungsgemäßen Vorrichtungen bevorzugt eingesetzte Materialien aufgeführt, geordnet nach ihrer Verwendung und Funktion.
Explizite Beispiele für phosphoreszierende Emitter sind in der folgenden Tabelle aufgeführt.
Bevorzugte fluoreszierende Emitter sind neben den erfindungsgemäßen Verbindungen ausgewählt aus der Klasse der Arylamine. Unter einem Arylamin bzw. einem aromatischen Amin wird dabei eine Verbindung verstanden, die drei substituierte oder unsubstituierte aromatische oder heteroaromatische Ringsysteme direkt an den Stickstoff gebunden enthält. Bevorzugt ist mindestens eines dieser aromatischen oder heteroaromatischen Ringsysteme ein kondensiertes Ringsystem, besonders bevorzugt mit mindestens 4 aromatischen Ringatomen. Bevorzugte Beispiele hierfür sind aromatische Anthracenamine, aromatische
Anthracendiamine, aromatische Pyrenamine, aromatische Pyrendiamine, aromatische Chrysenamine oder aromatische Chrysendiamine. Unter einem aromatischen Anthracenamin wird eine Verbindung verstanden, in der eine Diarylaminogruppe direkt an eine Anthracengruppe gebunden ist, vorzugsweise in 9-Position. Unter einem aromatischen Anthracendiamin wird eine Verbindung verstanden, in der zwei Diarylaminogruppen direkt an eine Anthracengruppe gebunden sind, vorzugsweise in 9,10-Position. Aromatische Pyrenamine, Pyrendiamine, Chrysenamine und Chrysendiamine sind analog dazu definiert, wobei die Diarylaminogruppen am Pyren bevorzugt in 1-Position bzw. in 1 ,6-Position gebunden sind. Weitere bevorzugte fluoreszierende Emitter sind Indenofluorenamine bzw. - diamine, beispielsweise gemäß WO 2006/108497 oder WO 2006/122630, Benzoindenofluorenamine bzw. -diamine, beispielsweise gemäß
WO 2008/006449, und Dibenzoindenofluorenamine bzw. -diamine, beispielsweise gemäß WO 2007/140847, sowie die in WO 2010/012328 offenbarten Indenofluorenderivate mit kondensierten Arylgruppen.
Ebenfalls bevorzugt sind die in WO 2012/048780 und der noch nicht offengelegten EP 12004426.8 offenbarten Pyren-Arylamine. Ebenfalls bevorzugt sind die in der noch nicht offengelegten EP 12006239.3 offenbarten Benzoindenofluoren-Amine.
Als Matrixmaterialien, bevorzugt für fluoreszierende Emitter, kommen neben den erfindungsgemäßen Verbindungen Materialien verschiedener Stoffklassen in Frage. Bevorzugte Matrixmaterialien sind ausgewählt aus den Klassen der Oligoarylene (z. B. 2,2',7,7'-Tetraphenylspirobifluoren gemäß EP 676461 oder Dinaphthylanthracen), insbesondere der
Oligoarylene enthaltend kondensierte aromatische Gruppen, der
Oligoarylenvinylene (z. B. DPVBi oder Spiro-DPVBi gemäß EP 676461), der polypodalen Metallkomplexe (z. B. gemäß WO 2004/08 017), der lochleitenden Verbindungen (z. B. gemäß WO 2004/058911), der elektronenleitenden Verbindungen, insbesondere Ketone, Phosphinoxide, Sulfoxide, etc. (z. B. gemäß WO 2005/084081 und WO 2005/084082), der Atropisomere (z. B. gemäß WO 2006/048268), der Boronsäurederivate (z. B. gemäß WO 2006/117052) oder der Benzanthracene (z. B. gemäß WO 2008/145239). Besonders bevorzugte Matrixmaterialien sind ausgewählt aus den Klassen der Oligoarylene, enthaltend Naphthalin,
Anthracen, Benzanthracen und/oder Pyren oder Atropisomere dieser Verbindungen, der Oligoarylenvinylene, der Ketone, der Phosphinoxide und der Sulfoxide. Ganz besonders bevorzugte Matrixmaterialien sind ausgewählt aus den Klassen der Oligoarylene, enthaltend Anthracen, Benzanthracen, Benzphenanthren und/oder Pyren oder Atropisomere dieser Verbindungen. Unter einem Oligoarylen im Sinne dieser Erfindung soll eine Verbindung verstanden werden, in der mindestens drei Aryl- bzw. Arylengruppen aneinander gebunden sind. Besonders bevorzugt als Matrixmaterialien für fluoreszierende Emitter sind die in WO 2006/097208, WO 2006/131192, WO 2007/065550, WO 2007/110129, WO 2007/065678, WO 2008/145239, WO 2009/100925, WO 2011/054442, und EP 1553154 offenbarten Anthracenderivate. Bevorzugt als Matrixmaterialien für fluoreszierende Emitter sind die in EP 1749809, EP 1905754 und
US 2012/0187826 offenbarten Pyren-Verbindungen. Bevorzugte Matrixmaterialien für phosphoreszierende Emitter sind neben den erfindungsgemäßen Verbindungen aromatische Amine, insbesondere Triarylamine, z. B. gemäß US 2005/0069729, Carbazolderivate (z. B. CBP, Ν,Ν-Biscarbazolylbiphenyl) oder Verbindungen gemäß WO 2005/039246, US 2005/0069729, JP 2004/288381 , EP 1205527 oder WO 2008/086851 , verbrückte Carbazolderivate, z. B. gemäß WO 2011/088877 und
WO 2011/128017, Indenocarbazolderivate, z. B. gemäß WO 2010/136109 und WO 2011/000455, Azacarbazolderivate, z. B. gemäß EP 1617710, EP 161771 , EP 1731584, JP 2005/347160, Indolocarbazolderivate, z. B. gemäß WO 2007/063754 oder WO 2008/056746, Ketone, z. B. gemäß WO 2004/093207 oder WO 2010/006680, Phosphinoxide, Sulfoxide und
Sulfone, z. B. gemäß WO 2005/003253, Oligophenylene, bipolare
Matrixmaterialien, z. B. gemäß WO 2007/137725, Silane, z. B. gemäß WO 2005/1 72, Azaborole oder Boronester, z. B. gemäß WO 2006/117052, Triazinderivate, z. B. gemäß WO 2010/015306, WO 2007/063754 oder WO 2008/056746, Zinkkomplexe, z. B. gemäß EP 652273 oder
WO 2009/062578, Aluminiumkomplexe, z. B. BAIq, Diazasilol- und
Tetraazasilol-Derivate, z. B. gemäß WO 20 0/054729 und Diazaphosphol- Derivate, z. B. gemäß WO 2010/054730.
Geeignete Ladungstransportmaterialien, wie sie in der Lochinjektions- bzw. Lochtransportschicht bzw. Elektronenblockierschicht oder in der
Elektronentransportschicht der erfindungsgemäßen organischen
Elektrolumineszenzvomchtung verwendet werden können, sind neben den erfindungsgemäßen Verbindungen beispielsweise die in Y. Shirota et al., Chem. Rev. 2007, 107(4), 953-1010 offenbarten Verbindungen oder andere Materialien, wie sie gemäß dem Stand der Technik in diesen Schichten eingesetzt werden.
Als Materialien für die Elektronentransportschicht können alle Materialien verwendet werden, wie sie gemäß dem Stand der Technik als Elektronen- transportmaterialien in der Elektronentransportschicht verwendet werden. Insbesondere eignen sich Aluminiumkomplexe, beispielsweise Alq3> Zirkoniumkomplexe, beispielsweise Zrq4, Benzimidazolderivate, Triazin- derivate, Pyrimidinderivate, Pyridinderivate, Pyrazinderivate,
Chinoxalinderivate, Chinolinderivate, Oxadiazolderivate, aromatische Ketone, Lactame, Borane, Diazaphospholderivate und
Phosphinoxidderivate. Weiterhin geeignete Materialien sind Derivate der oben genannten Verbindungen, wie sie in JP 2000/053957,
WO 2003/060956, WO 2004/0282 7, WO 2004/080975 und
WO 2010/072300 offenbart werden.
Bevorzugt sind als Lochtransportmaterialien, die in einer Lochtransport-, Lochinjektions- oder Elektronenblockierschicht in der erfindungsgemäßen Elektrolumineszenzvomchtung verwendet werden können, Indenofluoren- amin-Derivate (z. B. gemäß WO 06/122630 oder WO 06/100896), die in EP 1661888 offenbarten Aminderivate, Hexaazatriphenylenderivate (z. B. gemäß WO 01/049806), Aminderivate mit kondensierten Aromaten (z. B. gemäß US 5,061,569), die in WO 95/09147 offenbarten Aminderivate, Monobenzoindenofluorenamine (z. B. gemäß WO 08/006449),
Dibenzoindenofluorenamine (z. B. gemäß WO 07/140847), Spirobifluoren- Amine (z. B. gemäß WO 2012/034627 oder WO 2013/120577), Fluoren- Amine (z. B. gemäß den noch nicht offengelegten Anmeldungen
EP 12005369.9, EP 12005370.7 und EP 12005371.5), Spiro- Dibenzopyran-Amine (z. B. gemäß WO 2013/083216) und Dihydroacridin-
Derivate (z. B. gemäß WO 2012/150001). Auch die erfindungsgemäßen Verbindungen können als Lochtransportmaterialien verwendet werden.
Als Kathode der organischen Elektrolumineszenzvorrichtung sind Metalle mit geringer Austrittsarbeit, Metalllegierungen oder mehrlagige Strukturen aus verschiedenen Metallen bevorzugt, wie beispielsweise
Erdalkalimetalle, Alkalimetalle, Hauptgruppenmetalle oder Lanthanoide (z. B. Ca, Ba, Mg, AI, In, Mg, Yb, Sm, etc.). Weiterhin eignen sich Legierungen aus einem Alkali- oder Erdalkalimetall und Silber, beispielsweise eine Legierung aus Magnesium und Silber. Bei mehrlagigen Strukturen können auch zusätzlich zu den genannten Metallen weitere Metalle verwendet werden, die eine relativ hohe Austrittsarbeit aufweisen, wie z. B. Ag oder AI, wobei dann in der Regel Kombinationen der Metalle, wie beispielsweise Ca/Ag, Mg/Ag oder Ba/Ag verwendet werden. Es kann auch bevorzugt sein, zwischen einer metallischen Kathode und dem organischen Halbleiter eine dünne Zwischenschicht eines Materials mit einer hohen
Dielektrizitätskonstante einzubringen. Hierfür kommen beispielsweise Alkalimetall- oder Erdalkalimetallfluoride, aber auch die entsprechenden Oxide oder Carbonate in Frage (z. B. LiF, Li2O, BaF2, MgO, NaF, CsF, Cs2CO3, etc.). Weiterhin kann dafür Lithiumchinolinat (LiQ) verwendet werden. Die Schichtdicke dieser Schicht beträgt bevorzugt zwischen 0.5 und 5 nm.
Als Anode sind Materialien mit hoher Austrittsarbeit bevorzugt. Bevorzugt weist die Anode eine Austrittsarbeit größer 4.5 eV vs. Vakuum auf. Hierfür sind einerseits Metalle mit hohem Redoxpotential geeignet, wie beispielsweise Ag, Pt oder Au. Es können andererseits auch Metall/Metalloxid- Elektroden (z. B. Al/Ni/NiOx, AI/PtOx) bevorzugt sein. Für einige Anwendungen muss mindestens eine der Elektroden transparent oder
teiltransparent sein, um entweder die Bestrahlung des organischen
Materials (organische Solarzelle) oder die Auskopplung von Licht (OLED, O-LASER) zu ermöglichen. Bevorzugte Anodenmaterialien sind hier leitfähige gemischte Metalloxide. Besonders bevorzugt sind Indium-Zinn- Oxid (ITO) oder Indium-Zink Oxid (IZO). Bevorzugt sind weiterhin leitfähige, dotierte organische Materialien, insbesondere leitfähige dotierte Polymere. Weiterhin kann die Anode auch aus mehreren Schichten
bestehen, beispielsweise aus einer inneren Schicht aus ITO und einer äußeren Schicht aus einem Metalloxid, bevorzugt Wolframoxid,
Molybdänoxid oder Vanadiumoxid.
Die Vorrichtung wird entsprechend (je nach Anwendung) strukturiert, kontaktiert und schließlich versiegelt, da sich die Lebensdauer der erfindungsgemäßen Vorrichtungen bei Anwesenheit von Wasser und/oder Luft verkürzt.
In einer bevorzugten Ausführungsform ist die erfindungsgemäße
organische Elektrolumineszenzvorrichtung dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet werden. Dabei werden die Materialien in Vakuum-Sublimationsanlagen bei einem Anfangsdruck kleiner 10~5 mbar, bevorzugt kleiner 10~6 mbar aufgedampft. Dabei ist es jedoch auch möglich, dass der Anfangsdruck noch geringer ist, beispielsweise kleiner 0~7 mbar.
Bevorzugt ist ebenfalls eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit dem OVPD (Organic Vapour Phase Deposition) Verfahren oder mit Hilfe einer Trägergassublimation beschichtet werden. Dabei werden die Materialien bei einem Druck zwischen 10"5 mbar und 1 bar aufgebracht. Ein Spezialfall dieses Verfahrens ist das OVJP (Organic Vapour Jet Printing) Verfahren, bei dem die Materialien direkt durch eine Düse aufgebracht und so strukturiert werden (z. B. M. S. Arnold et al., Appl. Phys. Lett. 2008, 92, 053301).
Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten aus Lösung, wie z. B. durch Spincoating, oder mit einem beliebigen Druckverfahren, wie z. B. Siebdruck, Flexodruck, Nozzle Printing oder Offsetdruck, besonders bevorzugt aber LITI (Light Induced Thermal Imaging, Thermotransferdruck) oder Ink-Jet Druck (Tintenstrahldruck), hergestellt werden. Hierfür sind lösliche Verbindungen gemäß Formel (I) nötig. Hohe Löslichkeit lässt sich durch geeignete Substitution der Verbindungen erreichen.
Weiterhin bevorzugt ist es, dass zur Herstellung einer erfindungsgemäßen organischen Elektrolumineszenzvorrichtung eine oder mehrere Schichten aus Lösung und eine oder mehrere Schichten durch ein
Sublimationsverfahren aufgetragen werden. Erfindungsgemäß können die elektronischen Vorrichtungen enthaltend eine oder mehrere Verbindungen gemäß Formel (I) in Displays, als Lichtquellen in Beleuchtungsanwendungen sowie als Lichtquellen in medizinischen und/oder kosmetischen Anwendungen (z.B. Lichttherapie) eingesetzt werden.
Ausführungsbeispiele A) Synthesebeispiele
Beispiel 1-1 :
Synthese der erfindungsgemäßen Verbindung 1-1
Zwischenstufe: Brom-Spirofluoren-Xanthen-Derivat
31 ,7 g (127 mmol) 1-Bromo-2-diphenylether werden in einem ausgeheizten Kolben in 400 mL getrocknetem THF gelöst. Die Reaktionsmischung wird
auf -78°C gekühlt. Bei dieser Temperatur werden 55 mL einer 2,5M- Lösung n-BuLi in Hexan (127 mmol) langsam zugetropft. Der Ansatz wird 1 Stunde bei -70°C nachgerührt. Anschließend werden 30 g 2- Bromfluorenon (116 mmol) in 100 ml THF gelöst und bei -70°C zugetropft. Nach beendeter Zugabe wird die Reaktionsmischung langsam auf
Raumtemperatur erwärmt, mit NH4CI gequencht und anschließend am Rotationsverdampfer eingeengt.
Die einrotierte Lösung wird vorsichtig mit 300 ml Essigsäure versetzt und anschließend werden 50 ml rauchende HCl zugegeben. Der Ansatz wird auf 75°C erhitzt und 6 Stunden dort gehalten. Dabei fällt ein weißer Feststoff aus. Der Ansatz wird nun auf Raumtemperatur abgekühlt und der ausgefallene Feststoff wird abgesaugt und mit Methanol nachgewaschen. Ausbeute: 45 g (95%)
Analog dazu werden folgende Verbindungen hergestellt:
Verbindung 1-1
17,6 g Biphenyl-4-yl-(9,9-dimethyl-9H-fluoren-2-yl)-amin (49 mmol) und 20,0 g des Brom-Spirofluoren-Xanthens (49 mmol) werden in 400 ml_ Toluol gelöst. Die Lösung wird entgast und mit N2 gesättigt. Danach wird sie mit 2,43 mL (2,43 mmol) einer Tri-tert-Butylphosphin 1 M-Lösung und 0,27 g (1 ,21 mmol) Palladium(ll)acetat versetzt und anschließend werden 14 g Natrium-tert-butylat (146 mmol) zugegeben. Die Reaktionsmischung wird 6 h unter Schutzatmosphäre zum Sieden erhitzt. Das Gemisch wird im Anschluss zwischen Toluol und Wasser verteilt, die organische Phase dreimal mit Wasser gewaschen und über Na2S04 getrocknet und einrotiert.
Nach Filtration des Rohproduktes über Kieselgel mit Toluol wird der verbleibende Rückstand aus Heptan/Toluol umkristallisiert und
abschließend im Hochvakuum sublimiert. Die Reinheit beträgt 99.9%. Die Ausbeute beträgt 27 g (80% d. Th). Analog dazu werden folgende Verbindungen hergestellt:
Synthese der erfindungsgemäßen Verbindung 2-1
Zwischenstufe: Brom-Spirofluoren-Xanthen-Derivat
30 g (129 mmol) 2-Brom-Biphenyl werden in einem ausgeheizten Kolben in 500 mL getrocknetem THF gelöst. Die Reaktionsmischung wird auf -78°C gekühlt. Bei dieser Temperatur werden 57 mL einer 2,5M-Lösung n-Buü in Hexan (142 mmol) langsam zugetropft. Der Ansatz wird 1 Stunde bei - 70°C nachgerührt. Anschließend werden 35,4 g 2-Brom-Xanthen-9-on (129 mmol) in 150 ml THF gelöst und bei -70°C zugetropft. Nach beendeter Zugabe wird die Reaktionsmischung langsam auf Raumtemperatur erwärmt, mit NH4CI gequencht und anschließend am Rotationsverdampfer eingeengt.
Die einrotierte Lösung wird vorsichtig mit 300 ml Essigsäure versetzt und anschließend werden 50 ml rauchende HCl zugegeben. Der Ansatz wird auf 75°C erhitzt und 6 Stunden dort gehalten. Dabei fällt ein weißer Feststoff aus. Der Ansatz wird nun auf Raumtemperatur abgekühlt und der ausgefallene Feststoff wird abgesaugt und mit Methanol nachgewaschen. Ausbeute: 31.5 g (60%)
Analog dazu werden folgende Verbindungen hergestellt:
Verbindung 2-1
Diese Verbindung wird analog zu Verbindung 1-1 hergestellt. Ausbeute: 78%. Reinheit 99.9%
Analog dazu werden folgende Verbindungen hergestellt:
Beispiel 3-1 :
Synthese der erfindungsgemäßen Verbindung 3-1
Zwischenstufe: Brom-Spirofluoren-Xanthen-Derivat
20 g (60 mmol) Spirofluoren-Xanthen werden in 300 ml_ Acetonitril vorgelegt. Anschließend tropft man unter Lichtausschluss bei 0 °C eine Lösung aus 10,7 g (60 mmol) NBS in 50 ml CH3CN hinzu, lässt auf RT kommen und rührt 4 h weiter bei 50°C. Anschließend wird die Mischung mit 150 mL Wasser versetzt und mit CH2CI2 extrahiert. Die organische Phase wird über MgS04 getrocknet und die Lösungsmittel im Vakuum entfernt. Das Produkt wird mit Hexan heiß ausgerührt und abgesaugt. Ausbeute: 13,8 g, 55,9 % d. Th., Reinheit nach 1H-NMR ca. 97 %.
Analog dazu werden folgende Verbindungen hergestellt:
Verbindung 3-1
Diese Verbindung wird analog zu Verbindung 1-1 hergestellt.
Ausbeute: 81%. Reinheit 99.9%
Analog dazu werden folgende Verbindungen hergestellt:
Edukt 1 Edukt 2 Produkt Ausbeute
Zwischenstufe: Spirofluoren-Xanthenboronester-Derivat
20 g (49 mmol) des Spirofluorenxanthen-Bromderivats,13,6 g (53 mmol) Bis(pinacolato)diboran und 14,3 g (146 mmol) Kalliumacetat werden in 500 ml Dioxan suspendiert. Zu dieser Suspension werden 1 ,19 g (1 mmol) 1,1-Bis(diphenylphosphino)ferrocen-dichloropalladium(ll) Komplex mit DCM gegeben. Die Reaktionsmischung wird 16 h unter Rückfluss erhitzt. Nach Erkalten wird die organische Phase abgetrennt, dreimal mit 200 mL Wasser gewaschen und anschließend zur Trockene eingeengt. Der Rückstand wird aus Toluol umkristallisiert (20 g, 90% Ausbeute).
Analog dazu werden folgende Verbindungen hergestellt:
23,8 g Bipheny!-2-yl-biphenyl-4-yl-amin (74 mmol) und 21 ,2 g 4-Chlor- iodbenzol-Bromofluoren (89 mmol) werden in 500 ml_ Toluol gelöst: Die Lösung wird entgast und mit N2 gesättigt. Danach wird sie mit 3 ml_ (3 mmol) einer Tri-tert-Butylphosphin 1M-Lösung und 0,33 g (1 ,48 mmol) Palladium(ll)acetat versetzt und anschließend werden 10,7 g Natrium-tert- butylat (111 mmol) zugegeben. Die Reaktionsmischung wird 12 h unter Schutzatmosphäre zum Sieden erhitzt. Das Gemisch wird im Anschluss zwischen Toluol und Wasser verteilt, die organische Phase dreimal mit Wasser gewaschen und über Na2S04 getrocknet und einrotiert. Nach Filtration des Rohproduktes über Kieselgel mit Toluol wird der verbleibende Rückstand aus Heptan/T oluol umkristallisiert. Die Ausbeute beträgt 29 g (90% d. Th).
Analog dazu werden folgende Verbindungen hergestellt:
Verbindung 4-1
13,8 g (30 mmol) Spirofluoren-Xanthen-pinacolboronester, 13 g (30 mmol) 2,7-Dibromfluorenon werden in 300 mL Dioxan und 9,1 g Caesiumfluorid (60 mmol) suspendiert. Zu dieser Suspension werden 2,2 g (3 mmol) Palladium-dichlorid-bis(tricyclohexylphosphin) gegeben, und die
Reaktionsmischung wird 18 h unter Rückfluss erhitzt. Nach Erkalten wird die organische Phase abgetrennt, über Kieselgel filtriert, dreimal mit 80 mL Wasser gewaschen und anschließend zur Trockene eingeengt. Nach Filtration des Rohproduktes über Kieselgel mit Toluol wird der verbleibende Rückstand aus Heptan/Toluol umkristallisiert und abschließend im
Hochvakuum sublimiert. Die Reinheit beträgt 99.9%. Die Ausbeute beträgt 17,8 g (85% d. Th).
Analog dazu werden folgende Verbindungen hergestellt:
B) Device-Beispiele
Die Herstellung von erfindungsgemäßen OLEDs sowie OLEDs nach dem Stand der Technik erfolgt nach einem allgemeinen Verfahren gemäß WO 04/05891 , das auf die hier beschriebenen Gegebenheiten
(Schichtdickenvariation, Materialien) angepasst wird.
In den folgenden erfinderischen Beispielen E1 bis E6 und in den
Referenzbeispielen V1 bis V4 werden die Daten verschiedener OLEDs vorgestellt. Als Substrate werden Glasplättchen verwendet, die mit strukturiertem ITO (Indium Zinn Oxid) der Dicke 50 nm beschichtet sind. Die OLEDs haben prinzipiell folgenden Schichtaufbau: Substrat / p-dotierte
Lochtransportschicht (HTL1) / Lochtransportschicht (HTL2) / p-dotierte Lochtransportschicht (HTL3) / Lochtransportschicht (HTL4) /
Emissionsschicht (EML) / Elektronentransportschicht (ETL) /
Elektroneninjektionsschicht (EIL) und abschließend eine Kathode. Die Kathode wird durch eine 100 nm dicke Aluminiumschicht gebildet. Die zur Herstellung der OLEDs benötigten Materialien sind in Tabelle 1 gezeigt, die verschiedenen Bauteilaufbauten in Tabelle 2
Alle Materialien werden in einer Vakuumkammer thermisch aufgedampft. Dabei besteht die Emissionsschicht immer aus mindestens einem Matrix- material (Hostmaterial, Wirtsmaterial) und einem emittierenden Dotierstoff (Dotand, Emitter), der dem Matrixmaterial bzw. den Matrixmaterialien durch Coverdampfung in einem bestimmten Volumenanteil beigemischt wird. Eine Angabe wie H1 :SEB1(5%) bedeutet hierbei, dass das Material H1 in einem Volumenanteil von 95% und SEB1 in einem Anteil von 5% in der Schicht vorliegt. Analog kann auch die Elektronentransportschicht oder die Lochinjektionsschichten aus einer Mischung von zwei Materialien bestehen.
Die OLEDs werden standardmäßig charakterisiert. Hierfür werden die Elektrolumineszenzspektren, die Stromeffizienz (gemessen in cd/A), die Leistungseffizienz (gemessen in Im/W) und die externe Quanteneffizienz (EQE, gemessen in Prozent) in Abhängigkeit der Leuchtdichte, berechnet aus Strom-Spannungs-Leuchtdichte-Kennlinien (IUL-Kennlinien) unter Annahme einer lambertschen Abstrahlcharakteristik sowie die
Lebensdauer bestimmt. Die Elektrolumineszenzspektren werden bei einer Leuchtdichte von 000 cd/m2 bestimmt und daraus die CIE 1931 x und y Farbkoordinaten berechnet. Die Angabe EQE @ 10 mA/cm2 bezeichnet die externe Quanteneffizienz bei einer Stromdichte von 10mA/cm2. LD80 @ 50 mA/cm2 ist die Lebensdauer, bis zu der die OLED bei einer
Starthelligkeit bei konstantem Strom von 50mA/cm2 auf 80 % der
Anfangsintensität abgefallen ist.
Tabelle 2: Aufbau der OLEDs
Bsp HTL1 HTL2 HTL3 HTL4 EML ETL EIL
Dicke / Dicke / Dicke / Dicke / Dicke / Dicke /
Dicke / nm nm nm nm nm nm nm
HIM1 : NPB:
ET (50%):LiQ
F4TCNQ HIM1 F4TCNQ NPB H1 :SEB1 (5%) LiQ
V1 (50%)
(3%) 155 nm (3%) 20 nm 20 nm 1 nm
30 nm
20 nm 20 nm
HIM1 : HTMV1:
ETM(50%):LiQ
F4TCNQ HIM1 F4TCNQ HTMV1 H1 :SEB1 (5%) LiQ
V2 (50%)
(3%) 155 nm (3%) 20 nm 20 nm 1 nm
30 nm
20 nm 20 nm
HIM1 : HTM1:
ETM(50%):LiQ
F4TCNQ HIM1 F4TCNQ HTM1 H1 :SEB1 (5%) LiQ
E1 (50%)
(3%) 155 nm (3%) 20 nm 20 nm 1 nm
30 nm
20 nm 20 nm
HIM1 : HT 2:
ETM(50%):LiQ
F4TCNQ HIM1 F4TCNQ HTM2 H1 :SEB1(5%) LiQ
E2 (50%)
(3%) 155 nm (3%) 20 nm 20 nm 1 nm
30 nm
20 nm 20 nm
HIM1 : NPB:
ETM(50%):UQ
F4TCNQ HIM1 F4TCNQ NPB H2:TEG(10%) LiQ
V3 (50%)
(3%) 210 nm (3%) 20 nm 30 nm 1 nm
40 nm
20 nm 20 nm
HIM1: HTMV1 :
ETM(50%):LiQ
F4TCNQ HIM1 F4TCNQ HTMV1 H2:TEG(10%) LiQ
V4 (50%)
(3%) 210 nm (3%) 20 nm 30 nm 1 nm
40 nm
20 nm 20 nm
HIM1 : HTM1:
ET (50%):LiQ
F4TCNQ HIM1 F4TCNQ HTM1 H2:TEG(10%) LiQ
E3 (50%)
(3%) 210 nm (3%) 20 nm 30 nm 1 nm
40 nm
20 nm 20 nm
HIM1 : HTM2:
ETM(50%):LiQ
F4TCNQ HIM1 F4TCNQ HTM2 H2:TEG(10%) LiQ
E4 (50%)
(3%) 210 nm (3%) 20 nm 30 nm 1 nm
40 nm
20 nm 20 nm
HIM1 : HTM3:
ETM(50%):LiQ
F4TCNQ HIM1 F4TCNQ HTM3 H1 :SEB1 (5%) LiQ
E5 (50%)
(3%) 155 nm (3%) 20 nm 20 nm 1 nm
30 nm
20 nm 20 nm
HIM1: HTM4:
ETM(50%):LiQ
F4TCNQ HIM1 F4TCNQ HTM4 H2:TEG(10%) LiQ
E6 (50%)
(3%) 210 nm (3%) 20 nm 30 nm 1 nm
40 nm
20 nm 20 nm
In den vorgestellten Beispielen E1 bis E6 werden die erfindungsgemäßen Verbindungen HTM1 , HTM2, HTM3 und HTM4 in der p-dotierten
Lochtransportschicht HTL3 und der undotierten Lochtransportschicht HTL4 eingesetzt. Dies verdeutlicht beispielhaft die Verwendung als
lochtransportierendes Material. Es können alternativ andere p-Dotanden verwendet werden in Kombination mit den erfindungsgemäßen
Verbindungen. Weiterhin alternativ können die erfindungsgemäßen Verbindungen in einer anderen lochtransportierenden Schicht oder in anderen Device-Aufbauten verwendet werden.
In den Vergleichsvorrichtungen V1 bis V4 sind statt der
erfindungsgemäßen Verbindungen Lochtransportverbindungen aus dem Stand der Technik eingesetzt (Verbindungen NPB bzw. HTMV1).
Beispiel 1 (fluoreszierende OLEDs)
Hier zeigen im Vergleich zu den Referenzvorrichtungen V1 und V2
(Quanteneffizienz 6,2 % und 7,7 %) die beiden erfindungsgemäßen Vorrichtungen E1 und E2 mit 8,0 % und 8,4 % eine höhere
Quanteneffizienz bei 0 mA/cm2. Die Lebensdauer LT80 bei 50 mA/cm2 ist bei den erfindungsgemäßen Vorrichtungen E1 (225 h) und E2 (285 h) auch deutlich besser als bei den Referenzvorrichtungen V1 ( 35 h) und V2 (30 h).
Beispiel 2 (phosphoreszierende OLEDs)
Hier zeigen die Referenzvorrichtungen V3 und V4 (Quanteneffizienz 11 ,7 % bzw. 19,8 %) niedrigere bzw. annähernd gleiche
Quanteneffizienzen bei 2 mA/cm2 wie die erfindungsgemäßen
Vorrichtungen E3 (Quanteneffizienz 20,4 %) und E4 (Quanteneffizienz 9,9 %). Auch sind die Lebensdauern bei 20 mA/cm2 bei den
erfindungsgemäßen Vorrichtungen E3 (160 h) und E4 (215 h) größer als bei den Vergleichs- Vorrichtungen V3 (80 h) und V4 (140 h).
Beispiel 3 (fluoreszierende OLED)
Hier zeigt die erfindunggemäße OLED E5 im Vergleich zu den
Referenzvorrichtungen V1 und V2 (6,2 % und 7,7 %) mit 7,5 % ähnlich hohe bzw. höhere Quanteneffizienz bei 10 mA/cm2. Die Lebensdauer LT80 bei 50 mA/cm2 ist bei der erfindungsgemäßen OLED E5 (145 h) besser als bei den Referenzvorrichtungen V1 (135 h) und V2 (30 h). Beispiel 4 (phosphoreszierende OLED)
Hier zeigt die erfindungsgemäße Vorrichtung E6 (19.2 %) eine höhere Quanteneffizienz bei 2mA/cm2 als die Referenzvorrichtung V3 (11 ,7 %).
Zusammenfassend zeigen die Beispiele die sehr guten Device-Daten, welche bei Verwendung der erfindungsgemäßen Verbindungen als lochtransportierende Materialien in OLEDs erhalten werden. Weiterhin zeigen die Beispiele verbesserte Device-Daten verglichen mit Materialien gemäß dem Stand der Technik.