WO2019065416A1 - 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池 - Google Patents

非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池 Download PDF

Info

Publication number
WO2019065416A1
WO2019065416A1 PCT/JP2018/034658 JP2018034658W WO2019065416A1 WO 2019065416 A1 WO2019065416 A1 WO 2019065416A1 JP 2018034658 W JP2018034658 W JP 2018034658W WO 2019065416 A1 WO2019065416 A1 WO 2019065416A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional layer
secondary battery
composition
mass
aqueous secondary
Prior art date
Application number
PCT/JP2018/034658
Other languages
English (en)
French (fr)
Inventor
浩二 安中
一輝 浅井
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP18863570.0A priority Critical patent/EP3690986A4/en
Priority to JP2019545008A priority patent/JP7342704B2/ja
Priority to US16/646,142 priority patent/US11710821B2/en
Priority to KR1020207007642A priority patent/KR20200060365A/ko
Priority to CN201880058681.3A priority patent/CN111095600A/zh
Publication of WO2019065416A1 publication Critical patent/WO2019065416A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous secondary battery functional layer composition, a non-aqueous secondary battery functional layer, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) are small and lightweight, have high energy density, and are capable of repeated charge and discharge. Yes, it is used in a wide range of applications.
  • the secondary battery generally includes battery members such as an electrode (positive electrode, negative electrode), and a separator that separates the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode. And, on the surface of the electrode and / or the separator, a porous film layer for improving heat resistance and strength, an adhesive layer for the purpose of improving adhesion between battery members, etc. May be referred to as “functional layer”.
  • an electrode in which a functional layer is further formed on an electrode base material in which an electrode mixture layer is provided on a current collector, and a separator in which a functional layer is formed on a separator base material are battery cells. It is used as a member.
  • Patent Document 1 includes a binder particle, a filler particle, and a liquid medium, and a protective layer having a ratio of an average particle diameter of the binder particle to an average particle diameter of the filler particle within a predetermined range.
  • the method of forming the protective layer disposed between the positive electrode and the negative electrode of the storage device by further heating the composition for formation onto the substrate and then heating the composition at a predetermined temperature range is described.
  • heterogenous deterioration in the protective layer surface can be suppressed by forming a protective layer by the said method, and the charge / discharge characteristic of an electrical storage device can be improved.
  • the present invention is to provide a composition for a non-aqueous secondary battery functional layer capable of forming a functional layer having excellent heat shrinkage resistance and capable of exhibiting excellent cycle characteristics in the non-aqueous secondary battery.
  • the present invention has an object to provide a functional layer having excellent heat shrinkage resistance and capable of exhibiting excellent cycle characteristics in a non-aqueous secondary battery, and a non-aqueous secondary battery including the functional layer. I assume.
  • the present inventors diligently studied for the purpose of solving the above-mentioned problems. And this inventor contains the composition of the functional layer containing the organic particle which contains a polyfunctional ethylenic unsaturated monomer unit by a predetermined ratio, and whose volume average particle diameter is in a predetermined range, and a solvent. It has been found that if it is used, the thermal shrinkage of the functional layer can be suppressed while the cycle characteristics of the secondary battery can be enhanced, and the present invention has been completed.
  • the present invention is intended to advantageously solve the above-mentioned problems, and the composition for a non-aqueous secondary battery functional layer of the present invention comprises a non-aqueous secondary battery functional layer containing organic particles and a solvent.
  • the organic particle contains a polyfunctional ethylenically unsaturated monomer unit at a ratio of 55% by mass to 90% by mass, and the volume average particle diameter of the organic particle is 50 nm to 370 nm. It is characterized by being.
  • composition for a functional layer containing organic particles containing a polyfunctional ethylenically unsaturated monomer unit at a ratio within the above range, and having a volume average particle diameter within the above range, and a solvent If used, a functional layer having excellent heat shrinkage resistance can be formed, and if a battery member provided with the functional layer is used, excellent cycle characteristics can be exhibited in the secondary battery.
  • the term "containing a monomer unit" as a component comprising a polymer such as an organic particle or a binder means that "a component derived from a monomer in a polymer obtained using that monomer” is used. It means that the repeating unit is included.
  • the “content ratio of the monomer unit” formed by polymerizing a certain monomer is not limited unless otherwise specified. Usually, it corresponds to the ratio (feed ratio) of a certain monomer concerned to all the monomers used for polymerization of the polymer.
  • each “content ratio of monomer units” in the polymer can be measured using nuclear magnetic resonance (NMR) methods such as 1 H-NMR and 13 C-NMR.
  • NMR nuclear magnetic resonance
  • the "volume average particle size” can be measured using the method described in the examples of the present specification.
  • the glass transition temperature of the organic particles is preferably 100 ° C. or higher.
  • the heat shrinkage resistance of the functional layer can be further improved by using the organic particles having a glass transition temperature of 100 ° C. or higher.
  • the "glass transition temperature" can be measured using the method described in the examples of the present specification.
  • the said polyfunctional ethylenically unsaturated monomer unit is a polyfunctional (meth) acrylic acid ester monomer unit.
  • the heat shrinkage resistance of the functional layer can be further improved by using organic particles containing a polyfunctional (meth) acrylate monomer unit.
  • (meth) acrylic means acrylic and / or methacrylic.
  • the organic particles may further contain monofunctional (meth) acrylic acid ester monomer units in a proportion of 10% by mass to 45% by mass. preferable.
  • the organic particles contain monofunctional (meth) acrylic acid ester monomer units in a proportion within the above range, the heat shrinkage resistance of the functional layer and the cycle characteristics of the secondary battery can be further improved.
  • the composition for a non-aqueous secondary battery functional layer of the present invention further contains a binder, and the binder has a proportion of 0.05% by mass or more and 5% by mass or less of the crosslinkable monomer unit. It is preferable that The heat shrinkage resistance of the functional layer and the cycle characteristics of the secondary battery can be further improved by using a composition for a functional layer containing a binder containing a crosslinkable monomer unit in a proportion within the above range. .
  • the functional layer for non-aqueous secondary batteries of this invention is a composition for any of the non-aqueous secondary battery functional layers mentioned above It is characterized in that it is formed using As described above, the functional layer obtained using any of the functional layer compositions described above is excellent in heat shrinkage resistance, and according to the battery member provided with the functional layer, the cycle characteristics excellent for the secondary battery can be obtained. It can be demonstrated.
  • the functional layer for non-aqueous secondary batteries of the present invention preferably has a thickness of 0.5 ⁇ m or more and 1.5 ⁇ m or less. If the functional layer having a thickness within the above range is used, the heat shrinkage resistance of the functional layer and the cycle characteristics of the secondary battery can be further improved.
  • the "thickness" of the functional layer can be measured using the method described in the examples of this specification.
  • a composition for a non-aqueous secondary battery functional layer capable of forming a functional layer having excellent heat shrinkage resistance and capable of exhibiting excellent cycle characteristics in the non-aqueous secondary battery. it can. Further, according to the present invention, there is provided a functional layer which has excellent heat shrinkage resistance and can exhibit excellent cycle characteristics in a non-aqueous secondary battery, and a non-aqueous secondary battery including the functional layer. Can.
  • the composition for non-aqueous secondary battery functional layers of this invention is used as a material at the time of forming the functional layer for non-aqueous secondary batteries of this invention.
  • the functional layer for non-aqueous secondary batteries of this invention is formed using the composition for non-aqueous secondary battery functional layers of this invention, for example, comprises a part of separator or an electrode.
  • the non-aqueous secondary battery of this invention is provided with the functional layer for non-aqueous secondary batteries of this invention at least.
  • composition for non-aqueous secondary battery functional layer is a composition containing organic particles and a solvent, and optionally, a binder and other components.
  • the organic particles contained in the composition for a functional layer of the present invention contain a polyfunctional ethylenically unsaturated monomer unit in a proportion of 55% by mass to 90% by mass, and a volume average particle diameter of 50 nm or more It is 370 nm or less.
  • composition for functional layers of this invention contains a polyfunctional ethylenically unsaturated monomer unit in the ratio of 55 mass% or more and 90 mass% or less, and the organic particle whose volume average particle diameter is 50 nm or more and 370 nm or less.
  • the organic particle is a particle composed of a polymer, and is a component that can mainly improve the heat shrinkage resistance, strength and the like of the functional layer.
  • the organic particles contain the polyfunctional ethylenically unsaturated monomer unit in a proportion of 55% by mass or more and 90% by mass or less, and other than the polyfunctional ethylenically unsaturated monomer unit A repeating unit (other repeating units) is contained in the ratio of 10 mass% or more and 45 mass% or less.
  • polyfunctional ethylenically unsaturated monomer unit As a polyfunctional ethylenically unsaturated monomer capable of forming a polyfunctional ethylenically unsaturated monomer unit, a monomer having two or more ethylenically unsaturated bonds per molecule (however, Use conjugated diene monomers such as 1,3-butadiene).
  • the polyfunctional ethylenically unsaturated monomer allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di
  • Multifunctional (meth) acrylic acid ester monomers such as meta) acrylates, trimethylolpropane-tri (meth) acrylates
  • Polyfunctional aromatic vinyl monomers such as divinylbenzene and diisopropenylbenzene
  • "(meth) acrylate ethylene
  • polyfunctional ethylenically unsaturated monomers can be used alone or in combination of two or more.
  • polyfunctional (meth) acrylic acid ester monomers and polyfunctional aromatic vinyl monomers are preferable from the viewpoint of further improving the heat shrinkage resistance of the functional layer, and polyfunctional (meth) acrylic acid esters alone are preferable.
  • the mer is more preferable, and ethylene glycol dimethacrylate and trimethylolpropane-trimethacrylate are more preferable.
  • the content rate of the polyfunctional ethylenic unsaturated monomer unit in organic particles is 55 mass% or more and 90 mass% or less, when all the repeating units of the polymer which constitutes organic particles are 100 mass%. Is required, and is preferably 64% by mass or more, more preferably 65% by mass or more, still more preferably 70% by mass or more, and preferably 85% by mass or less, 83% by mass. It is more preferable that the content is less than%.
  • the proportion of the polyfunctional ethylenically unsaturated monomer unit in the organic particles is less than 55% by mass, the degree of crosslinking of the organic particles is reduced, whereby the heat shrinkage resistance of the functional layer is impaired.
  • the proportion of the polyfunctional ethylenically unsaturated monomer unit in the organic particles is more than 90% by mass, the particles have increased due to the decrease in polymerization stability when preparing the organic particles, and the cycle characteristics of the secondary battery Is lost.
  • [Other repeat unit] Although it does not specifically limit as another repeating unit contained in an organic particle, A monofunctional (meth) acrylic acid ester monomer unit, a nitrile group containing monomer unit, an acidic group containing monomer unit is mentioned.
  • (meth) acrylic acid ester monomers capable of forming monofunctional (meth) acrylic acid ester monomer units include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, and t-butyl Alkyl acrylates such as acrylate, isobutyl acrylate, n-pentyl acrylate, isopentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate Esters; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, iso
  • methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate and 2-ethylhexyl methacrylate are preferable, and n-butyl acrylate is more preferable.
  • the content rate of the monofunctional (meth) acrylic acid ester monomer unit in organic particles is 10 mass% or more, when all the repeating units of the polymer which constitutes organic particles are 100 mass%.
  • the content is preferably 15% by mass or more, preferably 45% by mass or less, more preferably 35% by mass or less, and still more preferably 30% by mass or less. If the proportion of the monofunctional (meth) acrylic acid ester monomer unit in the organic particles is 10% by mass or more, the polymerization stability at the time of preparing the organic particles can be secured, and the formation of fine particles can be suppressed. The cycle characteristics of the secondary battery can be further improved.
  • the proportion of monofunctional (meth) acrylic acid ester monomer units in the organic particles is 45% by mass or less, the degree of crosslinking of the organic particles can be secured and the heat resistance of the functional layer can be further improved. .
  • the cycle characteristics of the secondary battery can be further enhanced.
  • nitrile group-containing monomers capable of forming nitrile group-containing monomer units include ⁇ , ⁇ -ethylenically unsaturated nitrile monomers.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group, for example, acrylonitrile; ⁇ -chloroacrylonitrile, Examples thereof include ⁇ -halogeno acrylonitriles such as ⁇ -bromoacrylonitrile; ⁇ -alkyl acrylonitriles such as methacrylonitrile and ⁇ -ethyl acrylonitrile; and the like. In addition, these can be used individually or in combination of 2 or more types. Among these, acrylonitrile and methacrylonitrile are preferable.
  • the content ratio of the nitrile group-containing monomer unit in the organic particles is preferably 0.1 mass% or more, when the total repeating units of the polymer constituting the organic particles are 100 mass%, 0
  • the content is more preferably 0.5 mass% or more, further preferably 1 mass% or more, preferably 10 mass% or less, and more preferably 5 mass% or less. If the proportion of the nitrile group-containing monomer unit in the organic particles is 0.1% by mass or more and 10% by mass or less, the polymerization stability at the time of preparing the organic particles is secured, and the formation of fine particles is suppressed. Thus, the cycle characteristics of the secondary battery can be further improved.
  • acidic group-containing monomer unit As an acidic group containing monomer which can form an acidic group containing monomer unit, a carboxylic acid group containing monomer, a sulfonic acid group containing monomer, and a phosphoric acid group containing monomer are mentioned, for example.
  • monocarboxylic acids include acrylic acid, methacrylic acid and crotonic acid.
  • monocarboxylic acid derivatives include 2-ethyl acrylic acid, isocrotonic acid, ⁇ -acetoxy acrylic acid, ⁇ -trans-aryloxy acrylic acid, and ⁇ -chloro- ⁇ -E-methoxy acrylic acid.
  • dicarboxylic acids include maleic acid, fumaric acid and itaconic acid.
  • dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, fluoro maleate Maleic acid monoesters such as alkyl are mentioned.
  • acid anhydride of dicarboxylic acid maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like can be mentioned.
  • generates a carboxylic acid group by hydrolysis can also be used.
  • sulfonic acid group containing monomer for example, styrene sulfonic acid, vinyl sulfonic acid (ethylene sulfonic acid), methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, 3-allyloxy-2-hydroxypropane sulfonic acid It can be mentioned.
  • (meth) allyl means allyl and / or methallyl.
  • phosphoric acid group-containing monomer for example, phosphoric acid-2- (meth) acryloyloxyethyl, methyl 2- (meth) acryloyloxyethyl phosphate, ethyl phosphate- (meth) acryloyloxyethyl phosphate It can be mentioned.
  • (meth) acryloyl means acryloyl and / or methacryloyl.
  • the above-mentioned acidic group-containing monomers can be used alone or in combination of two or more.
  • carboxylic acid group-containing monomers are preferable, and acrylic acid and methacrylic acid are more preferable.
  • the content ratio of the acidic group-containing monomer unit in the organic particles is preferably 0.1 mass% or more, when the total repeating units of the polymer constituting the organic particles are 100 mass%, 1 It is more preferable that it is mass% or more, It is preferable that it is 10 mass% or less, It is more preferable that it is 5 mass% or less. If the ratio of the acidic group-containing monomer unit in the organic particles is 0.1% by mass or more, the polymerization stability at the time of preparing the organic particles can be secured, and the generation of the fine particles can be suppressed. The cycle characteristics of the battery can be further improved. On the other hand, when the acidic group-containing monomer unit in the organic particles is 10% by mass or less, the amount of water carried into the secondary battery can be reduced to improve the cycle characteristics of the secondary battery.
  • the organic particles can be produced by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent such as water, for example. Under the present circumstances, the content rate of each monomer in a monomer composition can be determined according to the content rate of each repeating unit (monomer unit) in an organic particle.
  • the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • any reaction such as ionic polymerization, radical polymerization, living radical polymerization can be used.
  • seed particles may be employed to carry out seed polymerization.
  • the polymerization conditions can be appropriately adjusted according to the polymerization method and the like.
  • known additives such as an emulsifier, a polymerization initiator, a chain transfer agent and the like can be used for the polymerization, and the amount thereof used is also a commonly used amount.
  • the volume average particle diameter of the organic particles obtained as described above needs to be 50 nm or more and 370 nm or less, preferably 100 nm or more, more preferably 130 nm or more, and 150 nm or more. Is more preferable, 350 nm or less is preferable, and 300 nm or less is more preferable.
  • the volume average particle diameter of the organic particles is less than 50 nm, the resistance of the functional layer is increased, and the cycle characteristics of the secondary battery are impaired.
  • the volume average particle diameter of the organic particles is more than 370 nm, the coating density at the time of forming the functional layer by applying the composition for a functional layer on a substrate decreases, and the heat shrinkage resistance of the functional layer obtained Is lost.
  • the volume average particle diameter of organic particle can be adjusted by changing the kind and quantity of a polymerization initiator, a chain transfer agent, and / or an emulsifier used for preparation of organic particle. For example, when preparing organic particles by seed polymerization, it is possible to make the seed particles smaller and increase the volume average particle diameter of the obtained organic particles by increasing the amount of emulsifier used to prepare the seed particles. Also, by reducing the amount of the emulsifier used to prepare the seed particles, it is possible to make the seed particles larger and to increase the volume average particle size of the obtained organic particles.
  • the glass transition temperature of the organic particles obtained as described above is preferably 100 ° C. or more, more preferably 120 ° C. or more, and still more preferably 150 ° C. or more. If the glass transition temperature of the organic particles is 100 ° C. or higher, the heat shrinkage resistance of the functional layer can be further improved.
  • the upper limit of the glass transition temperature of the organic particles is not particularly limited, but is usually 500 ° C. or less.
  • the glass transition temperature of the organic particles can be adjusted by changing the type and ratio of monomers used for the preparation of the organic particles.
  • the composition for a functional layer of the present invention preferably contains a binder.
  • the binder is a component comprising a polymer, and in the functional layer formed using the composition for a functional layer, the component such as the organic particles contained in the functional layer is retained so as not to be detached from the functional layer It can.
  • the binder contains a crosslinkable monomer unit in a proportion of 0.05% by mass or more and 5% by mass or less, and contains a repeating unit (other repeating units) other than the crosslinkable monomer unit. It is preferable to consist of a polymer.
  • the crosslinkable monomer capable of forming a crosslinkable monomer unit is not particularly limited, and includes a monomer capable of forming a crosslinked structure by polymerization.
  • Examples of the crosslinkable monomer generally include monomers having thermal crosslinkability. More specifically, monomers having a thermally crosslinkable crosslinkable group and one ethylenically unsaturated bond per molecule; polyfunctional ethylenically unsaturated monomers (two or more ethylenically unsaturated monomers per molecule) And monomers having a saturated bond.
  • thermally crosslinkable crosslinkable group examples include an epoxy group, an N-methylolamide group, an oxetanyl group, an oxazoline group and a combination thereof.
  • an epoxy group is more preferable in that it is easy to control crosslinking and the crosslink density.
  • a monomer having an epoxy group as a thermally crosslinkable crosslinkable group and having an ethylenically unsaturated bond vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allyl phenyl Unsaturated glycidyl ethers such as glycidyl ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododeca Monoepoxides of dienes or polyenes such as dienes; Alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene and the like; and glycidyl acrylate
  • examples of the monomer having an N-methylolamide group as a thermally crosslinkable crosslinkable group and having an ethylenically unsaturated bond include a methylol group such as N-methylol (meth) acrylamide ( Meta) acrylamides are mentioned.
  • a monomer having an oxetanyl group as a thermally crosslinkable crosslinkable group and having an ethylenically unsaturated bond 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) ) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane and 2-((meth) acryloyloxymethyl) ) -4- trifluoromethyl oxetane.
  • examples of the monomer having an oxazoline group as a thermally crosslinkable crosslinkable group and having an ethylenically unsaturated bond include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2 2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline and 2-Isopropenyl-5-ethyl-2-oxazoline is mentioned.
  • polyfunctional ethylenically unsaturated monomers monomers having two or more ethylenic unsaturated bonds per molecule
  • polyfunctional ethylenically unsaturated monomers described above in the section“ organic particles ” can be mentioned.
  • the same as the “saturated monomer” can be mentioned.
  • crosslinkable monomers described above can be used alone or in combination of two or more.
  • crosslinkable monomers allyl methacrylate and allyl glycidyl ether are preferred.
  • the content of the crosslinkable monomer unit in the binder is preferably 0.05% by mass or more, based on 100% by mass of all repeating units of the polymer constituting the binder. It is more preferably 0.1% by mass or more, still more preferably 1% by mass or more, particularly preferably 2% by mass or more, and preferably 5% by mass or less, 3.5% by mass
  • the content is more preferably the following, more preferably 3% by mass or less, and particularly preferably 2.5% by mass or less.
  • the proportion of the crosslinkable monomer unit in the binder is 5% by mass or less, the adhesion of the functional layer can be improved by securing the binding ability of the binder, and The heat shrinkage resistance of the functional layer can be further enhanced.
  • [Other repeat unit] Although it does not specifically limit as another repeating unit contained in the polymer which forms a binding material, A monofunctional (meth) acrylic acid ester monomer unit, an aromatic monovinyl monomer unit, an acidic group containing monomer Unit is mentioned.
  • -Monofunctional (meth) acrylic acid ester monomer unit As a monofunctional (meth) acrylic acid ester monomer which can form a monofunctional (meth) acrylic acid ester monomer unit, the thing similar to what was mentioned above by the term of the "organic particle" is mentioned. These can be used alone or in combination of two or more. Among these, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate and 2-ethylhexyl methacrylate are preferable, and 2-ethylhexyl acrylate is more preferable.
  • the content ratio of monofunctional (meth) acrylic acid ester monomer units in the binder is 60% by mass or more, when the total repeating units of the polymer constituting the binder are 100% by mass. Is more preferably 65% by mass or more, preferably 80% by mass or less, and more preferably 75% by mass or less. If the proportion of monofunctional (meth) acrylic acid ester monomer units in the binder is 60% by mass or more, an excessive rise in the glass transition temperature of the binder is suppressed, and the adhesiveness of the functional layer is secured. Be done. On the other hand, if the ratio of monofunctional (meth) acrylic acid ester monomer units in the binder is 80% by mass or less, the cycle characteristics of the secondary battery can be further improved.
  • aromatic monovinyl monomer capable of forming an aromatic monovinyl monomer unit examples include styrene, styrene sulfonic acid and salts thereof (eg, sodium styrene sulfonate etc.), ⁇ -methylstyrene, vinyl toluene, 4- (tert) -Butoxy) styrene etc. are mentioned. These can be used alone or in combination of two or more. Among these, styrene is preferred.
  • the content of the aromatic monovinyl monomer unit in the binder is preferably 10% by mass or more, based on 100% by mass of all repeating units of the polymer constituting the binder. It is more preferable that it is mass% or more, It is preferable that it is 40 mass% or less, It is more preferable that it is 30 mass% or less. If the proportion of the aromatic monovinyl monomer unit in the binder is 10% by mass or more, the blocking of the battery member having the functional layer is suppressed without the glass transition temperature of the binder being excessively lowered. be able to. On the other hand, if the proportion of aromatic monovinyl monomer units in the binder is 40% by mass or less, the adhesion of the functional layer is ensured without the glass transition temperature of the binder rising excessively. Can.
  • the content ratio of the acidic group-containing monomer unit in the binder is preferably 2% by mass or more, assuming that the total repeating units of the polymer constituting the binder are 100% by mass, 2
  • the content is more preferably 0.5 mass% or more, preferably 8 mass% or less, and more preferably 5 mass% or less. If the proportion of the acidic group-containing monomer unit in the binder is 2% by mass or more, the polymer stability at the time of preparing the binder is secured, and therefore the generation of aggregates is suppressed, and the secondary The cycle characteristics of the battery can be improved. On the other hand, if the ratio of the acidic group-containing monomer unit in the binder is 8% by mass or less, the amount of water carried into the secondary battery can be reduced to improve the cycle characteristics of the secondary battery.
  • the binder can be produced by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent such as water, for example.
  • an aqueous solvent such as water
  • the content rate of each monomer in a monomer composition can be determined according to the content rate of each repeating unit (monomer unit) in a binder.
  • the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • any reaction such as ionic polymerization, radical polymerization, living radical polymerization can be used.
  • the polymerization conditions can be appropriately adjusted according to the polymerization method and the like.
  • known additives such as an emulsifier, a polymerization initiator, a chain transfer agent and the like can be used for the polymerization, and the amount thereof used is also a commonly used amount.
  • the glass transition temperature of the binder obtained as described above is preferably ⁇ 40 ° C. or higher, preferably 0 ° C. or lower, and more preferably ⁇ 15 ° C. or lower.
  • the glass transition temperature of the binder is preferably ⁇ 40 ° C. or higher, blocking of the battery member provided with the functional layer can be suppressed.
  • the glass transition temperature of the binder is 0 ° C. or less, the adhesiveness of the functional layer can be sufficiently secured.
  • the glass transition temperature of the binder can be adjusted by changing the kind and ratio of monomers used for preparation of the binder.
  • the glass transition temperature of the binder can be increased by increasing the proportion of the aromatic monovinyl monomer such as styrene used for preparation of the binder, and the glass transition temperature of the binder can be increased by decreasing the proportion. Can be lowered.
  • the content ratio of the organic particles to the binder in the composition for the functional layer is not particularly limited, but the ratio of the binder to the total of the organic particles and the binder is 1% by mass or more.
  • the content is preferably 2% by mass or more, more preferably 5% by mass or more, particularly preferably 9% by mass or more, and preferably 20% by mass or less, and 15% by mass or less. It is more preferable that If the proportion of the binder in the total of the organic particles and the binder is 1% by mass or more, powder removal of the organic particles is suppressed, and the heat shrinkage resistance of the functional layer can be sufficiently secured.
  • the ratio of the binder in the total of the organic particles and the binder is 20% by mass or less, an excessive increase in the resistance of the functional layer is suppressed, and the cycle characteristics of the secondary battery are sufficiently ensured. be able to.
  • a solvent for the composition for a functional layer of the present invention a known solvent capable of dissolving or dispersing the above-described organic particles and a binder used as needed can be used. Among them, water is preferably used as the solvent.
  • components other than an organic particle, a binder, and a solvent which the composition for functional layers of this invention may contain include known inorganic particles and known additives.
  • known inorganic particles for example, those described in JP-A-2017-103034 can be used.
  • known additives are not particularly limited, and include, for example, components such as thickener, surface tension modifier, dispersant, viscosity modifier, wetting agent, reinforcing material, electrolyte additive and the like It may be These are not particularly limited as long as they do not affect the cell reaction, and known ones such as those described in WO 2012/115096 can be used.
  • these other components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the composition for a functional layer of the present invention is not particularly limited except that it contains the predetermined organic particles and the solvent described above, and, for example, the above-mentioned binder which can be optionally added to the organic particles.
  • the dressing and the other components described above can be prepared by stirring and mixing in the presence of a solvent such as water.
  • the liquid part which the dispersion liquid contains is utilized as a solvent of the composition for functional layers as it is. May be
  • solid content concentration of the composition for functional layers of this invention is 10 mass% or more and 40 mass% or less normally.
  • the stirring method is not particularly limited and can be performed by a known method. Specifically, using a common stirring vessel, ball mill, sand mill, beads mill, pigment disperser, ultrasonic disperser, leash mill, homogenizer, planetary mixer, film mix, etc. By mixing, a slurry-like composition for a functional layer can be prepared. The mixing of each component with the solvent can be carried out usually at room temperature to 80 ° C. for 10 minutes to several hours.
  • the functional layer of the present invention is formed from the above-described composition for a functional layer, and for example, is formed after the above-described composition for a functional layer is applied to the surface of a suitable substrate to form a coating film. It can form by drying the formed coating film. That is, the functional layer of the present invention is made of the dried product of the composition for a functional layer described above, contains the above-mentioned organic particles, and optionally contains the above-mentioned binder and other components. The organic particles and the binder may be crosslinked at the time of drying of the composition for a functional layer, or at the time of heat treatment optionally performed after drying (that is, the functional layer of the present invention comprises organic particles).
  • each component contained in the functional layer is contained in the composition for the above-mentioned functional layer, and the suitable abundance ratio of those respective components is the same as that of each component in the composition for the functional layer. It is the same as the preferred abundance ratio.
  • the functional layer of this invention is formed using the composition for functional layers mentioned above, it is excellent in heat-shrinkage resistance, and if a battery member provided with the said functional layer is used, it is excellent to a secondary battery. Cycle characteristics can be exhibited.
  • the base for applying the composition for functional layer is not limited.
  • a coating film of the composition for functional layer is formed on the surface of the release substrate, and the coating film is dried to form the functional layer.
  • the release substrate may be peeled off from the functional layer.
  • the functional layer peeled off from the release substrate can be used as a self-supporting film for forming a battery member of a secondary battery.
  • the functional layer peeled off from the release substrate may be laminated on the separator substrate to form a separator provided with the functional layer, or the functional layer peeled off from the release substrate may be an electrode substrate May be stacked on top of each other to form an electrode provided with a functional layer.
  • the organic separator substrate is a porous member made of an organic material, and examples of the organic separator substrate include a microporous film or non-woven fabric containing a polyolefin resin such as polyethylene or polypropylene, an aromatic polyamide resin, etc. From the viewpoint of excellent strength, a microporous membrane or nonwoven fabric made of polyethylene is preferred.
  • the thickness of the separator substrate may be any thickness, preferably 5 ⁇ m to 30 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m, and still more preferably 5 ⁇ m to 18 ⁇ m.
  • the thickness of the separator substrate is 5 ⁇ m or more, sufficient safety can be obtained.
  • the thickness of the separator substrate is 30 ⁇ m or less, the decrease in ion conductivity can be suppressed, and the decrease in output characteristics of the secondary battery can be suppressed, and the heat shrinkage of the separator substrate can be suppressed. Heat resistance can be enhanced by suppressing an increase in force.
  • Electrode base material Although it does not specifically limit as an electrode base material (a positive electrode base material and a negative electrode base material), The electrode base material in which the electrode compound material layer was formed on the collector is mentioned.
  • the current collector, the electrode active material (positive electrode active material, negative electrode active material) in the electrode mixture layer, and the binder for the electrode mixture layer (binding agent for the positive electrode mixture layer, the binder for the negative electrode mixture layer) A well-known thing can be used for the formation method of an electrode compound material layer on the adhesion material and a collector, For example, the thing of Unexamined-Japanese-Patent No. 2013-145763 can be used.
  • a method of forming a functional layer for non-aqueous secondary battery As a method of forming a functional layer on base materials, such as a separator base material mentioned above and an electrode base material, the following method is mentioned. 1) A method of applying the composition for a functional layer of the present invention to the surface of a separator substrate or an electrode substrate (in the case of an electrode substrate, the surface on the electrode mixture layer side, the same shall apply hereinafter); 2) A method of immersing a separator substrate or an electrode substrate in the composition for a functional layer of the present invention and drying the same; and 3) applying the composition for a functional layer of the present invention on a release substrate and drying And producing a functional layer, and transferring the obtained functional layer to the surface of a separator substrate or an electrode substrate.
  • the method 1) is particularly preferable because it is easy to control the layer thickness of the functional layer.
  • the functional layer composition is applied to a substrate (application step), and the functional layer composition applied to the substrate is dried to form a functional layer.
  • Process functional layer formation process.
  • a separator substrate as a substrate
  • the method for applying the composition for a functional layer on a substrate is not particularly limited, and, for example, a doctor blade method, reverse roll method, direct roll method, gravure method, extrusion method, brush coating Methods such as law are mentioned.
  • the method for drying the functional layer composition on the substrate is not particularly limited, and any known method can be used.
  • the drying method for example, drying by warm air, hot air, low humidity air, vacuum drying, drying by irradiation of infrared rays, electron beams and the like can be mentioned.
  • the drying conditions are not particularly limited, but the drying temperature is preferably 40 to 150 ° C., and the drying time is preferably 2 to 30 minutes.
  • the thickness of each functional layer formed on the substrate is preferably 0.5 ⁇ m or more, preferably 1.5 ⁇ m or less, more preferably 1.3 ⁇ m or less, and 1.1 ⁇ m It is more preferable that it is the following. If the thickness of the functional layer is 0.5 ⁇ m or more, the heat shrinkage resistance of the functional layer can be sufficiently secured. On the other hand, if the thickness of the functional layer is 1.5 ⁇ m or less, an excessive increase in the resistance of the functional layer is suppressed, and the cycle characteristics of the secondary battery can be sufficiently secured.
  • the battery member (separator and electrode) provided with the functional layer of the present invention is not limited to the separator base or electrode base and the functional layer of the present invention, as long as the effects of the present invention are not significantly impaired. Components other than the functional layer of the invention may be provided.
  • the secondary battery of the present invention comprises the above-described functional layer of the present invention. More specifically, the secondary battery of the present invention comprises a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the functional layer for a non-aqueous secondary battery described above is at least one of a positive electrode, a negative electrode and a separator as battery members. Included in the
  • At least one of the positive electrode, the negative electrode and the separator used in the secondary battery of the present invention includes the functional layer of the present invention.
  • a positive electrode and a negative electrode provided with a functional layer an electrode obtained by providing the functional layer of the present invention on an electrode substrate having an electrode mixture layer formed on a current collector can be used.
  • a separator provided with a functional layer the separator which provides the functional layer of this invention on a separator base material can be used.
  • an electrode base material and a separator base material the thing similar to what was mentioned in the term of "the functional layer for non-aqueous secondary batteries" can be used.
  • a positive electrode a negative electrode, and a separator which do not have a functional layer
  • the separator consisting of the electrode which consists of an electrode base material mentioned above, and the separator base material mentioned above can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a supporting electrolyte for example, a lithium salt is used in a lithium ion secondary battery.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • the electrolyte may be used alone or in combination of two or more.
  • the lithium ion conductivity tends to be higher as the supporting electrolyte having a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted by the type of the supporting electrolyte.
  • the organic solvent used for the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • dimethyl carbonate (DMC) dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC)
  • Carbonates such as propylene carbonate (PC), butylene carbonate (BC), ethyl methyl carbonate (EMC), vinylene carbonate (VC); esters such as ⁇ -butyrolactone and methyl formate; 1,2-dimethoxyethane, tetrahydrofuran and the like And the like.
  • Ethers of the above; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and the like are suitably used.
  • a mixture of these solvents may be used.
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be controlled by the type of the solvent.
  • the concentration of the electrolyte in the electrolyte can be adjusted as appropriate.
  • known additives may be added to the electrolytic solution.
  • the positive electrode and the negative electrode are stacked via a separator, and if necessary, this is wound or folded to be put in a battery container, and the electrolyte is put in the battery container. It can be manufactured by injection and sealing.
  • at least one battery member among the positive electrode, the negative electrode, and the separator is a battery member with a functional layer.
  • expanded metal, a fuse, an overcurrent preventing element such as a PTC element, a lead plate, and the like may be inserted into the battery container as necessary to prevent pressure increase inside the battery and overcharge and discharge.
  • the shape of the battery may be, for example, a coin, a button, a sheet, a cylinder, a square, or a flat.
  • ⁇ Volume-average particle size of organic particles The solid content concentration of the aqueous dispersion of organic particles obtained in Examples and Comparative Examples was adjusted to 2% to prepare a measurement aqueous dispersion.
  • the water dispersion for measurement was used to measure the particle size distribution with a laser diffraction / light scattering type particle size distribution measuring apparatus ("LS230" manufactured by Beckman Coulter, Inc.). Then, in the measured particle size distribution, the particle size at which the cumulative volume calculated from the small diameter side is 50% is defined as the volume average particle size (D50) of the organic particles.
  • D50 volume average particle size
  • Tg Glass transition temperature of organic particles and binder>
  • a measurement sample was obtained by drying each of the aqueous dispersions of the organic particles and the binder obtained in Examples and Comparative Examples. 10 mg of the measurement sample is weighed in an aluminum pan, and the temperature rise rate is 10 ° C. / within a measurement temperature range of -100 ° C. to 200 ° C. with a differential thermal analysis measurement apparatus (“EXSTAR DSC 6220” manufactured by SII Nano Technology Inc.) In minutes, the measurement was carried out under the conditions defined in JIS Z 8703 to obtain a differential scanning calorimetry (DSC) curve. An empty aluminum pan was used as a reference.
  • EXSTAR DSC 6220 manufactured by SII Nano Technology Inc.
  • each of the battery member and the base material is measured by using a contact-type thickness meter (Digimatic indicator code No .: 543-575, manufactured by Mitutoyo Precision Instruments Co., Ltd.) at an arbitrary thickness of 10 points.
  • a contact-type thickness meter Digimatic indicator code No .: 543-575, manufactured by Mitutoyo Precision Instruments Co., Ltd.
  • Calculated as the average value of ⁇ Heat shrinkability of functional layer> A single-layer polyethylene separator (thickness: 9 ⁇ m) produced by a wet method was prepared as a separator substrate.
  • the composition for a functional layer obtained in Examples and Comparative Examples is applied to one surface of this separator substrate, and the composition for a functional layer on the separator substrate is dried at 50 ° C. for 10 minutes to obtain a functional layer. (Thickness: 1.0 ⁇ m) was formed.
  • a separator provided with this functional layer was used as an evaluation separator.
  • the lithium ion secondary battery produced in the example and the comparative example was allowed to stand at a temperature of 25 ° C. for 5 hours after pouring the electrolyte.
  • charging was performed to a cell voltage of 3.65 V by a constant current method at a temperature of 25 ° C. and 0.2 C, and then aging was performed at a temperature of 60 ° C. for 12 hours. Then, it was discharged to a cell voltage of 3.00 V by a constant current method at a temperature of 25 ° C. and 0.2C.
  • CC-CV charging upper limit cell voltage 4.30 V
  • CC discharge was performed to 3.00 V by a constant current method of 0.2 C.
  • charge / discharge operation was performed 100 cycles at a charge / discharge rate of 1.0 C at a cell voltage of 4.30 to 3.00 V under an environment of a temperature of 25 ° C.
  • the larger the value of the capacity retention rate the better the cycle characteristics of the secondary battery.
  • B Capacity retention rate of 70% to less than 80%
  • C Capacity retention rate of 60% to less than 70%
  • D Capacity retention rate of less than 60%
  • Example 1 Preparation of Organic Particles> In a reactor A equipped with a stirrer, 0.20 parts of sodium dodecyl sulfate, 0.30 parts of ammonium persulfate, and 180 parts of ion exchange water were added and mixed to obtain a mixture, which was heated to 65 ° C.
  • a monomer composition for seed particles was prepared by mixing 10.0 parts of acrylonitrile as a body, 0.8 parts of sodium dodecyl sulfate, and 40 parts of deionized water.
  • the monomer composition for seed particles was continuously added to the above-mentioned reactor A over 4 hours to carry out a polymerization reaction.
  • the temperature in the reactor during continuous addition of the monomer composition for seed particles was maintained at 65 ° C. After completion of the continuous addition, the polymerization reaction was continued at 80 ° C.
  • the above aqueous dispersion of seed particles is equivalent to 20 parts by solid equivalent (of which 16 parts of n-butyl acrylate unit, 2 parts of methacrylic acid unit, acrylonitrile unit) 2), 80 parts of ethylene glycol dimethacrylate (Keieisha Chemical Co., Ltd., product name “light ester EG”) as a polyfunctional ethylenically unsaturated monomer, 0.8 parts of sodium dodecylbenzene sulfonate, and polymerization 3.2 parts of t-butylperoxy-2-ethylhexanoate (manufactured by NOF Corporation, product name "Perbutyl O”) as an initiator and 160 parts of ion exchanged water are
  • Binder In a reactor B equipped with a stirrer, 70 parts of ion-exchanged water, 0.20 parts of polyoxyethylene lauryl ether as an emulsifying agent (manufactured by Kao Chemical Co., Ltd., product name "Emulgen (registered trademark) 120"), and excess acid 0.5 parts of ammonium was respectively supplied, the gas phase was replaced with nitrogen gas, and the temperature was raised to 60.degree.
  • emulsifying agent manufactured by Kao Chemical Co., Ltd., product name "Emulgen (registered trademark) 120
  • the monomer composition was continuously added to the reactor B over 4 hours to carry out polymerization.
  • the reaction was carried out at 70 ° C. during continuous addition. After completion of the continuous addition, the reaction was further completed by stirring at 80 ° C. for 3 hours to obtain an aqueous dispersion of a binder. After cooling the obtained aqueous dispersion of binder to 25 ° C., an aqueous solution of sodium hydroxide is added thereto to adjust the pH to 8.0, and then steam is introduced to remove unreacted monomers did.
  • the separator for evaluation was produced using the obtained composition for functional layers, and the heat-resistant shrinkability of the functional layer was evaluated. The results are shown in Table 1.
  • a single-layer polyethylene separator (thickness: 9 ⁇ m) produced by a wet method was prepared as a separator substrate.
  • the composition for functional layer obtained above is applied to one surface of this separator substrate, and the composition for functional layer on the separator substrate is dried at 50 ° C. for 10 minutes to obtain a functional layer (thickness: 1 .0 ⁇ m).
  • the functional layer composition obtained above is applied to the other surface of the separator substrate, and the functional layer composition on the separator substrate is dried at 50 ° C.
  • the slurry composition for positive electrode was applied to one side of an aluminum foil having a thickness of 18 ⁇ m, dried at 120 ° C. for 3 hours, and rolled by roll press to obtain a positive electrode (thickness: 100 ⁇ m) having a positive electrode mixture layer. .
  • the slurry composition for negative electrode was applied to one side of a copper foil having a thickness of 18 ⁇ m, dried at 120 ° C.
  • the positive electrode obtained above was cut out into 49 cm ⁇ 5 cm, and placed on a stand such that the surface on the positive electrode mixture layer side was on the upper side. Then, on the positive electrode mixture layer of this positive electrode, the separator obtained above (provided with functional layers on both sides) was cut out to 120 cm ⁇ 5.5 cm, and the positive electrode was disposed on the left side in the longitudinal direction of the separator.
  • the negative electrode obtained above is cut out to 50 cm ⁇ 5.2 cm on this separator, and the surface on the negative electrode mixture layer side is in contact with the separator, and the negative electrode is disposed on the right side in the longitudinal direction of the separator.
  • Got a laminate The laminate was wound around the middle of the separator in the longitudinal direction using a winding machine to obtain a wound body.
  • the aluminum packaging material was closed by a heat seal at 150 ° C. and sealed to manufacture a wound lithium ion secondary battery.
  • the cycle characteristics of the obtained lithium ion secondary battery were evaluated. The results are shown in Table 1.
  • Example 2 An organic particle, a binder, a composition for a functional layer, a separator, in the same manner as in Example 1 except that trimethylolpropane-trimethacrylate is used instead of ethylene glycol dimethacrylate in the preparation of the organic particle.
  • a negative electrode, a positive electrode, and a secondary battery were manufactured. Then, in the same manner as in Example 1, various evaluations were performed. The results are shown in Table 1.
  • Example 3 In the preparation of the organic particles, the amount of n-butyl acrylate in the monomer composition for seed particles is 84.6 parts, the amount of methacrylic acid is 7.7 parts, and the amount of acrylonitrile is 7.7 parts In the seed polymerization, 13 parts of the solid equivalent of the seed particles (in this, 11 parts of n-butyl acrylate units, 1 part of methacrylic acid units, 1 part of acrylonitrile units) Organic particles, a binder, a composition for a functional layer, a separator, a negative electrode, a positive electrode, and a secondary battery in the same manner as in Example 1 except that the amount of ethylene glycol dimethacrylate is changed to 87 parts). Manufactured. Then, in the same manner as in Example 1, various evaluations were performed. The results are shown in Table 1.
  • Example 4 In the preparation of the organic particles, the amount of n-butyl acrylate in the monomer composition for seed particles is 83.4 parts, the amount of methacrylic acid is 8.3 parts, and the amount of acrylonitrile is 8.3 parts
  • the seed particle is prepared by changing to 36 parts, and in the seed polymerization, the solid equivalent of the seed particle is 36 parts (of which 30 parts of n-butyl acrylate unit, 3 parts of methacrylic acid unit, 3 units of acrylonitrile unit Organic particles, a binder, a composition for a functional layer, a separator, a negative electrode, a positive electrode, and a secondary battery in the same manner as in Example 1 except that the amount of ethylene glycol dimethacrylate is changed to 64 parts. Manufactured. Then, in the same manner as in Example 1, various evaluations were performed. The results are shown in Table 1.
  • Example 5 The amount of sodium dodecyl sulfate charged into the reactor A equipped with a stirrer during preparation of the organic particles is 0.20 parts to 0.10 parts (Example 5), 0.40 parts (Example 6) Organic particles, a binder, and a functional layer in the same manner as in Example 1 except that the volume average particle diameter of the seed particles is adjusted to 250 nm (Example 5) and 70 nm (Example 6), respectively.
  • a composition, a separator, a negative electrode, a positive electrode, and a secondary battery were manufactured. Then, in the same manner as in Example 1, various evaluations were performed. The results are shown in Table 1.
  • Example 7 In the preparation of the organic particles, the amount of n-butyl acrylate in the monomer composition for seed particles is 91.4 parts, the amount of methacrylic acid is 4.3 parts, and the amount of acrylonitrile is 4.3 parts Seed particles are prepared by changing to 35 parts, and 35 parts (corresponding to 32 parts of n-butyl acrylate units, 1.5 parts of methacrylic acid units, acrylonitrile units) of the solid equivalent of the seed particles in seed polymerization Is the same as in Example 1 except that the amount of ethylene glycol dimethacrylate is changed to 1.5 parts), and an organic particle, a binder, a composition for a functional layer, a separator, a negative electrode, a positive electrode, and A secondary battery was manufactured. Then, in the same manner as in Example 1, various evaluations were performed. The results are shown in Table 1.
  • the amount of n-butyl acrylate in the monomer composition for seed particles is 75.0 parts, the amount of methacrylic acid is 12.5 parts, and the amount of acrylonitrile is 12.5 parts.
  • the seed particle is prepared by changing to 16 parts, and in the seed polymerization, 16 parts (corresponding to 12 parts of n-butyl acrylate unit, 2 parts of methacrylic acid unit, 2 units of acrylonitrile unit) Organic particles, a binder, a composition for a functional layer, a separator, a negative electrode, a positive electrode, and a secondary battery in the same manner as in Example 1 except that the amount of ethylene glycol dimethacrylate is changed to 84 parts). Manufactured. Then, in the same manner as in Example 1, various evaluations were performed. The results are shown in Table 1.
  • Example 9 Organic particles were prepared in the same manner as in Example 1, except that the amount of allyl methacrylate in the monomer composition was changed to 1.3 parts and the amount of acrylic acid to 2 parts in the preparation of the binder. A binder, a composition for a functional layer, a separator, a negative electrode, a positive electrode, and a secondary battery were manufactured. Then, in the same manner as in Example 1, various evaluations were performed. The results are shown in Table 1.
  • Example 10 ⁇ Preparation of Organic Particles, Binder, and Composition for Functional Layer>
  • organic particles, a binder, and a composition for a functional layer were prepared.
  • various evaluations were performed. The results are shown in Table 1.
  • ⁇ Preparation of Separator> A single-layer polyethylene separator (thickness: 9 ⁇ m) produced by a wet method was prepared as a separator.
  • ⁇ Fabrication of positive electrode provided with functional layer> To 95 parts of LiCoO 2 as a positive electrode active material, 3 parts (solid content equivalent amount) of polyvinylidene fluoride (PVDF, manufactured by Toba Chemical Co., product name “KF-1100”) as a binder for a positive electrode is added, Two parts of acetylene black as a conductive material and 30 parts of N-methylpyrrolidone as a solvent were added, and these were mixed by a planetary mixer to obtain a slurry composition for a positive electrode. The slurry composition for positive electrode is applied to one side of an aluminum foil having a thickness of 18 ⁇ m, dried at 120 ° C.
  • PVDF polyvinylidene fluoride
  • a positive electrode substrate (thickness: 100 ⁇ m) having a positive electrode mixture layer. Obtained.
  • the functional layer composition obtained above is applied to the surface of the positive electrode substrate on the positive electrode mixture layer side, and the functional layer composition on the positive electrode substrate is dried at 50 ° C. for 10 minutes. (Thickness: 1.0 ⁇ m) was formed to obtain a positive electrode provided with a functional layer. ⁇ Fabrication of negative electrode> In the same manner as in Example 1, a negative electrode was produced.
  • the positive electrode (provided with the functional layer on the positive electrode mixture layer) obtained above was cut into 49 cm ⁇ 5 cm, and placed on a table so that the surface on the functional layer side was on the upper side.
  • the separator obtained above was cut out to 120 cm x 5.5 cm, and it was arrange
  • the negative electrode obtained above is cut out to 50 cm ⁇ 5.2 cm on this separator, and the surface on the negative electrode mixture layer side is in contact with the separator, and the negative electrode is disposed on the right side in the longitudinal direction of the separator. , Got a laminate.
  • the laminate was wound around the middle of the separator in the longitudinal direction using a winding machine to obtain a wound body.
  • the aluminum packaging material was closed by a heat seal at 150 ° C. and sealed to manufacture a wound lithium ion secondary battery.
  • the cycle characteristics of the obtained lithium ion secondary battery were evaluated. The results are shown in Table 1.
  • Example 11 An organic particle, a binder, a composition for a functional layer, and a separator are prepared in the same manner as in Example 1 except that the thickness of each functional layer is changed to 1.3 ⁇ m when producing a separator having functional layers on both sides. , A negative electrode, a positive electrode, and a secondary battery. Then, in the same manner as in Example 1, various evaluations were performed. The results are shown in Table 1.
  • the amount of n-butyl acrylate in the monomer composition for seed particles is 75.0 parts, the amount of methacrylic acid is 6.25 parts, and the amount of acrylonitrile is 18.75 parts
  • the seed particle is prepared by changing to 8 parts, and in the seed polymerization, 8 parts (corresponding to 6 parts of n-butyl acrylate unit, 0.5 part of methacrylic acid unit, acrylonitrile unit) corresponding to the solid content of the seed particle Is the same as in Example 1 except that the amount of ethylene glycol dimethacrylate is changed to 92 parts, and the organic particles, the binder, the composition for a functional layer, the separator, the negative electrode, the positive electrode, and A secondary battery was manufactured. Then, in the same manner as in Example 1, various evaluations were performed. The results are shown in Table 1.
  • the amount of n-butyl acrylate in the monomer composition for seed particles is 95.2 parts, the amount of methacrylic acid is 1.0 part, and the amount of acrylonitrile is 3.8 parts
  • 52 parts corresponding to 49.5 parts of n-butyl acrylate units and 0.5 parts of methacrylic acid units
  • a secondary battery was manufactured. Then, in the same manner as in Example 1, various evaluations were performed. The results are shown in Table 1.
  • EDMA refers to ethylene glycol dimethacrylate units
  • TMPTMA trimethylolpropane-trimethacrylate units
  • BA denotes n-butyl acrylate units
  • AN indicates an acrylonitrile unit
  • MAA indicates methacrylic acid units
  • AMA indicates allyl methacrylate unit
  • AGE indicates allyl glycidyl ether unit
  • 2EHA represents 2-ethylhexyl acrylate unit
  • ST indicates a styrene unit
  • AA shows an acrylic acid unit.
  • Comparative Example 1 in which the composition for a functional layer containing an organic particle composed of a polymer having a content of polyfunctional ethylenically unsaturated monomer units exceeding 90% by mass, the cycle characteristics of the secondary battery are deteriorated I understand that I will do.
  • the comparative example 2 using the composition for functional layers containing the organic particle which consists of a polymer in which the content rate of a polyfunctional ethylenically unsaturated monomer unit is less than 55 mass%, the heat-shrinkage resistance of a functional layer falls. I understand that I will do.
  • Comparative Example 3 in which the composition for functional layer containing organic particles having a volume average particle diameter of more than 370 nm is used, it can be seen that the heat shrinkage resistance of the functional layer is lowered.
  • a composition for a non-aqueous secondary battery functional layer capable of forming a functional layer having excellent heat shrinkage resistance and capable of exhibiting excellent cycle characteristics in the non-aqueous secondary battery. it can. Further, according to the present invention, there is provided a functional layer which has excellent heat shrinkage resistance and can exhibit excellent cycle characteristics in a non-aqueous secondary battery, and a non-aqueous secondary battery including the functional layer. Can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

本発明は、優れた耐熱収縮性を有すると共に、非水系二次電池に優れたサイクル特性を発揮させ得る機能層を形成可能な非水系二次電池機能層用組成物の提供を目的とする。本発明の機能層用組成物は、有機粒子および溶媒を含む非水系二次電池機能層用組成物であって、前記有機粒子が、多官能エチレン性不飽和単量体単位を55質量%以上90質量%以下の割合で含み、前記有機粒子の体積平均粒子径が、50nm以上370nm以下である。

Description

非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
 本発明は、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池に関するものである。
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。
 ここで、二次電池は、一般に、電極(正極、負極)、および、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータなどの電池部材を備えている。そして、電極および/またはセパレータの表面には、耐熱性および強度を向上させるための多孔膜層や、電池部材間の接着性の向上を目的とした接着層など(以下、これらを総称して「機能層」と称する場合がある。)が設けられることがある。具体的には、集電体上に電極合材層を設けてなる電極基材上にさらに機能層を形成してなる電極や、セパレータ基材上に機能層を形成してなるセパレータが、電池部材として使用されている。
 例えば特許文献1には、バインダー粒子と、フィラー粒子と、液状媒体と、を含有し、前記バインダー粒子の平均粒子径と前記フィラー粒子の平均粒子径との比が所定の範囲内である保護層用形成組成物を基材に吹き付けた後、さらに所定の範囲内の温度で加熱することにより、蓄電デバイスの正極と負極との間に配置される保護層を形成する方法が記載されている。そして、特許文献1によれば、上記方法により保護層を形成することで、保護層面内の不均一な劣化を抑制して、蓄電デバイスの充放電特性を高めることができる。
特開2015-153638号号公報
 ここで、近年では、二次電池の更なる高性能化が求められている。具体的には、機能層を備える電池部材を用いた二次電池には、機能層の熱収縮を抑制する(即ち、耐熱収縮性を高める)ことで高温環境下における正極と負極の短絡の発生を十分に抑制して、二次電池の安全性をより一層確保することが求められている。また、二次電池には、サイクル特性などの電池特性を更に高めることも求められている。
 そこで、本発明は、優れた耐熱収縮性を有すると共に、非水系二次電池に優れたサイクル特性を発揮させ得る機能層を形成可能な非水系二次電池機能層用組成物を提供することを目的とする。
 また、本発明は、優れた耐熱収縮性を有すると共に、非水系二次電池に優れたサイクル特性を発揮させ得る機能層、および、当該機能層を備える非水系二次電池を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、多官能エチレン性不飽和単量体単位を所定の割合で含み、且つ体積平均粒子径が所定の範囲内である有機粒子と、溶媒とを含む機能層用組成物を用いれば、機能層の熱収縮を抑制しつつ、二次電池のサイクル特性を高めることができることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池機能層用組成物は、有機粒子および溶媒を含む非水系二次電池機能層用組成物であって、前記有機粒子が、多官能エチレン性不飽和単量体単位を55質量%以上90質量%以下の割合で含み、前記有機粒子の体積平均粒子径が、50nm以上370nm以下であることを特徴とする。このように、多官能エチレン性不飽和単量体単位を上述の範囲内の割合で含み、且つ体積平均粒子径が上述の範囲内である有機粒子と、溶媒とを含む機能層用組成物を用いれば、優れた耐熱収縮性を有する機能層を形成することができ、また当該機能層を備える電池部材を用いれば、二次電池に優れたサイクル特性を発揮させることができる。
 なお、本発明において、有機粒子や結着材などの重合体よりなる成分が「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。そして、本発明において、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される「単量体単位の含有割合」は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。加えて、重合体中におけるそれぞれの「単量体単位の含有割合」は、H-NMRおよび13C-NMRなどの核磁気共鳴(NMR)法を用いて測定することができる。
 また、本発明において、「体積平均粒子径」は、本明細書の実施例に記載の方法を用いて測定することができる。
 ここで、本発明の非水系二次電池機能層用組成物は、前記有機粒子のガラス転移温度が100℃以上であることが好ましい。このように、ガラス転移温度が100℃以上である有機粒子を用いれば、機能層の耐熱収縮性を更に向上させることができる。
 なお、本発明において、「ガラス転移温度」は、本明細書の実施例に記載の方法を用いて測定することができる。
 そして、本発明の非水系二次電池機能層用組成物は、前記多官能エチレン性不飽和単量体単位が、多官能(メタ)アクリル酸エステル単量体単位であることが好ましい。多官能(メタ)アクリル酸エステル単量体単位を含む有機粒子を用いれば、機能層の耐熱収縮性を更に向上させることができる。
 なお、本発明において、「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
 さらに、本発明の非水系二次電池機能層用組成物は、前記有機粒子が、さらに単官能(メタ)アクリル酸エステル単量体単位を10質量%以上45質量%以下の割合で含むことが好ましい。有機粒子が、単官能(メタ)アクリル酸エステル単量体単位を上述の範囲内の割合で含めば、機能層の耐熱収縮性および二次電池のサイクル特性を更に向上させることができる。
 ここで、本発明の非水系二次電池機能層用組成物は、さらに結着材を含み、前記結着材が、架橋性単量体単位を0.05質量%以上5質量%以下の割合で含むことが好ましい。架橋性単量体単位を上述の範囲内の割合で含む結着材を含有する機能層用組成物を用いれば、機能層の耐熱収縮性および二次電池のサイクル特性を更に向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用機能層は、上述した何れかの非水系二次電池機能層用組成物を用いて形成されることを特徴とする。このように、上述した何れかの機能層用組成物を用いて得られる機能層は、耐熱収縮性に優れると共に、当該機能層を備える電池部材によれば、二次電池に優れたサイクル特性を発揮させることができる。
 ここで、本発明の非水系二次電池用機能層は、厚みが0.5μm以上1.5μm以下であることが好ましい。厚みが上述の範囲内の機能層を用いれば、機能層の耐熱収縮性および二次電池のサイクル特性を更に向上させることができる。
 なお、本発明において、機能層の「厚み」は、本明細書の実施例に記載の方法を用いて測定することができる。
 そして、本発明の非水系二次電池用機能層を備える電池部材を用いて二次電池を製造すれば、二次電池の安全性を十分に確保しつつ、当該二次電池に優れたサイクル特性を発揮させることができる。
 本発明によれば、優れた耐熱収縮性を有すると共に、非水系二次電池に優れたサイクル特性を発揮させ得る機能層を形成可能な非水系二次電池機能層用組成物を提供することができる。
 また、本発明によれば、優れた耐熱収縮性を有すると共に、非水系二次電池に優れたサイクル特性を発揮させ得る機能層、および、当該機能層を備える非水系二次電池を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池機能層用組成物は、本発明の非水系二次電池用機能層を形成する際の材料として用いられる。そして、本発明の非水系二次電池用機能層は、本発明の非水系二次電池機能層用組成物を用いて形成され、例えばセパレータまたは電極の一部を構成する。また、本発明の非水系二次電池は、少なくとも本発明の非水系二次電池用機能層を備えるものである。
(非水系二次電池機能層用組成物)
 本発明の機能層用組成物は、有機粒子と、溶媒を含有し、任意に、結着材と、その他の成分を含有する組成物である。ここで、本発明の機能層用組成物に含まれる有機粒子は、多官能エチレン性不飽和単量体単位を55質量%以上90質量%以下の割合で含み、そして体積平均粒子径が50nm以上370nm以下である。
 そして、本発明の機能層用組成物は、多官能エチレン性不飽和単量体単位を55質量%以上90質量%以下の割合で含み、そして体積平均粒子径が50nm以上370nm以下である有機粒子を含有しているため、当該機能層用組成物から得られる機能層に優れた耐熱収縮性を付与し得ると共に、機能層を備える電池部材を有する二次電池に、優れたサイクル特性を発揮させることができる。
<有機粒子>
 有機粒子は、重合体で構成される粒子であり、主として機能層の耐熱収縮性や強度などを向上させ得る成分である。
<<組成>>
 ここで、有機粒子は、上述したように、多官能エチレン性不飽和単量体単位を55質量%以上90質量%以下の割合で含み、そして、多官能エチレン性不飽和単量体単位以外の繰り返し単位(その他の繰り返し単位)を10質量%以上45質量%以下の割合で含む。
[多官能エチレン性不飽和単量体単位]
 本発明において、多官能エチレン性不飽和単量体単位を形成しうる多官能エチレン性不飽和単量体としては、1分子当たり2つ以上のエチレン性不飽和結合を有する単量体(但し、1,3-ブタジエンなどの共役ジエン単量体を除く)を用いる。
 ここで、多官能エチレン性不飽和単量体としては、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン-トリ(メタ)アクリレートなどの多官能(メタ)アクリル酸エステル単量体;
 ジビニルベンゼン、ジイソプロペニルベンゼンなどの多官能芳香族ビニル単量体;
 ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、トリメチロールプロパン-ジアリルエーテル、前記以外の多官能性アルコールのアリルまたはビニルエーテル、トリアリルアミン、メチレンビスアクリルアミド;などが挙げられる。
 なお、本発明において、「(メタ)アクリレート」とは、アクリレートおよび/またはメタクリレートを意味する。
 これらの多官能エチレン性不飽和単量体は、単独で、または、2種以上を組み合わせて用いることができる。そしてこれらの中でも、機能層の耐熱収縮性を更に向上させる観点から、多官能(メタ)アクリル酸エステル単量体、多官能芳香族ビニル単量体が好ましく、多官能(メタ)アクリル酸エステル単量体がより好ましく、エチレングリコールジメタクリレート、トリメチロールプロパン-トリメタクリレートが更に好ましい。
 そして、有機粒子中の多官能エチレン性不飽和単量体単位の含有割合は、有機粒子を構成する重合体の全繰り返し単位を100質量%とした場合、55質量%以上90質量%以下であることが必要であり、64質量%以上であることが好ましく、65質量%以上であることがより好ましく、70質量%以上であることが更に好ましく、85質量%以下であることが好ましく、83質量%以下であることがより好ましい。有機粒子中の多官能エチレン性不飽和単量体単位の割合が55質量%未満であると、有機粒子の架橋度が低下することにより機能層の耐熱収縮性が損なわれる。一方、有機粒子中の多官能エチレン性不飽和単量体単位の割合が90質量%超であると、有機粒子を調製する際の重合安定性低下により微粒子が増加し、二次電池のサイクル特性が損なわれる。
[その他の繰り返し単位]
 有機粒子に含まれるその他の繰り返し単位としては、特に限定されないが、単官能(メタ)アクリル酸エステル単量体単位、ニトリル基含有単量体単位、酸性基含有単量体単位が挙げられる。
―単官能(メタ)アクリル酸エステル単量体単位―
 単官能(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イソブチルアクリレート、n-ペンチルアクリレート、イソペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、イソブチルメタクリレート、n-ペンチルメタクリレート、イソペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。
 これらは、単独で、または、2種以上を組み合わせて用いることができる。これらの中でも、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレートが好ましく、n-ブチルアクリレートがより好ましい。
 そして、有機粒子中の単官能(メタ)アクリル酸エステル単量体単位の含有割合は、有機粒子を構成する重合体の全繰り返し単位を100質量%とした場合、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、45質量%以下であることが好ましく、35質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。有機粒子中の単官能(メタ)アクリル酸エステル単量体単位の割合が10質量%以上であれば、有機粒子を調製する際の重合安定性が確保されて微粒子の生成を抑制することができ、二次電池のサイクル特性を更に向上させることができる。一方、有機粒子中の単官能(メタ)アクリル酸エステル単量体単位の割合が45質量%以下であれば、有機粒子の架橋度が確保されて機能層の耐熱性を更に向上させることができる。また、二次電池のサイクル特性を一層高めることができる。
―ニトリル基含有単量体単位―
 ニトリル基含有単量体単位を形成し得るニトリル基含有単量体としては、α,β-エチレン性不飽和ニトリル単量体が挙げられる。具体的には、α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリル、α-エチルアクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。なお、これらは、単独で、または、2種以上を組み合わせて用いることができる。これらの中でも、アクリロニトリルおよびメタクリロニトリルが好ましい。
 そして、有機粒子中のニトリル基含有単量体単位の含有割合は、有機粒子を構成する重合体の全繰り返し単位を100質量%とした場合、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることが更に好ましく、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。有機粒子中のニトリル基含有単量体単位の割合が0.1質量%以上10質量%以下であれば、有機粒子を調製する際の重合安定性が確保されて微粒子の生成を抑制することができ、二次電池のサイクル特性を更に向上させることができる。
―酸性基含有単量体単位―
 酸性基含有単量体単位を形成し得る酸性基含有単量体としては、例えば、カルボン酸基含有単量体、スルホン酸基含有単量体、およびリン酸基含有単量体が挙げられる。
 そして、カルボン酸基含有単量体としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸モノエステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 また、カルボン酸基含有単量体としては、加水分解によりカルボン酸基を生成する酸無水物も使用できる。
 また、スルホン酸基含有単量体としては、例えば、スチレンスルホン酸、ビニルスルホン酸(エチレンスルホン酸)、メチルビニルスルホン酸、(メタ)アリルスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸が挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリルおよび/またはメタリルを意味する。
 更に、リン酸基含有単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルが挙げられる。
 なお、本発明において、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
 上述した酸性基含有単量体は、単独で、または、2種以上を組み合わせて用いることができる。これらの酸性基含有単量体の中でも、カルボン酸基含有単量体が好ましく、アクリル酸、メタクリル酸がより好ましい。
 そして、有機粒子中の酸性基含有単量体単位の含有割合は、有機粒子を構成する重合体の全繰り返し単位を100質量%とした場合、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。有機粒子中の酸性基含有単量体単位の割合が0.1質量%以上であれば、有機粒子を調製する際の重合安定性が確保されて微粒子の生成を抑制することができ、二次電池のサイクル特性を更に向上させることができる。一方、有機粒子中の酸性基含有単量体単位が10質量%以下であれば、二次電池への持ち込み水分量を低下させて、二次電池のサイクル特性を高めることができる。
<<調製方法>>
 有機粒子は、上述した単量体を含む単量体組成物を、例えば水などの水系溶媒中で重合することにより、製造し得る。この際、単量体組成物中の各単量体の含有割合は、有機粒子中の各繰り返し単位(単量体単位)の含有割合に準じて定めることができる。
 そして、重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。重合に際しては、シード粒子を採用してシード重合を行ってもよい。重合条件は、重合方法などに応じて適宜調整しうる。
 また、重合には、乳化剤、重合開始剤、連鎖移動剤などの既知の添加剤を使用することができ、その使用量も、一般に使用される量とする。
<<体積平均粒子径>>
 上述のようにして得られる有機粒子の体積平均粒子径は、50nm以上370nm以下であることが必要であり、100nm以上であることが好ましく、130nm以上であることがより好ましく、150nm以上であることが更に好ましく、350nm以下であることが好ましく、300nm以下であることがより好ましい。有機粒子の体積平均粒子径が50nm未満であると、機能層の抵抗が上昇して、二次電池のサイクル特性が損なわれる。一方、有機粒子の体積平均粒子径が370nm超であると、機能層用組成物を基材上に塗布して機能層を形成する際の塗布密度が低下し、得られる機能層の耐熱収縮性が損なわれる。
 なお、有機粒子の体積平均粒子径は、有機粒子の調製に用いる重合開始剤、連鎖移動剤、および/または乳化剤の種類および量などを変更することにより、調整することができる。例えば、シード重合により有機粒子を調製する場合には、シード粒子の調製に用いる乳化剤の量を多くすることでシード粒子を小粒子化し、得られる有機粒子の体積平均粒子径を小さくすることができ、また、シード粒子の調製に用いる乳化剤の量を少なくすることでシード粒子を大粒子化し、得られる有機粒子の体積平均粒子径を大きくすることができる。
<<ガラス転移温度>>
 また、上述のようにして得られる有機粒子のガラス転移温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることが更に好ましい。有機粒子のガラス転移温度が100℃以上であれば、機能層の耐熱収縮性を更に向上させることができる。また、有機粒子のガラス転移温度の上限は特に限定されないが、通常500℃以下である。
 なお、有機粒子のガラス転移温度は、有機粒子の調製に用いる単量体の種類や割合などを変更することにより、調整することができる。
<結着材>
 本発明の機能層用組成物は、結着材を含むことが好ましい。結着材は、重合体からなる成分であり、機能層用組成物を用いて形成される機能層において、当該機能層に含まれる上記有機粒子などの成分が機能層から脱離しないように保持し得る。
<<組成>>
 ここで、結着材は、架橋性単量体単位を0.05質量%以上5質量%以下の割合で含み、そして、架橋性単量体単位以外の繰り返し単位(その他の繰り返し単位)を含む重合体からなることが好ましい。
[架橋性単量体単位]
 架橋性単量体単位を形成し得る架橋性単量体としては、特に限定されることなく、重合により架橋構造を形成し得る単量体が挙げられる。架橋性単量体の例としては、通常、熱架橋性を有する単量体が挙げられる。より具体的には、熱架橋性の架橋性基および1分子あたり1つのエチレン性不飽和結合を有する単量体;多官能エチレン性不飽和単量体(1分子あたり2つ以上のエチレン性不飽和結合を有する単量体)が挙げられる。
 熱架橋性の架橋性基の例としては、エポキシ基、N-メチロールアミド基、オキセタニル基、オキサゾリン基およびこれらの組み合わせが挙げられる。これらの中でも、エポキシ基が、架橋および架橋密度の調節が容易な点でより好ましい。
 そして、熱架橋性の架橋性基としてエポキシ基を有し、且つ、エチレン性不飽和結合を有する単量体の例としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセンなどのアルケニルエポキシド;並びにグリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステルなどの不飽和カルボン酸のグリシジルエステル類が挙げられる。
 また、熱架橋性の架橋性基としてN-メチロールアミド基を有し、且つ、エチレン性不飽和結合を有する単量体の例としては、N-メチロール(メタ)アクリルアミドなどのメチロール基を有する(メタ)アクリルアミド類が挙げられる。
 さらに、熱架橋性の架橋性基としてオキセタニル基を有し、且つ、エチレン性不飽和結合を有する単量体の例としては、3-((メタ)アクリロイルオキシメチル)オキセタン、3-((メタ)アクリロイルオキシメチル)-2-トリフロロメチルオキセタン、3-((メタ)アクリロイルオキシメチル)-2-フェニルオキセタン、2-((メタ)アクリロイルオキシメチル)オキセタンおよび2-((メタ)アクリロイルオキシメチル)-4-トリフロロメチルオキセタンが挙げられる。
 また、熱架橋性の架橋性基としてオキサゾリン基を有し、且つ、エチレン性不飽和結合を有する単量体の例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリンおよび2-イソプロペニル-5-エチル-2-オキサゾリンが挙げられる。
 更に、多官能エチレン性不飽和単量体(1分子あたり2つ以上のエチレン性不飽和結合を有する単量体)の例としては、「有機粒子」の項で上述した「多官能エチレン性不飽和単量体」と同様のものが挙げられる。
 上述した架橋性単量体は、単独で、または、2種以上を組み合わせて用いることができる。これらの架橋性単量体の中でも、アリルメタクリレートおよびアリルグリシジルエーテルが好ましい。
 そして、結着材中の架橋性単量体単位の含有割合は、結着材を構成する重合体の全繰り返し単位を100質量%とした場合、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることが更に好ましく、2質量%以上であることが特に好ましく、5質量%以下であることが好ましく、3.5質量%以下であることがより好ましく、3質量%以下であることが更に好ましく、2.5質量%以下であることが特に好ましい。結着材中の架橋性単量体単位の割合が0.05質量%以上であれば、結着材の架橋度が確保されることで電解液中での過度な膨潤が抑制され、二次電池のサイクル特性を更に向上させることができる。一方、結着材中の架橋性単量体単位の割合が5質量%以下であれば、結着材の結着能が確保されることで機能層の接着性を向上させることができ、また、機能層の耐熱収縮性を一層高めることができる。
[その他の繰り返し単位]
 結着材を形成する重合体に含まれるその他の繰り返し単位としては、特に限定されないが、単官能(メタ)アクリル酸エステル単量体単位、芳香族モノビニル単量体単位、酸性基含有単量体単位が挙げられる。
―単官能(メタ)アクリル酸エステル単量体単位―
 単官能(メタ)アクリル酸エステル単量体単位を形成しうる単官能(メタ)アクリル酸エステル単量体としては、「有機粒子」の項で上述したものと同様のものが挙げられる。これらは、単独で、または、2種以上を組み合わせて用いることができる。これらの中でも、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレートが好ましく、2-エチルヘキシルアクリレートがより好ましい。
 そして、結着材中の単官能(メタ)アクリル酸エステル単量体単位の含有割合は、結着材を構成する重合体の全繰り返し単位を100質量%とした場合、60質量%以上であることが好ましく、65質量%以上であることがより好ましく、80質量%以下であることが好ましく、75質量%以下であることがより好ましい。結着材中の単官能(メタ)アクリル酸エステル単量体単位の割合が60質量%以上であれば、結着材のガラス転移温度の過度な上昇が抑制され、機能層の接着性が確保される。一方、結着材中の単官能(メタ)アクリル酸エステル単量体単位の割合が80質量%以下であれば、二次電池のサイクル特性を更に向上させることができる。
―芳香族モノビニル単量体単位―
 芳香族モノビニル単量体単位を形成しうる芳香族モノビニル単量体としては、スチレン、スチレンスルホン酸およびその塩(例えば、スチレンスルホン酸ナトリウムなど)、α-メチルスチレン、ビニルトルエン、4-(tert-ブトキシ)スチレンなどが挙げられる。これらは、単独で、または、2種以上を組み合わせて用いることができる。これらの中でも、スチレンが好ましい。
 そして、結着材中の芳香族モノビニル単量体単位の含有割合は、結着材を構成する重合体の全繰り返し単位を100質量%とした場合、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、40質量%以下であることが好ましく、30質量%以下であることがより好ましい。結着材中の芳香族モノビニル単量体単位の割合が10質量%以上であれば、結着材のガラス転移温度が過度に低下することもなく、機能層を備える電池部材のブロッキングを抑制することができる。一方、結着材中の芳香族モノビニル単量体単位の割合が40質量%以下であれば、結着材のガラス転移温度が過度に上昇することもなく、機能層の接着性を確保することができる。
―酸性基含有単量体単位―
 酸性基含有単量体単位を形成しうる酸性基含有単量体としては、「有機粒子」の項で上述したものと同様のものが挙げられる。これらは、単独で、または、2種以上を組み合わせて用いることができる。これらの中でも、カルボン酸基含有単量体が好ましく、アクリル酸がより好ましい。
 そして、結着材中の酸性基含有単量体単位の含有割合は、結着材を構成する重合体の全繰り返し単位を100質量%とした場合、2質量%以上であることが好ましく、2.5質量%以上であることがより好ましく、8質量%以下であることが好ましく、5質量%以下であることがより好ましい。結着材中の酸性基含有単量体単位の割合が2質量%以上であれば、結着材を調製する際の重合体安定性が確保されるため凝集物の発生が抑制され、二次電池のサイクル特性を向上させることができる。一方、結着材中の酸性基含有単量体単位の割合が8質量%以下であれば、二次電池への持ち込み水分量を低下させて、二次電池のサイクル特性を高めることができる。
<<調製方法>>
 結着材は、上述した単量体を含む単量体組成物を、例えば水などの水系溶媒中で重合することにより、製造し得る。この際、単量体組成物中の各単量体の含有割合は、結着材中の各繰り返し単位(単量体単位)の含有割合に準じて定めることができる。
 そして、重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。重合条件は、重合方法などに応じて適宜調整しうる。
 また、重合には、乳化剤、重合開始剤、連鎖移動剤などの既知の添加剤を使用することができ、その使用量も、一般に使用される量とする。
<<ガラス転移温度>>
 上述のようにして得られる結着材のガラス転移温度は、-40℃以上であることが好ましく、0℃以下であることが好ましく、-15℃以下であることがより好ましい。結着材のガラス転移温度が-40℃以上であれば、機能層を備える電池部材のブロッキングを抑制することができる。一方、結着材のガラス転移温度が0℃以下であれば、機能層の接着性を十分に確保することができる。
 なお、結着材のガラス転移温度は、結着材の調製に用いる単量体の種類や割合などを変更することにより、調整することができる。例えば、結着材の調製に用いるスチレンなどの芳香族モノビニル単量体の割合を上げることで結着材のガラス転移温度を高めることができ、当該割合を下げることで結着材のガラス転移温度を低くすることができる。
<<有機粒子と結着材の含有量比>>
 機能層用組成物中の有機粒子と結着材の含有量比は、特に限定されないが、有機粒子と結着材の合計中に占める結着材の割合が、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることが更に好ましく、9質量%以上であることが特に好ましく、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。有機粒子と結着材の合計中に占める結着材の割合が1質量%以上であれば、有機粒子の粉落ちが抑制され、機能層の耐熱収縮性を十分に確保することができる。一方、有機粒子と結着材の合計中に占める結着材の割合が20質量%以下であれば、機能層の抵抗の過度な上昇が抑制され、二次電池のサイクル特性を十分に確保することができる。
<溶媒>
 本発明の機能層用組成物の溶媒としては、上述した有機粒子および必要に応じて用いられる結着材を溶解または分散可能な既知の溶媒を用いることができる。中でも、溶媒としては、水を用いることが好ましい。
<その他の成分>
 本発明の機能層用組成物が含有し得る、有機粒子および結着材、並びに溶媒以外の成分としては、特に限定されない。このような成分としては、既知の無機粒子や、既知の添加剤が挙げられる。既知の無機粒子としては、例えば、特開2017-103034号公報に記載のものを使用することができる。また、既知の添加剤としては、特に制限されることなく、例えば、増粘剤、表面張力調整剤、分散剤、粘度調整剤、湿潤剤、補強材、電解液添加剤等の成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。なお、これらのその他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<非水系二次電池機能層用組成物の調製方法>
 そして、本発明の機能層用組成物は、上述した所定の有機粒子および溶媒を含有すること以外は、特に限定されることなく、例えば、有機粒子と、任意に添加することができる上述の結着材および上述のその他の成分とを、水などの溶媒の存在下で撹拌混合して調製することができる。なお、有機粒子の分散液や結着材の分散液を用いて機能層用組成物を調製する場合には、分散液が含有している液分をそのまま機能層用組成物の溶媒として利用してもよい。
 なお、本発明の機能層用組成物の固形分濃度は、通常10質量%以上40質量%以下である。
 ここで、撹拌方法は特に制限されることなく、既知の方法で行うことができる。具体的には、一般的な撹拌容器、ボールミル、サンドミル、ビーズミル、顔料分散機、超音波分散機、らい潰機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどを用いて、上記各成分と溶媒とを混合することにより、スラリー状の機能層用組成物を調製することができる。なお、上記各成分と溶媒との混合は、通常、室温~80℃の範囲で、10分~数時間行うことができる。
(非水系二次電池用機能層)
 本発明の機能層は、上述した機能層用組成物から形成されたものであり、例えば、上述した機能層用組成物を適切な基材の表面に塗布して塗膜を形成した後、形成した塗膜を乾燥することにより、形成することができる。即ち、本発明の機能層は、上述した機能層用組成物の乾燥物よりなり、上記有機粒子を含有し、任意に、上記結着材およびその他の成分を含有する。なお、有機粒子および結着材は機能層用組成物の乾燥時、或いは、乾燥後に任意に実施される熱処理時などに架橋されていてもよい(即ち、本発明の機能層は、有機粒子同士、結着材同士、および/または有機粒子と結着材の架橋物を含んでいてもよい)。また、機能層中に含まれている各成分は、上記機能層用組成物中に含まれていたものであり、それら各成分の好適な存在比は、機能層用組成物中の各成分の好適な存在比と同じである。
 そして、本発明の機能層は、上述した機能層用組成物を用いて形成しているので、耐熱収縮性に優れ、また、当該機能層を備える電池部材を用いれば、二次電池に優れたサイクル特性を発揮させることができる。
<基材>
 ここで、機能層用組成物を塗布する基材に制限は無く、例えば離型基材の表面に機能層用組成物の塗膜を形成し、その塗膜を乾燥して機能層を形成し、機能層から離型基材を剥がすようにしてもよい。このように、離型基材から剥がされた機能層を自立膜として二次電池の電池部材の形成に用いることもできる。具体的には、離型基材から剥がした機能層をセパレータ基材の上に積層して機能層を備えるセパレータを形成してもよいし、離型基材から剥がした機能層を電極基材の上に積層して機能層を備える電極を形成してもよい。
 しかし、機能層を剥がす工程を省略して電池部材の製造効率を高める観点からは、基材としてセパレータ基材又は電極基材を用いることが好ましい。
<<セパレータ基材>>
 セパレータ基材としては、特に限定されないが、有機セパレータ基材などの既知のセパレータ基材が挙げられる。有機セパレータ基材は、有機材料からなる多孔性部材であり、有機セパレータ基材の例を挙げると、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微多孔膜又は不織布などが挙げられ、強度に優れることからポリエチレン製の微多孔膜や不織布が好ましい。なお、セパレータ基材の厚さは、任意の厚さとすることができ、好ましくは5μm以上30μm以下であり、より好ましくは5μm以上20μm以下であり、更に好ましくは5μm以上18μm以下である。セパレータ基材の厚さが5μm以上であれば、十分な安全性が得られる。また、セパレータ基材の厚さが30μm以下であれば、イオン伝導性が低下するのを抑制し、二次電池の出力特性が低下するのを抑制することができると共に、セパレータ基材の熱収縮力が大きくなるのを抑制して耐熱性を高めることができる。
<<電極基材>>
 電極基材(正極基材および負極基材)としては、特に限定されないが、集電体上に電極合材層が形成された電極基材が挙げられる。
 ここで、集電体、電極合材層中の電極活物質(正極活物質、負極活物質)および電極合材層用結着材(正極合材層用結着材、負極合材層用結着材)、並びに、集電体上への電極合材層の形成方法には、既知のものを用いることができ、例えば特開2013-145763号公報に記載のものを用いることができる。
<非水系二次電池用機能層の形成方法>
 上述したセパレータ基材、電極基材などの基材上に機能層を形成する方法としては、以下の方法が挙げられる。
1)本発明の機能層用組成物をセパレータ基材又は電極基材の表面(電極基材の場合は電極合材層側の表面、以下同じ)に塗布し、次いで乾燥する方法;
2)本発明の機能層用組成物にセパレータ基材又は電極基材を浸漬後、これを乾燥する方法;および
3)本発明の機能層用組成物を離型基材上に塗布し、乾燥して機能層を製造し、得られた機能層をセパレータ基材又は電極基材の表面に転写する方法。
 これらの中でも、前記1)の方法が、機能層の層厚制御をしやすいことから特に好ましい。前記1)の方法は、詳細には、機能層用組成物を基材上に塗布する工程(塗布工程)と、基材上に塗布された機能層用組成物を乾燥させて機能層を形成する工程(機能層形成工程)を含む。
 なお、機能層は、製造される二次電池の構造に従い、セパレータ基材や電極基材の片面のみに形成してもよく、両面に形成してもよい。ここで、基材としてセパレータ基材を用いる場合はセパレータ基材の両面に機能層を形成することが好ましく、基材として電極基材を用いる場合は電極基材の片面、とりわけ電極合材層上に形成することが好ましい。
<<塗布工程>>
 そして、塗布工程において、機能層用組成物を基材上に塗布する方法としては、特に制限は無く、例えば、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。
<<機能層形成工程>>
 また、機能層形成工程において、基材上の機能層用組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができる。乾燥法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥が挙げられる。乾燥条件は特に限定されないが、乾燥温度は好ましくは40~150℃で、乾燥時間は好ましくは2~30分である。
<機能層の厚み>
 そして、基材上に形成された各機能層の厚みは、0.5μm以上であることが好ましく、1.5μm以下であることが好ましく、1.3μm以下であることがより好ましく、1.1μm以下であることが更に好ましい。機能層の厚みが0.5μm以上であれば、機能層の耐熱収縮性を十分に確保することができる。一方、機能層の厚みが1.5μm以下であれば、機能層の抵抗の過度な上昇が抑制され、二次電池のサイクル特性を十分に確保することができる。
<機能層を備える電池部材>
 なお、本発明の機能層を備える電池部材(セパレータおよび電極)は、本発明の効果を著しく損なわない限り、セパレータ基材又は電極基材と、本発明の機能層との他に、上述した本発明の機能層以外の構成要素を備えていてもよい。
(非水系二次電池)
 本発明の二次電池は、上述した本発明の機能層を備えるものである。より具体的には、本発明の二次電池は、正極、負極、セパレータ、および電解液を備え、上述した非水系二次電池用機能層が、電池部材である正極、負極およびセパレータの少なくとも一つに含まれる。
<正極、負極およびセパレータ>
 本発明の二次電池に用いる正極、負極およびセパレータは、少なくとも一つが本発明の機能層を含む。具体的には、機能層を備える正極および負極としては、集電体上に電極合材層を形成してなる電極基材の上に本発明の機能層を設けてなる電極を用いることができる。また、機能層を備えるセパレータとしては、セパレータ基材の上に本発明の機能層を設けてなるセパレータを用いることができる。なお、電極基材およびセパレータ基材としては、「非水系二次電池用機能層」の項で挙げたものと同様のものを用いることができる。
 また、機能層を有さない正極、負極およびセパレータとしては、特に限定されることなく、上述した電極基材よりなる電極および上述したセパレータ基材よりなるセパレータを用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えばリチウムイオン二次電池においては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。また、これらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
<非水系二次電池の製造方法>
 上述した本発明の非水系二次電池は、例えば、正極と負極とをセパレータを介して重ね合わせ、これを必要に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することで製造することができる。なお、正極、負極、セパレータのうち、少なくとも一つの電池部材を機能層付きの電池部材とする。また、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 そして、実施例および比較例において、有機粒子の体積平均粒子径およびガラス転移温度、結着材のガラス転移温度、機能層の厚みおよび耐熱収縮性、並びに、二次電池のサイクル特性は、下記の方法で評価した。
<有機粒子の体積平均粒子径>
 実施例および比較例において得られた有機粒子の水分散液の固形分濃度を2%に調整し、測定用水分散液を準備した。測定用水分散液を使用し、レーザー回折・光散乱方式粒度分布測定装置(ベックマンコールター社製「LS230」)により粒子径分布を測定した。そして、測定された粒子径分布において、小径側から計算した累積体積が50%となる粒子径を有機粒子の体積平均粒子径(D50)とした。
<有機粒子および結着材のガラス転移温度(Tg)>
 実施例および比較例において得られた有機粒子および結着材の水分散液をそれぞれ乾燥させることで測定試料を得た。
 測定試料10mgをアルミパンに計量し、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製「EXSTAR DSC6220」)にて、測定温度範囲-100℃~200℃の間で、昇温速度10℃/分で、JIS Z 8703に規定された条件下で測定を実施し、示差走査熱量分析(DSC)曲線を得た。なお、リファレンスとして空のアルミパンを用いた。この昇温過程で、微分信号(DDSC)が0.05mW/分/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点を、ガラス転移温度(℃)として求めた。
<機能層の厚み>
 機能層の厚みは、機能層と基材(セパレータ基材または電極基材)とが積層してなる電池部材の厚みから、機能層が形成されていない基材の厚みを差し引くことで算出した。なお、電池部材および基材の厚みは、それぞれ、任意の10点の厚さを接触式厚み計(デジマチックインジケータコードNo.:543-575、ミツトヨ精密機器社製)を用いて測定し、それらの平均値として算出した。
<機能層の耐熱収縮性>
 湿式法により製造された単層のポリエチレン製セパレータ(厚み:9μm)を、セパレータ基材として準備した。このセパレータ基材の一方の面に、実施例および比較例で得られた機能層用組成物を塗布し、セパレータ基材上の機能層用組成物を50℃で10分間乾燥して、機能層(厚み:1.0μm)を形成した。この機能層を備えるセパレータを評価用セパレータとした。
 作製した評価用セパレータを、12cm×12cmの正方形に切り出し、かかる正方形の内部に1辺が10cmの正方形を描いて試験片とした。そして、試験片を130℃の恒温槽に入れて1時間放置した後、内部に描いた正方形の面積変化(={(放置前の正方形の面積-放置後の正方形の面積)/放置前の正方形の面積}×100%)を熱収縮率として求め、以下の基準で評価した。この熱収縮率が小さいほど、機能層用組成物を用いて形成される機能層が耐熱収縮性に優れていることを示す。
 A:熱収縮率が2%未満
 B:熱収縮率が2%以上3%未満
 C:熱収縮率が3%以上5%未満
 D:熱収縮率が5%以上
<二次電池のサイクル特性>
 実施例および比較例において作製したリチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流法にて、CC-CV充電(上限セル電圧4.30V)を行い、0.2Cの定電流法にて3.00VまでCC放電を行なった。
 その後、温度25℃の環境下、セル電圧4.30-3.00V、1.0Cの充放電レートにて充放電の操作を100サイクル行った。そして、1サイクル目の容量、すなわち初期放電容量X1、および、100サイクル目の放電容量X2を測定し、容量維持率(%)=(X2/X1)×100を求め、以下の基準で評価した。この容量維持率の値が大きいほど、二次電池がサイクル特性に優れていることを示す。
 A:容量維持率が80%以上
 B:容量維持率が70%以上80%未満
 C:容量維持率が60%以上70%未満
 D:容量維持率が60%未満
(実施例1)
<有機粒子の調製>
 撹拌機を備えた反応器Aに、ドデシル硫酸ナトリウムを0.20部、過硫酸アンモニウムを0.30部、およびイオン交換水を180部入れて混合し混合物とし、65℃に昇温した。一方、別の容器中で、単官能(メタ)アクリル酸エステル単量体としてのn―ブチルアクリレート80.0部、酸性基含有単量体としてのメタクリル酸10.0部、ニトリル基含有単量体としてのアクリロニトリル10.0部、ドデシル硫酸ナトリウム0.8部、およびイオン交換水40部を混合して、シード粒子用単量体組成物を調製した。
 このシード粒子用単量体組成物を、4時間かけて、上述の反応器Aに連続的に添加して重合反応を行った。シード粒子用単量体組成物の連続添加中における反応器内の温度は、65℃に維持した。また、連続添加終了後、さらに80℃で3時間重合反応を継続させた。これにより、シード粒子の水分散液を得た。なお、シード粒子の体積平均粒子径を有機粒子と同様にして測定したところ、120nmであった。
 次に、撹拌機を備えた反応器に、上述のシード粒子の水分散液を、固形分相当で20部(この内、n-ブチルアクリレート単位は16部、メタクリル酸単位は2部、アクリロニトリル単位は2部)、多官能エチレン性不飽和単量体としてのエチレングリコールジメタクリレート(共栄社化学株式会社、製品名「ライトエステルEG」)を80部、ドデシルベンゼンスルホン酸ナトリウムを0.8部、重合開始剤としてのt-ブチルパーオキシ-2-エチルヘキサノエート(日油社製、製品名「パーブチルO」)を3.2部、およびイオン交換水を160部入れ、35℃で12時間撹拌することで、シード粒子に多官能エチレン性不飽和単量体および重合開始剤を完全に吸収させた。その後、反応器内の温度を90℃に維持し、5時間重合反応(シード重合)を行った。
 次いで、スチームを導入して未反応の単量体および開始剤分解生成物を除去し、有機粒子の水分散液を得た。そして、得られた有機粒子の体積平均粒子径およびガラス転移温度を測定した。結果を表1に示す。なお、ガラス転移温度の測定に際しでは、測定温度範囲(-100℃~200℃)においてピークが観測されず、有機粒子のガラス転移温度が200℃超であることを確認した(実施例2~11、並びに、比較例1および3について同じ)。
<結着材の調製>
 撹拌機を備えた反応器Bに、イオン交換水70部、乳化剤としてのポリオキシエチレンラウリルエーテル(花王ケミカル社製、製品名「エマルゲン(登録商標)120」)0.20部、および過流酸アンモニウム0.5部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。一方、別の容器でイオン交換水50部、乳化剤としてのポリオキシエチレンラウリルエーテル(花王ケミカル社製、製品名「エマルゲン(登録商標)120」)0.5部、そして単官能(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート70部、芳香族モノビニル単量体としてのスチレン25部、架橋性単量体としてアリルグリシジルエーテル1.7部およびアリルメタクリレート0.3部、並びに酸性基含有単量体としてのアクリル酸3部を混合して単量体組成物を得た。
 この単量体組成物を4時間かけて前記反応器Bに連続的に添加して重合を行った。連続添加中は、70℃で反応を行った。連続添加終了後、さらに80℃で3時間撹拌して反応を終了し、結着材の水分散体を得た。
 得られた結着材の水分散体を25℃に冷却後、これに水酸化ナトリウム水溶液を添加してpHを8.0に調整し、その後スチームを導入して未反応の単量体を除去した。その後、イオン交換水で固形分濃度を調整しながら、200メッシュ(目開:約77μm)のステンレス製金網でろ過を行い、結着材の水分散液(固形分濃度:40%)を得た。なお、結着材の体積平均粒子径を有機粒子と同様にして測定したところ、180nmであった。
<機能層用組成物の調製>
 上記で得られた有機粒子の水分散液、上記で得られた結着材の水分散液、増粘剤としてのカルボキシメチルセルロース(ダイセル化学社製、製品名「ダイセル1220」)、および湿潤剤(サンノプコ株式会社製、製品名「SNウエット980」)を、有機粒子:結着材:増粘剤:湿潤剤(固形分質量比)=82:12:5:1(有機粒子と結着材の合計中に占める結着材の割合が13%)となるように水中で混合し、機能層用組成物(固形分濃度:20%)を得た。得られた機能層用組成物を用いて評価用セパレータを作製し、機能層の耐熱収縮性を評価した。結果を表1に示す。
<両面に機能層を備えるセパレータの作製>
 湿式法により製造された単層のポリエチレン製セパレータ(厚み:9μm)を、セパレータ基材として準備した。このセパレータ基材の一方の面に、上記で得られた機能層用組成物を塗布し、セパレータ基材上の機能層用組成物を50℃で10分間乾燥して、機能層(厚み:1.0μm)を形成した。さらに、セパレータ基材の他方の面にも、上記で得られた機能層用組成物を塗布し、セパレータ基材上の機能層用組成物を50℃で10分間乾燥することで機能層(厚み:1.0μm)を形成して、両面に機能層を備えるセパレータを作製した。
<正極の作製>
 正極活物質としてのLiCoO95部に、正極用結着材としてのポリフッ化ビニリデン(PVDF、呉羽化学社製、製品名「KF-1100」)3部(固形分相当量)を加え、さらに、導電材としてのアセチレンブラック2部、および溶媒としてのN-メチルピロリドン20部を加えて、これらをプラネタリーミキサーで混合して正極用スラリー組成物を得た。この正極用スラリー組成物を、厚さ18μmのアルミニウム箔の片面に塗布し、120℃で3時間乾燥した後、ロールプレスにより圧延して正極合材層を有する正極(厚み:100μm)を得た。
<負極の作製>
 負極活物質としてのグラファイト98部(粒径:20μm、比表面積:4.2m/g)と、負極用結着材としてのスチレン-ブタジエンゴム(SBR、ガラス転移温度:-10℃)の1部(固形分相当量)とを混合し、この混合物にさらにカルボキシメチルセルロースを1.0部加えて、これらをプラネタリーミキサーで混合して負極用スラリー組成物を得た。この負極用スラリー組成物を、厚さ18μmの銅箔の片面に塗布し、120℃で3時間乾燥した後、ロールプレスにより圧延して負極合材層を有する負極(厚み:100μm)を得た。
<二次電池の製造>
 上記で得られた正極を49cm×5cmに切り出して正極合材層側の表面が上側になるように台上に置いた。そして、この正極の正極合材層上に、上記で得られたセパレータ(両面に機能層を備える)を120cm×5.5cmに切り出し、正極がセパレータの長手方向左側に位置するように配置した。さらに、このセパレータの上に、上記で得られた負極を50cm×5.2cmに切り出し、負極合材層側の表面がセパレータと接し、且つ負極がセパレータの長手方向右側に位置するように配置し、積層体を得た。この積層体を、捲回機を用いて、セパレータの長手方向の真ん中を中心に捲回し、捲回体を得た。この捲回体を電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート/エチルメチルカーボネート/ビニレンカーボネート(体積混合比)=30.0/70.0/1.5、電解質:濃度1MのLiPF)を空気が残らないように注入した。さらに、150℃のヒートシールによりアルミ包材外装を閉口して密封し、捲回型のリチウムイオン二次電池を製造した。得られたリチウムイオン二次電池のサイクル特性を評価した。結果を表1に示す。
(実施例2)
 有機粒子の調製の際に、エチレングリコールジメタクリレートに替えてトリメチロールプロパン-トリメタクリレートを使用した以外は、実施例1と同様にして、有機粒子、結着材、機能層用組成物、セパレータ、負極、正極、および二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例3)
 有機粒子の調製の際に、シード粒子用単量体組成物中のn―ブチルアクリレートの量を84.6部に、メタクリル酸の量を7.7部に、アクリロニトリルの量を7.7部に変更してシード粒子を調製し、さらに、シード重合において当該シード粒子の固形分相当量を13部(この内、n-ブチルアクリレート単位は11部、メタクリル酸単位は1部、アクリロニトリル単位は1部)、エチレングリコールジメタクリレートの量を87部に変更した以外は、実施例1と同様にして、有機粒子、結着材、機能層用組成物、セパレータ、負極、正極、および二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例4)
 有機粒子の調製の際に、シード粒子用単量体組成物中のn―ブチルアクリレートの量を83.4部に、メタクリル酸の量を8.3部に、アクリロニトリルの量を8.3部に変更してシード粒子を調製し、さらに、シード重合において当該シード粒子の固形分相当量を36部(この内、n-ブチルアクリレート単位は30部、メタクリル酸単位は3部、アクリロニトリル単位は3部)、エチレングリコールジメタクリレートの量を64部に変更した以外は、実施例1と同様にして、有機粒子、結着材、機能層用組成物、セパレータ、負極、正極、および二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例5~6)
 有機粒子の調製の際に、撹拌機を備えた反応器Aに仕込むドデシル硫酸ナトリウムの量を、0.20部から、それぞれ0.10部(実施例5)、0.40部(実施例6)に変更してシード粒子の体積平均粒子径をそれぞれ250nm(実施例5)、70nm(実施例6)に調整した以外は、実施例1と同様にして、有機粒子、結着材、機能層用組成物、セパレータ、負極、正極、および二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例7)
 有機粒子の調製の際に、シード粒子用単量体組成物中のn―ブチルアクリレートの量を91.4部に、メタクリル酸の量を4.3部に、アクリロニトリルの量を4.3部に変更してシード粒子を調製し、さらに、シード重合において当該シード粒子の固形分相当量を35部(この内、n-ブチルアクリレート単位は32部、メタクリル酸単位は1.5部、アクリロニトリル単位は1.5部)、エチレングリコールジメタクリレートの量を65部に変更した以外は、実施例1と同様にして、有機粒子、結着材、機能層用組成物、セパレータ、負極、正極、および二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例8)
 有機粒子の調製の際に、シード粒子用単量体組成物中のn―ブチルアクリレートの量を75.0部に、メタクリル酸の量を12.5部に、アクリロニトリルの量を12.5部に変更してシード粒子を調製し、さらに、シード重合において当該シード粒子の固形分相当量を16部(この内、n-ブチルアクリレート単位は12部、メタクリル酸単位は2部、アクリロニトリル単位は2部)、エチレングリコールジメタクリレートの量を84部に変更した以外は、実施例1と同様にして、有機粒子、結着材、機能層用組成物、セパレータ、負極、正極、および二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例9)
 結着材の調製の際に、単量体組成物中のアリルメタクリレートの量を1.3部に、アクリル酸の量を2部に変更した以外は、実施例1と同様にして、有機粒子、結着材、機能層用組成物、セパレータ、負極、正極、および二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例10)
<有機粒子、結着材、機能層用組成物の調製>
 実施例1と同様にして、有機粒子、結着材、機能層用組成物を調製した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<セパレータの準備>
 湿式法により製造された単層のポリエチレン製セパレータ(厚み:9μm)を、セパレータとして準備した。
<機能層を備える正極の作製>
 正極活物質としてのLiCoO95部に、正極用結着材としてのポリフッ化ビニリデン(PVDF、呉羽化学社製、製品名「KF-1100」)3部(固形分相当量)を加え、さらに、導電材としてのアセチレンブラック2部、および溶媒としてのN-メチルピロリドン30部を加えて、これらをプラネタリーミキサーで混合して正極用スラリー組成物を得た。この正極用スラリー組成物を、厚さ18μmのアルミニウム箔の片面に塗布し、120℃で3時間乾燥した後、ロールプレスにより圧延して正極合材層を有する正極基材(厚み:100μm)を得た。
 この正極基材の正極合材層側の面に、上記で得られた機能層用組成物を塗布し、正極基材上の機能層用組成物を50℃で10分間乾燥することで機能層(厚み:1.0μm)を形成して、機能層を備える正極を得た。
<負極の作製>
 実施例1と同様にして、負極を作製した。
<二次電池の製造>
 上記で得られた正極(正極合材層上に機能層を備える)を49cm×5cmに切り出して機能層側の表面が上側になるように台上に置いた。そして、この正極の機能層上に、上記で得られたセパレータを120cm×5.5cmに切り出し、正極がセパレータの長手方向左側に位置するように配置した。さらに、このセパレータの上に、上記で得られた負極を50cm×5.2cmに切り出し、負極合材層側の表面がセパレータと接し、且つ負極がセパレータの長手方向右側に位置するように配置し、積層体を得た。この積層体を、捲回機を用いて、セパレータの長手方向の真ん中を中心に捲回し、捲回体を得た。この捲回体を電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート/エチルメチルカーボネート/ビニレンカーボネート(体積混合比)=30.0/70.0/1.5、電解質:濃度1MのLiPF)を空気が残らないように注入した。さらに、150℃のヒートシールによりアルミ包材外装を閉口して密封し、捲回型のリチウムイオン二次電池を製造した。得られたリチウムイオン二次電池のサイクル特性を評価した。結果を表1に示す。
(実施例11)
 両面に機能層を備えるセパレータの作製の際に、機能層の厚みをそれぞれ1.3μmに変更した以外は、実施例1と同様にして、有機粒子、結着材、機能層用組成物、セパレータ、負極、正極、および二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例1)
 有機粒子の調製の際に、シード粒子用単量体組成物中のn―ブチルアクリレートの量を75.0部に、メタクリル酸の量を6.25部に、アクリロニトリルの量を18.75部に変更してシード粒子を調製し、さらに、シード重合において当該シード粒子の固形分相当量を8部(この内、n-ブチルアクリレート単位は6部、メタクリル酸単位は0.5部、アクリロニトリル単位は1.5部)、エチレングリコールジメタクリレートの量を92部に変更した以外は、実施例1と同様にして、有機粒子、結着材、機能層用組成物、セパレータ、負極、正極、および二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例2)
 有機粒子の調製の際に、シード粒子用単量体組成物中のn―ブチルアクリレートの量を95.2部に、メタクリル酸の量を1.0部に、アクリロニトリルの量を3.8部に変更してシード粒子を調製し、さらに、シード重合において当該シード粒子の固形分相当量を52部(この内、n-ブチルアクリレート単位は49.5部、メタクリル酸単位は0.5部、アクリロニトリル単位は2部)、エチレングリコールジメタクリレートの量を48部に変更した以外は、実施例1と同様にして、有機粒子、結着材、機能層用組成物、セパレータ、負極、正極、および二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例3)
 有機粒子の調製の際に、撹拌機を備えた反応器Aに仕込むドデシル硫酸ナトリウムの量を、0.20部から0部に変更した(すなわち、ドデシル硫酸ナトリウムを使用しない)以外は、実施例1と同様にして、有機粒子、結着材、機能層用組成物、セパレータ、負極、正極、および二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
 なお、以下に示す表1中、
「EDMA」は、エチレングリコールジメタクリレート単位を示し、
「TMPTMA」は、トリメチロールプロパン-トリメタクリレート単位を示し、
「BA」は、n-ブチルアクリレート単位を示し、
「AN」は、アクリロニトリル単位を示し、
「MAA」は、メタクリル酸単位を示し、
「AMA」は、アリルメタクリレート単位を示し、
「AGE」は、アリルグリシジルエーテル単位を示し、
「2EHA」は、2-エチルヘキシルアクリレート単位を示し、
「ST」は、スチレン単位を示し、
「AA」は、アクリル酸単位を示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、多官能エチレン性不飽和単量体単位を55質量%以上90質量%以下の割合で含む重合体からなり、且つ体積平均粒子径が50nm以上370nm以下である有機粒子を溶媒中に含む機能層用組成物を用いた実施例1~11では、耐熱収縮性に優れる機能層を形成可能であると共に、当該機能層を備える電池部材(セパレータまたは電極)を用いて、二次電池に優れたサイクル特性を発揮させ得ることが分かる。
 一方、多官能エチレン性不飽和単量体単位の含有割合が90質量%超の重合体からなる有機粒子を含む機能層用組成物を用いた比較例1では、二次電池のサイクル特性が低下してしまうことが分かる。
 また、多官能エチレン性不飽和単量体単位の含有割合が55質量%未満の重合体からなる有機粒子を含む機能層用組成物を用いた比較例2では、機能層の耐熱収縮性が低下してしまうことが分かる。
 そして、体積平均粒子径が370nm超の有機粒子を含む機能層用組成物を用いた比較例3では、機能層の耐熱収縮性が低下してしまうことが分かる。
 本発明によれば、優れた耐熱収縮性を有すると共に、非水系二次電池に優れたサイクル特性を発揮させ得る機能層を形成可能な非水系二次電池機能層用組成物を提供することができる。
 また、本発明によれば、優れた耐熱収縮性を有すると共に、非水系二次電池に優れたサイクル特性を発揮させ得る機能層、および、当該機能層を備える非水系二次電池を提供することができる。

Claims (8)

  1.  有機粒子および溶媒を含む非水系二次電池機能層用組成物であって、
     前記有機粒子が、多官能エチレン性不飽和単量体単位を55質量%以上90質量%以下の割合で含み、
     前記有機粒子の体積平均粒子径が50nm以上370nm以下である、非水系二次電池機能層用組成物。
  2.  前記有機粒子のガラス転移温度が100℃以上である、請求項1に記載の非水系二次電池機能層用組成物。
  3.  前記多官能エチレン性不飽和単量体単位が、多官能(メタ)アクリル酸エステル単量体単位である、請求項1または2に記載の非水系二次電池機能層用組成物。
  4.  前記有機粒子が、さらに単官能(メタ)アクリル酸エステル単量体単位を10質量%以上45質量%以下の割合で含む、請求項1~3の何れかに記載の非水系二次電池機能層用組成物。
  5.  さらに結着材を含み、前記結着材が、架橋性単量体単位を0.05質量%以上5質量%以下の割合で含む、請求項1~4の何れかに記載の非水系二次電池機能層用組成物。
  6.  請求項1~5の何れかに記載の非水系二次電池機能層用組成物を用いて形成した、非水系二次電池用機能層。
  7.  厚みが0.5μm以上1.5μm以下である、請求項6に記載の非水系二次電池用機能層。
  8.  請求項6または7に記載の非水系二次電池用機能層を備える、非水系二次電池。
PCT/JP2018/034658 2017-09-28 2018-09-19 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池 WO2019065416A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18863570.0A EP3690986A4 (en) 2017-09-28 2018-09-19 COMPOSITION OF THE FUNCTIONAL LAYER OF A WATER-FREE SECONDARY BATTERY, FUNCTIONAL LAYER OF A WATER-FREE SECONDARY BATTERY, AND WATER-FREE SECONDARY BATTERY
JP2019545008A JP7342704B2 (ja) 2017-09-28 2018-09-19 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
US16/646,142 US11710821B2 (en) 2017-09-28 2018-09-19 Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
KR1020207007642A KR20200060365A (ko) 2017-09-28 2018-09-19 비수계 이차 전지 기능층용 조성물, 비수계 이차 전지용 기능층 및 비수계 이차 전지
CN201880058681.3A CN111095600A (zh) 2017-09-28 2018-09-19 非水系二次电池功能层用组合物、非水系二次电池用功能层和非水系二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017189127 2017-09-28
JP2017-189127 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019065416A1 true WO2019065416A1 (ja) 2019-04-04

Family

ID=65902017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034658 WO2019065416A1 (ja) 2017-09-28 2018-09-19 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池

Country Status (6)

Country Link
US (1) US11710821B2 (ja)
EP (1) EP3690986A4 (ja)
JP (1) JP7342704B2 (ja)
KR (1) KR20200060365A (ja)
CN (1) CN111095600A (ja)
WO (1) WO2019065416A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200049A1 (ja) 2020-03-31 2021-10-07 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体、及び電気化学素子
CN114747049A (zh) * 2020-01-31 2022-07-12 日本瑞翁株式会社 全固态电池用粘结剂颗粒、全固态电池用组合物、全固态电池用功能层、以及全固态电池
WO2022163591A1 (ja) 2021-01-29 2022-08-04 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用積層体及び電気化学素子
WO2022181275A1 (ja) 2021-02-26 2022-09-01 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体および電気化学素子
CN115104221A (zh) * 2020-03-31 2022-09-23 日本瑞翁株式会社 二次电池功能层用有机颗粒分散液、二次电池功能层用组合物、二次电池用电池构件及二次电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190320A (ja) * 2000-12-19 2002-07-05 Furukawa Electric Co Ltd:The 固体状電解質およびそれを用いた電池
WO2012115096A1 (ja) 2011-02-23 2012-08-30 日本ゼオン株式会社 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP2013145763A (ja) 2013-04-30 2013-07-25 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
WO2013180168A1 (ja) * 2012-05-30 2013-12-05 日本ゼオン株式会社 二次電池用負極及びその製造方法
JP2014209432A (ja) * 2012-09-11 2014-11-06 Jsr株式会社 保護膜を作製するための組成物および保護膜、ならびに蓄電デバイス
JP2015028843A (ja) * 2013-06-28 2015-02-12 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2015153638A (ja) 2014-02-17 2015-08-24 Jsr株式会社 保護層の形成方法および蓄電デバイス
JP2015185514A (ja) * 2014-03-26 2015-10-22 Jsr株式会社 セパレーターを作製するための組成物およびセパレーター、ならびに蓄電デバイス
JP2017103034A (ja) 2015-11-30 2017-06-08 日本ゼオン株式会社 非水系二次電池用機能層の形成方法、および非水系二次電池の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656633B2 (en) * 2000-07-26 2003-12-02 Zeon Corporation Binder for electrode for lithium ion secondary battery, and utilization thereof
KR101605582B1 (ko) * 2009-06-30 2016-03-22 제온 코포레이션 2 차 전지용 정극 및 2 차 전지
CN103636027B (zh) * 2011-07-01 2015-10-21 日本瑞翁株式会社 二次电池用多孔膜、制造方法及用途
JP6217133B2 (ja) * 2013-05-17 2017-10-25 日本ゼオン株式会社 二次電池多孔膜用スラリー、二次電池用セパレータ、二次電池用電極及び二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190320A (ja) * 2000-12-19 2002-07-05 Furukawa Electric Co Ltd:The 固体状電解質およびそれを用いた電池
WO2012115096A1 (ja) 2011-02-23 2012-08-30 日本ゼオン株式会社 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
WO2013180168A1 (ja) * 2012-05-30 2013-12-05 日本ゼオン株式会社 二次電池用負極及びその製造方法
JP2014209432A (ja) * 2012-09-11 2014-11-06 Jsr株式会社 保護膜を作製するための組成物および保護膜、ならびに蓄電デバイス
JP2013145763A (ja) 2013-04-30 2013-07-25 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
JP2015028843A (ja) * 2013-06-28 2015-02-12 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2015153638A (ja) 2014-02-17 2015-08-24 Jsr株式会社 保護層の形成方法および蓄電デバイス
JP2015185514A (ja) * 2014-03-26 2015-10-22 Jsr株式会社 セパレーターを作製するための組成物およびセパレーター、ならびに蓄電デバイス
JP2017103034A (ja) 2015-11-30 2017-06-08 日本ゼオン株式会社 非水系二次電池用機能層の形成方法、および非水系二次電池の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114747049A (zh) * 2020-01-31 2022-07-12 日本瑞翁株式会社 全固态电池用粘结剂颗粒、全固态电池用组合物、全固态电池用功能层、以及全固态电池
EP4098671A4 (en) * 2020-01-31 2024-02-28 Zeon Corp BINDING AGENT PARTICLES FOR SOLID STATE BATTERIES, COMPOSITION FOR SOLID STATE BATTERIES, FUNCTIONAL LAYER FOR SOLID STATE BATTERIES AND SOLID STATE BATTERIES
WO2021200049A1 (ja) 2020-03-31 2021-10-07 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体、及び電気化学素子
CN115104221A (zh) * 2020-03-31 2022-09-23 日本瑞翁株式会社 二次电池功能层用有机颗粒分散液、二次电池功能层用组合物、二次电池用电池构件及二次电池
KR20220159981A (ko) 2020-03-31 2022-12-05 니폰 제온 가부시키가이샤 이차 전지 기능층용 유기 입자 분산액, 이차 전지 기능층용 조성물, 이차 전지용 전지 부재, 및 이차 전지
WO2022163591A1 (ja) 2021-01-29 2022-08-04 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用積層体及び電気化学素子
WO2022181275A1 (ja) 2021-02-26 2022-09-01 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体および電気化学素子

Also Published As

Publication number Publication date
EP3690986A4 (en) 2021-04-07
US11710821B2 (en) 2023-07-25
JP7342704B2 (ja) 2023-09-12
EP3690986A1 (en) 2020-08-05
KR20200060365A (ko) 2020-05-29
JPWO2019065416A1 (ja) 2020-09-10
US20200220138A1 (en) 2020-07-09
CN111095600A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
JP6149730B2 (ja) 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池
JP6384476B2 (ja) リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
JP7342704B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
WO2017094252A1 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池
WO2015129408A1 (ja) 二次電池多孔膜用バインダー組成物、二次電池多孔膜用スラリー、二次電池用多孔膜及び二次電池
JPWO2018173717A1 (ja) 非水系二次電池用バインダー組成物及び非水系二次電池用スラリー組成物
JP6191471B2 (ja) リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2014050708A1 (ja) 二次電池用多孔膜セパレータ及びその製造方法、並びに二次電池
JP6988799B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層及び非水系二次電池
JP7342703B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
WO2016157899A1 (ja) 二次電池多孔膜用組成物、二次電池用多孔膜および二次電池
WO2020040031A1 (ja) 非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用セパレータおよび非水系二次電池
JPWO2020090395A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池用セパレータ、および非水系二次電池
WO2017183641A1 (ja) 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
JPWO2019044720A1 (ja) 電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子
JP6485269B2 (ja) 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
WO2018163761A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP2014203805A (ja) リチウムイオン二次電池負極用粒子状バインダー、リチウムイオン二次電池負極用スラリー組成物およびリチウムイオン二次電池
WO2021200346A1 (ja) 二次電池機能層用有機粒子分散液、二次電池機能層用組成物、二次電池用電池部材、及び二次電池
JP6485268B2 (ja) 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
WO2024048424A1 (ja) 電気化学素子機能層用組成物、電気化学素子用積層体、及び電気化学素子
WO2022124126A1 (ja) 電気化学素子機能層用組成物、電気化学素子用積層体及び電気化学素子
JP2016154108A (ja) 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池およびその製造方法
WO2022114033A1 (ja) 二次電池機能層用バインダー、二次電池機能層用スラリー組成物、二次電池用機能層、および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545008

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018863570

Country of ref document: EP

Effective date: 20200428