WO2022243403A1 - Verfahren zur kontinuierlichen aufreinigung von mindestens einem funktionalen material und vorrichtung zur kontinuierlichen aufreinigung von mindestens einem funktionalen material - Google Patents

Verfahren zur kontinuierlichen aufreinigung von mindestens einem funktionalen material und vorrichtung zur kontinuierlichen aufreinigung von mindestens einem funktionalen material Download PDF

Info

Publication number
WO2022243403A1
WO2022243403A1 PCT/EP2022/063508 EP2022063508W WO2022243403A1 WO 2022243403 A1 WO2022243403 A1 WO 2022243403A1 EP 2022063508 W EP2022063508 W EP 2022063508W WO 2022243403 A1 WO2022243403 A1 WO 2022243403A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation
functional material
discharge
condensation
feed
Prior art date
Application number
PCT/EP2022/063508
Other languages
English (en)
French (fr)
Inventor
Philipp Stoessel
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to CN202280036264.5A priority Critical patent/CN117355364A/zh
Priority to EP22729624.1A priority patent/EP4340969A1/de
Priority to KR1020237044196A priority patent/KR20240012506A/ko
Publication of WO2022243403A1 publication Critical patent/WO2022243403A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D7/00Sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0064Feeding of liquid into an evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/009Collecting, removing and/or treatment of the condensate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D7/00Sublimation
    • B01D7/02Crystallisation directly from the vapour phase
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/311Purifying organic semiconductor materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present invention describes a method for the continuous purification of at least one functional material which is used for
  • the invention also relates to a device for the continuous purification of at least one functional material.
  • Organic-based charge transport materials e.g. triarylamine-based hole transporters
  • OLEDs or PLEDs organic or polymer light-emitting diodes
  • O-SC organic solar cells
  • O-FET organic field effect transistors
  • OF-TFT organic thin-film transistors
  • O-IC organic switching elements
  • O-lasers organic laser diodes
  • these materials are usually sublimated and then condensed in order to safely separate by-products and solvent residues.
  • publication KR2020/0123895 proposes the use of an ionic liquid in which a functional material is condensed.
  • the ionic liquid loaded with a functional material is removed from the area of the
  • KR101918233 B1 describes a device for the continuous purification of functional materials, the device having a common chamber, according to the figure between 200 and 300, which can be operated at negative pressure.
  • DE1130793 B describes a device for the continuous vacuum sublimation of difficult-to-sublimate substances.
  • the device should have a very simple design, and a vacuum for discharging the purified functional material should not be lowered or changed.
  • the use of circulating purification aids, such as ionic liquids should be minimized.
  • the use of these auxiliaries should be completely avoided.
  • a further object can be seen in providing devices for the continuous purification of at least one functional material which can be operated cost-effectively and continuously over a long period of time.
  • the device should be easy to control and monitor.
  • the device should be designed to be easily scalable and environmentally friendly.
  • the method should lead to highly pure functional materials so that the lifetime of the electronic devices obtainable from these materials and other properties thereof are not adversely affected.
  • a device for the purification of at least one functional material can be operated cost-effectively and permanently, in particular, if the device comprises a discharge device with a discharge extruder unit or the discharge device is a discharge extruder unit. Furthermore, the device can be constructed in a particularly simple manner. Furthermore, improvements in particular with regard to the purity of materials for the production of electronic devices can be achieved, with the temperature stress during the purification of the materials for the production of electronic devices by the purification method being very low. The use of these materials cleaned in this way leads to very good properties of organic electronic devices, in particular of organic electroluminescent devices, in particular with regard to service life, efficiency and operating voltage.
  • the subject matter of the present invention is therefore a method for the purification of at least one functional material which can be used to produce functional layers of electronic devices which participate in charge injection or charge transport and/or light emission or light decoupling, characterized in that a device is used is, the method being an evaporation, respectively sublimation and/or condensation of the at least one functional material and wherein the device:
  • A) has at least one feed for the at least one functional material, wherein the at least one functional material can be fed in continuously via an input opening provided in the feed;
  • B) has at least one evaporation device which is arranged after the feed, the functional material being able to be introduced into the evaporation device by means of the feed and the functional material being continuously vaporizable via the evaporation device;
  • C) has at least one condensation device, via which the functional material can be condensed continuously after evaporation in the evaporation device;
  • D) has at least one discharge device which is arranged downstream of the condensation device, the functional material being able to be introduced continuously from the condensation device into the discharge device and discharged via a discharge opening provided in the discharge device; and wherein the device has an evaporation chamber, within which at least part of the evaporation device and at least part of the condensation device are provided, wherein the evaporation chamber is connected or can be connected to at least one evacuation device, preferably at least one vacuum pump, and a negative pressure, preferably a high vacuum, within the Evaporation chamber can be generated during operation of the device for continuous purification and the discharge device comprises or represents a discharge extruder unit.
  • the subject of the present invention is therefore also a device for the continuous purification of at least one functional material comprising: A) at least one feed for at least one functional material, wherein the at least one functional material can be fed in continuously via an input opening provided in the feed;
  • the device has an evaporation chamber within which at least part of the evaporation device and at least part of the condensation device are provided, wherein the evaporation chamber is connected or can be connected to at least one evacuation device, and a negative pressure, preferably a high vacuum, within the evaporation chamber during operation of the device can be produced for continuous purification and the discharge device comprises or represents a discharge extruder unit, characterized in that the evaporation device at least partially encloses the condensation device.
  • a negative pressure preferably a high vacuum
  • the device is preferably sealed when the functional material achieved via the discharge unit, which includes or is a discharge extruder unit.
  • the ability to generate a negative pressure, preferably a high vacuum, within the evaporation chamber is achieved in particular by the cleaned functional material extruded from the discharge extruder unit, which can have a viscosity suitable for this purpose, ie can be extruded.
  • a vacuum can be permanently maintained within the device even when the purified material is removed.
  • a negative pressure preferably a high vacuum
  • a negative pressure can be generated within the evaporation chamber by liquefying/softening the at least one functional material in the feed and by increasing the viscosity, preferably solidifying, of the at least one functional material in the discharge device.
  • This design surprisingly succeeds in creating and maintaining a vacuum without complicated and expensive technical measures.
  • the feed comprises a roller provided with a groove and/or an extruder screw, the feed preferably comprising or representing a feed extruder unit.
  • This configuration allows the functional material to be supplied to the device in a particularly simple and reliable manner, with the construction of the device being able to be configured in an uncomplicated manner.
  • a simple control of the amount added is possible, which leads to a controlled purification process.
  • a feeder comprising a grooved roller is shown in more detail in WO10/056325 (PCT/US2009/006082), the description of the feeder set forth in WO10/056325 being incorporated herein by reference .
  • the evaporative material distribution system comprises at least one wiper system, wherein a functional material can be distributed by means of the wiper system on an evaporation unit of the evaporation device, wherein the wiper system is preferably designed as a ROTAFILM, roller wiper or wing wiper system.
  • the evaporation unit is preferably designed as an evaporation surface over which the evaporation material distribution system distributes the functional material to be purified.
  • the feed has at least one degassing opening via which solvents can be removed.
  • the evaporation device can be heated electrically or by means of a fluid, preferably hot air or a heat transport oil, particularly preferably electrically or by means of a heat transport oil.
  • the feed preferably the feed extruder unit, can be temperature-controlled.
  • the device for the continuous purification of at least one functional material comprises an evaporation chamber, within which at least part of the evaporation device and at least part of the condensation device are provided.
  • the evaporation or sublimation and/or condensation of the at least one functional material takes place within the evaporation chamber, with the functional material being purified by these steps.
  • the evaporation device has an evaporation unit, preferably an evaporation surface, via which the at least one functional material can be evaporated and/or sublimated
  • the condensation device comprises a condensation unit, preferably a condensation surface, via which the at least one functional material can be condensed, the evaporation unit and the condensation unit being enclosed by the evaporation chamber.
  • the evaporation chamber preferably encloses the evaporation surface of the evaporation device and the condensation surface of the condensation device.
  • the evaporation device has an evaporation surface over which the functional material can be evaporated
  • the condensation device has a condensation surface over which the functional material can be condensed, the evaporation surface being arranged parallel to the condensation surface.
  • the evaporation device has an evaporation unit, preferably an evaporation surface, wherein the evaporation unit has an evaporation cylinder, preferably designed as an evaporation cylinder, wherein at least part of the surface of the evaporation cylinder can be regarded as an evaporation surface.
  • the condensation device can furthermore be made for the condensation device to comprise a condensation unit, preferably a condensation surface, with the condensation unit having a condensation cylinder, preferably designed as a condensation cylinder, with at least part of the surface of the condensation cylinder being able to be regarded as a condensation surface.
  • the condensation device can be rotatable relative to the evaporation device.
  • a uniform condensation of the functional material can be achieved over the condensation surface, which leads to increased efficiency of the Process and a lower thermal stress on the functional material during purification.
  • the condensation device can be rotated via a drive unit.
  • the feed comprises or represents a feed extruder unit and the discharge device comprises or represents a discharge extruder unit, with an extruder screw of the feed extruder unit being connected to an extruder screw of the discharge extruder unit, so that the extruder screw of the feed extruder unit and the extruder screw of the discharge extruder unit can be rotated via a drive unit are.
  • the condensation device has a condensation cylinder, which is connected to the extruder screw of the feed extruder unit and to the extruder screw of the discharge extruder unit, so that the extruder screw of the feed extruder unit, the condensation cylinder and the extruder screw of the discharge extruder unit can be rotated via at least one, preferably precisely one, drive unit are.
  • the feed comprises or represents a feed extruder unit and the discharge device comprises or represents a discharge extruder unit, the extruder screw of the feed extruder unit being rotatable via a drive unit and the extruder screw of the discharge extruder unit being rotatable via a second drive unit, so that the extruder screw of the feed extruder unit can be rotated independently of the extruder screw of the discharge extruder unit.
  • the second embodiment is somewhat more complex in terms of construction, but has the advantage that the feed can be controlled independently of the discharge. This advantage is advantageous, among other things, when the system is started up.
  • the condensation device can have a condensation cylinder which is connected either to the extruder screw of the feed extruder unit or to the extruder screw of the discharge extruder unit connected so that the condensing barrel is rotatable with either the extruder screw of the feed extruder unit or the extruder screw of the discharge extruder unit.
  • the device can comprise at least two drive units, one drive unit being connected to the extruder screw of the feed extruder unit and a second drive unit being connected to the extruder screw of the discharge extruder unit.
  • the condensation cylinder can be driven with a separate drive unit, so that the condensation cylinder can be rotated independently of the extruder screw of the feed extruder unit or the extruder screw of the discharge extruder unit.
  • the evaporation device encloses the condensation device.
  • the condensation device has a condensate collector, it being possible for a condensed functional material to be collected in the discharge device by means of the condensate collector.
  • the condensate collector is designed in the shape of a funnel, with the funnel mouth being aligned in the direction of the discharge device.
  • the condensation device has a unit for mobilization, it being possible for a condensed functional material to be stripped off part of the surface of the condensation device by means of the unit for mobilization.
  • the mobilization unit therefore promotes the transfer of the condensed functional material into the discharge device.
  • This mobilization unit is not absolutely necessary.
  • a unit for mobilization can be dispensed with.
  • the mobilization unit is designed as a stripping or wiping system.
  • the discharge device preferably the discharge extruder unit, can be temperature-controlled.
  • a temperature gradient can be generated between the evaporation device and the condensation device, with the temperature of the evaporation device being able to be selected to be higher than the temperature of the condensation device.
  • the evaporation device and/or the evaporation chamber preferably comprises at least one opening via which a residue collection container can be connected or is connected.
  • a residue collection container can be connected or is connected.
  • This embodiment allows the device to be operated over a particularly long period of time without the process having to be interrupted.
  • residues can be collected inside the device, in which case the process has to be interrupted after a long time. It should be noted here that these residues are generally only contained in small amounts in the starting material to be purified, so that an improvement over the prior art can be achieved in any case.
  • the evaporation device and/or the evaporation chamber comprises at least two openings, via which a residue collection container can be or is connected in each case.
  • a further improvement of the method can be achieved through this further development, since changing and cleaning a residue collection container is also possible during ongoing operation.
  • the residue collection container can be rendered inert and/or evacuated.
  • the device can be operated in a vertical orientation, with the feed being arranged above the evaporation device and the evaporation device being arranged above the discharge device. Provision can preferably be made for the device to be operable in a vertical orientation, in which case a functional material can be transferred from the feed into the evaporation device by gravity. In a preferred embodiment, it can be provided that the device can be operated in a vertical orientation, with a functional material being able to be introduced from the condensation device into the discharge device by gravity.
  • the discharge device is designed with a discharge opening through which the cleaned functional material can be removed. It can be provided here that the discharge opening is connected to a granulation unit, the granules obtained preferably being able to be introduced into a discharge container.
  • the device has at least one rotary coupling which is arranged between rotatable components of the device, the rotary coupling being selected from a ferrofluidically sealed rotary feedthrough or a double or triple mechanical seal.
  • the condensation device can be designed to be rotatable relative to the evaporation device.
  • the discharge device includes a discharge extruder unit.
  • the feed can comprise a feed extruder unit.
  • the device comprises a camera via which evaporation and/or condensation of a functional material can be observed.
  • the device for the continuous purification of at least one functional material is connected or can be connected to an evacuation device.
  • an evacuation device By connecting to an evacuation device, a negative pressure can be generated within the vaporization chamber, which is useful for achieving vaporization or sublimation.
  • the systems expedient for this purpose are known in the technical field, these systems usually comprising at least one vacuum pump, preferably a vacuum pump system, or being designed as such.
  • the device comprises at least one vacuum pump system, which preferably consists of a multi-stage system, comprising a backing pump, in particular an oil pump or a dry-running scroll pump, a rotary vane pump.
  • Another object of the present invention is a method for purifying at least one functional material, as described above.
  • the functional material which can be used to produce functional layers of electronic devices, is selected from the group consisting of fluorescent emitters, phosphorescent emitters, emitters that exhibit TADF (thermally activated delayed fluorescence), emitters that exhibit hyperfluorescence or Show Hyperphosphorescence, Host Materials, Exciton Blocking Materials, Electron Injection Materials, Electron Transport Materials, Electron Blocking Materials, Hole Injection Materials, Hole Conductor Materials, Hole Blocking Materials, n-dopants, p-dopants, wide-band gap materials,
  • Charge generation materials or combinations thereof These materials, which can be used to produce functional layers of electronic devices, as described above, can be used individually or as a mixture of two, three, four, five or more materials in the method according to the invention. It can be provided that there is a mixture of exactly two, exactly three, exactly four or exactly five functional materials which can be used to produce functional layers of electronic devices and which are based on charge injection or on a Participate in charge transport and/or light emission or light decoupling, and is purified according to the invention.
  • At least one, preferably at least two, particularly preferably all of the functional materials which can be used to produce functional layers of electronic devices, as described above, preferably represents an organic material or comprises/comprise an organic compound.
  • Organic compounds contain carbon atoms and preferably hydrogen atoms.
  • At least one, preferably at least two, particularly preferably all of the functional materials to be purified, which can be used to produce functional layers of electronic devices, as described above, can be provided, for example, as powder/granules or as organic glass. Furthermore, however, the method according to the invention can be carried out in particular as a step in the production of a functional material.
  • a flowable composition of a functional material, as described above, is preferably provided and placed in the supply of the device according to the invention.
  • the at least one functional material, as described has a viscosity in the range from 1 to 10 20 [mPa s], preferably 10 3 to 10 18 [mPa s], particularly preferably 10 6 to 10 14 [mPa s] at a shear of 1 to 10 4 [1/s], preferably 10 to 10 3 [1/s] s], particularly preferably 100 [1/s].
  • a preferred method of measuring viscosity is set forth later.
  • the at least one functional material, as described, in the molten state at the processing temperature shows a degradation of at most 0.1% by weight over a storage period of 10 hours.
  • the processing temperature can be in the range from 50°C to 500°C.
  • the processing temperature is the temperature at which extrusion takes place in the discharge extruder unit.
  • at least one, preferably at least two and particularly preferably all of the functional materials used, as described above show a degradation of at most 0.1% by weight at the melting temperature over a storage period of 10 hours.
  • materials which can be sublimed are preferably purified. It is therefore preferable for at least one, particularly preferably at least two, and particularly preferably all of the functional materials to be purified to be sublimable. Materials that can be sublimated preferably have a low molecular weight, as will be explained later.
  • the purified functional material is extruded in the discharge extruder unit.
  • the feed can comprise a feed extruder unit.
  • the term “extruding” is widely known in the art and refers to the pressing out of a solidifiable mass through an opening. An extruder is used for this. Extruders are also known in the art and are commercially available. The term extruder refers to a conveyor device for carrying out an extrusion.
  • the publication EP 2 381 503 B1 in particular the description of extruders contained therein, is incorporated into the present application for disclosure purposes by reference thereto.
  • single-screw or twin-screw extruders can be used.
  • suitable extruder screws in particular their geometries due to the corresponding process engineering tasks, such.
  • B. feeding, conveying, homogenizing, softening and compressing is part of the general knowledge of the person skilled in the art.
  • Cylinder temperatures in the range from 50° C. to 450° C., preferably 80° C. to 350° C., are preferably set in the intake area of the extruder, preferably the screw extruder, depending on the type of functional material.
  • the functional materials presented above and below can be in the form of powder, flowable mass and/or granules are supplied. This applies in particular if the feed comprises a feed extruder unit.
  • the device according to the invention comprises a discharge extruder unit into which the condensed material is introduced.
  • the material can be fed into the intake area of the discharge extruder unit as a flowable mass, optionally also as a liquid with a low viscosity, which is cooled inside the discharge extruder unit, so that a negative pressure, preferably a high vacuum, can be generated inside the evaporation chamber.
  • the condensed material can be introduced as a condensed solid into the intake area of the discharge extruder unit, whereby this solid can first be slightly heated in order to obtain a viscous mass, through which a negative pressure, preferably a high vacuum, can be generated within the evaporation chamber.
  • the temperature profile used varies depending on the functional material used.
  • temperature profiles in the range from 80°C to 450°C, preferably 90°C to 350°C, particularly preferably 100°C to 300°C, particularly preferably 120°C to 250°C and especially preferably 130°C are preferred set up to 230°C. This applies in particular if the feed comprises a feed extruder unit.
  • the temperatures are preferably in the range from 80° C. to 450° C., preferably 90° C. to 350° C., particularly preferably 100° C. to 300° C., particularly preferably 120° C. to 250° C. and especially preferably 130° C to 230°C.
  • the extruders can each have a temperature profile with a temperature increase or decrease.
  • the temperature can rise in the direction of the evaporation device, so that a powder or granulate is liquefied, while in a discharge extruder unit a liquid or a mass with a relatively low viscosity is solidified by cooling, so that a negative pressure, preferably a high vacuum, is created within the Evaporation chamber can be generated. If the condensation in the condensation device leads to a solid, this can first be slightly melted and then solidified, so that a negative pressure, preferably a high vacuum, can be generated within the evaporation chamber.
  • the specified temperatures refer to cylinder temperatures and can be measured using a thermocouple, e.g. E.g. FeCuNi type L or type J, a PT 100 thermometer or an IR thermometer.
  • the at least one functional material is transferred from the feed into the evaporation device at a temperature of at least 5° C., preferably at least 10° C., above the glass transition temperature of the respective functional material.
  • the feed of the device comprises a feed extruder unit via which the at least one functional material is extruded, the extrusion being carried out with a substance which has a viscosity in the range from 1 to 50000 [mPa s], preferably 10 to 10,000 [mPa s] and more preferably 20 to 1000 [mPa s] measured by plate-plate under rotation at a shear rate of 100 [1/s] and a temperature ranging from 150°C to 450°C .
  • the viscosity values are determined using plate-plate under rotation.
  • the rheological measurements can be carried out using a Discovery Hybrid Rheometer HR-3 equipped with the ETC heating unit from Waters GmbH - UM TA Instruments, D-65760 Eschborn, Germany.
  • the calibration can be performed with references.
  • the following oils can be used:
  • the viscosities are often measured at three different shear rates (10/s, 100/s and 500/s) as a function of the temperature, with the respective conditions being set out in more detail above and below.
  • the shear rate (shear rate) is preferably 100 s -1 .
  • the viscosity values are preferably based on DIN 53019; in particular DIN 53019-1:2008-09, DIN 53019-2:2001-02, DIN 53019-3:2008-09.
  • the at least one functional material to be purified according to the invention which can be used to produce functional layers of electronic devices, as described above, has a melting point in the range from 150° C. to 500° C., preferably 180° C. to 400° C., particularly preferably 220° C to 380°C and especially preferably 250°C to 350°C, measured according to DIN EN ISO 11357-1 and DIN EN ISO 11357-2.
  • the melting temperature results from the measurement of the glass transition temperature in the form of a DSC signal, with further details on the measurement of the melting temperature being presented in connection with the determination of the glass transition temperature.
  • the material has a melting point. In general, it is sufficient that the material used softens at a sufficiently high viscosity.
  • the at least one functional material to be purified cannot have a melting point.
  • the at least one functional material to be purified has a sublimation temperature in the range from 150° C. to 500° C., preferably 180° C. to 400° C., particularly preferably 220° C. to 380° C. and especially preferably 250° C 350°C measured according to DIN 51006.
  • the sublimation temperature results from the vacuum TGA measurement, in which a material is sublimated or evaporated in a targeted manner.
  • the measurement can be carried out with a TG 209 F1 Libra device from Netzsch with the following measurement conditions:
  • the at least one functional material to be purified has a decomposition temperature above 340°C, preferably above 400°C, particularly preferably above 500°C.
  • the decomposition temperature results from a DSC or TGA measurement, with the destruction of the material being determined.
  • the decomposition temperature is the temperature at which 50% of the substance is detected within the heating, which takes place at 5 K per minute (sample size approx. 1 mg).
  • the method according to the invention is always to be carried out below the decomposition temperature of the at least one functional material.
  • the at least one functional material to be purified has a glass transition temperature in the range from 80° C. to 400° C., preferably 90° C. to 300° C., particularly preferably 100° C. to 250° C., in particular preferably 120°C to 220°C and especially preferably 130°C to 200°C measured according to DIN EN ISO 11357-1 and DIN EN ISO 11357-2.
  • the details for determining the glass transition temperature are known to the person skilled in the art from the standards, with the glass transition temperature preferably being determined after a first heating and cooling process.
  • a suitable glass transition temperature can be obtained at a heating rate of 20 K/min for the first and second heating and a cooling rate of 20 K/min for the first and second cooling signal is detected.
  • the glass transition temperature is determined using a sample that is prepared by a first heating process at a heating rate of 20 K/min and a quenching process that is prepared by immediately cooling the heated sample in liquid nitrogen and the glass transition temperature by a second heating of the sample pretreated in this way is determined at a heating rate of 50 K/min. With these measures, the glass transition temperature can also be reliably determined for substances whose glass transition is superimposed by a recrystallization temperature in other methods.
  • This Measurement methods in which the first cooling is effected by a quenching process and the second heating is carried out at a heating rate of 50 K/min is particularly preferred over others that work with lower cooling rates or lower heating rates, for example.
  • the heating range is preferably in the range of 0°C to 350°C if the melting temperature is below 300°C. In the case of substances with a higher melting point, the heating area is correspondingly increased upwards, although this must be kept below the decomposition temperature.
  • the upper temperature of the heating zone is at least 5°C below the maximum decomposition temperature.
  • the amount of sample is preferably in the range of 10 to 15 mg. Further information regarding the determination of the glass transition temperature can be found in the examples. Particularly preferred measuring devices are set out in the examples.
  • the at least one functional material to be purified is used in the form of a mixture, the mixture preferably comprising at least two functional materials, as described above.
  • the materials used in the mixture have similar sublimation and/or softening properties. The more similar these properties, the better the quality of the resulting mixture of purified material. It can therefore preferably be provided that the at least two functional materials used in a mixture, which can be used in particular for the production of functional layers of electronic devices, and have essentially similar softening, evaporation and/or sublimation properties.
  • the evaporation or sublimation and/or condensation of the at least one functional material is carried out at a pressure in the range from 10 -3 mbar to 10 7 mbar, preferably 10 -4 mbar to 10 -6 mbar.
  • the at least one functional material to be purified which can be used in particular for the production of functional layers of electronic devices, is at least one functional material Participate in charge injection or in charge transport and/or light emission or light extraction, selected from the group consisting of the benzenes, fluorenes, indenofluorenes, spirobifluorenes, carbazoles, indenocarbazoles, indolocarbazoles, spirocarbazoles, pyrimidines, triazines, quinazolines, quinoxalines, pyridines, quinolines , isoquinolines, lactams, triarylamines, dibenzofurans, diazadibenzofurans, dibenzothiophenes, diazadibenzothiophenes, imidazoles, benzimidazoles, benzoxazoles, benzothiazoles, 5-aryl-phenanthridin-6-one, 9, 10-dihydrophenanthrene
  • the functional materials that can be used to produce functional layers of electronic devices are often organic compounds that provide the functions mentioned above and below. Therefore, the terms functional connection or functional material are often to be understood as synonymous.
  • Compounds with hole-injecting properties also called hole-injecting materials herein, facilitate or enable the transfer of holes, i. H. positive charges, from the anode into an organic layer.
  • Compounds with hole transport properties are capable of transporting holes, ie positive charges, which are generally injected from the anode or an adjacent layer, for example a hole injection layer.
  • Preferred compounds exhibiting hole-injecting and/or hole-transporting properties include, for example, triarylamine, benzidine, tetraaryl-para-phenylenediamine, triarylphosphine, phenothiazine, phenoxazine, dihydrophenazine, thianthrene, dibenzo-para-dioxine , phenoxathiine, carbazole, azulene, thiophene, pyrrole and furan derivatives.
  • phenylenediamine derivatives (US3615404), arylamine derivatives (US3567450), amino-substituted chalcone derivatives (US 3526501), styryl anthracene derivatives (JP-A-56 -46234), Polycyclic Aromatic Compounds (EP 1009041), Polyarylalkane Derivatives (US3615402), Fluorenone Derivatives (JP-A-54-110837), Hydrazone Derivatives (US3717462), Acylhydrazones, Stilbene Derivatives (JP-A-61 -210363), silazane derivatives (US4950950), polysilanes (JP-A-2-204996), aniline copolymers (JP-A-2-282263), thiophene oligomers (JP Heisei 1 (1989) 211399), polythiophenes, poly(N-vin
  • Polypyrroles polyanilines and other electroconductive macromolecules, porphyrin compounds (JP-A-63-2956965, US4720432), aromatic dimethylidene type compounds, carbazole compounds such as CDBP, CBP, mCP, aromatic tertiary amine and styrylamine compounds (US4127412) such as benzidine-type triphenylamines, styrylamine-type triphenylamines and diamine-type triphenylamines.
  • arylamine dendrimers can be used (JP Heisei 8 (1996) 193191), monomeric triarylamines (US3180730), triarylamines with one or more vinyl radicals and/or at least one functional group with active hydrogen (US3567450 and US3658520) or tetraaryldiamines (the two tertiary amine units are connected via an aryl group). Even more triarylamino groups can also be present in the molecule. Phthalocyanine derivatives, naphthalocyanine derivatives, butadiene derivatives and quinoline derivatives such as dipyrazino[2,3-f:2',3'-hjquinoxalinehexacarbonitrile are also suitable.
  • any known electron blocking material can be used.
  • suitable electron blocking materials are transition metal complexes such as Ir(ppz)3 (US2003/0175553).
  • Compounds which have electron injecting and/or electron transport properties are, for example, pyridine, pyrimidine, pyridazine, pyrazine, oxadiazole, quinoline, quinoxaline, anthracene, benzanthracene, pyrene, perylene, benzimidazole, triazine -, ketone, phosphine oxide and phenazine derivatives, but also triarylboranes.
  • Particularly suitable compounds for electron-transporting and electron-injecting layers are metal chelates of 8-hydroxyquinoline (eg LiQ, AlQ 3 , GaQ 3 , MgQ 2 , ZnQ 2 , InQ 3 , ZrQ 4 ), BAIQ, Ga oxinoid complexes, 4-azaphenanthrene -5-ol-Be complexes (US5529853, see formula ET-1), butadiene derivatives (US4356429), heterocyclic optical brighteners (US4539507), benzimidazole derivatives (US2007/0273272), such as TPBI (US5766779, see formula ET -2), 1,3,5-triazines, eg spirobifluorene-triazine derivatives (eg according to DE102008064200), pyrenes, anthracenes, tetracenes, fluorenes, spirofluorenes, dendrimers, tetracenes (
  • Formula ET-3 pyridine derivatives (JP2004-200162), phenanthrolines, especially 1,10-phenanthroline derivatives, such as eg BCP and Bphen, also several phenanthrolines linked via biphenyl or other aromatic groups (US2007-0252517) or phenanthrolines linked with anthracene (US2007-0122656, cf. formulas ET-4 to ET-6 and pyrimidine or triazines such as in formula ET-7 and ET-8 described.
  • the compounds mentioned according to the formulas (ET-1) to (ET-8) can also be substituted: Heterocyclic organic compounds such as, for example, thiopyran dioxides, oxazoles, triazoles, imidazoles or oxadiazoles are also suitable.
  • oxazoles preferably 1,3,4-oxadiazoles
  • compounds of the formulas ET-6, ET-7, ET-8 and ET-9 which are described, inter alia, in US 2007/0273272 A1 are set forth;
  • Preferred compounds are the following according to the formulas (ET-9) to (ET-10):
  • Organic compounds such as derivatives of fluorenone, fluorenylidenemethane, perylenetetracarbonic acid, anthraquinonedimethane, diphenoquinone, anthrone and anthraquinonediethylenediamine can also be used.
  • the functional materials used in the method according to the invention can include emitters.
  • emitter refers to a material which, after excitation, which can take place through the transfer of any type of energy, allows a transition involving radiation, with the emission of light, into a ground state.
  • fluorescent and phosphorescent emitters are known, fluorescent and phosphorescent emitters.
  • fluorescent emitter refers to materials or compounds in which there is a radiation-prone transition from an excited singlet state to the ground state.
  • phosphorescent emitter preferably refers to luminescent materials or compounds that include transition metals.
  • Emitters are often also referred to as dopants if the dopants bring about the properties described above in a system.
  • a dopant is understood to mean that component whose proportion in the mixture is the smaller.
  • a matrix material in a system containing a matrix material and a dopant is understood to mean that component whose proportion in the mixture is the greater.
  • the term phosphorescent emitter can also be understood to mean, for example, phosphorescent dopants.
  • Compounds that can emit light include fluorescent emitters and phosphorescent emitters, among others.
  • Corresponding compounds which contain elements from group 6 to 10, preferably 8 to 10 (Mo, W, Re, Cu, Ag, Au, Zn, Ru, Os, Rh, Ir, Pd, Pt, preferably Ru, Os , Rh,
  • Preferred compounds which can serve as fluorescent emitters are set out below by way of example.
  • Preferred fluorescent emitters are selected from the class of monostyrylamines, distyrylamines, tristyrylamines, tetrastyrylamines, styrylphosphines, styryl ethers and arylamines.
  • a monostyrylamine is understood as meaning a compound which contains a substituted or unsubstituted styryl group and at least one, preferably aromatic, amine.
  • a distyrylamine is understood as meaning a compound which contains two substituted or unsubstituted styryl groups and at least one, preferably aromatic, amine.
  • a tristyrylamine is understood as meaning a compound which contains three substituted or unsubstituted styryl groups and at least one, preferably aromatic, amine.
  • a tetrastyrylamine is understood as meaning a compound which contains four substituted or unsubstituted styryl groups and at least one, preferably aromatic, amine.
  • the styryl groups are particularly preferably stilbenes, which can also be further substituted.
  • Corresponding phosphines and ethers are in Defined by analogy with the amines.
  • An arylamine or an aromatic amine in the context of the present invention is understood as meaning a compound which contains three substituted or unsubstituted aromatic or heteroaromatic ring systems bonded directly to the nitrogen. At least one of these aromatic or heteroaromatic ring systems is preferably a fused ring system, preferably having at least 14 aromatic ring atoms.
  • aromatic anthracenamines are aromatic anthracenamines, aromatic anthracenediamines, aromatic pyrenamines, aromatic pyrenediamines, aromatic chrysenamines or aromatic chrysenediamines.
  • An aromatic anthracene amine is understood to mean a compound in which a diarylamino group is attached directly to an anthracene group, preferably in the 9-position.
  • An aromatic anthracenediamine is understood to mean a compound in which two diarylamino groups are bonded directly to an anthracene group, preferably in the 2,6- or 9,10-position.
  • Aromatic pyrenamines, pyrenediamines, chrysenamines and chrysenediamines are defined analogously, the diarylamino groups on the pyrene preferably being bonded in the 1-position or in the 1,6-position.
  • fluorescent emitters are selected from indenofluorenamines or -diamines, which are set out inter alia in document WO06/122630; Benzoindenofluorenamines or -diamines, which are set out inter alia in document WO2008/006449; and dibenzoindenofluorenamines or diamines, which are set out inter alia in document WO2007/140847.
  • Examples of compounds that can be used as fluorescent emitters from the class of styrylamines are substituted or unsubstituted tristilbene amines or the dopants described in WO06/000388, WO06/058737, WO06/000389, WO07/065549 and WO07 /115610 are described.
  • Distyrylbenzene and distyrylbiphenyl derivatives are described in US 5121029. Further styrylamines can be found in US 2007/0122656 A1.
  • Particularly preferred styrylamine compounds are the compounds of the formula EM-1 described in US Pat. No. 7,250,532 B2 and the compounds of the formula EM-2 set out in DE 102005058557 A1: Formula EM-1 Formula EM-2
  • triarylamine compounds or groups or structural elements are the compounds of the formulas EM-1-8 to EM-8 set out in publications CN1583691, JP08/053397 and US6251531, EP1957606, US2008/0113101, US2006/210830, WO08/006449 and DE102008035413 and their derivatives:
  • Formula EM-5 Other preferred compounds that can be used as fluorescent emitters are selected from derivatives of naphthalene, anthracene, tetracene, benzanthracene, benzphenanthrene (DE 102009005746), fluorene, fluoranthene, periflanthene, indenoperylene, phenanthrene, perylene (US 2007/0252517 A1), Pyrene, chrysene, decacyclene, coronene, tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, fluorene, spirofluorene, rubrene, coumarin (US 4769292, US 6020078, US 2007/0252517 A1), pyran, oxazole, benzoxazole, benzothiazole, benzimidazole, pyrazine, cinnamic acid esters,
  • anthracene compounds particularly preferred are 9,10-substituted anthracenes such as 9,10-diphenylanthracene and 9,10-bis(phenylethynyl)anthracene. 1,4-Bis(9'-ethynyl anthracenyl) benzene is also a preferred dopant.
  • DMQA N,N'-dimethylquinacridone
  • DCM 4-(dicyanoethylene)-6-(4-dimethylamino-styryl-2- methyl)-4H-pyran
  • thiopyran polymethine, pyrylium and thiapyrylium salts, periflanthene and indenoperylene.
  • Blue fluorescence emitters are preferably polyaromatics such as 9,10-di(2-naphthylanthracene) and other anthracene derivatives, derivatives of tetracene, xanthene, perylene such as 2,5,8,11-tetra-f-butyl-perylene, phenylene, for example 4,4'-(bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl, fluorene, fluoranthene, arylpyrenes (US 2006/0222886 A1), arylenevinylenes (US 5121029, US 5130603), bis(azinyl )imine boron compounds (US 2007/0092753 A1), bis(azinyl)methene compounds and carbostyryl compounds.
  • polyaromatics such as 9,10-di(2-naphthylanthracene) and other anthracene derivatives,
  • blue fluorescent emitters are the hydrocarbons disclosed in DE102008035413. Also particularly preferred are the compounds set forth in WO2014/111269, in particular compounds having a bis-indenofluorene backbone.
  • the documents DE 102008035413 and WO2014/111269 cited above are incorporated into the present application for disclosure purposes by reference thereto.
  • Phosphorescence within the meaning of this invention is understood as meaning luminescence from an excited state with a higher spin multiplicity, ie a spin state >1, in particular from an excited triplet state.
  • a spin state >1 in particular from an excited triplet state.
  • all luminescent complexes with transition metals or lanthanides, in particular all iridium, platinum and copper complexes are to be regarded as phosphorescent compounds.
  • Particularly suitable phosphorescent compounds are compounds which, when suitably excited, emit light, preferably in the visible range, and also contain at least one atom with an atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80. in particular a metal with this atomic number.
  • Compounds containing copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium are preferably used as phosphorescence emitters, in particular compounds containing iridium or platinum.
  • Examples of the emitters described above can be found in applications WO00/70655, WO2001/41512, WO2002/02714, WO2002/15645, EP1191613, EP1191612, EP1191614, WO05/033244, W005/019373, US2005/0258742, WO2009/146770, WO2010/015307, WO2010/031485, WO2010/054731,
  • all phosphorescent complexes are suitable as are used in accordance with the prior art for phosphorescent electroluminescent devices and as are known to the person skilled in the field of organic electroluminescence, and the person skilled in the art can use further phosphorescent complexes without any inventive activity.
  • Preferred ligands are 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2-(2-thienyl)pyridine derivatives, 2-(1-naphthyl)pyridine derivatives, 1-phenylisoquinoline derivatives, 3-phenylisoquinoline derivatives or 2-phenylquinoline derivatives. All of these compounds may be substituted, e.g., for blue, with fluoro, cyano, and/or trifluoromethyl substituents.
  • Auxiliary ligands are preferably acetylacetonate or picolinic acid.
  • complexes of Pt or Pd with tetradentate ligands according to formula EM-19 are suitable as emitters.
  • Pt porphyrin complexes with an enlarged ring system (US 2009/0061681 A1) and Ir complexes are also suitable, e.g. 2,3,7,8, 12, 13, 17, 18-octaethyl-21H, 23H-porphyrin-Pt(II ), tetraphenyl-Pt(II)-tetrabenzoporphyrin (US 2009/0061681 A1), c/s-bis(2-phenylpyridinato-N,C 2 ')Pt(II), cis-bis(2-(2'-thienyl )pyridinato-N,C 3 ')Pt(II), c/s-bis-(2-(2'-thienyl)quinolinato-N,C 5 ')Pt(II), (2-(4,6- Difluorophenyl)pyridinato-N,C 2 ')Pt(II)(acetylacet
  • Particularly preferred compounds that are used as phosphorescent dopants include those in US 2001/0053462 A1 and Inorg. Chem. 2001, 40(7), 1704-1711, JACS 2001, 123(18), 4304-4312 describe compounds of the formula EM-20 and derivatives thereof.
  • the compounds of the formula EM-21 to EM-28 described in US7238437, US2009/008607 and EP1348711 and their derivatives can be used as emitters. Further emitters which can be purified according to the invention are described in WO00/70655, WO2001/41512, WO2002/02714, WO2002/15645, EP1191613, EP1191612, EP1191614, WO05/033244, WO05/019373,
  • a hyperfluorescence and/or hyperphosphorescence system is preferably formed by a suitable combination of compounds.
  • Such hyperfluorescence and/or hyperphosphorescence systems form a preferred embodiment of functional materials to be purified according to the invention.
  • a fluorescent emitter in combination with one or more phosphorescent materials (triplet emitters) and/or a compound that represents a TADF (thermally activated delayed fluorescence) host material is preferably used for this purpose.
  • WO2015/091716 and WO2016/193243 disclose OLEDs which contain both a phosphorescent compound and a fluorescent emitter in the emission layer, with the energy being transferred from the phosphorescent compound to the fluorescent emitter (hyperphosphorescence).
  • the phosphorescent compound behaves like a host material.
  • host materials have higher singlet and triplet energies compared to the emitters, so that the energy of the host material can also be transferred to the emitter as optimally as possible.
  • the systems disclosed in the prior art have just such an energy relation.
  • a fluorescent emitter can preferably be used in combination with a TADF host material and/or a TADF emitter, as set out above.
  • thermally activated delayed fluorescence is described, for example, by BH Uoyama et al., Nature 2012, Vol. 492, 234.
  • TADF thermally activated delayed fluorescence
  • the emitter AE(Si - Ti) of, for example, less than about 2000 cm -1 is required.
  • another connection can be provided in the matrix, which has a strong spin-orbit coupling, so that the spatial proximity and the possible interaction between the An inter-system crossing is made possible for molecules, or the spin-orbit coupling is generated via a metal atom contained in the emitter.
  • Compounds that are used as host materials, in particular together with emitting compounds, include materials from different substance classes.
  • Host materials generally have larger band gaps between HOMO and LUMO than the emitter materials used.
  • preferred host materials exhibit either hole or electron transport material properties.
  • host materials can exhibit both electron and hole transport properties.
  • Host materials are sometimes also referred to as matrix material, in particular if the host material is used in combination with a phosphorescent emitter in an OLED.
  • Preferred host materials or co-host materials which are used in particular together with fluorescent dopants, are selected from the classes of oligoarylenes (eg 2,2',7,7'-tetraphenylspirobifluorene according to EP 676461 or dinaphthylanthracene), in particular the oligoarylenes containing fused aromatic groups such as anthracene, benzanthracene, benzphenanthrene (DE 102009005746, WO09/069566), phenanthrene, tetracene, coronene, chrysene, fluorene, spirofluorene, perylene, phthaloperylene, naphthalooperylene, decacyclene, rubrene, the oligoarylenevinylene (e.g.
  • DPVBi 4,4'-bis(2,2-diphenyl-ethenyl)-1,1'-biphenyl) or Spiro-DPVBi according to EP 676461), the polypodal metal complexes (e.g.
  • the electron-conducting compounds in particular ketones, phosphine oxides, sulfoxides, carbazoles, spiro-carbazoles, indenocarbazoles, etc. (e.g. according to W005/084081 and W005/084082), the atropisomers (eg according to WO06/048268), the boronic acid derivatives (eg according to WO06/117052) or the benzanthracenes (eg according to WO08/145239).
  • oligoarylenes containing anthracene, benzanthracene and/or pyrene or atropisomers of these compounds.
  • an oligoarylene is to be understood as meaning a compound in which at least three aryl or arylene groups are bonded to one another.
  • Preferred host materials are selected in particular from compounds of the formula (H-100),
  • Ar 5 -(Ar 6 ) p -Ar 7 H-100
  • the group Ar 6 is particularly preferably anthracene and the groups Ar 5 and Ar 7 are bonded in the 9- and 10-position, it being possible for these groups to be substituted.
  • the groups Ar 5 and/or Ar 7 is a fused aryl group selected from 1- or 2-naphthyl, 2-, 3- or 9-phenanthrenyl or 2-, 3-, 4-, 5-, 6- or 7-benzanthracenyl.
  • Anthracene-based compounds are described in US 2007/0092753 A1 and US 2007/0252517 A1, for example 2-(4-methylphenyl)-9,10-di-(2-naphthyl)anthracene, 9-(2-naphthyl) -10-(1,1'-biphenyl)anthracene and 9,10-bis[4-(2,2-diphenylethenyl)phenyl]anthracene, 9,10-diphenylanthracene, 9,10- bis(phenylethynyl)anthracene and 1,4-bis(9'-ethynylanthracenyl)benzene.
  • Further preferred compounds are derivatives of arylamine, styrylamine, fluorescein, diphenylbutadiene, tetraphenylbutadiene, cyclopentadiene, tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, coumarin, oxadiazole, bisbenzoxazoline, oxazole, pyridine, pyrazine, imine, benzothiazole, benzoxazole, benzimidazole (US 2007/0092753 A1), e.g.
  • styrylarylene derivatives e.g. 9,10-bis[4-(2,2- diphenylethenyl)phenyl]anthracene and distyrylarylene derivatives (US 5121029), diphenylethylene, vinylanthracene, diaminocarbazole, pyran, thiopyran, diketopyrrolo
  • TNB 4,4'-bis[N-(1-naphthyl)-N-(2-naphthyl)amino]biphenyl
  • Metal oxinoid complexes such as LiQ or AIQ 3 can be used as co-hosts.
  • CBP N,N-biscarbazolylbiphenyl
  • carbazole derivatives e.g. according to WO05/039246, US2005/0069729, JP2004/288381, EP1205527 or W008/086851
  • azacarbazoles e.g according to EP1617710, EP1617711, EP1731584, JP2005/347160
  • ketones e.g. according to W004/093207 or according to DE102008033943
  • phosphine oxides e.g.
  • diazaphosphole derivatives e.g. according to DE102009022858
  • triazole and oxazole derivatives Derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, distyrylpyrazine derivatives, thiopyrane dioxide derivatives, phenylenediamine derivatives, tertiary aromatic amines, styrylamines, amino-substituted chalcone derivatives, indoles, hydrazone derivatives, stilbene Derivatives, silazane derivatives, aromatic dimethylidene compounds, carbodiimide derivatives, metal complexes of 8-hydroxyquinoline derivatives such as AIQ3, the 8-hydroxyquinoline complexes can also contain triarylaminophenol ligands (US 2007/0134514 A1), metal complex polysilane compounds as well as thiophene,
  • Si tetraaryls are set out, for example, in the documents US 2004/0209115, US 2004/0209116, US 2007/0087219 A1 and H. Gilman, EA Zuech, Chemistry & Industry (London, United Kingdom), 1960, 120.
  • Particularly preferred Si tetraaryls are described by the formulas H-114 to H-121.
  • Particularly preferred compounds for producing the matrix for phosphorescent dopants are, inter alia, in DE102009022858,
  • substances which have at least one nitrogen atom are particularly preferred. These preferably include aromatic amines, triazine and carbazole derivatives. In particular, carbazole derivatives show a surprisingly high efficiency. Lead triazine derivatives Unexpectedly long service lives of the electronic devices with the compounds mentioned.
  • compounds can be purified which improve the transition from the singlet to the triplet state and which, used in support of the functional compounds with emitter properties, improve the phosphorescence properties of these compounds.
  • Carbazole and bridged carbazole dimer units are particularly suitable for this purpose, as described, for example, in WO04/070772 and WO04/113468.
  • n-dopants are understood as meaning reducing agents, i.e. electron donors.
  • WO2012/168358 fluorenes (e.g. WO2012/031735), radicals and diradicals (e.g. EP1837926, WO2007/107306), pyridines (e.g. EP2452946, EP2463927), N-heterocyclic compounds (e.g. WO2009/000237) and acridines (0.7 /145355).
  • the functional material can be a wide band gap material.
  • Wide band gap material is understood to mean a material within the meaning of the disclosure of US7294849. These systems show particularly advantageous performance data in electroluminescent devices.
  • any known hole-blocking material can be used for purification.
  • hole blocking materials Bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum(III) (BAIQ), Fac-tris(1-phenylpyrazolato- N,C2)iridium(l II) (lr(ppz)3) , phenanthroline derivatives such as BCP, or phthalimides such as TMPP or the hole-blocking materials as described in WO00/70655, WO01/41512 and WO01/93642.
  • preferred functional materials which can be used to produce functional layers of electronic devices if they are low-molecular compounds, preferably have a molecular weight of ⁇ 2000 g/mol, particularly preferably ⁇ 1500 g/mol, particularly preferably ⁇ 1200 g/mol and very particularly preferably ⁇ 1000 g/mol.
  • Low molecular weight compounds can be sublimated or vaporized.
  • a granulate can preferably be obtained by the present method.
  • Preferred granules can contain all organically functional materials that are necessary for producing the respective functional layer of the electronic device. For example, if a hole-transport, hole-injection, electron-transport, electron-injection layer is made up of exactly two functional compounds, then the granules contain precisely these two compounds as organic functional materials. If an emission layer has, for example, an emitter in combination with a matrix or host material, then the formulation as an organic functional material includes exactly the mixture of emitter and matrix or host material, as is explained in more detail elsewhere in the present application.
  • Functional materials are generally the organic or inorganic materials that are placed between the anode and the cathode.
  • the organic functional material is selected from the group consisting of fluorescent emitters, phosphorescent emitters, emitters that show TADF (thermally activated delayed fluorescence), emitters that show hyperfluorescence or hyperphosphorescence, host materials, Exciton blocking materials Electron injecting materials, electron transport materials, electron blocking materials, hole injecting materials, hole conducting materials, hole blocking materials, n-dopants, p-dopants, wide band gap materials, charge generation materials.
  • the purified functional material preferably a granulate, is preferably used to produce an electronic device.
  • An electronic device is understood as meaning a device which contains anode, cathode and at least one functional layer lying in between, this functional layer containing at least one organic or organometallic compound.
  • FIG. 1 shows a preferred embodiment of a device for continuous purification according to the present invention
  • FIG. 2 shows a further embodiment of a device for continuous purification according to the present invention.
  • FIG. 1 shows a schematic representation of a device 10 for the continuous purification of at least one functional material according to the present invention.
  • the device 10 shown comprises a feed 12 for at least one functional material, an evaporation device 14, a condensation device 16 and a discharge device 18.
  • the feed 12 for at least one functional material is presently configured as a feed extruder unit and includes a storage container 20, which can preferably be rendered inert.
  • the feed 12 designed as a feed extruder unit can be temperature-controlled via a temperature control unit 22, which can heat the different areas of the feed 12 to different temperatures, so that a temperature gradient can be generated.
  • the feed 12 is equipped with a degassing opening 24 via which residues of solvent can be removed.
  • the evaporation device 14 comprises an evaporation material distribution system 26 which distributes the functional material to be purified over the surface of the evaporation unit 28 .
  • the evaporation device 14 can be heated with a fluid, the Fluid can be heated via a heating system 30 for the evaporation device 14, which is supplied to the evaporation unit 28 via a heating fluid supply line 32 and is derived from this via a heating fluid outlet line 34.
  • the evaporation device comprises an opening which is connected to a residue collection container 38 via a residue outlet line 36 .
  • the evaporation device 14 in combination with the feed 12 and the discharge device 18 forms an evaporation chamber 40 which can be evacuated via a vacuum pump system 42 .
  • the functional material to be purified is evaporated or sublimated in the evaporation device 14 and condensed in the condensation device 16 .
  • the condensation device 16 is equipped with a condensate collector 44 , a condensed functional material being able to be collected in the discharge device 18 by means of the condensate collector 44 .
  • the condensed functional material is conducted into the discharge device 18 via the condensate collector 44 .
  • the discharge device 18 is designed as a discharge extruder unit and can be temperature-controlled via a temperature control unit 46 .
  • the condensed functional material is solidified in the discharge extruder unit, it being possible to generate a negative pressure, preferably a high vacuum, within the evaporation chamber 40 .
  • the discharge device 18 comprises a discharge opening which is connected to a discharge container 48 via which the cleaned functional material can be removed.
  • the discharge opening is connected to a granulation unit, with the granules obtained being introduced into a discharge container 48 .
  • FIG. 2 shows another embodiment of a device for continuous purification according to the present invention.
  • This embodiment shows similarities to a device for the purification of at least one functional material, as is described in more detail in KR 2019/0125700.
  • the device presented in KR 2019/0125700 does not have any Discharge device with a discharge extruder unit, but a conventional collection container, which must be removed to remove the purified material.
  • the in Figure 2 in a schematic representation of a device 110 for the continuous purification of at least one functional material according to the present invention.
  • the device 110 shown comprises a feed 112 for at least one functional material, an evaporation device 114, a condensation device 116, an evaporation chamber 120 and a discharge device 118.
  • FIG. 2 is not preferred over the one described in FIG. 1, since a functional material to be purified is exposed to a higher temperature stress, since it is longer over time.
  • the special configuration of the discharge device 118 which comprises a discharge extruder unit, is essential.
  • the further details of the discharge extruder unit essentially correspond to the embodiment shown in FIG. 1, so that it has a discharge opening through which the cleaned functional material can be removed.
  • the discharge opening is connected to a granulation unit, in which case the granules obtained can be introduced into a discharge container.
  • Tg glass transition temperature
  • CBP has long been used as a host material in phosphorescent OLEDs (see BMA Baldo et al, Applied Physics Leiters 1999, 75(1), 4-6).
  • the glass transition temperature of the material is difficult to determine, so this example serves in particular to provide evidence that the glass transition temperature can be determined.
  • the particularly preferred configuration of the measurement shows that CBP has a glass transition temperature of approximately 115°C.
  • the material is cleaned by repeated recrystallization from dioxane and finally cleaned by double "sublimation” (325 °C; 10-4 mbar; evaporation from the liquid phase; condensation as a solid).
  • the glass transition temperature Tg was determined using a DSC device from Netsch, DSC 204/1/G Phoenix. Samples in the size of 10-15 mg were measured in each case.
  • Table 1 Determination of the Tg of CBP Table 1: Determination of the Tg of CBP (continued)
  • the apparatus consists of the following components, which are arranged one behind the other and are vacuum-tight in continuous operation:
  • Feed extruder unit :
  • turbopump station consisting of a NEXT240D turbopump with ISO100 flange and an nXDSIOi as backing pump, TAV5 ventilation valve and WRGSDN25KF pressure sensor, active wide-range gauge
  • Table 2 describes functional materials FM and process conditions
  • Tg glass transition point from DSC, 1st heating, heating rate 20 K/min, cooling rate 20 K/min., measuring range 0-350°C.
  • Tm melting point from DSC, conditions see description for Tg.
  • Tsubl.-Vac.-TGA the evaporation/sublimation temperature results from the vacuum TGA measurement as previously described.
  • tube -Process Process temperature during evaporation/sublimation Tzers.: Decomposition temperature, from thermal aging test under high vacuum in a sealed Duran glass ampoule with exclusion of light at the specified temperature for 100 h
  • p-Process Process pressure during evaporation/sublimation Analytics: According to 1 H-NMR, HPLC and ICP-MS, the functional materials FM obtained according to the above process have the same purity profile as materials which were produced in batch sublimation systems according to the prior art.
  • Use of the functional materials FM1 to FM4 in OLED components The functional materials FM1 to FM4 obtained using the process described above are installed, for example, as mixed-host materials in the emission layer of phosphorescent OLED components.
  • OLEDs are produced using a general method according to WO 2004/058911, which is adapted to the conditions described here (layer thickness variation, materials used). The materials used are listed in Table 3.
  • the OLED has the following layer structure:
  • HIL1 Hole injection layer 1 made of HTM1 doped with 5% NDP-9 (commercially available from Novaled), 20 nm
  • HTL1 Hole transport layer 1 from HTM1, 40 nm
  • HTM2 Hole transport layer 2 (HTL2), HTM2 20 nm
  • Emission layer EML
  • mixed-host FM1:FM3 40:60
  • Electron Transport Layer (ETL2), from ETL1, 5nm Electron Transport Layer (ETL1), from ETL1(50%):ETL2(50%), 30nm Electron Injection Layer (EIL) from ETM2, 1nm Aluminum Cathode, 100nm

Abstract

Die vorliegende Erfindung beschreibt ein Verfahren zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material, welches zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar ist, die an einer Ladungsinjektion oder an einem Ladungstransport und/oder einer Lichtemission oder Lichtauskopplung teilhaben. Die Erfindung betrifft ferner eine Vorrichtung zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material.

Description

Verfahren zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material und Vorrichtung zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material
Die vorliegende Erfindung beschreibt ein Verfahren zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material, welches zur
Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar ist, die an einer Ladungsinjektion oder an einem Ladungstransport und/oder einer Lichtemission oder Lichtauskopplung teilhaben. Die Erfindung betrifft ferner eine Vorrichtung zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material.
Elektronische Vorrichtungen, welche organische, metallorganische und/oder polymere Halbleiter enthalten, gewinnen zunehmend an Bedeutung, wobei diese aus Kostengründen und aufgrund ihrer Leistungsfähigkeit in vielen kommerziellen Produkten eingesetzt werden. Als Beispiele seien hier Ladungstransportmaterialien auf organischer Basis (z.B. Lochtransporter auf Triarylamin-Basis) in Kopiergeräten, organischen oder polymeren Leuchtdioden (OLEDs oder PLEDs) und in Anzeige- und Displayvorrichtungen oder organische Photorezeptoren in Kopierern genannt. Organische Solarzellen (O-SC), organische Feldeffekt-Transistoren (O-FET), organische Dünnfilm-Transistoren (O-TFT), organische Schaltelemente (O-IC), organische optische Verstärker und organische Laserdioden (O-Laser) sind in einem fortgeschrittenen Entwicklungsstand und können in der Zukunft große Bedeutung erlangen.
Zur Herstellung dieser Vorrichtungen werden vielfach funktionale Materialien auf organischer oder metallorganischer Basis eingesetzt, die sublimierbar sind. Diese Materialien müssen in sehr reiner Form eingesetzt werden, um gute und haltbare elektronische Vorrichtungen zu erhalten.
Hierzu werden diese Materialien üblich sublimiert und anschließend kondensiert, um so Nebenprodukte und Lösungsmittelreste sicher abzutrennen.
Derartige Verfahren und Vorrichtungen zur Durchführung werden unter anderem in den Druckschriften WO2015/022043, KR2020/0123895, KR2017/0122563,
CN 109646987, KR101835418 B1 und KR2019/0125700 beschrieben. Beispielsweise erlaubt die Lehre gemäß der Druckschrift WO2015/022043 keine kontinuierliche Aufreinigung eines funktionalen Materials, da zur Entnahme des aufgereinigten Materials ein Behälter abgenommen werden muss. Ähnliches gilt auch für die Lehren der Druckschriften KR2017/0122563, CN109646987, KR101835418 B1 und KR2019/0125700, da auch hier ein Auffangbehälter oder eine Kondensationsplatte durch Öffnen eines Moduls aus der Apparatur genommen werden muss.
Weiterhin schlägt die Druckschrift KR2020/0123895 den Einsatz einer ionischen Flüssigkeit vor, in die ein funktionales Material kondensiert wird. Die mit einem funktionalen Material beladene ionische Flüssigkeit wird aus dem Bereich des
Vakuums geleitet und aufbereitet, wobei das funktionale Material abgetrennt wird.
In KR101918233 B1 wird eine Vorrichtung zur kontinuierlichen Aufreinigung funktionaler Materialien beschrieben, wobei die Vorrichtung eine gemeinsame Kammer aufweist, gemäß der Abbildung zwischen 200 und 300, die bei Unterdrück betrieben werden kann.
In DE1130793 B wird eine Vorrichtung zur kontinuierlichen Vakuumsublimation von schwer sublimierbaren Substanzen beschrieben.
Bekannte Verfahren und Vorrichtungen, weisen ein brauchbares Eigenschaftsprofil auf. Allerdings besteht die dauerhafte Notwendigkeit, die Eigenschaften dieser Verfahren und Vorrichtungen zu verbessern.
Zu diesen Eigenschaften gehören insbesondere die Wirtschaftlichkeit, Zuverlässigkeit und Komplexität der Vorrichtung zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material. Insbesondere sollte die Vorrichtung sehr einfach konstruiert sein, wobei ein Vakuum zur Austragung des aufgereinigten funktionalen Materials nicht abgesenkt oder verändert werden sollte. Ferner sollte der Einsatz von in einem Kreislauf geführten Aufreinigungshilfsmitteln, beispielsweise von Ionischen Flüssigkeiten, minimiert werden. Bevorzugt sollte auf den Einsatz dieser Hilfsmittel vollständig verzichtet werden. Eine weitere Aufgabe kann darin gesehen werden, Vorrichtungen zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material bereitzustellen, die kostengünstig und kontinuierlich über einen langen Zeitraum betrieben werden können. Ferner sollte die Vorrichtung gut und einfach steuerbar und kontrollierbar sein. Weiterhin sollte die Vorrichtung einfach skalierbar und umweltfreundlich ausgestaltet werden können.
Darüber hinaus sollte das Verfahren zu hochreinen funktionalen Materialien führen, so dass die Lebensdauer der durch diese Materialien erhältlichen elektronischen Vorrichtungen und andere Eigenschaften derselben nicht nachteilig beeinflusst werden.
Überraschend wurde gefunden, dass bestimmte, nachfolgend näher beschrie bene Vorrichtungen diese Aufgaben lösen und den Nachteil aus dem Stand der Technik beseitigen. Eine Vorrichtung zur Aufreinigung von mindestens einem funktionalen Material kann insbesondere kostengünstig und dauerhaft betrieben werden, wenn die Vorrichtung eine Austragseinrichtung mit einer Austragsextrudereinheit umfasst oder die Austragseinrichtung eine Austragsextrudereinheit darstellt. Ferner kann die Vorrichtung besonders einfach konstruiert werden. Weiterhin können insbesondere Verbesserungen hinsichtlich der Reinheit von Materialien zur Herstellung von elektronischen Vorrichtungen erzielt werden, wobei die Termperaturbelastung bei der Aufreinigung der Materialien zur Herstellung von elektronischen Vorrichtungen durch das Verfahren zur Aufreinigung sehr gering ist. Hierbei führt die Verwendung dieser so gereinigten Materialien zu sehr guten Eigenschaften organischer elektronischer Vorrichtungen, insbesondere von organischen Elektrolumineszenz vorrichtungen, insbesondere hinsichtlich der Lebensdauer, der Effizienz und der Betriebsspannung.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Aufreinigung von mindestens einem funktionalen Material, welches zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar ist, die an einer Ladungsinjektion oder an einem Ladungstransport und/oder einer Lichtemission oder Lichtauskopplung teilhaben, dadurch gekennzeichnet, dass eine Vorrichtung eingesetzt wird, wobei das Verfahren eine Verdampfung beziehungsweise Sublimation und/oder Kondensation des mindestens einen funktionalen Materials umfasst und wobei die Vorrichtung :
A) mindestens eine Zuführung für das mindestens eine funktionale Material hat, wobei das mindestens eine funktionale Material kontinuierlich über eine in der Zuführung vorgesehene Eingabeöffnung zuführbar ist;
B) mindestens eine Verdampfungseinrichtung hat, die nach der Zuführung angeordnet ist, wobei das funktionale Material mittels der Zuführung in die Verdampfungseinrichtung einleitbar ist und das funktionale Material kontinuierlich über die Verdampfungseinrichtung verdampfbar ist;
C) mindestens eine Kondensationseinrichtung hat, über die das funktionale Material kontinuierlich nach einer Verdampfung in der Verdampfungseinrichtung kondensierbar ist;
D) mindestens eine Austragseinrichtung hat, die nach der Kondensationseinrichtung angeordnet ist, wobei das funktionale Material kontinuierlich von der Kondensationseinrichtung in die Austragseinrichtung einleitbar und über eine in der Austragseinrichtung vorgesehene Austragsöffnung austragbar ist; und wobei die Vorrichtung eine Verdampfungskammer aufweist, innerhalb derer zumindest ein Teil der Verdampfungseinrichtung und zumindest ein Teil der Kondensationseinrichtung vorgesehen sind, wobei die Verdampfungskammer mit mindestens einer Evakuierungsvorrichtung, vorzugsweise mindestens einer Vakuumpumpe verbunden oder verbindbar ist, und ein Unterdrück, vorzugsweise ein Hochvakuum innerhalb der Verdampfungskammer bei Betrieb der Vorrichtung zur kontinuierlichen Aufreinigung erzeugbar ist und die Austragseinrichtung eine Austragsextrudereinheit umfasst oder darstellt.
Gegenstand der vorliegenden Erfindung ist daher ebenfalls eine Vorrichtung zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material umfassend: A) mindestens eine Zuführung für mindestens ein funktionales Material, wobei das mindestens eine funktionale Material kontinuierlich über eine in der Zuführung vorgesehene Eingabeöffnung zuführbar ist;
B) mindestens eine Verdampfungseinrichtung, die nach der Zuführung angeordnet ist, wobei das funktionale Material mittels der Zuführung in die Verdampfungseinrichtung einleitbar ist und das funktionale Material kontinuierlich über die Verdampfungseinrichtung verdampfbar ist;
C) mindestens eine Kondensationseinrichtung, über die das funktionale Material kontinuierlich nach einer Verdampfung in der Verdampfungseinrichtung kondensierbar ist;
D) mindestens eine Austragseinrichtung, die nach der Kondensationseinrichtung angeordnet ist, wobei das funktionale Material kontinuierlich von der Kondensationseinrichtung in die Austragseinrichtung einleitbar und über eine in der Austragseinrichtung vorgesehene Austragsöffnung austragbar ist; und wobei die Vorrichtung eine Verdampfungskammer aufweist, innerhalb derer zumindest ein Teil der Verdampfungseinrichtung und zumindest ein Teil der Kondensationseinrichtung vorgesehen sind, wobei die Verdampfungskammer mit mindestens einer Evakuierungsvorrichtung verbunden oder verbindbar ist, und ein Unterdrück, vorzugsweise ein Hochvakuum innerhalb der Verdampfungskammer bei Betrieb der Vorrichtung zur kontinuierlichen Aufreinigung erzeugbar ist und die Austragseinrichtung eine Austragsextrudereinheit umfasst oder darstellt, dadurch gekennzeichnet, dass die Verdampfungseinrichtung die Kondensationseinrichtung zumindest teilweise umschließt.
Hierbei können besonders überraschende Vorteile dadurch erreicht werden, dass ein Unterdrück, vorzugsweise ein Hochvakuum innerhalb der Verdampfungskammer durch Verflüssigen/Erweichen/Verfestigen des mindestens einen funktionalen Materials in der Austragseinrichtung erzeugbar ist. Demgemäß wird vorzugsweise eine Abdichtung der Vorrichtung beim Austragen des funktionalen Materials über die Austragseinheit erreicht, die eine Austragsextrudereinheit umfasst oder darstellt. Die Erzeugbarkeit eines Unterdrucks, vorzugsweise eines Hochvakuums, innerhalb der Verdampfungskammer wird insbesondere durch das der Austragsextrudereinheit extrudierte gereinigte funktionale Material, welches eine hierfür geeignete Viskosität aufweisen kann, also extrudierbar ist, erreicht. Hierdurch kann ein Vakuum innerhalb der Vorrichtung auch bei Entnahme des aufgereinigten Materials dauerhaft aufrecht erhalten werden.
Überraschende Vorteile können dadurch erzielt werden, dass ein Unterdrück, vorzugsweise ein Hochvakuum, innerhalb der Verdampfungskammer durch Verflüssigen/Erweichen des mindestens einen funktionalen Materials in der Zuführung und durch Viskositätserhöhung, vorzugsweise Verfestigen des mindestens einen funktionalen Materials in der Austragseinrichtung erzeugbar ist. Durch diese Ausführung gelingt es überraschend, ein Vakuum, ohne komplizierte und teure technische Maßnahmen, herzustellen und aufrecht zu erhalten.
In einer bevorzugten Ausführungsform kann vorgesehen sein, dass die Zuführung eine mit einer Nut versehene Walze und/oder eine Extruderschnecke umfasst, wobei die Zuführung vorzugsweise eine Zuführextrudereinheit umfasst oder darstellt. Durch diese Ausgestaltung kann das funktionale Material besonders einfach und zuverlässig der Vorrichtung zugeführt werden, wobei die Konstruktion der Vorrichtung unkompliziert ausgestaltet werden kann. Hierbei ist eine einfache Steuerung der Zugabemenge möglich, die zu einem kontrollierten Aufreinigungsprozess führt. Eine Zuführung die eine mit einer Nut versehene Walze umfasst, ist detaillierter in der Druckschrift W010/056325 (PCT/US2009/006082) dargestellt, wobei die Beschreibung der in der Druckschrift W01 0/056325 dargelegten Zuführung durch Referenz hierauf in die vorliegende Anmeldung eingefügt wird. In der Beschreibung des Standes der Technik der Druckschrift W010/056325 werden auch Zuführungen mit Extrudern beziehungsweise Extruderschnecken dargelegt, wobei diese Darlegungen in der Druckschrift W010/056325 ebenfalls durch Referenz hierauf in die vorliegende Anmeldung aufgenommen werden. Hierzu gehören unter anderem die Druckschriften US2006/0062918 and US2006/0177576. Weiterhin werden Zuführungen mit Extrudern beziehungsweise Extruderschnecken in W02006/118837 beschrieben, wobei die Beschreibung der in der Druckschrift W02006/118837 dargelegten Zuführung durch Referenz hierauf in die vorliegende Anmeldung eingefügt wird.
Weiterhin kann vorgesehen sein, dass die Verdampfungseinrichtung ein Verdampfgutverteilsystem aufweist. Ferner kann vorgesehen sein, dass das Verdampfgutverteilsystem mindestens ein Wischersystem umfasst, wobei ein funktionales Material mittels dem Wischersystem auf einer Verdampfungseinheit der Verdampfungseinrichtung verteilbar ist, wobei das Wischersystem bevorzugt als ROTAFILM-, Rollenwischer- oder Flügel-Wischersystem ausgestaltet ist. Die Verdampfungseinheit ist bevorzugt als Verdampfungsoberfläche ausgestaltet, über die das Verdampfgutverteilsystem das aufzureinigende funktionale Material verteilt. Ferner kann vorgesehen sein, dass die Zuführung mindestens eine Entgasungsöffnung aufweist, über die Lösungsmittel entfernbar sind.
Weiterhin kann vorgesehen sein, dass die Verdampfungseinrichtung elektrisch oder mittels eines Fluids, vorzugsweise Heißluft oder einem Wärmetransportöl, besonders bevorzugt elektrisch oder mittels heizbar einem Wärmetransportöl ist.
Darüber hinaus kann vorgesehen sein, dass die Zuführung, vorzugsweise die Zuführextrudereinheit temperierbar ist.
Die Vorrichtung zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material umfasst eine Verdampfungskammer, innerhalb derer zumindest ein Teil der Verdampfungseinrichtung und zumindest ein Teil der Kondensationseinrichtung vorgesehen sind. Innerhalb der Verdampfungskammer erfolgt die Verdampfung beziehungsweise Sublimation und/oder Kondensation des mindestens einen funktionalen Materials, wobei das funktionale Material durch diese Schritte aufgereinigt wird. Hierbei kann vorgesehen sein, dass die Verdampfungseinrichtung eine Verdampfungseinheit, vorzugsweise eine Verdampfungsoberfläche aufweist, über die das mindestens eine funktionale Material verdampfbar und/oder sublimierbar ist, und die Kondensationseinrichtung eine Kondensationseinheit, vorzugsweise eine Kondensationsoberfläche umfasst, über die das mindestens eine funktionale Material kondensierbar ist, wobei die Verdampfungseinheit und die Kondensationseinheit von der Verdampfungskammer umschlossen werden. Vorzugsweise umschließt die Verdampfungskammer die Verdampfungsoberfläche der Verdampfungseinrichtung und die Kondensationsoberfläche der Kondensationseinrichtung.
In einerweiteren Ausgestaltung kann vorgesehen sein, dass die Verdampfungseinrichtung eine Verdampfungsoberfläche aufweist, über die das funktionale Material verdampfbar ist, und die Kondensationseinrichtung eine Kondensationsoberfläche aufweist, über die das funktionale Material kondensierbar ist, wobei die die Verdampfungsoberfläche parallel zur Kondensationsoberfläche angeordnet ist. Durch diese Ausführung kann eine besonders geringe Temperaturbelastung des funktionalen Materials bei der Aufreinigung erreicht werden, da die Zeitspanne zwischen Verdampfung oder Sublimation und Kondensation sehr geringgehalten werden kann.
In einer bevorzugten Ausgestaltung kann vorgesehen sein, dass die Verdampfungseinrichtung eine Verdampfungseinheit, vorzugsweise eine Verdampfungsoberfläche aufweist, wobei die Verdampfungseinheit einen Verdampfungszylinder aufweist, vorzugsweise als Verdampfungszylinder ausgestaltet ist, wobei zumindest ein Teil der Oberfläche des Verdampfungszylinders als Verdampfungsoberfläche angesehen werden kann.
Weiterhin kann vorgesehen sein, dass die Kondensationseinrichtung eine Kondensationseinheit, vorzugsweise eine Kondensationsoberfläche umfasst, wobei die Kondensationseinheit einen Kondensationszylinder aufweist, vorzugsweise als Kondensationszylinder ausgestaltet ist, wobei zumindest ein Teil der Oberfläche des Kondensationszylinders als Kondensationsoberfläche angesehen werden kann.
Ferner kann vorgesehen sein, dass die Kondensationseinrichtung gegenüber der Verdampfungseinrichtung drehbar ist. Durch diese Ausgestaltung kann eine gleichmäßige Kondensation des funktionalen Materials über die Kondensationsfläche erreicht werden, die zu einer erhöhten Effizienz des Verfahrens und einer geringeren Temperaturbelastung des funktionalen Materials bei der Aufreinigung führt.
Überraschende Vorteile hinsichtlich der Konstruktion der Vorrichtung können dadurch erhalten werden, dass die Kondensationseinrichtung über eine Antriebseinheit drehbar ist.
Ferner kann vorgesehen sein, dass die Zuführung eine Zuführextrudereinheit umfasst oder darstellt und die Austragseinrichtung eine Austragsextrudereinheit umfasst oder darstellt, wobei eine Extruderschnecke der Zuführextrudereinheit mit einer Extruderschnecke der Austragsextrudereinheit verbunden ist, so dass die Extruderschnecke der Zuführextrudereinheit und die Extruderschnecke der Austragsextrudereinheit über eine Antriebseinheit drehbar sind.
Weiterhin kann vorgesehen sein, dass die Kondensationseinrichtung einen Kondensationszylinder aufweist, der mit der Extruderschnecke der Zuführextrudereinheit und mit der Extruderschnecke der Austragsextrudereinheit verbunden ist, so dass die Extruderschnecke der Zuführextrudereinheit, der Kondensationszylinder und die Extruderschnecke der Austragsextrudereinheit über mindestens eine, bevorzugt genau eine Antriebseinheit drehbar sind.
In einerweiteren Ausführungsform kann vorgesehen sein, dass die Zuführung eine Zuführextrudereinheit umfasst oder darstellt und die Austragseinrichtung eine Austragsextrudereinheit umfasst oder darstellt, wobei die Extruderschnecke der Zuführextrudereinheit über eine Antriebseinheit drehbar und die Extruderschnecke der Austragsextrudereinheit über eine zweite Antriebseinheit drehbar ist so dass die Extruderschnecke der Zuführextrudereinheit unabhängig von der Extruderschnecke der Austragsextrudereinheit drehbar ist.
Die zweite Ausführungsform ist konstruktiv etwas aufwändiger, hat jedoch zum Vorteil, dass die Zuführung unabhängig von dem Austrag gesteuert werden kann. Dieser Vorteil ist unter anderem beim Anfahren der Anlage vorteilhaft.
Weiterhin kann vorgesehen sein, dass die Kondensationseinrichtung einen Kondensationszylinder aufweist, der entweder mit der Extruderschnecke der Zuführextrudereinheit oder mit der Extruderschnecke der Austragsextrudereinheit verbunden ist, so dass der Kondensationszylinder entweder mit der Extruderschnecke der Zuführextrudereinheit oder Extruderschnecke der Austragsextrudereinheit drehbar ist. Hierbei kann die Vorrichtung mindestens zwei Antriebseinheiten umfassen, wobei eine Antriebseinheit mit der Extruderschnecke der Zuführextrudereinheit verbunden ist und eine zweite Antriebseinheit mit der Extruderschnecke der Austragsextrudereinheit verbunden ist. Ferner kann vorgesehen sein, dass der Kondensationszylinder mit einer separaten Antriebseinheit antreibbar ist, so dass der Kondensationszylinder unabhängig von der Extruderschnecke der Zuführextrudereinheit oder der Extruderschnecke der Austragsextrudereinheit drehbar ist.
In einer besonders bevorzugten Ausgestaltung kann vorgesehen sein, dass die Verdampfungseinrichtung die Kondensationseinrichtung umschließt.
Überraschende Vorteile hinsichtlich der Konstruktion der Vorrichtung können dadurch erhalten werden, dass die Kondensationseinrichtung einen Kondensatkollektor aufweist, wobei ein kondensiertes funktionales Material mittels des Kondensatkollektors in die Austragseinrichtung sammelbar ist.
Weiterhin kann vorgesehen sein, dass der Kondensatkollektor trichterförmig ausgestaltet ist, wobei die Trichtermündung in Richtung Austragseinrichtung ausgerichtet ist.
Ferner kann vorgesehen sein, dass die Kondensationseinrichtung eine Einheit zur Mobilisierung aufweist, wobei ein kondensiertes funktionales Material mittels der Einheit zur Mobilisierung von einem Teil der Oberfläche der Kondensationseinrichtung abstreifbar ist. Die Einheit zur Mobilisierung fördert daher die Überführung des kondensierten funktionalen Materials in die Austragseinrichtung. Diese Einheit zur Mobilisierung ist nicht zwingend notwendig. So kann insbesondere bei kondensierten funktionalen Materialien mit einer geringen Viskosität, die leicht von der Kondensationseinrichtung in die Austragseinrichtung fließen, auf eine Einheit zur Mobilisierung verzichtet werden.
In einer besonders bevorzugten Ausgestaltung kann vorgesehen sein, dass die Einheit zur Mobilisierung als Abstreif- oder Abwischsystem ausgestaltet ist. Des Weiteren kann vorgesehen sein, dass die Austragseinrichtung, vorzugsweise die Austragsextrudereinheit, temperierbar ist.
In einer bevorzugten Ausgestaltung kann vorgesehen sein, dass ein Temperaturgefälle zwischen der Verdampfungseinrichtung und der Kondensationseinrichtung erzeugbar ist, wobei die Temperatur der Verdampfungseinrichtung höher wählbar ist als die Temperatur der Kondensationseinrichtung.
Vorzugsweise umfasst die Verdampfungseinrichtung und/oder die Verdampfungskammer mindestens eine Öffnung, über die ein Rückstandsauffangbehälter anschließbar oder angeschlossen ist. Durch diese Ausführungsform kann die Vorrichtung über einen besonders langen Zeitraum betrieben werden, ohne dass eine Unterbrechung des Verfahrens erfolgen muss. In einer anderen Ausgestaltung können Rückstände innerhalb der Vorrichtung gesammelt werden, wobei hier nach einer langen Zeit das Verfahren unterbrochen werden muss. Hierbei ist festzuhalten, dass diese Rückstände im Allgemeinen nur in geringen Mengen im aufzureinigenden Ausgangsmaterial enthalten sind, so dass in jedem Fall eine Verbesserung gegenüber dem Stand der Technik zu erzielen ist.
In einer Fortentwicklung kann vorgesehen sein, dass die Verdampfungseinrichtung und/oder die Verdampfungskammer mindestens zwei Öffnungen umfasst, über die jeweils ein Rückstandsauffangbehälter anschließbar oder angeschlossen ist. Durch diese Fortentwicklung kann eine weitere Verbesserung des Verfahrens erzielt werden, da ein Wechseln und Reinigen eines Rückstandsauffangbehälters auch im laufenden Betrieb möglich ist. Vorzugsweise ist der Rückstandsauffangbehälter inertisierbar und/oder evakuierbar ausgestaltet.
Ferner kann vorgesehen sein, dass die Vorrichtung in vertikaler Ausrichtung betreibbar ist, wobei die Zuführung oberhalb der Verdampfungseinrichtung angeordnet ist und die Verdampfungseinrichtung oberhalb der Austragseinrichtung. Vorzugsweise kann vorgesehen sein, dass die Vorrichtung in vertikaler Ausrichtung betreibbar ist, wobei ein funktionales Material durch Schwerkraft von der Zuführung in die Verdampfungseinrichtung überführbar ist. In einer bevorzugten Ausgestaltung kann vorgesehen sein, dass die Vorrichtung in vertikaler Ausrichtung betreibbar ist, wobei ein funktionales Material durch Schwerkraft von der Kondensationseinrichtung in die Austragseinrichtung einleitbar ist.
Die Austragseinrichtung ist mit einer Austragsöffnung ausgestaltet, über die das gereinigte funktionale Material entnommen werden kann. Hierbei kann vorgesehen sein, dass die Austragsöffnung mit einer Granuliereinheit verbunden ist, wobei das erhaltene Granulat bevorzugt in einen Austragsbehälter einleitbar ist.
Überraschende Vorteile können dadurch erzielt werden, dass die Vorrichtung mindestens eine Rotationskupplung aufweist, die zwischen drehbar ausgestalteten Bestandteilen der Vorrichtung angeordnet ist, wobei die Rotationskupplung ausgewählt ist aus einer ferrofluidisch abgedichteten Drehdurchführung oder einer doppelt bzw. dreifach wirkenden Gleitringdichtung. Insbesondere kann wie bereits zuvor dargelegt, die Kondensationseinrichtung gegenüber der Verdampfungseinrichtung drehbar ausgestaltet sein. Ferner umfasst die Austragseinrichtung eine Austragsextrudereinheit. Weiterhin kann die Zuführung eine Zuführextrudereinheit umfassen. Diese Komponenten umfassen drehbar ausgestaltete Bestandteile, wobei die Rotationskupplung vorzugsweise in zuvor dargelegter Form ausgestaltet ist.
Des Weiteren kann vorgesehen sein, dass die Vorrichtung eine Kamera umfasst, über die eine Verdampfung und/oder eine Kondensation eines funktionalen Materials beobachtbar ist.
Die Vorrichtung zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material ist mit einer Evakuierungsvorrichtung verbunden oder verbindbar. Durch eine Verbindung mit einer Evakuierungsvorrichtung kann innerhalb der Verdampfungskammer ein Unterdrück erzeugt werden, welcher zur Erzielung der Verdampfung oder Sublimation zweckmäßig ist. Die hierfür zweckmäßigen Systeme sind in der Fachwelt bekannt, wobei diese Systeme üblich mindestens eine Vakuumpumpe, vorzugsweise ein Vakuumpumpensystem umfassen oder als solche ausgestaltet sind. In einer bevorzugten Ausgestaltung kann vorgesehen sein, dass die Vorrichtung mindestens ein Vakuumpumpensystem umfasst, welches vorzugsweise aus einem mehrstufigen System besteht, umfassend eine Vorpumpe, insbesondere eine Ölpumpe oder eine trockenlaufende Scrollpumpe, eine Drehschieberpumpe.
Unter der Voraussetzung, dass die in Anspruch 1 genannten Bedingungen eingehalten werden, sind die oben genannten bevorzugten Ausführungsformen beliebig miteinander kombinierbar. In einer besonders bevorzugten Ausführungsform der Erfindung gelten die oben genannten bevorzugten Ausführungsformen gleichzeitig.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Aufreinigung von mindestens einem funktionalen Material, wie zuvor beschrieben.
Funktionale Materialien zur Herstellung von Funktionsschichten elektronischer Vorrichtungen, die an einer Ladungsinjektion oder an einem Ladungstransport und/oder einer Lichtemission oder Lichtauskopplung teilhaben, sind in der Fachwelt weithin bekannt. Vorzugsweise kann vorgesehen sein, dass das funktionale Material, welches zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar ist, ausgewählt wird aus der Gruppe bestehend aus fluoreszierenden Emittern, phosphoreszierenden Emittern, Emittern, die TADF (thermally activated delayed fluorescence) zeigen, Emittern, die Hyperfluoreszenz oder Hyperphosphoreszenz zeigen, Hostmaterialien, Excitonenblockiermaterialien Elektroneninjektionsmaterialien, Elektronentransportmaterialien, Elektronenblockiermaterialien, Lochinjektionsmaterialien, Lochleitermaterialien, Lochblockiermaterialien, n- Dotanden, p-Dotanden, Wide-Band-Gap-Materialien,
Ladungserzeugungsmaterialien oder deren Kombinationen. Diese Materialien, welche zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar sind, wie zuvor beschrieben, können einzeln oder als Mischung von zwei, drei, vier, fünf oder mehr Materialien im erfindungsgemäßen Verfahren eingesetzt werden. Hierbei kann vorgesehen sein, dass eine Mischung aus genau zwei, genau drei, genau vier oder genau fünf funktionalen Materialien besteht, welche zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar sind und die an einer Ladungsinjektion oder an einem Ladungstransport und/oder einer Lichtemission oder Lichtauskopplung teilhaben, und erfindungsgemäß aufgereinigt wird.
Mindestens eines, vorzugsweise mindestens zwei, besonders bevorzugt alle der funktionalen Materialien, welche zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar sind, wie zuvor beschrieben, stellt/stellen vorzugsweise ein organisches Material dar oder umfasst/umfassen eine organische Verbindung. Organische Verbindungen enthalten Kohlenstoffatome und vorzugsweise Wasserstoffatome.
Mindestens eines, vorzugsweise mindestens zwei, besonders bevorzugt alle der aufzureinigenden funktionalen Materialien, welche zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar sind, wie zuvor beschrieben, kann/können beispielsweise als Pulver/Granulat oder als organisches Glas bereitgestellt werden. Weiterhin kann das erfindungsgemäße Verfahren jedoch insbesondere als Schritt bei der Herstellung eines funktionalen Materials durchgeführt werden. Vorzugsweise wird eine fließfähige Zusammensetzung eines funktionalen Materials, wie zuvor beschrieben, bereitgestellt und in die Zuführung der erfindungsgemäßen Vorrichtung gegeben.
Vorzugsweise kann vorgesehen sein, dass das mindestens eine funktionale Material, wie beschrieben, zersetzungsfrei oberhalb einer Temperatur von 50°C, vorzugsweise oberhalb einer Temperatur von 100°C schmelzbar ist.
Weiterhin kann bevorzugt vorgesehen sein, dass das mindestens eine funktionale Material, wie beschrieben, oberhalb einer Temperatur von 30°C, vorzugsweise oberhalb einer Temperatur von 50°C, besonders bevorzugt oberhalb einer Temperatur von 100°C eine Viskosität im Bereich von 1 bis 1020 [mPa s], bevorzugt 103 bis 1018[mPa s], besonders bevorzugt 106 bis 1014 [mPa s] bei einer Scherung von 1 bis 104 [1/s], bevorzugt 10 bis 103 [1/s], besonders bevorzugt 100 [1/s] aufweisen. Ein bevorzugtes Verfahren zur Messung der Viskosität wird später dargelegt.
Ferner kann vorgesehen sein, dass das mindestens eine funktionale Material, wie beschrieben, im geschmolzenen Zustand bei Verarbeitungstemperatur einen Abbau von höchstens 0,1 Gew.-% über eine Lagerdauer von 10 Stunden zeigt. Hierbei kann die Verarbeitungstemperatur im Bereich von 50°C bis 500°C liegen. Die Verarbeitungstemperatur ist die Temperatur bei der die Extrusion in der Austragsextrudereinheit erfolgt. Vorzugsweise zeigt mindestens eines, vorzugsweise mindestens zwei und besonders bevorzugt alle der eingesetzten funktionalen Materialien, wie zuvor beschrieben, bei der Schmelztemperatur einen Abbau von höchstens 0,1 Gew.-% über eine Lagerdauer von 10 Stunden.
In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens werden vorzugsweise Materialien aufgereinigt, die sublimierbar sind. Vorzugsweise ist daher mindestens eines, besonders bevorzugt sind mindestens zwei und speziell bevorzugt sind alle der aufzureinigenden funktionalen Materialien sublimierbar. Materialien die sublimierbar sind, weisen bevorzugt ein geringes Molekulargewicht aus, wie dieses später dargelegt wird.
In der Austragsextrudereinheit wird das aufgereinigte funktionale Material extrudiert. Ferner kann die Zuführung eine Zuführextrudereinheit umfassen. Der Begriff „Extrudieren“ ist in der Fachwelt weithin bekannt und bezeichnet ein Herauspressen einer verfestigbaren Masse durch eine Öffnung. Hierzu wird ein Extruder verwendet. Extruder sind in der Fachwelt ebenfalls bekannt und kommerziell erhältlich. Der Begriff Extruder bezeichnet ein Fördergerät zur Durchführung einer Extrusion. Die Druckschrift EP 2 381 503 B1, insbesondere die darin enthaltene Beschreibung von Extrudern, wird in die vorliegende Anmeldung zu Offenbarungszwecken durch Referenz hierauf eingefügt.
Beispielsweise können Einschnecken- oder Doppelschneckenextruder eingesetzt werden. Die Auswahl und Anpassung geeigneter Extruderschnecken, insbesondere deren Geometrien aufgrund der entsprechenden verfahrenstechnischen Aufgaben, wie z. B. Einziehen, Fördern, Homogenisieren, Erweichen und Komprimieren, gehört dabei zum allgemeinen Wissen des Fachmannes.
Im Einzugsbereich des Extruders, vorzugsweise des Schneckenextruders, werden vorzugsweise Zylindertemperaturen im Bereich von 50°C bis 450°C, vorzugsweise 80°C bis 350°C eingestellt, je nach Art des funktionalen Materials. In den Einzugsbereich können beispielsweise die zuvor und nachfolgend dargelegten funktionalen Materialien in Form von Pulver, fließfähiger Masse und/oder Granulat zugeführt werden. Dies gilt insbesondere für den Fall, dass die Zuführung eine Zuführextrudereinheit umfasst. Die erfindungsgemäße Vorrichtung umfasst eine Austragsextrudereinheit, in welchen das kondensierte Material eingeleitet wird. In den Einzugsbereich der Austragsextrudereinheit kann das Material als fließfähiger Masse, gegebenenfalls auch als Flüssigkeit mit einer geringen Viskosität eingeleitet werden, die innerhalb der Austragsextrudereinheit abgekühlt wird, so dass ein Unterdrück, vorzugsweise ein Hochvakuum innerhalb der Verdampfungskammer erzeugbar ist. Weiterhin kann das kondensierte Material als kondensierter Feststoff in den Einzugsbereich der Austragsextrudereinheit eingeleitet werden, wobei dieser Feststoff zunächst leicht erwärmt werden kann, um eine viskose Masse erhalten wird, durch die ein Unterdrück, vorzugsweise ein Hochvakuum innerhalb der Verdampfungskammer erzeugbar ist.
Das verwendete Temperaturprofil variiert dabei in Abhängigkeit von dem eingesetzten funktionalen Material. Im Erweichungsbereich werden vorzugsweise Temperaturprofile im Bereich von 80°C bis 450 °C, vorzugsweise 90°C bis 350°C, besonders bevorzugt 100°C bis 300°C, insbesondere bevorzugt 120°C bis 250°C und speziell bevorzugt 130°C bis 230°C eingestellt. Dies gilt insbesondere für den Fall, dass die Zuführung eine Zuführextrudereinheit umfasst. Im Austragsbereich liegen die Temperaturen vorzugsweise im Bereich von 80°C bis 450 °C, vorzugsweise 90°C bis 350°C, besonders bevorzugt 100°C bis 300°C, insbesondere bevorzugt 120°C bis 250°C und speziell bevorzugt 130°C bis 230°C. Hierbei können die Extruder jeweils ein Temperaturprofil mit einer Temperaturerhöhung oder Absenkung aufweisen. Bei Einsatz einer Zuführextrudereinheit kann die Temperatur in Richtung Verdampfungseinrichtung ansteigen, so dass ein Pulver oder Granulat verflüssigt ist, während in einer Austragsextrudereinheit eine Flüssigkeit oder eine Masse mit einer relativ geringen Viskosität durch Abkühlen verfestigt wird, so dass ein Unterdrück, vorzugsweise ein Hochvakuum innerhalb der Verdampfungskammer erzeugbar ist. Falls die Kondensation in der Kondensationseinrichtung zu einem Feststoff führt, kann dieser zunächst leicht angeschmolzen und anschließend verfestigt werden, so dass ein Unterdrück, vorzugsweise ein Hochvakuum innerhalb der Verdampfungskammer erzeugbar ist. Die angegebenen Temperaturen beziehen sich hierbei auf Zylindertemperaturen und können mittels eines Thermoelements, z. Bsp. FeCuNi Typ L oder Typ J, eines PT 100 Thermometer oder eines IR- Thermometers gemessen werden.
Ferner kann vorgesehen sein, dass das mindestens eine funktionale Material bei einer Temperatur von mindestens 5 °C, vorzugsweise mindestens 10 °C, oberhalb der Glasübergangstemperatur des jeweiligen funktionalen Materials von der Zuführung in die Verdampfungseinrichtung überführt wird.
In einer bevorzugten Ausgestaltung kann vorgesehen sein, dass die Zuführung der Vorrichtung eine Zuführextrudereinheit umfasst, über die das mindestens eine funktionale Material extrudiert wird, wobei das Extrudieren mit einer Substanz durchgeführt wird, die eine Viskosität im Bereich von 1 bis 50000 [mPa s], vorzugsweise 10 bis 10000 [mPa s] und besonders bevorzugt 20 bis 1000 [mPa s] aufweist, gemessen mittels Platte-Platte unter Rotation bei einer Schergeschwindigkeit von 100 [1/s] und einer Temperatur im Bereich von 150°C bis 450°C.
Die Viskositätswerte, wie diese zuvor und nachfolgend dargelegt sind, werden mittels Platte-Platte unter Rotation bestimmt. Hierbei können die rheologischen Messungen mit einem Discovery Hybrid Rheometer HR-3, versehen mit der Heiz- Einheit ETC, der Fa. Waters GmbH - UM TA Instruments, D-65760 Eschborn, Deutschland, durchgeführt werden. Die Kalibrierung kann mit Referenzen durchgeführt werden. Beispielsweise können hierzu folgende Öle eingesetzt werden:
Referenz-Öl Temperatur [°C] Viskosität [mPa*s] Abweichung Fungilab RT10 20,00 11.14 ±3,0%
Fungilab RT10 25,00 10.14 ±3,0%
Paragon 2162/21 20,00 17,53 ±3,0%
Paragon 2162/21 25,00 14,26 ±3,0%
Brookfield Fluid 25,00 497,00 ±3,0%
Brookfield 5000 25,00 4795,00 ±3,0%.
Vielfach werden die Viskositäten bei drei unterschiedlichen Scherraten (10/s, 100/s und 500/s) in Abhängigkeit der Temperatur gemessen, wobei die jeweiligen Bedingungen zuvor und nachfolgend ausführlicher dargelegt sind. Vorzugsweise beträgt die Schergeschwindigkeit (Scherrate) 100 s-1. Die Viskositätswerte werden vorzugsweise in Anlehnung an DIN 53019; insbesondere DIN 53019- 1:2008-09, DIN 53019-2:2001-02, DIN 53019-3:2008-09 gemessen.
Vorzugsweise weist das erfindungsgemäß aufzureinigende mindestens eine funktionale Material, welches zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar ist, wie zuvor beschrieben, eine Schmelztemperatur im Bereich von 150°C bis 500°C, vorzugsweise 180°C bis 400°C, besonders bevorzugt 220°C bis 380°C und speziell bevorzugt 250°C bis 350°C auf, gemessen gemäß DIN EN ISO 11357-1 und DIN EN ISO 11357-2. Die Schmelztemperatur ergibt sich hierbei aus der Messung der Glasübergangstemperatur in Form eines DSC-Signals, wobei weitere Einzelheiten zur Messung der Schmelztemperatur im Zusammenhang mit der Bestimmung der Glasübergangstemperatur dargelegt sind.
Für das vorliegende Verfahren ist es nicht wesentlich, dass das Material einen Schmelzpunkt aufweist. Im Allgemeinen ist es ausreichend, dass das eingesetzte Material bei einer ausreichend hohen Viskosität erweicht.
Demgemäß kann das aufzureinigende mindestens eine funktionale Material keinen Schmelzpunkt aufweisen.
Vorzugsweise kann vorgesehen sein, dass das aufzureinigende mindestens eine funktionale Material sublimierbar ist.
Dementsprechend kann vorgesehen sein, dass das aufzureinigende mindestens eine funktionale Material eine Sublimationstemperatur im Bereich von 150°C bis 500°C, vorzugsweise 180°C bis 400°C, besonders bevorzugt 220°C bis 380°C und speziell bevorzugt 250°C bis 350°C gemessen gemäß DIN 51006 aufweist. Die Sublimationstemperatur ergibt sich hierbei aus der Vakuum-TGA Messung, bei der gezielt ein Material sublimiert oder verdampft wird. Die Messung kann mit einem TG 209 F1 Libra Gerät der Firma Netzsch mit folgenden Messbedingungen durchgeführt werden:
Probeneinwaage: 1 mg Tiegel: offener Aluminiumtiegel Heizrate: 5 K/min Temperaturbereich: 105-550 °C Atmosphäre: Vakuum 10-2 mbar (geregelt) Evakuierungszeit vor Beginn der Messung: ca. 30 Minuten. Als Sublimationstemperatur wird die Temperatur verwendet bei der 5% Gewichtsverlust eintritt.
Ferner kann vorgesehen sein, dass das aufzureinigende mindestens eine funktionale Material eine Zersetzungstemperatur oberhalb von 340 °C, vorzugsweise oberhalb von 400 °C, besonders bevorzugt oberhalb von 500 °C aufweist. Die Zersetzungstemperatur ergibt sich hierbei aus einer DSC oder TGA- Messung, wobei die Zerstörung des Materials festgestellt wird. Als Zersetzungstemperatur gilt die Temperatur bei der 50% der Substanz innerhalb der Aufheizung, die mit 5 K pro Minute erfolgt, festgestellt wird (Probengröße ca. 1mg). Das erfindungsgemäße Verfahren ist immer unterhalb der Zersetzungstemperatur des mindestens einen funktionalen Materials durchzuführen.
Gemäß einer bevorzugten Ausführungsform kann vorgesehen sein, dass das aufzureinigende mindestens eine funktionale Material eine Glasübergangstemperatur im Bereich von 80°C bis 400°C °C, vorzugsweise 90°C bis 300°C, besonders bevorzugt 100°C bis 250°C, insbesondere bevorzugt 120°C bis 220°C und speziell bevorzugt 130°C bis 200°C gemessen gemäß DIN EN ISO 11357-1 und DIN EN ISO 11357-2 aufweisen. Die Einzelheiten zur Bestimmung der Glasübergangstemperatur sind dem Fachmann aus den Normen bekannt, wobei vorzugsweise die Glasübergangstemperatur nach einem ersten Heiz- und Abkühlvorgang bestimmt wird. Für viele Substanzen kann bei einer Heizrate von 20 K/min für das erste und zweite Heizen und einer Kühlrate von 20 K/min für das erste und zweite Kühlen eine zweckmäßige Glasübergangstemperatur erhalten werden, die beim zweiten oder dritten Heizvorgang, vorzugsweise beim zweiten Heizvorgang als Signal ermittelt wird. In einer speziell bevorzugten Ausführungsform wird die Glasübergangstemperatur anhand einer Probe ermittelt, die durch einen ersten Heizvorgang mit einer Heizrate von 20 K/min und einem Quenchvorgang, der durch unmittelbares Kühlen der erhitzten Probe in flüssigem Stickstoff vorbereitet wird und die Glasübergangstemperatur durch ein zweites Heizen der so vorbehandelten Probe mit einer Heizrate von 50 K/min bestimmt wird. Durch diese Maßnahmen kann die Glasübergangstemperatur zuverlässig auch auf für Substanzen bestimmt werden, deren Glasübergang bei anderen Verfahren durch eine Rekristallisationstemperatur überlagert wird. Diese Messmethode, bei der das erste Abkühlen durch einen Quenchvorgang bewirkt wird und das 2. Aufheizen mit einer Heizrate von 50 K/min durchgeführt wird, ist gegenüber anderen, die beispielsweise mit geringeren Abkühlraten oder geringeren Aufheizraten arbeiten, besonders bevorzugt. Der Heizbereich liegt vorzugsweise im Bereich von 0°C bis 350°C, falls die Schmelztemperatur unterhalb von 300°C liegt. Bei höher schmelzenden Substanzen wird der Heizbereich entsprechend nach oben vergrößert, wobei dieser jedoch unterhalb der Zersetzungstemperatur gehalten werden muss. Vorzugsweise liegt die obere Temperatur des Heizbereichs mindestens 5°C unterhalb der Zersetzu ngstem peratu r.
Die Probenmenge liegt vorzugsweise im Bereich von 10 bis 15 mg. Weitere Informationen bezüglich der Bestimmung der Glasübergangstemperatur finden sich in den Beispielen. In den Beispielen sind insbesondere bevorzugte Messgeräte dargelegt.
Ferner kann vorgesehen sein, dass das aufzureinigende mindestens eine funktionale Material in Form einer Mischung verwendet wird, wobei die Mischung vorzugsweise mindestens zwei funktionale Materialien umfasst, wie zuvor beschrieben. Hierbei weisen die in der Mischung eingesetzten Materialien ähnliche Sublimations- und/oder Erweichungseigenschaften auf. Je ähnlicher diese Eigenschaften, desto besser ist die Qualität der erhaltenen Mischung des aufgereinigten Materials. Bevorzugt kann daher vorgesehen sein, dass die in einer Mischung eingesetzten mindestens zwei funktionalen Materialien, welche insbesondere zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar sind und im Wesentlichen ähnliche Erweichungs-, Verdampfungs- und/oder Sublimationseigenschaften aufweisen.
In einer bevorzugten Ausgestaltung kann vorgesehen sein, dass die Verdampfung beziehungsweise Sublimation und/oder Kondensation des mindestens einen funktionalen Materials bei einem Druck im Bereich von 10-3 mbar bis 107 mbar, vorzugsweise 10-4 mbar bis 10-6 mbar durchgeführt wird.
In einer weiteren Ausgestaltung ist das aufzureinigende mindestens eine funktionale Material, welches insbesondere zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar ist, die an einer Ladungsinjektion oder an einem Ladungstransport und/oder einer Lichtemission oder Lichtauskopplung teilhaben, ausgewählt aus der Gruppe bestehend aus der Gruppe der Benzene, Fluorene, Indenofluorene, Spirobifluorene, Carbazole, Indenocarbazole, Indolocarbazole, Spirocarbazole, Pyrimidine, Triazine, Chinazoline, Chinoxaline, Pyridine, Chinoline, iso-Chinoline, Lactame, Triarylamine, Dibenzofurane, Diazadibenzofurane, Dibenzothiophene, Diazadibenzothiophene, Imidazole, Benzimidazole, Benzoxazole, Benzthiazole, 5-Aryl-phenanthridin-6-one, 9, 10-Dihydrophenanthrene, Fluoranthene, Naphthaline, Phenanthrene, Anthracene, Benzanthracene, Fluoradene, Pyrene, Perylene, Chrysene, Borazine, Boroxine, Borole, Borazole, Azaborole, Ketone, Phosphinoxide, Arylsilane, Siloxane, Biphenyle, Triphenyle, Terphenyle, Triphenylene, Arylgermane, Arylbismutodide, Metallkomplexe, Chelatkomplexe, Übergangsmetallkomplexe, Metallcluster und deren Kombinationen, wobei Metallkomplexe, Chelatkomplexe, Übergangsmetallkomplexe, Metallcluster bevorzugt die Elemente Li, Na, K, Cs, Be, Mg, B, AI, Ga In, Ge, Sn, Bi, Se, Te,
Sc, Ti, Zr, Mo, W, Re, Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn enthalten.
Die zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbaren funktionalen Materialen stellen vielfach organische Verbindungen dar, welche die zuvor und nachfolgend genannten Funktionen bereitstellen. Daher sind die Begriffe funktionelle Verbindung beziehungsweise funktionales Material vielfach synonym zu verstehen.
Im Folgenden werden Beispiele an geeigneten funktionalen Materialien beschrieben, die erfindungsgemäß aufgereinigt werden können.
Verbindungen mit Lochinjektionseigenschaften, hierin auch Lochinjektionsmaterialien genannt, erleichtern oder ermöglichen die Übertragung von Löchern, d. h. positive Ladungen, aus der Anode in eine organische Schicht.
Verbindungen mit Lochtransporteigenschaften, hierin auch Lochtransportmaterialien genannt, sind in der Lage Löcher, d. h. positive Ladungen, zu transportieren, die im Allgemeinen aus der Anode oder einer angrenzenden Schicht, beispielsweise einer Lochinjektionsschicht injiziert werden. Zu den bevorzugten Verbindungen, die Lochinjektions- und/oder Lochtransporteigenschaften aufweisen, gehören beispielsweise Triarylamin-, Benzidin-, Tetraaryl-para-phenylendiamin-, Triarylphosphin-, Phenothiazin-, Phenoxazin-, Dihydrophenazin-, Thianthren-, Dibenzo-para-dioxin-, Phenoxathiin- , Carbazol-, Azulen-, Thiophen-, Pyrrol- und Furanderivate.
Insbesondere zu nennen sind als Verbindungen, die Lochinjektions- und/oder Lochtransporteigenschaften aufweisen, Phenylendiamin-Derivate (US3615404), Arylamin-Derivate (US3567450), Amino-substituierte Chalcon-Derivate (US 3526501), Styrylanthracen- Derivate (JP-A-56-46234), Polyzyklische aromatische Verbindungen (EP 1009041), Polyarylalkan-Derivate (US3615402), Fluorenon- Derivate (JP-A-54-110837), Hydrazon-Derivate (US3717462), Acylhydrazone, Stilben-Derivate (JP-A-61-210363), Silazan-Derivate (US4950950), Polysilane (JP-A-2-204996), Anilin-Copolymere (JP-A-2-282263), Thiophen-Oligomere (JP Heisei 1 (1989) 211399), Polythiophene, Poly(N-vinylcarbazol) (PVK),
Polypyrrole, Polyaniline und andere elektrisch leitende Makromoleküle, Porphyrin- Verbindungen (JP-A-63-2956965, US4720432), aromatische Dimethyliden-Typ- Verbindungen, Carbazol-Verbindungen wie z.B. CDBP, CBP, mCP, aromatische tertiäre Amin- und Styrylamin-Verbindungen (US4127412) wie z.B. Triphenyl- amine vom Benzidin-Typ, Triphenylamine vom Styrylamin-Typ und Triphenylamine vom Diamin-Typ. Auch Arylamin-Dendrimere können verwendet werden (JP Heisei 8 (1996) 193191), monomere Triarylamine (US3180730), Triarylamine mit einem oder mehreren Vinylradikalen und/oder mindestens einer funktionellen Gruppe mit aktivem Wasserstoff (US3567450 und US3658520) oder Tetraaryldiamine (die zwei Tertiäramineinheiten sind über eine Arylgruppe verbunden). Es können auch noch mehr Triarylamino-gruppen im Molekül vorhanden sein. Auch Phthalocyanin-Derivate, Naphthalocyanin-Derivate, Butadien-Derivate und Chinolinderivate wie z.B. Dipyrazino[2,3-f:2’,3’- hjchinoxalinhexacarbonitril sind geeignet.
Bevorzugt sind aromatische tertiäre Amine mit mindestens zwei Tertiäramin- Einheiten (US2008/0102311, US4720432 und US5061569), wie z.B. NPD (a-NPD = 4,4’-bis[N-(1-naphthyl)-N-phenylamino]biphenyl) (US5061569), TPD 232 (= N,N’-Bis-(N,N’-diphenyl-4-aminophenyl)-N,N-diphenyl-4,4’-diamino-1,T-biphenyl) oder MTDATA (MTDATA oder m-MTDATA= 4, 4’, 4”-Tris[3-methylphenyl)phenyl- amino]triphenylamin) (JP-A-4-308688), TBDB (= N,N,N’,N’-Tetra(4- biphenyl)diaminobiphenylen), TAPC (= 1,1-Bis(4-di-p-tolylaminophenyl)- cyclohexan), TAPPP (= 1,1-Bis(4-di-p-tolylaminophenyl)-3-phenylpropan), BDTAPVB (= 1,4-Bis[2-[4-[N,N-di(p-tolyl)amino]phenyl]vinyl]benzol), TTB (= N,N,N’,N’-Tetra-p-tolyl-4,4’-diaminobiphenyl), TPD (= 4,4’-Bis[N-3-methylphenyl]- N-phenylamino)biphenyl), N,N,N’,N’-Tetraphenyl-4,4”’-diamino-1,r,4’,1”,4”,r”- quaterphenyl, ebenso tertiäre Amine mit Carbazol-Einheiten wie z.B. TCTA (= 4- (9H-Carbazol-9-yl)-N,N-bis[4-(9H-carbazol-9-yl)phenyl]benzolamin). Ebenfalls bevorzugt sind Hexaaza-Triphenylen-Verbindungen gemäß US2007/0092755 sowie Phthalocyanin-Derivate (z.B. H2PC, CuPc (= Kupfer-Phthalocyanin), CoPc, Ni Pc, ZnPc, PdPc, FePc, MnPc, CIAIPc, CIGaPc, CllnPc, CISnPc, CI2SiPc, (HO)AIPc, (HO)GaPc, VOPc, TiOPc, MoOPc, GaPc-O-GaPc).
Besonders bevorzugt sind folgende Triarylamin-Verbindungen gemäß den Formeln (TA-1) bis (TA-14), die in den Dokumenten EP 1162193 B1, EP 650955 B1, Synth. Metals 1997, 91(1-3), 209, DE19646119, W02006/122630, EP1860097, EP1834945, JP08053397, US6251531, US2005/0221124,
JP08292586, US7399537, US2006/0061265, EP1661888 und W02009/041635. Die genannten Verbindungen gemäß den Formeln (TA-1) bis (TA-14) können auch substituiert sein:
Figure imgf000024_0001
Formel TA-11 Formel TA-12 Weitere Lochinjektionsmaterialien, Lochtransportmaterialien oder Elektronenblockiermaterialien die erfindungsgemäß aufgereinigt werden können, sind beschrieben in EP0891121, EP1029909, US2004/0174116,
WO2013/120577, WO2013/087142, WO2014/067614, WO2014/072017,
WO2014/015937, WO2014/015935, W02015/022051, WO2016/078747, W02016/087017, WO2017/041874, W02017/016632, WO2017/148564,
WO2018/083053.
Grundsätzlich kann jedes bekannte Elektronenblockiermaterial eingesetzt werden. Zusätzlich zu weiteren Elektronenblockiermaterialien, die an anderen Stellen in der vorliegenden Anmeldung dargelegt werden, sind zweckmäßige Elektronenblockiermaterialien Übergangsmetall-Komplexe wie beispielsweise lr(ppz)3 (US2003/0175553).
Verbindungen, die Elektroneninjektions- und/oder Elektronentransporteigenschaften aufweisen, sind beispielsweise Pyridin-, Pyrimidin-, Pyridazin-, Pyrazin-, Oxadiazol-, Chinolin-, Chinoxalin-, Anthracen-, Benzanthracen-, Pyren-, Perylen-, Benzimidazol-, Triazin-, Keton-, Phosphinoxid- und Phenazinderivate, aber auch Triarylborane.
Besonders geeignete Verbindungen für elektronentransportierende und elektroneninjizierende Schichten sind Metallchelate von 8-Hydroxychinolin (z.B. LiQ, AIQ3, GaQ3, MgQ2, ZnQ2, lnQ3, ZrQ4), BAIQ, Ga-Oxinoid-Komplexe, 4-Aza- phenanthren-5-ol-Be-Komplexe (US5529853, vgl. Formel ET-1), Butadienderivate (US4356429), heterozyklische optische Aufheller (US4539507), Benzimidazol- Derivate (US2007/0273272), wie z.B. TPBI (US5766779, vgl. Formel ET-2), 1,3,5- Triazine, z.B. Spirobifluoren-Triazin-Derivate (z.B. gemäß der DE102008064200), Pyrene, Anthracene, Tetracene, Fluorene, Spirofluorene, Dendrimere, Tetracene (z.B. Rubren-Derivate), 1,10-Phenanthrolin-Derivate (JP2003-115387, JP2004- 311184, JP2001-267080, W02002/043449), Sila-Cyclopentadien-Derivate (EP1480280, EP1478032, EP1469533), Boran- Derivate wie z.B. Triarylboranderivate mit Si (US2007/0087219 A1, vgl. Formel ET-3), Pyridin- Derivate (JP2004-200162), Phenanthroline, vor allem 1,10-Phenanthrolinderivate, wie z.B. BCP und Bphen, auch mehrere über Biphenyl oder andere aromatische Gruppen verbundene Phenanthroline (US2007-0252517) oder mit Anthracen verbundene Phenanthroline (US2007-0122656, vgl. Formeln ET-4 bis ET-6 und Pyrimidin- bzw. Triazine wie z.B. in Formel ET-7 und ET-8 beschrieben. Die genannten Verbindungen gemäß den Formeln (ET-1) bis (ET-8) können auch substituiert sein:
Figure imgf000027_0001
Ebenfalls geeignet sind heterozyklische organische Verbindungen wie z.B. Thiopyrandioxide, Oxazole, Triazole, Imidazole oder Oxadiazole. Beispiele für die Verwendung von Fünfringen mit N wie z.B. Oxazole, vorzugsweise 1,3,4- Oxadiazole, beispielsweise Verbindungen gemäß Formeln ET-6, ET-7, ET-8 und ET-9, die unter anderem in US 2007/0273272 A1 dargelegt sind; Thiazole, Oxadiazole, Thiadiazole, Triazole, u.a. siehe US 2008/0102311 A1 und Y.A. Levin, M.S. Skorobogatova, Khimiya Geterotsiklicheskikh Soedinenii 1967 (2), 339-341, vorzugsweise Verbindungen gemäß Formel ET-10, Silacyclopentadien- Derivate. Bevorzugte Verbindungen sind folgende gemäß den Formeln (ET-9) bis (ET-10):
Figure imgf000028_0001
Auch organische Verbindungen wie Derivate von Fluorenon, Fluorenyliden- methan, Perylentetrakohlensäure, Anthrachinondimethan, Diphenochinon, Anthron und Anthrachinondiethylendiamin können eingesetzt werden.
Bevorzugt sind 2,9,10-substituierte Anthracene (mit 1- oder 2-Naphthyl und 4- oder 3-Biphenyl) oder Moleküle, die zwei Anthraceneinheiten enthalten (US2008/0193796 A1, vgl. Formel ET-11). Sehr vorteilhaft ist auch die Verbindung von 9,10-substituierten Anthracen-Einheiten mit Benzimidazol- Derivaten (US 2006 147747 A und EP 1551206 A1, vgl. Formeln ET-12 und ET- 13).
Figure imgf000028_0002
Formel ET-11 Formel ET- 12
Figure imgf000029_0001
Formel ET-13
Weitere Elektroneninjektionsmaterialien bzw. Elektronentransportmaterialien, die erfindungsgemäß aufgereinigt werden können, sind beschrieben in W02005/053055, WO2010/072300, WO2014/023388, WO2015/049030,
WO2016/012075, WO2017/178311 , WO2017/016630, WO2018/060307,
WO2018/060218.
Die im erfindungsgemäßen Verfahren eingesetzten funktionalen Materialien können Emitter umfassen. Der Begriff Emitter bezeichnet ein Material, welches, nach einer Anregung, die durch Übertragung jeder Art von Energie erfolgen kann, einen strahlungsbehafteten Übergang unter Emission von Licht in einen Grundzustand erlaubt. Im Allgemeinen sind zwei Klassen von Emittern bekannt, fluoreszierende und phosphoreszierende Emitter. Der Begriff fluoreszierender Emitter bezeichnet Materialien oder Verbindungen, bei welchen ein strahlungsbehafteter Übergang von einem angeregten Singulettzustand in den Grundzustand erfolgt. Der Begriff phosphoreszierender Emitter bezeichnet vorzugsweise lumineszierende Materialien oder Verbindungen, die Übergangsmetalle umfassen.
Emitter werden häufig auch als Dotanden bezeichnet, falls die Dotanden die zuvor dargelegten Eigenschaften in einem System hervorrufen. Unter einem Dotanden wird in einem System enthaltend ein Matrixmaterial und einen Dotanden diejenige Komponente verstanden, deren Anteil in der Mischung der kleinere ist. Entsprechend wird unter einem Matrixmaterial in einem System enthaltend ein Matrixmaterial und einen Dotanden diejenige Komponente verstanden, deren Anteil in der Mischung der größere ist. Unter dem Begriff phosphoreszierende Emitter können demgemäß beispielsweise auch phosphoreszierende Dotanden verstanden werden. Verbindungen, welche Licht emittieren können, umfassen unter anderem fluoreszierende Emitter und phosphoreszierende Emitter. Hierzu gehören unter anderem Verbindungen mit Stilben-, Stilbenamin-, Styrylamin-, Coumarin-, Rubren-, Rhodamin-, Thiazol-, Thiadiazol-, Cyanin-, Thiophen-, Paraphenylen-, Perylen-, Phatolocyanin-, Porphyrin-, Keton-, Chinolin-, Imin-, Anthracen- und/oder Pyren-Strukturen. Besonders bevorzugt sind Verbindungen, die auch bei Raumtemperatur mit hoher Effizienz aus dem Triplettzustand Licht emittieren können, also Elektrophosphoreszenz statt Elektrofluoreszenz zeigen, was häufig eine Steigerung der Energieeffizienz bewirkt. Hierfür eignen sich zunächst Verbindungen, welche Schweratome mit einer Ordnungszahl von mehr als 36 enthalten. Bevorzugt sind Verbindungen, welche d- oder f-Übergangsmetalle enthalten, die die o.g. Bedingung erfüllen. Besonders bevorzugt sind hier entsprechende Verbindungen, welche Elemente der Gruppe 6 bis 10, bevorzugt 8 bis 10 (Mo, W, Re, Cu, Ag, Au, Zn, Ru, Os, Rh, Ir, Pd, Pt, bevorzugt Ru, Os, Rh,
Ir, Pd, Pt) enthalten. Als funktionale Verbindungen kommen hier z.B. verschiedene Komplexe in Frage, wie sie z.B. in der WO02/068435 A1, der W002/081488 A1, der EP1239526 A2 und der WO04/026886 A2 beschrieben werden.
Nachfolgend werden beispielhaft bevorzugte Verbindungen dargelegt, die als fluoreszierende Emitter dienen können. Bevorzugte fluoreszierende Emitter sind ausgewählt aus der Klasse der Monostyrylamine, der Distyrylamine, der Tristyrylamine, der Tetrastyrylamine, der Styrylphosphine, der Styrylether und der Arylamine.
Unter einem Monostyrylamin wird eine Verbindung verstanden, die eine substituierte oder unsubstituierte Styrylgruppe und mindestens ein, bevorzugt aromatisches, Amin enthält. Unter einem Distyrylamin wird eine Verbindung verstanden, die zwei substituierte oder unsubstituierte Styrylgruppen und mindestens ein, bevorzugt aromatisches, Amin enthält. Unter einem Tristyrylamin wird eine Verbindung verstanden, die drei substituierte oder unsubstituierte Styryl gruppen und mindestens ein, bevorzugt aromatisches, Amin enthält. Unter einem Tetrastyrylamin wird eine Verbindung verstanden, die vier substituierte oder unsubstituierte Styrylgruppen und mindestens ein, bevorzugt aromatisches, Amin enthält. Die Styrylgruppen sind besonders bevorzugt Stilbene, die auch noch weiter substituiert sein können. Entsprechende Phosphine und Ether sind in Analogie zu den Aminen definiert. Unter einem Arylamin bzw. einem aromatischen Amin im Sinne der vorliegenden Erfindung wird eine Verbindung verstanden, die drei substituierte oder unsubstituierte aromatische oder hetero aromatische Ringsysteme direkt an den Stickstoff gebunden enthält. Bevorzugt ist mindestens eines dieser aromatischen oder heteroaromatischen Ringsysteme ein kondensiertes Ringsystem, vorzugsweise mit mindestens 14 aromatischen Ring atomen. Bevorzugte Beispiele hierfür sind aromatische Anthracenamine, aromatische Anthracendiamine, aromatische Pyrenamine, aromatische Pyrendiamine, aromatische Chrysenamine oder aromatische Chrysendiamine. Unter einem aromatischen Anthracenamin wird eine Verbindung verstanden, in der eine Diarylaminogruppe direkt an eine Anthracengruppe gebunden ist, vorzugsweise in 9-Position. Unter einem aromatischen Anthracendiamin wird eine Verbindung verstanden, in der zwei Diarylaminogruppen direkt an eine Anthracengruppe gebunden sind, vorzugsweise in 2,6- oder 9,10-Position. Aromatische Pyrenamine, Pyrendiamine, Chrysenamine und Chrysendiamine sind analog dazu definiert, wobei die Diarylaminogruppen am Pyren vorzugsweise in 1 -Position bzw. in 1,6-Position gebunden sind.
Weitere bevorzugte fluoreszierende Emitter sind ausgewählt aus Indeno- fluorenaminen bzw. -diaminen, die unter anderem im Dokument WO06/122630 dargelegt sind; Benzoindenofluorenaminen bzw. -diaminen, die unter anderem im Dokument W02008/006449 dargelegt sind; und Dibenzoindenofluorenaminen bzw. -diaminen, die unter anderem im Dokument W02007/140847 dargelegt sind.
Beispiele für Verbindungen, die als fluoreszierende Emitter eingesetzt werden können, aus der Klasse der Styrylamine sind substituierte oder unsubstituierte Tristilbenamine oder die Dotanden, die in der W006/000388, der WO06/058737, der W006/000389, der WO07/065549 und der WO07/115610 beschrieben sind. Distyrylbenzol- und Distyrylbiphenyl-Derivate sind beschrieben in der US 5121029. Weitere Styrylamine sind in der US 2007/0122656 A1 zu finden.
Besonders bevorzugte Styrylamin-Verbindungen die in US 7250532 B2 beschriebenen Verbindungen der Formel EM-1 und die in DE 102005058557 A1 dargelegten Verbindungen der Formel EM-2 sind: Formel EM-1 Formel EM-2
Besonders bevorzugte Triarylamin-Verbindungen beziehungsweise -Gruppen oder -Strukturelemente sind die in den Druckschriften CN1583691, JP08/053397 und US6251531, EP1957606, US2008/0113101, US2006/210830, W008/006449 und DE102008035413 dargelegten Verbindungen der Formeln EM-3 bis EM-18 und deren Derivate:
Figure imgf000032_0001
Formel EM-5 Formel EM-6 Weitere bevorzugte Verbindungen, die als fluoreszierenden Emitter eingesetzt werden können, sind ausgewählt aus Derivaten von Naphthalin, Anthracen, Tetracen, Benzanthracen, Benzphenanthren (DE 102009005746), Fluoren, Fluoranthen, Periflanthen, Indenoperylen, Phenanthren, Perylen (US 2007/0252517 A1), Pyren, Chrysen, Decacyclen, Coronen, Tetraphenylcyclopentadien, Pentaphenylcyclopentadien, Fluoren, Spirofluoren, Rubren, Cumarin (US 4769292, US 6020078, US 2007/0252517 A1), Pyran, Oxazol, Benzoxazol, Benzothiazol, Benzimidazol, Pyrazin, Zimtsäureestern,
Diketopyrrolopyrrol, Acridon und Chinacridon (US 2007/0252517 A1).
Von den Anthracenverbindungen sind besonders bevorzugt in 9,10-Position substituierte Anthracene wie z.B. 9,10-Diphenylanthracen und 9,10- Bis(phenylethynyl)anthracen. Auch 1 ,4-Bis(9’-ethynylanthracenyl)-benzol ist ein bevorzugter Dotand.
Ebenfalls bevorzugt sind Derivate von Rubren, Cumarin, Rhodamin, Chinacridon wie z.B. DMQA (= N,N’-dimethylchinacridon), Dicyano-methylenpyran wie z.B. DCM (= 4-(dicyanoethylen)-6-(4-dimethylamino-styryl-2-methyl)-4H-pyran), Thiopyran, Polymethin, Pyrylium- und Thiapyryliumsalzen, Periflanthen und Indenoperylen.
Blaue Fluoreszenzemitter sind vorzugsweise Polyaromaten wie z.B. 9, 10-Di(2- naphthylanthracen) und andere Anthracen-Derivate, Derivate von Tetracen, Xanthen, Perylen wie z.B. 2,5,8, 11-Tetra-f-butyl-perylen, Phenylen, z.B. 4,4’- (Bis(9-ethyl-3-carbazovinylen)-1,1’-biphenyl, Fluoren, Fluoranthen, Arylpyrene (US 2006/0222886 A1), Arylenvinylene (US 5121029, US 5130603), Bis(azinyl)imin- Bor-Verbindungen (US 2007/0092753 A1), Bis(azinyl)methenverbindungen und Carbostyryl-Verbindungen. Weitere bevorzugte blaue Fluoreszenzemitter sind in C.H.Chen et al.: „Recent develop ents in organic electroluminescent materials“ Macro ol. Sy p. 125, (1997) 1-48 und “Recent progress of molecular organic electroluminescent materials and devices” Mat. Sei. and Eng. R, 39 (2002), 143-222 beschrieben.
Weitere bevorzugte blau fluoreszierende Emitter sind die in der DE102008035413 offenbarten Kohlenwasserstoffe. Besonders bevorzugt sind ferner, die in WO2014/111269 dargelegten Verbindungen, insbesondere Verbindungen mit einem Bis-Indenofluoren-Grundgerüst. Die zuvor zitierten Druckschriften DE 102008035413 und WO2014/111269 werden in die vorliegende Anmeldung zu Offenbarungszwecken durch Referenz hierauf eingefügt.
Weitere bevorzugte Verbindungen, die als fluoreszierenden Emitter eingesetzt werden können, sind beschrieben in WO2010/012328, W02010/012330,
WO2014/037077 und W02008/145239.
Unter Phosphoreszenz im Sinne dieser Erfindung wird die Lumineszenz aus einem angeregten Zustand mit höherer Spinmultiplizität verstanden, also einem Spinzustand > 1, insbesondere aus einem angeregten Triplettzustand. Im Sinne dieser Anmeldung sollen alle lumineszierenden Komplexe mit Übergangsmetallen oder Lanthaniden, insbesondere alle Iridium-, Platin- und Kupferkomplexe als phosphoreszierende Verbindungen angesehen werden.
Als phosphoreszierende Verbindungen (= Triplettemitter) eignen sich insbesondere Verbindungen, die bei geeigneter Anregung Licht, vorzugsweise im sichtbaren Bereich, emittieren und außerdem mindestens ein Atom der Ordnungszahl größer 20, bevorzugt größer 38 und kleiner 84, besonders bevorzugt größer 56 und kleiner 80 enthalten, insbesondere ein Metall mit dieser Ordnungszahl. Bevorzugt werden als Phosphoreszenzemitter Verbindungen, die Kupfer, Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Iridium, Palladium, Platin, Silber, Gold oder Europium enthalten, verwendet, insbesondere Verbindungen, die Iridium oder Platin enthalten.
Beispiele der oben beschriebenen Emitter können den Anmeldungen WO00/70655, W02001/41512, W02002/02714, WO2002/15645, EP1191613, EP1191612, EP1191614, WO05/033244, W005/019373, US2005/0258742, W02009/146770, WO2010/015307, WO2010/031485, WO2010/054731,
WO201 0/054728, WO2010/086089, WO2010/099852, WO2010/102709,
WO201 1/032626, WO2011/066898, WO2011/157339, WO2012/007086,
WO201 4/008982, WO2014/023377, WO2014/094961, W02014/094960,
WO201 5/036074, WO2015/104045, WO2015/117718, W02016/015815,
WO201 6/124304, WO2017/032439, WO2018/011186, WO2018/001990,
WO201 8/019687, WO2018/019688, WO2018/041769, WO2018/054798,
WO201 8/069196, WO2018/069197, WO2018/069273, WO2018/178001,
WO201 8/177981, WO2019/020538, WO2019/115423, WO2019/158453 und WO201 9/179909 entnommen werden. Generell eignen sich alle phosphoreszierenden Komplexe, wie sie gemäß dem Stand der Technik für phosphoreszierende Elektrolumineszenzvorrichtungen verwendet werden und wie sie dem Fachmann auf dem Gebiet der organischen Elektrolumineszenz bekannt sind, und der Fachmann kann ohne erfinderisches Zutun weitere phosphores zierende Komplexe verwenden.
Bevorzugte Liganden sind 2-Phenylpyridin-Derivate, 7,8-Benzochinolin-Derivate, 2-(2-Thienyl)pyridin-Derivate, 2-(1-Naphthyl)pyridin-Derivate, 1-Phenylisochinolin- Derivate, 3-Phenylisochinolin-Derivate oder 2-Phenyl-chinolin-Derivate. Alle diese Verbindungen können substituiert sein, z.B. für Blau mit Fluor-, Cyano- und/oder Trifluormethylsubstituenten. Auxiliäre Liganden sind vorzugsweise Acetylacetonat oder Picolinsäure.
Insbesondere sind Komplexe von Pt oder Pd mit tetradentaten Liganden gemäß Formel EM-19 als Emitter geeignet.
Figure imgf000036_0001
Formel EM-19 Die Verbindungen gemäß Formel EM-19 sind detaillierter in US 2007/0087219 A1 dargelegt, wobei zur Erläuterung der Substituenten und Indices in obiger Formel auf diese Druckschrift zu Offenbarungszwecken verwiesen wird.
Weiterhin sind Pt-Porphyrinkomplexe mit vergrößertem Ringsystem (US 2009/0061681 A1) und Ir-Komplexe geeignet, z.B. 2,3,7,8, 12, 13, 17, 18-Octaethyl- 21 H, 23H-porphyrin-Pt(ll), Tetraphenyl-Pt(ll)-tetrabenzoporphyrin (US 2009/0061681 A1), c/s-Bis(2-phenylpyridinato-N,C2’)Pt(ll), cis- Bis(2-(2’- thienyl)pyridinato-N,C3’)Pt(ll), c/s-Bis-(2-(2’-thienyl)chinolinato-N,C5’)Pt(ll), (2-(4,6- Difluorophenyl)pyridinato-N,C2’)Pt(ll)(acetylacetonat), oder Tris(2- phenylpyridinato-N,C2’)lr(lll) (= lr(ppy)3, grün), Bis(2-phenyl-pyridinato- N,C2)lr(lll)(acetylacetonat) (= lr(ppy)2acetylacetonat, grün, US 2001/0053462 A1, Baldo, Thompson et al. Nature 403, (2000), 750-753), Bis(1-phenylisochinolinato- N,C2’)(2-phenylpyridinato-N,C2’)lridium(lll), Bis(2-phenylpyridinato-N,C2’)(1- phenylisochinolinato-N,C2’)lridium(lll), Bis(2-(2’-benzothienyl)pyridinato- N,C3’)lridium(lll)(acetylacetonat), Bis(2-(4’,6’-difluorophenyl)pyridinato- N,C2’)lridium(lll)(piccolinat) (Flrpic, blau), Bis(2-(4’,6’-difluorophenyl)pyridinato- N,C2’)lr(lll)(tetrakis(1-pyrazolyl)borat), Tris(2-(biphenyl-3-yl)-4- tertbutylpyridin)iridium(lll), (ppz)2lr(5phdpym) (US 2009/0061681 A1), (45ooppz)2lr(5phdpym) (US 2009/0061681 A1), Derivate von 2-Phenylpyridin-lr- Komplexen, wie z.B. PQIr (= lridium(lll)-bis(2-phenyl-quinolyl- N,C2’)acetylacetonat), Tris(2-phenylisochinolinato-N,C)lr(lll) (rot), Bis(2-(2’- benzo[4,5-a]thienyl)pyridinato-N,C3)lr(acetyl-acetonat) ( [Btp2lr(acac)], rot, Adachi et al. Appl. Phys. Lett. 78 (2001), 1622-1624). Besonders geeignet sind weiterhin, die in WO2016/124304 dargelegten Komplexe. Die zuvor zitierten Druckschriften, insbesondere die WO2016/124304, werden in die vorliegende Anmeldung zu Offenbarungszwecken durch Referenz hierauf eingefügt.
Ebenfalls geeignet sind Komplexe von trivalenten Lanthaniden wie z.B. Tb3+ und Eu3+ (J.Kido et al. Appl. Phys. Lett. 65 (1994), 2124, Kido et al. Chem. Lett. 657, 1990, US 2007/0252517 A1) oder phosphoreszente Komplexe von Pt(ll), lr(l), Rh(l) mit Maleonitrildithiolat (Johnson et al., JACS 105, 1983, 1795), Re(l)- Tricarbonyl-diimin-Komplexe (Wrighton, JACS 96, 1974, 998 u.a.), Os(ll)- Komplexe mit Cyanoliganden und Bipyridyl- oder Phenanthrolin-Liganden (Ma et al., Synth. Metals 94, 1998, 245). Weitere phosphoreszierende Emitter mit tridentaten Liganden werden beschrieben in der US 6824895 und der US 10/729238. Rot emittierende phosphoreszente Komplexe findet man in der US 6835469 und der US 6830828.
Besonders bevorzugte Verbindungen, die als phosphoreszierende Dotanden Verwendung finden, sind unter anderem die in US 2001/0053462 A1 und Inorg. Chem. 2001, 40(7), 1704-1711, JACS 2001, 123(18), 4304-4312 beschrieben Verbindungen gemäß Formel EM-20 sowie Derivate hiervon.
Figure imgf000038_0001
Derivate sind beschrieben in der US7378162, der US6835469 und der JP2003/253145.
Ferner können die in US7238437, US2009/008607 und EP1348711 beschriebenen Verbindungen gemäß Formel EM-21 bis EM-28 sowie deren Derivate als Emitter eingesetzt werden.
Figure imgf000038_0002
Weitere Emitter, die erfindungsgemäß aufgereinigt werden können, sind beschrieben in WO00/70655, W02001/41512, W02002/02714, WO2002/15645, EP1191613, EP1191612, EP1191614, WO05/033244, W005/019373,
US2005/0258742, W02009/146770, WO2010/015307, WO2010/031485,
WO2010/054731 , WO2010/054728, WO2010/086089, WO2010/099852,
WO2010/102709, WO2011/032626, WO2011/066898, WO2011/157339,
WO2012/007086, W02014/008982, WO2014/023377, W02014/094961, WO2014/094960, WO2015/036074, WO2015/104045, WO2015/117718, W02016/015815, WO2016/124304, WO2017/032439, WO2018/011186,
WO2018/001990, WO2018/019687, WO2018/019688, WO2018/041769,
WO2018/054798, WO2018/069196, WO2018/069197, WO2018/069273,
WO2018/178001, WO2018/177981, WO2019/020538, WO2019/115423,
WO2019/158453 und WO2019/179909.
In einer bevorzugten Ausgestaltung wird durch eine geeignete Kombination von Verbindungen vorzugsweise ein Hyperfluoreszenz- und/oder Hyperphosphoreszenz-System gebildet. Derartige Hyperfluoreszenz- und/oder Hyperphosphoreszenz-Systeme bilden eine bevorzugte Ausführungsform erfindungsgemäß aufzureinigenden funktionalen Materialien.
Vorzugsweise wird hierzu ein fluoreszierender Emitter in Kombination mit einem oder mehreren phosphoreszierenden Materialien (Triplettemitter) und/oder einer Verbindung eingesetzt, die ein TADF-Hostmaterial (thermally activated delayed fluorescence) darstellt.
In W02015/091716 und in WO2016/193243 werden OLEDs offenbart, die in der Emissionsschicht sowohl eine phosphoreszierende Verbindung als auch einen fluoreszierenden Emitter enthalten, wobei die Energie von der phosphoreszierenden Verbindung auf den fluoreszierenden Emitter übertragen wird (Hyperphosphoreszenz). Die phosphoreszierende Verbindung verhält sich in diesem Zusammenhang demnach wie ein Host-Material. Wie der Fachmann weiß, haben Hostmaterialien höhere Singulett und Triplett-Energien im Vergleich zu dem Emittern, damit die Energie des Host-Materials auch möglichst optimal auf den Emitter übertragen werden. Die im Stand der Technik offenbarten Systeme weisen genau solch eine Energierelation auf.
Ein fluoreszierender Emitter kann vorzugsweise in Kombination mit einem TADF- Hostmaterial und/oder einem TADF-Emitter eingesetzt werden, wie dies zuvor dargelegt ist.
Der als thermisch aktivierte verzögerte Fluoreszenz (TADF = „thermally activated delayed fluorescence“) bezeichnete Vorgang wird beispielsweise von B. H. Uoyama et al., Nature 2012, Vol. 492, 234 beschrieben. Um diesen Prozess zu ermöglichen, ist im Emitter ein vergleichsweise kleiner Singulett-Triplett-Abstand ÄE(Si - Ti) von zum Beispiel weniger als etwa 2000 cm 1 nötig. Um den an sich spin-verbotenen Übergang Ti - > Si zu öffnen, kann neben dem Emitter eine weitere Verbindung in der Matrix vorgesehen werden, die eine starke Spin-Bahn- Kopplung aufweist, sodass über die räumliche Nähe und die damit mögliche Wechselwirkung zwischen den Molekülen ein Inter-System-Crossing ermöglicht wird, oder die Spin-Bahn-Kopplung wird über ein im Emitter enthaltenes Metallatom erzeugt.
Verbindungen, die als Hostmaterialien, insbesondere zusammen mit emittierenden Verbindungen eingesetzt werden, umfassen Materialien verschiedener Stoffklassen.
Hostmaterialien weisen im Allgemeinen größere Bandlücken zwischen HOMO und LUMO auf als die eingesetzten Emittermaterialien. Zusätzlich zeigen bevorzugte Hostmaterialien entweder Eigenschaften eines Loch- oder Elektronentransportmaterials. Weiterhin können Hostmaterialien sowohl Elektronen- als auch Lochtransporteigenschaften aufweisen.
Hostmaterialien werden zum Teil auch als Matrixmaterial bezeichnet, insbesondere falls das Hostmaterial in Kombination mit einem phosphoreszierenden Emitter in einer OLED eingesetzt wird.
Bevorzugte Host-Materialien oder Co-Host-Materialien, die insbesondere zusammen mit fluoreszierenden Dotanden eingesetzt werden, sind ausgewählt aus den Klassen der Oligoarylene (z.B. 2,2‘,7,7‘-Tetraphenyl-spirobifluoren gemäß EP 676461 oder Dinaphthylanthracen), insbesondere der Oligoarylene enthaltend kondensierte aromatische Gruppen wie z.B. Anthracen, Benzanthracen, Benzphenanthren (DE 102009005746, WO09/069566), Phenanthren, Tetracen, Coronen, Chrysen, Fluoren, Spirofluoren, Perylen, Phthaloperylen, Naphthaloperylen, Decacyclen, Rubren, der Oligoarylenvinylene (z.B. DPVBi = 4,4’-Bis(2,2-diphenyl-ethenyl)-1,1’-biphenyl ) oder Spiro-DPVBi gemäß EP 676461), der polypodalen Metallkomplexe (z.B. gemäß W004/081017), insbesondere Metallkomplexe von 8-Hydroxychinolin, z.B. AIQ3 (= Aluminium(lll)tris(8-hydroxychinolin)) oder Bis(2-methyl-8-chinolinolato)-4- (phenylphenolino-lato)aluminium, auch mit Imidazol-Chelat (US 2007/0092753 A1) sowie der Chinolin-Metallkomplexe, Aminochinolin-Metallkomplexe, Benzochinolin-Metallkomplexe, der lochleitenden Verbindungen (z.B. gemäß W004/058911), der elektronenleitenden Verbindungen, insbesondere Ketone, Phosphinoxide, Sulfoxide, Carbazole, Spiro-Carbazole, Indenocarbazole, etc. (z.B. gemäß der W005/084081 und der W005/084082), der Atropisomere (z.B. gemäß der WO06/048268), der Boronsäurederivate (z.B. gemäß der WO06/117052) oder der Benzanthracene (z.B. gemäß der WO08/145239).
Besonders bevorzugte Verbindungen, die als Host-Materialien oder Co-Host- Materialien dienen können, sind ausgewählt aus den Klassen der Oligoarylene, enthaltend Anthracen, Benzanthracen und/oder Pyren oder Atropisomere dieser Verbindungen. Unter einem Oligoarylen im Sinne der vorliegenden Erfindung soll eine Verbindung verstanden werden, in der mindestens drei Aryl- bzw. Arylengruppen aneinander gebunden sind.
Bevorzugte Hostmaterialien sind insbesondere ausgewählt aus Verbindungen der Formel (H-100),
Ar5-(Ar6)p-Ar7 (H-100) wobei Ar5, Ar6, Ar7 bei jedem Auftreten gleich oder verschieden eine Aryl- oder Heteroarylgruppe mit 5 bis 30 aromatischen Ringatomen ist, die gegebenenfalls substituiert sein kann, und p eine ganze Zahl im Bereich von 1 bis 5 darstellt; dabei gilt, dass die Summe der tt-Elektronen in Ar5, Ar6 und Ar7 mindestens 30 beträgt, wenn p = 1 ist, und mindestens 36 beträgt, wenn p = 2 ist, und mindestens 42 beträgt, wenn p = 3 ist.
Besonders bevorzugt steht in den Verbindungen der Formel (H-100) die Gruppe Ar6 für Anthracen und die Gruppen Ar5 und Ar7 sind in 9- und 10-Position gebunden, wobei diese Gruppen gegebenenfalls substituiert sein können. Ganz besonders bevorzugt ist mindestens eine der Gruppen Ar5 und/oder Ar7 eine kondensierte Arylgruppe, ausgewählt aus 1- oder 2-Naphthyl, 2-, 3- oder 9- Phenanthrenyl oder 2-, 3-, 4-, 5-, 6- oder 7-Benzanthracenyl. Anthracen-basierte Verbindungen sind beschrieben in der US 2007/0092753 A1 und der US 2007/0252517 A1, z.B. 2-(4-Methylphenyl)-9,10-di-(2-naphthyl)anthracen, 9-(2- Naphthyl)-10-(1,1’-biphenyl)anthracen und 9,10-Bis[4-(2,2- diphenylethenyl)phenyl]anthracen, 9,10-Diphenylanthracen, 9,10- Bis(phenylethynyl)anthracen und 1,4-Bis(9’-ethynylanthracenyl)benzol. Bevorzugt sind auch Verbindungen mit zwei Anthraceneinheiten (US 2008/0193796 A1), z. B. 10,10’-Bis[1 , 1 ’,4’, 1 ”]terphenyl-2-yl-9,9’-bisanthracenyl.
Weitere bevorzugte Verbindungen sind Derivate von Arylamin, Styrylamin, Fluorescein, Diphenylbutadien, Tetraphenylbutadien, Cyclopentadiene, Tetraphenylcyclopentadien, Pentaphenylcyclopentadien, Cumarin, Oxadiazol, Bisbenzoxazolin, Oxazol, Pyridin, Pyrazin, Imin, Benzothiazol, Benzoxazol, Benzimidazol (US 2007/0092753 A1), z.B. 2,2’,2”-(1,3,5-Phenylen)tris[1-phenyl- 1H-benzimidazol], Aldazin, Stilben, Styrylarylen-derivate, z.B. 9,10-Bis[4-(2,2- diphenylethenyl)phenyl]anthracen und Distyrylarylen-Derivate (US 5121029), Diphenylethylen, Vinylanthracen, Diaminocarbazol, Pyran, Thiopyran, Diketopyrrolopyrrol, Polymethin, Zimtsäureestern und Fluoreszenzfarbstoffen.
Besonders bevorzugt sind Derivate von Arylamin und Styrylamin, z.B. TNB (= 4,4’-Bis[N-(1-naphthyl)-N-(2-naphthyl)amino]biphenyl). Metall-Oxinoid-Komplexe wie LiQ oder AIQ3 können als Co-Hosts verwendet werden.
Bevorzugte Verbindungen mit Oligoarylen als Matrix sind in US2003/0027016, US7326371 , US2006/043858, W02007/114358, WO08/145239, JP3148176, EP1009044, US2004/018383, W02005/061656, EP0681019, W02004/013073, US5077142, W02007/065678 und DE 102009005746 dargelegt, wobei besonders bevorzugte Verbindungen durch die Formeln H-101 bis H-108 beschrieben sind. Die genannten Verbindungen gemäß den Formeln H-101 bis H- 108 können auch substituiert sein:
Figure imgf000043_0001
Weiterhin umfassen Verbindungen, die als Host oder Matrix eingesetzt werden können, Materialien, die zusammen mit phosphoreszierenden Emittern eingesetzt werden. Zu diesen Verbindungen, die auch als Strukturelemente in Polymeren eingesetzt werden können, gehören CBP (N,N-Biscarbazolylbiphenyl), Carbazolderivate (z.B. gemäß WO05/039246, US2005/0069729, JP2004/288381, EP1205527 oder W008/086851), Azacarbazole (z.B. gemäß EP1617710, EP1617711, EP1731584, JP2005/347160), Ketone (z.B. gemäß W004/093207 oder gemäß der DE102008033943), Phosphinoxide, Sulfoxide und Sulfone (z.B. gemäß W005/003253), Oligophenylene, aromatische Amine (z.B. gemäß US2005/0069729), bipolare Matrixmaterialien (z.B. gemäß WO07/137725), Silane (z.B. gemäß WO05/111172), 9,9-Diarylfluorenderivate (z.B. gemäß der DE102008017591), Azaborole oder Boronester (z.B. gemäß WO06/117052), Triazin-Derivate (z.B. gemäß der DE102008036982), Indolocarbazolderivate (z.B. gemäß WO07/063754 oder WO08/056746), Indenocarbazolderivate (z.B. gemäß der DE102009023155 und der DE102009031021), Diazaphospholderivate (z.B. gemäß der DE102009022858), Triazol- Derivate, Oxazole und Oxazol- Derivate, Imidazol-Derivate, Polyarylalkan-Derivate, Pyrazolin-Derivate, Pyrazolon- Derivate, Distyrylpyrazin-Derivate, Thiopyrandioxid-Derivate, Phenylendiamin- Derivate, tertiäre aromatische Amine, Styrylamine, Amino-substituierte Chalcon- Derivate, Indole, Hydrazon- Derivate, Stilben-Derivate, Silazan-Derivate, aromatische Dimethyliden-Verbindungen, Carbodiimid-Derivate, Metallkomplexe von 8-Hydroxychinolin-Derivaten wie z.B. AIQ3, die 8-Hydroxychinolin-Komplexe können auch Triarylaminophenol-Liganden enthalten (US 2007/0134514 A1), Metallkomplex-Polysilan-Verbindungen sowie Thiophen-, Benzothiophen- und Dibenzothiophen-Derivate.
Beispiele für bevorzugte Carbazol-Derivate sind mCP (= 1,3-N,N-dicarbazol- benzol (= 9,9’-(1,3-Phenylen)bis-9H-carbazol)) (Formel H-9), CDBP (= 9,9’-(2,2’- Dimethyl[1,1’-biphenyl]-4,4’-diyl)bis-9H-carbazol), 1,3-Bis(N,N’-dicarbazol)benzol (= 1,3-Bis(carbazol-9-yl)benzol), PVK (Polyvinylcarbazol), 3,5-Di(9H-carbazol-9- yl)biphenyl sowie CMTTP (Formel H10). Besonders bevorzugte Verbindungen sind in US 2007/0128467 A1 und US 2005/0249976 A1 dargelegt (Formeln H-111 bis H-113).
Figure imgf000045_0001
Formel H-111 Formel H-112 Bevorzugte Si-Tetraaryle werden z.B. in den Dokumenten US 2004/0209115, US 2004/0209116, US 2007/0087219 A1 und H. Gilman, E.A. Zuech, Chemistry & Industry (London, United Kingdom), 1960, 120 dargelegt. Besonders bevorzugte Si-Tetraaryle werden durch die Formeln H-114 bis H-121 beschrieben.
Figure imgf000046_0001
Besonders bevorzugte Verbindungen zur Herstellung der Matrix für phosphoreszierende Dotanden sind unter anderem in DE102009022858,
DE102009023155, EP652273, WO07/063754 und WO08/056746 dargelegt, wobei besonders bevorzugte Verbindungen durch die Formeln H-122 bis H-125 beschrieben werden.
Figure imgf000047_0001
Im Hinblick auf die erfindungsgemäß einsetzbaren funktionalen Verbindungen, die als Hostmaterial dienen können, sind insbesondere Stoffe bevorzugt, die mindestens ein Stickstoffatom aufweist. Hierzu gehören vorzugsweise aromatische Amine, Triazin- und Carbazol-Derivate. So zeigen insbesondere Carbazol- Derivate eine überraschend hohe Effizienz. Triazin-Derivate führen unerwartet zu hohen Lebensdauern der elektronischen Vorrichtungen mit den genannten Verbindungen.
Weitere Hostmaterialien, die erfindungsgemäß aufgereinigt werden können, sind beschrieben in W02010/136109, WO2011/057706, WO2011/160757, WO2013/041176, WO2014/015931 , WO2014/094963, WO2015/165563,
WO2015/169412, WO2015/192939, WO2016/015810, WO2016/184540,
WO2017/025164, WO2017/071791 und WO2018/050583.
Weiterhin können Verbindungen aufgereinigt werden, welche den Übergang vom Singulett- zum Triplettzustand verbessern und welche, unterstützend zu den funktionalen Verbindungen mit Emittereigenschaften eingesetzt, die Phosphoreszenzeigenschaften dieser Verbindungen verbessern. Hierfür kommen insbesondere Carbazol- und überbrückte Carbazoldimereinheiten in Frage, wie sie z.B. in der W004/070772 und der WO04/113468 beschrieben werden. Weiterhin kommen hierfür Ketone, Phosphinoxide, Sulfoxide, Sulfone, Silan-
Derivate und ähnliche Verbindungen in Frage, wie sie z.B. in der W005/040302 beschrieben werden.
Unter n-Dotanden werden hierin Reduktionsmittel, d.h. Elektronendonatoren verstanden. Bevorzugte Beispiele für n-Dotanden sind W(hpp)4 und weitere elektronenreiche Metallkomplexe gemäß W02005/086251, P=N-Verbindungen (z.B. WO2012/175535, WO2012/175219), Naphthylencarbodiimide (z.B.
WO2012/168358), Fluorene (z.B. WO2012/031735), Radikale und Diradikale (z.B. EP1837926, W02007/107306), Pyridine (z.B. EP2452946, EP2463927), N- heterocyclische Verbindungen (z.B. W02009/000237) und Acridine sowie Phenazine (z.B. US2007/145355).
Weiterhin kann das funktionale Material ein Wide-Band-Gap-Material sein. Unter Wide-Band-Gap-Material wird ein Material im Sinne der Offenbarung von US7294849 verstanden. Diese Systeme zeigen besondere vorteilhafte Leistungsdaten in elektrolumineszierenden Vorrichtungen.
Grundsätzlich kann jedes bekannte Lochblockiermaterial zur Aufreinigung eingesetzt werden. Zusätzlich zu weiteren Lochblockiermaterialien, die an anderen Stellen in der vorliegenden Anmeldung dargelegt werden, sind zweckmäßige Lochblockiermaterialien Bis(2-methyl-8-quinolinolato)(4- phenylphenolato)-aluminium(lll) (BAIQ), Fac-tris(1-phenylpyrazolato- N,C2)iridium(l II) (lr(ppz)3), Phenanthrolin-Derivate, wie beispielsweise BCP, oder Phthalimide, wie beispielsweise TMPP oder die Lochblockiermaterialien, wie in WO00/70655, WO01/41512 und WO01/93642 beschrieben.
Weiterhin weisen bevorzugte funktionalen Materialien, welche zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar sind, sofern es sich um niedermolekulare Verbindungen handelt, vorzugsweise ein Molekulargewicht von < 2000 g/mol, besonders bevorzugt von < 1500 g/mol, insbesondere bevorzugt < 1200 g/mol und ganz besonders bevorzugt von < 1000 g/mol auf. Niedermolekulare Verbindungen können sublimiert oder verdampft werden.
Die zuvor zitierten Druckschriften zur Beschreibung der funktionalen Materialien, welche zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar sind, werden in die vorliegende Anmeldung zu Offenbarungszwecken durch Referenz hierauf eingefügt.
Durch das vorliegende Verfahren kann vorzugsweise ein Granulat erhalten werden. Bevorzugte Granulate können sämtliche organisch funktionalen Materialien enthalten, welche zur Herstellung der jeweiligen Funktionsschicht der elektronischen Vorrichtung notwendig sind. Ist z.B. eine Lochtransport-, Lochinjektions-, Elektronentransport-, Elektronen-injektionsschicht genau aus zwei funktionellen Verbindungen aufgebaut, so umfasst das Granulat als organisch funktionale Materialien genau diese zwei Verbindungen. Weist eine Emissionsschicht beispielsweise einen Emitter im Kombination mit einem Matrix oder Hostmaterial auf, so umfasst die Formulierung als organisch funktionales Material genau die Mischung von Emitter und Matrix- oder Hostmaterial, wie dies in der vorliegenden Anmeldung an anderer Stelle ausführlicher dargelegt ist.
Funktionale Materialen sind generell die organischen oder anorganischen Materialien, welche zwischen Anode und Kathode eingebracht sind. Vorzugsweise ist das organisch funktionale Material ausgewählt aus der Gruppe bestehend aus fluoreszierenden Emittern, phosphoreszierenden Emittern, Emittern, die TADF (thermally activated delayed fluorescence) zeigen, Emittern, die Hyperfluoreszenz oder Hyperphosphoreszenz zeigen, Hostmaterialien, Excitonenblockiermaterialien Elektroneninjektionsmaterialien, Elektronentransportmaterialien, Elektronenblockiermaterialien, Lochinjektionsmaterialien, Lochleitermaterialien, Lochblockiermaterialien, n- Dotanden, p-Dotanden, Wide-Band-Gap-Materialien, Ladungserzeugungsmaterialien.
Das aufgereinigte funktionale Material, vorzugsweise ein Granulat, dient vorzugsweise zur Herstellung einer elektronischen Vorrichtung.
Unter einer elektronischen Vorrichtung wird eine Vorrichtung verstanden, welche Anode, Kathode und mindestens eine dazwischenliegenden Funktionsschicht enthält, wobei diese Funktionsschicht mindestens eine organische bzw. metallorganische Verbindung enthält.
Es sei darauf hingewiesen, dass Variationen der in der vorliegenden Erfindung beschriebenen Ausführungsformen unter den Umfang dieser Erfindung fallen. Jedes in der vorliegenden Erfindung offenbarte Merkmal kann, sofern dies nicht explizit ausgeschlossen wird, durch alternative Merkmale, die demselben, einem äquivalenten oder einem ähnlichen Zweck dienen, ausgetauscht werden. Somit ist jedes in der vorliegenden Erfindung offenbarte Merkmal, sofern nichts anderes gesagt wird, als Beispiel einer generischen Reihe oder als äquivalentes oder ähnliches Merkmal zu betrachten.
Alle Merkmale der vorliegenden Erfindung können in jeder Art miteinander kombiniert werden, es sei denn, dass sich bestimmte Merkmale und/oder Schritte gegenseitig ausschließen. Dies gilt insbesondere für bevorzugte Merkmale der vorliegenden Erfindung. Gleichermaßen können Merkmale nicht wesentlicher Kombinationen separat verwendet werden (und nicht in Kombination).
Es sei ferner darauf hingewiesen, dass viele der Merkmale, und insbesondere die der bevorzugten Ausführungsformen der vorliegenden Erfindung selbst erfinderisch und nicht lediglich als Teil der Ausführungsformen der vorliegenden Erfindung zu betrachten sind. Für diese Merkmale kann ein unabhängiger Schutz zusätzlich oder alternativ zu jeder gegenwärtig beanspruchten Erfindung begehrt werden. Die mit der vorliegenden Erfindung offengelegte Lehre zum technischen Handeln kann abstrahiert und mit anderen Beispielen kombiniert werden.
Der Fachmann kann aus den Schilderungen ohne erfinderisches Zutun weitere erfindungsgemäße elektronische Vorrichtungen hersteilen und somit die Erfindung im gesamten beanspruchten Bereich ausführen.
Nachfolgend wird anhand von schematischen Zeichnungen die vorliegende Erfindung veranschaulicht. Es zeigen:
Figur 1 eine bevorzugte Ausführungsform einer Vorrichtung zur kontinuierlichen Aufreinigung gemäß der vorliegenden Erfindung;
Figur 2 eine weitere Ausführungsform einer Vorrichtung zur kontinuierlichen Aufreinigung gemäß der vorliegenden Erfindung.
Figur 1 zeigt in schematischer Darstellung eine Vorrichtung 10 zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material gemäß der vorliegenden Erfindung. Die dargestellte Vorrichtung 10 umfasst Zuführung 12 für mindestens ein funktionales Material, eine Verdampfungseinrichtung 14, eine Kondensationseinrichtung 16 und eine Austragseinrichtung 18.
Die Zuführung 12 für mindestens ein funktionales Material ist vorliegend als Zuführextrudereinheit ausgestaltet und umfasst einen Vorratsbehälter 20, der vorzugsweise inertisierbar ist. Die als Zuführextrudereinheit ausgestaltete Zuführung 12 ist über eine Temperiereinheit 22 temperierbar, wobei diese die verschiedenen Bereiche der Zuführung 12 auf unterschiedliche Temperaturen temperieren kann, so dass ein Temperaturgradient erzeugbar ist. Des Weiteren ist die Zuführung 12 mit einer Entgasungsöffnung 24 ausgestattet, über die Reste an Lösungsmittel entfernbar sind.
Die Verdampfungseinrichtung 14 umfasst vorliegend ein Verdampfgutverteilsystem 26, welches das aufzureinigende funktionale Material über die Oberfläche der Verdampfungseinheit 28 verteilt. Die Verdampfungseinrichtung 14 ist vorliegend mit einem Fluid heizbar, wobei das Fluid über ein Heizsystem 30 für die Verdampfungseinrichtung 14 heizbar ist, welches über eine Heizfluidzuführung 32 an die Verdampfungseinheit 28 zugeführt und über eine Heizfluidausleitung 34 von dieser abgeleitet wird.
Die Verdampfungseinrichtung umfasst vorliegend eine Öffnung, die über eine Rückstandsausleitung 36 mit einem Rückstandsauffangbehälter 38 verbunden ist.
Die Verdampfungseinrichtung 14 bildet vorliegend in Kombination mit der Zuführung 12 und der Austragseinrichtung 18 eine Verdampfungskammer 40, die über ein Vakuumpumpensystem 42 evakuierbar ist.
Das aufzureinigende funktionale Material wird in der Verdampfungseinrichtung 14 verdampft oder sublimiert und in der Kondensationseinrichtung 16 kondensiert.
Die Kondensationseinrichtung 16 ist mit einem Kondensatkollektor 44 ausgestattet, wobei ein kondensiertes funktionales Material mittels des Kondensatkollektors 44 in die Austragseinrichtung 18 sammelbar ist.
Das kondensierte funktionale Material wird über den Kondensatkollektor 44 in die Austragseinrichtung 18 geleitet. Die Austragseinrichtung 18 ist als Austragsextrudereinheit ausgestaltet und ist über eine Temperiereinheit 46 temperierbar. In der Austragsextrudereinheit wird das kondensierte funktionale Material verfestigt, wobei ein Unterdrück, vorzugsweise ein Hochvakuum, innerhalb der Verdampfungskammer 40 erzeugbar ist.
Die Austragseinrichtung 18 umfasst eine Austragsöffnung, die vorliegend mit einem Austragsbehälter 48 verbunden ist, über den das gereinigte funktionale Material entnommen werden kann. In einer bevorzugten Ausgestaltung ist die Austragsöffnung mit einer Granuliereinheit verbunden, wobei das erhaltene Granulat in einen Austragsbehälter 48 eingeleitet wird.
Figur 2 zeigt eine weitere Ausführungsform einer Vorrichtung zur kontinuierlichen Aufreinigung gemäß der vorliegenden Erfindung. Diese Ausführungsform zeigt Ähnlichkeiten zu einer Vorrichtung zur Aufreinigung von mindestens einem funktionalen Material, wie diese in KR 2019/0125700 näher beschrieben ist. Allerdings weist die in KR 2019/0125700 dargelegte Vorrichtung keine Austragseinrichtung mit einer Austragsextrudereinheit auf, sondern einen konventionellen Auffangbehälter, der zur Entnahme des aufgereinigten Materials abgenommen werden muss.
Die in Figur 2 in schematischer Darstellung eine Vorrichtung 110 zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material gemäß der vorliegenden Erfindung. Die dargestellte Vorrichtung 110 umfasst eine Zuführung 112 für mindestens ein funktionales Material, eine Verdampfungseinrichtung 114, eine Kondensationseinrichtung 116, eine Verdampfungskammer 120 und eine Austragseinrichtung 118.
Die in Figur 2 dargelegte Ausführungsform ist gegenüber der in Figur 1 Beschriebenen nicht bevorzugt, da ein aufzureinigendes funktionales Material einer höheren, da zeitlich längeren Temperaturbelastung ausgesetzt ist.
Wesentlich ist im Vergleich zum Stand der Technik die besondere Ausgestaltung der Austragseinrichtung 118, die eine Austragsextrudereinheit umfasst. Die weiteren Einzelheiten der Austragsextrudereinheit entsprechen im Wesentlichen der in Figur 1 dargestellten Ausführungsform, so dass diese eine Austragsöffnung aufweist, über die das gereinigte funktionale Material entnommen werden kann. In einer bevorzugten Ausgestaltung ist die Austragsöffnung mit einer Granuliereinheit verbunden, wobei das erhaltene Granulat in einen Austragsbehälter eingeleitet werden kann.
Die Einzelheiten zu den weiteren Komponenten der in Figur 2 dargelegten Ausführungsform, insbesondere zur Zuführung 112 für mindestens ein funktionales Material, zur Verdampfungseinrichtung 114, zur Kondensationseinrichtung 116 und zur Verdampfungskammer 120 können der Beschreibung der KR 2019/0125700 entnommen werden (vgl. KR 2019/0125700, Figur 5). Diese Ausgestaltungen werden insbesondere auf Seiten 10 und 11, Absätze 75 bis 87 dargestellt, auf denen die Figur 5 näher beschrieben wird wobei die Beschreibung dieser Ausgestaltung, die in der Druckschrift KR 2019/0125700 in Bezug auf die Zuführung, die Verdampfungseinrichtung und die Kondensationseinrichtung ausführlicher dargelegt ist, zu Zwecken der Offenbarung in die vorliegende Anmeldung durch Referenz hierauf aufgenommen wird. Bezugszeichenliste
10 Vorrichtung zur kontinuierlichen Aufreinigung
12 Zuführung für mindestens ein funktionales Material
14 Verdampfungseinrichtung
16 Kondensationseinrichtung
18 Austragseinrichtung
20 Vorratsbehälter
22 Temperiereinheit
24 Entgasungsöffnung
26 Verdampfgutverteilsystem
28 Verdampfungseinheit
30 Heizsystem
32 Heizfluidzuführung
34 Heizfluidausleitung
36 Rückstandsausleitung
38 Rückstandsauffangbehälter
40 Verdampfungskammer
42 Vakuumpumpensystem
44 Kondensatkollektor
46 Temperiereinheit
48 Austragsbehälter
110 Vorrichtung zur kontinuierlichen Aufreinigung 112 Zuführung für mindestens ein funktionales Material 114 Verdampfungseinrichtung 116 Kondensationseinrichtung 118 Austragseinrichtung 120 Verdampfungskammer
Detailliertere Beschreibungen von bevorzugten Extrudern finden sich im Stand der Technik, so unter anderem in Dokument EP 2 381 503 B1. Diese können unter anderem in einer Zuführung für mindestens ein funktionales Material und/oder einer Austragseinrichtung eingesetzt werden, wie diese zuvor, unter anderem in Figur 1 beziehungsweise Figur 2 dargelegt sind. Nachfolgend wird die Bestimmung der Glasübergangstemperatur anhand einer Verbindung, deren Übergangstemperatur schwer zu bestimmen ist, näher erläutert.
Bestimmung der Glasübergangstemperatur (Tg) von Bis-4,4’-(N,N’-carbazolyl)- biphenyl (CBP; CAS-No. 58328-31-71:
CBP wird seit längerem als Hostmaterial in phosphoreszierenden OLEDs eingesetzt (s. z. B. M. A. Baldo et ai, Applied Physics Leiters 1999, 75(1), 4-6).
Figure imgf000055_0001
Die Glasübergangstemperatur des Materials ist schwer zu bestimmen, so dass dieses Beispiel insbesondere dazu dient, den Nachweis über die Bestimmbarkeit der Glasübergangstemperatur zu erbringen. Durch die besonders bevorzugte Ausgestaltung der Messung wird gezeigt, dass CBP eine Glasübergangstemperatur von etwa 115 °C aufweist.
Die genaue Durchführung dieser Messung ist im Folgenden beschrieben:
1. Das o. g. Material wird mehrfach hergestellt und gereinigt; die Herstellung erfolgt gemäß einer abgewandelten Vorschrift nach BUCHWALD (vgl. z. B. Buchwald et al., J. Am. Chem. Soc. 1998, 120(37), 9722-9723). Die abgewandelte Vorschrift lehnt sich an die Patentanmeldung WO03/037844 an.
2. Das Material wird durch mehrfache Umkristallisation aus Dioxan gereinigt und schließlich durch zweifache „Sublimation“ (325 °C; 10-4 mbar; Verdampfung aus flüssiger Phase; Kondensation als Feststoff) endgereinigt.
3. Die Materialien werden jeweils via HPLC (Gerät: Fa. Agilent 1100; Säule:
Fa. Agilent, Sorbax SB-C18, 75 x 4.6 mm, 3.5 pm Korngröße; Laufmittelgemisch: 90 % MeOH : THF (90:10, vv) + 10 % Wasser, Retentionszeit: 6.95 min.) auf Reinheit untersucht; diese war jeweils im Bereich von 99.9 %, wenn man alle bei der Reaktion anfallenden Regioisomere mit einbezieht.
4. Die Materialien werden durch 1H- und 13C-NMR-Spektroskopie auf Identität und Lösemittelfreiheit geprüft.
5. Für die Bestimmung der Glasübergangstemperatur Tg werden zwei Batches verwendet: Batch A und Batch B. Die Bestimmung der Glasübergangs temperatur Tg erfolgte mit einem DSC-Gerät der Fa. Netsch, DSC 204/1/G Phönix. Es wurden dabei jeweils Proben in der Größe von 10-15 mg vermessen.
Zur Bestimmung der Glasübergangstemperatur Tg wird wie in Tabelle 1 beschrieben vorgegangen (Batch A). Zur Bestätigung wird dann mit dem zweiten Batch (Batch B) noch eine Referenzmessung durchgeführt.
Ta pelle 1 : Bestimmung des Tg von CBP
Figure imgf000056_0001
Tabelle 1: Bestimmung des Tg von CBP (Fortsetzung)
Die in Tabelle 1
Figure imgf000057_0001
dargelegten Daten zeigen, dass auch bei Verbindungen, deren Glasübergangstemperatur schwer zu bestimmen ist, diese zuverlässig erhalten werden kann. Vorzugsweise kann daher ein Quenchen nach dem ersten Aufheizen erfolgen, um eine eindeutige Glasübergangstemperatur zu erhalten. Weiterhin kann unter anderem eine Rekristallisation Schwierigkeiten bereiten, die im Temperaturbereich zwischen Glasübergangstemperatur und Schmelztemperatur auftreten kann. Diese kann zuverlässig durch ein Quenchen und ein schnelles zweites Aufheizen so abgemildert werden, dass eine Glasübergangstemperatur eindeutig und zuverlässig bestimmbar ist.
Beispiele:
Apparatur
Die Apparatur besteht aus folgenden hintereinander angeordneten im kontinuierlichen Betrieb vakuumdichten Komponenten:
Zuführextrudereinheit:
A) Inertisierter Aufschmelzbehälter mit beheiztem Zufuhrventil oder alternativ B) Thermo Scientific™ HAAKE™ MiniLab II Micro-Compounder, mit seinen spezifischen Vorrichtungen zur Zufuhr, Entgasung, Plastifizierung und Extrusion
Verdampfereinheit:
UIC GmbH, modifizierte Laboranlage Baureihe KDI 5
Hochvakuumpumenkombination:
Edwards, TSB4E1001, Turbopumpenstation bestehend aus einer Turbopumpe NEXT240D mit ISO100 Flansch und einer nXDSIOi als Vor pumpe, Belüftungsventil TAV5 und Drucksensor WRGSDN25KF aktive Weitbereichsmessröhre
Austragsextrudereinheit:
Thermo Scientific™ HAAKE™ MiniLab II Micro-Compounder mit seinen spezifischen Vorrichtungen zur Ausfuhr und Extrusion
Tabelle 2 beschreibt funktionale Materialien FM und Prozessbedingungen
Figure imgf000058_0001
Figure imgf000059_0001
Messbedingungen:
Tg: Glasübergangspunkt aus DSC, 1tes Aufheizen, Heizrate 20 K/min, Kühlrate 20 K/min., Messbereich 0-350°C. Tm: Schmelzpunkt aus DSC, Bedingungen siehe Beschreibung für Tg.
Tsubl.-Vak.-TGA: die Verdampfungs-/Sublimationstemperatur ergibt sich aus der Vakuum-TGA Messung, wie zuvor beschrieben.
Tsubl. -Prozess: Prozesstemperatur während der Verdampfung/Sublimation Tzers.: Zersetzungstemperatur, aus thermischen Auslagerungstest unter Hochvakuum in einer abgeschmolzenen Duranglas-Ampulle unter Lichtsauschluss bei der angegebenen Temperatur für 100 h p-Prozess: Prozessdruck während der Verdampfung/Sublimation Analytik: Die nach dem o.g. Prozess erhaltenen Funktionsmaterialien FM weisen nach 1H- NMR, HPLC und ICP-MS das gleiche Reinheitsprofil wie Materialien, die in Batch- Sublimationsanlagen nach dem Stand der Technik produziert wurden auf. Verwendung der funktionalen Materialien FM1 bis FM4 in OLED-Bauteilen Die nach dem oben beschriebenen Prozess erhaltenen funktionalen Matrialien FM1 bis FM4 werden z.B. als Mixed-Host-Materialien in der Emissionsschicht von phosphoreszenten OLED-Bauteilen verbaut.
Die Herstellung von OLEDs erfolgt nach einem allgemeinen Verfahren gemäß WO 2004/058911, das auf die hier beschriebenen Gegebenheiten (Schicht dickenvariation, verwendete Materialien) angepasst wird. Die verwendeten Materialien sind in Tabelle 3 aufgeführt.
Die OLED hat folgenden Schichtaufbau:
Substrat
Lochinjektionsschicht 1 (HIL1) aus HTM1 dotiert mit 5 % NDP-9 (kommerziell erhältlich von der Fa. Novaled), 20 nm
Lochtransportschicht 1 (HTL1) aus HTM1, 40 nm Lochtransportschicht 2 (HTL2), HTM2 20 nm
Emissionsschicht (EML), Mixed-Host FM1:FM3 (40:60) (die Angaben in Klammern sind Vol.-% der funktionalen Materialien in der Mischung), dotiert mit 15 % Dotand D
Elektronentransportschicht (ETL2), aus ETL1, 5 nm Elektronentransportschicht (ETL1), aus ETL1(50%):ETL2(50%), 30 nm Elektroneninjektionsschicht (EIL) aus ETM2, 1 nm Kathode aus Aluminium, 100 nm
Figure imgf000060_0001
Figure imgf000061_0001

Claims

Patentansprüche
1. Verfahren zur Aufreinigung von mindestens einem funktionalen Material, welches zur Herstellung von Funktionsschichten elektronischer Vorrichtungen einsetzbar ist, die an einer Ladungsinjektion oder an einem Ladungstransport und/oder einer Lichtemission oder Lichtauskopplung teilhaben, dadurch gekennzeichnet, dass eine Vorrichtung (10, 110) eingesetzt wird, wobei das Verfahren eine Verdampfung beziehungsweise Sublimation und/oder Kondensation des mindestens einen funktionalen Materials umfasst und wobei die Vorrichtung (10, 110) :
A) mindestens eine Zuführung (12, 112) für das mindestens eine funktionale Material hat, wobei das mindestens eine funktionale Material kontinuierlich über eine in der Zuführung vorgesehene Eingabeöffnung zuführbar ist;
B) mindestens eine Verdampfungseinrichtung (14, 114) hat, die nach der Zuführung (12, 112) angeordnet ist, wobei das funktionale Material mittels der Zuführung (12, 112) in die Verdampfungseinrichtung (14, 114) einleitbar ist und das funktionale Material kontinuierlich über die Verdampfungseinrichtung (14, 114) verdampfbar ist;
C) mindestens eine Kondensationseinrichtung (16, 116) hat, über die das funktionale Material kontinuierlich nach einer Verdampfung in der Verdampfungseinrichtung (14, 114) kondensierbar ist;
D) mindestens eine Austragseinrichtung (18, 118) hat, die nach der Kondensationseinrichtung (16, 116) angeordnet ist, wobei das funktionale Material kontinuierlich von der Kondensationseinrichtung (16, 116) in die Austragseinrichtung (18, 118) einleitbar und über eine in der Austragseinrichtung (18, 118) vorgesehene Austragsöffnung austragbar ist; und wobei die Vorrichtung (10, 110) eine Verdampfungskammer (40, 120) aufweist, innerhalb derer zumindest ein Teil der Verdampfungseinrichtung (14, 114) und zumindest ein Teil der Kondensationseinrichtung (16, 116) vorgesehen sind, wobei die Verdampfungskammer (40, 120) mit mindestens einer Evakuierungsvorrichtung verbunden oder verbindbar ist, und ein Unterdrück, vorzugsweise ein Hochvakuum innerhalb der Verdampfungskammer (40, 120) bei Betrieb der Vorrichtung zur kontinuierlichen Aufreinigung (10, 110) erzeugbar ist und die Austragseinrichtung (18, 118) eine Austragsextrudereinheit umfasst oder darstellt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das mindestens eine funktionale Material ausgewählt wird aus der Gruppe bestehend aus fluoreszierenden Emittern, phosphoreszierenden Emittern, Emittern, die TADF (thermally activated delayed fluorescence) zeigen, Emittern, die Hyperfluoreszenz oder Hyperphosphoreszenz zeigen, Hostmaterialien, Excitonenblockiermaterialien, Elektroneninjektionsmaterialien, Elektronentransportmaterialien, Elektronenblockiermaterialien, Lochinjektionsmaterialien, Lochleitermaterialien, Lochblockiermaterialien, n- Dotanden, p-Dotanden, Wide-Band-Gap-Materialien, Ladungserzeugungsmaterialien oder deren Kombinationen.
3. Vorrichtung (10, 110) zur kontinuierlichen Aufreinigung von mindestens einem funktionalen Material umfassend:
E) mindestens eine Zuführung (12, 112) für mindestens ein funktionales Material, wobei das mindestens eine funktionale Material kontinuierlich über eine in der Zuführung vorgesehene Eingabeöffnung zuführbar ist;
F) mindestens eine Verdampfungseinrichtung (14, 114), die nach der Zuführung (12, 112) angeordnet ist, wobei das funktionale Material mittels der Zuführung (12, 112) in die Verdampfungseinrichtung (14, 114) einleitbar ist und das funktionale Material kontinuierlich über die Verdampfungseinrichtung (14, 114) verdampfbar ist;
G) mindestens eine Kondensationseinrichtung (16, 116), über die das funktionale Material kontinuierlich nach einer Verdampfung in der Verdampfungseinrichtung (14, 114) kondensierbar ist;
H) mindestens eine Austragseinrichtung (18, 118), die nach der
Kondensationseinrichtung (16, 116) angeordnet ist, wobei das funktionale Material kontinuierlich von der Kondensationseinrichtung (16, 116) in die Austragseinrichtung (18, 118) einleitbar und über eine in der
Austragseinrichtung (18, 118) vorgesehene Austragsöffnung austragbar ist; wobei die Vorrichtung (10, 110) eine Verdampfungskammer (40, 120) aufweist, innerhalb derer zumindest ein Teil der Verdampfungseinrichtung (14, 114) und zumindest ein Teil der Kondensationseinrichtung (16, 116) vorgesehen sind, wobei die Verdampfungskammer (40, 120) mit mindestens einer Evakuierungsvorrichtung verbunden oder verbindbar ist, und ein Unterdrück, vorzugsweise ein Hochvakuum innerhalb der Verdampfungskammer (40,
120) bei Betrieb der Vorrichtung zur kontinuierlichen Aufreinigung (10, 110) erzeugbar ist und die Austragseinrichtung (18, 118) eine Austragsextrudereinheit umfasst oder darstellt, dadurch gekennzeichnet, dass die Verdampfungseinrichtung (14, 114) die Kondensationseinrichtung
(16, 116) zumindest teilweise umschließt.
4. Vorrichtung gemäß Anspruch 3, dadurch gekennzeichnet, dass die Zuführung (12, 112) eine mit einer Nut versehene Walze und/oder eine Extruderschnecke umfasst.
5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Zuführung (12, 112) eine Zuführextrudereinheit umfasst oder darstellt und die Austragseinrichtung (18, 118) eine Austragsextrudereinheit umfasst oder darstellt, wobei eine Extruderschnecke der Zuführextrudereinheit mit einer Extruderschnecke der Austragsextrudereinheit verbunden ist, so dass die Extruderschnecke der Zuführextrudereinheit und die Extruderschnecke der Austragsextrudereinheit über eine Antriebseinheit drehbar sind.
6. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Zuführung eine Zuführextrudereinheit umfasst oder darstellt und die Austragseinrichtung (18, 118) eine Austragsextrudereinheit umfasst oder darstellt, wobei die Extruderschnecke der Zuführextrudereinheit über eine Antriebseinheit drehbar und die Extruderschnecke der Austragsextrudereinheit über eine zweite Antriebseinheit drehbar ist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verdampfungseinrichtung (14, 114) eine Verdampfungsoberfläche aufweist, über die das funktionale Material verdampfbar ist, und die Kondensationseinrichtung (16, 116) eine Kondensationsoberfläche aufweist, über die das funktionale Material kondensierbar ist, wobei die die Verdampfungsoberfläche parallel zur Kondensationsoberfläche angeordnet ist.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kondensationseinrichtung (16, 116) gegenüber der Verdampfungseinrichtung (14, 114) drehbar ist.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kondensationseinrichtung (16, 116) einen Kondensationszylinder aufweist, der mit der Extruderschnecke der Zuführextrudereinheit und mit der Extruderschnecke der Austragsextrudereinheit verbunden ist, so dass die Extruderschnecke der Zuführextrudereinheit, der Kondensationszylinder und die Extruderschnecke der Austragsextrudereinheit über eine Antriebseinheit drehbar sind.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verdampfungseinrichtung (14, 114) und/oder die Verdampfungskammer (40, 120) mindestens eine Öffnung umfasst, über die ein Rückstandsauffangbehälter (38) anschließbar oder angeschlossen ist.
11. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Temperaturgefälle zwischen der Verdampfungseinrichtung und der Kondensationseinrichtung (16, 116) erzeugbar ist, wobei die Temperatur der Verdampfungseinrichtung (14, 114) höher wählbar ist als die Temperatur der Kondensationseinrichtung (16, 116).
12. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verdampfungseinrichtung (14, 114) ein Verdampfgutverteilsystem (28) aufweist.
13. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kondensationseinrichtung (16, 116) einen Kondensatkollektor (44) aufweist, wobei ein kondensiertes funktionales Material mittels des Kondensatkollektors (44) in die Austragseinrichtung (18,
118) sammelbar ist.
14. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung in vertikaler Ausrichtung betreibbar ist, wobei die Zuführung (12, 112) oberhalb der Verdampfungseinrichtung (14,
114) angeordnet ist und die Verdampfungseinrichtung (14, 114) oberhalb der Austragseinrichtung (18, 118).
15. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung (10, 110) in vertikaler Ausrichtung betreibbar ist, wobei ein funktionales Material durch Schwerkraft von der Kondensationseinrichtung (16, 116) in die Austragseinrichtung (18, 118) einleitbar ist.
PCT/EP2022/063508 2021-05-21 2022-05-19 Verfahren zur kontinuierlichen aufreinigung von mindestens einem funktionalen material und vorrichtung zur kontinuierlichen aufreinigung von mindestens einem funktionalen material WO2022243403A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280036264.5A CN117355364A (zh) 2021-05-21 2022-05-19 用于连续纯化至少一种功能材料的方法和用于连续纯化至少一种功能材料的装置
EP22729624.1A EP4340969A1 (de) 2021-05-21 2022-05-19 Verfahren zur kontinuierlichen aufreinigung von mindestens einem funktionalen material und vorrichtung zur kontinuierlichen aufreinigung von mindestens einem funktionalen material
KR1020237044196A KR20240012506A (ko) 2021-05-21 2022-05-19 적어도 하나의 기능성 물질의 연속 정제 방법 및 적어도 하나의 기능성 물질의 연속 정제를 위한 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21175248.0 2021-05-21
EP21175248 2021-05-21

Publications (1)

Publication Number Publication Date
WO2022243403A1 true WO2022243403A1 (de) 2022-11-24

Family

ID=76059722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/063508 WO2022243403A1 (de) 2021-05-21 2022-05-19 Verfahren zur kontinuierlichen aufreinigung von mindestens einem funktionalen material und vorrichtung zur kontinuierlichen aufreinigung von mindestens einem funktionalen material

Country Status (4)

Country Link
EP (1) EP4340969A1 (de)
KR (1) KR20240012506A (de)
CN (1) CN117355364A (de)
WO (1) WO2022243403A1 (de)

Citations (251)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191500120A (en) 1915-01-04 1915-07-22 Archibald Buie Improvements in Turbine Water Power Developing Apparatus.
DE1130793B (de) 1958-05-12 1962-06-07 Zd Y Vitezneho Unora Narodni P Vorrichtung zur kontinuierlichen Vakuumsublimation
US3180730A (en) 1959-04-09 1965-04-27 Azoplate Corp Material for electrophotographic purposes
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
JPS63295696A (ja) 1987-05-27 1988-12-02 Mitsubishi Electric Corp 陰極線管用螢光体
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
US5077142A (en) 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices
US5121029A (en) 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
EP0652273A1 (de) 1993-11-09 1995-05-10 Shinko Electric Industries Co. Ltd. Organisches Material für elektrolumineszente Vorrichtung und elektrolumineszente Vorrichtung
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
EP0681019A2 (de) 1994-04-26 1995-11-08 TDK Corporation Phenylanthracenderivat und organisches EL-Element
JPH0853397A (ja) 1994-08-12 1996-02-27 Toyo Ink Mfg Co Ltd ジアリールアミン誘導体、その製造方法及び用途
US5529853A (en) 1993-03-17 1996-06-25 Sanyo Electric Co., Ltd. Organic electroluminescent element
JPH08292586A (ja) 1995-04-21 1996-11-05 Hodogaya Chem Co Ltd 電子写真用感光体
DE19646119A1 (de) 1996-11-08 1998-05-14 Hoechst Ag Elektrolumineszenzvorrichtung
US5766779A (en) 1996-08-20 1998-06-16 Eastman Kodak Company Electron transporting materials for organic electroluminescent devices
EP0650955B1 (de) 1993-11-01 1998-08-19 Hodogaya Chemical Co., Ltd. Aminverbindung und sie enthaltende Elektrolumineszenzvorrichtung
EP0891121A1 (de) 1996-12-28 1999-01-13 TDK Corporation Organische elektrolumineszente elementen
US6020078A (en) 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
EP1009041A2 (de) 1998-12-09 2000-06-14 Eastman Kodak Company Elektrolumineszente Vorrichtung mit verbesserter Ladungslöchertransportschicht
EP1009044A2 (de) 1998-12-09 2000-06-14 Eastman Kodak Company Elektrolumineszente Vorrichtung mit Anthracenderivaten in der Ladungslöchertransportschicht
EP1029909A1 (de) 1998-09-09 2000-08-23 Idemitsu Kosan Co., Ltd. Organische elektrolumineszente vorrichtung und phenylenderivate
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
JP3148176B2 (ja) 1998-04-15 2001-03-19 日本電気株式会社 有機エレクトロルミネッセンス素子
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
US6251531B1 (en) 1995-02-25 2001-06-26 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
JP2001267080A (ja) 2000-01-14 2001-09-28 Toray Ind Inc 発光素子
WO2001093642A1 (en) 2000-05-30 2001-12-06 The Trustees Of Princeton University Phosphorescent organic light emitting devices
US20010053462A1 (en) 2000-05-02 2001-12-20 Masayuki Mishima Light-emitting device
WO2002002714A2 (en) 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
EP1191612A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1191614A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung und dafür verwendete Metallkoordinationsverbindung
EP1191613A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1205527A1 (de) 2000-03-27 2002-05-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszierende vorrichtung
WO2002043449A1 (fr) 2000-11-24 2002-05-30 Toray Industries, Inc. Materiau luminescent et element luminescent contenant celui-ci
WO2002068435A1 (de) 2001-02-24 2002-09-06 Covion Organic Semiconductors Gmbh Rhodium- und iridium-komplexe
EP1239526A2 (de) 2001-03-08 2002-09-11 Canon Kabushiki Kaisha Metallkomplex, lumineszierende Anordnung und Anzeigevorrichtung
WO2002081488A1 (de) 2001-04-05 2002-10-17 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
US20030027016A1 (en) 2000-04-21 2003-02-06 Tdk Corporation Organic EL device
JP2003115387A (ja) 2001-10-04 2003-04-18 Junji Kido 有機発光素子及びその製造方法
WO2003037844A1 (de) 2001-10-30 2003-05-08 Covion Organic Semiconductors Gmbh Verfahren zur herstellung von arylaminen
EP1162193B1 (de) 1993-09-29 2003-05-14 Idemitsu Kosan Company Limited Acrylendiamin-Derivate und diese enthaltendes organisches Elektrolumineszenzelement
JP2003253145A (ja) 2002-02-28 2003-09-10 Jsr Corp 発光性組成物
US20030175553A1 (en) 2001-12-28 2003-09-18 Thompson Mark E. White light emitting oleds from combined monomer and aggregate emission
EP1348711A1 (de) 2000-11-30 2003-10-01 Canon Kabushiki Kaisha Lumineszentes element und display
US20040018383A1 (en) 2002-07-26 2004-01-29 Xerox Corporation Display device with anthracene and triazine derivatives
WO2004013073A1 (ja) 2002-08-02 2004-02-12 Idemitsu Kosan Co., Ltd. アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2004026886A2 (de) 2002-08-24 2004-04-01 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
WO2004058911A2 (de) 2002-12-23 2004-07-15 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
JP2004200162A (ja) 2002-12-05 2004-07-15 Toray Ind Inc 発光素子
WO2004070772A2 (de) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte polymere und blends, deren darstellung und verwendung
US20040174116A1 (en) 2001-08-20 2004-09-09 Lu Min-Hao Michael Transparent electrodes
WO2004081017A1 (de) 2003-03-11 2004-09-23 Covion Organic Semiconductors Gmbh Metallkomplexe
JP2004288381A (ja) 2003-03-19 2004-10-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
EP1469533A2 (de) 2003-04-14 2004-10-20 Kabushiki Kaisha Toyota Jidoshokki Organische elektrolumineszente Vorrichtung, die die Erzeugung von UV-Licht unterdrückt und Beleuchtungssystem mit organischen elektrolumineszenten Vorrichtungen
US20040209115A1 (en) 2003-04-21 2004-10-21 Thompson Mark E. Organic light emitting devices with wide gap host materials
US20040209116A1 (en) 2003-04-21 2004-10-21 Xiaofan Ren Organic light emitting devices with wide gap host materials
WO2004093207A2 (de) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
JP2004311184A (ja) 2003-04-04 2004-11-04 Junji Kido 多核型フェナントロリン誘導体よりなる電子輸送材料、電荷制御材料およびそれを用いた有機発光素子
EP1478032A2 (de) 2003-05-16 2004-11-17 Kabushiki Kaisha Toyota Jidoshokki Leuchtdiode und Herstellungsverfahren
EP1480280A2 (de) 2003-05-23 2004-11-24 Kabushiki Kaisha Toyota Jidoshokki Organische Leuchtdiode und ihre Herstellungsmethode
US6824895B1 (en) 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
WO2004113468A1 (de) 2003-06-26 2004-12-29 Covion Organic Semiconductors Gmbh Neue materialien für die elektrolumineszenz
WO2005003253A2 (de) 2003-07-07 2005-01-13 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialen, deren verwendung und elektronikbauteile enthaltend diese
CN1583691A (zh) 2004-06-04 2005-02-23 友达光电股份有限公司 蒽化合物以及包括此蒽化合物的有机电致发光装置
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
US20050069729A1 (en) 2003-09-30 2005-03-31 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
WO2005033244A1 (de) 2003-09-29 2005-04-14 Covion Organic Semiconductors Gmbh Metallkomplexe
WO2005040302A1 (de) 2003-10-22 2005-05-06 Merck Patent Gmbh Neue materialien für die elektrolumineszenz und deren verwendung
WO2005053055A1 (de) 2003-11-27 2005-06-09 Merck Patent Gmbh Organisches elektrolumineszenzelement
EP1551206A1 (de) 2002-10-09 2005-07-06 Idemitsu Kosan Co., Ltd. Organisches elektrolumineszenzbauelement
WO2005061656A1 (ja) 2003-12-19 2005-07-07 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用発光材料、それを利用した有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
WO2005084081A1 (de) 2004-02-20 2005-09-09 Merck Patent Gmbh Organische elektronische vorrichtungen
WO2005086251A2 (de) 2004-03-03 2005-09-15 Novaled Gmbh Verwendung von metallkomplexen als n-dotanden für organische halbleiter und die darstellung derselbigen inkl. ihrer liganden
US20050221124A1 (en) 2004-04-02 2005-10-06 Seok-Hwan Hwang Fluorene-based compound and organic electroluminescent display device using the same
US20050249976A1 (en) 2002-03-22 2005-11-10 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence devices and organic electroluminescence device using the material
US20050258742A1 (en) 2004-05-18 2005-11-24 Yui-Yi Tsai Carbene containing metal complexes as OLEDs
WO2005111172A2 (de) 2004-05-11 2005-11-24 Merck Patent Gmbh Neue materialmischungen für die elektrolumineszenz
JP2005347160A (ja) 2004-06-04 2005-12-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006000389A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006000388A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
EP1617710A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Material für ein organisches elektrolumineszenzgerät, organisches elektrolumineszenzgerät, beleuchtungsvorrichtung und anzeige
US20060043858A1 (en) 2002-08-23 2006-03-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and anthracene derivative
US20060062918A1 (en) 2004-09-21 2006-03-23 Eastman Kodak Company Delivering organic powder to a vaporization zone
US20060061265A1 (en) 2002-11-06 2006-03-23 Hisayuki Kawamura Aromatic amine derivative and organic electroluminescent element employing the same
WO2006048268A1 (de) 2004-11-06 2006-05-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
EP1661888A1 (de) 2004-11-29 2006-05-31 Samsung SDI Co., Ltd. Phenylcarbazole basierte Verbindungen und deren Verwendung als organische Elektroluminiszierende Vorrichtung
WO2006058737A1 (de) 2004-12-01 2006-06-08 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
US20060147747A1 (en) 2003-03-13 2006-07-06 Hiroshi Yamamoto Nitrogen-containing heterocycle derivative and organic electroluminescent element using the same
US20060177576A1 (en) 2005-02-04 2006-08-10 Eastman Kodak Company Controllably feeding organic material in making OLEDs
US20060210830A1 (en) 2005-03-15 2006-09-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
US20060222886A1 (en) 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
WO2006117052A1 (de) 2005-05-03 2006-11-09 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung und in deren herstellung verwendete boronsäure- und borinsäure-derivate
WO2006118837A2 (en) 2005-05-03 2006-11-09 Eastman Kodak Company Method for feeding powdered or granular material
WO2006122630A1 (de) 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
EP1731584A1 (de) 2004-03-31 2006-12-13 Konica Minolta Holdings, Inc. Organischer elektrolumineszenzvorrichtungsstoff, organische elektrolumineszenzvorrichtung, display und beleuchtungsvorrichtung
US20070087219A1 (en) 2005-10-19 2007-04-19 Eastman Kodak Company Electroluminescent device
US20070092753A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20070092755A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20070122656A1 (en) 2005-11-30 2007-05-31 Eastman Kodak Company Electroluminescent device containing an anthracene derivative
US20070128467A1 (en) 2003-12-26 2007-06-07 Idemitsu Kosan C., Ltd. Material for organic electroluminescent device and organic electroluminescent device using same
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2007065678A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Neue materialien für organische elektroluminieszenzvorrichtungen
WO2007065549A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
US20070134514A1 (en) 2005-12-14 2007-06-14 Eastman Kodak Company Electroluminescent host material
US20070145355A1 (en) 2005-12-22 2007-06-28 Ansgar Werner Doped organic semiconductor material
US7238437B2 (en) 1999-12-27 2007-07-03 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US7250532B2 (en) 2001-03-16 2007-07-31 Idemitsu Kosan Co., Ltd. Method for producing aromatic amino compound
EP1834945A1 (de) 2005-01-05 2007-09-19 Idemitsu Kosan Co., Ltd. Aromatisches aminderivat und organisches elektrolumineszentes gerät, bei dem dieses verwendet wird
EP1837926A1 (de) 2006-03-21 2007-09-26 Novaled AG Heterocyclisches Radikal oder Diradikal, deren Dimere, Oligomere, Polymere, Dispiroverbindungen und Polycyclen, deren Verwendung, organisches halbleitendes Material sowie elektronisches Bauelement
WO2007107306A1 (de) 2006-03-22 2007-09-27 Novaled Ag Verwendung von heterocyclischen radikalen zur dotierung von organischen halbeitern
WO2007114358A1 (ja) 2006-04-03 2007-10-11 Idemitsu Kosan Co., Ltd. ベンズアントラセン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子
WO2007115610A1 (de) 2006-04-01 2007-10-18 Merck Patent Gmbh Materialen für organische elektrolumineszenzvorrichtungen
US20070252517A1 (en) 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
US7294849B2 (en) 2001-03-14 2007-11-13 The Trustees Of Princeton University Materials and devices for blue phosphorescence based organic light emitting diodes
EP1860097A1 (de) 2005-03-18 2007-11-28 Idemitsu Kosan Co., Ltd. Aromatisches aminderivat und organisches elektrolumineszenzgerät, bei dem dieses verwendet wird
WO2007137725A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007140847A1 (de) 2006-06-02 2007-12-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2008006449A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
US7326371B2 (en) 2004-03-25 2008-02-05 Eastman Kodak Company Electroluminescent device with anthracene derivative host
US20080102311A1 (en) 2006-08-04 2008-05-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
US20080113101A1 (en) 2006-11-09 2008-05-15 Idemitsu Kosan Co., Ltd. Organic-electroluminescence-material-containing solution, method for forming thin film of organic electroluminescence material, thin film of organic electroluminescence material and organic electroluminescence device
US7378162B2 (en) 2005-03-08 2008-05-27 Lg Electronics Inc. Organic electroluminescence devices using red phosphorescence compounds
WO2008086851A1 (de) 2007-01-18 2008-07-24 Merck Patent Gmbh Carbazol-derivate für organische elektrolumineszenzvorrichtungen
US20080193796A1 (en) 2006-11-20 2008-08-14 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2008145239A2 (de) 2007-05-29 2008-12-04 Merck Patent Gmbh Benzanthracen-derivate für organische elektrolumineszenzvorrichtungen
WO2009000237A1 (de) 2007-06-22 2008-12-31 Novaled Ag Verwendung eines precursors eines n-dotanden zur dotierung eines organischen halbleitenden materials, precursor und elektronisches oder optoelektronisches bauelement
US20090008607A1 (en) 2007-07-07 2009-01-08 Idemitsu Kosan Co., Ltd. Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
US20090061681A1 (en) 2007-09-05 2009-03-05 Mcmunigal Tom Electrical receptacle assembly
WO2009041635A1 (ja) 2007-09-28 2009-04-02 Idemitsu Kosan Co., Ltd. 有機el素子
WO2009069566A1 (ja) 2007-11-29 2009-06-04 Idemitsu Kosan Co., Ltd. ベンゾフェナントレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
DE102008017591A1 (de) 2008-04-07 2009-10-08 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
WO2009146770A2 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
DE102008033943A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
WO2010012330A1 (de) 2008-07-29 2010-02-04 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2010015307A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden
DE102008036982A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
WO2010031485A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054728A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010056325A1 (en) 2008-11-14 2010-05-20 Global Oled Technology Llc Metering of particulate material and vaporization thereof
WO2010054731A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010072300A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung mit triazinderivaten
DE102009005746A1 (de) 2009-01-23 2010-07-29 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2010086089A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
WO2010099852A1 (de) 2009-03-02 2010-09-10 Merck Patent Gmbh Metallkomplexe mit azaborol-liganden und elektronische vorrichtung damit
WO2010102709A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010136109A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE102009031021A1 (de) 2009-06-30 2011-01-05 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2011032626A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Metallkomplexe
WO2011057706A2 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011066898A1 (de) 2009-12-05 2011-06-09 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
DE102009022858A1 (de) 2009-05-27 2011-12-15 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
WO2011157339A1 (de) 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
WO2011160757A1 (de) 2010-06-22 2011-12-29 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2012007086A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
WO2012031735A1 (en) 2010-09-10 2012-03-15 Novaled Ag Compounds for organic photovoltaic devices
EP2452946A1 (de) 2010-11-16 2012-05-16 Novaled AG Pyridylphosphinoxide für eine organische elektronische Vorrichtung und organische elektronische Vorrichtung
EP2463927A1 (de) 2010-12-08 2012-06-13 Novaled AG Material für eine organische elektronische Vorrichtung und organische elektronische Vorrichtung
WO2012168358A1 (en) 2011-06-09 2012-12-13 Novaled Ag Compound for organic electronic device
WO2012175219A1 (en) 2011-06-22 2012-12-27 Novaled Ag Electronic device and compound
WO2012175535A1 (de) 2011-06-22 2012-12-27 Novaled Ag Organisches elektronisches bauelement
WO2013041176A1 (de) 2011-09-21 2013-03-28 Merck Patent Gmbh Carbazolderivate für organische elektrolumineszenzvorrichtungen
EP2381503B1 (de) 2010-04-23 2013-04-17 Polyphotonix Limited Verfahren zur Herstellung von Material zur Verwendung bei der Herstellung von elektrolumineszenten organischen Halbleiterbauelementen
WO2013087142A1 (de) 2011-12-12 2013-06-20 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
WO2014008982A1 (de) 2012-07-13 2014-01-16 Merck Patent Gmbh Metallkomplexe
WO2014015931A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2014015937A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektrolumineszierende vorrichtungen
WO2014015935A2 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
WO2014023388A1 (de) 2012-08-10 2014-02-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2014023377A2 (de) 2012-08-07 2014-02-13 Merck Patent Gmbh Metallkomplexe
WO2014037077A1 (de) 2012-09-04 2014-03-13 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2014067614A1 (de) 2012-10-31 2014-05-08 Merck Patent Gmbh Elektronische vorrichtung
WO2014072017A1 (de) 2012-11-12 2014-05-15 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014094961A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014094960A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014094963A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2014111269A2 (de) 2013-10-14 2014-07-24 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015022043A1 (de) 2013-08-13 2015-02-19 Merck Patent Gmbh Verfahren zur vakuumaufreinigung
WO2015022051A1 (de) 2013-08-15 2015-02-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015036074A1 (de) 2013-09-11 2015-03-19 Merck Patent Gmbh Metallkomplexe
WO2015049030A2 (de) 2013-10-02 2015-04-09 Merck Patent Gmbh Borenthaltende verbindungen
WO2015091716A1 (en) 2013-12-20 2015-06-25 Basf Se Highly efficient oled devices with very short decay times
WO2015104045A1 (de) 2014-01-13 2015-07-16 Merck Patent Gmbh Metallkomplexe
WO2015117718A1 (de) 2014-02-05 2015-08-13 Merck Patent Gmbh Metallkomplexe
WO2015165563A1 (de) 2014-04-30 2015-11-05 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015169412A1 (de) 2014-05-05 2015-11-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2015192939A1 (de) 2014-06-18 2015-12-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016012075A1 (de) 2014-07-21 2016-01-28 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2016015815A1 (de) 2014-07-28 2016-02-04 Merck Patent Gmbh Metallkomplexe
WO2016015810A1 (de) 2014-07-29 2016-02-04 Merck Patent Gmbh Materialien f?r organische elektrolumineszenzvorrichtungen
WO2016078747A1 (de) 2014-11-21 2016-05-26 Merck Patent Gmbh Heterocyclische verbindungen zur verwendung in elektronischen vorrichtungen
WO2016087017A1 (de) 2014-12-01 2016-06-09 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016124304A1 (de) 2015-02-03 2016-08-11 Merck Patent Gmbh Metallkomplexe
WO2016184540A1 (en) 2015-05-18 2016-11-24 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
WO2017016630A1 (en) 2015-07-30 2017-02-02 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017016632A1 (en) 2015-07-29 2017-02-02 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017025164A1 (de) 2015-08-11 2017-02-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2017032439A1 (de) 2015-08-25 2017-03-02 Merck Patent Gmbh Metallkomplexe
WO2017041874A1 (de) 2015-09-08 2017-03-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2017071791A1 (en) 2015-10-27 2017-05-04 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017148564A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2017178311A1 (de) 2016-04-11 2017-10-19 Merck Patent Gmbh Heterocyclische verbindungen mit dibenzofuran- und/oder dibenzothiophen-strukturen
KR20170122563A (ko) 2016-04-27 2017-11-06 지제이엠 주식회사 유기재료 연속 정제 장치
WO2018001990A1 (de) 2016-06-30 2018-01-04 Merck Patent Gmbh Verfahren zur auftrennung von enantiomerenmischungen von metallkomplexen
WO2018011186A1 (de) 2016-07-14 2018-01-18 Merck Patent Gmbh Metallkomplexe
WO2018019688A1 (de) 2016-07-25 2018-02-01 Merck Patent Gmbh Metallkomplexe für den einsatz als emitter in organischen elektrolumineszenzvorrichtungen
WO2018019687A1 (de) 2016-07-25 2018-02-01 Merck Patent Gmbh Di- und oligonukleare metallkomplexe mit tripodalen bidentaten teilliganden sowie deren verwendung in elektronischen vorrichtungen
WO2018041769A1 (de) 2016-08-30 2018-03-08 Merck Patent Gmbh Bl- und trinukleare metallkomplexe aufgebaut aus zwei miteinander verknüpften tripodalen hexadentaten liganden zur verwendung in elektrolumineszenzvorrichtungen
WO2018050583A1 (de) 2016-09-14 2018-03-22 Merck Patent Gmbh Verbindungen mit carbazol-strukturen
WO2018054798A1 (de) 2016-09-21 2018-03-29 Merck Patent Gmbh Binukleare metallkomplexe für den einsatz als emitter in organischen elektrolumineszenzvorrichtungen
WO2018060218A1 (de) 2016-09-30 2018-04-05 Merck Patent Gmbh Carbazole mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
WO2018060307A1 (de) 2016-09-30 2018-04-05 Merck Patent Gmbh Verbindungen mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
WO2018069197A1 (de) 2016-10-12 2018-04-19 Merck Patent Gmbh Metallkomplexe
KR101835418B1 (ko) 2016-12-29 2018-04-19 주식회사 피브이디 세척용 방착유닛을 구비한 유기물 승화 정제장치
WO2018069196A1 (de) 2016-10-12 2018-04-19 Merck Patent Gmbh Binukleare metallkomplexe sowie elektronische vorrichtungen, insbesondere organische elektrolumineszenzvorrichtungen, enthaltend diese metallkomplexe
WO2018069273A1 (de) 2016-10-13 2018-04-19 Merck Patent Gmbh Metallkomplexe
WO2018083053A1 (de) 2016-11-02 2018-05-11 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2018177981A1 (de) 2017-03-29 2018-10-04 Merck Patent Gmbh Aromatische verbindungen
WO2018178001A1 (de) 2017-03-29 2018-10-04 Merck Patent Gmbh Metallkomplexe
KR101918233B1 (ko) 2017-05-26 2018-11-14 주식회사 엔케이이씨 연속식 승화기
WO2019020538A1 (de) 2017-07-25 2019-01-31 Merck Patent Gmbh Metallkomplexe
CN109646987A (zh) 2019-01-10 2019-04-19 合肥欧莱迪光电技术有限公司 一种连续进出料高真空有机小分子提纯专用设备
WO2019115423A1 (de) 2017-12-13 2019-06-20 Merck Patent Gmbh Metallkomplexe
WO2019158453A1 (de) 2018-02-13 2019-08-22 Merck Patent Gmbh Metallkomplexe
WO2019179909A1 (de) 2018-03-19 2019-09-26 Merck Patent Gmbh Metallkomplexe
KR20190125700A (ko) 2018-04-30 2019-11-07 고려대학교 산학협력단 연속식 유기물 진공증발정제장치
KR20200123895A (ko) 2019-04-22 2020-11-02 (주)일솔레드 연속 공정이 가능한 승화장치 및 이를 구비한 유기소재 정제장치

Patent Citations (262)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191500120A (en) 1915-01-04 1915-07-22 Archibald Buie Improvements in Turbine Water Power Developing Apparatus.
DE1130793B (de) 1958-05-12 1962-06-07 Zd Y Vitezneho Unora Narodni P Vorrichtung zur kontinuierlichen Vakuumsublimation
US3180730A (en) 1959-04-09 1965-04-27 Azoplate Corp Material for electrophotographic purposes
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
JPS63295696A (ja) 1987-05-27 1988-12-02 Mitsubishi Electric Corp 陰極線管用螢光体
US5121029A (en) 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5077142A (en) 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
US5529853A (en) 1993-03-17 1996-06-25 Sanyo Electric Co., Ltd. Organic electroluminescent element
EP1162193B1 (de) 1993-09-29 2003-05-14 Idemitsu Kosan Company Limited Acrylendiamin-Derivate und diese enthaltendes organisches Elektrolumineszenzelement
EP0650955B1 (de) 1993-11-01 1998-08-19 Hodogaya Chemical Co., Ltd. Aminverbindung und sie enthaltende Elektrolumineszenzvorrichtung
EP0652273A1 (de) 1993-11-09 1995-05-10 Shinko Electric Industries Co. Ltd. Organisches Material für elektrolumineszente Vorrichtung und elektrolumineszente Vorrichtung
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
EP0681019A2 (de) 1994-04-26 1995-11-08 TDK Corporation Phenylanthracenderivat und organisches EL-Element
JPH0853397A (ja) 1994-08-12 1996-02-27 Toyo Ink Mfg Co Ltd ジアリールアミン誘導体、その製造方法及び用途
US6251531B1 (en) 1995-02-25 2001-06-26 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
JPH08292586A (ja) 1995-04-21 1996-11-05 Hodogaya Chem Co Ltd 電子写真用感光体
US5766779A (en) 1996-08-20 1998-06-16 Eastman Kodak Company Electron transporting materials for organic electroluminescent devices
DE19646119A1 (de) 1996-11-08 1998-05-14 Hoechst Ag Elektrolumineszenzvorrichtung
EP0891121A1 (de) 1996-12-28 1999-01-13 TDK Corporation Organische elektrolumineszente elementen
JP3148176B2 (ja) 1998-04-15 2001-03-19 日本電気株式会社 有機エレクトロルミネッセンス素子
US7399537B2 (en) 1998-09-09 2008-07-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and phenylenediamine derivative
EP1029909A1 (de) 1998-09-09 2000-08-23 Idemitsu Kosan Co., Ltd. Organische elektrolumineszente vorrichtung und phenylenderivate
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
EP1009041A2 (de) 1998-12-09 2000-06-14 Eastman Kodak Company Elektrolumineszente Vorrichtung mit verbesserter Ladungslöchertransportschicht
EP1009044A2 (de) 1998-12-09 2000-06-14 Eastman Kodak Company Elektrolumineszente Vorrichtung mit Anthracenderivaten in der Ladungslöchertransportschicht
US6020078A (en) 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
US7238437B2 (en) 1999-12-27 2007-07-03 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
JP2001267080A (ja) 2000-01-14 2001-09-28 Toray Ind Inc 発光素子
EP1205527A1 (de) 2000-03-27 2002-05-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszierende vorrichtung
US20030027016A1 (en) 2000-04-21 2003-02-06 Tdk Corporation Organic EL device
US20010053462A1 (en) 2000-05-02 2001-12-20 Masayuki Mishima Light-emitting device
WO2001093642A1 (en) 2000-05-30 2001-12-06 The Trustees Of Princeton University Phosphorescent organic light emitting devices
WO2002002714A2 (en) 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
EP1191613A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1191614A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung und dafür verwendete Metallkoordinationsverbindung
EP1191612A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
WO2002043449A1 (fr) 2000-11-24 2002-05-30 Toray Industries, Inc. Materiau luminescent et element luminescent contenant celui-ci
EP1348711A1 (de) 2000-11-30 2003-10-01 Canon Kabushiki Kaisha Lumineszentes element und display
WO2002068435A1 (de) 2001-02-24 2002-09-06 Covion Organic Semiconductors Gmbh Rhodium- und iridium-komplexe
EP1239526A2 (de) 2001-03-08 2002-09-11 Canon Kabushiki Kaisha Metallkomplex, lumineszierende Anordnung und Anzeigevorrichtung
US7294849B2 (en) 2001-03-14 2007-11-13 The Trustees Of Princeton University Materials and devices for blue phosphorescence based organic light emitting diodes
US7250532B2 (en) 2001-03-16 2007-07-31 Idemitsu Kosan Co., Ltd. Method for producing aromatic amino compound
WO2002081488A1 (de) 2001-04-05 2002-10-17 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
US20040174116A1 (en) 2001-08-20 2004-09-09 Lu Min-Hao Michael Transparent electrodes
JP2003115387A (ja) 2001-10-04 2003-04-18 Junji Kido 有機発光素子及びその製造方法
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
WO2003037844A1 (de) 2001-10-30 2003-05-08 Covion Organic Semiconductors Gmbh Verfahren zur herstellung von arylaminen
US20030175553A1 (en) 2001-12-28 2003-09-18 Thompson Mark E. White light emitting oleds from combined monomer and aggregate emission
JP2003253145A (ja) 2002-02-28 2003-09-10 Jsr Corp 発光性組成物
US20050249976A1 (en) 2002-03-22 2005-11-10 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence devices and organic electroluminescence device using the material
US20040018383A1 (en) 2002-07-26 2004-01-29 Xerox Corporation Display device with anthracene and triazine derivatives
WO2004013073A1 (ja) 2002-08-02 2004-02-12 Idemitsu Kosan Co., Ltd. アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
US20060043858A1 (en) 2002-08-23 2006-03-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and anthracene derivative
WO2004026886A2 (de) 2002-08-24 2004-04-01 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
EP1551206A1 (de) 2002-10-09 2005-07-06 Idemitsu Kosan Co., Ltd. Organisches elektrolumineszenzbauelement
US20060061265A1 (en) 2002-11-06 2006-03-23 Hisayuki Kawamura Aromatic amine derivative and organic electroluminescent element employing the same
JP2004200162A (ja) 2002-12-05 2004-07-15 Toray Ind Inc 発光素子
WO2004058911A2 (de) 2002-12-23 2004-07-15 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2004070772A2 (de) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte polymere und blends, deren darstellung und verwendung
WO2004081017A1 (de) 2003-03-11 2004-09-23 Covion Organic Semiconductors Gmbh Metallkomplexe
US20060147747A1 (en) 2003-03-13 2006-07-06 Hiroshi Yamamoto Nitrogen-containing heterocycle derivative and organic electroluminescent element using the same
JP2004288381A (ja) 2003-03-19 2004-10-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
JP2004311184A (ja) 2003-04-04 2004-11-04 Junji Kido 多核型フェナントロリン誘導体よりなる電子輸送材料、電荷制御材料およびそれを用いた有機発光素子
EP1469533A2 (de) 2003-04-14 2004-10-20 Kabushiki Kaisha Toyota Jidoshokki Organische elektrolumineszente Vorrichtung, die die Erzeugung von UV-Licht unterdrückt und Beleuchtungssystem mit organischen elektrolumineszenten Vorrichtungen
WO2004093207A2 (de) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
US20040209115A1 (en) 2003-04-21 2004-10-21 Thompson Mark E. Organic light emitting devices with wide gap host materials
US20040209116A1 (en) 2003-04-21 2004-10-21 Xiaofan Ren Organic light emitting devices with wide gap host materials
EP1617710A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Material für ein organisches elektrolumineszenzgerät, organisches elektrolumineszenzgerät, beleuchtungsvorrichtung und anzeige
EP1617711A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Organisches elektrolumineszenzbauelement und anzeige
EP1478032A2 (de) 2003-05-16 2004-11-17 Kabushiki Kaisha Toyota Jidoshokki Leuchtdiode und Herstellungsverfahren
EP1480280A2 (de) 2003-05-23 2004-11-24 Kabushiki Kaisha Toyota Jidoshokki Organische Leuchtdiode und ihre Herstellungsmethode
WO2004113468A1 (de) 2003-06-26 2004-12-29 Covion Organic Semiconductors Gmbh Neue materialien für die elektrolumineszenz
WO2005003253A2 (de) 2003-07-07 2005-01-13 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialen, deren verwendung und elektronikbauteile enthaltend diese
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005033244A1 (de) 2003-09-29 2005-04-14 Covion Organic Semiconductors Gmbh Metallkomplexe
WO2005039246A1 (ja) 2003-09-30 2005-04-28 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、照明装置、表示装置
US20050069729A1 (en) 2003-09-30 2005-03-31 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
WO2005040302A1 (de) 2003-10-22 2005-05-06 Merck Patent Gmbh Neue materialien für die elektrolumineszenz und deren verwendung
WO2005053055A1 (de) 2003-11-27 2005-06-09 Merck Patent Gmbh Organisches elektrolumineszenzelement
US6824895B1 (en) 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
WO2005061656A1 (ja) 2003-12-19 2005-07-07 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用発光材料、それを利用した有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
US20070128467A1 (en) 2003-12-26 2007-06-07 Idemitsu Kosan C., Ltd. Material for organic electroluminescent device and organic electroluminescent device using same
WO2005084081A1 (de) 2004-02-20 2005-09-09 Merck Patent Gmbh Organische elektronische vorrichtungen
WO2005084082A1 (de) 2004-02-20 2005-09-09 Merck Patent Gmbh Organische elektronische vorrichtungen
WO2005086251A2 (de) 2004-03-03 2005-09-15 Novaled Gmbh Verwendung von metallkomplexen als n-dotanden für organische halbleiter und die darstellung derselbigen inkl. ihrer liganden
US7326371B2 (en) 2004-03-25 2008-02-05 Eastman Kodak Company Electroluminescent device with anthracene derivative host
EP1731584A1 (de) 2004-03-31 2006-12-13 Konica Minolta Holdings, Inc. Organischer elektrolumineszenzvorrichtungsstoff, organische elektrolumineszenzvorrichtung, display und beleuchtungsvorrichtung
US20050221124A1 (en) 2004-04-02 2005-10-06 Seok-Hwan Hwang Fluorene-based compound and organic electroluminescent display device using the same
WO2005111172A2 (de) 2004-05-11 2005-11-24 Merck Patent Gmbh Neue materialmischungen für die elektrolumineszenz
US20050258742A1 (en) 2004-05-18 2005-11-24 Yui-Yi Tsai Carbene containing metal complexes as OLEDs
JP2005347160A (ja) 2004-06-04 2005-12-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
CN1583691A (zh) 2004-06-04 2005-02-23 友达光电股份有限公司 蒽化合物以及包括此蒽化合物的有机电致发光装置
WO2006000388A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2006000389A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
US20060062918A1 (en) 2004-09-21 2006-03-23 Eastman Kodak Company Delivering organic powder to a vaporization zone
WO2006048268A1 (de) 2004-11-06 2006-05-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
EP1661888A1 (de) 2004-11-29 2006-05-31 Samsung SDI Co., Ltd. Phenylcarbazole basierte Verbindungen und deren Verwendung als organische Elektroluminiszierende Vorrichtung
WO2006058737A1 (de) 2004-12-01 2006-06-08 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
EP1834945A1 (de) 2005-01-05 2007-09-19 Idemitsu Kosan Co., Ltd. Aromatisches aminderivat und organisches elektrolumineszentes gerät, bei dem dieses verwendet wird
US20060177576A1 (en) 2005-02-04 2006-08-10 Eastman Kodak Company Controllably feeding organic material in making OLEDs
US7378162B2 (en) 2005-03-08 2008-05-27 Lg Electronics Inc. Organic electroluminescence devices using red phosphorescence compounds
US20060210830A1 (en) 2005-03-15 2006-09-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
EP1860097A1 (de) 2005-03-18 2007-11-28 Idemitsu Kosan Co., Ltd. Aromatisches aminderivat und organisches elektrolumineszenzgerät, bei dem dieses verwendet wird
US20060222886A1 (en) 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
WO2006117052A1 (de) 2005-05-03 2006-11-09 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung und in deren herstellung verwendete boronsäure- und borinsäure-derivate
WO2006118837A2 (en) 2005-05-03 2006-11-09 Eastman Kodak Company Method for feeding powdered or granular material
WO2006122630A1 (de) 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
US20070087219A1 (en) 2005-10-19 2007-04-19 Eastman Kodak Company Electroluminescent device
US20070092755A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20070092753A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20070122656A1 (en) 2005-11-30 2007-05-31 Eastman Kodak Company Electroluminescent device containing an anthracene derivative
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
EP1957606A1 (de) 2005-12-08 2008-08-20 Merck Patent GmbH Neue materialien für organische elektroluminieszenzvorrichtungen
WO2007065549A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
DE102005058557A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
WO2007065678A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Neue materialien für organische elektroluminieszenzvorrichtungen
US20070134514A1 (en) 2005-12-14 2007-06-14 Eastman Kodak Company Electroluminescent host material
US20070145355A1 (en) 2005-12-22 2007-06-28 Ansgar Werner Doped organic semiconductor material
EP1837926A1 (de) 2006-03-21 2007-09-26 Novaled AG Heterocyclisches Radikal oder Diradikal, deren Dimere, Oligomere, Polymere, Dispiroverbindungen und Polycyclen, deren Verwendung, organisches halbleitendes Material sowie elektronisches Bauelement
WO2007107306A1 (de) 2006-03-22 2007-09-27 Novaled Ag Verwendung von heterocyclischen radikalen zur dotierung von organischen halbeitern
WO2007115610A1 (de) 2006-04-01 2007-10-18 Merck Patent Gmbh Materialen für organische elektrolumineszenzvorrichtungen
US20070273272A1 (en) 2006-04-03 2007-11-29 Idemitsu Kosan Co., Ltd. Benzanthracene derivative and electroluminescence device using the same
WO2007114358A1 (ja) 2006-04-03 2007-10-11 Idemitsu Kosan Co., Ltd. ベンズアントラセン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子
US20070252517A1 (en) 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
WO2007137725A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007140847A1 (de) 2006-06-02 2007-12-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2008006449A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
US20080102311A1 (en) 2006-08-04 2008-05-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same
US20080113101A1 (en) 2006-11-09 2008-05-15 Idemitsu Kosan Co., Ltd. Organic-electroluminescence-material-containing solution, method for forming thin film of organic electroluminescence material, thin film of organic electroluminescence material and organic electroluminescence device
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
US20080193796A1 (en) 2006-11-20 2008-08-14 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2008086851A1 (de) 2007-01-18 2008-07-24 Merck Patent Gmbh Carbazol-derivate für organische elektrolumineszenzvorrichtungen
WO2008145239A2 (de) 2007-05-29 2008-12-04 Merck Patent Gmbh Benzanthracen-derivate für organische elektrolumineszenzvorrichtungen
WO2009000237A1 (de) 2007-06-22 2008-12-31 Novaled Ag Verwendung eines precursors eines n-dotanden zur dotierung eines organischen halbleitenden materials, precursor und elektronisches oder optoelektronisches bauelement
US20090008607A1 (en) 2007-07-07 2009-01-08 Idemitsu Kosan Co., Ltd. Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
US20090061681A1 (en) 2007-09-05 2009-03-05 Mcmunigal Tom Electrical receptacle assembly
WO2009041635A1 (ja) 2007-09-28 2009-04-02 Idemitsu Kosan Co., Ltd. 有機el素子
WO2009069566A1 (ja) 2007-11-29 2009-06-04 Idemitsu Kosan Co., Ltd. ベンゾフェナントレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
DE102008017591A1 (de) 2008-04-07 2009-10-08 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
WO2009146770A2 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
DE102008033943A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
WO2010012330A1 (de) 2008-07-29 2010-02-04 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2010012328A1 (de) 2008-07-29 2010-02-04 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
DE102008035413A1 (de) 2008-07-29 2010-02-04 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
WO2010015307A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden
DE102008036982A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
WO2010031485A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054728A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054731A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010056325A1 (en) 2008-11-14 2010-05-20 Global Oled Technology Llc Metering of particulate material and vaporization thereof
WO2010072300A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung mit triazinderivaten
DE102008064200A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102009005746A1 (de) 2009-01-23 2010-07-29 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2010086089A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
WO2010099852A1 (de) 2009-03-02 2010-09-10 Merck Patent Gmbh Metallkomplexe mit azaborol-liganden und elektronische vorrichtung damit
WO2010102709A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE102009022858A1 (de) 2009-05-27 2011-12-15 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
WO2010136109A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE102009023155A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009031021A1 (de) 2009-06-30 2011-01-05 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2011032626A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Metallkomplexe
WO2011057706A2 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011066898A1 (de) 2009-12-05 2011-06-09 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
EP2381503B1 (de) 2010-04-23 2013-04-17 Polyphotonix Limited Verfahren zur Herstellung von Material zur Verwendung bei der Herstellung von elektrolumineszenten organischen Halbleiterbauelementen
WO2011157339A1 (de) 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
WO2011160757A1 (de) 2010-06-22 2011-12-29 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2012007086A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
WO2012031735A1 (en) 2010-09-10 2012-03-15 Novaled Ag Compounds for organic photovoltaic devices
EP2452946A1 (de) 2010-11-16 2012-05-16 Novaled AG Pyridylphosphinoxide für eine organische elektronische Vorrichtung und organische elektronische Vorrichtung
EP2463927A1 (de) 2010-12-08 2012-06-13 Novaled AG Material für eine organische elektronische Vorrichtung und organische elektronische Vorrichtung
WO2012168358A1 (en) 2011-06-09 2012-12-13 Novaled Ag Compound for organic electronic device
WO2012175219A1 (en) 2011-06-22 2012-12-27 Novaled Ag Electronic device and compound
WO2012175535A1 (de) 2011-06-22 2012-12-27 Novaled Ag Organisches elektronisches bauelement
WO2013041176A1 (de) 2011-09-21 2013-03-28 Merck Patent Gmbh Carbazolderivate für organische elektrolumineszenzvorrichtungen
WO2013087142A1 (de) 2011-12-12 2013-06-20 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
WO2014008982A1 (de) 2012-07-13 2014-01-16 Merck Patent Gmbh Metallkomplexe
WO2014015931A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2014015937A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektrolumineszierende vorrichtungen
WO2014015935A2 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
WO2014023377A2 (de) 2012-08-07 2014-02-13 Merck Patent Gmbh Metallkomplexe
WO2014023388A1 (de) 2012-08-10 2014-02-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2014037077A1 (de) 2012-09-04 2014-03-13 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2014067614A1 (de) 2012-10-31 2014-05-08 Merck Patent Gmbh Elektronische vorrichtung
WO2014072017A1 (de) 2012-11-12 2014-05-15 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014094961A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014094960A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014094963A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2015022043A1 (de) 2013-08-13 2015-02-19 Merck Patent Gmbh Verfahren zur vakuumaufreinigung
WO2015022051A1 (de) 2013-08-15 2015-02-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015036074A1 (de) 2013-09-11 2015-03-19 Merck Patent Gmbh Metallkomplexe
WO2015049030A2 (de) 2013-10-02 2015-04-09 Merck Patent Gmbh Borenthaltende verbindungen
WO2014111269A2 (de) 2013-10-14 2014-07-24 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015091716A1 (en) 2013-12-20 2015-06-25 Basf Se Highly efficient oled devices with very short decay times
WO2015104045A1 (de) 2014-01-13 2015-07-16 Merck Patent Gmbh Metallkomplexe
WO2015117718A1 (de) 2014-02-05 2015-08-13 Merck Patent Gmbh Metallkomplexe
WO2015165563A1 (de) 2014-04-30 2015-11-05 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015169412A1 (de) 2014-05-05 2015-11-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2015192939A1 (de) 2014-06-18 2015-12-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016012075A1 (de) 2014-07-21 2016-01-28 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2016015815A1 (de) 2014-07-28 2016-02-04 Merck Patent Gmbh Metallkomplexe
WO2016015810A1 (de) 2014-07-29 2016-02-04 Merck Patent Gmbh Materialien f?r organische elektrolumineszenzvorrichtungen
WO2016078747A1 (de) 2014-11-21 2016-05-26 Merck Patent Gmbh Heterocyclische verbindungen zur verwendung in elektronischen vorrichtungen
WO2016087017A1 (de) 2014-12-01 2016-06-09 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016124304A1 (de) 2015-02-03 2016-08-11 Merck Patent Gmbh Metallkomplexe
WO2016184540A1 (en) 2015-05-18 2016-11-24 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
WO2017016632A1 (en) 2015-07-29 2017-02-02 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017016630A1 (en) 2015-07-30 2017-02-02 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017025164A1 (de) 2015-08-11 2017-02-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2017032439A1 (de) 2015-08-25 2017-03-02 Merck Patent Gmbh Metallkomplexe
WO2017041874A1 (de) 2015-09-08 2017-03-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2017071791A1 (en) 2015-10-27 2017-05-04 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017148564A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2017178311A1 (de) 2016-04-11 2017-10-19 Merck Patent Gmbh Heterocyclische verbindungen mit dibenzofuran- und/oder dibenzothiophen-strukturen
KR20170122563A (ko) 2016-04-27 2017-11-06 지제이엠 주식회사 유기재료 연속 정제 장치
WO2018001990A1 (de) 2016-06-30 2018-01-04 Merck Patent Gmbh Verfahren zur auftrennung von enantiomerenmischungen von metallkomplexen
WO2018011186A1 (de) 2016-07-14 2018-01-18 Merck Patent Gmbh Metallkomplexe
WO2018019688A1 (de) 2016-07-25 2018-02-01 Merck Patent Gmbh Metallkomplexe für den einsatz als emitter in organischen elektrolumineszenzvorrichtungen
WO2018019687A1 (de) 2016-07-25 2018-02-01 Merck Patent Gmbh Di- und oligonukleare metallkomplexe mit tripodalen bidentaten teilliganden sowie deren verwendung in elektronischen vorrichtungen
WO2018041769A1 (de) 2016-08-30 2018-03-08 Merck Patent Gmbh Bl- und trinukleare metallkomplexe aufgebaut aus zwei miteinander verknüpften tripodalen hexadentaten liganden zur verwendung in elektrolumineszenzvorrichtungen
WO2018050583A1 (de) 2016-09-14 2018-03-22 Merck Patent Gmbh Verbindungen mit carbazol-strukturen
WO2018054798A1 (de) 2016-09-21 2018-03-29 Merck Patent Gmbh Binukleare metallkomplexe für den einsatz als emitter in organischen elektrolumineszenzvorrichtungen
WO2018060218A1 (de) 2016-09-30 2018-04-05 Merck Patent Gmbh Carbazole mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
WO2018060307A1 (de) 2016-09-30 2018-04-05 Merck Patent Gmbh Verbindungen mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
WO2018069197A1 (de) 2016-10-12 2018-04-19 Merck Patent Gmbh Metallkomplexe
WO2018069196A1 (de) 2016-10-12 2018-04-19 Merck Patent Gmbh Binukleare metallkomplexe sowie elektronische vorrichtungen, insbesondere organische elektrolumineszenzvorrichtungen, enthaltend diese metallkomplexe
WO2018069273A1 (de) 2016-10-13 2018-04-19 Merck Patent Gmbh Metallkomplexe
WO2018083053A1 (de) 2016-11-02 2018-05-11 Merck Patent Gmbh Materialien für elektronische vorrichtungen
KR101835418B1 (ko) 2016-12-29 2018-04-19 주식회사 피브이디 세척용 방착유닛을 구비한 유기물 승화 정제장치
WO2018177981A1 (de) 2017-03-29 2018-10-04 Merck Patent Gmbh Aromatische verbindungen
WO2018178001A1 (de) 2017-03-29 2018-10-04 Merck Patent Gmbh Metallkomplexe
KR101918233B1 (ko) 2017-05-26 2018-11-14 주식회사 엔케이이씨 연속식 승화기
WO2019020538A1 (de) 2017-07-25 2019-01-31 Merck Patent Gmbh Metallkomplexe
WO2019115423A1 (de) 2017-12-13 2019-06-20 Merck Patent Gmbh Metallkomplexe
WO2019158453A1 (de) 2018-02-13 2019-08-22 Merck Patent Gmbh Metallkomplexe
WO2019179909A1 (de) 2018-03-19 2019-09-26 Merck Patent Gmbh Metallkomplexe
KR20190125700A (ko) 2018-04-30 2019-11-07 고려대학교 산학협력단 연속식 유기물 진공증발정제장치
CN109646987A (zh) 2019-01-10 2019-04-19 合肥欧莱迪光电技术有限公司 一种连续进出料高真空有机小分子提纯专用设备
KR20200123895A (ko) 2019-04-22 2020-11-02 (주)일솔레드 연속 공정이 가능한 승화장치 및 이를 구비한 유기소재 정제장치

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Recent progress of molecular organic electroluminescent materials and devices", MAT. SCI. AND ENG. R, vol. 39, 2002, pages 143 - 222
ADACHI ET AL., APPL. PHYS. LETT., vol. 78, 2001, pages 1622 - 1624
B. H. UOYAMA ET AL., NATURE, vol. 492, 2012, pages 234
B. M. A. BALDO ET AL., APPLIED PHYSICS LETTERS, vol. 75, no. 1, 1999, pages 4 - 6
BALDO, THOMPSON ET AL., NATURE, vol. 403, 2000, pages 750 - 753
BUCHWALD ET AL., J. AM. CHEM. SOC., vol. 120, no. 37, 1998, pages 9722 - 9723
C.H.CHEN ET AL.: "Recent developments in organic electroluminescent materials", MACROMOL. SYMP., vol. 125, 1997, pages 1 - 48, XP000891579
H. GILMANE.A. ZUECH, CHEMISTRY & INDUSTRY (LONDON, UNITED KINGDOM, 1960
INORG. CHEM., vol. 40, no. 7, 2001, pages 1704 - 1711
J.KIDO ET AL., APPL. PHYS. LETT., vol. 65, 1994, pages 2124
JACS, vol. 123, no. 18, 2001, pages 4304 - 4312
JOHNSON ET AL., JACS, vol. 105, 1983, pages 1795
KIDO ET AL., CHEM. LETT., vol. 657, pages 1990
MA ET AL., SYNTH. METALS, vol. 94, 1998, pages 245
SYNTH.METALS, vol. 91, no. 1-3, 1997, pages 209
WRIGHTON, JACS, vol. 96, 1974, pages 998

Also Published As

Publication number Publication date
CN117355364A (zh) 2024-01-05
EP4340969A1 (de) 2024-03-27
KR20240012506A (ko) 2024-01-29

Similar Documents

Publication Publication Date Title
EP2477999B1 (de) Formulierungen zur herstellung von elektronischen vorrichtungen
EP3189551B1 (de) Formulierungen und verfahren zur herstellung einer organischen elektrolumineszenzvorrichtung
EP2771386B1 (de) Hyperverzweigte polymere, verfahren zu deren herstellung sowie deren verwendung in elektronischen vorrichtungen
WO2011137922A1 (de) Formulierungen und elektronische vorrichtungen
EP3137458A1 (de) Materialien für elektronische vorrichtungen
WO2017102048A1 (en) Esters containing aromatic groups as solvents for organic electronic formulations
DE102010009193B4 (de) Zusammensetzung enthaltend Fluor-Fluor Assoziate, Verfahren zu deren Herstellung, deren Verwendung sowie organische elektronische Vorrichtung diese enthaltend
EP3560003A1 (de) Mischungen umfassend mindestens zwei organisch funktionelle verbindungen
WO2018087346A1 (de) Verbindungen mit einer akzeptor- und einer donorgruppe
WO2017102061A1 (en) Ink composition of an organic functional material
DE102010055901A1 (de) Organische Elektrolumineszenzvorrichtung
EP3028319A1 (de) Elekrolumineszenzvorrichtung
TW202242069A (zh) 有機電場發光元件、有機el顯示裝置、有機el照明及有機電場發光元件的製造方法
WO2021259824A1 (de) Verfahren zur herstellung einer mischung
EP3429859B1 (de) Druckerkartusche umfassend eine formulierung enthaltend mindestens einen organischen halbleiter
WO2022243403A1 (de) Verfahren zur kontinuierlichen aufreinigung von mindestens einem funktionalen material und vorrichtung zur kontinuierlichen aufreinigung von mindestens einem funktionalen material
EP3241248A1 (de) Formulierungen und elektronische vorrichtungen
WO2015014437A1 (de) Elektrooptische vorrichtung und deren verwendung
EP2566875B1 (de) Formulierungen und elektronische vorrichtungen
EP3857621A1 (de) Verfahren zur herstellung von granulat
EP3028318A1 (de) Elektrooptische vorrichtung und deren verwendung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22729624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237044196

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237044196

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022729624

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022729624

Country of ref document: EP

Effective date: 20231221