WO2012115096A1 - 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法 - Google Patents

二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法 Download PDF

Info

Publication number
WO2012115096A1
WO2012115096A1 PCT/JP2012/054109 JP2012054109W WO2012115096A1 WO 2012115096 A1 WO2012115096 A1 WO 2012115096A1 JP 2012054109 W JP2012054109 W JP 2012054109W WO 2012115096 A1 WO2012115096 A1 WO 2012115096A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
secondary battery
water
electrode active
Prior art date
Application number
PCT/JP2012/054109
Other languages
English (en)
French (fr)
Inventor
智一 佐々木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020137022065A priority Critical patent/KR20140018882A/ko
Priority to JP2013501067A priority patent/JPWO2012115096A1/ja
Priority to CN2012800099618A priority patent/CN103384932A/zh
Priority to EP12749342.7A priority patent/EP2680349A1/en
Priority to US14/001,030 priority patent/US20130330622A1/en
Publication of WO2012115096A1 publication Critical patent/WO2012115096A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to, for example, a negative electrode for a secondary battery provided in a secondary battery such as a lithium ion secondary battery, a slurry composition for negative electrode for producing the negative electrode for secondary battery, and a method for producing the negative electrode for secondary battery.
  • the present invention also relates to a secondary battery including the secondary battery negative electrode.
  • the electrode is usually a liquid composition in which a polymer serving as a binder (binder) is dispersed or dissolved in a solvent such as water or an organic solvent, an electrode active material, and optionally conductive carbon or the like.
  • a solvent such as water or an organic solvent
  • an electrode active material such as water or an organic solvent
  • optionally conductive carbon or the like an electrode active material
  • the conductive agent is mixed to obtain a slurry composition, and this slurry composition is applied to a current collector and dried.
  • binders and various additives for binding the electrode active material and the like to the current collector for example, Patent Document 1). To 4).
  • Patent Document 1 and Patent Document 2 describe a slurry for a negative electrode of a non-aqueous secondary battery including a binder composed of a carbon material active material, a water-dispersed emulsion resin, and a water-soluble polymer.
  • a binder composed of a carbon material active material, a water-dispersed emulsion resin, and a water-soluble polymer.
  • the water-soluble polymer polyvinyl alcohol, carboxymethyl cellulose, sodium polyacrylate, and the like are described. According to this, it is described that the coating film strength and the coating film density of the battery are improved.
  • Patent Document 3 includes 0.02 to 13% by weight of a fluorine-containing unsaturated monomer, 10 to 38% by weight of an aliphatic conjugated diene monomer, and 0.1 to 10% by weight of an ethylenically unsaturated carboxylic acid monomer. And a binder for a secondary battery electrode comprising a copolymer latex obtained by emulsion polymerization of a monomer composed of 49 to 88.88% by weight of other monomers copolymerizable therewith. Yes. According to this, it is described that it is excellent in blending stability, blocking resistance, suitability for dust removal, and binding power.
  • Patent Document 4 describes a secondary battery electrode binder made of a polymer having a monomer unit derived from a fluorine atom-containing monomer such as (fluoro) alkyl (meth) acrylate. And it describes that a cellulose polymer, polyacrylate, etc. can be added in order to improve applicability
  • the particles of the electrode active material contained in the negative electrode may expand and contract with charge / discharge. When such expansion and contraction are repeated, the negative electrode gradually expands and the secondary battery may be deformed. Therefore, development of a technique capable of suppressing the swelling of the negative electrode as described above is desired.
  • some conventional secondary batteries have a reduced capacity when stored in a high temperature environment of, for example, 60 ° C. Therefore, it is desired to develop a technology that can suppress a decrease in the capacity of the secondary battery even when the secondary battery is stored in a high temperature environment.
  • the present invention was devised in view of the above-mentioned problems, and can be used for a secondary battery that can suppress the swelling of the negative electrode accompanying charge / discharge and that is less likely to have a reduced capacity even when stored in a high-temperature environment.
  • An object is to provide a negative electrode, a slurry composition for a negative electrode capable of producing the negative electrode for a secondary battery, a method for producing a negative electrode for a secondary battery, and a secondary battery including the negative electrode for a secondary battery. .
  • the present inventor has obtained an ethylenically unsaturated carboxylic acid monomer unit and a (meth) acrylic acid ester monomer unit in the electrode active material layer of the negative electrode for a secondary battery. And a fluorine-containing (meth) acrylic acid ester monomer unit in a specific ratio, each containing a water-soluble polymer, can suppress the swelling of the negative electrode accompanying charging and discharging, and stored in a high temperature environment Even in this case, the inventors have found that the capacity can hardly be reduced and completed the present invention. That is, according to the present invention, the following [1] to [10] are provided.
  • a negative electrode for a secondary battery comprising a negative electrode active material, a binder and a water-soluble polymer,
  • the water-soluble polymer is composed of 15% to 50% by weight of ethylenically unsaturated carboxylic acid monomer units, 30% to 70% by weight of (meth) acrylic acid ester monomer units, and fluorine-containing (meth) acrylic acid.
  • a negative electrode for a secondary battery which is a copolymer containing 0.5 to 10% by weight of ester monomer units.
  • the binder is a polymer containing an aliphatic conjugated diene monomer unit.
  • the binder is a polymer containing an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit.
  • a secondary battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator, A secondary battery, wherein the negative electrode is the negative electrode for a secondary battery according to any one of [1] to [7].
  • a negative electrode slurry composition comprising a negative electrode active material, a binder, a water-soluble polymer, and water, The water-soluble polymer is composed of 15% to 50% by weight of ethylenically unsaturated carboxylic acid monomer units, 30% to 70% by weight of (meth) acrylic acid ester monomer units, and fluorine-containing (meth) acrylic acid.
  • a slurry composition for a negative electrode which is a copolymer containing 0.5 to 10% by weight of ester monomer units.
  • a method for producing a negative electrode for a secondary battery comprising applying the slurry composition for a negative electrode according to [9] to a surface of a current collector and drying.
  • the negative electrode for a secondary battery of the present invention it is possible to realize a secondary battery that can suppress swelling of the negative electrode due to charge and discharge and that can hardly reduce the capacity even when stored in a high temperature environment.
  • the secondary battery of this invention can suppress the swelling of the negative electrode accompanying charging / discharging, and is hard to reduce a capacity
  • (meth) acryl means “acryl” or “methacryl”.
  • positive electrode active material means an electrode active material for positive electrode
  • negative electrode active material means an electrode active material for negative electrode
  • the “positive electrode active material layer” means an electrode active material layer provided on the positive electrode
  • the “negative electrode active material layer” means an electrode active material layer provided on the negative electrode.
  • the negative electrode for a secondary battery of the present invention includes a negative electrode active material, a binder, and a water-soluble polymer.
  • the negative electrode of the present invention includes a current collector and a negative electrode active material layer formed on the surface of the current collector, and the negative electrode active material layer includes the negative electrode active material, a binder, and a water-soluble polymer. .
  • the negative electrode active material is an electrode active material for a negative electrode, and is a material that transfers electrons in the negative electrode of the secondary battery.
  • a material that can occlude and release lithium is usually used as the negative electrode active material.
  • the material that can occlude and release lithium include a metal-based active material, a carbon-based active material, and an active material that combines these materials.
  • the metal-based active material is an active material containing a metal, and usually contains an element capable of inserting lithium (also referred to as dope) in the structure, and the theoretical electric capacity per weight when lithium is inserted is 500 mAh.
  • the upper limit of the theoretical electric capacity is not particularly limited, but may be, for example, 5000 mAh / g or less.
  • the metal-based active material for example, lithium metal, a single metal that forms a lithium alloy and an alloy thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof are used.
  • the single metal forming the lithium alloy examples include single metals such as Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, Zn, and Ti. Can be mentioned. Moreover, as a single metal alloy which forms a lithium alloy, the compound containing the said single metal is mentioned, for example. Among these, silicon (Si), tin (Sn), lead (Pb), and titanium (Ti) are preferable, and silicon, tin, and titanium are more preferable. Accordingly, a single metal of silicon (Si), tin (Sn), or titanium (Ti), an alloy containing these single metals, or a compound of these metals is preferable.
  • the metallic active material may further contain one or more nonmetallic elements.
  • SiO x C y capable of inserting and detaching lithium (also referred to as dedoping) at a low potential is preferable.
  • SiO x C y can be obtained by firing a polymer material containing silicon.
  • the range of 0.8 ⁇ x ⁇ 3 and 2 ⁇ y ⁇ 4 is preferably used in view of the balance between capacity and cycle characteristics.
  • Lithium metal, elemental metal forming lithium alloy and oxides, sulfides, nitrides, silicides, carbides and phosphides of the alloys include oxides, sulfides, nitrides and silicides of lithium-insertable elements Products, carbides, phosphides and the like.
  • an oxide is particularly preferable.
  • a lithium-containing metal composite oxide containing an oxide such as tin oxide, manganese oxide, titanium oxide, niobium oxide, and vanadium oxide and a metal element selected from the group consisting of Si, Sn, Pb, and Ti atoms is used. .
  • Li x Ti y M z O 4 As the lithium-containing metal composite oxide, a lithium titanium composite oxide represented by Li x Ti y M z O 4 (0.7 ⁇ x ⁇ 1.5, 1.5 ⁇ y ⁇ 2.3, 0 ⁇ z ⁇ 1.6, and M represents an element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb.), Li x Mn y M A lithium manganese composite oxide represented by z O 4 (x, y, z and M are the same as defined in the lithium titanium composite oxide). Among these, Li 4/3 Ti 5/3 O 4 , Li 1 Ti 2 O 4 , Li 4/5 Ti 11/5 O 4 , and Li 4/3 Mn 5/3 O 4 are preferable.
  • an active material containing silicon is preferable as the metal-based active material.
  • an active material containing silicon By using an active material containing silicon, the electric capacity of the secondary battery can be increased.
  • an active material containing silicon expands and contracts greatly (for example, about 5 times) with charge and discharge.
  • battery performance due to expansion and contraction of an active material containing silicon is increased. The decrease can be prevented by the water-soluble polymer according to the present invention.
  • the active materials containing silicon SiO x , SiC and SiO x Cy are preferable, and SiO x Cy is more preferable.
  • SiO x Cy is more preferable.
  • the carbon-based active material refers to an active material having carbon as a main skeleton into which lithium can be inserted, and examples thereof include a carbonaceous material and a graphite material.
  • the carbonaceous material is generally a carbon material with low graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower.
  • the minimum of the said heat processing is not specifically limited, For example, it is good also as 500 degreeC or more.
  • Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitic carbon having a structure close to an amorphous structure typified by glassy carbon.
  • Examples of the graphitizable carbon include carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
  • MCMB is carbon fine particles obtained by separating and extracting mesophase microspheres generated in the process of heating pitches at around 400 ° C.
  • the mesophase pitch-based carbon fiber is a carbon fiber using as a raw material mesophase pitch obtained by growing and coalescing the mesophase microspheres.
  • Pyrolytic vapor-grown carbon fibers are (1) a method of pyrolyzing acrylic polymer fibers, etc., (2) a method of spinning by spinning a pitch, or (3) using nanoparticles such as iron as a catalyst.
  • non-graphitizable carbon examples include phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic carbon, furfuryl alcohol resin fired bodies (PFA), and hard carbon.
  • the graphite material is a graphite material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher.
  • the upper limit of the said heat processing temperature is not specifically limited, For example, it is good also as 5000 degrees C or less.
  • Examples of the graphite material include natural graphite and artificial graphite.
  • Examples of artificial graphite include artificial graphite mainly heat-treated at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, graphitized mesophase pitch-based carbon fiber heat-treated mesophase pitch-based carbon fiber at 2000 ° C. or higher, etc. Is mentioned.
  • carbonaceous materials are preferable.
  • the resistance of the secondary battery can be reduced, and a secondary battery having excellent input / output characteristics can be manufactured.
  • a negative electrode active material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the negative electrode active material is preferably particle-sized.
  • a higher density electrode can be formed during electrode molding.
  • the volume average particle diameter of the particles of the negative electrode active material is appropriately selected in consideration of other constituent requirements of the secondary battery, and is usually 0.1 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 100 ⁇ m or less. , Preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the 50% cumulative volume diameter of the negative electrode active material particles is usually 1 ⁇ m or more, preferably 15 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less, from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics. It is.
  • the 50% cumulative volume diameter can be obtained as a particle diameter at which the cumulative volume calculated from the small diameter side in the measured particle size distribution is 50% by measuring the particle size distribution by a laser diffraction method.
  • the tap density of the negative electrode active material is not particularly limited, but 0.6 g / cm 3 or more is preferably used.
  • the specific surface area of the negative electrode active material is usually 2 m 2 / g or more, preferably 3 m 2 / g or more, more preferably 5 m 2 / g or more, and usually 20 m 2 / g or less, preferably from the viewpoint of improving the output density. It is 15 m 2 / g or less, more preferably 10 m 2 / g or less.
  • the specific surface area of a negative electrode active material can be measured by BET method, for example.
  • the binder is a component that binds the electrode active material to the surface of the current collector in the negative electrode.
  • the binder binds the negative electrode active material so that the negative electrode active material is not detached from the negative electrode active material layer.
  • the binder usually binds particles other than the negative electrode active material contained in the negative electrode active material layer, and also plays a role of maintaining the strength of the negative electrode active material layer.
  • the binder it is preferable to use a binder having excellent performance for holding the negative electrode active material and high adhesion to the current collector.
  • a polymer is used as the binder.
  • the polymer may be a homopolymer or a copolymer.
  • the polymer as the binder is preferably a polymer containing an aliphatic conjugated diene monomer unit. Since the aliphatic conjugated diene monomer unit is a low-rigidity and flexible repeating unit, the polymer containing the aliphatic conjugated diene monomer unit is used as a binder, so that the negative electrode active material layer and the current collector Good adhesion can be obtained.
  • the aliphatic conjugated diene monomer unit is a repeating unit obtained by polymerizing an aliphatic conjugated diene monomer.
  • aliphatic conjugated diene monomers include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3 butadiene, 2-chloro-1,3-butadiene, Substituted straight chain conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like. Of these, 1,3-butadiene is preferred.
  • an aliphatic conjugated diene monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the polymer as the binder may contain only one type of aliphatic conjugated diene monomer unit, or may contain two or more types in combination at any ratio.
  • the ratio of the aliphatic conjugated diene monomer unit is usually 20 parts by weight or more, preferably 30 parts by weight or more, usually 70 parts by weight or less, preferably 60 parts by weight or less, More preferably, it is 55 parts by weight or less.
  • the polymer as the binder preferably contains an aromatic vinyl monomer unit.
  • the aromatic vinyl monomer unit is stable, and the negative electrode active material layer can be stabilized by reducing the solubility of the polymer containing the aromatic vinyl monomer unit in the electrolytic solution.
  • the aromatic vinyl monomer unit is a repeating unit obtained by polymerizing an aromatic vinyl monomer.
  • the aromatic vinyl monomer include styrene, ⁇ -methylstyrene, vinyl toluene, divinylbenzene and the like. Of these, styrene is preferred. Therefore, when combined with the fact that the polymer as the binder preferably contains an aliphatic conjugated diene monomer unit such as butadiene, the polymer as the binder comprises an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer.
  • a polymer including a body unit is preferable, and for example, a styrene / butadiene copolymer is preferable.
  • an aromatic vinyl monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the polymer as the binder may contain only one type of aromatic vinyl monomer, or may contain two or more types in combination at any ratio.
  • the polymer as a binder may contain an unreacted aliphatic conjugated diene monomer and an unreacted aromatic vinyl monomer as residual monomers.
  • the amount of the unreacted aliphatic conjugated diene monomer contained in the polymer as the binder is preferably 50 ppm or less, more preferably 10 ppm or less, and the unreacted aromatic vinyl contained in the polymer as the binder.
  • the amount of the monomer is preferably 1000 ppm or less, more preferably 200 ppm or less.
  • the negative electrode slurry composition according to the present invention is applied to the surface of the current collector and dried to produce a negative electrode. It is possible to prevent the surface of the negative electrode from being roughened by foaming or causing an environmental load due to odor.
  • the amount of the aromatic vinyl monomer contained in the polymer as the binder is kept within the above range, it is possible to suppress the environmental load and the roughness of the negative electrode surface that occur according to the drying conditions, and furthermore, the resistance of the polymer as the binder. Electrolyte property can be improved.
  • the ratio of the aromatic vinyl monomer unit is usually 30 parts by weight or more, preferably 35 parts by weight or more, and usually 79.5 parts by weight or less, preferably 69 parts by weight or less. It is.
  • the ratio of the aromatic vinyl monomer unit is set to the lower limit value or more of the above range, the electrolyte solution resistance of the secondary battery negative electrode of the present invention can be increased, and by setting the ratio to the upper limit value or less, When the slurry composition for negative electrodes according to the present invention is applied to a current collector, sufficient adhesion between the negative electrode active material layer and the current collector can be obtained.
  • the polymer as the binder preferably contains an ethylenically unsaturated carboxylic acid monomer unit.
  • the ethylenically unsaturated carboxylic acid monomer unit includes a carboxyl group (—COOH group) that enhances the adsorptivity to the negative electrode active material and the current collector, and is a repeating unit having high strength. Desorption of the negative electrode active material can be stably prevented, and the strength of the negative electrode can be improved.
  • the ethylenically unsaturated carboxylic acid monomer unit is a repeating unit obtained by polymerizing an ethylenically unsaturated carboxylic acid monomer.
  • the ethylenically unsaturated carboxylic acid monomer include monocarboxylic and dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and itaconic acid, and anhydrides thereof.
  • an ethylenically unsaturated carboxylic acid monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the polymer as the binder may contain only one type of ethylenically unsaturated carboxylic acid monomer unit, or may contain two or more types in combination at any ratio.
  • the ratio of the ethylenically unsaturated carboxylic acid monomer units is usually 0.5 parts by weight or more, preferably 1 part by weight or more, more preferably 2 parts by weight or more. It is 10 parts by weight or less, preferably 8 parts by weight or less, more preferably 7 parts by weight or less.
  • the polymer as the binder may contain any repeating unit other than those described above as long as the effects of the present invention are not significantly impaired.
  • the monomer corresponding to the arbitrary repeating unit include a vinyl cyanide monomer, an unsaturated carboxylic acid alkyl ester monomer, an unsaturated monomer containing a hydroxyalkyl group, and an unsaturated carboxylic acid.
  • acid amide monomers may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • vinyl cyanide monomer examples include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile and the like. Of these, acrylonitrile and methacrylonitrile are preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, and dimethyl itaco. Nate, monomethyl fumarate, monoethyl fumarate, 2-ethylhexyl acrylate and the like. Of these, methyl methacrylate is preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • Examples of unsaturated monomers containing a hydroxyalkyl group include ⁇ -hydroxyethyl acrylate, ⁇ -hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2- Examples thereof include hydroxypropyl methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, and 2-hydroxyethyl methyl fumarate. Of these, ⁇ -hydroxyethyl acrylate is preferred. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • Examples of the unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, N, N-dimethylacrylamide and the like. Of these, acrylamide and methacrylamide are preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • polymer as the binder for example, monomers used in usual emulsion polymerization such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride may be used. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the weight average molecular weight of the polymer as the binder is preferably 10,000 or more, more preferably 20,000 or more, preferably 1,000,000 or less, more preferably 500,000 or less.
  • the weight average molecular weight of the polymer as the binder is in the above range, the strength of the negative electrode of the present invention and the dispersibility of the negative electrode active material are easily improved.
  • the weight average molecular weight of the polymer as a binder as a polystyrene conversion value which used tetrahydrofuran as a developing solvent by gel permeation chromatography (GPC).
  • the glass transition temperature of the binder is preferably ⁇ 75 ° C. or higher, more preferably ⁇ 55 ° C. or higher, particularly preferably ⁇ 35 ° C. or higher, and usually 40 ° C. or lower, preferably 30 ° C. or lower, more preferably 20 ° C. or lower. Especially preferably, it is 15 degrees C or less.
  • the glass transition temperature of the binder is within the above range, characteristics such as flexibility, binding property and winding property of the negative electrode, and adhesion between the negative electrode active material layer and the current collector are highly balanced, which is preferable.
  • the binder is a water-insoluble polymer. Therefore, in the negative electrode slurry composition of the present invention, the binder is not dissolved in water as a solvent but is dispersed as particles.
  • a polymer being water-insoluble means that an insoluble content becomes 90% by weight or more when 0.5 g of the polymer is dissolved in 100 g of water at 25 ° C.
  • a polymer being water-soluble means that at 25 ° C., 0.5 g of the polymer is dissolved in 100 g of water and the insoluble content is less than 0.5% by weight.
  • the number average particle size of the binder particles is preferably 50 nm or more, more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less.
  • the number average particle diameter of the binder is in the above range, the strength and flexibility of the obtained negative electrode can be improved.
  • the presence of particles can be easily measured by transmission electron microscopy, Coulter counter, laser diffraction scattering method, or the like.
  • the binder is produced, for example, by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent.
  • the ratio of each monomer in the monomer composition is usually a repeating unit in a polymer as a binder (for example, an aliphatic conjugated diene monomer unit, an aromatic vinyl monomer unit, an ethylenically unsaturated carboxylic acid). The ratio of the acid monomer units).
  • the aqueous solvent is not particularly limited as long as the binder particles can be dispersed.
  • the boiling point at normal pressure is usually 80 ° C. or higher, preferably 100 ° C. or higher, and usually 350 ° C. or lower.
  • it is selected from 300 ° C. or lower aqueous solvents. Examples of the aqueous solvent will be given below.
  • the number in parentheses after the solvent name is the boiling point (unit: ° C) at normal pressure, and the value after the decimal point is rounded off or rounded down.
  • aqueous solvent examples include water (100); ketones such as diacetone alcohol (169) and ⁇ -butyrolactone (204); ethyl alcohol (78), isopropyl alcohol (82), and normal propyl alcohol (97).
  • Alcohols propylene glycol monomethyl ether (120), methyl cellosolve (124), ethyl cellosolve (136), ethylene glycol tertiary butyl ether (152), butyl cellosolve (171), 3-methoxy-3-methyl-1-butanol (174), Ethylene glycol monopropyl ether (150), diethylene glycol monobutyl pyrether (230), triethylene glycol monobutyl ether (271), dipropylene glycol monomethyl ether ( 88) glycol ethers and the like; 1,3-dioxolane (75), 1,4-dioxolane (101), ethers such as tetrahydrofuran (66); and the like.
  • water is particularly preferable from the viewpoint that it is not flammable and a dispersion of binder particles can be easily obtained.
  • water may be used as the main solvent, and an aqueous solvent other than the above-described water may be mixed and used within a range where the dispersed state of the binder particles can be ensured.
  • the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used. It is easy to obtain a high molecular weight product, and since the polymer is obtained in a state of being dispersed in water as it is, no redispersion treatment is required, and it can be used for production of the negative electrode slurry composition according to the present invention. From the viewpoint of production efficiency, the emulsion polymerization method is particularly preferable.
  • the emulsion polymerization method is usually performed by a conventional method.
  • the method is described in “Experimental Chemistry Course” Vol. 28, (Publisher: Maruzen Co., Ltd., edited by The Chemical Society of Japan). That is, water, an additive such as a dispersant, an emulsifier, a crosslinking agent, a polymerization initiator, and a monomer are added to a sealed container equipped with a stirrer and a heating device so as to have a predetermined composition, and the composition in the container
  • a product is stirred to emulsify monomers and the like in water, and the temperature is increased while stirring to initiate polymerization.
  • it is the method of putting into a sealed container and starting reaction similarly.
  • polymerization initiator examples include organic compounds such as lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, and 3,3,5-trimethylhexanoyl peroxide.
  • Peroxides examples include azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile; ammonium persulfate; potassium persulfate.
  • a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • Emulsifiers, dispersants, polymerization initiators, and the like are generally used in these polymerization methods, and the amount used is generally the amount generally used.
  • seed polymerization may be performed using seed particles.
  • the polymerization temperature and the polymerization time can be arbitrarily selected depending on the polymerization method and the kind of the polymerization initiator. Usually, the polymerization temperature is about 30 ° C. or more, and the polymerization time is about 0.5 to 30 hours. Further, additives such as amines may be used as a polymerization aid.
  • an aqueous dispersion of binder particles obtained by these methods is used, for example, alkali metal (for example, Li, Na, K, Rb, Cs) hydroxide, ammonia, inorganic ammonium compound (for example, NH 4 Cl).
  • the pH may be adjusted to a range of usually 5 to 10, preferably 5 to 9, by mixing with a basic aqueous solution containing an organic amine compound (eg, ethanolamine, diethylamine, etc.).
  • pH adjustment with an alkali metal hydroxide is preferable because it improves the binding property (peel strength) between the current collector and the negative electrode active material.
  • the binder particles described above may be composite polymer particles composed of two or more types of polymers.
  • the composite polymer particles are prepared by polymerizing at least one monomer component by a conventional method, then polymerizing at least one other monomer component, and polymerizing by a conventional method (two-stage polymerization method), etc. Can also be obtained. In this way, by polymerizing the monomer stepwise, it is possible to obtain core-shell structured particles having a core layer present inside the particle and a shell layer covering the core layer.
  • the amount of the binder is usually 0.3 parts by weight or more, preferably 0.5 parts by weight or more, usually 8 parts by weight or less, preferably 4 parts by weight or less, more preferably 100 parts by weight of the negative electrode active material. 2 parts by weight or less.
  • the water-soluble polymer according to the present invention specifies an ethylenically unsaturated carboxylic acid monomer unit, a (meth) acrylic acid ester monomer unit, and a fluorine-containing (meth) acrylic acid ester monomer unit. It is included in the composition ratio.
  • the water-soluble polymer in the negative electrode of the present invention it is possible to suppress the swelling of the negative electrode that accompanies charging and discharging, and it is possible to realize a secondary battery in which the capacity is not easily lowered even when stored in a high temperature environment.
  • the secondary battery of the present invention is usually coated with a negative electrode slurry composition of the present invention on a current collector, a negative electrode active material. Excellent adhesion of the layer to the current collector, and high temperature cycle characteristics and low temperature output characteristics. The reason why such an excellent effect can be obtained is not necessarily clear, but according to the study of the present inventor, it is presumed that the reason is as follows.
  • the ethylenically unsaturated carboxylic acid monomer unit contains a carboxyl group
  • the solubility of the water-soluble polymer according to the present invention in water is increased, and Adsorption of the water-soluble polymer according to the present invention to the negative electrode active material can be promoted.
  • the (meth) acrylic acid ester monomer unit has high strength, the molecule of the water-soluble polymer according to the present invention can be stabilized.
  • the water-soluble polymer according to the present invention is swellable in water (when the water-soluble polymer is immersed in water, the water-soluble polymer The degree of swelling by absorbing water is improved, and the water-soluble polymer can be elastically deformed. It is considered that the effects described above are achieved by combining these actions.
  • the water-soluble polymer when the negative electrode active material expands or contracts in the negative electrode, the water-soluble polymer can be elastically deformed following the expansion or contraction of the negative electrode active material, so that swelling of the negative electrode accompanying charge / discharge can be suppressed.
  • the binder cannot adhere to the negative electrode active material, and a gap is generated between the negative electrode active materials or between the negative electrode active material and the conductive agent.
  • the electrical connection between the active material and the conductive agent may be impaired. If the electrical connection is impaired, the electric capacity of the secondary battery may be reduced.
  • the water-soluble polymer can be elastically deformed following the expansion or contraction of the negative electrode active material, the generation of the gap can be suppressed and the electrical connection can be maintained, so that the cycle characteristics can be improved.
  • the water-soluble polymer is adsorbed on the surface of the negative electrode active material and covers the negative electrode active material to form a protective layer.
  • this protective layer decomposition of the electrolytic solution under a high temperature environment and decomposition of the electrolytic solution accompanying charge / discharge can be suppressed.
  • bubbles are generated around the negative electrode active material, which may hinder the transfer of electrons and reduce the electric capacity of the secondary battery.
  • the decomposition of the electrolytic solution can be suppressed by the water-soluble polymer, the decrease in electric capacity as described above can be suppressed, and the high temperature storage characteristics and the high temperature cycle characteristics can be improved.
  • the protective layer formed of the water-soluble polymer according to the present invention has higher ionic conductivity than a protective layer formed by a conventional additive such as carboxymethyl cellulose (hereinafter referred to as “CMC” as appropriate).
  • CMC carboxymethyl cellulose
  • the water-soluble polymer according to the present invention has swelling properties with respect to the electrolyte solution (when the water-soluble polymer is immersed in the electrolyte solution, the water-soluble polymer swells by absorbing the electrolyte solution). This is probably because of this. Since the ionic conductivity is high, the diffusion resistance (that is, the resistance that hinders the diffusion of ions) is reduced, so that the secondary battery of the present invention has high output characteristics, particularly excellent low-temperature output characteristics. In addition, even if it has swellability with respect to the electrolytic solution in this way, the solvent of the electrolytic solution is swollen to the extent that it cannot easily pass through the protective layer. To be demonstrated.
  • the water-soluble polymer according to the present invention is highly soluble in water and can be easily adsorbed on the negative electrode active material. For this reason, in the whole slurry composition for negative electrodes of this invention, a water-soluble polymer can cover the surface of the particle
  • the negative electrode active material is difficult to be produced when the negative electrode slurry composition is applied, a coating film having a uniform film thickness and composition can be easily formed. Moreover, since the negative electrode active material is well dispersed in the negative electrode active material layer obtained from the coating film thus formed, the electric capacity of the secondary battery can be improved.
  • the water-soluble polymer according to the present invention has high flexibility and is flexible, it easily adheres to the surface of the current collector and the surface of the negative electrode active material without any gap. For this reason, the water-soluble polymer can enhance the adhesion by supplementing the binder to the current collector and the negative electrode active material. Therefore, the adhesion of the negative electrode active material layer to the current collector can be improved.
  • the ethylenically unsaturated carboxylic acid monomer unit is a repeating unit obtained by polymerizing an ethylenically unsaturated carboxylic acid monomer.
  • the ethylenically unsaturated carboxylic acid monomer include ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof, and derivatives thereof.
  • Examples of the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid and the like.
  • Examples of derivatives of ethylenically unsaturated monocarboxylic acids include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, Examples thereof include ⁇ -diaminoacrylic acid.
  • Examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the acid anhydride of the ethylenically unsaturated dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like.
  • Examples of derivatives of ethylenically unsaturated dicarboxylic acids include methyl maleate such as methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid; diphenyl maleate, nonyl maleate, Examples thereof include maleic acid esters such as decyl maleate, dodecyl maleate, octadecyl maleate and fluoroalkyl maleate.
  • ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid are preferable. It is because the dispersibility with respect to water of the obtained water-soluble polymer can be improved more.
  • ethylenically unsaturated carboxylic acid monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer according to the present invention may contain only one type of ethylenically unsaturated carboxylic acid monomer unit, or may contain two or more types in combination at any ratio.
  • the ratio of the ethylenically unsaturated carboxylic acid monomer unit is usually 15% by weight or more, preferably 20% by weight or more, more preferably 25% by weight or more, and usually 50% by weight. % Or less, preferably 45% by weight or less, more preferably 40% by weight or less.
  • the (meth) acrylic acid ester monomer unit is a repeating unit obtained by polymerizing a (meth) acrylic acid ester monomer.
  • those containing fluorine are distinguished from (meth) acrylate monomers as fluorine-containing (meth) acrylate monomers.
  • Examples of (meth) acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t- Butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl Meth
  • a (meth) acrylic acid ester monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer according to the present invention may contain only one type of (meth) acrylic acid ester monomer unit, or may contain two or more types in combination at any ratio.
  • the ratio of the (meth) acrylic acid ester monomer unit is usually 30% by weight or more, preferably 35% by weight or more, more preferably 40% by weight or more, and usually 70% by weight or less.
  • the fluorine-containing (meth) acrylic acid ester monomer unit is a repeating unit obtained by polymerizing a fluorine-containing (meth) acrylic acid ester monomer.
  • Examples of the fluorine-containing (meth) acrylic acid ester monomer include monomers represented by the following formula (I).
  • R 1 Represents a hydrogen atom or a methyl group.
  • R 2 Represents a hydrocarbon group containing a fluorine atom.
  • the carbon number of the hydrocarbon group is usually 1 or more and usually 18 or less.
  • the number of fluorine atoms contained in R 2 may be one or two or more.
  • fluorine-containing (meth) acrylic acid ester monomers represented by formula (I) are: (meth) acrylic acid alkyl fluoride, (meth) acrylic acid fluoride aryl, (meth) acrylic acid fluoride Aralkyl etc. are mentioned. Of these, alkyl fluoride (meth) acrylate is preferable.
  • Such monomers include trifluoromethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, ⁇ - (perfluorooctyl) ethyl (meth) acrylate, (Meth) acrylic acid 2,2,3,3-tetrafluoropropyl, (meth) acrylic acid 2,2,3,4,4,4-hexafluorobutyl, (meth) acrylic acid 1H, 1H, 9H-par Fluoro-1-nonyl, 1H, 1H, 11H-perfluoroundecyl (meth) acrylate, perfluorooctyl (meth) acrylate, 3 [4 [1-trifluoromethyl-2,2- (meth) acrylic acid (Meth) acrylic acid perfluoroalkyl esters such as bis [bis (trifluoromethyl) fluoromethyl] ethynyloxy] benzooxy] 2-hydroxypropyl Etc.
  • a fluorine-containing (meth) acrylic acid ester monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer according to the present invention may contain only one type of fluorine-containing (meth) acrylic acid ester monomer unit, or may contain two or more types in combination at any ratio. .
  • the ratio of the fluorine-containing (meth) acrylate monomer unit is usually 0.5% by weight or more, preferably 1% by weight or more, and usually 10% by weight or less, preferably Is 5% by weight or less.
  • the water-soluble polymer according to the present invention is the above-described ethylenically unsaturated carboxylic acid monomer unit, (meth) acrylic acid ester monomer unit, and fluorine-containing (meth) acrylic, unless the effects of the present invention are significantly impaired.
  • a repeating unit other than the acid ester monomer unit may be included. Such a repeating unit is obtained by polymerizing a monomer copolymerizable with an ethylenically unsaturated carboxylic acid monomer, a (meth) acrylic acid ester monomer, or a fluorine-containing (meth) acrylic acid ester monomer. It is the repeating unit obtained.
  • Examples of the copolymerizable monomer include carboxylic acid ester monomers having two or more carbon-carbon double bonds such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
  • Styrene monomers such as styrene, chlorostyrene, vinyltoluene, t-butylstyrene, vinylbenzoic acid, methyl vinylbenzoate, vinylnaphthalene, chloromethylstyrene, hydroxymethylstyrene, ⁇ -methylstyrene, divinylbenzene; acrylamide, Amide monomers such as N-methylolacrylamide and acrylamide-2-methylpropanesulfonic acid; ⁇ , ⁇ -unsaturated nitrile compound monomers such as acrylonitrile and methacrylonitrile; Olefin such as ethylene and propylene Monomers; Monomers containing halogen atoms such as vinyl chloride
  • Vinyl ether monomers such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; heterocycles such as N-vinyl pyrrolidone, vinyl pyridine, and vinyl imidazole And vinyl compound monomers.
  • the said copolymerizable monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer according to the present invention is a repeating unit other than the ethylenically unsaturated carboxylic acid monomer unit, the (meth) acrylic acid ester monomer unit, and the fluorine-containing (meth) acrylic acid ester monomer unit. May be included, and two or more types may be combined in any ratio.
  • the ratio of repeating units other than the ethylenically unsaturated carboxylic acid monomer unit, the (meth) acrylic acid ester monomer unit, and the fluorine-containing (meth) acrylic acid ester monomer unit Is preferably 0 to 10% by weight, more preferably 0 to 5% by weight.
  • the weight average molecular weight of the water-soluble polymer is usually smaller than that of the polymer to be a binder, preferably 100 or more, more preferably 500 or more, particularly preferably 1000 or more, preferably 500000 or less, more preferably 250,000 or less. Particularly preferably, it is 100,000 or less.
  • the water-soluble polymer can be softened by setting it to the upper limit value or less of the above range, for example, it is possible to suppress swelling of the negative electrode and improve adhesion of the negative electrode active material layer to the current collector.
  • the weight average molecular weight of a water-soluble polymer as a value of polyethylene oxide conversion which used GPC as the developing solvent the solution which dissolved 0.85 g / ml sodium nitrate in 10 volume% aqueous solution of acetonitrile.
  • the glass transition temperature of the water-soluble polymer is usually 0 ° C. or higher, preferably 5 ° C. or higher, and is usually 100 ° C. or lower, preferably 50 ° C. or lower. When the glass transition temperature of the water-soluble polymer is in the above range, both the adhesion and flexibility of the negative electrode can be achieved.
  • the glass transition temperature of the water-soluble polymer can be adjusted by combining various monomers.
  • the water-soluble polymer has a viscosity of 0.1 mPa ⁇ s or more, preferably 1 mPa ⁇ s or more, more preferably 10 mPa ⁇ s or more, and usually 20000 mPa ⁇ s or less, preferably 1 wt% aqueous solution. It is 10,000 mPa ⁇ s or less, more preferably 5000 mPa ⁇ s or less.
  • the viscosity can be adjusted by, for example, the molecular weight of the water-soluble polymer.
  • the said viscosity is a value when it measures at 25 degreeC and rotation speed 60rpm using an E-type viscosity meter.
  • a method for producing a water-soluble polymer for example, a monomer containing the above-described ethylenically unsaturated carboxylic acid monomer, (meth) acrylic acid ester monomer, and fluorine-containing (meth) acrylic acid ester monomer
  • the composition may be produced by polymerization in an aqueous solvent.
  • the aqueous solvent and the polymerization method may be the same as in the production of the binder, for example.
  • an aqueous solution in which a water-soluble polymer is usually dissolved in an aqueous solvent is obtained.
  • the water-soluble polymer may be taken out from the aqueous solution thus obtained.
  • a negative electrode slurry composition is produced using the water-soluble polymer dissolved in an aqueous solvent, and the negative electrode slurry composition is prepared. To produce a negative electrode.
  • the aqueous solution containing the water-soluble polymer in an aqueous solvent is usually acidic, it may be alkalized to pH 7 to pH 13 as necessary. Thereby, the handleability of aqueous solution can be improved and the coating property of the slurry composition for negative electrodes can be improved.
  • Examples of the method for alkalinizing to pH 7 to pH 13 include alkali metal aqueous solutions such as lithium hydroxide aqueous solution, sodium hydroxide aqueous solution and potassium hydroxide aqueous solution; alkaline earth metal aqueous solutions such as calcium hydroxide aqueous solution and magnesium hydroxide aqueous solution; The method of mixing aqueous alkali solution, such as aqueous ammonia solution, is mentioned.
  • the said alkaline aqueous solution may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the water-soluble polymer is usually less than that of the binder, and is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, and particularly preferably 1 part by weight with respect to 100 parts by weight of the negative electrode active material. It is above, Preferably it is 10 weight part or less, More preferably, it is 5 weight part or less.
  • the negative electrode active material layer may contain other components in addition to the above-described negative electrode active material, binder, and water-soluble polymer.
  • the component include a viscosity modifier, a conductive agent, a reinforcing material, a leveling agent, and an electrolyte solution additive. These are not particularly limited as long as they do not affect the battery reaction. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the viscosity modifier is a component used for adjusting the viscosity of the negative electrode slurry composition of the present invention to improve the dispersibility and coating property of the negative electrode slurry composition.
  • the viscosity modifier contained in the negative electrode slurry composition remains in the negative electrode active material layer.
  • a water-soluble polysaccharide as the viscosity modifier.
  • examples of polysaccharides include natural polymers and cellulose semisynthetic polymers.
  • a viscosity modifier may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • natural polymers examples include polysaccharides and proteins derived from plants or animals.
  • natural polymers that have been subjected to fermentation treatment with microorganisms, heat treatment, or the like can also be exemplified. These natural polymers can be classified as plant natural polymers, animal natural polymers, microbial natural polymers, and the like.
  • Examples of plant-based natural polymers include gum arabic, gum tragacanth, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, cannan, quince seed (malmello), arche colloid (gasso extract), starch (rice, corn, potato, Derived from wheat and the like), glycyrrhizin and the like.
  • Examples of animal-based natural polymers include collagen, casein, albumin, gelatin, and the like.
  • examples of the microbial natural polymer include xanthan gum, dextran, succinoglucan, and bullulan.
  • Cellulosic semisynthetic polymers can be classified into nonionic, anionic and cationic.
  • Nonionic cellulose semisynthetic polymers include, for example, alkylcelluloses such as methylcellulose, methylethylcellulose, ethylcellulose, and microcrystalline cellulose; hydroxyethylcellulose, hydroxybutylmethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxypropyl And hydroxyalkylcelluloses such as methylcellulose stearoxy ether, carboxymethylhydroxyethylcellulose, alkylhydroxyethylcellulose, and nonoxynylhydroxyethylcellulose;
  • anionic cellulose semisynthetic polymer examples include alkyl celluloses obtained by substituting the above nonionic cellulose semisynthetic polymer with various derivative groups, and sodium salts and ammonium salts thereof. Specific examples include sodium cellulose sulfate, methyl cellulose, methyl ethyl cellulose, ethyl cellulose, carboxymethyl cellulose (CMC) and salts thereof.
  • Examples of cationic cellulose semisynthetic polymers include low nitrogen hydroxyethyl cellulose dimethyl diallyl ammonium chloride (polyquaternium-4), O- [2-hydroxy-3- (trimethylammonio) propyl] hydroxyethyl cellulose (polyquaternium- 10), and O- [2-hydroxy-3- (lauryldimethylammonio) propyl] hydroxyethylcellulose chloride (polyquaternium-24).
  • cellulose-based semi-synthetic polymers sodium salts thereof and ammonium salts thereof are preferable because they can have cationic, anionic and amphoteric characteristics.
  • an anionic cellulose semisynthetic polymer is particularly preferable from the viewpoint of dispersibility of the negative electrode active material.
  • the degree of etherification of the cellulose semisynthetic polymer is preferably 0.5 or more, more preferably 0.6 or more, preferably 1.0 or less, more preferably 0.8 or less.
  • the degree of etherification refers to the degree of substitution of hydroxyl groups (three) per anhydroglucose unit in cellulose with a substitution product such as a carboxymethyl group.
  • the degree of etherification can theoretically take a value of 0-3.
  • the cellulosic semi-synthetic polymer adsorbs on the surface of the negative electrode active material and is compatible with water, so it has excellent dispersibility, and the negative electrode active material is at the primary particle level. Can be finely dispersed.
  • the average degree of polymerization of the viscosity modifier calculated from the intrinsic viscosity obtained from an Ubbelohde viscometer is preferably 500 or more, more preferably 1000 or more. It is preferably 2500 or less, more preferably 2000 or less, and particularly preferably 1500 or less.
  • the average degree of polymerization of the viscosity modifier may affect the fluidity of the negative electrode slurry composition of the present invention, the film uniformity of the negative electrode active material layer, and the process in the process. By making the average degree of polymerization within the above range, the stability of the negative electrode slurry composition of the present invention over time can be improved, and coating without agglomerates and without thickness unevenness becomes possible.
  • the amount of the viscosity modifier is preferably 0 part by weight or more and preferably 0.5 part by weight or less with respect to 100 parts by weight of the negative electrode active material.
  • the conductive agent is a component that improves electrical contact between the negative electrode active materials. By including the conductive agent, the discharge rate characteristics of the secondary battery of the present invention can be improved.
  • a conductive agent for example, acetylene black, ketjen black, carbon black, graphite, vapor grown carbon fiber, conductive carbon such as carbon nanotube, and the like can be used.
  • a electrically conductive agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the conductive agent is preferably 1 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material.
  • the reinforcing material for example, various inorganic and organic spherical, plate, rod or fiber fillers can be used. By using the reinforcing material, a tough and flexible negative electrode can be obtained, and a secondary battery exhibiting excellent long-term cycle characteristics can be realized.
  • the amount of the reinforcing material is usually 0.01 parts by weight or more, preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 10 parts by weight or less, with respect to 100 parts by weight of the negative electrode active material.
  • leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants.
  • the amount of the leveling agent is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material.
  • the leveling agent is in the above range, the productivity, smoothness, and battery characteristics during the production of the negative electrode are excellent.
  • the dispersibility of the negative electrode active material and the like in the negative electrode slurry composition can be improved, and the smoothness of the negative electrode obtained thereby can be improved.
  • Examples of the electrolytic solution additive include vinylene carbonate. By using the electrolytic solution additive, for example, decomposition of the electrolytic solution can be suppressed.
  • the amount of the electrolytic solution additive is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. By setting the amount of the electrolytic solution additive in the above range, a secondary battery excellent in cycle characteristics and high temperature characteristics can be realized.
  • the negative electrode active material layer may contain nanoparticles, such as fumed silica and fumed alumina, for example.
  • nanoparticles such as fumed silica and fumed alumina
  • the thixotropy of the negative electrode slurry composition can be adjusted, so that the leveling property of the negative electrode of the present invention obtained thereby can be improved.
  • the amount of the nanoparticles is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. When the nanoparticles are in the above range, the stability and productivity of the negative electrode slurry composition can be improved, and high battery characteristics can be realized.
  • the negative electrode of the present invention includes a negative electrode active material layer containing the above-described negative electrode active material, binder and water-soluble polymer, and other components used as necessary.
  • This negative electrode active material layer is usually provided on the surface of the current collector.
  • the negative electrode active material layer may be provided on at least one side of the current collector, but is preferably provided on both sides.
  • the current collector for the negative electrode is not particularly limited as long as it has electrical conductivity and is electrochemically durable, but a metal material is preferable because of its heat resistance.
  • a metal material is preferable because of its heat resistance.
  • the material for the current collector for the negative electrode include iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum.
  • copper is particularly preferable as the current collector used for the secondary battery negative electrode.
  • the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 mm to 0.5 mm is preferable.
  • the current collector is preferably used after roughening the surface in advance.
  • the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a mechanical polishing method usually, a polishing cloth with an abrasive particle fixed thereto, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity of the negative electrode active material layer.
  • a negative electrode active material layer is provided on the surface of the current collector.
  • the thickness of the negative electrode active material layer is usually 5 ⁇ m or more, preferably 30 ⁇ m or more, and is usually 300 ⁇ m or less, preferably 250 ⁇ m or less. When the thickness of the negative electrode active material layer is in the above range, load characteristics and cycle characteristics can be improved.
  • the content ratio of the negative electrode active material in the negative electrode active material layer is preferably 85% by weight or more, more preferably 88% by weight or more, preferably 99% by weight or less, more preferably 97% by weight or less.
  • the method for producing the negative electrode for secondary battery of the present invention (hereinafter referred to as “the method for producing the negative electrode of the present invention” as appropriate) is not particularly limited.
  • the slurry composition for negative electrode of the present invention is prepared, You may manufacture by the manufacturing method including apply
  • the negative electrode slurry composition of the present invention is a slurry-like composition containing a negative electrode active material, a binder, a water-soluble polymer, and water.
  • the slurry composition for negative electrodes of this invention may contain components other than a negative electrode active material, a binder, a water-soluble polymer, and water as needed.
  • the amount of the negative electrode active material, the binder, the water-soluble polymer, and the components included as necessary is usually the same as the amount of each component included in the negative electrode active material layer.
  • a part of the water-soluble polymer is usually dissolved in water, but another part of the water-soluble polymer is adsorbed on the surface of the negative electrode active material.
  • the negative electrode active material is covered with a stable layer of a water-soluble polymer, and the dispersibility of the negative electrode active material in the solvent is improved.
  • the slurry composition for negative electrodes of this invention has the favorable coating property at the time of apply
  • Water functions as a solvent or a dispersion medium in the negative electrode slurry composition, and the negative electrode active material is dispersed, the binder is dispersed in the form of particles, and the water-soluble polymer is dissolved.
  • a liquid other than water may be used as a solvent in combination with water. It is preferable to combine a binder and a liquid that dissolves the water-soluble polymer because the dispersion of the negative electrode active material is stabilized by adsorbing the binder and the water-soluble polymer to the surface.
  • the type of liquid to be combined with water is preferably selected from the viewpoint of drying speed and environment.
  • Preferred examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ⁇ -butyrolactone, Esters such as ⁇ -caprolactone; Acylonitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N— Examples include amides such as methylpyrrolidone and N, N-dimethylformamide, among which N-methylpyrrolidone (NMP) is preferable. In
  • the amount of water and the liquid is preferably adjusted so that the viscosity of the slurry composition for negative electrode of the present invention is suitable for coating.
  • the concentration of the solid content of the slurry composition for negative electrode of the present invention is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 90% by weight or less, more preferably 80% by weight. It is used by adjusting to the following amount.
  • the negative electrode slurry composition of the present invention may be produced by mixing the negative electrode active material, the binder, the water-soluble polymer, water, and components used as necessary.
  • the mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.
  • the negative electrode slurry of the present invention can be produced by applying the slurry composition for negative electrode of the present invention to the surface of the current collector and drying it to form a negative electrode active material layer on the surface of the current collector.
  • the method for applying the negative electrode slurry composition of the present invention to the surface of the current collector is not particularly limited.
  • Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying time is usually from 5 minutes to 30 minutes, and the drying temperature is usually from 40 ° C to 180 ° C.
  • the negative electrode active material layer after applying and drying the negative electrode slurry composition on the surface of the current collector, it is preferable to subject the negative electrode active material layer to a pressure treatment using, for example, a die press or a roll press, if necessary. .
  • the porosity of the negative electrode active material layer can be lowered.
  • the porosity is preferably 5% or more, more preferably 7% or more, preferably 30% or less, more preferably 20% or less.
  • the negative electrode active material layer contains a curable polymer
  • the secondary battery of the present invention includes the negative electrode of the present invention.
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the negative electrode is the negative electrode of the present invention. Since the negative electrode of the present invention is provided, the secondary battery of the present invention can suppress swelling of the negative electrode accompanying charging / discharging, or make it difficult to reduce the capacity even when stored in a high temperature environment. Moreover, normally, the high-temperature cycle characteristics and low-temperature output characteristics of the secondary battery of the present invention can be improved, and the adhesion of the negative electrode active material layer to the current collector can be improved.
  • the positive electrode usually includes a current collector and a positive electrode active material layer including a positive electrode active material and a positive electrode binder formed on the surface of the current collector.
  • the current collector of the positive electrode is not particularly limited as long as it is a material having electrical conductivity and electrochemical durability.
  • the current collector for the positive electrode for example, the current collector used for the negative electrode of the present invention may be used. Among these, aluminum is particularly preferable.
  • the positive electrode active material for example, when the secondary battery of the present invention is a lithium ion secondary battery, a material capable of inserting and removing lithium ions is used.
  • Such positive electrode active materials are roughly classified into those made of inorganic compounds and those made of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like.
  • Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
  • transition metal oxide examples include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 and the like can be mentioned. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity.
  • transition metal sulfide examples include TiS 2 , TiS 3 , amorphous MoS 2 , FeS, and the like.
  • lithium-containing composite metal oxide examples include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
  • lithium-containing composite metal oxide having a layered structure examples include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), lithium composite oxide of Co—Ni—Mn, Ni—Mn— Examples thereof include lithium composite oxides of Al and lithium composite oxides of Ni—Co—Al.
  • lithium-containing composite metal oxide having a spinel structure examples include Li [Mn 3/2 M 1/2 ] O 4 in which lithium manganate (LiMn 2 O 4 ) or a part of Mn is substituted with another transition metal. (Where M is Cr, Fe, Co, Ni, Cu, etc.).
  • lithium-containing composite metal oxide having an olivine type structure examples include Li X MPO 4 (wherein M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti).
  • Examples of the positive electrode active material made of an organic compound include conductive polymers such as polyacetylene and poly-p-phenylene.
  • the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound.
  • a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and this composite material may be used as a positive electrode active material.
  • Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.
  • you may use as a positive electrode active material what carried out the element substitution of the said compound partially.
  • a positive electrode active material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the volume average particle diameter of the positive electrode active material particles is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the volume average particle diameter of the positive electrode active material particles is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is preferably 90% by weight or more, more preferably 95% by weight or more, preferably 99.9% by weight or less, more preferably 99% by weight or less.
  • binder for the positive electrode examples include polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, and polyacrylonitrile derivatives.
  • Resins; Soft polymers such as acrylic soft polymers, diene soft polymers, olefin soft polymers, and vinyl soft polymers can be used.
  • a binder may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the positive electrode active material layer may contain components other than the positive electrode active material and the binder as necessary. Examples thereof include a viscosity modifier, a conductive agent, a reinforcing material, a leveling agent, an electrolytic solution additive, and the like. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the thickness of the positive electrode active material layer is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and usually 300 ⁇ m or less, preferably 250 ⁇ m or less. When the thickness of the positive electrode active material layer is in the above range, high characteristics can be realized in both load characteristics and energy density.
  • the positive electrode may be manufactured, for example, in the same manner as the above-described negative electrode.
  • Electrolyte As the electrolytic solution, for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent may be used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the amount of the supporting electrolyte is usually 1% by weight or more, preferably 5% by weight or more, and usually 30% by weight or less, preferably 20% by weight or less with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the secondary battery may be lowered.
  • the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • the solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); Esters such as butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide;
  • dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferred because high ion conductivity is easily obtained and the use temperature range is wide.
  • a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • an additive may be included in the electrolytic solution as necessary.
  • carbonate compounds such as vinylene carbonate (VC) are preferable.
  • an additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution; an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N; Can do.
  • separator As the separator, a porous substrate having a pore portion is usually used.
  • separators include (a) a porous separator having pores, (b) a porous separator having a polymer coating layer formed on one or both sides, and (c) a porous resin coat containing inorganic ceramic powder. And a porous separator having a layer formed thereon.
  • these include solid polymer electrolytes such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers.
  • a polymer film for a gel polymer electrolyte a separator coated with a gelled polymer coat layer; a separator coated with a porous film layer composed of an inorganic filler and an inorganic filler dispersant; and the like.
  • the manufacturing method of the secondary battery of the present invention is not particularly limited.
  • the above-described negative electrode and positive electrode may be overlapped via a separator, and this may be wound or folded in accordance with the shape of the battery and placed in the battery container, and the electrolyte may be injected into the battery container and sealed.
  • an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge.
  • the shape of the battery may be any of, for example, a laminate cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.
  • Adhesive strength The negative electrodes produced in Examples and Comparative Examples were cut into rectangles having a length of 100 mm and a width of 10 mm to obtain test pieces. A cellophane tape was affixed on the surface of the negative electrode active material layer of the test piece with the surface of the negative electrode active material layer facing down. At this time, a cellophane tape defined in JIS Z1522 was used. Moreover, the cellophane tape was fixed to the test bench. Then, the stress when one end of the current collector was pulled vertically upward at a pulling speed of 50 mm / min and peeled was measured. This measurement was performed 3 times, the average value was calculated
  • Coating property Apply the slurry composition for negative electrode manufactured in Examples and Comparative Examples on a 20 ⁇ m thick copper foil as a current collector so that the film thickness after drying is about 150 ⁇ m, and then dry. It was. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode. The obtained negative electrode was cut out with a size of 10 ⁇ 10 cm, and the number of pinholes having a diameter of 0.1 mm or more was visually measured. The smaller the number of pinholes, the better the coatability.
  • Viscosity of 1% aqueous solution of water-soluble polymer A 1% aqueous solution of a water-soluble polymer was prepared from 10% aqueous ammonia and ion-exchanged water for the water-soluble polymers produced in Examples and Comparative Examples. The viscosity of this aqueous solution was measured with a B-type viscometer.
  • Example 1 (Production of water-soluble polymer) In a 5 MPa pressure vessel with a stirrer, 67.5 parts of ethyl acrylate as a (meth) acrylic acid ester monomer, 30 parts of methacrylic acid as an ethylenically unsaturated carboxylic acid monomer, fluorine-containing (meth) acrylic acid ester After adding 2.5 parts of trifluoromethyl methacrylate as a body, 1.0 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator, The polymerization was started by heating to 60 ° C.
  • the reaction was stopped by cooling to obtain an aqueous dispersion containing a binder made of styrene butadiene rubber (hereinafter referred to as “SBR” where appropriate).
  • SBR styrene butadiene rubber
  • a 5% aqueous sodium hydroxide solution was added to the aqueous dispersion containing the binder thus obtained to adjust the pH to 8, and then the unreacted monomer was removed by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the aqueous dispersion containing a desired binder.
  • the weight average molecular weight of the obtained binder was measured and found to be 1500,000.
  • the aqueous solution containing the water-soluble polymer was diluted with water to adjust the concentration to 5%.
  • a planetary mixer with a disper 50 parts of SiOC (volume average particle diameter: 12 ⁇ m) as an anode active material and 50 parts of artificial graphite (volume average particle diameter: 24.5 ⁇ m) having a specific surface area of 4 m 2 / g and the above water-soluble
  • a 1% portion of a 5% aqueous solution of a polymer was added in an amount corresponding to the solid content, adjusted to a solid content concentration of 55% with ion-exchanged water, and then mixed at 25 ° C for 60 minutes.
  • the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution.
  • a 40% aqueous dispersion of an acrylate polymer having a glass transition temperature Tg of ⁇ 40 ° C. and a number average particle size of 0.20 ⁇ m was prepared.
  • the acrylate polymer is a copolymer obtained by emulsion polymerization of a monomer mixture containing 78% by weight of 2-ethylhexyl acrylate, 20% by weight of acrylonitrile, and 2% by weight of methacrylic acid.
  • LiFePO 4 having a volume average particle size of 0.5 ⁇ m and having an olivine crystal structure as a positive electrode active material and a 1% aqueous solution of carboxymethyl cellulose (“BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a dispersant 1 part at a time and a 40% aqueous dispersion of the above acrylate polymer as a binder are mixed with 5 parts at a solid content, and ion-exchanged water is added to this so that the total solid content concentration is 40%.
  • the slurry composition for positive electrodes was prepared by mixing with a planetary mixer.
  • the above positive electrode slurry composition was applied on a copper foil having a thickness of 20 ⁇ m as a current collector by a comma coater so that the film thickness after drying was about 200 ⁇ m and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, it heat-processed for 2 minutes at 120 degreeC, and obtained the positive electrode.
  • a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m, manufactured by a dry method, porosity 55%) was cut into a circle having a diameter of 18 mm.
  • Lithium ion secondary battery An aluminum packaging exterior was prepared as the battery exterior.
  • the positive electrode was placed so that the surface of the current collector was in contact with the aluminum packaging exterior.
  • a separator was disposed on the surface of the positive electrode active material layer of the positive electrode.
  • the negative electrode was placed on the separator so that the surface of the negative electrode active material layer faced the separator.
  • Example 2 In a 5 MPa pressure vessel equipped with a stirrer, 33 parts of 1,3-butadiene which is an aliphatic conjugated diene monomer, 1.5 parts of methacrylic acid which is an ethylenically unsaturated carboxylic acid monomer, 65.5 parts of acrylonitrile, 4 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then heated to 50 ° C. to initiate polymerization.
  • NBR nitrile butadiene rubber
  • Example 1 In the production of the slurry composition for the negative electrode, the same procedure as in Example 1 was used except that the aqueous dispersion containing the binder composed of the NBR was used instead of the aqueous dispersion containing the binder used in Example 1. A lithium ion secondary battery was manufactured, and each evaluation item was evaluated. The results are shown in Table 1.
  • Example 3 In a 5 MPa pressure vessel equipped with a stirrer, 76 parts of 2-ethylhexyl acrylate as an acrylate ester, 4 parts of methacrylic acid as an ethylenically unsaturated carboxylic acid monomer, 20 parts of acrylonitrile, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, After adding 150 parts of ion exchange water and 0.5 part of potassium persulfate as a polymerization initiator and stirring sufficiently, the mixture was heated to 50 ° C. to initiate polymerization.
  • Example 1 In the production of the negative electrode slurry composition, the same procedure as in Example 1 was used, except that the aqueous dispersion containing the binder composed of the ACR was used instead of the aqueous dispersion containing the binder used in Example 1. A lithium ion secondary battery was manufactured, and each evaluation item was evaluated. The results are shown in Table 1.
  • Example 4 In the production of the water-soluble polymer, the amount of methacrylic acid, which is an ethylenically unsaturated carboxylic acid monomer, is changed to 20 parts, and the amount of ethyl acrylate, which is a (meth) acrylic acid ester monomer, is 77.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 5 parts, and each evaluation item was evaluated. The results are shown in Table 1.
  • Example 5 In the production of the water-soluble polymer, the amount of methacrylic acid that is an ethylenically unsaturated carboxylic acid monomer is changed to 25 parts, and the amount of ethyl acrylate that is a (meth) acrylic acid ester monomer is 72.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 5 parts, and each evaluation item was evaluated. The results are shown in Table 1.
  • Example 6 In the production of the water-soluble polymer, the amount of methacrylic acid that is an ethylenically unsaturated carboxylic acid monomer is changed to 40 parts, and the amount of ethyl acrylate that is a (meth) acrylic acid ester monomer is 57.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 5 parts, and each evaluation item was evaluated. The results are shown in Table 2.
  • Example 7 In the production of the water-soluble polymer, the amount of methacrylic acid that is an ethylenically unsaturated carboxylic acid monomer is changed to 45 parts, and the amount of ethyl acrylate that is a (meth) acrylate monomer is 52.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 5 parts, and each evaluation item was evaluated. The results are shown in Table 2.
  • Example 8 In the production of the water-soluble polymer, the amount of ethyl acrylate which is a (meth) acrylate monomer is changed to 69 parts, and the amount of trifluoromethyl methacrylate which is a fluorine-containing (meth) acrylate monomer is changed.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 1 part, and each evaluation item was evaluated. The results are shown in Table 2.
  • Example 9 In the production of the water-soluble polymer, the amount of ethyl acrylate which is a (meth) acrylate monomer is changed to 65 parts, and the amount of trifluoromethyl methacrylate which is a fluorine-containing (meth) acrylate monomer is changed.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 5 parts, and each evaluation item was evaluated. The results are shown in Table 2.
  • Example 10 In the production of the water-soluble polymer, the amount of ethyl acrylate which is a (meth) acrylate monomer is changed to 61 parts, and the amount of trifluoromethyl methacrylate which is a fluorine-containing (meth) acrylate monomer is changed.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 9 parts, and each evaluation item was evaluated. The results are shown in Table 2.
  • Example 11 In the production of the water-soluble polymer, lithium ion dioxide was prepared in the same manner as in Example 1 except that trifluoromethyl acrylate was used instead of trifluoromethyl methacrylate as the fluorine-containing (meth) acrylic acid ester monomer. A secondary battery was manufactured, and each evaluation item was evaluated. The results are shown in Table 3.
  • Example 12 In the production of the water-soluble polymer, lithium ion 2 was prepared in the same manner as in Example 1 except that perfluorooctyl methacrylate was used instead of trifluoromethyl methacrylate as the fluorine-containing (meth) acrylate monomer. A secondary battery was manufactured, and each evaluation item was evaluated. The results are shown in Table 3.
  • Example 13 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount of the aqueous solution of the water-soluble polymer was changed to 0.7 parts corresponding to the solid content when producing the slurry composition for the negative electrode. Each evaluation item was evaluated. The results are shown in Table 3.
  • Example 14 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount of the aqueous solution of the water-soluble polymer was changed to 0.5 parts corresponding to the solid content when producing the slurry composition for the negative electrode. Each evaluation item was evaluated. The results are shown in Table 3.
  • Example 15 In the production of the slurry composition for the negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 1 except that 100 parts of SiOC was used without using artificial graphite as the negative electrode active material. Evaluation was performed. The results are shown in Table 3. Moreover, the capacity
  • Example 16 In producing the negative electrode slurry composition, a lithium ion secondary battery was produced in the same manner as in Example 1 except that 100 parts of artificial graphite was used without using SiOC as the negative electrode active material. Evaluation was performed. The results are shown in Table 4. Moreover, the capacity
  • Example 17 In the production of the negative electrode slurry composition, a lithium ion secondary battery was produced in the same manner as in Example 1 except that 20 parts of SiOC and 80 parts of artificial graphite were used as the negative electrode active material. Evaluation was performed. The results are shown in Table 4.
  • Example 18 In the production of the water-soluble polymer, a lithium ion secondary battery was produced in the same manner as in Example 1 except that acrylic acid was used instead of methacrylic acid as the ethylenically unsaturated carboxylic acid monomer. Each evaluation item was evaluated. The results are shown in Table 4.
  • Example 19 In the production of the slurry composition for the negative electrode, instead of adding 1 part of the aqueous solution of the water-soluble polymer corresponding to the solid content, 0.5 part of the aqueous solution of the water-soluble polymer and carboxy which is a cellulose-based thickener.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that 0.5 part of methylcellulose was added in combination, and each evaluation item was evaluated. The results are shown in Table 4.
  • Example 1 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that 1 part of carboxymethyl cellulose was added instead of adding 1 part of an aqueous solution of a water-soluble polymer corresponding to the solid content during the production of the negative electrode slurry composition. Manufactured and evaluated each evaluation item. The results are shown in Table 5.
  • the secondary battery obtained by the present invention is a secondary battery that exhibits practically excellent performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 負極活物質、バインダー及び水溶性重合体を含む二次電池用負極において、前記水溶性重合体として、エチレン性不飽和カルボン酸単量体単位15重量%~50重量%、(メタ)アクリル酸エステル単量体単位30重量%~70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位0.5重量%~10重量%を含む共重合体を用いる。

Description

二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
 本発明は、例えばリチウムイオン二次電池等の二次電池に設けられる二次電池用負極、当該二次電池用負極を製造するための負極用スラリー組成物、当該二次電池用負極の製造方法、並びに当該二次電池用負極を備えた二次電池に関する。
 近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源として用いられている二次電池には、例えばニッケル水素二次電池、リチウムイオン二次電池などが多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化および高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、二次電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化および高性能化が要求されている。
 二次電池の高性能化のために、電極、電解液およびその他の電池部材の改良が検討されている。このうち、電極は、通常、水や有機溶媒等の溶媒にバインダー(結着剤)となる重合体を分散または溶解させた液状の組成物に、電極活物質および必要に応じて導電性カーボン等の導電剤を混合してスラリー組成物を得、このスラリー組成物を集電体に塗布し、乾燥して製造される。電極については、電極活物質及び集電体そのものの検討の他、電極活物質などを集電体に結着するためのバインダー、並びに各種の添加剤の検討も行われている(例えば特許文献1~4参照)。
 例えば、特許文献1や特許文献2には、炭素材活物質及び水分散エマルジョン樹脂と水溶性高分子から構成される結合剤を含む非水系二次電池の負極用スラリーが記載されている。水溶性高分子としては、ポリビニルアルコール、カルボキシメチルセルロース、ポリアクリル酸ナトリウムなどが記載されている。これによれば、電池の塗膜強度や塗膜密度が良好になる旨記載されている。
 特許文献3には、フッ素含有不飽和単量体0.02~13重量%、脂肪族共役ジエン単量体10~38重量%、エチレン性不飽和カルボン酸単量体0.1~10重量%およびこれらと共重合可能な他の単量体49~88.88重量%から構成される単量体を乳化重合して得られた共重合体ラテックスからなる二次電池電極用バインダーが記載されている。これによれば、配合安定性、耐ブロッキング性、耐粉落ち適性、結着力に優れる旨記載されている。
 さらに、特許文献4には、(メタ)アクリル酸フッ化アルキルなどのフッ素原子含有単量体由来の単量体単位を有する重合体からなる二次電池電極用バインダーが記載されている。そして、塗布性を向上させたり、充放電特性を向上させるために、セルロース系ポリマー、ポリアクリル酸塩などを加えることができる旨記載されている。これによれば、活物質との結着性が持続的に良好な電極が得られる旨記載されている。
特開2003-308841号公報 特開2003-217573号公報 特開2010-146870号公報 特開2002-42819号公報
 二次電池においては、充放電に伴って、負極に含まれる電極活物質の粒子が膨張及び収縮することがある。このような膨張及び収縮が繰り返されると、次第に負極が膨らみ、二次電池が変形する可能性がある。そこで、前記のような負極の膨らみを抑制しうる技術の開発が望まれる。
 また、従来の二次電池には、例えば60℃という高温環境で保存すると容量が低下するものがあった。そこで、二次電池を高温環境で保存した場合でも当該二次電池の容量の低下を抑制しうる技術の開発も望まれている。
 本発明は上述した課題に鑑みて創案されたもので、充放電に伴う負極の膨らみを抑制でき、且つ、高温環境で保存した場合でも容量が低下し難い二次電池を実現できる二次電池用負極、前記の二次電池用負極を製造できる負極用スラリー組成物及び二次電池用負極の製造方法、並びに、前記の二次電池用負極を備えた二次電池を提供することを目的とする。
 本発明者は前記の課題を解決するべく鋭意検討した結果、二次電池用負極の電極活物質層に、エチレン性不飽和カルボン酸単量体単位と、(メタ)アクリル酸エステル単量体単位と、フッ素含有(メタ)アクリル酸エステル単量体単位とをそれぞれ特定の比率で含む水溶性重合体を含ませることにより、充放電に伴う負極の膨らみを抑制でき、且つ、高温環境で保存した場合でも容量を低下し難くできることを見出し、本発明を完成させた。
 すなわち、本発明によれば以下の〔1〕~〔10〕が提供される。
 〔1〕 負極活物質、バインダー及び水溶性重合体を含む二次電池用負極であって、
 前記水溶性重合体が、エチレン性不飽和カルボン酸単量体単位15重量%~50重量%、(メタ)アクリル酸エステル単量体単位30重量%~70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位0.5重量%~10重量%を含む共重合体である、二次電池用負極。
 〔2〕 前記負極活物質が、リチウムを吸蔵及び放出でき、金属を含む、〔1〕記載の二次電池用負極。
 〔3〕 前記負極活物質が、Siを含有する化合物である、〔1〕又は〔2〕記載の二次電池用負極。
 〔4〕 前記バインダーが、脂肪族共役ジエン単量体単位を含む重合体である、〔1〕~〔3〕のいずれか一項に記載の二次電池用負極。
 〔5〕 前記バインダーが、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含む重合体である、〔1〕~〔4〕のいずれか一項に記載の二次電池用負極。
 〔6〕 前記水溶性重合体のエチレン性不飽和カルボン酸単量体が、エチレン性不飽和モノカルボン酸単量体である、〔1〕~〔5〕のいずれか一項に記載の二次電池用負極。
 〔7〕 前記水溶性重合体の1重量%水溶液の粘度が、0.1mPa・s~20000mPa・sである、〔1〕~〔6〕のいずれか一項に記載の二次電池用負極。
 〔8〕 正極、負極、電解液、及びセパレーターを備える二次電池であって、
 前記負極が、〔1〕~〔7〕のいずれか一項に記載の二次電池用負極である、二次電池。
 〔9〕 負極活物質、バインダー、水溶性重合体及び水を含む負極用スラリー組成物であって、
 前記水溶性重合体が、エチレン性不飽和カルボン酸単量体単位15重量%~50重量%、(メタ)アクリル酸エステル単量体単位30重量%~70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位0.5重量%~10重量%を含む共重合体である、負極用スラリー組成物。
 〔10〕 〔9〕記載の負極用スラリー組成物を、集電体の表面に塗布し、乾燥させることを含む、二次電池用負極の製造方法。
 本発明の二次電池用負極によれば、充放電に伴う負極の膨らみを抑制でき、且つ、高温環境で保存した場合でも容量を低下し難くしうる二次電池を実現できる。
 本発明の二次電池は、充放電に伴う負極の膨らみを抑制でき、且つ、高温環境で保存した場合でも容量を低下し難い。
 本発明の負極用スラリー組成物を用いれば、本発明の二次電池用負極を製造できる。
 本発明の二次電池用負極の製造方法によれば、本発明の二次電池用負極を製造できる。
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。なお、本明細書において、「(メタ)アクリル」は「アクリル」又は「メタクリル」を意味する。また、「正極活物質」とは正極用の電極活物質を意味し、「負極活物質」とは負極用の電極活物質を意味する。さらに、「正極活物質層」とは正極に設けられる電極活物質層を意味し、「負極活物質層」とは負極に設けられる電極活物質層を意味する。
[1.二次電池用負極]
 本発明の二次電池用負極(以下、適宜「本発明の負極」という。)は、負極活物質、バインダー及び水溶性重合体を含む。通常、本発明の負極は、集電体と、前記集電体の表面に形成された負極活物質層とを備え、負極活物質層が前記の負極活物質、バインダー及び水溶性重合体を含む。
 [1-1.負極活物質]
 負極活物質は、負極用の電極活物質であり、二次電池の負極において電子の受け渡しをする物質である。
 例えば本発明の二次電池がリチウムイオン二次電池である場合には、負極活物質として、通常は、リチウムを吸蔵及び放出しうる物質を用いる。このようにリチウムを吸蔵及び放出しうる物質としては、例えば、金属系活物質、炭素系活物質、及びこれらを組み合わせた活物質などが挙げられる。
 金属系活物質とは、金属を含む活物質であり、通常は、リチウムの挿入(ドープともいう)が可能な元素を構造に含み、リチウムが挿入された場合の重量あたりの理論電気容量が500mAh/g以上である活物質をいう。なお、当該理論電気容量の上限は、特に限定されないが、例えば5000mAh/g以下でもよい。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成する単体金属及びその合金、並びにそれらの酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が用いられる。
 リチウム合金を形成する単体金属としては、例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Ti等の単体金属が挙げられる。また、リチウム合金を形成する単体金属の合金としては、例えば、上記単体金属を含有する化合物が挙げられる。これらの中でもケイ素(Si)、スズ(Sn)、鉛(Pb)及びチタン(Ti)が好ましく、ケイ素、スズ及びチタンがより好ましい。したがって、ケイ素(Si)、スズ(Sn)又はチタン(Ti)の単体金属若しくはこれら単体金属を含む合金、または、それらの金属の化合物が好ましい。
 金属系活物質は、さらに、一つ以上の非金属元素を含有していてもよい。例えば、SiC、SiO(0<x≦3、0<y≦5)、Si、SiO、SiO(0<x≦2)、SnO(0<x≦2)、LiSiO、LiSnO等が挙げられる。中でも、低電位でリチウムの挿入及び脱離(脱ドープともいう)が可能なSiOが好ましい。例えば、SiOは、ケイ素を含む高分子材料を焼成して得ることができる。SiOの中でも、容量とサイクル特性の兼ね合いから、0.8≦x≦3、2≦y≦4の範囲が好ましく用いられる。
 リチウム金属、リチウム合金を形成する単体金属及びその合金の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物としては、リチウムの挿入可能な元素の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が挙げられる。その中でも、酸化物が特に好ましい。例えば、酸化スズ、酸化マンガン、酸化チタン、酸化ニオブ、酸化バナジウム等の酸化物と、Si、Sn、PbおよびTi原子よりなる群から選ばれる金属元素とを含むリチウム含有金属複合酸化物が用いられる。
 リチウム含有金属複合酸化物としては、更にLiTiで示されるリチウムチタン複合酸化物(0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であり、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる元素を表す。)、LiMnで示されるリチウムマンガン複合酸化物(x、y、z及びMは、リチウムチタン複合酸化物における定義と同様である。)が挙げられる。中でも、Li4/3Ti5/3、LiTi、Li4/5Ti11/5、Li4/3Mn5/3が好ましい。
 これらの中でも、金属系活物質としては、ケイ素を含有する活物質が好ましい。ケイ素を含有する活物質を用いることにより、二次電池の電気容量を大きくすることが可能となる。また、一般にケイ素を含有する活物質は充放電に伴って大きく(例えば5倍程度に)膨張及び収縮するが、本発明の負極においては、ケイ素を含有する活物質の膨張及び収縮による電池性能の低下を、本発明に係る水溶性重合体によって防ぐことができる。
 ケイ素を含有する活物質の中でも、SiO、SiC及びSiOが好ましく、SiOがさらに好ましい。これらのSi及びCを組み合わせて含む活物質においては、高電位でSi(ケイ素)へのLiの挿入及び脱離が起こり、低電位でC(炭素)へのLiの挿入及び脱離が起こると推測される。このため、他の金属系活物質よりも膨張及び収縮が抑制されるので、二次電池の充放電サイクル特性を向上させることができる。
 炭素系活物質とは、リチウムが挿入可能な炭素を主骨格とする活物質をいい、例えば炭素質材料と黒鉛質材料が挙げられる。
 炭素質材料としては、一般的には、炭素前駆体を2000℃以下で熱処理して炭素化させた、黒鉛化の低い(即ち、結晶性の低い)炭素材料である。なお、前記の熱処理の下限は特に限定されないが、例えば500℃以上としてもよい。
 炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 易黒鉛性炭素としては、例えば、石油又は石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。MCMBとは、ピッチ類を400℃前後で加熱する過程で生成したメソフェーズ小球体を分離抽出した炭素微粒子である。メソフェーズピッチ系炭素繊維とは、前記メソフェーズ小球体が成長、合体して得られるメソフェーズピッチを原料とする炭素繊維である。熱分解気相成長炭素繊維とは、(1)アクリル高分子繊維などを熱分解する方法、(2)ピッチを紡糸して熱分解する方法、又は(3)鉄などのナノ粒子を触媒として用いて炭化水素を気相熱分解する触媒気相成長(触媒CVD)法により得られた炭素繊維である。
 難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
 黒鉛質材料とは、易黒鉛性炭素を2000℃以上で熱処理することによって得られた黒鉛に近い高い結晶性を有する黒鉛質材料である。なお、前記の熱処理温度の上限は、特に限定されないが、例えば5000℃以下としてもよい。
 黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛等が挙げられる。人造黒鉛としては、例えば、主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 前記の炭素系活物質の中でも、炭素質材料が好ましい。炭素質材料を用いることで、二次電池の抵抗を低減することができ、入出力特性の優れた二次電池を作製することが可能となる。
 なお、負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 負極活物質は、粒子状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時に、より高密度な電極が形成できる。
 負極活物質の粒子の体積平均粒子径は、二次電池の他の構成要件との兼ね合いで適宜選択され、通常0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下、より好ましくは20μm以下である。
 負極活物質の粒子の50%累積体積径は、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、通常1μm以上、好ましくは15μm以上であり、通常50μm以下、好ましくは30μm以下である。なお、50%累積体積径は、レーザー回折法によって粒径分布を測定し、測定された粒径分布において小径側から計算した累積体積が50%となる粒子径として求めることができる。
 負極活物質のタップ密度は、特に制限されないが、0.6g/cm以上のものが好適に用いられる。
 負極活物質の比表面積は、出力密度向上の観点から、通常2m/g以上、好ましくは3m/g以上、より好ましくは5m/g以上であり、通常20m/g以下、好ましくは15m/g以下、より好ましくは10m/g以下である。なお、負極活物質の比表面積は、例えばBET法により測定できる。
 [1-2.バインダー]
 バインダーは、負極において電極活物質を集電体の表面に結着させる成分である。本発明の負極では、バインダーが負極活物質を結着することにより、負極活物質層から負極活物質が脱離しないようになっている。また、バインダーは通常は負極活物質層に含まれる負極活物質以外の粒子をも結着し、負極活物質層の強度を維持する役割も果たしている。
 バインダーとしては、負極活物質を保持する性能に優れ、集電体に対する密着性が高いものを用いることが好ましい。通常、バインダーとしては重合体を用いる。この際、前記の重合体は、単独重合体でもよく、共重合体でもよい。中でも、バインダーとしての重合体は、脂肪族共役ジエン単量体単位を含む重合体が好ましい。脂肪族共役ジエン単量体単位は剛性が低く柔軟な繰り返し単位であるので、脂肪族共役ジエン単量体単位を含む重合体をバインダーとして用いることにより、負極活物質層と集電体との十分な密着性を得ることができる。
 脂肪族共役ジエン単量体単位は、脂肪族共役ジエン単量体を重合して得られる繰り返し単位である。脂肪族共役ジエン単量体の例を挙げると、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類、などが挙げられる。中でも、1,3-ブタジエンが好ましい。
 なお、脂肪族共役ジエン単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、バインダーとしての重合体は、脂肪族共役ジエン単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 バインダーとしての重合体100重量部において、脂肪族共役ジエン単量体単位の比率は、通常20重量部以上、好ましくは30重量部以上であり、通常70重量部以下、好ましくは60重量部以下、より好ましくは55重量部以下である。脂肪族共役ジエン単量体単位の比率を前記範囲の下限値以上にすることによって、負極の柔軟性を高めることができ、また、上限値以下とすることによって負極活物質層と集電体との十分な密着性を得たり、電極の耐電解液性を高めたりすることができる。
 バインダーとしての重合体は、芳香族ビニル単量体単位を含むことが好ましい。芳香族ビニル単量体単位は安定であり、当該芳香族ビニル単量体単位を含む重合体の電解液への溶解性を低下させて負極活物質層を安定化させることができる。
 芳香族ビニル単量体単位は、芳香族ビニル単量体を重合して得られる繰り返し単位である。芳香族ビニル単量体の例を挙げると、スチレン、α-メチルスチレン、ビニルトルエン、ジビニルベンゼン等が挙げられる。中でも、スチレンが好ましい。したがって、バインダーとしての重合体がブタジエン等の脂肪族共役ジエン単量体単位を含むことが好ましいことと組み合わせると、バインダーとしての重合体は、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含む重合体であることが好ましく、例えばスチレン・ブタジエン共重合体が好ましい。
 なお、芳香族ビニル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、バインダーとしての重合体は、芳香族ビニル単量体を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 芳香族ビニル単量体を用いる場合、バインダーとしての重合体には、残留単量体として未反応の脂肪族共役ジエン単量体及び未反応の芳香族ビニル単量体が含まれることがある。その場合、バインダーとしての重合体が含む未反応の脂肪族共役ジエン単量体の量は、好ましくは50ppm以下、より好ましくは10ppm以下であり、バインダーとしての重合体が含む未反応の芳香族ビニル単量体の量は、好ましくは1000ppm以下、より好ましくは200ppm以下である。バインダーとしての重合体が含む脂肪族共役ジエン単量体の量を前記範囲に抑えると、本発明に係る負極用スラリー組成物を集電体の表面に塗布及び乾燥させて負極を製造する際に、負極の表面に発泡による荒れが生じたり、臭気による環境負荷を引き起こしたりすることを防止できる。また、バインダーとしての重合体が含む芳香族ビニル単量体の量を前記範囲に抑えると、乾燥条件に応じて生じる環境負荷及び負極表面の荒れを抑制でき、更にはバインダーとしての重合体の耐電解液性を高めることができる。
 バインダーとしての重合体100重量部において、芳香族ビニル単量体単位の比率は、通常30重量部以上、好ましくは35重量部以上であり、通常79.5重量部以下、好ましくは69重量部以下である。芳香族ビニル単量体単位の比率を前記範囲の下限値以上とすることによって、本発明の二次電池用負極の耐電解液性を高めることができ、また、上限値以下とすることによって、本発明に係る負極用スラリー組成物を集電体に塗布した際に負極活物質層と集電体との十分な密着性を得ることができる。
 バインダーとしての重合体は、エチレン性不飽和カルボン酸単量体単位を含むことが好ましい。エチレン性不飽和カルボン酸単量体単位は、負極活物質及び集電体への吸着性を高めるカルボキシル基(-COOH基)を含み、強度が高い繰り返し単位であるので、負極活物質層からの負極活物質の脱離を安定して防止でき、また、負極の強度を向上させることができる。
 エチレン性不飽和カルボン酸単量体単位は、エチレン性不飽和カルボン酸単量体を重合して得られる繰り返し単位である。エチレン性不飽和カルボン酸単量体の例を挙げると、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などのモノカルボン酸及びジカルボン酸並びにその無水物等が挙げられる。中でも、本発明に係る負極用スラリー組成物の安定性の観点から、アクリル酸、メタクリル酸及びイタコン酸からなる群より選ばれる単量体を、単独又は組み合わせて用いることが好ましい。
 なお、エチレン性不飽和カルボン酸単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、バインダーとしての重合体は、エチレン性不飽和カルボン酸単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 バインダーとしての重合体100重量部において、エチレン性不飽和カルボン酸単量体単位の比率は、通常0.5重量部以上、好ましくは1重量部以上、より好ましくは2重量部以上であり、通常10重量部以下、好ましくは8重量部以下、より好ましくは7重量部以下である。エチレン性不飽和カルボン酸単量体単位の比率を前記範囲の下限値以上とすることによって、本発明に係る負極用スラリー組成物の安定性を高めることができ、また、上限値以下とすることによって、本発明に係る負極用スラリーの粘度が過度に高くなることを防止して取り扱い易くすることができる。
 バインダーとしての重合体は、本発明の効果を著しく損なわない限り、上述した以外にも任意の繰り返し単位を含んでいてもよい。前記の任意の繰り返し単位に対応する単量体としては、例えば、シアン化ビニル系単量体、不飽和カルボン酸アルキルエステル単量体、ヒドロキシアルキル基を含有する不飽和単量体、不飽和カルボン酸アミド単量体等が挙げられる。なお、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 シアン化ビニル系単量体としては、例えば、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エチルアクリロニトリルなどが挙げられる。中でも、アクリロニトリル、メタクリロニトリルが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 不飽和カルボン酸アルキルエステル単量体としては、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート、2-エチルヘキシルアクリレート等が挙げられる。中でも、メチルメタクリレートが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ヒドロキシアルキル基を含有する不飽和単量体としては、例えば、β-ヒドロキシエチルアクリレート、β-ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、ジ-(エチレングリコール)マレエート、ジ-(エチレングリコール)イタコネート、2-ヒドロキシエチルマレエート、ビス(2-ヒドロキシエチル)マレエート、2-ヒドロキシエチルメチルフマレートなどが挙げられる。中でも、β-ヒドロキシエチルアクリレートが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 不飽和カルボン酸アミド単量体としては、例えば、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、N,N-ジメチルアクリルアミド等が挙げられる。中でも、アクリルアミド、メタクリルアミドが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 さらに、バインダーとしての重合体は、例えば、エチレン、プロピレン、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、塩化ビニリデン等、通常の乳化重合において使用される単量体を用いてもよい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 バインダーとしての重合体の重量平均分子量は、好ましくは10000以上、より好ましくは20000以上であり、好ましくは1000000以下、より好ましくは500000以下である。バインダーとしての重合体の重量平均分子量が上記範囲にあると、本発明の負極の強度及び負極活物質の分散性を良好にし易い。なお、バインダーとしての重合体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって、テトラヒドロフランを展開溶媒としたポリスチレン換算の値として求めればよい。
 バインダーのガラス転移温度は、好ましくは-75℃以上、より好ましくは-55℃以上、特に好ましくは-35℃以上であり、通常40℃以下、好ましくは30℃以下、より好ましくは20℃以下、特に好ましくは15℃以下である。バインダーのガラス転移温度が上記範囲であることにより、負極の柔軟性、結着性及び捲回性、負極活物質層と集電体との密着性などの特性が高度にバランスされ好適である。
 通常、バインダーは、非水溶性の重合体となる。したがって、本発明の負極用スラリー組成物においては、バインダーは溶媒である水には溶解せず、粒子となって分散している。なお、重合体が非水溶性であるとは、25℃において、その重合体0.5gを100gの水に溶解した際に、不溶分が90重量%以上となることをいう。一方、重合体が水溶性であるとは、25℃において、その重合体0.5gを100gの水に溶解した際に、不溶分が0.5重量%未満であることをいう。
 バインダーが粒子として存在する場合、当該バインダーの粒子の個数平均粒径は、好ましくは50nm以上、より好ましくは70nm以上であり、好ましくは500nm以下、より好ましくは400nm以下である。バインダーの個数平均粒径が上記範囲にあることで、得られる負極の強度および柔軟性を良好にできる。なお、粒子の存在は、透過型電子顕微鏡法やコールターカウンター、レーザー回折散乱法などによって容易に測定することができる。
 バインダーは、例えば、上述した単量体を含む単量体組成物を水系溶媒中で重合することにより製造される。
 単量体組成物中の各単量体の比率は、通常、バインダーとしての重合体における繰り返し単位(例えば、脂肪族共役ジエン単量体単位、芳香族ビニル単量体単位、エチレン性不飽和カルボン酸単量体単位等)の比率と同様にする。
 水系溶媒としては、バインダーの粒子の分散が可能なものであれば格別限定されることはなく、通常、常圧における沸点が通常80℃以上、好ましくは100℃以上であり、通常350℃以下、好ましくは300℃以下の水系溶媒から選ばれる。以下、その水系溶媒の例を挙げる。なお、以下の例示において、溶媒名の後のカッコ内の数字は常圧での沸点(単位℃)であり、小数点以下は四捨五入または切り捨てられた値である。
 水系溶媒としては、例えば、水(100);ダイアセトンアルコール(169)、γ-ブチロラクトン(204)等のケトン類;エチルアルコール(78)、イソプロピルアルコール(82)、ノルマルプロピルアルコール(97)等のアルコール類;プロピレングリコールモノメチルエーテル(120)、メチルセロソルブ(124)、エチルセロソルブ(136)、エチレングリコールターシャリーブチルエーテル(152)、ブチルセロソルブ(171)、3-メトキシー3メチル-1-ブタノール(174)、エチレングリコールモノプロピルエーテル(150)、ジエチレングリコールモノブチルピルエーテル(230)、トリエチレングリコールモノブチルエーテル(271)、ジプロピレングリコールモノメチルエーテル(188)等のグリコールエーテル類;1,3-ジオキソラン(75)、1,4-ジオキソラン(101)、テトラヒドロフラン(66)等のエーテル類;などが挙げられる。中でも水は可燃性がなく、バインダーの粒子の分散体が容易に得られやすいという観点から特に好ましい。なお、主溶媒として水を使用して、バインダーの粒子の分散状態が確保可能な範囲において上記記載の水以外の水系溶媒を混合して用いてもよい。
 重合方法は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。高分子量体が得やすいこと、並びに、重合物がそのまま水に分散した状態で得られるので再分散化の処理が不要であり、そのまま本発明に係る負極用スラリー組成物の製造に供することができることなど、製造効率の観点から、中でも乳化重合法が特に好ましい。
 乳化重合法は、通常は常法により行う。例えば、「実験化学講座」第28巻、(発行元:丸善(株)、日本化学会編)に記載された方法で行う。すなわち、攪拌機および加熱装置付きの密閉容器に水と、分散剤、乳化剤、架橋剤などの添加剤と、重合開始剤と、単量体とを所定の組成になるように加え、容器中の組成物を攪拌して単量体等を水に乳化させ、攪拌しながら温度を上昇させて重合を開始する方法である。あるいは、上記組成物を乳化させた後に密閉容器に入れ、同様に反応を開始させる方法である。
 重合開始剤としては、例えば、過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイド等の有機過酸化物;α,α’-アゾビスイソブチロニトリル等のアゾ化合物;過硫酸アンモニウム;過硫酸カリウムなどが挙げられる。なお、重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 乳化剤、分散剤、重合開始剤などは、これらの重合法において一般的に用いられるものであり、通常はその使用量も一般に使用される量とする。また重合に際しては、シード粒子を採用してシード重合を行ってもよい。
 重合温度および重合時間は、重合方法及び重合開始剤の種類などにより任意に選択でき、通常、重合温度は約30℃以上、重合時間は0.5時間~30時間程度である。
 また、アミン類などの添加剤を重合助剤として用いてもよい。
 さらに、これらの方法によって得られるバインダーの粒子の水系分散液を、例えばアルカリ金属(例えば、Li、Na、K、Rb、Cs)の水酸化物、アンモニア、無機アンモニウム化合物(例えばNHClなど)、有機アミン化合物(例えばエタノールアミン、ジエチルアミンなど)などを含む塩基性水溶液と混合して、pHを通常5~10、好ましくは5~9の範囲になるように調整してもよい。なかでも、アルカリ金属水酸化物によるpH調整は、集電体と負極活物質との結着性(ピール強度)を向上させるので、好ましい。
 上述したバインダーの粒子は、2種類以上の重合体からなる複合重合体粒子であってもよい。複合重合体粒子は、少なくとも1種類の単量体成分を常法により重合し、引き続き、他の少なくとも1種の単量体成分を重合し、常法により重合させる方法(二段重合法)などによっても得ることができる。このように単量体を段階的に重合することにより、粒子の内部に存在するコア層と、当該コア層を覆うシェル層とを有するコアシェル構造の粒子を得ることができる。
 バインダーの量は、負極活物質100重量部に対して、通常0.3重量部以上、好ましくは0.5重量部以上であり、通常8重量部以下、好ましくは4重量部以下、より好ましくは2重量部以下である。バインダーの量を前記の範囲にすることにより、本発明に係る負極用スラリー組成物の粘度が適正化され、集電体への塗布を円滑に行えるようになる。また、本発明の負極に関して抵抗が高くなることなく、集電体と負極活物質層との十分な密着強度が得られる。その結果、負極活物質層に加圧処理を施す工程における負極活物質層からのバインダーの剥がれを抑制することができる。
 [1-3.水溶性重合体]
 本発明に係る水溶性重合体は、エチレン性不飽和カルボン酸単量体単位と、(メタ)アクリル酸エステル単量体単位と、フッ素含有(メタ)アクリル酸エステル単量体単位とを、特定の構成比率で含む。本発明の負極が水溶性重合体を含むことにより、充放電に伴う負極の膨らみを抑制でき、且つ、高温環境で保存した場合でも容量が低下し難い二次電池を実現できる。また、本発明に係る水溶性重合体を用いたことにより、本発明の二次電池は、通常、本発明の負極用スラリー組成物を集電体に塗布する際の塗工性、負極活物質層の集電体への密着性、並びに、高温サイクル特性及び低温出力特性にも優れる。
 このように優れた効果を奏することができる理由は必ずしも定かではないが、本発明者の検討によれば、以下のような理由によるものと推察される。
 本発明に係る水溶性重合体が含む繰り返し単位のうち、エチレン性不飽和カルボン酸単量体単位はカルボキシル基を含むため、本発明に係る水溶性重合体の水への溶解性を高め、また、本発明に係る水溶性重合体の負極活物質への吸着を促進できる。また、(メタ)アクリル酸エステル単量体単位は強度が高いので、本発明に係る水溶性重合体の分子を安定化させることができる。さらに、フッ素含有(メタ)アクリル酸エステル単量体単位を含むことにより、本発明に係る水溶性重合体の水への膨潤性(水溶性重合体を水に浸漬した際に、水溶性重合体が水を吸収することにより膨潤する度合い)が向上し、また、水溶性重合体は弾性変形が可能となる。これらの作用が組み合わさって、上述した効果が奏されていると考えられる。
 具体的には、負極において負極活物質が膨張又は収縮した場合、水溶性重合体が負極活物質の膨張又は収縮に追従して弾性変形できるので、充放電に伴う負極の膨らみを抑制できる。
 また、従来は負極活物質が膨張及び収縮を繰り返すと、負極活物質にバインダーが密着できなくなり、負極活物質同士の間又は負極活物質と導電剤との間に間隙が生じて、負極における負極活物質及び導電剤の電気的な接続が損なわれることがあった。前記の電気的な接続が損なわれると、二次電池の電気容量が低下する可能性がある。しかし、水溶性重合体が負極活物質の膨張又は収縮に追従して弾性変形できると、前記の間隙の発生を抑制して電気的な接続を維持できるので、サイクル特性を改善することができる。
 また、負極において水溶性重合体は負極活物質の表面に吸着して負極活物質を覆い、保護層を形成している。この保護層により、高温環境下での電解液の分解、並びに、充放電に伴う電解液の分解を抑制できる。電解液が分解すると負極活物質の周囲に気泡が生じ、この気泡が電子の受け渡しを阻害して、二次電池の電気容量を低下させる可能性がある。しかし、水溶性重合体により電解液の分解を抑制できると、前記のような電気容量の低下を抑制して、高温保存特性及び高温サイクル特性を改善できる。
 また、本発明に係る水溶性重合体により形成される保護層は、例えばカルボキシメチルセルロース(以下、適宜「CMC」という。)等の従来の添加剤によって形成された保護層よりもイオン伝導度が高い。これは、本発明に係る水溶性重合体が電解液に対して膨潤性を有する(水溶性重合体を電解液に浸漬した際に、水溶性重合体が電解液を吸収することにより膨潤する)ためと推察される。イオン伝導度が高いため拡散抵抗(すなわち、イオンの拡散を妨げる抵抗)が低下するので、本発明の二次電池は出力特性が高く、特に低温出力特性に優れる。なお、このように電解液に対する膨潤性を有していても、電解液の溶媒が保護層を容易に透過できない程度の膨潤であるので、前記のように電解液の分解を抑制する作用は十分に発揮される。
 また、本発明に係る水溶性重合体は水への溶解性が高く、更には負極活物質へ容易に吸着できる。このため、本発明の負極用スラリー組成物の全体において水溶性重合体は負極活物質の粒子の表面を覆い、負極活物質の粒子の分散性を高めることができる。さらに、本発明の負極用スラリー組成物においては、水溶性重合体が有するカルボキシル基の静電反発によっても、負極活物質の粒子の分散性が向上している。したがって、負極用スラリー組成物の塗工時に負極活物質の塊を生じ難いので、膜厚及び組成が均一な塗膜を容易に形成できる。また、こうして形成された塗膜から得られる負極活物質層においては負極活物質が良好に分散しているので、二次電池の電気容量を改善することができる。
 さらに、本発明に係る水溶性重合体は可撓性が高く柔軟であるので、集電体の表面及び負極活物質の表面に隙間無く密着し易い。このため、水溶性重合体はバインダーによる集電体及び負極活物質への結着を補って、密着力を高めることができる。したがって、負極活物質層の集電体への密着性を向上させることが可能である。
 エチレン性不飽和カルボン酸単量体単位は、エチレン性不飽和カルボン酸単量体を重合して得られる繰り返し単位である。
 エチレン性不飽和カルボン酸単量体としては、例えば、エチレン性不飽和モノカルボン酸及びその誘導体、エチレン性不飽和ジカルボン酸及びその酸無水物並びにそれらの誘導体などが挙げられる。エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等のマレイン酸メチルアリル;マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルなどが挙げられる。これらの中でも、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸が好ましい。得られる水溶性重合体の水に対する分散性がより高めることができるからである。
 なお、エチレン性不飽和カルボン酸単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、エチレン性不飽和カルボン酸単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 本発明に係る水溶性重合体において、エチレン性不飽和カルボン酸単量体単位の比率は、通常15重量%以上、好ましくは20重量%以上、より好ましくは25重量%以上であり、通常50重量%以下、好ましくは45重量%以下、より好ましくは40重量%以下である。エチレン性不飽和カルボン酸単量体単位の量を上記範囲の下限値以上とすることにより水溶性重合体の負極活物質への吸着性を高めて負極活物質の分散性及び集電体への密着性を高めることができる。また、上限値以下とすることにより水溶性重合体の柔軟性を高めることができるので、負極の柔軟性を向上させて負極が欠けたり割れたりすることを防止して、耐久性を向上させることができる。
 (メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体を重合して得られる繰り返し単位である。ただし、(メタ)アクリル酸エステル単量体の中でもフッ素を含有するものは、フッ素含有(メタ)アクリル酸エステル単量体として(メタ)アクリル酸エステル単量体とは区別する。
 (メタ)アクリル酸エステル単量体としては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルなどが挙げられる。
 なお、(メタ)アクリル酸エステル単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、(メタ)アクリル酸エステル単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 本発明に係る水溶性重合体において、(メタ)アクリル酸エステル単量体単位の比率は、通常30重量%以上、好ましくは35重量%以上、より好ましくは40重量%以上であり、また、通常70重量%以下である。(メタ)アクリル酸エステル単量体単位の量を上記範囲の下限値以上とすることにより負極活物質の集電体への密着性を高くすることができ、上記範囲の上限値以下とすることにより負極の柔軟性を高めることができる。
 フッ素含有(メタ)アクリル酸エステル単量体単位は、フッ素含有(メタ)アクリル酸エステル単量体を重合して得られる繰り返し単位である。
 フッ素含有(メタ)アクリル酸エステル単量体としては、例えば、下記の式(I)で表される単量体が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 前記の式(I)において、R  は、水素原子またはメチル基を表す。
 前記の式(I)において、R  は、フッ素原子を含有する炭化水素基を表す。炭化水素基の炭素数は、通常1以上であり、通常18以下である。また、Rが含有するフッ素原子の数は、1個でもよく、2個以上でもよい。
 式(I)で表されるフッ素含有(メタ)アクリル酸エステル単量体の例を挙げると、(メタ)アクリル酸フッ化アルキル、(メタ)アクリル酸フッ化アリール、(メタ)アクリル酸フッ化アラルキルなどが挙げられる。なかでも(メタ)アクリル酸フッ化アルキルが好ましい。このような単量体の具体例としては、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸β-(パーフルオロオクチル)エチル、(メタ)アクリル酸2,2,3,3-テトラフルオロプロピル、(メタ)アクリル酸2,2,3,4,4,4-ヘキサフルオロブチル、(メタ)アクリル酸1H,1H,9H-パーフルオロ-1-ノニル、(メタ)アクリル酸1H,1H,11H-パーフルオロウンデシル、(メタ)アクリル酸パーフルオロオクチル、(メタ)アクリル酸3[4〔1-トリフルオロメチル-2、2-ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2-ヒドロキシプロピル等の(メタ)アクリル酸パーフルオロアルキルエステルなどが挙げられる。
 なお、フッ素含有(メタ)アクリル酸エステル単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、フッ素含有(メタ)アクリル酸エステル単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 本発明に係る水溶性重合体において、フッ素含有(メタ)アクリル酸エステル単量体単位の比率は、通常0.5重量%以上、好ましくは1重量%以上であり、通常10重量%以下、好ましくは5重量%以下である。フッ素含有(メタ)アクリル酸エステル単量体単位の量を上記範囲の下限値以上とすることにより二次電池の低温出力特性を改善できる。また、上限値以下とすることにより水溶性重合体が過度に柔らかくなって負極の耐久性が低下することを防止できる。
 本発明に係る水溶性重合体は、本発明の効果を著しく損なわない限り、上述したエチレン性不飽和カルボン酸単量体単位、(メタ)アクリル酸エステル単量体単位及びフッ素含有(メタ)アクリル酸エステル単量体単位以外の繰り返し単位を含んでいてもよい。このような繰り返し単位は、エチレン性不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体又はフッ素含有(メタ)アクリル酸エステル単量体と共重合可能な単量体を重合して得られる繰り返し単位である。
 前記の共重合可能な単量体としては、例えば、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート等の、2つ以上の炭素-炭素二重結合を有するカルボン酸エステル単量体;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸等のアミド系単量体;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル化合物単量体;エチレン、プロピレン等のオレフィン類単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類単量体;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類単量体;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類単量体;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物単量体などが挙げられる。
 なお、前記の共重合可能な単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、エチレン性不飽和カルボン酸単量体単位、(メタ)アクリル酸エステル単量体単位及びフッ素含有(メタ)アクリル酸エステル単量体単位以外の繰り返し単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 本発明に係る水溶性重合体において、エチレン性不飽和カルボン酸単量体単位、(メタ)アクリル酸エステル単量体単位及びフッ素含有(メタ)アクリル酸エステル単量体単位以外の繰り返し単位の割合は、好ましくは0重量%~10重量%、より好ましくは0重量%~5重量%である。
 水溶性重合体の重量平均分子量は、通常はバインダーとなる重合体よりも小さく、好ましくは100以上、より好ましくは500以上、特に好ましくは1000以上であり、好ましくは500000以下、より好ましくは250000以下、特に好ましくは100000以下である。水溶性重合体の重量平均分子量を上記範囲の下限値以上とすることにより水溶性重合体の強度を高くして負極活物質を覆う安定な保護層を形成できるので、例えば負極活物質の分散性及び二次電池の高温保存特性などを改善できる。また、上記範囲の上限値以下とすることにより水溶性重合体を柔らかくできるので、例えば負極の膨らみの抑制、負極活物質層の集電体への密着性の改善などが可能となる。なお、水溶性重合体の重量平均分子量は、GPCによって、アセトニトリルの10体積%水溶液に0.85g/mlの硝酸ナトリウムを溶解させた溶液を展開溶媒としたポリエチレンオキサイド換算の値として求めればよい。
 水溶性重合体のガラス転移温度は、通常0℃以上、好ましくは5℃以上であり、通常100℃以下、好ましくは50℃以下である。水溶性重合体のガラス転移温度が上記範囲であることにより、負極の密着性と柔軟性とを両立させることができる。なお、水溶性重合体のガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。
 水溶性重合体は、1重量%水溶液とした場合の粘度が、通常0.1mPa・s以上、好ましくは1mPa・s以上、より好ましくは10mPa・s以上であり、通常20000mPa・s以下、好ましくは10000mPa・s以下、より好ましくは5000mPa・s以下である。前記の粘度を上記範囲の下限値以上とすることにより水溶性重合体の強度を高くして負極の耐久性を向上させることができ、また、上限値以下とすることにより負極用スラリー組成物の塗工性を良好にして、集電体と負極活物質層との密着強度を向上させることができる。前記の粘度は、例えば、水溶性重合体の分子量によって調整できる。なお、前記の粘度は、E型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
 水溶性重合体の製造方法としては、例えば、上述したエチレン性不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体及びフッ素含有(メタ)アクリル酸エステル単量体を含む単量体組成物を、水系溶媒中で重合して製造してもよい。水系溶媒及び重合方法は、例えば、バインダーの製造と同様にしてもよい。これにより、通常は水系溶媒に水溶性重合体が溶解した水溶液が得られる。こうして得られた水溶液から水溶性重合体を取り出してもよいが、通常は、水系溶媒に溶解した状態の水溶性重合体を用いて負極用スラリー組成物を製造し、その負極用スラリー組成物を用いて負極を製造する。
 水溶性重合体を水系溶媒中に含む前記の水溶液は通常は酸性であるので、必要に応じて、pH7~pH13にアルカリ化してもよい。これにより水溶液の取り扱い性を向上させることができ、また、負極用スラリー組成物の塗工性を改善することができる。pH7~pH13にアルカリ化する方法としては、例えば、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ金属水溶液;水酸化カルシウム水溶液、水酸化マグネシウム水溶液等のアルカリ土類金属水溶液;アンモニア水溶液などのアルカリ水溶液を混合する方法が挙げられる。なお、前記のアルカリ水溶液は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水溶性重合体の量は、通常はバインダーよりも少なく、負極活物質100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上、特に好ましくは1重量部以上であり、好ましくは10重量部以下、より好ましくは5重量部以下である。水溶性重合体の量を前記の範囲にすることにより、充放電に伴う負極の膨らみの抑制;二次電池の高温保存特性、高温サイクル特性及び低温出力特性の改善;負極用スラリー組成物を集電体に塗布する際の塗工性の改善;並びに、負極活物質層の集電体への密着性の改善などの上述した効果を安定して発揮できる。
 [1-4.負極活物質層に含まれていてもよい成分]
 本発明の負極において、負極活物質層には、上述した負極活物質、バインダー、水溶性重合体以外に他の成分が含まれていてもよい。その成分の例を挙げると、粘度調整剤、導電剤、補強材、レベリング剤、電解液添加剤等が挙げられる。これらは、電池反応に影響を及ぼさないものであれば特に限られない。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粘度調整剤は、本発明の負極用スラリー組成物の粘度を調整して負極用スラリー組成物の分散性及び塗工性を改善するために用いられる成分である。通常、負極用スラリー組成物に含まれていた粘度調整剤は、負極活物質層に残留することになる。
 粘度調整剤としては、水溶性の多糖類を使用することが好ましい。多糖類としては、例えば、天然系高分子、セルロース系半合成系高分子などが挙げられる。なお、粘度調整剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 天然系高分子として、例えば、植物もしくは動物由来の多糖類及びたんぱく質等が挙げられる。また、場合により微生物等による発酵処理、熱による処理などがされた天然系高分子も例示できる。これらの天然系高分子は、植物系天然系高分子、動物系天然系高分子及び微生物系天然系高分子等として分類することができる。
 植物系天然系高分子としては、例えば、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンナン、クインスシード(マルメロ)、アルケコロイド(ガッソウエキス)、澱粉(コメ、トウモロコシ、馬鈴薯、小麦等に由来するもの)、グリチルリチン等が挙げられる。また、動物系天然系高分子としては、例えば、コラーゲン、カゼイン、アルブミン、ゼラチン等が挙げられる。さらに、微生物系天然系高分子としては、キサンタンガム、デキストラン、サクシノグルカン、ブルラン等が挙げられる。
 セルロース系半合成系高分子は、ノニオン性、アニオン性及びカチオン性に分類することができる。
 ノニオン性セルロース系半合成系高分子としては、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース等のアルキルセルロース;ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロース;などが挙げられる。
 アニオン性セルロース系半合成系高分子としては、上記のノニオン性セルロース系半合成系高分子を各種誘導基により置換したアルキルセルロース並びにそのナトリウム塩及びアンモニウム塩などが挙げられる。具体例を挙げると、セルロース硫酸ナトリウム、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース(CMC)及びそれらの塩等が挙げられる。
 カチオン性セルロース系半合成系高分子としては、例えば、低窒素ヒドロキシエチルセルロースジメチルジアリルアンモニウムクロリド(ポリクオタニウム-4)、塩化O-[2-ヒドロキシ-3-(トリメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-10)、塩化O-[2-ヒドロキシ-3-(ラウリルジメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-24)等が挙げられる。
 これらの中でも、カチオン性、アニオン性また両性の特性を取りうることから、セルロース系半合成系高分子、そのナトリウム塩及びそのアンモニウム塩が好ましい。さらにその中でも、負極活物質の分散性の観点から、アニオン性のセルロース系半合成系高分子が特に好ましい。
 また、セルロース系半合成系高分子のエーテル化度は、好ましくは0.5以上、より好ましくは0.6以上であり、好ましくは1.0以下、より好ましくは0.8以下である。ここで、エーテル化度とは、セルロース中の無水グルコース単位1個当たりの水酸基(3個)の、カルボキシメチル基等への置換体への置換度のことをいう。エーテル化度は、理論的には0~3の値を取りうる。エーテル化度が上記範囲にある場合は、セルロース系半合成系高分子が負極活物質の表面に吸着しつつ水への相溶性も見られることから分散性に優れ、負極活物質を一次粒子レベルまで微分散できる。
 さらに、粘度調整剤として高分子(重合体を含む)を使用する場合、ウベローデ粘度計より求められる極限粘度から算出される粘度調整剤の平均重合度は、好ましくは500以上、より好ましくは1000以上であり、好ましくは2500以下、より好ましくは2000以下、特に好ましくは1500以下である。粘度調整剤の平均重合度は本発明の負極用スラリー組成物の流動性及び負極活物質層の膜均一性、並びに工程上のプロセスへ影響することがある。平均重合度を前記の範囲にすることにより、本発明の負極用スラリー組成物の経時の安定性を向上させて、凝集物がなく厚みムラのない塗布が可能になる。
 粘度調整剤の量は、負極活物質の量100重量部に対して、好ましくは0重量部以上であり、好ましくは0.5重量部以下である。粘度調整剤の量を前記の範囲にすることにより、本発明の負極用スラリー組成物の粘度を取り扱い易い好適な範囲にすることができる。
 導電剤は、負極活物質同士の電気的接触を向上させる成分である。導電剤を含むことにより、本発明の二次電池の放電レート特性を改善することができる。
 導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンなどを使用することができる。なお、導電剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 導電剤の量は、負極活物質の量100重量部に対して、好ましくは1~20重量部、より好ましくは1~10重量部である。
 補強材としては、例えば、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより、強靭で柔軟な負極を得ることができ、優れた長期サイクル特性を示す二次電池を実現できる。
 補強材の量は、負極活物質の量100重量部に対して、通常0.01重量部以上、好ましくは1重量部以上であり、通常20重量部以下、好ましくは10重量部以下である。補強剤の量を上記範囲とすることにより、二次電池は高い容量と高い負荷特性を示すことができる。
 レベリング剤としては、例えば、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を用いることにより、負極用スラリー組成物の塗布時に発生するはじきを防止したり、負極の平滑性を向上させたりすることができる。
 レベリング剤の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部~10重量部である。レベリング剤が上記範囲であることにより負極作製時の生産性、平滑性及び電池特性に優れる。また、界面活性剤を含有させることにより負極用スラリー組成物において負極活物質等の分散性を向上することができ、さらにそれにより得られる負極の平滑性を向上させることができる。
 電解液添加剤としては、例えば、ビニレンカーボネートなどが挙げられる。電解液添加剤を用いることにより、例えば電解液の分解を抑制することができる。
 電解液添加剤の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部~10重量部である。電解液添加剤の量を上記範囲にすることにより、サイクル特性及び高温特性に優れた二次電池を実現できる。
 また、負極活物質層は、例えば、フュームドシリカやフュームドアルミナなどのナノ微粒子を含んでいてもよい。ナノ微粒子を含む場合には負極用スラリー組成物のチキソ性を調整することができるので、それにより得られる本発明の負極のレベリング性を向上させることができる。
 ナノ微粒子の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部~10重量部である。ナノ微粒子が上記範囲であることにより、負極用スラリー組成物の安定性及び生産性を改善し、高い電池特性を実現できる。
 [1-5.集電体及び負極活物質層]
 本発明の負極は、上述した負極活物質、バインダー及び水溶性重合体、並びに必要に応じて用いられる他の成分を含む負極活物質層を備える。この負極活物質層は、通常、集電体の表面に設けられる。この際、負極活物質層は、集電体の少なくとも片面に設けられていればよいが、両面に設けられていることが好ましい。
 負極用の集電体は、電気導電性を有し、且つ、電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましい。負極用の集電体の材料としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、二次電池負極に用いる集電体としては銅が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 集電体の形状は特に制限されないが、厚さ0.001mm~0.5mm程度のシート状のものが好ましい。
 集電体は、負極活物質層との接着強度を高めるため、表面に予め粗面化処理して使用することが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、通常、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、負極活物質層の接着強度や導電性を高めるために、集電体の表面に中間層を形成してもよい。
 通常は前記の集電体の表面に、負極活物質層が設けられる。
 負極活物質層の厚みは、通常5μm以上、好ましくは30μm以上であり、通常300μm以下、好ましくは250μm以下である。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性を良好にすることができる。
 負極活物質層における負極活物質の含有割合は、好ましくは85重量%以上、より好ましくは88重量%以上であり、好ましくは99重量%以下、より好ましくは97重量%以下である。負極活物質の含有割合を上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示す負極を実現できる。
[2.二次電池用負極の製造方法]
 本発明の二次電池用負極の製造方法(以下、適宜「本発明の負極の製造方法」という。)は特に制限されないが、例えば、本発明の負極用スラリー組成物を用意し、その負極用スラリー組成物を集電体の表面に塗布し、乾燥させることを含む製造方法によって製造してもよい。
 本発明の負極用スラリー組成物は、負極活物質、バインダー、水溶性重合体及び水を含むスラリー状の組成物である。また、本発明の負極用スラリー組成物は、必要に応じて負極活物質、バインダー、水溶性重合体及び水以外の成分を含んでいてもよい。負極活物質、バインダー及び水溶性重合体、並びに必要に応じて含まれる成分の量は、通常は負極活物質層に含まれる各成分の量と同様にする。このような本発明の負極用スラリー組成物では、通常、一部の水溶性重合体は水に溶解しているが、別の一部の水溶性重合体が負極活物質の表面に吸着することによって、負極活物質が水溶性重合体の安定な層で覆われて、負極活物質の溶媒中での分散性が向上している。このため、本発明の負極用スラリー組成物は、集電体に塗布する際の塗工性が良好である。
 水は、負極用スラリー組成物において溶媒又は分散媒として機能し、負極活物質を分散させたり、バインダーを粒子状に分散させたり、水溶性重合体を溶解させたりする。この際、溶媒として水以外の液体を水と組み合わせて用いてもよい。バインダー及び水溶性重合体を溶解する液体を組み合わせると、バインダー及び水溶性重合体が表面に吸着することにより負極活物質の分散が安定化するので、好ましい。
 水と組み合わせる液体の種類は、乾燥速度や環境上の観点から選択することが好ましい。好ましい例を挙げると、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミド等のアミド類;などが挙げられるが、中でもN-メチルピロリドン(NMP)が好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水及び前記の液体の量は、本発明の負極用スラリー組成物の粘度が塗布に好適な粘度になるように調整することが好ましい。具体的には、本発明の負極用スラリー組成物の固形分の濃度が、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは90重量%以下、より好ましくは80重量%以下となる量に調整して用いられる。
 本発明の負極用スラリー組成物は、上記の負極活物質、バインダー、水溶性重合体及び水並びに必要に応じて用いられる成分を混合して製造してもよい。混合方法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。
 本発明の負極用スラリー組成物を、集電体の表面に塗布し、乾燥させることにより、集電体の表面に負極活物質層を形成して、本発明の負極を製造することができる。
 本発明の負極用スラリー組成物を集電体の表面に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。
 乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法などが挙げられる。乾燥時間は通常5分~30分であり、乾燥温度は通常40℃~180℃である。
 また、集電体の表面に負極用スラリー組成物を塗布及び乾燥した後で、必要に応じて、例えば金型プレス又はロールプレスなどを用い、負極活物質層に加圧処理を施すことが好ましい。加圧処理により、負極活物質層の空隙率を低くすることができる。空隙率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは30%以下、より好ましくは20%以下である。空隙率を前記範囲の下限値以上とすることにより、高い体積容量が得易くなり、負極活物質層を集電体から剥がれ難くすることができ、また、上限値以下とすることにより高い充電効率及び放電効率が得られる。
 さらに、負極活物質層が硬化性の重合体を含む場合は、負極活物質層の形成後に前記重合体を硬化させることが好ましい。
[3.二次電池]
 本発明の二次電池は、本発明の負極を備える。通常、本発明の二次電池は、正極、負極、電解液及びセパレーターを備え、前記負極が、本発明の負極となっている。
 本発明の負極を備えるので、本発明の二次電池では、充放電に伴う負極の膨らみを抑制できたり、高温環境で保存した場合でも容量を低下し難くしたりできる。また、通常、本発明の二次電池の高温サイクル特性及び低温出力特性を改善したり、負極活物質層の集電体への密着性を高めたりすることもできる。
 [3-1.正極]
 正極は、通常、集電体と、集電体の表面に形成された、正極活物質及び正極用のバインダーを含む正極活物質層とを備える。
 正極の集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されない。正極の集電体としては、例えば、本発明の負極に使用される集電体を用いてもよい。中でも、アルミニウムが特に好ましい。
 正極活物質は、例えば本発明の二次電池がリチウムイオン二次電池である場合には、リチウムイオンの挿入及び脱離が可能な物質が用いられる。このような正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。
 上記の遷移金属としては、例えばTi、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 遷移金属酸化物としては、例えば、MnO、MnO、V、V13、TiO、Cu、非晶質VO-P、MoO、V、V13等が挙げられ、中でもサイクル安定性と容量からMnO、V、V13、TiOが好ましい。
 遷移金属硫化物としては、例えば、TiS、TiS、非晶質MoS、FeS等が挙げられる。
 リチウム含有複合金属酸化物としては、例えば、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
 層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム複合酸化物、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物等が挙げられる。
 スピネル構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn)又はMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。
 オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、LiMPO(式中、Mは、Mn、Fe、Co、Ni、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、B及びMoからなる群より選ばれる少なくとも1種を表し、Xは0≦X≦2を満たす数を表す。)で表されるオリビン型燐酸リチウム化合物が挙げられる。
 有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子が挙げられる。
 また、無機化合物及び有機化合物を組み合わせた複合材料からなる正極活物質を用いてもよい。例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。
 さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。また、上記の無機化合物と有機化合物の混合物を正極活物質として用いてもよい。
 なお、正極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 正極活物質の粒子の体積平均粒子径は、通常1μm以上、好ましくは2μm以上であり、通常50μm以下、好ましくは30μm以下である。正極活物質の粒子の体積平均粒子径を上記範囲にすることにより、正極活物質層を調製する際のバインダーの量を少なくすることができ、二次電池の容量の低下を抑制できる。また、正極活物質層を形成するためには、通常、正極活物質及びバインダーを含む正極用スラリー組成物を用意するが、この正極用スラリー組成物の粘度を塗布し易い適正な粘度に調整することが容易になり、均一な正極を得ることができる。
 正極活物質層における正極活物質の含有割合は、好ましくは90重量%以上、より好ましくは95重量%以上であり、好ましくは99.9重量%以下、より好ましくは99重量%以下である。正極活物質の含有量を上記範囲とすることにより、二次電池の容量を高くでき、また、正極の柔軟性並びに集電体と正極活物質層との結着性を向上させることができる。
 正極用のバインダーとしては、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂;アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。なお、バインダーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、正極活物質層には、必要に応じて、正極活物質及びバインダー以外の成分が含まれていてもよい。その例を挙げると、例えば、粘度調整剤、導電剤、補強材、レベリング剤、電解液添加剤等が挙げられる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 正極活物質層の厚みは、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは250μm以下である。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度の両方で高い特性を実現できる。
 正極は、例えば、前述の負極と同様の要領で製造してもよい。
 [3-2.電解液]
 電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用してもよい。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 支持電解質の量は、電解液に対して、通常1重量%以上、好ましくは5重量%以上であり、また、通常30重量%以下、好ましくは20重量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し、二次電池の充電特性及び放電特性が低下する可能性がある。
 電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されない。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、電解液には必要に応じて添加剤を含有させてもよい。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。なお、添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、上記以外の電解液としては、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質;硫化リチウム、LiI、LiNなどの無機固体電解質;などを挙げることができる。
 [3-3.セパレーター]
 セパレーターとしては、通常、気孔部を有する多孔性基材を用いる。セパレーターの例を挙げると、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーター、などが挙げられる。これらの例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム;ゲル化高分子コート層がコートされたセパレーター;無機フィラーと無機フィラー用分散剤とからなる多孔膜層がコートされたセパレーター;などが挙げられる。
 [3-4.二次電池の製造方法]
 本発明の二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口してもよい。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下に示す実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。なお、以下の実施例の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、別に断らない限り、「MAA」との略称はメタクリル酸を表し、「AA」との略称はアクリル酸を表す。さらに、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
〔評価方法〕
 1.密着強度
 実施例および比較例で製造した負極を、長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、負極活物質層の表面を下にして、負極活物質層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求めて、当該平均値をピール強度とした。ピール強度が大きいほど、負極活物質層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
 2.塗工性
 実施例および比較例で製造した負極用スラリー組成物を、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極を得た。得られた負極を10×10cmの寸法で切り出し、目視にて直径0.1mm以上のピンホールの個数を測定した。ピンホールの個数が小さいほど、塗工性に優れることを示す。
 3.耐久性
 (1)高温保存特性
 実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行い、初期容量Cを測定した。さらに、4.2Vに充電し、60℃で7日間保存した後、4.2V、0.1Cの充放電レートにて充放電の操作を行い、高温保存後の容量Cを測定した。高温保存特性は、ΔC=C/C×100(%)で示す容量変化率ΔCにて評価した。この容量変化率ΔCの値が高いほど、高温保存特性に優れることを示す。
 (2)高温サイクル特性
 実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行い、初期容量Cを測定した。さらに、60℃の環境下で充放電を繰り返し、100サイクル後の容量Cを測定した。高温サイクル特性は、ΔC=C/C×100(%)で示す容量変化率ΔCにて評価した。この容量変化率ΔCの値が高いほど、高温サイクル特性に優れることを示す。
 (3)極板膨らみ特性
 前記の「(1)高温保存特性」の評価の後でリチウムイオン二次電池のセルを解体し、負極の極板の厚みd1を測定した。リチウムイオン二次電池のセルの作製前における負極の極板の厚みをd0として、負極の極板膨らみ率(d1-d0)/d0を算出した。この値が低いほど、極板膨らみ特性に優れることを示す。
 4.低温出力特性
 実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行った。その後、-25℃の環境下で、充放電の操作を行い、放電開始10秒後の電圧V10を測定した。低温出力特性は、ΔV=4.2V-V10で示す電圧変化ΔVにて評価した。この電圧変化ΔVの値が小さいほど、低温出力特性に優れることを示す。
 5.水溶性重合体の1%水溶液の粘度
 実施例および比較例で製造した水溶性重合体を10%アンモニア水およびイオン交換水により、水溶性重合体の1%水溶液を調製した。この水溶液の粘度を、B型粘度計により測定した。
〔実施例1〕
 (水溶性重合体の製造)
 攪拌機付き5MPa耐圧容器に、(メタ)アクリル酸エステル単量体としてアクリル酸エチル67.5部、エチレン性不飽和カルボン酸単量体としてメタクリル酸30部、フッ素含有(メタ)アクリル酸エステル単量体としてトリフルオロメチルメタクリレート2.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1.0部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む水溶液を得た。こうして得られた水溶性重合体を含む水溶液に、10%アンモニア水を添加してpH8に調整し、所望の水溶性重合体を含む水溶液を得た。得られた水溶性重合体の重量平均分子量を測定したところ、128000であった。
 得られた水溶性重合体を含む水溶液を用いて、上述した要領で水溶性重合体の1%水溶液を調製し、その粘度を測定した。結果を表1に示す。
 (バインダーの製造)
 攪拌機付き5MPa耐圧容器に、脂肪族共役ジエン単量体である1,3-ブタジエン33部、エチレン性不飽和カルボン酸単量体であるメタクリル酸1.5部、芳香族ビニル単量体であるスチレン65.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、スチレンブタジエンゴム(以下、適宜「SBR」という。)からなるバインダーを含む水系分散液を得た。こうして得られたバインダーを含む水系分散液に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望のバインダーを含む水系分散液を得た。得られたバインダーの重量平均分子量を測定したところ、1500000であった。
 (負極用スラリー組成物の製造)
 上記の水溶性重合体を含む水溶液を水で希釈して濃度を5%に調整した。
 ディスパー付きのプラネタリーミキサーに、負極活物質としてSiOC(体積平均粒子径:12μm)50部及び比表面積4m/gの人造黒鉛(体積平均粒子径:24.5μm)50部と、上記の水溶性重合体の5%水溶液を固形分相当で1部とをそれぞれ加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分混合し混合液を得た。
 上記混合液に、上記のバインダーを含む水系分散液を固形分相当で1部、及びイオン交換水を入れ、最終固形分濃度42%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用スラリー組成物を得た。
 得られた負極用スラリー組成物について、上述した要領で塗工性の評価を行った。結果を表1に示す。
 (負極の製造)
 上記の負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmの負極を得た。
 得られた負極について、上述した要領で密着強度の評価を行った。結果を表1に示す。
 (正極の製造)
 正極用のバインダーとして、ガラス転移温度Tgが-40℃で、数平均粒子径が0.20μmのアクリレート重合体の40%水分散体を用意した。前記のアクリレート重合体は、アクリル酸2-エチルヘキシル78重量%、アクリロニトリル20重量%、及びメタクリル酸2重量%を含む単量体混合物を乳化重合して得られる共重合体である。
 正極活物質として体積平均粒子径0.5μmでオリビン結晶構造を有するLiFePOを100部と、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH-12」)を固形分相当で1部と、バインダーとして上記のアクリレート重合体の40%水分散体を固形分相当で5部とを混合し、これにイオン交換水を全固形分濃度が40%となるように加え、プラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。
 上記の正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が200μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極を得た。
 (セパレーターの用意)
 単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、直径18mmの円形に切り抜いた。
 (リチウムイオン二次電池)
 電池の外装として、アルミ包材外装を用意した。上記の正極を、集電体の表面がアルミ包材外装に接するように配置した。正極の正極活物質層の面上に、セパレーターを配置した。さらに、セパレーター上に、上記の負極を、負極活物質層の表面がセパレーターに向かい合うよう配置した。電解液(溶媒:EC/DEC=1/2、電解質:濃度1MのLiPF)を空気が残らないように注入し、さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、リチウムイオン二次電池を製造した。
 得られた電池について、上述した要領で高温保存特性、高温サイクル特性及び極板膨らみ特性によって耐久性を評価し、更に、低温出力特性を評価した。結果を表1に示す。また、得られたリチウムイオン二次電池を4.2V、0.1Cの充放電レートで最初に充放電させたときの容量(初期容量)は50mAhであった。
〔実施例2〕
 攪拌機付き5MPa耐圧容器に、脂肪族共役ジエン単量体である1,3-ブタジエン33部、エチレン性不飽和カルボン酸単量体であるメタクリル酸1.5部、アクリロニトリル65.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、ニトリルブタジエンゴム(以下、適宜「NBR」という。)からなるバインダーを含む水系分散液を得た。得られたバインダーの重量平均分子量を測定したところ、1380000であった。
 負極用スラリー組成物の製造の際、実施例1で用いたバインダーを含む水系分散液の代わりに、前記のNBRからなるバインダーを含む水系分散液を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表1に示す。
〔実施例3〕
 攪拌機付き5MPa耐圧容器に、アクリル酸エステルであるアクリル酸2-エチルヘキシル76部、エチレン性不飽和カルボン酸単量体であるメタクリル酸4部、アクリロニトリル20部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、アクリルゴム(以下、適宜「ACR」という。)からなるバインダーを含む水系分散液を得た。得られたバインダーの重量平均分子量を測定したところ、1280000であった。
 負極用スラリー組成物の製造の際、実施例1で用いたバインダーを含む水系分散液の代わりに、前記のACRからなるバインダーを含む水系分散液を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表1に示す。
〔実施例4〕
 水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を20部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を77.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表1に示す。
〔実施例5〕
 水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を25部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を72.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表1に示す。
〔実施例6〕
 水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を40部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を57.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。
〔実施例7〕
 水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を45部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を52.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。
〔実施例8〕
 水溶性重合体の製造の際、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を69部に変更し、フッ素含有(メタ)アクリル酸エステル単量体であるトリフルオロメチルメタクリレートの量を1部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。
〔実施例9〕
 水溶性重合体の製造の際、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を65部に変更し、フッ素含有(メタ)アクリル酸エステル単量体であるトリフルオロメチルメタクリレートの量を5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。
〔実施例10〕
 水溶性重合体の製造の際、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を61部に変更し、フッ素含有(メタ)アクリル酸エステル単量体であるトリフルオロメチルメタクリレートの量を9部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。
〔実施例11〕
 水溶性重合体の製造の際、フッ素含有(メタ)アクリル酸エステル単量体として、トリフルオロメチルメタクリレートの代わりにトリフルオロメチルアクリレートを用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。
〔実施例12〕
 水溶性重合体の製造の際、フッ素含有(メタ)アクリル酸エステル単量体として、トリフルオロメチルメタクリレートの代わりにパーフルオロオクチルメタクリレートを用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。
〔実施例13〕
 負極用スラリー組成物の製造の際、水溶性重合体の水溶液の量を固形分相当で0.7部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。
〔実施例14〕
 負極用スラリー組成物の製造の際、水溶性重合体の水溶液の量を固形分相当で0.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。
〔実施例15〕
 負極用スラリー組成物の製造の際、負極活物質として人造黒鉛を用いないでSiOCを100部用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。また、リチウムイオン二次電池を4.2V、0.1Cの充放電レートで最初に充放電させたときの容量(初期容量)は70mAhであった。
〔実施例16〕
 負極用スラリー組成物の製造の際、負極活物質としてSiOCを用いないで人造黒鉛を100部用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表4に示す。また、リチウムイオン二次電池を4.2V、0.1Cの充放電レートで最初に充放電させたときの容量(初期容量)は34.8mAhであった。
〔実施例17〕
 負極用スラリー組成物の製造の際、負極活物質としてSiOCを20部と人造黒鉛を80部用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表4に示す。
〔実施例18〕
 水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体として、メタクリル酸の代わりにアクリル酸を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表4に示す。
〔実施例19〕
 負極用スラリー組成物の製造の際、水溶性重合体の水溶液を固形分相当で1部加える代わりに、水溶性重合体の水溶液を固形分で0.5部とセルロース系増粘剤であるカルボキシメチルセルロース0.5部とを組み合わせて加えたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表4に示す。
〔比較例1〕
 負極用スラリー組成物の製造の際、水溶性重合体の水溶液を固形分相当で1部加える代わりにカルボキシメチルセルロースを1部加えたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。
〔比較例2〕
 水溶性重合体の製造の際、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を70部に変更し、フッ素含有(メタ)アクリル酸エステル単量体であるトリフルオロメチルメタクリレートを用いなかったこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。
〔比較例3〕
 水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を10部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を87.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。
〔比較例4〕
 水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を60部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を37.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。
〔比較例5〕
 負極用スラリー組成物の製造の際、負極活物質としてSiOCを用いないで人造黒鉛を100部用いたこと、並びに、水溶性重合体の水溶液を固形分相当で1部加える代わりにカルボキシメチルセルロースを1部加えたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[検討]
 表1~表5から分かるように、実施例においては、充放電に伴う負極の膨らみを抑制でき、高温環境で保存した場合でも容量が低下し難い二次電池を実現でき、更に高温サイクル特性を向上させられるため、耐久性に優れた二次電池を実現できている。従来検討されていた二次電池では、フッ素を含む重合体を電極に含ませる場合、電極活物質の密着性向上及びレート特性の改善などを目的とすることが多かったことに鑑みれば、前記のような膨らみの抑制、並びに高温保存特性及び高温サイクル特性の向上が可能であることは、従来検討されていた効果とは異質な効果であるといえる。
 また、実施例においては、ピール強度が大きいことから負極活物質層の集電体への密着性に優れることが分かる。また、実施例においては、ピンホール発生個数が少ないことから負極用スラリー組成物の塗工性に優れることが分かる。さらに、実施例においては、低温出力特性が優れることから、高出力な二次電池が実現できていることがわかる。
 したがって、本発明により得られる二次電池は、実用上優れた性能を発揮する二次電池である。

Claims (10)

  1.  負極活物質、バインダー及び水溶性重合体を含む二次電池用負極であって、
     前記水溶性重合体が、エチレン性不飽和カルボン酸単量体単位15重量%~50重量%、(メタ)アクリル酸エステル単量体単位30重量%~70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位0.5重量%~10重量%を含む共重合体である、二次電池用負極。
  2.  前記負極活物質が、リチウムを吸蔵及び放出でき、金属を含む、請求項1に記載の二次電池用負極。
  3.  前記負極活物質が、Siを含有する化合物である、請求項1又は2に記載の二次電池用負極。
  4.  前記バインダーが、脂肪族共役ジエン単量体単位を含む重合体である、請求項1~3のいずれか一項に記載の二次電池用負極。
  5.  前記バインダーが、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含む重合体である、請求項1~4のいずれか一項に記載の二次電池用負極。
  6.  前記水溶性重合体のエチレン性不飽和カルボン酸単量体が、エチレン性不飽和モノカルボン酸単量体である、請求項1~5のいずれか一項に記載の二次電池用負極。
  7.  前記水溶性重合体の1重量%水溶液の粘度が、0.1mPa・s~20000mPa・sである、請求項1~6のいずれか一項に記載の二次電池用負極。
  8.  正極、負極、電解液、及びセパレーターを備える二次電池であって、
     前記負極が、請求項1~7のいずれか一項に記載の二次電池用負極である、二次電池。
  9.  負極活物質、バインダー、水溶性重合体及び水を含む負極用スラリー組成物であって、
     前記水溶性重合体が、エチレン性不飽和カルボン酸単量体単位15重量%~50重量%、(メタ)アクリル酸エステル単量体単位30重量%~70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位0.5重量%~10重量%を含む共重合体である、負極用スラリー組成物。
  10.  請求項9に記載の負極用スラリー組成物を、集電体の表面に塗布し、乾燥させることを含む、二次電池用負極の製造方法。
PCT/JP2012/054109 2011-02-23 2012-02-21 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法 WO2012115096A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137022065A KR20140018882A (ko) 2011-02-23 2012-02-21 2 차 전지용 부극, 2 차 전지, 부극용 슬러리 조성물 및 2 차 전지용 부극의 제조 방법
JP2013501067A JPWO2012115096A1 (ja) 2011-02-23 2012-02-21 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
CN2012800099618A CN103384932A (zh) 2011-02-23 2012-02-21 二次电池用负极、二次电池、负极用浆料组合物及二次电池用负极的制造方法
EP12749342.7A EP2680349A1 (en) 2011-02-23 2012-02-21 Secondary cell negative electrode, secondary cell, slurry composition for negative electrode, and method of producing secondary cell negative electrode
US14/001,030 US20130330622A1 (en) 2011-02-23 2012-02-21 Secondary cell negative electrode, secondary cell slurry composition for negative electrode, and method of producing secondary cell negative electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011037644 2011-02-23
JP2011-037644 2011-02-23

Publications (1)

Publication Number Publication Date
WO2012115096A1 true WO2012115096A1 (ja) 2012-08-30

Family

ID=46720873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054109 WO2012115096A1 (ja) 2011-02-23 2012-02-21 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法

Country Status (6)

Country Link
US (1) US20130330622A1 (ja)
EP (1) EP2680349A1 (ja)
JP (1) JPWO2012115096A1 (ja)
KR (1) KR20140018882A (ja)
CN (1) CN103384932A (ja)
WO (1) WO2012115096A1 (ja)

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031690A1 (ja) * 2011-08-30 2013-03-07 日本ゼオン株式会社 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池
WO2013086441A2 (en) 2011-12-08 2013-06-13 Sarepta Therapeutics, Inc. Oligonucleotide analogues targeting human lmna
JP2013131368A (ja) * 2011-12-21 2013-07-04 Toyo Kagaku Kk 電極用バインダー
WO2013125645A1 (ja) * 2012-02-23 2013-08-29 日本ゼオン株式会社 二次電池用多孔膜、二次電池用電極、二次電池用セパレーター及び二次電池
WO2014024937A1 (ja) * 2012-08-09 2014-02-13 日本ゼオン株式会社 二次電池用負極、二次電池、スラリー組成物、及び製造方法
JP2014089834A (ja) * 2012-10-29 2014-05-15 Nippon Zeon Co Ltd リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2014146471A (ja) * 2013-01-28 2014-08-14 Nippon Zeon Co Ltd 二次電池負極用スラリー組成物、その製造方法、二次電池用負極、及び二次電池
US20140242452A1 (en) * 2013-02-27 2014-08-28 GM Global Technology Operations LLC Lithium ion battery
JP2014160651A (ja) * 2013-01-28 2014-09-04 Nippon Zeon Co Ltd リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2014148064A1 (ja) 2013-03-22 2014-09-25 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR20140138057A (ko) * 2013-05-23 2014-12-03 주식회사 엘지화학 이차전지용 바인더 및 이를 포함하는 이차전지
KR20150067016A (ko) * 2013-12-09 2015-06-17 삼성에스디아이 주식회사 리튬이온 이차전지용 음극 수계 슬러리, 이를 포함하는 음극 활물질층 및 리튬이온 이차전지
JP2015201444A (ja) * 2014-04-08 2015-11-12 奇美實業股▲分▼有限公司 リチウムイオン電池負極用樹脂、樹脂組成物、スラリー、負極およびリチウムイオン電池
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JPWO2013147007A1 (ja) * 2012-03-30 2015-12-14 日本ゼオン株式会社 二次電池負極用スラリー組成物
CN105190968A (zh) * 2013-05-29 2015-12-23 日本瑞翁株式会社 电化学元件电极用粘合剂、电化学元件电极用粒子复合体、电化学元件电极、电化学元件、以及电化学元件电极的制造方法
JP2016181422A (ja) * 2015-03-24 2016-10-13 日本ゼオン株式会社 リチウムイオン二次電池シリコン系負極用バインダー組成物およびリチウムイオン二次電池シリコン系負極用スラリー組成物
WO2017150048A1 (ja) 2016-03-03 2017-09-08 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2017170281A1 (ja) 2016-03-28 2017-10-05 日本ゼオン株式会社 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
WO2018003636A1 (ja) 2016-06-29 2018-01-04 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2018096975A1 (ja) 2016-11-24 2018-05-31 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
WO2018123624A1 (ja) 2016-12-28 2018-07-05 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池
WO2018163969A1 (ja) 2017-03-08 2018-09-13 日本ゼオン株式会社 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用機能層付きセパレータ、非水系二次電池およびその製造方法
WO2018168420A1 (ja) 2017-03-13 2018-09-20 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、非水系二次電池用負極および非水系二次電池、並びに、非水系二次電池用電極の製造方法
WO2018168615A1 (ja) 2017-03-13 2018-09-20 日本ゼオン株式会社 電気化学素子電極用導電材分散液、電気化学素子電極用スラリー組成物およびその製造方法、電気化学素子用電極、並びに、電気化学素子
WO2018173975A1 (ja) 2017-03-23 2018-09-27 日本ゼオン株式会社 非水系二次電池正極用バインダー組成物、非水系二次電池正極用組成物、非水系二次電池用正極および非水系二次電池
WO2018180101A1 (ja) 2017-03-28 2018-10-04 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池、並びに、非水系二次電池用電極の製造方法
US20190006676A1 (en) * 2017-06-30 2019-01-03 Ppg Industries Ohio, Inc. Slurry composition for lithium ion electrical storage devices
WO2019044166A1 (ja) 2017-08-30 2019-03-07 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2019044452A1 (ja) 2017-08-29 2019-03-07 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2019054173A1 (ja) 2017-09-15 2019-03-21 日本ゼオン株式会社 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法
US10249879B2 (en) 2014-05-14 2019-04-02 Zeon Corporation Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
WO2019065416A1 (ja) 2017-09-28 2019-04-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
WO2019065370A1 (ja) 2017-09-28 2019-04-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池部材、および非水系二次電池
WO2019065909A1 (ja) 2017-09-28 2019-04-04 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層、二次電池用電極層および二次電池
WO2019065130A1 (ja) 2017-09-28 2019-04-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
WO2019065471A1 (ja) 2017-09-28 2019-04-04 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子
US10290873B2 (en) 2014-09-05 2019-05-14 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
US10312522B2 (en) 2015-03-27 2019-06-04 Zeon Corporation Binder composition for lithium ion secondary battery positive electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2019131348A1 (ja) 2017-12-27 2019-07-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および非水系二次電池
WO2019131347A1 (ja) 2017-12-27 2019-07-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および、非水系二次電池
WO2019156086A1 (ja) 2018-02-07 2019-08-15 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子
US10388961B2 (en) 2015-07-14 2019-08-20 Zeon Corporation Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
US10388930B2 (en) 2014-06-26 2019-08-20 Zeon Corporation Laminate for non-aqueous secondary battery, method of manufacturing the same, and non-aqueous secondary battery
WO2019159706A1 (ja) 2018-02-19 2019-08-22 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2019181744A1 (ja) 2018-03-23 2019-09-26 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2019181660A1 (ja) 2018-03-23 2019-09-26 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2019188722A1 (ja) 2018-03-27 2019-10-03 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法
WO2019208419A1 (ja) 2018-04-26 2019-10-31 日本ゼオン株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー組成物、蓄電デバイス用電極、および蓄電デバイス
US10468713B2 (en) 2014-12-26 2019-11-05 Zeon Corporation Binder composition for non-aqueous secondary battery positive electrode, composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery, and methods for producing composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2019221056A1 (ja) 2018-05-17 2019-11-21 日本ゼオン株式会社 非水系二次電池用スラリー、非水系二次電池用セパレータ、非水系二次電池用電極、非水系二次電池用積層体および非水系二次電池
WO2020004526A1 (ja) 2018-06-29 2020-01-02 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
WO2020004145A1 (ja) 2018-06-29 2020-01-02 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
WO2020004332A1 (ja) 2018-06-29 2020-01-02 日本ゼオン株式会社 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
US10529989B2 (en) 2014-08-11 2020-01-07 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2020022343A1 (ja) 2018-07-24 2020-01-30 日本ゼオン株式会社 非水系二次電池用スラリーおよびその製造方法、非水系二次電池用電池部材およびその製造方法、並びに、非水系二次電池
WO2020031791A1 (ja) 2018-08-07 2020-02-13 日本ゼオン株式会社 非水系二次電池機能層用組成物およびその製造方法、非水系二次電池用機能層、非水系二次電池部材、並びに非水系二次電池
WO2020045246A1 (ja) 2018-08-29 2020-03-05 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用電池部材およびその製造方法、並びに非水系二次電池用積層体の製造方法および非水系二次電池の製造方法
US10593948B2 (en) 2015-09-30 2020-03-17 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2020066857A1 (ja) 2018-09-27 2020-04-02 日本ゼオン株式会社 非水系二次電池接着層用スラリーおよび接着層付き非水系二次電池用電池部材、並びに、非水系二次電池用積層体の製造方法および非水系二次電池の製造方法
US10633473B2 (en) 2016-05-13 2020-04-28 Zeon Corporation Binder particle aggregate for electrochemical device electrode, slurry composition for electrochemical device electrode, production methods therefor, electrode for electrochemical device, and electrochemical device
WO2020090395A1 (ja) 2018-10-31 2020-05-07 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池用セパレータ、および非水系二次電池
US10707532B2 (en) 2015-10-28 2020-07-07 Zeon Corporation Composition for adhesive layer of non-aqueous secondary battery, adhesive layer for non-aqueous secondary battery, adhesive layer-equipped separator for non-aqueous secondary battery, adhesive layer-equipped electrode for non-aqueous secondary battery, non-aqueous secondary battery, and method for producing same
US10720647B2 (en) 2016-01-29 2020-07-21 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non- aqueous secondary battery
WO2020162503A1 (ja) * 2019-02-06 2020-08-13 デンカ株式会社 組成物、正極用スラリー及び電池
US10784502B2 (en) 2015-06-08 2020-09-22 Zeon Corporation Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery
WO2020196111A1 (ja) 2019-03-28 2020-10-01 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物、非水系二次電池用負極および非水系二次電池
WO2020213721A1 (ja) 2019-04-18 2020-10-22 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池
WO2020213722A1 (ja) 2019-04-18 2020-10-22 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池
US10910651B2 (en) 2016-03-10 2021-02-02 Zeon Corporation Binder for non-aqueous secondary battery electrode, slurry for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2021020061A1 (ja) 2019-07-31 2021-02-04 日本ゼオン株式会社 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池
JP2021022521A (ja) * 2019-07-30 2021-02-18 株式会社大阪ソーダ バインダー用組成物、バインダー、電極材料、電極及び蓄電デバイス
WO2021039672A1 (ja) 2019-08-30 2021-03-04 日本ゼオン株式会社 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、及び非水系二次電池
WO2021039673A1 (ja) 2019-08-30 2021-03-04 日本ゼオン株式会社 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、及び非水系二次電池
US10964947B2 (en) 2015-06-29 2021-03-30 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2021059880A1 (ja) 2019-09-27 2021-04-01 日本ゼオン株式会社 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池
WO2021065457A1 (ja) 2019-09-30 2021-04-08 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
US10985375B2 (en) 2016-09-20 2021-04-20 Zeon Corporation Slurry composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN112825277A (zh) * 2019-11-20 2021-05-21 珠海冠宇电池股份有限公司 一种聚合物基正温度系数热敏电阻复合材料及其制备方法和应用
WO2021131980A1 (ja) 2019-12-27 2021-07-01 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
WO2021200350A1 (ja) 2020-03-31 2021-10-07 日本ゼオン株式会社 非水二次電池用バインダー組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極および非水二次電池
WO2022045267A1 (ja) 2020-08-31 2022-03-03 日本ゼオン株式会社 電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物及びその製造方法、電気化学素子用電極、並びに電気化学素子
WO2022044871A1 (ja) 2020-08-31 2022-03-03 日本ゼオン株式会社 電気化学素子用分散剤組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2022045266A1 (ja) 2020-08-31 2022-03-03 日本ゼオン株式会社 電気化学素子用分散剤組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物及びその製造方法、電気化学素子用電極、並びに電気化学素子
WO2022044716A1 (ja) 2020-08-31 2022-03-03 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物、電気化学素子用電極および電気化学素子
WO2022045154A1 (ja) 2020-08-31 2022-03-03 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
US11283066B2 (en) * 2014-03-12 2022-03-22 Sanyo Chemical Industries, Ltd. Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery
WO2022113704A1 (ja) 2020-11-30 2022-06-02 日本ゼオン株式会社 非水系二次電池正極用バインダー組成物、非水系二次電池正極用導電材分散液、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、及び非水系二次電池
WO2022113860A1 (ja) 2020-11-30 2022-06-02 日本ゼオン株式会社 非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法、非水系リチウムイオン二次電池電極用バインダー溶液、非水系リチウムイオン二次電池電極用スラリー組成物、非水系リチウムイオン二次電池用電極、並びに非水系リチウムイオン二次電池
US11387457B2 (en) 2015-09-30 2022-07-12 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2022168591A1 (ja) 2021-02-03 2022-08-11 日本ゼオン株式会社 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、非水系二次電池用耐熱層付きセパレータ、および非水系二次電池
US11462737B2 (en) 2015-09-30 2022-10-04 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2022209997A1 (ja) 2021-03-30 2022-10-06 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池
WO2022230908A1 (ja) 2021-04-28 2022-11-03 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池
WO2022230621A1 (ja) 2021-04-28 2022-11-03 日本ゼオン株式会社 非水系二次電池用積層体、接着用組成物及び非水系二次電池
WO2023276788A1 (ja) 2021-06-30 2023-01-05 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2023276709A1 (ja) 2021-06-30 2023-01-05 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2023008165A1 (ja) 2021-07-30 2023-02-02 日本ゼオン株式会社 非水系二次電池用積層体、非水系二次電池用積層体の製造方法及び非水系二次電池
WO2023032718A1 (ja) 2021-08-31 2023-03-09 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用積層体及びその製造方法、並びに、非水系二次電池
WO2023032717A1 (ja) 2021-08-31 2023-03-09 日本ゼオン株式会社 電気化学素子正極用バインダー組成物、電気化学素子正極用導電材分散液、電気化学素子正極用スラリー組成物、電気化学素子用正極および電気化学素子
WO2023074356A1 (ja) 2021-10-29 2023-05-04 日本ゼオン株式会社 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池
WO2023074502A1 (ja) 2021-10-28 2023-05-04 日本ゼオン株式会社 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ及び非水系二次電池
US11784313B2 (en) 2015-09-30 2023-10-10 Zeon Corporation Conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, undercoating layer-equipped current collector for secondary battery electrode, electrode for secondary battery, and secondary battery
US11831018B2 (en) 2016-06-29 2023-11-28 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11870075B2 (en) 2016-02-17 2024-01-09 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11996562B2 (en) 2018-02-19 2024-05-28 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102166878B1 (ko) * 2013-03-15 2020-10-16 제온 코포레이션 이차 전지용 바인더 조성물, 이차 전지용 슬러리 조성물, 이차 전지용 부극, 및 이차 전지
KR101702257B1 (ko) * 2013-03-26 2017-02-03 닛산 지도우샤 가부시키가이샤 비수전해질 이차 전지
WO2015098050A1 (ja) * 2013-12-26 2015-07-02 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR102338184B1 (ko) * 2013-12-26 2021-12-09 제온 코포레이션 리튬 이온 2 차 전지 부극용 바인더 조성물, 리튬 이온 2 차 전지 부극용 슬러리 조성물, 리튬 이온 2 차 전지용 부극 및 리튬 이온 2 차 전지
CN105940530B (zh) * 2014-03-24 2019-03-08 昭和电工株式会社 锂离子二次电池正极用浆料、使用该浆料得到的正极及其制造方法、使用该正极而得的锂离子二次电池及其制造方法
KR20160061167A (ko) * 2014-11-21 2016-05-31 삼성에스디아이 주식회사 무기물층이 코팅된 전극, 그 제조 방법 및 이를 구비한 이차 전지
JP6465323B2 (ja) * 2015-04-22 2019-02-06 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途
KR101833615B1 (ko) * 2015-04-29 2018-02-28 주식회사 엘지화학 음극 활물질 및 이를 포함하는 음극
KR101698745B1 (ko) * 2015-08-03 2017-01-23 주식회사 한솔케미칼 리튬 이온 이차전지 음극용 코어-쉘 구조의 바인더 및 이의 제조방법, 및 상기 바인더를 포함하는 슬러리
US20180327639A1 (en) * 2015-11-30 2018-11-15 Zeon Corporation Composition for non-aqueous secondary battery adhesive layer, non-aqueous secondary battery adhesive layer, and non-aqueous secondary battery
CN106129330B (zh) * 2016-08-29 2019-08-20 深圳市沃特玛电池有限公司 一种磷酸铁锂电池正极片及其制备方法、磷酸铁锂电池
KR102574885B1 (ko) * 2017-03-24 2023-09-04 니폰 제온 가부시키가이샤 비수계 이차 전지용 바인더 조성물 및 비수계 이차 전지용 슬러리 조성물
EP3614470A4 (en) * 2017-04-21 2021-01-13 Sanyo Chemical Industries, Ltd. ADHESIVE FOR LITHIUM-ION ELECTRODE, ELECTRODE FOR LITHIUM-ION BATTERY, AND METHOD FOR MANUFACTURING AN ELECTRODE FOR LITHIUM-ION BATTERY
KR102335525B1 (ko) 2017-05-18 2021-12-03 현대자동차주식회사 이종 바인더 적용 수소연료전지용 전극막 접합체의 제조방법, 및 이로 제조된 전극막 접합체
EP3660953A4 (en) * 2017-07-28 2021-04-21 Zeon Corporation ELECTRODE FOR ELECTROCHEMICAL ELEMENT AS WELL AS A METHOD FOR MANUFACTURING THE SAME, AND ELECTROCHEMICAL ELEMENT
US11777147B2 (en) 2017-11-01 2023-10-03 Nec Corporation Lithium ion secondary battery
US11469407B2 (en) * 2018-12-20 2022-10-11 Ppg Industries Ohio, Inc. Battery electrode coatings applied by waterborne electrodeposition
CN113812026A (zh) * 2019-03-29 2021-12-17 Jsr株式会社 全固体二次电池用粘结剂、全固体二次电池用粘结剂组合物、全固体二次电池用浆料、全固体二次电池用固体电解质片材及其制造方法、以及全固体二次电池及其制造方法
US11699791B2 (en) * 2019-08-16 2023-07-11 Sk On Co., Ltd. Binder for secondary battery and secondary battery including the same
CN110931793B (zh) * 2019-11-21 2022-06-14 合肥国轩高科动力能源有限公司 一种负极粘结剂及含有该粘结剂的硅基负极片的制备方法
JP7216344B2 (ja) 2020-01-31 2023-02-01 東洋インキScホールディングス株式会社 分散剤、導電材分散体、及び電極膜用スラリー
US11482696B2 (en) 2020-02-26 2022-10-25 Ppg Industries Ohio, Inc. Method of coating an electrical current collector and electrodes resulting therefrom
JPWO2022070951A1 (ja) * 2020-09-30 2022-04-07
US11824196B2 (en) * 2020-10-14 2023-11-21 Samsung Sdi Co., Ltd. Negative electrode slurry, negative electrode, and rechargeable battery
CN112919533A (zh) * 2021-01-14 2021-06-08 华南理工大学 一种氮掺杂碳包覆的磷掺杂二氧化钛材料及其制备方法与应用
FR3138659A1 (fr) 2022-08-03 2024-02-09 Coatex Composition d’anode au liant anionique

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042819A (ja) 2000-07-31 2002-02-08 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極および二次電池
JP2002231251A (ja) * 2001-02-06 2002-08-16 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物およびリチウムイオン二次電池
JP2003217573A (ja) 2002-01-22 2003-07-31 Hitachi Powdered Metals Co Ltd 非水系二次電池の負極塗膜形成用スラリーおよび該スラリーの調整方法
JP2003308841A (ja) 2002-04-16 2003-10-31 Hitachi Powdered Metals Co Ltd 非水系二次電池の負極塗膜形成用スラリー
JP2006040800A (ja) * 2004-07-29 2006-02-09 Hitachi Chem Co Ltd リチウム電池電極用バインダ樹脂溶液及びこの溶液と活物質から製造される電極および電池
WO2007125924A1 (ja) * 2006-04-26 2007-11-08 Mitsui Chemicals, Inc. 電気化学セル電極用バインダー
WO2008120786A1 (ja) * 2007-03-30 2008-10-09 Zeon Corporation 二次電池電極用バインダー、二次電池電極および二次電池
JP2010146870A (ja) 2008-12-19 2010-07-01 Nippon A&L Inc 二次電池電極用バインダー

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW519777B (en) * 1999-10-18 2003-02-01 Zeon Corp The binder composition for the secondary battery electrode of lithium ion and its utilization
WO2006033173A1 (ja) * 2004-09-22 2006-03-30 Hitachi Chemical Company, Ltd. 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
TW201043672A (en) * 2009-03-30 2010-12-16 Jsr Corp Composition for electrochemical-device electrode binder, electrode slurry for electrochemical device, and electrode for electrochemical device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042819A (ja) 2000-07-31 2002-02-08 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極および二次電池
JP2002231251A (ja) * 2001-02-06 2002-08-16 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物およびリチウムイオン二次電池
JP2003217573A (ja) 2002-01-22 2003-07-31 Hitachi Powdered Metals Co Ltd 非水系二次電池の負極塗膜形成用スラリーおよび該スラリーの調整方法
JP2003308841A (ja) 2002-04-16 2003-10-31 Hitachi Powdered Metals Co Ltd 非水系二次電池の負極塗膜形成用スラリー
JP2006040800A (ja) * 2004-07-29 2006-02-09 Hitachi Chem Co Ltd リチウム電池電極用バインダ樹脂溶液及びこの溶液と活物質から製造される電極および電池
WO2007125924A1 (ja) * 2006-04-26 2007-11-08 Mitsui Chemicals, Inc. 電気化学セル電極用バインダー
WO2008120786A1 (ja) * 2007-03-30 2008-10-09 Zeon Corporation 二次電池電極用バインダー、二次電池電極および二次電池
JP2010146870A (ja) 2008-12-19 2010-07-01 Nippon A&L Inc 二次電池電極用バインダー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Jikken Kagaku Kouza (Course of Experimental Chemistry", vol. 28, MARUZEN PUBLISHING CO., LTD.

Cited By (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013031690A1 (ja) * 2011-08-30 2015-03-23 日本ゼオン株式会社 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池
WO2013031690A1 (ja) * 2011-08-30 2013-03-07 日本ゼオン株式会社 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池
US10224549B2 (en) 2011-08-30 2019-03-05 Zeon Corporation Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
WO2013086441A2 (en) 2011-12-08 2013-06-13 Sarepta Therapeutics, Inc. Oligonucleotide analogues targeting human lmna
WO2013086444A2 (en) 2011-12-08 2013-06-13 Sarepta Therapeutics, Inc. Methods for treating progeroid laminopathies using oligonucleotide analogues targeting human lmna
JP2013131368A (ja) * 2011-12-21 2013-07-04 Toyo Kagaku Kk 電極用バインダー
WO2013125645A1 (ja) * 2012-02-23 2013-08-29 日本ゼオン株式会社 二次電池用多孔膜、二次電池用電極、二次電池用セパレーター及び二次電池
JPWO2013125645A1 (ja) * 2012-02-23 2015-07-30 日本ゼオン株式会社 二次電池用多孔膜、二次電池用電極、二次電池用セパレーター及び二次電池
JPWO2013147007A1 (ja) * 2012-03-30 2015-12-14 日本ゼオン株式会社 二次電池負極用スラリー組成物
WO2014024937A1 (ja) * 2012-08-09 2014-02-13 日本ゼオン株式会社 二次電池用負極、二次電池、スラリー組成物、及び製造方法
JP2014089834A (ja) * 2012-10-29 2014-05-15 Nippon Zeon Co Ltd リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2014146471A (ja) * 2013-01-28 2014-08-14 Nippon Zeon Co Ltd 二次電池負極用スラリー組成物、その製造方法、二次電池用負極、及び二次電池
JP2014160651A (ja) * 2013-01-28 2014-09-04 Nippon Zeon Co Ltd リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
US20140242452A1 (en) * 2013-02-27 2014-08-28 GM Global Technology Operations LLC Lithium ion battery
WO2014148064A1 (ja) 2013-03-22 2014-09-25 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR20140138057A (ko) * 2013-05-23 2014-12-03 주식회사 엘지화학 이차전지용 바인더 및 이를 포함하는 이차전지
CN104981927A (zh) * 2013-05-23 2015-10-14 Lg化学株式会社 用于二次电池的粘合剂以及包含该粘合剂的二次电池
US10044041B2 (en) 2013-05-23 2018-08-07 Lg Chem, Ltd. Binder for secondary batteries and secondary battery including the same
KR101597745B1 (ko) * 2013-05-23 2016-02-25 주식회사 엘지화학 이차전지용 바인더 및 이를 포함하는 이차전지
CN105190968A (zh) * 2013-05-29 2015-12-23 日本瑞翁株式会社 电化学元件电极用粘合剂、电化学元件电极用粒子复合体、电化学元件电极、电化学元件、以及电化学元件电极的制造方法
JP2015115109A (ja) * 2013-12-09 2015-06-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウムイオン(lithiumion)二次電池負極用水系スラリー(slurry)、リチウムイオン二次電池用負極活物質層、及びリチウムイオン二次電池
KR20210131934A (ko) * 2013-12-09 2021-11-03 삼성에스디아이 주식회사 리튬이온 이차전지용 음극 수계 슬러리, 이를 포함하는 음극 활물질층 및 리튬이온 이차전지
KR20150067016A (ko) * 2013-12-09 2015-06-17 삼성에스디아이 주식회사 리튬이온 이차전지용 음극 수계 슬러리, 이를 포함하는 음극 활물질층 및 리튬이온 이차전지
KR102425511B1 (ko) 2013-12-09 2022-07-26 삼성에스디아이 주식회사 리튬이온 이차전지용 음극 수계 슬러리, 이를 포함하는 음극 활물질층 및 리튬이온 이차전지
KR102317780B1 (ko) 2013-12-09 2021-10-25 삼성에스디아이 주식회사 리튬이온 이차전지용 음극 수계 슬러리, 이를 포함하는 음극 활물질층 및 리튬이온 이차전지
US11283066B2 (en) * 2014-03-12 2022-03-22 Sanyo Chemical Industries, Ltd. Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery
US9520596B2 (en) 2014-04-08 2016-12-13 Chi Mei Corporation Resin for negative electrode of lithium ion battery, resin composition, slurry, negative electrode, and lithium ion battery
JP2015201444A (ja) * 2014-04-08 2015-11-12 奇美實業股▲分▼有限公司 リチウムイオン電池負極用樹脂、樹脂組成物、スラリー、負極およびリチウムイオン電池
US10249879B2 (en) 2014-05-14 2019-04-02 Zeon Corporation Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
US11552297B2 (en) 2014-06-04 2023-01-10 Zeon Corporation Binder composition for lithium ion secondary battery electrode-use, slurry composition for lithium ion secondary battery electrode-use, electrode for lithium ion secondary battery-use, and lithium ion secondary battery
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
US10388930B2 (en) 2014-06-26 2019-08-20 Zeon Corporation Laminate for non-aqueous secondary battery, method of manufacturing the same, and non-aqueous secondary battery
US10529989B2 (en) 2014-08-11 2020-01-07 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
US10290873B2 (en) 2014-09-05 2019-05-14 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
EP3800714A1 (en) 2014-12-26 2021-04-07 Zeon Corporation Binder composition for non-aqueous secondary battery positive electrode, composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery, and methods for producing composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US10468713B2 (en) 2014-12-26 2019-11-05 Zeon Corporation Binder composition for non-aqueous secondary battery positive electrode, composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery, and methods for producing composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2016181422A (ja) * 2015-03-24 2016-10-13 日本ゼオン株式会社 リチウムイオン二次電池シリコン系負極用バインダー組成物およびリチウムイオン二次電池シリコン系負極用スラリー組成物
US10312522B2 (en) 2015-03-27 2019-06-04 Zeon Corporation Binder composition for lithium ion secondary battery positive electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery
US10784502B2 (en) 2015-06-08 2020-09-22 Zeon Corporation Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery
US10964947B2 (en) 2015-06-29 2021-03-30 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
US10388961B2 (en) 2015-07-14 2019-08-20 Zeon Corporation Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
EP3920285A1 (en) 2015-07-14 2021-12-08 Zeon Corporation Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
US11387457B2 (en) 2015-09-30 2022-07-12 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US10593948B2 (en) 2015-09-30 2020-03-17 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11462737B2 (en) 2015-09-30 2022-10-04 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11784313B2 (en) 2015-09-30 2023-10-10 Zeon Corporation Conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, undercoating layer-equipped current collector for secondary battery electrode, electrode for secondary battery, and secondary battery
US10707532B2 (en) 2015-10-28 2020-07-07 Zeon Corporation Composition for adhesive layer of non-aqueous secondary battery, adhesive layer for non-aqueous secondary battery, adhesive layer-equipped separator for non-aqueous secondary battery, adhesive layer-equipped electrode for non-aqueous secondary battery, non-aqueous secondary battery, and method for producing same
US10720647B2 (en) 2016-01-29 2020-07-21 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non- aqueous secondary battery
US11870075B2 (en) 2016-02-17 2024-01-09 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2017150048A1 (ja) 2016-03-03 2017-09-08 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US11145864B2 (en) 2016-03-03 2021-10-12 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, conductive material paste composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US10910651B2 (en) 2016-03-10 2021-02-02 Zeon Corporation Binder for non-aqueous secondary battery electrode, slurry for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2017170281A1 (ja) 2016-03-28 2017-10-05 日本ゼオン株式会社 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
US11046797B2 (en) 2016-03-28 2021-06-29 Zeon Corporation Binder composition for electrochemical device electrode, slurry composition for electrochemical device electrode, electrochemical device electrode, and electrochemical device
US10633473B2 (en) 2016-05-13 2020-04-28 Zeon Corporation Binder particle aggregate for electrochemical device electrode, slurry composition for electrochemical device electrode, production methods therefor, electrode for electrochemical device, and electrochemical device
US11831018B2 (en) 2016-06-29 2023-11-28 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2018003636A1 (ja) 2016-06-29 2018-01-04 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US10985375B2 (en) 2016-09-20 2021-04-20 Zeon Corporation Slurry composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11011794B2 (en) 2016-11-24 2021-05-18 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
WO2018096975A1 (ja) 2016-11-24 2018-05-31 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
US11462738B2 (en) 2016-12-28 2022-10-04 Zeon Corporation Slurry composition including lithium titanium oxide and nitrile butadiene rubber and method of producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2018123624A1 (ja) 2016-12-28 2018-07-05 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池
WO2018163969A1 (ja) 2017-03-08 2018-09-13 日本ゼオン株式会社 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用機能層付きセパレータ、非水系二次電池およびその製造方法
WO2018168420A1 (ja) 2017-03-13 2018-09-20 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、非水系二次電池用負極および非水系二次電池、並びに、非水系二次電池用電極の製造方法
WO2018168615A1 (ja) 2017-03-13 2018-09-20 日本ゼオン株式会社 電気化学素子電極用導電材分散液、電気化学素子電極用スラリー組成物およびその製造方法、電気化学素子用電極、並びに、電気化学素子
US11802171B2 (en) 2017-03-13 2023-10-31 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and method of producing electrode for non-aqueous secondary battery
WO2018173975A1 (ja) 2017-03-23 2018-09-27 日本ゼオン株式会社 非水系二次電池正極用バインダー組成物、非水系二次電池正極用組成物、非水系二次電池用正極および非水系二次電池
US11742487B2 (en) 2017-03-23 2023-08-29 Zeon Corporation Binder composition for non-aqueous secondary battery positive electrode, composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2018180101A1 (ja) 2017-03-28 2018-10-04 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池、並びに、非水系二次電池用電極の製造方法
US11469420B2 (en) 2017-03-28 2022-10-11 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, non-aqueous secondary battery, and method of producing non-aqueous secondary battery electrode
US20190006676A1 (en) * 2017-06-30 2019-01-03 Ppg Industries Ohio, Inc. Slurry composition for lithium ion electrical storage devices
US11374223B2 (en) * 2017-06-30 2022-06-28 Ppg Industries Ohio, Inc. Slurry composition including binder containing reaction product of epoxy functional polymer and acid functional polymer for lithium ion electrical storage devices
WO2019044452A1 (ja) 2017-08-29 2019-03-07 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
US11245115B2 (en) 2017-08-29 2022-02-08 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11873363B2 (en) 2017-08-30 2024-01-16 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2019044166A1 (ja) 2017-08-30 2019-03-07 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2019054173A1 (ja) 2017-09-15 2019-03-21 日本ゼオン株式会社 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法
WO2019065909A1 (ja) 2017-09-28 2019-04-04 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層、二次電池用電極層および二次電池
US11978903B2 (en) 2017-09-28 2024-05-07 Zeon Corporation Binder composition for secondary battery, slurry composition for secondary battery, functional layer for secondary battery, electrode layer for secondary battery, and secondary battery
WO2019065416A1 (ja) 2017-09-28 2019-04-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
WO2019065370A1 (ja) 2017-09-28 2019-04-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池部材、および非水系二次電池
US11710821B2 (en) 2017-09-28 2023-07-25 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
US11462727B2 (en) 2017-09-28 2022-10-04 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, non-aqueous secondary battery component, and non-aqueous secondary battery
WO2019065471A1 (ja) 2017-09-28 2019-04-04 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子
WO2019065130A1 (ja) 2017-09-28 2019-04-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
US11637327B2 (en) 2017-12-27 2023-04-25 Zeon Corporation Composition for non-aqueous secondary battery functional layer, battery component for non-aqueous secondary battery, method of producing laminate for non-aqueous secondary battery, and non-aqueous secondary battery
WO2019131348A1 (ja) 2017-12-27 2019-07-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および非水系二次電池
WO2019131347A1 (ja) 2017-12-27 2019-07-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および、非水系二次電池
WO2019156086A1 (ja) 2018-02-07 2019-08-15 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子
US11996562B2 (en) 2018-02-19 2024-05-28 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2019159706A1 (ja) 2018-02-19 2019-08-22 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2019181744A1 (ja) 2018-03-23 2019-09-26 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US11673984B2 (en) 2018-03-23 2023-06-13 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, conductive material paste composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2019181660A1 (ja) 2018-03-23 2019-09-26 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JPWO2019188722A1 (ja) * 2018-03-27 2021-03-18 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法
JP7400713B2 (ja) 2018-03-27 2023-12-19 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法
WO2019188722A1 (ja) 2018-03-27 2019-10-03 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法
WO2019208419A1 (ja) 2018-04-26 2019-10-31 日本ゼオン株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー組成物、蓄電デバイス用電極、および蓄電デバイス
US11362334B2 (en) 2018-04-26 2022-06-14 Zeon Corporation Binder composition for electrical storage device, slurry composition for electrical storage device electrode, electrode for electrical storage device, and electrical storage device
WO2019221056A1 (ja) 2018-05-17 2019-11-21 日本ゼオン株式会社 非水系二次電池用スラリー、非水系二次電池用セパレータ、非水系二次電池用電極、非水系二次電池用積層体および非水系二次電池
WO2020004526A1 (ja) 2018-06-29 2020-01-02 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
WO2020004145A1 (ja) 2018-06-29 2020-01-02 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
WO2020004332A1 (ja) 2018-06-29 2020-01-02 日本ゼオン株式会社 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
US11976147B2 (en) 2018-06-29 2024-05-07 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and method of producing same, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11929507B2 (en) 2018-06-29 2024-03-12 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and method of producing same, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2020022343A1 (ja) 2018-07-24 2020-01-30 日本ゼオン株式会社 非水系二次電池用スラリーおよびその製造方法、非水系二次電池用電池部材およびその製造方法、並びに、非水系二次電池
US11569489B2 (en) 2018-07-24 2023-01-31 Zeon Corporation Slurry for non-aqueous secondary battery and method of producing same, battery member for non-aqueous secondary battery and method of producing same, and non-aqueous secondary battery
WO2020031791A1 (ja) 2018-08-07 2020-02-13 日本ゼオン株式会社 非水系二次電池機能層用組成物およびその製造方法、非水系二次電池用機能層、非水系二次電池部材、並びに非水系二次電池
WO2020045246A1 (ja) 2018-08-29 2020-03-05 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用電池部材およびその製造方法、並びに非水系二次電池用積層体の製造方法および非水系二次電池の製造方法
US11811087B2 (en) 2018-08-29 2023-11-07 Zeon Corporation Composition for non-aqueous secondary battery adhesive layer, battery member for non-aqueous secondary battery and method of producing same, method of producing laminate for non-aqueous secondary battery, and method of producing non-aqueous secondary battery
WO2020066857A1 (ja) 2018-09-27 2020-04-02 日本ゼオン株式会社 非水系二次電池接着層用スラリーおよび接着層付き非水系二次電池用電池部材、並びに、非水系二次電池用積層体の製造方法および非水系二次電池の製造方法
WO2020090395A1 (ja) 2018-10-31 2020-05-07 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池用セパレータ、および非水系二次電池
WO2020162503A1 (ja) * 2019-02-06 2020-08-13 デンカ株式会社 組成物、正極用スラリー及び電池
WO2020196111A1 (ja) 2019-03-28 2020-10-01 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物、非水系二次電池用負極および非水系二次電池
WO2020213721A1 (ja) 2019-04-18 2020-10-22 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池
WO2020213722A1 (ja) 2019-04-18 2020-10-22 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池
JP7325707B2 (ja) 2019-07-30 2023-08-15 株式会社大阪ソーダ バインダー用組成物、バインダー、電極材料、電極及び蓄電デバイス
JP2021022521A (ja) * 2019-07-30 2021-02-18 株式会社大阪ソーダ バインダー用組成物、バインダー、電極材料、電極及び蓄電デバイス
WO2021020061A1 (ja) 2019-07-31 2021-02-04 日本ゼオン株式会社 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池
WO2021039673A1 (ja) 2019-08-30 2021-03-04 日本ゼオン株式会社 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、及び非水系二次電池
WO2021039672A1 (ja) 2019-08-30 2021-03-04 日本ゼオン株式会社 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、及び非水系二次電池
WO2021059880A1 (ja) 2019-09-27 2021-04-01 日本ゼオン株式会社 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池
WO2021065457A1 (ja) 2019-09-30 2021-04-08 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
CN112825277A (zh) * 2019-11-20 2021-05-21 珠海冠宇电池股份有限公司 一种聚合物基正温度系数热敏电阻复合材料及其制备方法和应用
CN112825277B (zh) * 2019-11-20 2023-02-03 珠海冠宇电池股份有限公司 一种聚合物基正温度系数热敏电阻复合材料及其制备方法和应用
WO2021131980A1 (ja) 2019-12-27 2021-07-01 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
WO2021200350A1 (ja) 2020-03-31 2021-10-07 日本ゼオン株式会社 非水二次電池用バインダー組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極および非水二次電池
WO2022045266A1 (ja) 2020-08-31 2022-03-03 日本ゼオン株式会社 電気化学素子用分散剤組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物及びその製造方法、電気化学素子用電極、並びに電気化学素子
WO2022044716A1 (ja) 2020-08-31 2022-03-03 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物、電気化学素子用電極および電気化学素子
WO2022045154A1 (ja) 2020-08-31 2022-03-03 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2022044871A1 (ja) 2020-08-31 2022-03-03 日本ゼオン株式会社 電気化学素子用分散剤組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2022045267A1 (ja) 2020-08-31 2022-03-03 日本ゼオン株式会社 電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物及びその製造方法、電気化学素子用電極、並びに電気化学素子
WO2022113704A1 (ja) 2020-11-30 2022-06-02 日本ゼオン株式会社 非水系二次電池正極用バインダー組成物、非水系二次電池正極用導電材分散液、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、及び非水系二次電池
WO2022113860A1 (ja) 2020-11-30 2022-06-02 日本ゼオン株式会社 非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法、非水系リチウムイオン二次電池電極用バインダー溶液、非水系リチウムイオン二次電池電極用スラリー組成物、非水系リチウムイオン二次電池用電極、並びに非水系リチウムイオン二次電池
WO2022168591A1 (ja) 2021-02-03 2022-08-11 日本ゼオン株式会社 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、非水系二次電池用耐熱層付きセパレータ、および非水系二次電池
WO2022209997A1 (ja) 2021-03-30 2022-10-06 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池
WO2022230908A1 (ja) 2021-04-28 2022-11-03 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池
WO2022230621A1 (ja) 2021-04-28 2022-11-03 日本ゼオン株式会社 非水系二次電池用積層体、接着用組成物及び非水系二次電池
WO2023276788A1 (ja) 2021-06-30 2023-01-05 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2023276709A1 (ja) 2021-06-30 2023-01-05 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2023008165A1 (ja) 2021-07-30 2023-02-02 日本ゼオン株式会社 非水系二次電池用積層体、非水系二次電池用積層体の製造方法及び非水系二次電池
WO2023032718A1 (ja) 2021-08-31 2023-03-09 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用積層体及びその製造方法、並びに、非水系二次電池
WO2023032717A1 (ja) 2021-08-31 2023-03-09 日本ゼオン株式会社 電気化学素子正極用バインダー組成物、電気化学素子正極用導電材分散液、電気化学素子正極用スラリー組成物、電気化学素子用正極および電気化学素子
WO2023074502A1 (ja) 2021-10-28 2023-05-04 日本ゼオン株式会社 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ及び非水系二次電池
WO2023074356A1 (ja) 2021-10-29 2023-05-04 日本ゼオン株式会社 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池

Also Published As

Publication number Publication date
US20130330622A1 (en) 2013-12-12
KR20140018882A (ko) 2014-02-13
CN103384932A (zh) 2013-11-06
JPWO2012115096A1 (ja) 2014-07-07
EP2680349A1 (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5900354B2 (ja) 二次電池負極用スラリー、二次電池用負極及びその製造方法、並びに二次電池
WO2012115096A1 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP5708301B2 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP5987471B2 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP5991321B2 (ja) 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池
JP5761197B2 (ja) 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池負極、二次電池及び二次電池負極用バインダー組成物の製造方法
JP6011608B2 (ja) 二次電池負極用バインダー組成物、二次電池用負極、二次電池負極用スラリー組成物、製造方法及び二次電池
JP6481609B2 (ja) 二次電池用バインダー組成物、二次電池負極用スラリー組成物、二次電池用負極、および、二次電池
JP6168058B2 (ja) 二次電池用負極、二次電池、スラリー組成物、及び製造方法
WO2011096463A1 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウム二次電池
WO2014148064A1 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2011037142A1 (ja) リチウムイオン二次電池負極及びリチウムイオン二次電池
JP6115468B2 (ja) 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池用負極および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013501067

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012749342

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012749342

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137022065

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14001030

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE