EP3028318A1 - Elektrooptische vorrichtung und deren verwendung - Google Patents

Elektrooptische vorrichtung und deren verwendung

Info

Publication number
EP3028318A1
EP3028318A1 EP14733092.2A EP14733092A EP3028318A1 EP 3028318 A1 EP3028318 A1 EP 3028318A1 EP 14733092 A EP14733092 A EP 14733092A EP 3028318 A1 EP3028318 A1 EP 3028318A1
Authority
EP
European Patent Office
Prior art keywords
emitter
electro
group
optical device
emitter layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP14733092.2A
Other languages
English (en)
French (fr)
Inventor
Susanne Heun
Aurélie LUDEMANN
Junyou Pan
Niels Schulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Priority to EP14733092.2A priority Critical patent/EP3028318A1/de
Publication of EP3028318A1 publication Critical patent/EP3028318A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/145Heterocyclic containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1483Heterocyclic containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to a novel design principle for organic, electro-optical devices, in particular for electroluminescent elements and their use in based on displays and lighting means.
  • light-sensitive organic materials e.g., phthalocyanines
  • organic charge transport materials e.g., triarylamine-based hole transport materials
  • OLED organic light-emitting diodes
  • multicolor display elements such as in pocket calculators,
  • PLED polymeric OLED
  • SMOLED vapor deposited small molecule devices
  • interlayer in a layer structure, such as in WO 04 / 084260 A, the lifetime and efficiency of PLED have been significantly increased, and these interlayers are deposited between the anode and the layer of light-emitting polymers, with the function of injecting and transporting holes, ie positively charged carriers, into the light-emitting To facilitate polymer or
  • intermediate layers consist of polymers with a high proportion of hole-transporting units linked by a conjugated backbone. These polymers also block the transport of electrons at the same time.
  • Interlayer is applied by ink jet printing or by spin coating. The thickness of this layer is adjusted so that the layer does not completely dissolve again in the subsequent step.
  • Carrying out a crosslinking step can be produced if emitters are used in addition to the emitter layer in the intermediate layer. This allows the simple generation of multicolor OLED in which at least two different emitter layers can be processed from solution.
  • the present invention has the object to provide an electro-optical device which can be produced with simple application methods from solution, which has a plurality of emitters and which has a longer service life compared to known devices.
  • the subject of the present invention is thus an electro-optical device containing
  • At least one first emitter layer which is arranged between the anode and the cathode, comprising at least one semiconductive, organic material
  • the emitters of the second emitter layer and the intermediate layer, respectively are selected to have a lowest unoccupied molecular orbital ("LUMO") higher than the LUMO of the semiconducting organic material of the first
  • the LUMO of the emitter of the intermediate layer is preferably 0.1 eV, and particularly preferably 0.2 eV, higher than the LUMO of the first emitter layer.
  • HOMO Highest Occupied Molecular Orbital
  • LUMO Low Unoccupied Molecular Orbital
  • the energy levels of the molecular orbitals can also be determined by quantum chemical calculation methods, e.g. through the "Density Function
  • the emitter is integrated as a repeating unit in a polymer.
  • the emitter is mixed into a matrix material, which may be a small molecule, a polymer, an oligomer, a dendrimer or a mixture thereof.
  • emitter layer containing at least one emitter selected from fluorescent compounds, phosphorescent compounds and emitting organometallic complexes.
  • emitter unit or emitter in the present application refers to a unit or compound in which, upon receipt of an exciton or formation of an exciton, radiation decay occurs with light emission.
  • emitters There are two classes of emitters, fluorescent and phosphorescent
  • fluorescent emitter refers to materials or compounds that have a radiation transition from an excited one Experience singlet state to its ground state.
  • phosphorescent emitter as used in the present application refers to luminescent materials or compounds containing transition metals. These typically include materials in which the light emission is caused by spin-forbidden transitions, eg, transitions of excited triplet and / or transitions
  • the transition from excited states with high spin multiplicity e.g. of excited triplet states, forbidden to the ground state.
  • a heavy atom such as iridium, osmium, platinum and europium
  • the excited singlet and triplet are mixed so that the triplet acquires a certain singlet character, and if the singlet-triplet mixture results in a radiation decay rate faster than the non-radiative event, the luminance can be efficient.
  • This type of emission can be achieved with metal complexes, as Baldo et al. in Nature 395, 151-154 (1998).
  • an emitter selected from the group of fluorescent emitters.
  • fluorescent emitters e.g. Styrylamine derivatives in JP 2913116 B and WO 2001/021729 A1, as well as Indenofluorenderivate in WO 2008/006449 and the
  • the fluorescent emitters are preferably polyaromatic compounds, such as 9,10-di (2-naphthylanthracene) and other anthracene derivatives, derivatives of tetracene, xanthene, perylene, such as 2,5,8,11-tetracenes.
  • t-butylperylene phenylene, eg 4,4 '- (bis (9-ethyl-3-carbons) azovinylene) -1, r-biphenyl, fluorene, arylpyrene (US 2006/0222886), arylenevinylenes (US 5121029, US 5130603), derivatives of rubrene, coumarin, rhodamine, quinacridone, such as ⁇ , ⁇ '-dimethylquinacridone (DMQA), dicyano-methylene-pyran, such as, for example, 4- (dicyanoethylene) -6- (4-dimethylaminostyryl-2-methyl) -4H-pyran (DCM), thiopyrans, polymethine, pyrylium and thiopyrylium salts, periflanthene, indenoperylene, Bis (azinyl) imineboron compounds (US 2007/0092753 A1), bis (aziny
  • Suitable fluorescent emitters are selected from the class of monostyrylamines, distyrylamines, tristyrylamines, tetrastyrylamines, styrylphosphines, styryl ethers and arylamines.
  • a monostyrylamine is meant a compound containing a substituted or unsubstituted styryl group and at least one, preferably aromatic, amine.
  • a distyrylamine is meant a compound which is two substituted or unsubstituted
  • Styryl groups and at least one, preferably aromatic, amine are to be understood as meaning a compound which contains three substituted or unsubstituted styryl groups and at least one, preferably aromatic, amine.
  • a tetrastyrylamine is meant a compound containing four substituted or unsubstituted styryl groups and at least one, preferably aromatic, amine.
  • the styryl groups are particularly preferably stilbenes, which may also be further substituted.
  • the corresponding phosphines and ethers are defined analogously to the amines.
  • the present application is under an aryl amine or a
  • aromatic amine to understand a compound containing three substituted or unsubstituted aromatic or heteroaromatic ring systems which are directly bonded to the nitrogen. At least one of these aromatic or heteroaromatic ring systems is preferably a fused ring system, preferably having at least 14 aromatic ring atoms. Preferred examples of these are aromatic anthracene amines, aromatic anthracenediamines, aromatic pyrenamines, aromatic pyrenediamines, aromatic
  • aromatic anthracenamine is a compound in which a diarylamino group is bonded directly to an anthracene group, preferably in the 9-position.
  • aromatic anthracenediamine is meant a compound in which two diarylamino groups are bonded directly to an anthracene group, preferably in the 9,10-position.
  • Aromatic pyrenamines, pyrenediamines, chrysenamines and chrysenediamines are defined analogously thereto, the diarylamino groups being attached to the pyrene preferably in the 1-position or in the 1, 6-position.
  • Other preferred fluorescent emitters are indenofluorenamines and indenofluorodiamines, e.g. according to WO 2006/122630, benzoin-indenofluoreneamines and benzoindenofluorodiamines, e.g. according to WO 2008/006449, and dibenzoindenofluorenamines and dibenzoindeno-fluoro-diamines, e.g. according to WO 2007/140847.
  • Examples of emitters from the class of styrylamines are substituted or unsubstituted tristilbenamines or the dopants described in WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549 and WO 2007/115610.
  • Distyrylbenzene and distyryl biphenyl derivatives are described in US 5121029.
  • Other styrylamines can be found in US 2007/0122656 A1.
  • Particularly preferred styrylamine emitters and triarylamine emitters are the compounds of the formulas (1) to (6) as described in US Pat. No. 7,250,532 B2, DE 102005058557 A1, CN 1583691 A, JP 08053397 A, US Pat
  • fluorescent emitters are selected from the group of tri-aryl amines, such as e.g. in EP 1957606 A1 and the
  • fluorescent emitters are from the derivatives of naphthalene, anthracene, tetracene, fluorene, periflanthene, indenoperylene, phenanthrene, perylene (US 2007/0252517 A1), pyrene, chrysene, decacycles, coronene, tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, fluorene, spirobifluorene, Rubrene, coumarin (US 4769292, US 6020078, US 2007/0252517 A1), pyran, oxazone, benzoxazole, benzothiazole, benzimidazole, pyrazine, cinnamic acid esters, diketopyrrolopyrrole, acridone and quinacridone (US 2007/0252517 A1).
  • anthracene compounds 9,10-substituted anthracenes such as 9,10-diphenylanthracene and 9,10-bis (phenylethynyl) anthracene are particularly preferred. 1,4-bis (9'-ethynylanthracenyl) benzene is also a preferred dopant.
  • an emitter in the emitter layer is selected from the group of blue-fluorescent emitters.
  • an emitter in the emitter layer is selected from the group of green-fluorescing emitters.
  • an emitter in the emitter layer is selected from the group of yellow-fluorescing emitters.
  • an emitter in the emitter layer is selected from the group of red-fluorescent emitters.
  • a red-fluorescent emitter is preferably selected from the group of perylene derivatives, for example in the following structure of the formula (7), as disclosed, for example, in US 2007/0104977 A1.
  • Preferred emissive repeat units are those selected from the following formulas:
  • Ar 1 independently of one another is a mono- or polycyclic aryl or heteroaryl group which, if appropriate, is monosubstituted or polysubstituted by radicals R 11 ,
  • Ar 12 is independently a mono- or polycyclic aryl or heteroaryl group, which is optionally mono- or polysubstituted by radicals R 12 ,
  • Ar 13 is independently of one another a mono- or polycyclic aryl or heteroaryl group which is optionally mono- or polysubstituted by radicals R 13 ,
  • Ar 14 is independently of one another a mono- or polycyclic aryl or heteroaryl group which is optionally mono- or polysubstituted by radicals R 14 ,
  • R 11 , R 12 and R 13 may also mean a covalent bond in a polymer
  • X °, R ° and R 00 have one of the meanings defined in formula (I), i is independently 1, 2 or 3,
  • k is independently 1, 2 or 3,
  • o is independently 0 or 1.
  • R 1 and R 2 have the meaning defined for formula (I) and Ar has one of the meaning defined for Ar 11 in formula (I).
  • emitting repeat units are 1,4-bis (2-arylenevinyl) benzenes of the formula (III), as disclosed, for example, in WO 00/46321 A: wherein r and R are as defined above and u is 0 or 1.
  • X 21 is O, S, SO 2 C (R X ) 2 or NR x , in which R x is aryl or substituted aryl or aralkyl having 6 to 40 C atoms, or alkyl having 1 to 24 C atoms, preferably aryl 6 to 24 C atoms, particularly preferably alkylated aryl having 6 to 24 C atoms,
  • Ar 21 is optionally substituted aryl or heteroaryl having 6 to 40, preferably 6 to 24, particularly preferably 6 to 14 C atoms.
  • X 22 R 23 C CR 23 or S, in which each R 23 is independently selected from the group consisting of hydrogen, alkyl, aryl, perfluoroalkyl, thioalkyl, cyano, alkoxy, heteroaryl, alkylaryl or arylalkyl,
  • R 21 and R 22 are the same or different and each one
  • Ar 22 and Ar 23 independently represent a divalent aromatic or heteroaromatic ring system having 2 to 40 carbon atoms, which is optionally substituted by one or more radicals R 21 , and a1 and b1 are independently 0 or 1.
  • X 23 is NH, O or S.
  • Ph is phenyl
  • an emitter in the emitter layer which is selected from the group of phosphorescent emitters.
  • Examples of phosphorescent emitters are disclosed in WO 00/70655, WO 01/41512, WO 02/02714, WO 02/15645, EP 1191613, EP 1191612, EP 1191614 and WO 2005/033244.
  • the phosphorescent emitter may be a metal complex, preferably of the formula M (L) Z in which M is a metal atom, L on each occurrence independently represents an organic ligand attached to M via one, two or more positions or is coordinated thereto, and z is an integer> 1, preferably 1, 2, 3, 4, 5 or 6, and in which optionally these groups with a polymer over one or more, preferably one, two or three Positions, preferably via the ligands L, are linked.
  • M is a metal atom selected from transition metals, preferably from Group VIII transition metals, lanthanides or actinides, more preferably Rh, Os, Ir, Pt, Pd, Au, Sm, Eu, Gd, Tb , Dy, Re, Cu, Zn, W, Mo, Pd, Ag or Ru, and in particular is selected from Os, Ir, Ru, Rh, Re, Pd or Pt.
  • M can also mean Zn.
  • Preferred ligands are 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2- (2-thienyl) pyridine derivatives, 2- (1-naphthyl) pyridine derivatives or 2-phenylquinoline derivatives. These compounds may each be substituted, e.g. by fluorine or trifluoromethyl substituents for blue.
  • Secondary ligands are preferably acetylacetonate or picric acid.
  • complexes of trivalent lanthanides such as Tb 3+ and Eu 3+ (Kido, KJ et al., Appl., Phys., Lett., 65, 2124, Kido, et al., Chem., Lett., 657, 1990, US Pat 2007/0252517 A1) or phosphorescent complexes of Pt (II), Ir (I), Rh (I) with maleonitrile dithiolate (Johnson et al., JACS 105, 1983, 1795), Re (I) tricarbonyldiimine complexes (inter alia Wrighton , JACS 96, 1974, 998), Os (II) complexes with cyano ligands and bipyridyl or phenanthroline ligands (Ma et al., Synth. Metals 94, 1998, 245) or Alq 3 .
  • trivalent lanthanides such as Tb 3+ and Eu 3+
  • Particularly preferred phosphorescent emitters are compounds of the following formulas (9) and (10) as well as further compounds such as e.g. in US 2001/0053462 A1 and WO 2007/095118 A1.
  • an emitter in the emitter layer selected from the group of organometallic complexes.
  • a suitable metal complex according to the present invention are selected from transition metals, rare earth elements, lanthanides and actinides.
  • the metal is selected from Ir, Ru, Os, Eu, Au, Pt, Cu, Zn, Mo, W, Rh, Pd and Ag.
  • the proportion of emitter structural units in the hole-conducting polymer used in the intermediate layer is generally between 0.01 and 20 mol%, preferably between 0.5 and 10 mol%, particularly preferably between 1 and 8 mol%, and in particular between 1 and 5 mol%.
  • copolymers containing the intermediate layer i. the second
  • Form emitter layer must have hole-conducting properties.
  • This property profile can be selected by selecting appropriate
  • repeating units having hole transport properties can be generated.
  • the polymer of the intermediate layer has further repeating units which form the polymer backbone.
  • HTM hole transport material
  • HTM hole transport material
  • Such HTM is preferably selected from amines, triarylamines, thiophenes, carbazoles, phthalocyanines, porphyrins and their isomers and
  • the HTM is more preferably selected from amines, triarylamines, thiophenes, carbazoles, phthalocyanines and porphyrins.
  • Suitable HTM units are phenylenediamine derivatives (US 3615404), arylamine derivatives (US 3567450), amino-substituted chalcone derivatives (US 3526501), styrylanthracene derivatives (JP A 56-46234), polycyclic aromatic compounds (EP 009041), polyarylalkane derivatives (US 3615402), fluorenone derivatives (JP A 54-110837), hydrazone derivatives (US 3717462), stilbene derivatives (JP A 61-2 0363), silazane derivatives (US 4950950), polysilanes (JP A 2-204996), aniline copolymers (JP A 2-282263), Thiophene oligomers, polythiophenes, PVK, polypyrroles, polyanilines and other copolymers, porphyrin compounds (JP A 63-2956965), aromatic dimethylidene-type compounds, carbazole compounds such as CDBP, CBP,
  • aromatic tertiary amines containing at least two tertiary amine units e.g. 4,4-bis- [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD) (US 5061569) or
  • triarylamine compounds of formulas (11) to (16) which may also be substituted, e.g. in EP 1162193 A1, EP 650955 A1, in Synth. Metals 1997, 91 (1-3), 209, in DE 19646119 A1, WO 2006/122630 A1, EP 1860097 A1, EP 1834945 A1, JP 08/053397 A, US 6251531 B1 and the
  • WO 2009/041635 discloses.
  • HTM units are, for example, triarylamine, benzidine, tetraaryl-para-phenylenediamine, carbazole, azulene, thiophene, pyrrole and furan derivatives, and also O, S or N-containing heterocycles.
  • HTM units are as follows
  • Ar 1 which may be the same or different, independently when in different repeating units, represents a single bond or an optionally substituted mononuclear or polynuclear aryl group
  • Ar 2 which may be the same or different, independently, if in different repeating units, an optionally substituted one mononuclear or polynuclear aryl group
  • Ar 3 which may be the same or different, independently when in different repeating units, represents an optionally substituted mononuclear or polynuclear aryl group
  • n 1, 2 or 3.
  • Particularly preferred units of the formula (17) are selected from the group of the following formulas (18) to (20).
  • R which may be the same or different at each occurrence, is selected from H, sub ⁇ stituted or unsubstituted, aromatic or heteroaromatic group, alkyl group, cycloalkyl group, alkoxy group, aralkyl group, aryloxy group, arylthio group, alkoxycarbonyl group, silyl group, carboxyl group, halogen atom, cyano group, nitro group, or
  • r 0, 1, 2, 3 or 4 and
  • Another preferred interlayer polymer contains at least one repeating unit of the following formula (21)
  • T and T 2 are independently selected from thiophene, selenophene, thieno [2,3b] thiophene, thieno [3,2b] thiophene, dithienothiophene, pyrrole, aniline, all of which are optionally substituted with R 5 ,
  • R ° and R 00 are independently H or an optionally substi tuted ⁇ carbyl or hydrocarbyl, optionally containing one or more hetero atoms,
  • Ar 4 and Ar 5 independently of each other mononuclear or polynuclear aryl or heteroaryl which is optionally substituted and is optionally ⁇ Pol fused to the 2,3-positions of one or both of the adjacent thiophene or Selenophen phenomenon,
  • c and e independently represent 0, 1, 2, 3 or 4, wherein
  • d and f independently represent 0, 1, 2, 3 or 4.
  • the groups T 1 and T 2 are preferably selected from Thiophene-2,5-diyl,
  • R ° and R 5 can assume the same meanings as R ° and R 5 in formula (21).
  • Preferred units of formula (21) are selected from the group of the following formulas:
  • R ° can assume the same meanings as R 5 in formula (21).
  • the proportion of the HTM repeat units in the hole-conducting polymer used in the intermediate layer is preferably between 0 and 99 mol%, particularly preferably between 20 and 80 mol%, and in particular between 30 and 60 mol%.
  • the copolymers used in the intermediate layer preferably have further structural units, which form the backbone of the copolymer.
  • repeating units which form the polymer backbone are aromatic or heteroaromatic structures having 6 to 40 carbon atoms. These are, for example, 4,5-dihydropyrene derivatives, 4,5,9,10-tetrahydropyrene derivatives, fluorine derivatives as disclosed, for example, in US Pat. No.
  • repeating units for the polymer backbone are repeating units of the following formula (22)
  • X means halogen
  • R ° and R 00 independently of one another denote H or an optionally substituted carbyl or hydrocarbyl group which optionally contains one or more heteroatoms
  • each g is independently 0 or 1 and the corresponding h in the same subunit is for the other of 0 or 1,
  • Ar 1 and Ar 2 are independently mono- or polynuclear aryl or heteroaryl optionally substituted and optionally fused to the 7,8-positions or 8,9-positions of the indenofluorene group, and
  • a and b independently represent 0 or 1.
  • R 1 and R 2 form a spiro group with the fluorene group to which they are attached, these are preferably spirobifluorene.
  • the group of the formula (22) is preferably selected from the following formulas (23) to (27)
  • the group of formula (22) is more preferably selected from the following formulas (28) to (31)
  • L is H, halogen or optionally fluorinated, linear or branched alkyl or alkoxy having 1 to 12 C atoms and preferably H, F, methyl, i-propyl, t-butyl, n-pentoxy or trifluoromethyl and
  • L ' is optionally fluorinated, linear or branched alkyl or alkoxy having 1 to 12 C atoms and preferably n-octyl or n-octyloxy.
  • the polymer of the intermediate layer is a non-conjugated or partially conjugated polymer.
  • a particularly preferred nonconjugated or partially conjugated polymer of the intermediate layer contains a non-conjugated repeat unit for the polymer backbone.
  • the unconjugated repeating unit for the polymer backbone unit is preferably an indenofluorene unit represented by the following formulas (32) and (33), such as e.g. disclosed in WO 2010/136110.
  • X and Y are independently selected from the group consisting of H, F, a a C 2- 4o-alkenyl group, a C2 -4 o- alkynyl group, an optionally substituted C 6- 4o-aryl group and an optionally substituted 5- to 25-membered consists heteroaryl group.
  • non-conjugated repeating units for the polymer backbone are selected from fluorene, phenanthrene,
  • R1-R4 may take the same meanings as X and Y in the formulas (32) and (33).
  • the proportion of repeat units in the hole-conducting polymer used in the intermediate layer, the polymer backbone is preferably between 10 and 99 mol%, particularly preferably between 20 and 80 mol%, and in particular between 30 and 60 mol%.
  • the semiconducting organic material for the first emitter layer may be a polymeric matrix material incorporating one or more different emitters incorporated in the polymer, which may be a polymeric and non-emissive matrix material into which one or more low molecular weight emitters are intermixed may be mixtures of different polymers with im
  • the emitter layer contains a conjugated polymer containing at least one repeating unit containing an emitter group as described above.
  • metal complex-containing conjugated polymers and their synthesis are described in e.g. in EP 1138746 B1 and DE 102004032527 A1.
  • singlet emitter-containing conjugated polymers and their synthesis are described e.g. in DE 102005060473 A1 and WO 2010/022847. ⁇
  • the emitter layer contains a non-conjugated polymer containing at least one emitter group as described above and at least one pendant charge transport group.
  • non-conjugated polymers containing a pendent metal complex and their synthesis are disclosed, for example, in US7250226 B2, JP 2007/21 1243 A2, JP 2007/197574 A2, US 7250226 B2 and JP 2007/059939 A.
  • not Conjugated polymers containing a pendant singlet emitter and their synthesis are disclosed, for example, in JP 2005/108556, JP 2005/285661 and JP 2003/338375.
  • the emitter layer contains a non-conjugated polymer which has at least one emitter group as described above as a repeating unit and at least one
  • Repeating unit forming the polymer backbone in the main chain, wherein the repeating units constituting the polymer backbone may be preferably selected from the non-conjugated polymer backbone repeat units described above for the interlayer polymer.
  • Examples of non-conjugated polymers containing a metal complex in the main chain and their synthesis are described e.g. in WO 2010/149261 and WO 2010/136110.
  • a material used for the emitter layer contains, in addition to the emitter (s), a charge-transporting polymer matrix.
  • this polymer matrix may be selected from a conjugated polymer which preferably contains a non-conjugated polymer backbone as described above for the interlayer polymer, and most preferably a conjugated polymer backbone as described above for the interlayer polymer.
  • this polymer matrix is preferably selected from non-conjugated polymers which are a non-conjugated side-chain polymer or non-conjugated backbone polymer, eg, polyvinylcarbazole ("PVK”), polysilane, copolymers containing phosphine oxide units, or the like Matrix polymers as described, for example, in WO 2010/149261 and WO 2010/1361 0.
  • the emitter layer contains at least one low molecular weight emitter having a
  • Suitable low molecular weight matrix materials are materials from various classes.
  • Preferred matrix materials for fluorescent or singlet emitters are selected from the classes of the oligoarylenes (for example 2,2 ', 7,7'-tetraphenyl-spirobifluorene according to EP 676461 or dinaphthylanthracene),
  • Oligoarylenes e.g. Phenanthrene, tetracene, coronene, chrysene, fluorene, spirobifluorene, perylene, phthaloperylene, naphthaloperylene, decacyclene, rubrene, the oligoarylenevinylenes (eg 4,4'-bis (2,2-diphenylethenyl) -1, 1'-biphenyl (DPVBi) or 4,4-bis-2,2-diphenylvinyl-1, 1-spirobiphenyl (spiro-DPVBi) according to EP 676461), the polypodal metal complexes (eg.
  • metal complexes of 8-hydroxyquinoline for example aluminum (III) tris (8-hydroxyquinoline) (aluminum quinolate, Alq 3 ) or bis (2-methyl-8-quinolinolato) -4- ( phenylphenol-linolato) aluminum, also with imidazole chelate (US 2007/0092753 A1) and quinoline metal complexes, aminoquinoline metal complexes, benzoquinoline-metal complexes, the hole-conducting compounds (eg according to the
  • WO 04/058911 the electron-conducting compounds, in particular ketones, phosphine oxides, sulfoxides, etc. (for example according to WO 05/084081 and WO 05/084082), the atropisomers (for example according to the
  • Particularly preferred host materials are from the classes of
  • Very particularly preferred host materials are from the classes of oligoarylenes containing anthracene, Benzanthracene and / or pyrene, or atropisomers of these compounds selected.
  • an oligoarylene is to be understood as meaning a compound in which at least three aryl or arylene groups are bonded to one another.
  • Particularly preferred low molecular weight matrix materials for singlet emitters are selected from benzanthracene, anthracene, triarylamine, indenofluorene, fluorene, spirobifluorene, phenanthrene, dihydrophenanthrene and their isomers and derivatives.
  • Preferred low molecular weight matrix materials for phosphorescent or triplet emitters are ⁇ , ⁇ -biscarbazolylbiphenyl (CBP),
  • Carbazole derivatives for example according to WO 05/039246, US 2005/0069729, JP 2004/288381, EP 1205527 and DE 102007002714),
  • Azacarbazoles for example according to EP 1617710, EP 1617711, the
  • ketones e.g.
  • WO 04/093207 phosphine oxides, sulfoxides and sulfones (e.g., according to WO 05/003253), oligophenylenes, aromatic amines (e.g., according to US 2005/0069729), bipolar matrix materials (e.g.
  • WO 07/137725 1,3,5-triazine derivatives (for example according to US Pat. No. 6,229,012 B1, US Pat. No. 6,225,467 B1, DE 10312675 A1, WO 9804007 A1 and US Pat. No. 6352791 B1), silanes (for example according to WO 05 / 111172), 9,9-diaryl fluorene derivatives (eg according to DE 102008017591), azaboroles or
  • Boronic acid esters for example according to WO 06/117052
  • triazole derivatives for example according to WO 06/117052
  • oxazoles and oxazole derivatives for example, imidazole derivatives, polyarylalkane derivatives,
  • Particularly preferred low molecular weight matrix materials for triplet emitters are selected from carbazole, ketone, triazine, imidazole, fluorene, spirobifluorene, phenanthrene, dihydrophenanthrene and their isomers and derivatives.
  • Another preferred material used for the first emitter layer includes, in addition to the emitter (s), a neutral polymer matrix, e.g. Polystyrene (PS), polymethyl methacrylate (PMMA), polyvinyl butyral (PVB) or polycarbonate (PC).
  • a neutral polymer matrix e.g. Polystyrene (PS), polymethyl methacrylate (PMMA), polyvinyl butyral (PVB) or polycarbonate (PC).
  • a preferred material used for the construction of the first emitter layer contains, in addition to the emitter or emitters, a material with electron-transporting properties (ETM).
  • ETM can be contained either as a repeating unit in the polymer or as a separate compound in the first emitter layer.
  • ETM electron transport material
  • Triarylboranen and their isomers and derivatives are Suitable ETM materials are metal chelates of 8-hydroxyquinoline (for example, Liq, Alq 3, Gaq 3, MgQ 2, ZnQ 2, lnq 3, Zrq), Balq, 4-Azaphenanthren-5-ol / loading complexes (US 5,529,853 A; eg formula 7), butadiene derivatives (US 4356429), heterocyclic optical brighteners (US 4539507), benzazoles, such as
  • phenanthrolines e.g. BCP and Bphen
  • phenanthrolines bonded via biphenyl or other aromatic groups e.g. BCP and Bphen
  • phenanthrolines bonded to anthracene e.g. BCP and Bphen
  • 1, 3,4-oxadiazoles eg.
  • Formula 11 triazoles, e.g. Formula 12, triarylboranes, benzimidazole derivatives and other N-heterocyclic compounds (US 2007/0273272 A1), silacyclopentadiene derivatives, borane derivatives, Ga-oxinoid complexes.
  • a preferred ETM unit is selected from units having a
  • the ETM unit has the structure of the following formula (34):
  • ETM units fluorene, spirobifluorene or indenofluoro ketones which are selected from the following formulas (35) to (37):
  • R and R 1 "8 each independently represent a hydrogen atom, a substituted or unsubstituted aromatic cyclic hydrocarbon group having 6 to 50 carbon atoms in the nucleus, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nucleus atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms in the nucleus, a substituted or unsubstituted one Alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms in the nucleus, a substituted or unsubstituted aryloxy group having 5 to 50 carbon atoms in the nucleus, a substituted or unsubstituted arylthio group having 5 to 50 carbon atoms in the nucleus, a substituted or unsub
  • ETM repeating units are selected from the group consisting of imidazole derivatives or benzoimidazole derivatives, e.g. in US 2007 / 0104977A1.
  • R is a hydrogen atom, a C 6-60 aryl group which may have a substituent, a pyridyl group which may have a substituent, a quinolyl group which may have a substituent, a C 1-20 alkyl group which may have a substituent, or a C 1-6 alkyl group which may have a substituent C1-20 alkoxy group which may have a substituent;
  • m is an integer from 0 to 4;
  • R 1 is a C 6-60 aryl group which may have a substituent, a pyridyl group which may have a substituent, a quinolyl group which may have a substituent, a C 1-20 alkyl group which may have a substituent, or a C 1-6 alkyl group which may have a substituent C1-20 aikoxy group which may have a substituent;
  • R 2 is a hydrogen atom, a C 6-60 aryl group which may have a substituent, a pyridyl group which may have a substituent, a quinolyl group which may have a substituent, a C 1-20 alkyl group which may have a substituent, or a C 1-20 alkoxy group which may have a substituent;
  • l is a C 6-60 arylene group which may have a substituent, a pyridinylene group which may have a substituent, a quinoline group which may have a substituent, or a fluorenylene group which may have a substituent, and
  • Ar 1 represents a C 6-60 aryl group which may have a substituent, a pyridinyl group which may have a substituent, or a quinolinyl group which may have a substituent. Further preferred are 2,9,10-substituted anthracenes (with 1- or 2-naphthyl and 4- or 3-biphenyl) or molecules containing two anthracene units, as disclosed, for example, in US 2008/0193796 A1.
  • N-heteroaromatic ring systems of the following formulas (39) to (44).
  • anthracene benzimidazole derivatives of the following formulas (45) to (47), as described e.g. in US 6878469 B2, the
  • polymers containing an ETM repeating unit and their synthesis are disclosed, for example, in US 2003/0170490 A1 for triazine as ETM repeating unit.
  • Preferred as structural units with electron-transporting properties for the first emission layer are units which differ from
  • benzophenone triazine, imidazole, benzoimidazole and perylene units, which may be optionally substituted. Particular preference is given to benzophenone, aryltriazine, benzoimidazole and diarylperylene units.
  • ETM repeat units or ETM compounds which comprise structural units having electron-conducting properties which are selected from the structural units of the following formulas (48) to (51),
  • R 1 to R 4 can assume the same meaning as R in formula (36).
  • the proportion of structural units having electron-conducting properties in the polymer which is used in the first emitter layer is preferably between 0.01 and 30 mol%, particularly preferably between 1 and 20 mol%, and in particular between 10 and 20 mol%.
  • the first emitter layer is a polymeric matrix material that incorporates one or more different emitters incorporated in the polymer backbone, or mixtures of polymers
  • Matrix materials wherein the polymers incorporated in the polymer backbone contain one or more different emitters.
  • the emitters in the emitter layers are preferably selected so that the widest possible emission results.
  • triplet emitters are combined with the following emissions: green and red; blue and green; light blue and light red; blue, green and red.
  • triplet emitters with deep green and deep red emission are particularly preferably used. This can be adjusted especially yellow tones well. By varying the concentrations of the individual emitters, the hues can be generated and adjusted in the desired manner.
  • the term "visible spectrum” is understood to mean the wavelength range from 380 nm to 750 nm.
  • electroluminescent devices in which a first emitter has an emission maximum in the green spectral range and a second emitter has an emission maximum in the red spectral range.
  • emitters are those which have their emission maximum in the blue and green spectral range, in the light blue and bright red spectral range or in blue, green and red
  • electro-optical devices in which at least two triplet emitters are present, each one
  • the first triplet emitter is in the first emission layer and the second one
  • Triplet emitter arranged in the intermediate layer.
  • electro-optical devices in which the first triplet emitter has an emission maximum in the light blue spectral range and the second triplet emitter has an emission maximum in the yellow spectral range.
  • electro-optical devices in which at least one singlet emitter is present, which has an emission maximum in the green, red or blue spectral range.
  • the emitters are present in the emitter layers in a dopant-matrix system.
  • the concentration of the emitter (s) is preferably in the range from 0.01% to 30 mol%, particularly preferably in the range from 1 to 25 mol%, and in particular in the range from 2 to 20 mol%.
  • the first emitter layer contains electron-transporting substances.
  • the electro-optical device according to the invention in the first emitter layer and / or in the second emitter layer contains substances which promote the transfer of excitation energy into the triplet state. These are, for example, carbazoles, ketones, phosphine oxides, silanes, sulfoxides,
  • the organic semiconductor in the first emitter layer is a semiconducting polymer, preferably a semiconductive copolymer.
  • the organic semiconducting polymer preferably has
  • Copolymers have further repeating units derived from triarylamines, preferably those having repeating units of the following formulas (52) to (54).
  • R which may be the same or different at each occurrence, from H, substituted or unsubstituted aromatic or heteroaromatic group, alkyl group, cycloalkyl group, alkoxy group, aralkyl group, aryloxy group, arylthio group, alkoxycarbonyl group, silyl group, carboxy group, halogen atom, cyano group, nitro group or
  • r 0, 1, 2, 3 or 4 and
  • s 0, 1, 2, 3, 4 or 5.
  • the eiektrooptica devices according to the invention particularly preferably have the simplest possible structure.
  • this may be a device which, in addition to a cathode and anode layer, has only two or more interposed therebetween
  • ektroktroptica device comprises at least one additional
  • Electron injection layer which is disposed directly between the first emission layer and the cathode.
  • the electro-optical device according to the invention is preferably applied to a substrate, preferably to a transparent substrate,
  • an electrode of transparent or semi-transparent material is preferably applied.
  • ITO indium tin oxide
  • the electro-optical device according to the invention has a third emission layer.
  • This third emission layer preferably contains at least one
  • low molecular weight emitter which can be selected from the groups of emitters described above, and at least one
  • the first and second emission layers are processed from solution, and the third emission layer is evaporated in vacuo.
  • the first, second and third emission layers emit red, green and blue light, the light intensity of the individual layers being adjusted such that a total of white emission results.
  • the electro-optical device according to the invention consists only of anode, buffer layer, e.g. containing PANI or PEDOT, hole injection layer, two emitter layers, hole blocking layer, electron transport layer and cathode, optionally built on a transparent substrate.
  • the electro-optic device further comprises a hole injection layer disposed between the anode and intermediate layer of hole-conducting polymer, preferably a layer of poly (ethylenedioxothiophene) (PEDOT).
  • PEDOT poly (ethylenedioxothiophene)
  • the electro-optical devices according to the invention have
  • thicknesses of the separated individual layers in the range from 1 to 150 nm, particularly preferably in the range from 3 to 100 nm, and in particular in the range from 5 to 80 nm.
  • Preferred electro-optical devices according to the invention contain polymeric materials having glass transition temperatures T g greater than 90 ° C, more preferably greater than 100 ° C, and most preferably greater than 120 ° C.
  • cathode materials materials known per se can be used in the electro-optical devices according to the invention. Especially for OLEDs, materials with a low work function are used. Examples are metals, metal combinations or
  • Low work function metal alloys such as e.g. Ca, Sr, Ba, Cs, Mg, Al, In and Mg / Ag.
  • the structure of the devices according to the invention can be with
  • Printing processes within the meaning of the present application also include those which emanate from the solid, such as thermal transfer or LITI.
  • solvents which dissolve the substances used.
  • the nature of the substance is not relevant to the present invention.
  • the preparation of the electro-optical device according to the invention can thus be carried out according to known methods, wherein at least the two emitter layers are applied from solution, preferably by printing method, particularly preferably by ink jet printing.
  • the electro-optical device is an organic light-emitting device (OLED).
  • OLED organic light-emitting device
  • the OLEC has two electrodes, at least one emission layer and an intermediate layer between the emission layer and an electrode as described above, wherein the emission layer has at least one ionic compound.
  • the principle of OLEC is described in Qibing Pei et al., Science, 1995, 269, 1086-1088.
  • the inventive electro-optical device can be in
  • electro-optical devices according to the invention are particularly preferred in displays, as
  • Another preferred field of application of the electro-optical devices according to the invention relates to use in the cosmetic and therapeutic field, as disclosed, for example, in EP 1444008 and GB 2408092. These uses are also the subject of the present application.
  • the following examples illustrate the invention without limiting it.
  • interlayers As interlayers according to the invention, it is possible to use all hole-dominated polymers which additionally contain an emitter whose LUMO lies below the lowest LUMO of the other interlayer building blocks and of the preceding layer.
  • the use of interlayers in organic light emitting diodes is described e.g. disclosed in WO 2004/084260.
  • Typical interlayer polymers are disclosed in WO 2004/041901, but virtually all used in PLEDs,
  • conjugated or partially conjugated polymers by the incorporation of large amounts of hole-conducting units (typically triarylamines) in
  • Interlayer polymers are transferred.
  • Each of these interlayers can be converted into an interlayer according to the invention by the incorporation of emitters which can be polymerized or doped.
  • PLED polymeric organic light-emitting diodes
  • ITO structure indium-tin-oxide, a transparent, conductive anode
  • Sodalimeglas that result in the vapor-deposited at the end of the manufacturing process cathode 4 pixels x 2 x 2 mm.
  • PEDOT is a polythiophene derivative (C! Evios P 4083 AI) of HC Starck, Goslar, which is supplied as an aqueous dispersion) applied by spin coating.
  • the required spin rate depends on
  • the substrates are baked for 10 minutes at 180 ° C on a hot plate. Thereafter, under an inert gas atmosphere (nitrogen or argon), 20 nm of an interlayer are spun first.
  • these are the polymers P1 to P 0, which are processed at a concentration of 5 g / l of toluene. All interlayers of these device examples are baked under inert gas for 1 hour at 180 ° C. Subsequently, 65 nm of the polymer layers are applied from toluene solutions (typical concentrations 8 to 12 g / l). Similarly, soluble small molecules can be used, but then because of the low viscosity of the solutions in higher
  • Concentration must be set. Typical are 20 to 28 mg / ml. It has also proven advantageous to use a layer thickness of 80 nm here.
  • this second solubilized layer the main emission layer (“EML”), is also spin-coated and then baked under inert gas for 10 minutes at 180 ° C. Thereafter, the Ba / Al cathode is deposited in the
  • vapor-deposited by means of a vapor deposition mask high-purity metals from Aldrich, especially barium 99.99% (Order No. 474711);
  • Vaporiser systems from Lesker oa, typical vacuum level 5 x 10 ⁇ 6 mbar).
  • the device is finally encapsulated.
  • the encapsulation of the device takes place by gluing a commercially available coverslip over the pixelized surface. Subsequently, the device is characterized. For this, the devices are made specifically for the substrate size
  • a photodiode with eyelet filter can be placed directly on the measuring holder to exclude the influence of extraneous light.
  • the voltages are from 0 to max. 20 V in 0.2 V increments and lowered again. For each measurement point, the current through the device and the photocurrent obtained by the photodiode is measured. In this way you get the IVL data of the
  • Test Devices Important parameters are the measured maximum efficiency ("Max. Eff.” In cd / A) and the voltage required for 100 cd / m 2 .
  • the voltage required for 100 cd / m 2 is again applied after the first measurement and the photodiode is replaced by a spectrum measuring head. This is connected by an optical fiber with a spectrometer (Ocean Optics).
  • the color coordinates from the measured spectrum (CIE: Commission International de l'eclairage, standard observer from 1931) can be derived.
  • the life of the devices is measured in one of the initial evaluation very similar measurement setup so that an initial luminance is set (for example, 1000 cd / m 2).
  • the current required for this luminance is kept constant, while typically the voltage increases and the luminance decreases.
  • the lifetime is reached when the initial luminance has dropped to 50% of the initial value, which is why this value is also called LT 50 (from English "lifetime")
  • Example 11 If one has determined an extrapolation factor, the lifetimes can also be measured accelerated by setting a higher initial luminance. In this case, the measuring apparatus keeps the current constant so that it shows the electrical degradation of the components in a voltage increase.
  • Example 11 If one has determined an extrapolation factor, the lifetimes can also be measured accelerated by setting a higher initial luminance. In this case, the measuring apparatus keeps the current constant so that it shows the electrical degradation of the components in a voltage increase.
  • a first, unoptimized two-color white with cool white color coordinates is created by combining the interlayer P2 with the blue one
  • FIG. 3 shows the spectrum of the pure triplet green on HIL-012 and the
  • White components for lighting applications can also be improved with the help of the self-luminous interlayer.
  • a color tuning towards increasingly red white light is possible, for example, cultural
  • Examples 15 to 18 show the results for solubilized OLEDs in the structure of Figure 1, using as EML a white polymer which is synthesized without a red emitter (SPW-110 from Merck;
  • FIG. 4 again shows the EL spectrum of the device with HIL-012 from Merck and the spectra with the interlayer polymers P1 to P4 according to the invention.
  • OLEDs according to the invention are produced here,
  • the green interlayer has the additional advantage of also strengthening the red component in the spectrum, because without built - in green
  • Examples 24 to 26 therefore show the results of OLEDs with the white Merck polymer SPW-106, which is processed for comparison on the colorless interlayer HIL-012, as well as on the interlayers P9 and P10.
  • FIGS. 7 and 8 show the EL spectra. It is good to see, especially in the magnification, that the light blue emitter of the interlayer is responsible for the blue emission. Thus blue emission can also be obtained from the interlayer.
  • luminescent interlayer polymers in devices intended to emit white light.
  • the interlayer P2 is coated as usual, above that a blue EML polymer (SPB-036 as in Example 11) is processed and a green triplet EML is evaporated (TEG-001 in TMM-038).
  • SPB-036 blue EML polymer
  • TMG-001 in TMM-0308 green triplet EML is evaporated
  • the device structure is shown in FIG.
  • the white EL spectrum containing all the color components is shown in FIG.
  • the quantum efficiency of the device is 10% EQE, though largely

Abstract

Die vorliegende Erfindung betrifft eine elektrooptische Vorrichtung enthaltend a) eine Anode, b) eine Kathode und c) mindestens eine erste Emitterschicht, die zwischen Anode und Kathode angeordnet ist, enthaltend mindestens ein halbleitendes, organisches Material, die dadurch gekennzeichnet ist, dass zwischen der ersten Emitterschicht und der Anode mindestens eine zweite Emitterschicht angeordnet ist, die mindestens ein Polymer mit lochleitenden Eigenschaften und mindestens einen Emitter aufweist, sowie deren Verwendung. Der Einsatz von zwei Emitterschichten gestattet eine einfache Herstellung aus Lösung sowie die Herstellung breitbandig emittierender Elektrolumineszenzvorrichtungen.

Description

Elektrooptische Vorrichtung und deren Verwendung
Die vorliegende Erfindung betrifft ein neuartiges Designprinzip für organische, elektrooptische Vorrichtungen, insbesondere für Elektrolumines- zenzelemente und deren Verwendung in darauf basierenden Displays und Beleuchtungsmitteln.
In einer Reihe von verschiedenartigen Anwendungen, die im weitesten Sinne der Elektronikindustrie zugerechnet werden können, ist der Einsatz organischer Halbleiter als Funktionsmaterialien seit geraumer Zeit Realität bzw. wird in naher Zukunft erwartet.
So finden schon seit etlichen Jahren lichtsensitive organische Materialien (z.B. Phthalocyanine) sowie organische Ladungstransportmaterialien (z.B. Lochtransportmaterialien auf Triarylaminbasis) Verwendung in Kopiergeräten.
Spezielle halbleitende, organische Verbindungen, die zum Teil auch zur Emission von Licht im sichtbaren Spektralbereich befähigt sind, werden z.T. bereits heute in kommerziell erhältlichen Vorrichtungen eingesetzt, zum Beispiel in organischen Elektrolumineszenzvorrichtungen.
Deren Einzelbauteile, Organische-Lichtemittierende-Dioden (OLED), besitzen ein sehr breites Anwendungsspektrum. OLED finden bereits Verwendung, z.B. als:
weiße oder farbige Hinterleuchtungen für monochrome oder
mehrfarbige Anzeigeelemente (wie z.B. in Taschenrechnern,
Mobiltelefonen und anderen tragbaren Anwendungen),
großflächige Anzeigen (wie z.B. als Verkehrsschilder oder Plakate), - Beleuchtungselemente in verschiedensten Farben und Formen,
monochrome oder vollfarbige Passiv-Matrix-Displays für tragbare Anwendungen (wie z.B. für Mobiltelefone, PDA und Camcorder), vollfarbige großflächige und hochauflösende Aktiv-Matrix-Displays für verschiedenste Anwendungen (wie z.B. für Mobiltelefone, PDA, Laptop und Fernseher). Bei diesen Anwendungen ist die Entwicklung teilweise bereits sehr weit fortgeschritten. Dennoch besteht immer noch ein großer Bedarf an technischen Verbesserungen.
Konjugierte Polymere werden zur Zeit intensiv als vielversprechende Materialien für polymere OLED, sogenannte PLED, untersucht. Ihre einfache Verarbeitung im Gegensatz zu aufgedampften Anordnungen aus kleinen Molekülen, sogenannten small molecule devices („SMOLED"), verspricht eine kostengünstigere Herstellung organischer Leuchtdioden. Durch die Verwendung von Zwischenschichten, sog. Interlayer, in einem Schichtaufbau, wie beispielsweise in der WO 04/084260 A beschrieben, konnte die Lebensdauer und Effizienz von PLED deutlich gesteigert werden. Diese Zwischenschichten werden zwischen Anode und der Schicht aus lichtemittierenden Polymeren aufgebracht. Ihre Funktion ist es, die Injektion und den Transport von Löchern, also von positiv geladenen Ladungsträgern, in das lichtemittierende Polymer zu erleichtern bzw.
überhaupt erst zu ermöglichen und Elektronen an der Grenzfläche zwischen Zwischenschicht und Schicht aus lichtemittierendem Polymer zu blockieren. Diese Zwischenschichten bestehen aus Polymeren mit einem hohem Anteil an lochtransportierenden Einheiten, die über ein konjugiertes Rückgrad verknüpft sind. Diese Polymere blockieren darüber hinaus gleichzeitig den Transport von Elektronen.
Der Aufbau von mehrschichtigen PLED durch Auftragen von Schichten aus Lösung unterliegt dem generellen Problem, dass beim Auftragen die darunter liegenden Schichten wieder an- oder sogar aufgelöst werden. Üblicherweise muß man daher zusätzliche Maßnahmen treffen, um ein Wiederanlösen der Schichten zu verhindern. Eine weit verbreitete Maßnahme ist das Vernetzen des Polymeren in der aufgetragenen Schicht. Dieses ist aufwendig und erfordert zusätzliche Arbeitsschritte. Man hat daher bereits nach Wegen gesucht, um das Vernetzen der aufgebrachten Polymerschichten zu vermeiden. Eine bereits praktizierte Maßnahme ist das Aufbringen von Zwischenschichten. Dieses Verfahren funktioniert besonders in Kombination mit blaues Licht emittierenden PLED. Die
Zwischenschicht wird dabei durch Tintenstrahldruck oder durch Spincoating aufgetragen. Dabei wird die Dicke dieser Schicht so eingestellt, dass die Schicht im nachfolgenden Arbeitsschritt sich nicht vollständig wieder auflöst.
In bekannten PLED mit Zwischenschichten stammt die emittierte Strahlung ausschließlich aus der Emitterschicht. Die Möglichkeit des Aufbringens von zwei Polymerschichten ohne das Durchführen einer Vernetzungsreaktion wurde bislang noch nicht dazu genutzt, um mehrere Emitter in das PLED einzubauen.
Überraschenderweise wurde nun festgestellt, dass elektrooptische
Vorrichtungen mit mehreren Emittern auf einfache Weise und ohne
Durchführung eines Vernetzungsschrittes hergestellt werden können, wenn zusätzlich zur Emitterschicht auch in der Zwischenschicht Emitter eingesetzt werden. Dies erlaubt die einfache Erzeugung von mehrfarbigen OLED, in denen mindestens zwei unterschiedliche Emitterschichten aus Lösung prozessiert werden können.
Ausgehend von diesem Stand der Technik lag der vorliegenden Erfindung die Aufgabe zugrunde, eine elektrooptische Vorrichtung bereitzustellen, die mit einfachen Auftragsmethoden aus Lösung herstellbar ist, die mehrere Emitter aufweist und die im Vergleich zu bekannten Vorrichtungen eine höhere Lebensdauer aufweist. Gegenstand der vorliegenden Erfindung ist somit eine elektrooptische Vorrichtung enthaltend
a) eine Anode,
b) eine Kathode, und
c) mindestens eine erste Emitterschicht, die zwischen Anode und Kathode angeordnet ist, enthaltend mindestens ein halbleitendes, organisches Material,
dadurch gekennzeichnet, dass zwischen der ersten Emitterschicht und der Anode mindestens eine zweite Emitterschicht angeordnet ist, die
mindestens ein Polymer mit lochleitenden Eigenschaften und mindestens einen Emitter aufweist.
Die erfindungsgemäßen Vorrichtungen sind durch die Verwendung von ausgewählten polymeren Materialien in der zweiten Emitterschicht (= Zwischenschicht) gekennzeichnet, die darüber einen oder mehrere Emitter enthält.
In einer bevorzugten Ausführungsform werden die Emitter der zweiten Emitterschicht bzw. der Zwischenschicht so ausgewählt, dass sie ein „lowest unoccupied molecular orbital ("LUMO") aufweisen, das höher liegt als das LUMO des halbleitenden, organischen Materials der ersten
Emitterschicht. Das LUMO des Emitters der Zwischenschicht liegt dabei vorzugsweise 0,1 eV, und besonders bevorzugt 0,2 eV, höher als das LUMO der ersten Emitterschicht.
Von den verschiedenen Energieniveaus, die chemische Verbindungen aufweisen, spielen insbesondere das HOMO („Highest Occupied Molecular Orbital") sowie das LUMO („Lowest Unoccupied Molecular Orbital") eine besondere Rolle.
Diese Energieniveaus können durch Photoemission, z.B. XPS („X-ray Photoelectron Spectroscopy") und UPS (Ultraviolet Photoelectron Spectroscopy"), oder durch Cyclovoltammetrie („CV") für die Oxidation und Reduktion bestimmt werden.
Seit geraumer Zeit lassen sich die Energieniveaus der Molekülorbitale, insbesondere die besetzten Molekülorbitale, auch über quantenchemische Berechnungsverfahren bestimmen, z.B. durch die„Density Function
Theory" („DFT"). Eine ausführliche Beschreibung solcher quantenchemischen Berechnungen findet sich in der WO 2012/171609. Im Prinzip kann jeder dem Fachmann bekannte Emitter als Emitter in der Emitterschicht der erfindungsgemäßen Vorrichtung eingesetzt werden.
In einer bevorzugten Ausführungsform ist der Emitter als Wiederholungseinheit in ein Polymer integriert.
In einer weiteren bevorzugten Ausführungsform wird der Emitter in ein Matrixmaterial eingemischt, bei dem es sich um ein kleines Molekül, ein Polymer, ein Oligomer, ein Dendrimer oder eine Mischung hiervon handeln kann.
Bevorzugt ist eine Emitterschicht, die mindestens einen Emitter enthält, der aus fluoreszierenden Verbindungen, phosphoreszierenden Verbindungen und emittierenden, metallorganischen Komplexen ausgewählt ist. Der Ausdruck Emittereinheit oder Emitter bezieht sich in der vorliegenden Anmeldung auf eine Einheit oder Verbindung, bei der bei Empfang eines Excitons oder Bildung eines Excitons Strahlungszerfall mit Lichtemission auftritt. Es gibt zwei Emitterklassen, fluoreszierende und phosphoreszierende
Emitter. Der Ausdruck fluoreszierender Emitter bezieht sich auf Materialien oder Verbindungen, die einen Strahlungsübergang von einem angeregten Singulett-Zustand zu seinem Grundzustand erfahren. Der Ausdruck phosphoreszierender Emitter, wie er in der vorliegenden Anmeldung verwendet wird, bezieht sich auf Lumineszenzmaterialien oder -Verbindungen, die Übergangsmetalle enthalten. Hierzu gehören typischerweise Materialien, bei denen die Lichtemission durch Spin-verbotene/n Übergang/Übergänge verursacht wird, z.B. Übergänge von angeregten Triplett- und/oder
Quintuplett-Zuständen.
Nach der Quantenmechanik ist der Übergang von angeregten Zuständen mit hoher Spin-Multiplizität, z.B. von angeregten Triplett-Zuständen, zum Grundzustand verboten. Die Anwesenheit eines schweren Atoms, beispielsweise Iridium, Osmium, Platin und Europium, sorgt jedoch für eine starke Spin-Bahn-Kopplung, d.h. das angeregte Singulett und Triplett werden gemischt, so dass das Triplett einen gewissen Singulettcharakter er- hält, und wenn die Singulett-Triplett-Mischung zu einer Strahlungszerfallsgeschwindigkeit führt, die schneller ist als das nicht strahlende Ereignis, kann die Leuchtdichte effizient sein. Diese Art der Emission lässt sich mit Metallkomplexen erzielen, wie Baldo et al. in Nature 395, 151-154 (1998) berichten.
Besonders bevorzugt ist ein Emitter, der aus der Gruppe der fluoreszierenden Emitter ausgewählt ist.
Viele Beispiele von fluoreszierenden Emittern wurden bereits offenbart, wie z.B. Styrylaminderivate in der JP 2913116 B und der WO 2001/021729 A1 , sowie Indenofluorenderivate in der WO 2008/006449 und der
WO 2007/140847.
Bei den fluoreszierenden Emittern handelt es sich vorzugsweise um poly- aromatische Verbindungen, wie z.B. 9,10-Di(2-naphthylanthracen) und andere Anthracenderivate, Derivate von Tetracen, Xanthen, Perylen, wie z.B. 2,5,8,11-Tetra-t-butylperylen, Phenylen, z.B. 4,4'-(Bis(9-ethyl-3-carb- azovinylen)-1,r-biphenyl, Fluoren, Arylpyrene (US 2006/0222886), Arylen- vinylene (US 5121029, US 5130603), Derivate von Rubren, Cumarin, Rho- damin, Chinacridon, wie z.B. Ν,Ν'-Dimethylchinacridon (DMQA), Dicyano- methylenpyran, wie z.B. 4-(Dicyanoethylen)-6-(4-dimethylaminostyryl-2- methyl)-4H-pyran (DCM), Thiopyrane, Polymethin, Pyrylium- und Thia- pyryliumsalze, Periflanthen, Indenoperylen, Bis(azinyl)imin-boron-Verbin- dungen (US 2007/0092753 A1), Bis(azinyl)methen-Verbindungen und Carbostyrylverbindungen. Weitere bevorzugte fluoreszierende Emitter sind in C.H. Chen et al.:
„Recent developments in organic electroluminescent materials" Macromol. Symp. 25, (1997), 1-48 und„Recent progress of molecular organic electroluminescent materials and devices" Mat. Sei. and Eng. R, 39 (2002), 143-222 beschrieben.
Weitere bevorzugte fluoreszierende Emitter sind aus der Klasse der Mono- styrylamine, der Distyrylamine, der Tristyrylamine, der Tetrastyrylamine, der Styrylphosphine, der Styrylether und der Arylamine ausgewählt. Unter einem Monostyrylamin ist eine Verbindung zu verstehen, die eine substituierte oder unsubstituierte Styrylgruppe und mindestens ein, vorzugsweise aromatisches, Amin enthält. Unter einem Distyrylamin ist eine Verbindung zu verstehen, die zwei substituierte oder unsubstituierte
Styrylgruppen und mindestens ein, vorzugsweise aromatisches, Amin enthält. Unter einem Tristyrylamin ist eine Verbindung zu verstehen, die drei substituierte oder unsubstituierte Styrylgruppen und mindestens ein, vorzugsweise aromatisches, Amin enthält. Unter einem Tetrastyrylamin ist eine Verbindung zu verstehen, die vier substituierte oder unsubstituierte Styrylgruppen und mindestens ein, vorzugsweise aromatisches, Amin enthält. Bei den Styrylgruppen handelt es sich besonders bevorzugt um Stilbene, die auch weiter substituiert sein können. Die entsprechenden Phosphine und Ether sind analog zu den Aminen definiert. Für die Zwecke der vorliegenden Anmeldung ist unter einem Arylamin oder einem
aromatischen Amin eine Verbindung zu verstehen, die drei substituierte oder unsubstituierte aromatische oder heteroaromatische Ringsysteme enthält, die direkt an den Stickstoff gebunden sind. Bei mindestens einem dieser aromatischen oder heteroaromatischen Ringsysteme handelt es sich vorzugsweise um ein kondensiertes Ringsystem, vorzugsweise mit mindestens 14 aromatischen Ringatomen. Bevorzugte Beispiele hierfür sind aromatische Anthracenamine, aromatische Anthracendiamine, aromatische Pyrenamine, aromatische Pyrendiamine, aromatische
Chrysenamine und aromatische Chrysendiamine. Unter einem
aromatischen Anthracenamin ist eine Verbindung zu verstehen, in der eine Diarylaminogruppe direkt an eine Anthracengruppe gebunden ist, vorzugsweise in 9-Position. Unter einem aromatischen Anthracendiamin ist eine Verbindung zu verstehen, in der zwei Diarylaminogruppen direkt an eine Anthracengruppe gebunden sind, vorzugsweise in 9,10-Position.
Aromatische Pyrenamine, Pyrendiamine, Chrysenamine und Chrysendiamine sind analog hierzu definiert, wobei die Diarylaminogruppen am Pyren vorzugsweise in 1 -Position oder in 1 ,6-Position gebunden sind. Weitere bevorzugte fluoreszierende Emitter sind aus Indenofluorenaminen und Indenofluorendiaminen, z.B. gemäß der WO 2006/122630, Benzo- indenofluorenaminen und Benzoindenofluorendiaminen, z.B. gemäß der WO 2008/006449, und Dibenzoindenofluorenaminen und Dibenzoindeno- fluorendiaminen, z.B. gemäß der WO 2007/140847, ausgewählt.
Beispiele für Emitter aus der Klasse der Styrylamine sind substituierte oder unsubstituierte Tristilbenamine oder die in der WO 2006/000388, der WO 2006/058737, der WO 2006/000389, der WO 2007/065549 und der WO 2007/115610 beschriebenen Dotanden. Distyrylbenzol- und Distyryl- biphenylderivate werden in der US 5121029 beschrieben. Weitere Styrylamine finden sich in der US 2007/0122656 A1. Besonders bevorzugte Styrylamin-Emitter und Triarylamin-Emitter sind die Verbindungen der Formeln (1) bis (6), wie in der US 7250532 B2, der DE 102005058557 A1 , der CN 1583691 A, der JP 08053397 A, der
US 6251531 B1 und der US 2006/210830 A offenbart.
Weitere bevorzugte fluoreszierende Emitter sind aus der Gruppe der Tri- arylamine ausgewählt, wie z.B. in der EP 1957606 A1 und der
US 2008/0113101 A1 offenbart. Weitere bevorzugte fluoreszierende Emitter sind aus den Derivaten von Naphthalin, Anthracen, Tetracen, Fluoren, Periflanthen, Indenoperylen, Phenanthren, Perylen (US 2007/0252517 A1 ), Pyren, Chrysen, Deca- cyclen, Coronen, Tetraphenylcyclopentadien, Pentaphenylcyclopentadien, Fluoren, Spirobifluoren, Rubren, Cumarin (US 4769292, US 6020078, US 2007/0252517 A1), Pyran, Oxazon, Benzoxazol, Benzothiazol, Benz- imidazol, Pyrazin, Zimtsäureestern, Diketopyrrolopyrrol, Acridon und Chinacridon (US 2007/0252517 A1) ausgewählt. Von den Anthracenverbindungen sind 9,10-substituierte Anthracene, wie z.B. 9,10-Diphenylanthracen und 9,10-Bis(phenylethinyl)anthracen, besonders bevorzugt. 1 ,4-Bis(9'-ethinylanthracenyl)benzol ist auch ein bevorzugter Dotand. Besonders bevorzugt ist ein Emitter in der Emitterschicht aus der Gruppe der blau fluoreszierenden Emitter ausgewählt.
Besonders bevorzugt ist ein Emitter in der Emitterschicht aus der Gruppe der grün fluoreszierenden Emitter ausgewählt.
Besonders bevorzugt ist ein Emitter in der Emitterschicht aus der Gruppe der gelb fluoreszierenden Emitter ausgewählt.
Besonders bevorzugt ist ein Emitter in der Emitterschicht aus der Gruppe der rot fluoreszierenden Emitter ausgewählt.
Ein rot fluoreszierender Emitter ist vorzugsweise aus der Gruppe der Perylenderivate ausgewählt, z.B. in der folgenden Struktur der Formel (7), wie z.B. in der US 2007/0104977 A1 offenbart.
Bevorzugte emittierende Wiederholungseinheiten sind solche, die aus folgenden Formeln ausgewählt werden:
Vinyltriarylamine der Formel (I), wie z.B. in der DE-A- 0 2005 060 473 offenbart:
worin
Ar1 unabhängig voneinander eine mono- oder polyzyklische Aryl- oder Heteroarylgruppe bedeutet, die gegebenenenfalls ein- oder mehrfach mit Resten R11 substituiert ist,
Ar12 unabhängig voneinander eine mono- oder polyzyklische Aryl- oder Heteroarylgruppe bedeutet, die gegebenenfalls ein- oder mehrfach mit Resten R12 substituiert ist,
Ar13 unabhängig voneinander eine mono- oder polyzyklische Aryl- oder Heteroarylgruppe bedeutet, die gegebenenfalls ein- oder mehrfach mit Resten R13 substituiert ist,
Ar14 unabhängig voneinander eine mono- oder polyzyklische Aryl- oder Heteroarylgruppe bedeutet, die gegebenenfalls ein- oder mehrfach mit Resten R14 substituiert ist,
Y11 unabhängig voneinander ausgewählt wird aus der Gruppe Wasserstoff, Fluor, Chlor, oder Carbyl oder Hydrocarbyl mit 1 bis 40-Atomen, die gegebenenfalls substituiert sind und die gegebenenfalls ein oder mehrere Heteroatome enthalten, und worin gegebenenfalls zwei Gruppen Y11 oder eine Gruppe Y 1 und eine benachbarte Gruppe R11, R14, Ar11 oder Ar14 zusammen ein aromatisches mono- oder polyzyklisches Ringsystem bilden, R bis R14 unabhängig voneinander Wasserstoff, Halogen, -CN, -NC, -NCO, -NCS, -OCN, -SCN, -C(=O)NR°R00, -C(=O)X°, -C(=0)R° -NH2, -NR°R00, -SH, -SR0, -SO3H, -SO2R0, -OH, -NO2l -CF3, -SF5,
gegebenenfalls substituiertes Silyl, oder Carbyl oder Hydrocarbyl mit 1 bis 40 C-Atomen bedeuten, die gegebenenfalls substituiert sind und die gegebenenfalls ein oder mehrere Heteroatome enthalten, und worin gegebenenfalls zwei oder mehrere der Reste R11 bis R14 zusammen ein aliphatishes oder aromatisches, mono- oder polyzyklisches Ringsystem ausbilden, und worin
R11, R12 und R13 außerdem eine kovalente Bindung in einem Polymer bedeuten können,
X°, R° und R00 eine der in Formel (I) definierten Bedeutungen besitzen, i unabhängig voneinander 1 , 2 oder 3 ist,
k unabhängig voneinander 1, 2 oder 3 ist,
o unabhängig voneinander 0 oder 1 ist.
Weitere bevorzugte emittierende Wiederholungseinheiten sind 1 ,4-Bis(2- thienylvinyl)-benzole der Formel (II), wie z.B. in der WO 2005/030827 A offenbart:
worin R1 und R2 die für Formel (I) definierte Bedeutung besitzen und Ar eine der für Ar11 in Formel (I) definierte Bedeutung besitzt.
Weitere bevorzugte emittierende Wiederholungseinheiten sind 1 ,4-Bis(2- arylenvinyl)-benzole der Formel (III), wie z.B. in der WO 00/46321 A offenbart: worin r und R die oben definierte Bedeutung besitzen und u 0 oder 1 ist.
Weitere bevorzugte emittierende Wiederholungseinheiten sind Reste der Formel (IV):
worin
X21 O, S, S02 C(RX)2 oder N-Rx ist, worin Rx Aryl oder substituiertes Aryl oder Aralkyl mit 6 bis 40 C-Atomen bedeutet, oder Alkyl mit 1 bis 24 C- Atomen, vorzugsweise Aryl mit 6 bis 24 C-Atomen, besonders bevorzugt alkyliertes Aryl mit 6 bis 24 C-Atomen,
Ar21 gegebenenfalls substituiertes Aryl oder Heteroaryl mit 6 bis 40, vorzugsweise 6 bis 24, besonders bevorzugt 6 bis 14 C-Atomen, ist.
Weitere bevorzugte emittierende Wiederholungseinheiten sind Reste der Formeln (V) und (VI):
worin
X22 R23C=CR23 oder S bedeutet, worin jedes R23 unabhängig voneinander ausgewählt wird aus der Gruppe Wasserstoff, Alkyl, Aryl, Perfluoroalkyl, Thioalkyl, Cyano, Alkoxy, Heteroaryl, Alkylaryl oder Arylalkyl,
R21 und R22 gleich oder unterschiedlich sind und jeweils eine
Substituentengruppe darstellen,
Ar22 und Ar23 unabhängig voneinander ein zweiwertiges aromatisches oder heteroaromatisches Ringsystem mit 2 bis 40 C-Atomen bedeuten, das gegebenenfalls mit einem oder mehreren Resten R21 substituiert ist, und a1 and b1 unabhängig voneinander 0 oder 1 sind.
Weitere bevorzugte emittierende Wiederholungseinheiten sind Reste der Formeln (VII) und (VIII): worin
X23 NH, O oder S ist.
Weitere bevorzugte emittierende Wiederholungseinheiten sind Reste der Formeln (IX) bis (XIX):
25
(XVIII)
30
worin
R und R' eine der oben definierten Bedeutungen besitzen und
vorzugsweise unabhängig voneinander Wasserstoff, Alkyl, Aryl,
Perfluoroalkyl, Thioalkyl, Cyano, Alkoxy, Heteroaryl, Aikylaryi oder Arylalkyl sind, R besonders bevorzugt Wasserstoff, Phenyl oder Alkyl mit 1 , 2, 3, 4, 5 oder 6 C-Atomen ist, und R' besonders bevorzugt n-Octyl oder n-Octyloxy bedeutet.
Weitere bevorzugte emittierende Wiederholungseinheiten sind Reste der Formeln (XX) bis (XXIX):
) (XXIII)
(XXVII)
30 (XVIII)
worin
Ph Phenyl bedeutet.
Ebenfalls besonders bevorzugt ist ein Emitter in der Emitterschicht der aus der Gruppe der phosphoreszierenden Emitter ausgewählt ist.
Beispiele phosphoreszierender Emitter werden in der WO 00/70655, der WO 01/41512, der WO 02/02714, der WO 02/15645, der EP 1191613, der EP 1191612, der EP 1191614 und der WO 2005/033244 offenbart.
Allgemein sind alle phosphoreszierenden Komplexe, wie sie dem Stand der Technik gemäß verwendet werden und wie sie dem Fachmann auf dem Gebiet der organischen Elektrolumineszenz bekannt sind, geeignet, und der Fachmann wird ohne erfinderische Tätigkeit in der Lage sein, weitere phosphoreszierende Komplexe einzusetzen. Bei dem phosphoreszierenden Emitter kann es sich um einen Metallkomplex handeln, vorzugsweise der Formel M(L)Z, in der M ein Metallatom bedeutet, L bei jedem Auftreten unabhängig voneinander einen organischen Liganden bedeutet, der an M über eine, zwei oder mehr Positionen gebunden oder damit koordiniert ist, und z steht für eine ganze Zahl > 1 , vorzugsweise 1 , 2, 3, 4, 5 oder 6, steht, und in der gegebenenfalls diese Gruppen mit einem Polymer über eine oder mehrere, vorzugsweise eine, zwei oder drei Positionen, vorzugsweise über die Liganden L, verknüpft sind.
Bei M handelt es sich insbesondere um ein Metallatom, das aus Übergangsmetallen, vorzugsweise aus Übergangsmetallen der VIII. Gruppe, der Lanthaniden oder der Actiniden, besonders bevorzugt aus Rh, Os, Ir, Pt, Pd, Au, Sm, Eu, Gd, Tb, Dy, Re, Cu, Zn, W, Mo, Pd, Ag oder Ru und insbesondere aus Os, Ir, Ru, Rh, Re, Pd oder Pt ausgewählt ist. M kann auch Zn bedeuten.
Bevorzugte Liganden sind 2-Phenylpyridin-Derivate, 7,8-Benzochinolin- Derivate, 2-(2-Thienyl)pyridin-Derivate, 2-(1-Naphthyl)pyridin-Derivate oder 2-Phenylchinolin-Derivate. Diese Verbindungen können jeweils substituiert sein, z.B. durch Fluor- oder Trifluormethylsubstituenten für blau. Neben- liganden sind vorzugsweise Acetylacetonat oder Pikrinsäure.
Insbesondere eignen sich Komplexe von Pt oder Pd mit vierzähnigen Li- ganden der Formel (8) wie z.B. in der US 2007/0087219 A1 offenbart, in der R1 bis R14 und Z1 bis Z5 wie in der Literaturstelle definiert sind, Pt- Porphyrin-Komplexe mit einem vergrößerten Ringsystem
(US 2009/0061681 A1) und Ir-Komplexe, z.B. 2,3,7, 8,12,13,17,18-Octa- ethyl-21 H,23H-porphyrin-Pt(ll), Tetraphenyl-Pt(ll)-tetrabenzoporphyrin (US 2009/0061681 A1), cis-Bis(2-phenylpyridinato-N,C2')Pt(ll), cis-Bis(2- (2'-thienyl)pyridinato-N,C3')Pt(ll), cis-Bis(2-(2'-thienyl)chinolinato- N,C5')Pt(II), (2-(4,6-Difluorphenyl)pyridinato-N,C2')Pt(ll)-acetylacetonat oder Tris(2-phenylpyridtnato-N,C2')lr(lll) (lr(ppy)3, grün), Bis(2-phenyl- pyridinato-N,C2)lr(lll)-acetylacetonat (lr(ppy)2-acetylacetonat, grün,
US 2001/0053462 A1 , Baldo, Thompson et al. Nature 403, (2000), 750- 753), Bis(1-phenylisochinolinato-N,C2')(2-phenylpyridinato- N,C2')iridium(lll), Bis(2-phenylpyridinato-N,C2')(1-phenylisochinolinato- N,C2')iridium(lll), Bis(2-(2,-benzothienyl)pyridinato-N,C3')iridium(lll)- acetylacetonat, Bis(2-(4',6'-difluorphenyl)pyridinato-N,C2')iridium(lll)- piccolinat (Firpic, blau), Bis(2-(4',6,-difluorphenyl)pyridinato-N,C2')lr(lll)- tetrakis(1-pyrazolyl)borat, Tris(2-(biphenyl-3-yl)-4-tert-butylpyridin)- iridium(lll), (ppz)2lr(5phdpym) (US 2009/0061681 A1), (45ooppz)2- lr(5phdpym) (US 2009/0061681 A1), Derivate von 2-Phenylpyridin-lr- Komplexen, wie z.B. lridium(lll)-bis(2-phenylchinolyl-N,C2')acetylacetonat (PQIr), Tris(2-phenylisochinolinato-N,C)lr(lll) (rot), Bis(2-(2'-benzo[4,5- a]thienyl)pyridinato-N,C3)lr-acetylacetonat ([Btp2lr(acac)], rot, Adachi et al. Appl. Phys. Lett. 78 (2001), 1622-1624).
Ebenfalls geeignet sind Komplexe von dreiwertigen Lanthaniden, wie z.B. Tb3+ und Eu3+ (J. Kido et al. Appl. Phys. Lett. 65 (1994), 2124, Kido et al. Chem. Lett. 657, 1990, US 2007/0252517 A1) oder phosphoreszierende Komplexe von Pt(ll), lr(l), Rh(l) mit Maleonitrildithiolat (Johnson et al., JACS 105, 1983, 1795), Re(l)-tricarbonyldiimin-Komplexe (u.a. Wrighton, JACS 96, 1974, 998), Os(ll)-Komplexe mit Cyanoliganden und Bipyridyl- oder Phenanthrolinliganden (Ma et al., Synth. Metals 94, 1998, 245) oder Alq3.
Weitere phosphoreszierende Emitter mit dreizähnigen Liganden werden in der US 6824895 und der US 7029766 offenbart. Rot emittierende
phosphoreszierende Komplexe werden in der US 6835469 und der
US 6830828 offenbart.
Besonders bevorzugte phosphoreszierende Emitter sind Verbindungen der folgenden Formeln (9) und (10) sowie weitere Verbindungen wie z.B. in der US 2001/0053462 A1 und der WO 2007/095118 A1 offenbart.
Besonders bevorzugt ist ein Emitter in der Emitterschicht, der aus der Gruppe der metallorganischen Komplexe ausgewählt ist.
Zusätzlich zu Metallkomplexen, die in dieser Schrift an anderer Stelle ge¬ nannt sind, ist ein geeigneter Metallkomplex gemäß der vorliegenden Erfindung, ausgewählt aus Übergangsmetallen, Seltenerdelementen, Lanthaniden und Actiniden. Vorzugsweise ist das Metall ausgewählt aus Ir, Ru, Os, Eu, Au, Pt, Cu, Zn, Mo, W, Rh, Pd und Ag. Der Anteil der Emitter-Struktureinheiten im lochleitenden Polymer, welches in der Zwischenschicht eingesetzt wird, liegt im allgemeinen zwischen 0,01 und 20 mol %, vorzugsweise zwischen 0,5 und 10 mol %, besonders bevorzugt zwischen 1 und 8 mol %, und insbesondere zwischen 1 und 5 mol %.
Die Copolymeren, welche die Zwischenschicht, d.h. die zweite
Emitterschicht bilden, müssen lochleitende Eigenschaften aufweisen.
Dieses Eigenschaftsprofil kann durch die Auswahl geeigneter
Wiederholungseinheiten, welche Lochtransport-Eigenschaften aufweisen, erzeugt werden. Vorzugsweise weist das Polymer der Zwischenschicht weitere Wiederholungseinheiten auf, die das Polymerrückgrat bilden.
Im Prinzip kann jedes dem Fachmann bekannte Lochtransportmaterial (Hole Transport Material, HTM) als Wiederholungseinheit im Polymeren gemäß der vorliegenden Erfindung eingesetzt werden. Ein derartiges HTM ist vorzugsweise ausgewählt aus Aminen, Triarylaminen, Thiophenen, Carbazolen, Phthalocyaninen, Porphyrinen und deren Isomeren und
Derivaten. Das HTM wird besonders bevorzugt ausgewählt aus Aminen, Triarylaminen, Thiophenen, Carbazolen, Phthalocyaninen und Porphyrinen.
Geeignete HTM-Einheiten sind Phenylendiaminderivate (US 3615404), Arylaminderivate (US 3567450), aminosubstituierte Chalconderivate (US 3526501), Styrylanthracenderivate (JP A 56-46234), polycyclische aroma- tische Verbindungen (EP 009041), Polyarylalkanderivate (US 3615402), Fluorenonderivate (JP A 54-110837), Hydrazonderivate (US 3717462), Stilbenderivate (JP A 61-2 0363), Silazanderivate (US 4950950), Poly- silane (JP A 2-204996), Anilincopolymere (JP A 2-282263), Thiophen- oligomere, Polythiophene, PVK, Polypyrrole, Polyaniline und weitere Copolymere, Porphyrinverbindungen (JP A 63-2956965), aromatische dimethylidenartige Verbindungen, Carbazolverbindungen, wie z.B. CDBP, CBP, mCP, aromatische tertiäre Amin- und Styrylaminverbindungen
(US 4127412) und monomere Triarylamine (US 3180730).
Bevorzugt sind aromatische tertiäre Amine, die mindestens zwei tertiäre Amineinheiten enthalten (US 4720432 und US 5061569), wie z.B. 4,4 -Bis- [N-(1-naphthyl)-N-phenylamino]biphenyl (NPD) (US 5061569) oder
MTDATA (JP A 4-308688), N,N,N',N'-Tetra(4-biphenyl)diaminobiphenylen (TBDB), 1 ,1-Bis(4-di-p-tolylaminophenyl)cyclohexan (TAPC), 1 ,1-Bis(4-di-p- tolylaminophenyl)-3-phenylpropan (TAPPP), 1 ,4-Bis[2-[4-[N,N-di(p-tolyl)- amino]phenyl]vinyl]benzol (BDTAPVB), N,N,N\N'-Tetra-p-tolyl-4,4'-di- aminobiphenyl (TTB), TPD, N,N,N',N'-Tetraphenyl-4,4"'-diamino- 1 ,1':4',1 ":4",r"-quaterphenyl, ebenso tertiäre Amine, die Carbazoleinheiten enthalten, wie z.B. 4-(9H-Carbazol-9-yl)-N,N-bis[4-(9H-carbazol-9-yl)- phenyl]benzolamin (TCTA). Ebenfalls bevorzugt sind Hexaazatriphenylen- Verbindungen gemäß der US 2007/0092755 A1.
Besonders bevorzugt sind die folgenden Triarylaminverbindungen der Formeln (11) bis (16), die auch substituiert sein können, wie z.B. in der EP 1162193 A1 , der EP 650955 A1 , in Synth. Metals 1997, 91 (1-3), 209, in der DE 19646119 A1 , der WO 2006/122630 A1 , der EP 1860097 A1 , der EP 1834945 A1 , der JP 08/053397 A, der US 6251531 B1 und der
WO 2009/041635 offenbart.
Weitere bevorzugte HTM-Einheiten sind beispielsweise Triarylamin-, Benzidin-, Tetraaryl-para-phenylendiamin-, Carbazol-, Azulen-, Thiophen-, Pyrrol- und Furanderivate sowie ferner O-, S- oder N-haltige Heterocyclen.
Besonders bevorzugt sind die HTM-Einheiten aus der folgenden
Wiederholungseinheit der Formel (17) ausgewählt,
wobei
Ar1, die gleich oder verschieden sein können, unabhängig, wenn in unterschiedlichen Wiederholungseinheiten, eine Einfachbindung oder eine gege benenfalls substituierte einkernige oder mehrkernige Arylgruppe bedeuten, Ar2, die gleich oder verschieden sein können, unabhängig, wenn in unterschiedlichen Wiederholungseinheiten, eine gegebenenfalls substituierte einkernige oder mehrkemige Arylgruppe bedeuten, Ar3, die gleich oder verschieden sein können, unabhängig, wenn in unterschiedlichen Wiederholungseinheiten, eine gegebenenfalls substituierte einkernige oder mehrkernige Arylgruppe bedeuten, und
m für 1 , 2 oder 3 steht.
Besonders bevorzugte Einheiten der Formel (17) sind aus der Gruppe der folgenden Formeln (18) bis (20) ausgewählt.
wobei
R, das bei jedem Auftreten gleich oder verschieden sein kann, aus H, sub¬ stituierter oder unsubstituierter, aromatischer oder heteroaromatischer Gruppe, Alkylgruppe, Cycloalkylgruppe, Alkoxygruppe, Aralkylgruppe, Aryloxygruppe, Arylthiogruppe, Alkoxycarbonylgruppe, Silylgruppe, Carboxygruppe, Halogenatom, Cyanogruppe, Nitrogruppe oder
Hydroxygruppe ausgewählt ist,
r für 0, 1 , 2, 3 oder 4 steht und
s für 0, 1, 2, 3, 4 oder 5 steht. Ein weiteres bevorzugtes Zwischenschichtpolymer enthält mindestens eine Wiederholungseinheit der folgenden Formel (21),
- (T' - fAr^ -rT^ - CAr5 ), wobei
T und T2 unabhängig voneinander aus Thiophen, Selenophen, Thieno- [2,3b]thiophen, Thieno[3,2b]thiophen, Dithienothiophen, Pyrrol, Anilin, die alle gegebenenfalls mit R5 substituiert sind, ausgewählt sind,
R5 bei jedem Auftreten unabhängig voneinander aus Halogen, -CN, -NC, -NCO, -NCS, -OCN, SCN, C(=O)NR0R00, -C(=O)X, -C(=0)R°, -NH2, -NR°R00, SH, SR0, -S03H, -S02R°, -OH, -N02, -CF3, -SF5, gegebenenfalls substituiertem Silyl, oder Carbyl oder Hydrocarbyl mit 1 bis 40 C-Atomen, das gegebenenfalls substituiert ist und gegebenenfalls ein oder mehrere Heteroatome enthält, ausgewählt ist,
R° und R00 unabhängig voneinander H oder eine gegebenenfalls substi¬ tuierte Carbyl- oder Hydrocarbylgruppe, die gegebenenfalls ein oder mehrere Heteroatome enthält, bedeuten,
Ar4 und Ar5 unabhängig voneinander einkerniges oder mehrkerniges Aryl oder Heteroaryl bedeuten, das gegebenenfalls substituiert ist und gegeben¬ enfalls an die 2,3-Positionen von einer oder beiden der benachbarten Thiophen- oder Selenophengruppen anelliert ist,
c und e unabhängig voneinander für 0, 1 , 2, 3 oder 4 stehen, wobei
1 < c + e < 6 ist, und
d und f unabhängig voneinander für 0, 1 , 2, 3 oder 4 stehen.
Die Gruppen T1 und T2 sind vorzugsweise ausgewählt aus Thiophen-2,5-diyl,
Thieno[3,2b]thiophen-2,5-diyl,
Thieno[2,3b]thiophen-2,5-diyl,
Dithienothiophen-2,6-diyl oder
Pyrrol-2,5-diyl,
in denen R° und R5 die gleichen Bedeutungen annehmen können, wie R° und R5 in Formel (21).
Bevorzugte Einheiten der Formel (21) sind aus der Gruppe der folgenden Formeln ausgewählt:
wobei R° die gleichen Bedeutungen annehmen kann, wie R5 in Formel (21).
Der Anteil der HTM-Wiederholungseinheiten im lochleitenden Polymer, welches in der Zwischenschicht eingesetzt wird, liegt vorzugsweise zwischen 0 und 99 mol %, besonders bevorzugt zwischen 20 und 80 mol %, und insbesondere zwischen 30 und 60 mol %.
Neben den Emitter-Wiederholungseinheiten und den lochleitenden
Wiederholungseinheiten weisen die in der Zwischenschicht eingesetzten Copolymere vorzugsweise noch weitere Struktureinheiten auf, welche das Rückgrat des Copolymeren bilden.
Bevorzugt als Wiederholungseinheiten, die das Polymerrückgrat bilden sind aromatische oder heteroaromatische Strukturen mit 6 bis 40 C-Atomen. Hierbei handelt es sich z.B. um 4,5-Dihydropyren-Derivate, 4,5,9,10- Tetrahydropyren-Derivate, Fiuorenderivate wie z.B. in der US 5962631 , der WO 2006/052457 A2 und der WO 2006/118345 A1 offenbart, 9,9'- Spirobifluoren-Derivate wie z.B. in der WO 2003/020790 A1 offenbart, 9,10- Phenanthren-Derivate wie z.B. in der WO 2005/104264 A1 offenbart, 9,10- Dihydrophenanthren-Derivate wie z.B. in der WO 2005/014689 A2 offenbart, 5,7-Dihydrodibenzooxepin-Derivate und eis- und trans- Indenofluoren-Derivate wie z.B. in der WO 2004/041901 A1 , und der WO 2004/113412 A2 offenbart und Binaphthylenderivate, wie z.B. in der WO 2006/063852 A1 offenbart, und ferner Einheiten wie z.B. Benzofluoren, Dibenzofluoren, Benzothiophen, Dibenzofluoren und deren Derivate, wie z.B. in der WO 2005/056633 A1 , der EP 1344788 A1 , der WO 2007/043495 A1 , der WO 2005/033174 A , der WO 2003/099901 A1 und der
DE 102006003710 offenbart.
Besonders bevorzugte Wiederholungseinheiten für das Polymerrückgrat sind Wiederholungseinheiten der folgenden Formel (22),
wobei
A, B und B' unabhängig voneinander und bei mehrfachem Auftreten unab- hängig voneinander eine zweiwertige Gruppe, vorzugsweise ausgewählt aus -CR R2-, -NR1-, -PR1-, -O-, -S-, -SO-, -SO2-, -CO-, -CS-, -CSe-, -P(=O)R1-, -P(=S)R1- und -SiR1R2- bedeuten,
R1 und R2 unabhängig voneinander gleiche oder verschiedene Gruppen bedeuten, die aus H, Halogen, -CN, -NC, -NCO, -NCS, -OCN, -SCN, -C(=O)NR°R00, -C(=O)X, -C(=O)R°, -NH2, -NR°R00, -SH, -SR0, -SO3H,
-SO2R°, -OH, -NO2, -CF3, -SF5, gegebenenfalls substituiertem Silyl, oder Carbyl oder Hydrocarbyl mit 1 bis 40 C-Atomen, das gegebenenfalls substituiert ist und gegebenenfalls ein oder mehrere Heteroatome enthält, ausgewählt sind, und die Gruppen R1 und R2 gegebenenfalls mit dem Fluorenteil, an den sie gebunden sind, eine Spirogruppe bilden,
X Halogen bedeutet, R° und R00 unabhängig voneinander H oder eine gegebenenfalls substituierte Carbyl- oder Hydrocarbylgruppe, die gegebenenfalls ein oder mehrere Heteroatome enthält, bedeuten,
g jeweils unabhängig für 0 oder 1 steht und das jeweils entsprechende h in der gleichen Untereinheit für das andere von 0 oder 1 steht,
m für eine ganze Zahl > 1 steht,
Ar1 und Ar2 unabhängig voneinander ein- oder mehrkerniges Aryl oder Heteroaryl bedeuten, das gegebenenfalls substituiert ist und gegebenenfalls an die 7,8-Positionen oder 8,9-Positionen der Indenofluorengruppe anelliert ist, und
a und b unabhängig voneinander für 0 oder 1 stehen.
Bilden die Gruppen R1 und R2 mit der Fluorengruppe, an die sie gebunden sind, eine Spirogruppe, so handelt es sich vorzugsweise um Spirobifluoren.
Die Gruppe der Formel (22) ist vorzugsweise aus den folgenden Formeln (23) bis (27) ausgewählt,
(24)
Vorzugsweise bedeutet R F, Cl, Br, I, -CN, -N02) -NCO, -NCS, -OCN, -SCN, -C(=O)NR0R00, -C(=O)X, -C(=O)R°, -NR°R00, gegebenenfalls substituiertes Silyl, Aryl oder Heteroaryl mit 4 bis 40, vorzugsweise 6 bis 20 C-Atomen, oder geradkettiges, verzweigtes oder cyclisches Alkyl, Aikoxy, Aikylcarbonyl, Alkoxycarbonyl, Alkylcarbonyloxy oder Alkoxycarbonyloxy mit 1 bis 20, vorzugsweise 1 bis 12 C-Atomen, in denen gegebenenfalls ein oder mehrere H-Atome durch F oder Cl ersetzt sind und in denen R°, R00 und X wie oben in Bezug auf Formel (22) definiert sind.
Die Gruppe der Formel (22) ist besonders bevorzugt aus den folgenden Formeln (28) bis (31) ausgewählt,
wobei
L H, Halogen oder gegebenenfalls fluoriertes, lineares oder verzweigtes Alkyl oder Alkoxy mit 1 bis 12 C-Atomen und vorzugsweise H, F, Methyl, i- Propyl, t-Butyl, n-Pentoxy oder Trifluormethyl bedeutet und
L' gegebenenfalls fluoriertes, lineares oder verzweigtes Alkyl oder Alkoxy mit 1 bis 12 C-Atomen und vorzugsweise n-Octyl oder n-Octyloxy bedeutet.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei dem Polymer der Zwischenschicht um ein nicht konjugiertes oder teilweise konjugiertes Polymer. Ein besonders bevorzugtes nicht konjugiertes oder teilweise konjugiertes Polymer der Zwischenschicht enthält eine nicht konjugierte Wiederholungseinheit für das Polymer-Rückgrat.
Die nicht konjugierte Wiederholungseinheit für das Polymer-Rückgrat- Einheit ist vorzugsweise eine Indenofluoreneinheit der folgenden Formeln (32) und (33), wie z.B. in der WO 2010/136110 offenbart.
wobei X und Y unabhängig voneinander aus der Gruppe ausgewählt sind, die aus H, F, einer einer C2-4o-Alkenylgruppe, einer C2-4o- Alkinylgruppe, einer optional substituierten C6-4o-Arylgruppe und einer optional substituierten 5- bis 25-gliedrigen Heteroarylgruppe besteht.
Weitere bevorzugte nicht konjugierte Wiederholungseinheiten für das Polymer-Rückgrat sind ausgewählt aus Fluoren-, Phenanthren-,
Dihydrophenanthren- und Indenofluorenderivaten der folgenden Formeln, wie z.B. in der WO 2010/136111 offenbart.
wobei R1-R4 die gleichen Bedeutungen wie X und Y in den Formeln (32) und (33) annehmen können.
Der Anteil der Wiederholungseinheiten die im lochleitenden Polymer, welches in der Zwischenschicht eingesetzt wird, das Polymerrückgrat bilden, liegt vorzugsweise zwischen 10 und 99 mol %, besonders bevorzugt zwischen 20 und 80 mol %, und insbesondere zwischen 30 und 60 mol %.
Bei dem halbleitenden, organischen Material für die erste Emitterschicht kann es sich um ein polymeres Matrixmaterial handeln, das im Polymer eingebaut ein oder mehrere unterschiedliche Emitter enthält, kann es sich um ein polymeres und nicht emittierendes Matrixmaterial handeln, in welches ein oder mehrere niedermolekulare Emitter eingemischt sind, kann es sich um Mischungen von unterschiedlichen Polymeren mit im
Polymergerüst eingebauten Emittern handeln, kann es sich um Mischungen von verschiedenen nicht emittierenden Matrixpolymeren mit verschiedenen niedermolekularen Emittern handeln, kann es sich um Mischungen mindestens eines niedermolekularen Matrixmaterials mit verschiedenen niedermolekularen Emittern handeln, oder es können beliebige
Kombinationen dieser Materialien verwendet werden.
In einer bevorzugten Ausführungsform enthält die Emitterschicht ein konjugiertes Polymer, das mindestens eine Wiederholungseinheit enthält, die eine Emittergruppe, wie oben beschrieben, enthält. Beispiele für Metallkom- plexe enthaltende konjugierte Polymere und ihre Synthese werden z.B. in der EP 1138746 B1 und der DE 102004032527 A1 offenbart. Beispiele für Singulett-Emitter enthaltende konjugierte Polymere und ihre Synthese werden z.B. in der DE 102005060473 A1 und der WO 2010/022847 offenbart. ·
In einer weiteren bevorzugten Ausführungsform enthält die Emitterschicht ein nicht konjugiertes Polymer, das mindestens eine Emittergruppe wie oben beschrieben und mindestens eine seitenständige Ladungstransportgruppe enthält. Beispiele für nicht konjugierte Polymere, die einen seitenständigen Metallkomplex enthalten und ihre Synthese werden z.B. in der US7250226 B2, der JP 2007/21 1243 A2, der JP 2007/197574 A2, der US 7250226 B2 und der JP 2007/059939 A offenbart. Beispiele für nicht konjugierte Polymere, die einen seitenständigen Singulett-Emitter enthalten und ihre Synthese werden z.B. in der JP 2005/108556, der JP 2005/285661 und der JP 2003/338375 offenbart. In einer weiteren bevorzugten Ausführungsform enthält die Emitterschicht ein nicht konjugiertes Polymer, das mindestens eine Emittergruppe wie oben beschrieben als Wiederholungseinheit und mindestens eine
Wiederholungseinheit die das Polymer-Rückgrat bildet in der Hauptkette enthält, wobei die Wiederholungseinheiten, die das Polymer-Rückgrat bilden, vorzugsweise aus den oben für das Zwischenschichtpolymer beschriebenen nicht konjugierten Wiederholungseinheiten für das Polymer- Rückgrat ausgewählt werden können. Beispiele für nicht konjugierte Polymere, die einen Metallkomplex in der Hauptkette enthalten und ihre Synthese werden z.B. in der WO 2010/149261 und der WO 2010/136110 offenbart.
In noch einer weiteren bevorzugten Ausführungsform enthält ein für die Emitterschicht eingesetztes Material neben dem oder den Emitter(n) eine ladungstransportierende Polymermatrix. Für fluoreszierende Emitter oder Singulett-Emitter kann diese Polymermatrix aus einem konjugierten Polymer ausgewählt werden, das vorzugsweise ein nicht konjugiertes Polymerrückgrat, wie oben für das Zwischenschichtpolymer beschrieben, und besonders bevorzugt ein konjugiertes Polymerrückgrat, wie oben für das Zwischenschichtpolymer beschrieben, enthält. Für phosphoreszierende Emitter oder Triplett-Emitter wird diese Polymermatrix vorzugsweise aus nicht konjugierten Polymeren ausgewählt, bei denen es sich um ein nicht konjugiertes Seitenkettenpolymer oder ein nicht konjugiertes Hauptkettenpolymer handelt, z.B. Polyvinylcarbazol („PVK"), Polysilan, Copolymere enthaltend Phosphinoxid-Einheiten oder die Matrixpolymere wie z.B. in der WO 2010/149261 und der WO 2010/1361 0 beschrieben. ln noch einer weiteren bevorzugten Ausführungsform enthält die Emitterschicht mindestens einen niedermolekularen Emitter, der eine
Emittergruppe, wie oben beschrieben, und mindestens ein
niedermolekulares Matrixmaterial enthält. Geeignete niedermolekulare Matrixmaterialien sind Materialien aus verschiedenen Stoffklassen.
Bevorzugte Matrixmaterialien für fluoreszierende oder Singulett-Emitter sind aus den Klassen der Oligoarylene (z.B. 2,2',7,7'-Tetraphenyl- spirobifluoren gemäß der EP 676461 oder Dinaphthylanthracen),
insbesondere der kondensierten, aromatische Gruppen enthaltenden
Oligoarylene, wie z.B. Phenanthren, Tetracen, Coronen, Chrysen, Fluoren, Spirobifluoren, Perylen, Phthaloperylen, Naphthaloperylen, Decacyclen, Rubren, der Oligoarylenvinylene (z.B. 4,4'-Bis(2,2-diphenylethenyl)-1 ,1 '- biphenyl (DPVBi) oder 4,4-Bis-2,2-diphenylvinyl-1 ,1-spirobiphenyl (spiro- DPVBi) gemäß der EP 676461), der polypodalen Metallomplexe (z.B.
gemäß der WO 04/081017), insbesondere Metallkomplexe von 8- Hydroxychinolin, z.B. Aluminium(lll)-tris(8-hydroxychinolin) (Aluminium- chinolat, Alq3) oder Bis(2-methyl-8-chinolinolato)-4-(phenylpheno- linolato)aluminium, auch mit Imidazolchelat- (US 2007/0092753 A1) und Chinolin-Metallkomplexen, Aminochinolin-Metallkomplexe, Benzochinolin- Metallkomplexe, der lochleitenden Verbindungen (z.B. gemäß der
WO 04/058911), der elektronenleitenden Verbindungen, insbesondere Ketone, Phosphinoxide, Sulfoxide usw. (z.B. gemäß der WO 05/084081 und der WO 05/084082), der Atropisomere (z.B. gemäß der
WO 06/048268), der Boronsäurederivate (z.B. gemäß der WO 06/117052) oder der Benzanthracene (z.B. gemäß der DE 102007024850) ausgewählt.
Besonders bevorzugte Host-Materialien sind aus den Klassen der
Oligoarylene, enthaltend Naphthalin, Anthracen, Benzanthracen und/oder Pyren, oder Atropisomere dieser Verbindungen, der Ketone, der Phosphin¬ oxide und der Sulfoxide ausgewählt. Ganz besonders bevorzugte Host- Materialien sind aus den Klassen der Oligoarylene, enthaltend Anthracen, Benzanthracen und/oder Pyren, oder Atropisomere dieser Verbindungen ausgewählt. Für die Zwecke der vorliegenden Anmeldung ist unter einem Oligoarylen eine Verbindung zu verstehen, in der mindestens drei Aryl- oder Arylengruppen aneinander gebunden sind.
Besonders bevorzugte niedermolekulare Matrixmaterialien für Singulett- Emitter sind ausgewählt aus Benzanthracen, Anthracen, Triarylamin, Indenofluoren, Fluoren, Spirobifluoren, Phenanthren, Dihydrophenanthren sowie deren Isomeren und Derivaten.
Bevorzugte niedermolekulare Matrixmaterialien für phosphoreszierende oder Triplett-Emitter sind Ν,Ν-Biscarbazolylbiphenyl (CBP),
Carbazolderivate (z.B. gemäß der WO 05/039246, der US 2005/0069729, der JP 2004/288381 , der EP 1205527 und der DE 102007002714),
Azacarbazole (z.B. gemäß der EP 1617710, der EP 1617711 , der
EP 1731584 und der JP 2005/347160), Ketone (z.B. gemäß der
WO 04/093207), Phosphinoxide, Sulfoxide und Sulfone (z.B. gemäß der WO 05/003253), Oligophenylene, aromatische Amine (z.B. gemäß der US 2005/0069729), bipolare Matrixmaterialien (z.B. gemäß der
WO 07/137725), 1 ,3,5-Triazinderivate (z.B. gemäß der US 6229012 B1 , der US 6225467 B1 , der DE 10312675 A1, der WO 9804007 A1 und der US 6352791 B1), Silane (z.B. gemäß der WO 05/111172), 9,9-Diarylfluoren- Derivate (z.B. gemäß der DE 102008017591), Azaborole oder
Boronsäureester (z.B. gemäß der WO 06/117052), Triazolderivate, Oxazole und Oxazolderivate, Imidazolderivate, Polyarylalkanderivate,
Pyrazolinderivate, Pyrazolonderivate, Distyrylpyrazinderivate, Thiopyran- dioxidderivate, Phenylendiaminderivate, tertiäre aromatische Amine, Styryl- amine, aminosubstituierte Chalconderivate, Indole, Styrylanthracendenvate, arylsubstituierte Anthracenderivate, wie z.B. 2,3,5,6-Tetramethylphenyl-1 ,4- (bisphthalimid) (TMPP, US 2007/0252517 A1), Anthrachinodimethan- derivate, Anthronderivate, Fluorenonderivate, Fluorenylidenmethanderivate, Hydrazonderivate, Stilbenderivate, Silazanderivate, aromatische Dimethyli- denverbindungen, Porphyrinverbindungen, Carbodiimidderivate, Diphenyl- chinonderivate, tetracarbocylische Verbindungen, wie z.B. Naphthaiin- perylen, Phthalocyaninderivate, Metallkomplexe der 8-Hydroxychinolin- Derivate wie z.B. Alq3, die 8-Hydroxychinolinkomplexe können auch Triaryl- aminophenol-Liganden (US 2007/0 34514 A1) enthalten, verschiedene Metallkomplex-Polysilan-Verbindungen mit Metallphthalocyanin, Benz- oxazol oder Benzothiazol als Ligand, elektronenleitende Polymere, wie z.B. Poly(N-vinylcarbazol) (PVK), Anilincopolymere, Thiophenoligomere, Poly- thiophene, Polythiophenderivate, Polyphenylenderivate, Polyphenylen- vinylenderivate und Polyfluorenderivate.
Besonders bevorzugte niedermolekulare Matrixmaterialien für Triplett- Emitter sind ausgewählt aus Carbazol, Keton, Triazin, Imidazol, Fluoren, Spirobifluoren, Phenanthren, Dihydrophenanthren sowie deren Isomeren und Derivaten.
Ein weiteres bevorzugtes, für die erste Emitterschicht eingesetztes Material enthält neben dem oder den Emittern eine neutrale Polymermatrix, z.B. Polystyrol (PS), Polymethylmethacrylat (PMMA), Polyvinylbutyral (PVB) oder Polycarbonat (PC).
Ein bevorzugtes für den Aufbau der ersten Emitterschicht eingesetztes Material enthält neben der oder den Emittern ein Material mit Elektronentransportierenden Eigenschaften (ETM). Das ETM kann dabei entweder als Wiederholungseinheit im Polymer oder als separate Verbindung in der ersten Emitterschicht enthalten sein.
Im Prinzip kann jedes dem Fachmann bekannte Elektronentransportmate- rial (ETM) als Wiederholungseinheit im Polymer oder als ETM-Material in der ersten Emitterschicht eingesetzt werden. Geeignete ETMs sind aus der Gruppe ausgewählt, die aus Imidazolen, Pyridinen, Pyrimidinen,
Pyridazinen, Pyrazinen, Oxadiazolen, Chinolinen, Chinoxalinen, Anthracenen, Benzanthracenen, Pyrenen, Perylenen, Benzimidazolen, Triazinen, Ketonen, Phosphinoxiden, Phenazinen, Phenanthrolinen,
Triarylboranen sowie deren Isomeren und Derivaten besteht. Geeignete ETM-Materialien sind Metallchelate von 8-Hydroxychinolin (z.B. Liq, Alq3, Gaq3, Mgq2, Znq2, lnq3, Zrq ), Balq, 4-Azaphenanthren-5-ol/Be- Komplexe (US 5529853 A; z.B. Formel 7), Butadienderivate (US 4356429), heterocyclische optische Aufheller (US 4539507), Benzazole, wie z.B.
1 ,3,5-Tris(2-N-phenylbenzimidazolyl)benzol (TPBI) (US 5766779, Formel 8), ,3,5-Triazin-Derivate (US 6229012B1 , US 6225467B1 , DE 10312675 A1 , WO 98/04007A1 und US 6352791 B1), Pyrene, Anthracene, Tetracene, Fluorene, Spirobifluorene, Dendrimere, Tetracene, z.B. Rubrenderivate, 1 ,10-Phenanthrolin-Derivate (JP 2003/115387, JP 2004/3 1 84,
JP 2001/267080, WO 2002/043449), Silacyl-cyclopentadien-Derivate (EP 1480280, EP 1478032, EP 1469533), Pyridinderivate (JP 2004/200162
Kodak), Phenanthroline, z.B. BCP und Bphen, sowie eine Anzahl von über Biphenyl oder andere aromatische Gruppen gebundenen Phenanthrolinen (US 2007/0252517 A1) oder an Anthracen gebundenen Phenanthrolinen (US 2007/0122656 A1 , z.B. Formeln 9 und 10), 1 ,3,4-Oxadiazole, z.B.
Formel 11 , Triazole, z.B. Formel 12, Triarylborane, Benzimidazolderivate und andere N-heterocyclische Verbindungen (US 2007/0273272 A1), Silacyclopentadienderivate, Boranderivate, Ga-oxinoid-Komplexe.
Eine bevorzugte ETM-Einheit ist ausgewählt aus Einheiten, die eine
Gruppe der Formel C=X aufweisen, in der X = O, S oder Se sein kann.
Vorzugsweise weist die ETM-Einheit die Struktur der folgenden Formel (34) auf:
Polymere mit solchen Struktureinheiten werden z.B. in de
2004/093207 A2 und der WO 2004/013080A1 offenbart. Besonders bevorzugt sind als ETM-Einheiten Fluoren-, Spirobifluoren- oder Indenofluorenketone, die ausgewählt sind aus den folgenden Formeln (35) bis (37):
wobei
R und R1"8 jeweils unabhängig ein Wasserstoffatom, eine substituierte oder unsubstituierte aromatische cyclische Kohlenwasserstoffgruppe mit 6 bis 50 Kohlenstoffatomen im Kern, eine substituierte oder unsubstituierte aromatische heterocyclische Gruppe mit 5 bis 50 Kernatomen, eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 50 Kohlenstoffatomen, eine substituierte oder unsubstituierte Cycloalkylgruppe mit 3 bis 50 Kohlenstoffatomen im Kern, eine substituierte oder unsubstituierte Alkoxygruppe mit 1 bis 50 Kohlenstoffatomen, eine substituierte oder unsubstituierte Aralkylgruppe mit 6 bis 50 Kohlenstoffatomen im Kern, eine substituierte oder unsubstituierte Aryloxygruppe mit 5 bis 50 Kohlenstoffatomen im Kern, eine substituierte oder unsubstituierte Arylthiogruppe mit 5 bis 50 Kohlenstoffatomen im Kern, eine substituierte oder unsubstituierte Alkoxycarbonylgruppe mit 1 bis 50 Kohlenstoffatomen, eine substituierte oder unsubstituierte Silylgruppe mit 1 bis 50 Kohlenstoffatomen, Carboxy- gruppe, ein Halogenatom, eine Cyanogruppe, Nitrogruppe oder Hydroxy- gruppe darstellen. Eines oder mehrere der Paare R1 und R2, R3 und R4, R5 und R6, R7 und R8 bilden gegebenenfalls ein Ringsystem, und r steht für 0, 1 , 2, 3 oder 4.
Weitere bevorzugte ETM-Wiederholungseinheiten sind aus der Gruppe ausgewählt, die aus Imidazolderivaten oder Benzoimidazolderivaten besteht, wie sie z.B. in der US 2007/0104977A1 offenbart besteht.
Besonders bevorzugt sind dabei Einheiten der folgenden Formel (38).
wobei
R ein Wasserstoffatom, eine C6-60-Arylgruppe, die einen Substituenten aufweisen kann, eine Pyridylgruppe, die einen Substituenten aufweisen kann, eine Chinolylgruppe, die einen Substituenten aufweisen kann, eine C1-20-Alkylgruppe, die einen Substituenten aufweisen kann, oder eine C1- 20-Alkoxygruppe, die einen Substituenten aufweisen kann, bedeutet; m für eine ganze Zahl von 0 bis 4 steht;
R1 eine C6-60-Arylgruppe, die einen Substituenten aufweisen kann, eine Pyridylgruppe, die einen Substituenten aufweisen kann, eine Chinolyl- gruppe, die einen Substituenten aufweisen kann, eine C1-20-Alkylgruppe, die einen Substituenten aufweisen kann, oder eine C1-20-Aikoxygruppe, die einen Substituenten aufweisen kann, bedeutet;
R2 ein Wasserstoffatom, eine C6-60-Arylgruppe, die einen Substituenten aufweisen kann, eine Pyridylgruppe, die einen Substituenten aufweisen kann, eine Chinolylgruppe, die einen Substituenten aufweisen kann, eine C1-20-Alkylgruppe, die einen Substituenten aufweisen kann, oder eine C1- 20-Alkoxygruppe, die einen Substituenten aufweisen kann, bedeutet;
l_ eine C6-60-Arylengruppe, die einen Substituenten aufweisen kann, eine Pyridinylengruppe, die einen Substituenten aufweisen kann, eine Chino- linylengruppe, die einen Substituenten aufweisen kann, oder eine Fluoren- ylengruppe, die einen Substituenten aufweisen kann, bedeutet und
Ar1 eine C6-60-Arylgruppe, die einen Substituenten aufweisen kann, eine Pyridinylgruppe, die einen Substituenten aufweisen kann, oder eine Chino- linylgruppe, die einen Substituenten aufweisen kann, bedeutet. Ferner bevorzugt sind 2,9,10-substituierte Anthracene (mit 1- oder 2-Naph- thyl und 4- oder 3-Biphenyl) oder Moleküle, die zwei Anthraceneinheiten enthalten, wie z.B. in der US 2008/0193796 A1 offenbart.
Weiterhin bevorzugt sind N-heteroaromatische Ringsysteme der folgenden Formeln (39) bis (44).
(39) (40)
Ebenfalls bevorzugt sind Anthracenbenzimidazol-Derivate der folgenden Formeln (45) bis (47), wie sie z.B. in der US 6878469 B2, der
US 2006/147747 A und der EP 1551206 A1 offenbart werden.
Beispiel für Polymere, die eine ETM-Wiederholungseinheit enthalten und ihre Synthese werden z.B. in der US 2003/0170490 A1 für Triazin als ETM- Wiederholungseinheit offenbart.
Bevorzugt als Struktureinheiten mit elektronentransportierenden Eigen- schaffen für die erste Emissionschicht sind Einheiten, die sich von
Benzophenon-, Triazin-, Imidazol-, Benzoimidazol- und Peryleneinheiten ableiten, die gegebenenfalls substituiert sein können. Besonders bevorzugt sind Benzophenon-, Aryltriazin-, Benzoimidazol- und Diarylperylen- einheiten.
Besonders bevorzugt werden ETM-Wiederholungseinheiten oder ETM- Verbindungen eingesetzt, die Struktureinheiten mit elektronenleitenden Eigenschaften enthalten, welche ausgewählt sind aus den Struktureinheiten der folgenden Formeln (48) bis (51),
wobei
R1 bis R4 die gleiche Bedeutung wie R in Formel (36) annehmen können. Der Anteil an Struktureinheiten mit elektronenleitenden Eigenschaften im Polymer, welches in der ersten Emitterschicht eingesetzt wird, liegt vorzugsweise zwischen 0,01 und 30 mol %, besonders bevorzugt zwischen 1 und 20 mol %, und insbesondere zwischen 10 und 20 mol %.
Bevorzugt verwendet man in der ersten Emitterschicht ein polymeres Matrixmaterial, dass im Polymergerüst eingebaut ein oder mehrere unterschiedliche Emitter enthält, oder Mischungen von polymeren
Matrixmaterialien, wobei die Polymeren im Polymergerüst eingebaut ein oder mehrere unterschiedliche Emitter enthalten.
Die Emitter in den Emitterschichten werden vorzugsweise so gewählt, dass eine möglichst breitbandige Emission resultiert. Vorzugsweise kombiniert man Triplett-Emitter mit folgenden Emissionen: grün und rot; blau und grün; hellblau und hellrot; blau, grün und rot. Davon werden besonders bevorzugt Triplett-Emitter mit tiefgrüner und tiefroter Emission eingesetzt. Damit lassen sich insbesondere Gelbtöne gut einstellen. Über die Variation der Konzentrationen der einzelnen Emitter können die Farbtöne in gewünschter Weise erzeugt und eingestellt werden.
Als Emitter im Sinne der vorliegenden Anmeldung lassen sich alle aus dem Singulett- oder dem Triplettzustand im sichtbaren Spektrum emittierenden Moleküle einsetzen. Unter "sichtbarem Spektrum" ist im Rahmen der vorliegenden Anmeldung der Wellenlängenbereich von 380 nm bis 750 nm zu verstehen.
Besonders bevorzugt sind Elektrolumineszenzvorrichtungen bei denen ein erster Emitter ein Emissionsmaximum im grünen Spektralbereich und ein zweiter Emitter ein Emissionsmaximum im roten Spektralbereich aufweist.
Weitere bevorzugte Kombinationen von Emittern sind solche, die ihr Emissionsmaximum im blauen und grünen Spektralbereich, im hellblauen und hellroten Spektralbereich bzw. im blauen, grünen und roten
Spektralbereich aufweisen.
Besonders bevorzugt sind elektrooptische Vorrichtungen, bei denen mindestens zwei Triplettemitter vorhanden sind, die jeweils ein
Emissionsmaximum in den folgenden Spektralbereichen aufweisen: grün und rot, blau und grün und hellblau und hellrot. Vorzugsweise ist dabei der erste Triplettemitter in der ersten Emissionschicht und der zweite
Triplettemitter in der Zwischenschicht angeordnet.
Ganz besonders bevorzugt sind elektrooptische Vorrichtungen, bei denen der erste Triplettemitter ein Emissionsmaximum im grünen Spektralbereich und der zweite Triplettemitter ein Emissionsmaximum im roten
Spektralbereich aufweist.
Ebenfalls ganz besonders bevorzugt sind elektrooptische Vorrichtungen, bei denen der erste Triplettemitter ein Emissionsmaximum im hellblauen Spektralbereich und der zweite Triplettemitter ein Emissionsmaximum im gelben Spektralbereich aufweist.
Femer ganz besonders bevorzugt sind elektrooptische Vorrichtungen, bei denen mindestens ein Singulettemitter vorhanden ist, der ein Emissionsmaximum im grünen, roten oder blauen Spektralbereich aufweist. in der Regel liegen die Emitter in den Emitterschichten in einem Dotand- Matrix-System vor. Die Konzentration des/der Emitter(s) liegt dabei vorzugsweise im Bereich von 0,01 % bis 30 mol%, besonders bevorzugt im Bereich von 1 bis 25 mol%, und insbesondere im Bereich von 2 bis 20 mol%.
Besonders bevorzugt enthält die erste Emitterschicht Elektronentransportierende Substanzen. ln einer weiteren bevorzugten Ausführungsform enthält die erfindungsgemäße elektrooptische Vorrichtung in der ersten Emitterschicht und/oder in der zweiten Emitterschicht Substanzen, welche den Übergang von Anregungsenergie in den Triplettzustand fördern. Dabei handelt es sich z.B. um Carbazole, Ketone, Phosphinoxide, Silane, Sulfoxide,
Verbindungen mit Schwermetallatomen, Bromverbindungen oder
Phosphoreszenz-Sensitizer. In einer bevorzugten Ausführungsform handelt es sich bei dem organischen Halbleiter in der ersten Emitterschicht um ein halbleitendes Polymer, vorzugsweise ein halbleitendes Copolymer.
Das organisch, halbleitende Polymer weist dabei vorzugsweise
Wiederholungseinheiten auf, die sich von Fluoren, Spirobifluoren,
Indenofluoren, Phenanthren, Dihydrophenanthren, Phenylen,
Dibenzothiophen, Dibenzofuran, Phenylenvinylen und deren Derivaten ableiten, wobei diese Wiederholungseinheiten substituiert sein können. Bevorzugte in der ersten Emitterschicht eingesetzte halbleitende
Copolymere weisen weitere Wiederholungseinheiten auf, die sich von Triarylaminen ableiten, vorzugsweise von solchen mit Wiederholungseinheiten der folgenden Formeln (52) bis (54).
wobei
R, das bei jedem Auftreten gleich oder verschieden sein kann, aus H, substituierter oder unsubstituierter aromatischer oder heteroaromatischer Gruppe, Alkylgruppe, Cycloalkylgruppe, Alkoxygruppe, Aralkylgruppe, Aryloxygruppe, Arylthiogruppe, Alkoxycarbonylgruppe, Silylgruppe, Carboxygruppe, Halogenatom, Cyanogruppe, Nitrogruppe oder
Hydroxygruppe ausgewählt ist,
r für 0, 1 , 2, 3 oder 4 steht und
s für O, 1 , 2, 3, 4 oder 5 steht.
Die erfindungsgemäßen eiektrooptischen Vorrichtungen weisen besonders bevorzugt einen möglichst einfachen Aufbau auf. Dabei kann es sich im Extremfall um eine Vorrichtung handeln, die neben einer Kathoden- und Anodenschicht nur zwei oder mehrere dazwischen angeordnete
Emitterschichten enthält.
Eine bevorzugte Ausführungsform der erfindungsgemäßen
eiektrooptischen Vorrichtung umfasst mindestens eine zusätzliche
Elektroneninjektionsschicht, wobei diese direkt zwischen der ersten Emissionsschicht und der Kathode angeordnet ist. Bevorzugt wird die erfindungsgemäße elektrooptische Vorrichtung auf einem Substrat, vorzugsweise auf einem transparenten Substrat,
aufgebracht. Auf diesem wiederum ist vorzugsweise eine Elektrode aus transparentem oder semitransparentem Material aufgebracht,
vorzugsweise aus Indium-Zinn-Oxid (ITO).
In einer weiteren bevorzugten Ausführungsform weist die erfindungsgemäße elektrooptische Vorrichtung eine dritte Emissionschicht auf. Diese dritte Emissionsschicht enthält vorzugsweise mindestens einen
niedermolekularen Emitter, der aus den oben beschriebenen Gruppen von Emittern ausgewählt werden kann, sowie mindestens ein
niedermolekulares Matrixmaterial, welches aus den oben beschriebenen Matrixmaterialien ausgewählt werden kann. Vorzugsweise werden die erste und die zweite Emissionsschicht aus Lösung prozessiert, und die dritte Emissionsschicht im Vakuum aufgedampft. In einer besonders bevorzugten Ausführungsform emittieren die erste, zweite und dritte Emissionsschicht rotes, grünes und blaues Licht, wobei die Lichtintensität der einzelnen Schichten so eingestellt wird, dass insgesamt weiße Emission resultiert. Besonders bevorzugt besteht die erfindungsgemäße elektrooptische Vorrichtung nur aus Anode, Pufferschicht, z.B. enthaltend PANI oder PEDOT, Lochinjektionsschicht, zwei Emitterschichten, Lochblockierschicht, Elektronentransportschicht und Kathode, gegebenenfalls aufgebaut auf einem transparenten Substrat.
Besonders bevorzugt umfasst die elektrooptische Vorrichtung weiterhin eine Lochinjektionsschicht, die zwischen Anode und Zwischenschicht aus lochleitendem Polymer angebracht ist, vorzugsweise eine Schicht aus Poly(ethylendioxothiophen) (PEDOT).
Die erfindungsgemäßen elektrooptischen Vorrichtungen weisen
vorzugsweise Dicken der voneinander abgegrenzten einzelnen Schichten im Bereich von 1 bis 150 nm, besonders bevorzugt im Bereich von 3 bis 100 nm, und insbesondere im Bereich 5 bis 80 nm auf.
Bevorzugte erfindungsgemäße elektrooptische Vorrichtungen enthalten polymere Materialien mit Glastemperaturen Tg von größer als 90°C, besonders bevorzugt von größer als 100°C, und insbesondere von größer als 120°C.
Besonders bevorzugt ist es, wenn sämtliche der in der erfindungsgemäßen Vorrichtung eingesetzten Polymeren die beschriebenen hohen
Glastemperaturen aufweisen.
Als Kathodenmaterialien lassen sich in den erfindungsgemäßen elektro- optischen Vorrichtungen an sich bekannte Materialien verwenden. Insbe- sondere für OLEDs werden Materialien mit einer niedrigen Austrittsarbeit eingesetzt. Beispiele dafür sind Metalle, Metallkombinationen oder
Metalllegierungen mit niedriger Austrittsarbeit, wie z.B. Ca, Sr, Ba, Cs, Mg, AI, In und Mg/Ag. Der Aufbau der erfindungsgemäßen Vorrichtungen läßt sich mit
verschiedenen Herstellungsverfahren erreichen.
Einerseits ist es möglich, zumindest einen Teil der Schichten im Vakuum aufzubringen. Ein Teil der Schichten, insbesondere die Emitterschichten, werden aus Lösung aufgebracht. Es ist auch ohne erfinderisches Zutun möglich, alle Schichten aus Lösung aufzutragen.
Beim Aufbringen im Vakuum dienen Schattenmasken zum Strukturieren, während aus Lösung die unterschiedlichsten Druckverfahren anwendbar sind. Druckverfahren im Sinne der vorliegenden Anmeldung umfassen auch solche, die vom Festkörper ausgehen, wie Thermotransfer oder LITI.
Im Falle der lösungsmittel-basierten Verfahren werden Lösungsmittel eingesetzt, welche die eingesetzten Stoffe lösen. Die Art des Stoffes ist für die vorliegende Erfindung nicht maßgeblich.
Die Herstellung der erfindungsgemäßen elektrooptischen Vorrichtung kann somit nach an sich bekannten Verfahren erfolgen, wobei zumindest die beiden Emitterschichten aus Lösung aufgebracht werden, vorzugsweise durch Druckverfahren, besonders bevorzugt durch Tintenstrahldruck.
In einer bevorzugten Ausführungsform ist die elektrooptische Vorrichtung eine organische Licht-emittierende Vorrichtung (Organic Light Emitting Diode (OLED)).
In einer weiteren bevorzugten Ausführungsform ist elektrooptische
Vorrichtung eine organische Licht-emittierende elektrochemische Zelle (Organic Light Emitting eiectrochemical Cell (OLEC)). Die OLEC weist zwei Elektroden, mindestens eine Emissionsschicht und eine Zwischenschicht zwischen der Emissionsschicht und einer Elektrode, wie oben beschrieben, auf, wobei die Emissionsschicht mindestens eine ionische Verbindung aufweist. Das Prinzip der OLEC wird in Qibing Pei et al., Science, 1995, 269, 1086-1088, beschrieben.
Die erfindungsgemäße, elektrooptische Vorrichtung lässt sich in
verschiedenen Applikationen einsetzen. Besonders bevorzugt werden die erfindungsgemäßen elektrooptischen Vorrichtungen in Displays, als
Hintergrundbeleuchtung und als Beleuchtung eingesetzt. Ein weiteres bevorzugtes Anwendungsgebiet der erfindungsgemäßen elektrooptischen Vorrichtungen betrifft den Einsatz im kosmetischen und therapeutischen Bereich, wie z.B. in der EP 1444008 und der GB 2408092 offenbart. Diese Verwendungen sind ebenfalls Gegenstand der vorliegenden Anmeldung. Die nachfolgenden Beispiele erläutern die Erfindung ohne diese zu beschränken.
Ausführungsbeispiele
Als erfindungsgemäße Interlayermaterialien können alle lochdominierten Polymere verwendet werden, die zusätzlich einen Emitter enthalten, dessen LUMO unterhalb des niedrigsten LUMOs der anderen Interlayer- bausteine und der vorhergehenden Schicht liegt. Die Anwendung von Interlayern in organischen Leuchtdioden wird z.B. in der WO 2004/084260 offenbart. Typische Interlayerpolymere werden in der WO 2004/041901 offenbart, jedoch können praktisch alle in PLEDs verwendeten,
konjugierten bzw. teilkonjugierten Polymere durch den Einbau großer Anteile lochleitender Einheiten (typischerweise Triarylamine) in
Interlayerpolymere überführt werden. Jede dieser Interlayer kann durch den Einbau von Emittern, die einpoiymerisiert oder eindotiert werden können, in eine erfindungsgemäße Interlayer überführt werden.
Beispiele 1 bis 0: Polymer-Beispiele
Die erfindungsgemäßen Polymere P1 bis P10 werden unter Verwendung der folgenden Monomere (Prozentangaben = mol%) durch SUZUKI- Kupplung gemäß der WO 03/048225 A2 synthetisiert.
Beispiel 1 (Polymer P1):
Beispiel 5 (Polymer P5):
% 35% 15% eispiel 10 (Polymer P10):
Beispiele 11 bis 27: Device-Beispiele
Herstellung von PLEDs und löslich prozessierten kleine-Moleküle-Devices
Die Herstellung von polymeren organischen Leuchtdioden (PLED) ist in der Literatur bereits vielfach beschrieben (z.B. in der WO 2004/037887 A2). Um die vorliegende Erfindung beispielhaft zu erläutern, werden PLEDs mit den Polymeren P1 bis P10 als sogenannte Interlayer durch Spincoating hergestellt. Jede andere Herstellungsmethode aus Lösung (Tintenstrahldruck, Offsetdruck, Screen-Printing, AirBrush, etc.) sowie das Aufdampfen der aktiven Schichten auf die lösungsprozessierte Interlayer führt aber ebenfalls zu erfindungsgemäßen Bauteilen. Eine typische Device für die hier beschriebenen Beispiele hat den in Figur 1 dargestellten Aufbau.
Dazu werden speziell angefertigte Substrate der Firma Technoprint in einem eigens zu diesem Zweck designten Layout verwendet. Die ITO- Struktur (Indium-Zinn-Oxid, eine transparente, leitfähige Anode) wurde durch Sputtern in einem solchen Muster auf Sodalimeglas aufgebracht, dass sich mit der am Ende des Herstellungsprozesses aufgedampften Kathode 4 Pixel ä 2 x 2 mm ergeben.
Die Substrate werden im Reinraum mit DI Wasser und einem Detergens (Deconex 15 PF) gereinigt und dann durch eine UV/Ozon-Plasmabehandlung aktiviert. Danach wird ebenfalls im Reinraum eine 80 nm Schicht PEDOT (PEDOT ist ein Polythiophen-Derivat (C!evios P 4083 AI) von H. C. Starck, Goslar, das als wässrige Dispersion geliefert wird) durch Spin-Coating aufgebracht. Die benötigte Spinrate hängt vom
Verdünnungsgrad und der spezifischen Spincoater-Geometrie ab (typisch für 80 nm: 4500 rpm). Um Restwasser aus der Schicht zu entfernen, werden die Substrate für 10 Minuten bei 180°C auf einer Heizplatte ausgeheizt. Danach werden unter Inertgasatmosphäre (Stickstoff bzw. Argon) zunächst 20 nm einer Interlayer aufgesponnen. Im vorliegenden Falle handelt es sich dabei um die Polymere P1 bis P 0, die bei einer Konzentration von 5 g/l aus Toluol verarbeitet werden. Alle Interlayer dieser Devicebeispiele werden unter Inertgas für 1 Stunde bei 180°C ausgeheizt. Anschließend werden 65 nm der Polymerschichten aus Toluollösungen (typische Konzentrationen 8 bis 12 g/l) aufgebracht. Analog können auch löslich prozessierbare kleine Moleküle verwendet werden, die dann allerdings wegen der niedrigen Viskosität der Lösungen in höherer
Konzentration angesetzt werden müssen. Typisch sind hier 20 bis 28 mg/ml. Auch hat es sich als vorteilhaft erwiesen, hier eine Schichtdicke von 80 nm zu verwenden. In den vorliegenden Beispielen wird auch diese zweite löslich prozessierte Schicht, die Hauptemissionsschicht („EML"), per Spin-Coating aufgebracht und anschließend unter Inertgas ausgeheizt, und zwar für 10 Minuten bei 180°C. Danach wird die Ba/Al-Kathode im
angegebenen Muster durch eine Aufdampfmaske aufgedampft (hochreine Metalle von Aldrich, besonders Barium 99,99 % (Best-Nr. 474711);
Aufdampfanlagen von Lesker o.a., typischer Vakuumlevel 5 x 10~6 mbar). Um vor allem die Kathode vor Luft und Luftfeuchtigkeit zu schützen, wird die Device abschließend verkapselt. Die Verkapselung der Device erfolgt, indem ein kommerziell erhältliches Deckglas über der pixelierten Fläche verklebt wird. Anschließend wird die Device charakterisiert. Dazu werden die Devices in für die Substratgröße eigens angefertigte
Halter eingespannt und mittels Federkontakten kontaktiert. Eine Photodiode mit Augenverlaufsfilter kann direkt auf den Messhalter aufgesetzt werden, um Einflüsse von Fremdlicht auszuschließen.
Typischerweise werden die Spannungen von 0 bis max. 20 V in 0,2 V- Schritten erhöht und wieder erniedrigt. Für jeden Messpunkt wird der Strom durch die Device sowie der erhaltene Photostrom von der Photodiode gemessen. Auf diese Art und Weise erhält man die IVL-Daten der
Testdevices. Wichtige Kenngrößen sind die gemessene maximale Effizienz („Max. Eff." in cd/A) und die für 100 cd/m2 benötigte Spannung.
Um außerdem die Farbe und das genaue Elektrolumineszenzspektrum der Testdevices zu kennen, wird nach der ersten Messung nochmals die für 100 cd/m2 benötigte Spannung angelegt und die Photodiode durch einen Spektrum-Messkopf ersetzt. Dieser ist durch eine Lichtleitfaser mit einem Spektrometer (Ocean Optics) verbunden. Aus dem gemessenen Spektrum können die Farbkoordinaten (CIE: Commission International de l'eclairage, Normalbetrachter von 1931) abgeleitet werden.
Für die Einsatzfähigkeit der Materialien von besonderer Bedeutung ist die Lebensdauer der Devices. Diese wird in einem der Erstevaluierung sehr ähnlichen Messaufbau so gemessen, dass eine Anfangsleuchtdichte eingestellt wird (z.B. 1000 cd/m2). Der für diese Leuchtdichte benötigte Strom wird konstant gehalten, während typischerweise die Spannung ansteigt und die Leuchtdichte abnimmt. Die Lebensdauer ist erreicht, wenn die Anfangsleuchtdichte auf 50% des Ausgangswertes abgesunken ist, weshalb man diesen Wert auch als LT50 (von Englisch„lifetime")
bezeichnet. Hat man einen Extrapolationsfaktor bestimmt, können die Lebensdauern auch beschleunigt gemessen werden, indem eine höhere Anfangsleuchtdichte eingestellt wird. In diesem Fall hält die Messapparatur den Strom konstant, so dass sie die elektrische Degradation der Bauteile in einem Spannungsanstieg zeigt. Beispiel 11 :
Ein erstes, unoptimiertes Zwei-Farben Weiß mit kaltweißen Farbkoordinaten wird durch die Kombination der Interlayer P2 mit dem blauen
Polymer SPB-036 von Merck hergestellt. Das Elektrolumineszenzspektrum des blauen Polymers auf einer„farblosen" Interlayer (HIL-012 von Merck)
und das Spektrum der erfindungsgemäßen Vorrichtung sind in Figur 2
dargestellt. Die Ergebnisse der optoelektronischen Charakterisierung des
Bauteils sind in Tabelle 1 zusammengefasst.
Tabelle 1
Beispiele 12 bis 14:
Als Vorstufe für ein Drei-Farben-Weiß kann durch Kombination einer roten
Interlayer mit einer löslich prozessierten grünen EML ein gelber
Farbeindruck erreicht werden. Dies geschieht in den (unoptimierten)
Beispielen 12 bis 14 durch Verwendung der Interlayer P2, P4 und P6 in
Kombination mit einem Triplett-Grün (TEG-001 in TMM-038 von Merck).
Figur 3 zeigt das Spektrum des reinen Triplett-Grüns auf HIL-012 sowie die
Spektren der erfindungsgemäßen Bauteile mit P2, P4 und P6.
Tabelle 2
BeiIL EML Max. Eff. U(100 cd/m2) CIE LT50 [h @ spiel [cd/A] fVl [x/y] cd/m2]
12 P2 T-Grün 18 5.0 0.39/0.58 1500 @ 1000
13 P4 T-Grün 19 4.3 0.40/0.56 4000 @ 1000
14 P6 T-Grün 21.5 4.3 0.41/0.56 1800 @ 1000 Beispiele 15 bis 18:
Auch weiße Bauteile für Beleuchtungsanwendungen können mit Hilfe der selbstleuchtenden Interlayer verbessert werden. So ist ein Farbtuning hin zu immer roterem Weißlicht möglich, um zum Beispiel kulturellen
Unterschieden Rechnung zu tragen. Die Beispiele 15 bis 18 zeigen die Ergebnisse für löslich prozessierte OLEDs im Aufbau der Figur 1 , bei der als EML ein weißes Polymer verwendet wird, das ohne roten Emitter synthetisiert wird (SPW-110 von Merck; hergestellt ohne den
normalerweise einpolymerisierten Rotbaustein). Durch Austausch der Interlayer können hier, ohne Neusynthese des EML-Polymers,
Farbkoordinaten variiert werden. Figur 4 zeigt wiederum das EL-Spektrum der Vorrichtung mit HIL-012 von Merck sowie die Spektren mit den erfindungsgemäßen Interlayer-Polymeren P1 bis P4.
Tabelle 3
Beispiele 19 und 20:
Auch mit den Interlayer-Polymeren P5 und P6 wird der gleiche Versuch wie in den Beispielen 15 bis 18 durchgeführt. Die Spektren sind in Figur 5 dargestellt, die Kenndaten der Vorrichtungen in Tabelle 4. Wiederum ist es möglich, die Rotkomponente im Device einzustellen. Tabelle 4
Beispiele 21 bis 23:
Um zu untermauern, dass die erfindungsgemäßen Interlayer nicht
notwendigerweise die Rotkomponente im Device-Spektrum darstellen
müssen, werden die Polymere P7 und P8 synthetisiert, die einen grünen
Emitter enthalten. Erfindungsgemäße OLEDs werden hier hergestellt,
indem ein„weißes" Polymer verwendet wird, das keinen Grün-Emitter
enthält (SPW- 06 von Merck ohne den darin normalerweise enthaltenen
Grün-Baustein). Die Ergebnisse der optoelektronischen Charakterisierung sind in Tabelle 5, die Elektrolumineszenzspektren der OLEDs in Figur 6
dargestellt. In diesem Fall hat die grüne Interlayer den zusätzlichen Vorteil, auch den Rotanteil im Spektrum zu stärken, da ohne eingebautes Grün der
Energietransfer von Blau auf Grün nicht funktioniert.
Tabelle 5
BeiIL EML Max. Eff. U(i 00 cd/mJ) CIE LT50 [h @ spiel [cd/A] [V] fx/y] cd/m2]
21 HIL- „Weiß2" 6.6 6.5 0.28/0.26 700 @ 1000 012
22 P7 „Weiß2" 7.5 6.9 0.31/0.32 1750 @ 1000
23 P8 „Weiß2" 7.5 6.7 0.31/0.35 1600 @ 1000 Beispiele 24 bis 26:
Die Eignung der blauen Interlayer P9 und P10 zu zeigen, ist schwieriger, da die Voraussetzung eines niedrigen LUMOs gegenüber den verwendeten EMLs schwerer zu erfüllen ist. Die Beispiele 24 bis 26 zeigen daher die Ergebnisse von OLEDs mit dem weißen Merck-Polymer SPW-106, das zum Vergleich auf der farblosen Interlayer HIL-012 prozessiert wird, sowie auf den Interlayern P9 und P10. In den Figuren 7 und 8 sind die EL- Spektren dargestellt. Man sieht vor allem in der Vergrößerung gut, dass der hellblauere Emitter der Interlayer für die Blau-Emission verantwortlich ist. Somit kann auch blaue Emission aus der Interlayer erhalten werden.
Tab l
Beispiel 27:
Besonders nützlich sind leuchtende Interlayer-Polymere in Vorrichtungen, die weißes Licht emittieren sollen. In diesem Beispiel wird die Interlayer P2 wie üblich gecoatet, darüber wird ein blaues EML-Polymer (SPB-036 wie in Beispiel 11) prozessiert und eine grüne Triplett-EML aufgedampft (TEG- 001 in TMM-038). Der Device-Aufbau ist in Figur 9 dargestellt. Das weiße EL-Spektrum, das alle Farbkomponenten enthält, ist in Figur 10 dargestellt. Die Quanteneffizienz der Device beträgt 10% EQE, obwohl größtenteils
Singulett-Komponenten verwendet wurden. Die Farbkoordinaten zeigen ein geradezu ideales Weiß mit CIE (x/y) = 0.37/0.38. Da TEG-001 in TMM-038 löslich prozessierbar ist, kann durch Verwendung eines vernetzbaren blauen Polymers ein löslich prozessiertes Multischicht- Weiß hergestellt werden. Umgekehrt kann die hier verwendete grüne EML- II durch andere aufgedampfte grüne Triplettschichten ersetzt werden und zusätzliche Schichten zwischen EML-ll und der Kathode eingeführt werden.
Zusammenfassung der Ergebnisse:
Die Verwendung der erfindungsgemäßen Interlayer-Polymeren in OLED- Devices führt zu eleganten Möglichkeiten zur Einstellung von
Farbkoordinaten, zu einer deutlich vergrößerten Device-Flexibilität, zu kombinatorischen Möglichkeiten mit aufgedampften Schichten und vor allem zu Mehrfarb-vorrichtungen mit guten Effizienzen und Lebensdauern. Damit sind die Vorrichtungen vor allem für Beleuchtungsanwendungen ein großer Fortschritt gegenüber dem Stand der Technik.

Claims

Patentansprüche
Elektrooptische Vorrichtung enthaltend
a) eine Anode,
b) eine Kathode, und
c) mindestens eine erste Emitterschicht, die zwischen Anode und Kathode angeordnet ist, enthaltend mindestens ein halbleitendes, organisches Material,
dadurch gekennzeichnet, dass zwischen der ersten Emitterschicht und der Anode mindestens eine zweite Emitterschicht angeordnet ist, die mindestens ein Polymer mit lochleitenden Eigenschaften und mindestens einen Emitter aufweist.
Elektrooptische Vorrichtung nach Anspruch 1 , dadurch
gekennzeichnet, dass der mindestens eine Emitter der zweiten Emitterschicht ein LUMO aufweist, das höher liegt als das LUMO des halbleitenden, organischen Materials der ersten Emitterschicht.
Elektrooptische Vorrichtung nach Anspruch 2, dadurch
gekennzeichnet, dass das LUMO des mindestens einen Emitters der zweiten Emitterschicht mindestens 0,1 eV, vorzugsweise mindestens 0,2 eV, höher liegt, als das LUMO des halbleitenden, organischen Materials der ersten Emitterschicht.
Elektrooptische Vorrichtung einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der mindestens eine Emitter der zweiten Emitterschicht eine Wiederholungseinheit des Polymers mit lochleitenden Eigenschaften ist.
Elektrooptische Vorrichtung nach Anspruch 4, dadurch
gekennzeichnet, dass der Anteil der Emitter-Struktureinheiten im lochleitenden Polymer der zweiten Emitterschicht im Bereich von 0,01 bis 20 mol % liegt.
Elektrooptische Vorrichtung nach einem oder mehreren der
Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Polymer mit lochleitenden Eigenschaften als Wiederholungseinheiten Triarylamin- Einheiten aufweist.
Elektrooptische Vorrichtung nach Anspruch 6, dadurch
gekennzeichnet, dass die Triarylamineinheiten ausgewählt sind aus den Struktureinheiten der Formeln (18) bis (20),
wobei
R, das bei jedem Auftreten gleich oder verschieden sein kann, aus H, substituierter oder unsubstituierter aromatischer oder heteroaromatischer Gruppe, Alkylgruppe, Cycloalkylgruppe, Alkoxygruppe, Aralkylgruppe, Aryloxygruppe, Arylthiogruppe, Alkoxycarbonylgruppe, Silylgruppe, Carboxygruppe, Halogenatom, Cyanogruppe,
Nitrogruppe und Hydroxygruppe ausgewählt ist,
r für 0, 1 , 2, 3 oder 4 steht und
s für O, 1 , 2, 3, 4 oder 5 steht.
8. Elektrooptische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Polymer mit lochleitenden Eigenschaften als Wiederholungseinheiten Fluoren-, Spirobifluoren-, Indenofluoren-, Phenanthren-, Dihydrophenanthren-, Dibenzofuran- und/oder Dbenzothiophen-Einheiten aufweist, die unsubstituiert oder substituiert sein können.
Elektrooptische Vorrichtung nach einem oder mehreren der
Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das halbleitende, organische Material der ersten Emitterschicht ein halbleitendes Polymer, vorzugsweise ein halbleitendes, konjugiertes Copolymer ist.
Elektrooptische Vorrichtung nach Anspruch 9, dadurch
gekennzeichnet, dass das halbleitende, konjugierte Copolymer als Wiederholungseinheiten Fluoren-, Spirobifluoren-, Indenofluoren-, Phenanthren-, Dihydrophenanthren-, Dibenzofuran- und/oder
Dibenzothiophen-Einheiten aufweist, die unsubstitiuert oder substituiert sein können.
Elektrooptische Vorrichtung nach Anspruch 9 oder 0, dadurch gekennzeichnet, dass das halbleitende, konjugierte Copolymer als Wiederholungseinheiten Triarylaminen aufweist, vorzugsweise
Struktureinheiten der Formeln (18) bis (20) gemäß Anspruch 7. 12. Elektrooptische Vorrichtung nach einem oder mehreren der
Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die erste
Emitterschicht ein polymeres Matrixmaterial enthält, das im Polymer eingebaut mindestens einen Emitter enthält, dass die erste
Emitterschicht mindestens ein polymeres Matrixmaterial und
mindestens einen Emitter enthält, oder dass die erste Emitterschicht mindestens ein niedermolekulares Matrixmaterial und mindestens einen Emitter enthält.
13. Elektrooptische Vorrichtung nach einem oder mehreren der
Ansprüche 1 bis 12, dadurch gekennzeichnet, dass mindestens zwei Triplettemitter vorhanden sind, die jeweils ein Emissionsmaximum im grünen und roten, blaüen und grünen oder hellblauen und hellroten
Spektralbereich aufweisen, wobei vorzugsweise ein Triplettemitter in der ersten Emitterschicht und der zweite Triplettemitter in der zweiten Emitterschicht angeordnet ist. 14. Elektrooptische Vorrichtung nach Anspruch 13, dadurch
gekennzeichnet, dass der erste Triplettemitter ein Emissionsmaximum im grünen Spektralbereich und der zweite Triplettemitter ein
Emissionsmaximum im roten Spektralbereich aufweist. 15. Elektrooptische Vorrichtung nach einem oder mehreren der
Ansprüche 1 bis 14, dadurch gekennzeichnet, dass mindestens ein Singulettemitter vorhanden ist, der ein Emissionsmaximum im grünen, roten oder blauen Spektralbereich aufweist. 6. Elektrooptische Vorrichtung nach einem oder mehreren der
Ansprüche 1 bis 15, dadurch gekennzeichnet, dass diese zusätzlich eine Lochinjektionsschicht, vorzugsweise aus Poly(ethylen- dioxothiophen), aufweist, die zwischen Anode und der zweiten
Emitterschicht angeordnet ist.
17. Elektrooptische Vorrichtung nach einem oder mehreren der
Ansprüche 1 bis 16, dadurch gekennzeichnet, dass diese aus Anode, Lochinjektionsschicht, zweiter Emitterschicht, vorzugsweise mit zwei Emittern, erster Emitterschicht, Elektronentransportschicht und Kathode besteht, die gegebenenfalls auf einem transparenten Substrat angeordnet ist.
Elektrooptische Vorrichtung nach einem oder mehreren der
Ansprüche 1 bis 17, dadurch gekennzeichnet, dass sie eine organische lichtemittierende Diode (OLED) oder eine organische lichtemittierende elektrochemische Zelle (OLEC) ist.
Verwendung einer elektrooptischen Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 18 in Displays, Hintergrundbeleuchtungen und Beleuchtungen.
Verwendung einer elektrooptischen Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 19 in Anwendungen zur
therapeutischen und/oder kosmetischen Behandlung.
EP14733092.2A 2013-07-29 2014-06-26 Elektrooptische vorrichtung und deren verwendung Ceased EP3028318A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14733092.2A EP3028318A1 (de) 2013-07-29 2014-06-26 Elektrooptische vorrichtung und deren verwendung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13003770 2013-07-29
EP14733092.2A EP3028318A1 (de) 2013-07-29 2014-06-26 Elektrooptische vorrichtung und deren verwendung
PCT/EP2014/001738 WO2015014427A1 (de) 2013-07-29 2014-06-26 Elektrooptische vorrichtung und deren verwendung

Publications (1)

Publication Number Publication Date
EP3028318A1 true EP3028318A1 (de) 2016-06-08

Family

ID=48915802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14733092.2A Ceased EP3028318A1 (de) 2013-07-29 2014-06-26 Elektrooptische vorrichtung und deren verwendung

Country Status (6)

Country Link
US (1) US20160163987A1 (de)
EP (1) EP3028318A1 (de)
JP (2) JP2016525781A (de)
KR (1) KR102238849B1 (de)
CN (1) CN105409022B (de)
WO (1) WO2015014427A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061332A1 (ja) * 2015-10-06 2017-04-13 住友化学株式会社 発光素子
CN109155369A (zh) * 2016-05-10 2019-01-04 日立化成株式会社 电荷传输性材料、有机电子元件及有机电致发光元件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110315963A1 (en) * 2010-06-24 2011-12-29 Sony Corporation Organic el display and method of manufacturing the same
WO2012089294A1 (de) * 2010-12-28 2012-07-05 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen

Family Cites Families (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL124075C (de) 1959-04-09
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
BE756943A (fr) 1969-10-01 1971-03-16 Eastman Kodak Co Nouvelles compositions photoconductrices et produits les contenant, utilisables notamment en electrophotographie
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
JPS63256965A (ja) 1987-04-15 1988-10-24 Canon Inc 静電荷像現像用トナ−
US5121029A (en) 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JP2727620B2 (ja) 1989-02-01 1998-03-11 日本電気株式会社 有機薄膜el素子
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JP2913116B2 (ja) 1990-11-20 1999-06-28 株式会社リコー 電界発光素子
JP3016896B2 (ja) 1991-04-08 2000-03-06 パイオニア株式会社 有機エレクトロルミネッセンス素子
US5529853A (en) 1993-03-17 1996-06-25 Sanyo Electric Co., Ltd. Organic electroluminescent element
US5837166A (en) 1993-09-29 1998-11-17 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and arylenediamine derivative
DE69412567T2 (de) 1993-11-01 1999-02-04 Hodogaya Chemical Co Ltd Aminverbindung und sie enthaltende Elektrolumineszenzvorrichtung
DE59510315D1 (de) 1994-04-07 2002-09-19 Covion Organic Semiconductors Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
JP2686418B2 (ja) 1994-08-12 1997-12-08 東洋インキ製造株式会社 ジアリールアミン誘導体、その製造方法及び用途
US5708130A (en) 1995-07-28 1998-01-13 The Dow Chemical Company 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
DE69625018T2 (de) 1995-09-25 2003-04-10 Toyo Ink Mfg Co Leuchtemittierender Stoff für organische Elektrolumineszensvorrichtung, und organische Elektrolumineszensvorrichtung mit diesem leuchtemittierendem dafür geeignetem Stoff
DE19628719B4 (de) 1996-07-17 2006-10-05 Hans-Werner Prof. Dr. Schmidt Elektronenleitende Schicht in organischen, elektrolumineszierenden Anordnungen
US5766779A (en) 1996-08-20 1998-06-16 Eastman Kodak Company Electron transporting materials for organic electroluminescent devices
DE19646119A1 (de) 1996-11-08 1998-05-14 Hoechst Ag Elektrolumineszenzvorrichtung
GB9805476D0 (en) * 1998-03-13 1998-05-13 Cambridge Display Tech Ltd Electroluminescent devices
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6229012B1 (en) 1998-10-01 2001-05-08 Xerox Corporation Triazine compositions
US6361886B2 (en) 1998-12-09 2002-03-26 Eastman Kodak Company Electroluminescent device with improved hole transport layer
US6020078A (en) 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
KR100663052B1 (ko) 1999-02-04 2007-01-02 다우 글로벌 테크놀로지스 인크. 플루오렌 공중합체 및 이로부터 제조된 디바이스
IL146242A0 (en) 1999-05-13 2002-07-25 Univ Princeton Very high efficiency organic light emitting devices based on electrophosphorescence
WO2001021729A1 (fr) 1999-09-21 2001-03-29 Idemitsu Kosan Co., Ltd. Support organique a electroluminescence et support organique lumineux
KR100840637B1 (ko) 1999-12-01 2008-06-24 더 트러스티즈 오브 프린스턴 유니버시티 유기 led용 인광성 도펀트로서 l2mx 형태의 착물
JP4876311B2 (ja) 2000-01-14 2012-02-15 東レ株式会社 発光素子
US6225467B1 (en) 2000-01-21 2001-05-01 Xerox Corporation Electroluminescent (EL) devices
TW532048B (en) 2000-03-27 2003-05-11 Idemitsu Kosan Co Organic electroluminescence element
DE60103442T3 (de) 2000-03-31 2014-05-15 Sumitomo Chemical Co. Ltd. Polymerisches fluoreszentes Material, Verfahren zu ihrer Herstellung, und lumineszentes Polymergerät worin es eingesetzt wird
JP4048521B2 (ja) 2000-05-02 2008-02-20 富士フイルム株式会社 発光素子
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP4154140B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 金属配位化合物
JP4154138B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子、表示装置及び金属配位化合物
JP4154139B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子
KR100867493B1 (ko) 2000-11-24 2008-11-06 도레이 가부시끼가이샤 발광 소자 재료 및 이를 이용한 발광 소자
US20040082813A1 (en) 2001-03-16 2004-04-29 Toshihiro Iwakuma Method for producting aromatic amino compound
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
JP4629643B2 (ja) 2001-08-31 2011-02-09 日本放送協会 有機発光素子及び表示装置
DE10143353A1 (de) 2001-09-04 2003-03-20 Covion Organic Semiconductors Konjugierte Polymere enthaltend Spirobifluoren-Einheiten und deren Verwendung
JP2003115387A (ja) 2001-10-04 2003-04-18 Junji Kido 有機発光素子及びその製造方法
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
GB0127581D0 (en) 2001-11-17 2002-01-09 Univ St Andrews Therapeutic Light-emitting device
DE10159946A1 (de) 2001-12-06 2003-06-18 Covion Organic Semiconductors Prozess zur Herstellung von Aryl-Aryl gekoppelten Verbindungen
KR100691543B1 (ko) 2002-01-18 2007-03-09 주식회사 엘지화학 새로운 전자 수송용 물질 및 이를 이용한 유기 발광 소자
US6730417B2 (en) 2002-01-29 2004-05-04 Xerox Corporation Organic electroluminescent (EL) devices
JP2003253145A (ja) 2002-02-28 2003-09-10 Jsr Corp 発光性組成物
JP4256182B2 (ja) 2002-03-14 2009-04-22 Tdk株式会社 有機el素子
SG128438A1 (en) 2002-03-15 2007-01-30 Sumitomo Chemical Co Polymer compound and polymer light emitting deviceusing the same
JP4274403B2 (ja) 2002-03-25 2009-06-10 大日本印刷株式会社 蛍光発光色素材料
WO2003099901A1 (fr) 2002-05-28 2003-12-04 Sumitomo Chemical Company, Limited Polymere et element luminescent polymere contenant ce polymere
ITRM20020411A1 (it) 2002-08-01 2004-02-02 Univ Roma La Sapienza Derivati dello spirobifluorene, loro preparazione e loro uso.
US20060257684A1 (en) 2002-10-09 2006-11-16 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
DE10249723A1 (de) 2002-10-25 2004-05-06 Covion Organic Semiconductors Gmbh Arylamin-Einheiten enthaltende konjugierte Polymere, deren Darstellung und Verwendung
GB0226010D0 (en) 2002-11-08 2002-12-18 Cambridge Display Tech Ltd Polymers for use in organic electroluminescent devices
JP2004200162A (ja) 2002-12-05 2004-07-15 Toray Ind Inc 発光素子
KR101030158B1 (ko) 2002-12-23 2011-04-18 메르크 파텐트 게엠베하 유기 전자발광 부품
DE10310887A1 (de) 2003-03-11 2004-09-30 Covion Organic Semiconductors Gmbh Matallkomplexe
KR100998838B1 (ko) 2003-03-13 2010-12-06 이데미쓰 고산 가부시키가이샤 신규한 질소 함유 헤테로환 유도체 및 이를 이용한 유기전기발광 소자
JP4411851B2 (ja) 2003-03-19 2010-02-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
GB0306409D0 (en) 2003-03-20 2003-04-23 Cambridge Display Tech Ltd Electroluminescent device
JP2004311184A (ja) 2003-04-04 2004-11-04 Junji Kido 多核型フェナントロリン誘導体よりなる電子輸送材料、電荷制御材料およびそれを用いた有機発光素子
KR20040089567A (ko) 2003-04-14 2004-10-21 가부시키가이샤 도요다 지도숏키 자외선의 생성을 억제하는 유기 전계발광소자 및 이 유기전계발광소자를 가진 조명 시스템
EP2281861A3 (de) 2003-04-15 2012-03-28 Merck Patent GmbH Mischungen von organischen zur Emission befähigten Halbleitern und Matrixmaterialien, deren Verwendung und Elektronikbauteile enthaltend diese Mischungen
US7326475B2 (en) 2003-04-23 2008-02-05 Konica Minolta Holdings, Inc. Material for organic electroluminescent device, organic electroluminescent device, illuminating device and display
TWI256853B (en) 2003-05-16 2006-06-11 Toyota Ind Corp Light-emitting apparatus and method for forming the same
JP2004349138A (ja) 2003-05-23 2004-12-09 Toyota Industries Corp 有機電界発光素子及びその製造方法
EP1491568A1 (de) 2003-06-23 2004-12-29 Covion Organic Semiconductors GmbH Halbleitende Polymere
EP2251396B1 (de) 2003-07-07 2014-11-19 Merck Patent GmbH Zur Emission befähigte organische Verbindungen und Elektronikbauteile diese enthaltend
DE10337346A1 (de) 2003-08-12 2005-03-31 Covion Organic Semiconductors Gmbh Konjugierte Polymere enthaltend Dihydrophenanthren-Einheiten und deren Verwendung
DE10343606A1 (de) 2003-09-20 2005-04-14 Covion Organic Semiconductors Gmbh Weiß emittierende Copolymere, deren Darstellung und Verwendung
JP2005108556A (ja) 2003-09-29 2005-04-21 Tdk Corp 有機el素子及び有機elディスプレイ
DE10345572A1 (de) 2003-09-29 2005-05-19 Covion Organic Semiconductors Gmbh Metallkomplexe
US7795801B2 (en) 2003-09-30 2010-09-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
CN1863838B (zh) 2003-10-01 2010-12-22 住友化学株式会社 聚合物发光材料和聚合物发光器件
GB2408092A (en) 2003-11-13 2005-05-18 Ahad Ramezanpour A heat exchanger
US7029766B2 (en) 2003-12-05 2006-04-18 Eastman Kodak Company Organic element for electroluminescent devices
US6824895B1 (en) 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
TW201235442A (en) 2003-12-12 2012-09-01 Sumitomo Chemical Co Polymer and light-emitting element using said polymer
DE102004008304A1 (de) 2004-02-20 2005-09-08 Covion Organic Semiconductors Gmbh Organische elektronische Vorrichtungen
JP4466160B2 (ja) 2004-03-30 2010-05-26 Tdk株式会社 有機el素子及び有機elディスプレイ
US7790890B2 (en) 2004-03-31 2010-09-07 Konica Minolta Holdings, Inc. Organic electroluminescence element material, organic electroluminescence element, display device and illumination device
DE102004020298A1 (de) 2004-04-26 2005-11-10 Covion Organic Semiconductors Gmbh Elektrolumineszierende Polymere und deren Verwendung
DE102004023277A1 (de) 2004-05-11 2005-12-01 Covion Organic Semiconductors Gmbh Neue Materialmischungen für die Elektrolumineszenz
JP4862248B2 (ja) 2004-06-04 2012-01-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
CN100368363C (zh) 2004-06-04 2008-02-13 友达光电股份有限公司 蒽化合物以及包括此蒽化合物的有机电致发光装置
TW200613515A (en) 2004-06-26 2006-05-01 Merck Patent Gmbh Compounds for organic electronic devices
DE102004031000A1 (de) 2004-06-26 2006-01-12 Covion Organic Semiconductors Gmbh Organische Elektrolumineszenzvorrichtungen
DE102004032527A1 (de) 2004-07-06 2006-02-02 Covion Organic Semiconductors Gmbh Elektrolumineszierende Polymere
GB0422391D0 (en) * 2004-10-08 2004-11-10 Cambridge Display Tech Ltd Light emitting device
US20060094859A1 (en) 2004-11-03 2006-05-04 Marrocco Matthew L Iii Class of bridged biphenylene polymers
EP1655359A1 (de) 2004-11-06 2006-05-10 Covion Organic Semiconductors GmbH Organische Elektrolumineszenzvorrichtung
TW200639140A (en) 2004-12-01 2006-11-16 Merck Patent Gmbh Compounds for organic electronic devices
TW200639193A (en) 2004-12-18 2006-11-16 Merck Patent Gmbh Electroluminescent polymers and their use
ATE555506T1 (de) * 2004-12-24 2012-05-15 Cdt Oxford Ltd Licht emittierende einrichtung
KR20100106626A (ko) 2005-01-05 2010-10-01 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 이를 이용한 유기 전기발광 소자
KR100803125B1 (ko) 2005-03-08 2008-02-14 엘지전자 주식회사 적색 인광 화합물 및 이를 사용한 유기전계발광소자
JP4263700B2 (ja) 2005-03-15 2009-05-13 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
EP1860097B1 (de) 2005-03-18 2011-08-10 Idemitsu Kosan Co., Ltd. Aromatisches aminderivat und organisches elektrolumineszenzgerät, bei dem dieses verwendet wird
US20060222886A1 (en) 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
KR20080013926A (ko) 2005-04-28 2008-02-13 스미또모 가가꾸 가부시키가이샤 고분자 화합물 및 그것을 이용한 고분자 발광 소자
JP5242380B2 (ja) 2005-05-03 2013-07-24 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子
DE102005023437A1 (de) 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
WO2007043495A1 (ja) 2005-10-07 2007-04-19 Sumitomo Chemical Company, Limited 共重合体およびそれを用いた高分子発光素子
US7588839B2 (en) 2005-10-19 2009-09-15 Eastman Kodak Company Electroluminescent device
US20070092755A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20070092753A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20070104977A1 (en) 2005-11-07 2007-05-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
US7553558B2 (en) 2005-11-30 2009-06-30 Eastman Kodak Company Electroluminescent device containing an anthracene derivative
DE102005058543A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
DE102005058557A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
US7709105B2 (en) 2005-12-14 2010-05-04 Global Oled Technology Llc Electroluminescent host material
DE102005060473A1 (de) 2005-12-17 2007-06-28 Merck Patent Gmbh Konjugierte Polymere, deren Darstellung und Verwendung
JP4879591B2 (ja) 2006-01-26 2012-02-22 昭和電工株式会社 高分子発光材料、有機エレクトロルミネッセンス素子および表示装置
DE102006003710A1 (de) 2006-01-26 2007-08-02 Merck Patent Gmbh Elektrolumineszierende Materialien und deren Verwendung
KR20180117719A (ko) 2006-02-10 2018-10-29 유니버셜 디스플레이 코포레이션 시클로금속화 이미다조[1,2-f]페난트리딘 및 디이미다조[1,2-a:1',2'-c]퀴나졸린 리간드, 및 이의 등전자성 및 벤즈고리화된 유사체의 금속 착체
DE102006006412A1 (de) * 2006-02-13 2007-08-16 Merck Patent Gmbh Elektronisches Bauteil, Verfahren zu dessen Herstellung und dessen Verwendung
DE102006015183A1 (de) 2006-04-01 2007-10-04 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
JP4995475B2 (ja) 2006-04-03 2012-08-08 出光興産株式会社 ベンズアントラセン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子
US20070252517A1 (en) 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
DE102006025777A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102006025846A1 (de) 2006-06-02 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102006031990A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
KR101412956B1 (ko) * 2006-07-25 2014-07-09 메르크 파텐트 게엠베하 중합체 블렌드 및 유기 발광 장치에서의 이의 용도
JP2008124156A (ja) 2006-11-09 2008-05-29 Idemitsu Kosan Co Ltd 有機el材料含有溶液、有機el材料の薄膜形成方法、有機el材料の薄膜、有機el素子
JP5294872B2 (ja) 2006-11-20 2013-09-18 出光興産株式会社 有機エレクトロルミネッセンス素子
DE102007002714A1 (de) 2007-01-18 2008-07-31 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
JP4902381B2 (ja) 2007-02-07 2012-03-21 昭和電工株式会社 重合性化合物の重合体
DE102007024850A1 (de) 2007-05-29 2008-12-04 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
US7645142B2 (en) 2007-09-05 2010-01-12 Vivant Medical, Inc. Electrical receptacle assembly
EP2202818B1 (de) 2007-09-28 2014-11-12 Idemitsu Kosan Co., Ltd. Organische el-vorrichtung
DE102008017591A1 (de) 2008-04-07 2009-10-08 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008044868A1 (de) 2008-08-29 2010-03-04 Merck Patent Gmbh Elektrolumineszierende Polymere, Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE102009023156A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Polymere, die substituierte Indenofluorenderivate als Struktureinheit enthalten, Verfahren zu deren Herstellung sowie deren Verwendung
DE102009023154A1 (de) 2009-05-29 2011-06-16 Merck Patent Gmbh Zusammensetzung, enthaltend mindestens eine Emitterverbindung und mindestens ein Polymer mit konjugationsunterbrechenden Einheiten
DE102009030848A1 (de) 2009-06-26 2011-02-03 Merck Patent Gmbh Polymere enthaltend Struktureinheiten, die Alkylalkoxygruppen aufweisen, Blends enthaltend diese Polymere sowie optoelektronische Vorrichtungen enthaltend diese Polymere und Blends
DE102011104745A1 (de) 2011-06-17 2012-12-20 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
GB201113563D0 (en) * 2011-08-05 2011-09-21 Cambridge Display Tech Ltd Light emitting polymers and devices
KR20180126629A (ko) * 2011-12-12 2018-11-27 메르크 파텐트 게엠베하 전자 소자용 화합물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110315963A1 (en) * 2010-06-24 2011-12-29 Sony Corporation Organic el display and method of manufacturing the same
WO2012089294A1 (de) * 2010-12-28 2012-07-05 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015014427A1 *

Also Published As

Publication number Publication date
KR20160040243A (ko) 2016-04-12
WO2015014427A1 (de) 2015-02-05
JP6848033B2 (ja) 2021-03-24
CN105409022B (zh) 2018-06-19
US20160163987A1 (en) 2016-06-09
JP2020053395A (ja) 2020-04-02
KR102238849B1 (ko) 2021-04-09
JP2016525781A (ja) 2016-08-25
CN105409022A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
EP2462203B1 (de) Elektronische vorrichtungen mit multizyklischen kohlenwasserstoffen
CN107690720B (zh) 作为用于oled制剂的溶剂的含有非芳族环的酯
EP3189551B1 (de) Formulierungen und verfahren zur herstellung einer organischen elektrolumineszenzvorrichtung
EP3532566B1 (de) Formulierung aus einem organischen funktionellen material
EP3028319A1 (de) Elekrolumineszenzvorrichtung
KR102570137B1 (ko) 실록산 용매를 포함하는 유기 기능성 재료의 제형
WO2013060411A1 (de) Hyperverzweigte polymere, verfahren zu deren herstellung sowie deren verwendung in elektronischen vorrichtungen
DE102010009193B4 (de) Zusammensetzung enthaltend Fluor-Fluor Assoziate, Verfahren zu deren Herstellung, deren Verwendung sowie organische elektronische Vorrichtung diese enthaltend
KR20190077044A (ko) 유기 기능성 재료의 제형
KR20190022812A (ko) 유기 기능성 재료의 제형
JP6848033B2 (ja) 電気光学素子およびその使用
WO2015014437A1 (de) Elektrooptische vorrichtung und deren verwendung
KR20180066145A (ko) 적어도 2종의 유기 반도체 화합물 및 적어도 2종의 용매를 포함하는 제형
KR102515195B1 (ko) 전자 디바이스의 유기 소자를 형성하는 방법
EP3241248A1 (de) Formulierungen und elektronische vorrichtungen
KR102654992B1 (ko) Oled 제제에 대한 용매로서 비-방향족 사이클을 함유하는 에스테르
WO2023012084A1 (en) A printing method by combining inks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200625

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MERCK PATENT GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20230407