WO2022181275A1 - 電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体および電気化学素子 - Google Patents

電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体および電気化学素子 Download PDF

Info

Publication number
WO2022181275A1
WO2022181275A1 PCT/JP2022/004119 JP2022004119W WO2022181275A1 WO 2022181275 A1 WO2022181275 A1 WO 2022181275A1 JP 2022004119 W JP2022004119 W JP 2022004119W WO 2022181275 A1 WO2022181275 A1 WO 2022181275A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional layer
polymer
composition
electrochemical
particulate polymer
Prior art date
Application number
PCT/JP2022/004119
Other languages
English (en)
French (fr)
Inventor
一貴 高木
拓也 金田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP22759316.7A priority Critical patent/EP4300695A1/en
Priority to JP2023502236A priority patent/JPWO2022181275A1/ja
Priority to KR1020237027953A priority patent/KR20230152665A/ko
Priority to US18/546,429 priority patent/US20240136658A1/en
Priority to CN202280015142.8A priority patent/CN116918158A/zh
Publication of WO2022181275A1 publication Critical patent/WO2022181275A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composition for an electrochemical element functional layer, an electrochemical element functional layer, an electrochemical element laminate, and an electrochemical element.
  • Electrochemical devices such as lithium-ion secondary batteries and electric double layer capacitors are small, lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications.
  • a lithium-ion secondary battery generally includes battery members such as a positive electrode, a negative electrode, and a separator that separates the positive electrode from the negative electrode to prevent a short circuit between the positive electrode and the negative electrode.
  • the durability of the functional layer is improved by using, as a binder to be contained in the composition for the functional layer, a particulate polymer having a degree of swelling with respect to a non-aqueous electrolytic solution that is 2 times or less.
  • the low-temperature output characteristics of the electrochemical device are improved by suppressing the decrease or suppressing the increase in the internal resistance.
  • the above-described conventional functional layer composition improves the adhesion of the functional layer after immersion in the electrolyte (hereinafter sometimes referred to as "wet adhesion") and increases the ion permeability of the functional layer.
  • wet adhesion improves the adhesion of the functional layer after immersion in the electrolyte
  • an object of the present invention is to provide a composition for an electrochemical element functional layer that is excellent in wet adhesion and capable of forming an electrochemical element functional layer capable of exhibiting high output characteristics in the electrochemical element. do.
  • the inventor of the present invention conducted intensive studies with the aim of solving the above problems. Further, the present inventors have found that when a composition for an electrochemical element functional layer containing a particulate polymer in which both the volume average particle size and the degree of swelling of the electrolytic solution are within predetermined ranges, excellent wet adhesion can be obtained, In addition, the inventors have found that it is possible to form a functional layer for an electrochemical device that allows the electrochemical device to exhibit high output characteristics, and have completed the present invention.
  • an object of the present invention is to advantageously solve the above-mentioned problems. and a particulate polymer having an electrolytic solution swelling degree of 120% or less. If it contains the particulate polymer having the above-described volume average particle diameter and the degree of swelling of the electrolytic solution, the functional layer for an electrochemical device is excellent in wet adhesion and can make the electrochemical device exhibit high output characteristics. can be formed.
  • the "volume average particle size" and the "swelling degree of electrolyte solution” can be measured by the methods described in the examples of the present specification.
  • the particulate polymer preferably contains a hydrogenated polymer.
  • the use of a particulate polymer containing a hydrogenated polymer can further enhance the wet adhesion of the functional layer and the output characteristics of the electrochemical device.
  • the hydrogenation rate of the hydrogenated polymer is preferably 95% or more. If the degree of hydrogenation is 95% or more, the degree of swelling of the particulate polymer in the electrolytic solution can be reduced, and the wet adhesion of the functional layer and the output characteristics of the electrochemical device can be further enhanced.
  • the "hydrogenation rate" refers to all carbon-carbon unsaturated bonds contained in the hydrogenated polymer (when the polymer has an aromatic ring, double bonds in the aromatic ring (including binding) and can be measured using the nuclear magnetic resonance (NMR) method.
  • the particulate polymer preferably has a glass transition temperature of 0°C or higher and 80°C or lower. If the glass transition temperature of the particulate polymer is within the above range, the dry adhesion of the functional layer (adhesion between battery members via the functional layer during the manufacturing process of the electrochemical element, etc., which can be affected) (adhesiveness of the functional layer in a state not immersed in the liquid) can be improved, and the output characteristics of the electrochemical device can be further improved.
  • the "glass transition temperature" can be measured by the method described in the Examples of the present specification.
  • the "glass transition temperature” refers to each glass in the particulate polymer. It refers to a value obtained by weighted average from the ratio of the structure that gives the transition temperature. Specifically, in the case of a block copolymer, the glass transition temperature can be calculated by taking the weighted average of the glass transition temperature of each block based on the content of each block.
  • Glass transition temperature of block copolymer (glass transition temperature of block A x content of block A + glass transition temperature of block B x content of block B)/(content of block A + content of block B)
  • composition for an electrochemical device functional layer of the present invention further contains another polymer different from the particulate polymer. If other polymers are contained, the particulate polymer can be prevented from coming off from the functional layer.
  • the glass transition temperature of the other polymer is preferably lower than the glass transition temperature of the particulate polymer. If the glass transition temperature of the other polymer is lower than the glass transition temperature of the particulate polymer, the dry adhesion of the functional layer can be further enhanced.
  • composition for an electrochemical element functional layer of the present invention preferably further contains non-conductive heat-resistant particles. If non-conductive heat-resistant particles are contained, a functional layer having excellent heat resistance can be formed, and the heat resistance of the electrochemical device can be improved.
  • Another object of the present invention is to advantageously solve the above problems, and the functional layer for an electrochemical device of the present invention is formed using any of the compositions for an electrochemical device functional layer described above. characterized by being The functional layer for an electrochemical element formed using the above-described composition for an electrochemical element functional layer has excellent wet adhesiveness and allows the electrochemical element to exhibit high output characteristics.
  • an object of the present invention is to advantageously solve the above problems, and a laminate for an electrochemical device of the present invention includes the above-described functional layer for an electrochemical device on one or both sides of a base material. It is characterized by The electrochemical device laminate comprising the above-described electrochemical device functional layer is suitable as an electrochemical device member because it has excellent wet adhesion and allows the electrochemical device to exhibit high output characteristics.
  • the substrate may be a separator substrate.
  • a laminate for an electrochemical device whose substrate is a separator substrate can be suitably used as a separator for an electrochemical device.
  • An object of the present invention is to advantageously solve the above-mentioned problems, and an electrochemical device of the present invention is characterized by comprising any of the laminates for an electrochemical device described above.
  • An electrochemical device provided with the laminate for an electrochemical device described above can exhibit high output characteristics and has a long life.
  • a functional layer for an electrochemical device that has excellent wet adhesion and allows the electrochemical device to exhibit high output characteristics
  • an electrochemical device functional layer that can form the functional layer for the electrochemical device.
  • a composition for use is obtained.
  • an electrochemical device with high output characteristics and long life can be obtained.
  • the composition for an electrochemical element functional layer of the present invention is used when forming the functional layer for an electrochemical element provided in the laminate for an electrochemical element of the present invention.
  • the electrochemical device laminate of the present invention includes a functional layer formed using the composition for an electrochemical device functional layer of the present invention.
  • the electrochemical device of the present invention comprises at least the laminate for an electrochemical device of the present invention.
  • composition for an electrochemical element functional layer of the present invention contains a predetermined particulate polymer, and optionally other polymers, non-conductive heat-resistant particles, other components, and a dispersion medium such as water. It may further contain at least one selected from the group.
  • the particulate polymer can function as a binder in the functional layer formed using the functional layer composition, and in particular exhibits good adhesive strength after the functional layer is immersed in the electrolytic solution. obtain.
  • the particulate polymer is required to have a volume average particle diameter of 0.5 ⁇ m or more and 10 ⁇ m or less and an electrolyte swelling degree of 120% or less. If the electrolyte solution swelling degree of the particulate polymer is as low as 120% or less, it is possible to suppress swelling and softening when immersed in the electrolyte solution.
  • the electrochemical element provided with the functional layer formed using the functional layer composition can exhibit high output characteristics, and deformation of the electrochemical element due to expansion and contraction of the electrode active material due to charging and discharging. can be suppressed, and the capacity retention rate of the electrochemical device after the cycle test can be improved (lifetime can be extended).
  • the volume-average particle size of the particulate polymer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, from the viewpoint of further improving wet adhesion and dry adhesion of the functional layer. From the viewpoint of further suppressing the falling off of the particulate polymer, it is preferably 8 ⁇ m or less, more preferably 6 ⁇ m or less.
  • the degree of swelling of the particulate polymer in the electrolytic solution is preferably 115% or less from the viewpoint of further improving the wet adhesion of the functional layer and further suppressing the deterioration of the ion permeability of the functional layer.
  • the degree of swelling of the particulate polymer in electrolyte solution is usually 100% or more, preferably more than 100%.
  • the particulate polymer preferably has a glass transition temperature of 0° C. or higher, more preferably 10° C. or higher, even more preferably 30° C. or higher, particularly 50° C. or higher. It is preferably 80° C. or lower, more preferably 70° C. or lower. If the glass transition temperature of the particulate polymer is equal to or higher than the above lower limit, it is possible to suppress the reduction of voids in the functional layer due to deformation of the particulate polymer, thereby ensuring a high level of ion permeability of the functional layer. can be done. Moreover, if the glass transition temperature of the particulate polymer is equal to or lower than the above upper limit, the dry adhesion of the functional layer can be further enhanced.
  • the polymer constituting the particulate polymer is not particularly limited, and may be a random polymer, a block polymer, or a hydride (hydrogenated polymer) thereof. There may be. Among them, the polymer constituting the particulate polymer is preferably a hydrogenated polymer, more preferably a hydrogenated polymer having a hydrogenation rate of 95% or more, and a hydrogenation rate of 98% or more. Hydrogenated polymers are more preferred. If the polymer constituting the particulate polymer is a hydrogenated polymer, particularly a hydrogenated polymer having a hydrogenation rate of at least the above lower limit, the degree of swelling of the particulate polymer in the electrolytic solution is reduced, and the functional layer is formed. Wet adhesion and output characteristics of the electrochemical device can be further enhanced.
  • the polymer constituting the particulate polymer is preferably a polymer having a cyclic hydrocarbon structure, and more preferably a polymer having a cyclic saturated hydrocarbon structure.
  • the polymer having a cyclic saturated hydrocarbon structure is not particularly limited.
  • a polymer using a cyclic olefin compound as a monomer (addition polymer or ring-opening polymer) and its hydride, and and hydrides of polymers using aromatic vinyl compounds as monomers are preferable.
  • the cyclic olefin compound is not particularly limited, and for example, unsubstituted or alkyl-bearing norbornenes such as norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5-cyclohexylnorbornene, 5-cyclopentylnorbornene; norbornenes having an alkenyl group such as 5-ethylidenenorbornene, 5-vinylnorbornene, 5-propenylnorbornene, 5-cyclohexenylnorbornene, 5-cyclopentenylnorbornene; norbornenes having an aromatic ring such as 5-phenylnorbornene; 5-methoxycarbonylnorbornene, 5-ethoxycarbonylnorbornene, 5-methyl-5-methoxycarbonylnorbornene, 5-methyl
  • aromatic rings such as 0 4,9 ]pentadeca-4,6,8,13-tetraene (also referred to as 1,4-methano-1,4,4a,9,9a,10-hexahydroanthracene) polycyclic norbornenes of; tetracyclododecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 8-cyclohexyltetracyclododecene, 8-cyclopentyltetracyclododecene, 8-methoxycarbonyl-8-methyltetracyclo[4. 4.0.1 2,5 .
  • non-polar norbornene-based monomers are preferable, and norbornenes having unsubstituted or alkyl groups (e.g., norbornene, 8-ethyltetracyclododecene), norbornenes having alkenyl groups (e.g., ethylidenetetracyclododecene (8-ethylidenetetracyclododecene)), dicyclopentadiene, norbornene derivatives having an aromatic ring (e.g., tetracyclo[9.2.1.0 2,10 .0 3,8 ]tetradeca-3 ,5,7,12-tetraene (also referred to as 1,4-methano-1,4,4a,9a-tetrahydro-9H-fluorene)), unsubstituted or alkyl-containing tetracyclododecenes (e.g., t
  • the polymer using a cyclic olefin compound as a monomer may be a polymer using only a cyclic olefin compound as a monomer, or a cyclic olefin compound and a monomer other than a cyclic olefin compound as monomers.
  • a polymer using only a cyclic olefin compound as a monomer is preferable.
  • the optionally hydrogenated polymer using a cyclic olefin compound as a monomer is preferably a polymer using tetracyclododecene, dicyclopentadiene and norbornene as a monomer. , dicyclopentadiene and norbornene are more preferred.
  • the proportion of structural units derived from tetracyclododecene in the polymer is preferably 15% by mass or more, more preferably 25% by mass or more, and preferably 40% by mass or less. , 35% by mass or less.
  • the proportion of structural units derived from dicyclopentadiene in the polymer is preferably 15% by mass or more, more preferably 25% by mass or more, and preferably 40% by mass or less.
  • the proportion of structural units derived from norbornene in the polymer is preferably 30% by mass or more, more preferably 40% by mass or more, preferably 60% by mass or less, and 50% by mass. The following are more preferable.
  • the polymer using a cyclic olefin compound as a monomer is not particularly limited, and can be prepared, for example, using the method described in Japanese Patent No. 3235219 or the method described in Japanese Patent No. 6590156.
  • the aromatic vinyl compound is not particularly limited, and examples include styrene; ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, alkyl-substituted styrenes such as dimethylstyrene, 4-t-butylstyrene and 5-t-butyl-2-methylstyrene; and halogen-substituted styrenes such as 4-chlorostyrene and 2,4-dichlorostyrene. Among them, styrene is preferred.
  • the polymer using an aromatic vinyl compound as a monomer may be a polymer using only an aromatic vinyl compound as a monomer, or a copolymer of an aromatic vinyl compound and a monomer other than an aromatic vinyl compound. However, it is preferably a polymer using an aromatic vinyl compound and a copolymerizable compound other than the aromatic vinyl compound as monomers.
  • the polymer using an aromatic vinyl compound and a copolymerizable compound other than the aromatic vinyl compound as monomers may be a random polymer or a block polymer. Polymers are preferred.
  • the copolymerizable compound other than the aromatic vinyl compound is not particularly limited.
  • examples include aliphatic conjugated diene compounds. Among them, 1,3-butadiene and isoprene are preferred.
  • the proportion of the structural unit derived from the aromatic vinyl compound in the polymer is preferably 20% by mass or more, more preferably 25% by mass or more, and preferably 60% by mass or less. It is more preferably 40% by mass or less. Further, the proportion of the structural unit derived from the aliphatic conjugated diene compound in the polymer is preferably 30% by mass or more, more preferably 50% by mass or more, and preferably 80% by mass or less. , 75% by mass or less.
  • the hydride of a polymer obtained by using an aromatic vinyl compound and a copolymerizable compound other than the aromatic vinyl compound as monomers is not particularly limited. can be prepared using
  • the other polymer is a polymer different from the particulate polymer and can function as a binder in the functional layer formed using the functional layer composition.
  • compositions include known polymers used as binders, such as conjugated diene polymers, acrylic polymers, polyvinylidene fluoride (PVDF), and polyvinyl alcohol (PVOH). Other polymers may be used singly or in combination of two or more. As other polymers, water-insoluble polymers dispersible in a dispersion medium such as water, such as conjugated diene polymers, acrylic polymers, and polyvinylidene fluoride (PVDF), are preferred. Diene polymers and acrylic polymers are more preferred, and acrylic polymers are even more preferred. When applying the functional layer to the surface of the positive electrode of the electrochemical device, the other polymer is preferably other than the conjugated diene polymer. In the present invention, the term "water-insoluble" as used herein means that when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 25° C., the insoluble content is 90% by mass or more. .
  • the conjugated diene-based polymer refers to a polymer containing conjugated diene monomer units.
  • Specific examples of the conjugated diene polymer include, but are not particularly limited to, a conjugate containing aromatic vinyl monomer units and aliphatic conjugated diene monomer units such as styrene-butadiene copolymer (SBR). Examples include polymers, butadiene rubber (BR), acrylic rubber (NBR) (copolymers containing acrylonitrile units and butadiene units), and hydrides thereof.
  • an acrylic polymer refers to a polymer containing a (meth)acrylic acid ester monomer unit.
  • these other polymers may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
  • the acrylic polymer that can be preferably used as another polymer is not particularly limited. Examples include polymers containing monomer units and the like.
  • the proportion of (meth)acrylate monomer units in the acrylic polymer is preferably 50% by mass or more, more preferably 55% by mass or more, still more preferably 58% by mass or more, and preferably 98% by mass. % or less, more preferably 97 mass % or less, and still more preferably 96 mass % or less.
  • the proportion of the crosslinkable monomer units in the acrylic polymer is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, and preferably 3.0% by mass or less, more preferably It is 2.5% by mass or less.
  • the proportion of acid group-containing monomer units in the acrylic polymer is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and still more preferably 0.5% by mass or more. is 20% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less.
  • the acrylic polymer may contain other monomer units.
  • the other polymer preferably has a glass transition temperature lower than that of the particulate polymer. If the glass transition temperature of the other polymer is lower than the glass transition temperature of the particulate polymer, the dry adhesion of the functional layer can be further enhanced.
  • the glass transition temperature of the other polymer is preferably ⁇ 100° C. or higher, more preferably ⁇ 90° C. or higher, still more preferably ⁇ 80° C. or higher, preferably less than 30° C., and more It is preferably 20° C. or lower, more preferably 15° C. or lower. If the glass transition temperature of the other polymer is at least the above lower limit, the dry adhesion and strength of the functional layer can be enhanced. On the other hand, when the glass transition temperature of the other polymer is equal to or lower than the above upper limit, the flexibility of the functional layer can be enhanced.
  • the content of the other polymer is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, and still more preferably per 100 parts by mass of the non-conductive heat-resistant particles and the particulate polymer described later. is 0.5 parts by mass or more, preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and even more preferably 10 parts by mass or less.
  • the content of the other polymer is at least the above lower limit, the particulate polymer and the non-conductive heat-resistant particles are sufficiently prevented from falling off from the functional layer, and the dry adhesion and wet adhesion of the functional layer are improved. can be raised sufficiently.
  • the content of the other polymer in the functional layer is equal to or less than the above upper limit, it is possible to suppress the deterioration of the ionic conductivity of the functional layer and the deterioration of the output characteristics of the electrochemical device. can.
  • the other polymer is not particularly limited, and can be prepared, for example, by polymerizing a monomer composition containing the monomers described above in an aqueous solvent such as water.
  • the proportion of each monomer in the monomer composition is usually the same as the proportion of each monomer unit in the other polymer.
  • the method of polymerization of other polymers is not particularly limited, and any method such as a suspension polymerization method, an emulsion polymerization aggregation method, and a pulverization method can be used.
  • a suspension polymerization method an emulsion polymerization aggregation method, and a pulverization method
  • any reaction such as radical polymerization and living radical polymerization can be used.
  • the shape of the other polymer may be either particulate or non-particulate.
  • the shape of coalescence is preferably particulate.
  • the non-conductive heat-resistant particles are not particularly limited, and are fine particles made of an inorganic material (i.e., inorganic fine particles) that stably exist and are electrochemically stable under the operating environment of the electrochemical element, and Fine particles made of an organic material (ie, organic fine particles) can be mentioned.
  • inorganic fine particles and organic fine particles may be used alone, or inorganic fine particles and organic fine particles may be used in combination.
  • inorganic fine particles examples include aluminum oxide (alumina, Al 2 O 3 ), aluminum oxide hydrate (boehmite, AlOOH), gibbsite (Al(OH) 3 ), silicon oxide, magnesium oxide (magnesia), magnesium hydroxide, Inorganic oxide particles such as calcium oxide, titanium oxide (titania), barium titanate (BaTiO 3 ), ZrO, alumina-silica composite oxide; nitride particles such as aluminum nitride and boron nitride; covalent bonds such as silicon and diamond crystalline particles; sparingly soluble ionic crystal particles such as barium sulfate, calcium fluoride and barium fluoride; fine particles of clay such as talc and montmorillonite; These particles may be subjected to element substitution, surface treatment, solid solution treatment, etc., as required.
  • the inorganic fine particles may be used singly or in combination of two or more.
  • Organic microparticles are microparticles made of a polymer that does not have adhesiveness, unlike the above-mentioned predetermined particulate polymer and other polymers.
  • the organic fine particles include crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polystyrene, polyimide, polyamide, polyamideimide, melamine resin, phenolic resin, benzoguanamine-formaldehyde.
  • Various crosslinked polymer particles such as condensates, heat-resistant polymer particles such as polysulfone, polyacrylonitrile, polyaramid, polyacetal, thermoplastic polyimide, modified products and derivatives thereof, and International Publication No. 2019/065416 Examples include the disclosed heat-resistant organic particles.
  • one type of the organic fine particles may be used alone, or two or more types may be used in combination.
  • the organic fine particles are composed of a non-adhesive polymer.
  • the glass transition temperature of the polymer constituting the organic fine particles is preferably 150° C. or higher.
  • inorganic fine particles and organic fine particles composed of a polymer having a glass transition temperature of 150 ° C. or higher are preferable, and inorganic fine particles are more preferable.
  • particles alumina particles
  • particles of boehmite boehmite particles
  • particles of barium sulfate barium sulfate particles
  • magnesium hydroxide magnesium hydroxide particles
  • the non-conductive heat-resistant particles preferably have a volume average particle size of 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.3 ⁇ m or more, and 1.0 ⁇ m or less. It is preferably 0.9 ⁇ m or less, and even more preferably 0.8 ⁇ m or less. If the volume average particle diameter of the non-conductive heat-resistant particles is 0.1 ⁇ m or more, the ionic conductivity of the functional layer is reduced due to excessive dense packing of the non-conductive heat-resistant particles in the functional layer. can be suppressed, and the electrochemical device can exhibit excellent output characteristics.
  • the volume average particle diameter of the non-conductive heat-resistant particles is 1.0 ⁇ m or less, even when the functional layer is made thin, the electrochemical element member provided with the functional layer can sufficiently exhibit excellent heat resistance. can. Therefore, it is possible to increase the capacity of the electrochemical element while sufficiently ensuring the heat resistance of the electrochemical element member.
  • the content of the non-conductive heat-resistant particles in the composition for the functional layer is such that the mixing ratio of the non-conductive heat-resistant particles and the particulate polymer is the volume ratio (non-conductive heat-resistant particles/particulate polymer).
  • the amount is preferably 1.2 times or more, more preferably 1.5 times or more, more preferably 2.0 times or more, and 99 times or less
  • the amount is preferably 20 times or less, more preferably 15 times or less, even more preferably 10 times or less, and particularly preferably 10 times or less. If the mixing ratio of the non-conductive heat-resistant particles and the particulate polymer is within the above range in terms of volume ratio, the heat resistance and adhesiveness of the functional layer are well balanced.
  • the functional layer composition may contain other optional components in addition to the components described above.
  • Other components are not particularly limited as long as they do not affect the electrochemical reaction in the electrochemical element, and examples thereof include known additives such as dispersants, viscosity modifiers and wetting agents. These other components may be used singly or in combination of two or more.
  • the method for preparing the composition for the functional layer is not particularly limited. It can be prepared by mixing
  • a particulate polymer or other polymer is prepared by polymerizing a monomer composition in an aqueous solvent
  • the particulate polymer or other polymer can be used as it is in the form of an aqueous dispersion.
  • water in the aqueous dispersion may be used as a dispersion medium.
  • the method of mixing the components described above is not particularly limited, but it is preferable to mix using a disperser as a mixing device in order to efficiently disperse the components.
  • the disperser is preferably a device capable of uniformly dispersing and mixing the above components. Dispersers include ball mills, sand mills, pigment dispersers, grinders, ultrasonic dispersers, homogenizers and planetary mixers.
  • nonionic surfactants Prior to mixing the predetermined particulate polymer described above with the non-conductive heat-resistant particles and other polymers, nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric surfactants are added. It is preferably premixed with a dispersing agent such as an agent. Among these, an anionic surfactant can be suitably used as a dispersant.
  • anionic surfactants include sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecyl sulfate, ammonium dodecyl sulfate, sodium octyl sulfate, sodium decyl sulfate, sodium tetradecyl sulfate, sodium hexadecyl sulfate, sodium octadecyl sulfate, and the like.
  • Sulfuric acid ester salts of higher alcohols Alkylbenzenesulfonates such as sodium dodecylbenzenesulfonate, sodium laurylbenzenesulfonate and sodium hexadecylbenzenesulfonate; Fats such as sodium laurylsulfonate, sodium dodecylsulfonate and sodium tetradecylsulfonate group sulfonate; and the like.
  • the amount of the dispersant compounded is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, still more preferably 0.1 parts by mass or more, with respect to 100 parts by mass of the particulate polymer.
  • 0.5 parts by mass or less is preferable, 0.4 parts by mass or less is more preferable, and 0.3 parts by mass or less is even more preferable.
  • the blending amount of the dispersant is at least the above lower limit, uneven distribution of the particulate polymer in the functional layer can be suppressed, and the cycle characteristics of the resulting electrochemical device can be enhanced. If the blending amount of the dispersing agent is equal to or less than the above upper limit, it is possible to suppress an increase in the internal resistance of the obtained electrochemical device, and it is possible to suppress deterioration of the output characteristics.
  • the functional layer for an electrochemical device of the present invention is formed using the functional layer composition described above. After coating to form a coating film, it can be formed by drying the formed coating film. That is, the functional layer for an electrochemical device is made of a dried product of the functional layer composition described above, and the functional layer contains at least the particulate polymer described above, and optionally other polymers, a non-conductive At least one selected from the group consisting of heat-resistant particles and other components is further included.
  • each component contained in the functional layer is the one contained in the composition for the functional layer, and the preferred abundance ratio of each component is the ratio of each component in the composition for the functional layer. It is the same as the preferred abundance ratio.
  • the functional layer for an electrochemical device is formed using the composition for a functional layer described above, it is possible to improve the output characteristics of the electrochemical device obtained by using such a functional layer while having excellent wet adhesiveness. can be done.
  • a laminate obtained by forming a functional layer for an electrochemical element on one or both sides of a substrate can be used as the laminate for an electrochemical element of the present invention, and has excellent wet adhesion and electrochemical The output characteristics of the device can be enhanced.
  • the substrate to which the composition for the functional layer is applied is not limited.
  • a coating film of the composition for the functional layer is formed on the surface of the release substrate, and the coating film is dried to form the functional layer.
  • the release base material may be peeled off from the functional layer.
  • the functional layer peeled off from the release substrate can be used as a self-supporting film to form a member of an electrochemical device.
  • a laminate obtained by forming a functional layer on one or both sides of a separator base material can be used favorably as a separator having a functional layer. It can be used favorably as an electrode with a layer.
  • the separator substrate is not particularly limited, but includes known separator substrates such as organic separator substrates.
  • the organic separator base material is a porous member made of an organic material.
  • the organic separator base material include polyolefin resins such as polyethylene, polypropylene, polybutene, and polyvinyl chloride, and microporous materials containing aromatic polyamide resins. Membranes or non-woven fabrics and the like can be mentioned. Among these, a microporous film made of a polyolefin resin is preferable from the viewpoint that the ratio of the electrode active material in the electrochemical element can be increased to increase the capacity per volume.
  • the thickness of the separator base material can be any thickness, preferably 5 ⁇ m or more and 30 ⁇ m or less, more preferably 5 ⁇ m or more and 20 ⁇ m or less, and still more preferably 5 ⁇ m or more and 18 ⁇ m or less.
  • Electrode base material examples include, but are not limited to, an electrode substrate in which an electrode mixture layer containing electrode active material particles and a binder is formed on the above-described current collector.
  • the electrode active material particles and binder contained in the electrode mixture layer in the electrode base material are not particularly limited, and any electrode active material particles and binder that can be used in the field of electrochemical devices. can be used, for example, those described in JP-A-2013-145763 can be used.
  • As the current collector a material having electrical conductivity and electrochemical durability is used. Specifically, as the current collector, for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used.
  • copper foil is particularly preferable as the current collector used for the negative electrode.
  • Aluminum foil is particularly preferable as the current collector used for the positive electrode.
  • one type of the above materials may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the method for producing the functional layer and laminate of the present invention is not particularly limited, and for example, a method of forming a functional layer on a release sheet and transferring the functional layer onto a base material can be used.
  • the laminate is formed by a step of supplying the functional layer composition onto the substrate (supplying step) and the functional layer composition supplied onto the substrate. is preferably produced through a step of drying (drying step).
  • the functional layer composition of the present invention described above is supplied onto a substrate to form a film of the functional layer composition on the substrate.
  • the method of supplying the functional layer composition onto the substrate is not particularly limited, and the functional layer composition may be applied to the surface of the substrate, or the substrate may be immersed in the functional layer composition. good too. Further, it is preferable to apply the functional layer composition to the surface of the base material, since the thickness of the functional layer to be produced can be easily controlled.
  • the method for applying the functional layer composition to the surface of the substrate is not particularly limited, and examples thereof include doctor blade method, reverse roll method, direct roll method, gravure coating method, bar coating method, extrusion method, and brush coating. methods such as law.
  • the coating of the functional layer composition may be formed only on one side of the base material, or the coating of the functional layer composition may be formed on both sides of the base material.
  • the film of the functional layer composition formed on the base material in the supplying step is dried to remove the dispersion medium and form the functional layer.
  • the method for drying the film of the composition for the functional layer is not particularly limited, and known methods can be used. law.
  • the drying conditions are not particularly limited, but the drying temperature is preferably 50 to 150° C., and the drying time is preferably 1 to 30 minutes.
  • a supply step and a drying step may be performed to form the functional layer.
  • the thickness of the functional layer is preferably 0.5 ⁇ m or more, more preferably 0.8 ⁇ m or more, still more preferably 1 ⁇ m or more, and preferably 6 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3.5 ⁇ m or less. is. If the thickness of the functional layer is at least the above lower limit, the heat resistance of the functional layer will be extremely good. On the other hand, if the thickness of the functional layer is equal to or less than the above upper limit, the ion diffusibility of the functional layer can be ensured, and the output characteristics of the electrochemical device can be further enhanced.
  • the ratio of the volume average particle size of the particulate polymer to the thickness of the functional layer is preferably 0.5 or more, more preferably 1.5. or more, preferably 10.0 or less, more preferably 9.0 or less, still more preferably 8.0 or less. If the ratio of the volume-average particle size of the particulate polymer to the thickness of the functional layer is at least the above lower limit, the particulate polymer tends to protrude from the surface of the functional layer in the thickness direction, so good wet adhesion can be exhibited. . Further, if the ratio of the volume average particle diameter of the particulate polymer to the thickness of the functional layer is equal to or less than the above upper limit, the adhesion points of the particulate polymer increase, and good adhesiveness can be exhibited.
  • the electrochemical device of the present invention comprises an electrode and a separator, and is characterized by comprising the above-described laminate of the present invention as at least one of the electrode and the separator, preferably as the separator. Since the electrochemical device of the present invention uses the laminate of the present invention as an electrochemical device member of at least one of an electrode and a separator, it is excellent in output characteristics, and the electrode active material during charging and discharging. It can suppress deformation of the electrochemical element due to expansion and contraction, and has a long life. In the electrochemical device using the laminate, the particulate polymer contained in the functional layer of the laminate may maintain a particulate shape, or may have any other shape. good too.
  • the electrochemical device of the present invention is not particularly limited, and is, for example, a lithium ion secondary battery, an electric double layer capacitor and a lithium ion capacitor, preferably a lithium ion secondary battery.
  • the electrochemical device of the present invention is not limited thereto.
  • Electrodes made of the known electrode base materials (positive electrode base material and negative electrode base material) described above in the "Base material" section can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a supporting electrolyte for example, a lithium salt is used in a lithium ion secondary battery.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • an electrolyte may be used individually by 1 type, and may be used in combination of 2 or more type.
  • lithium ion conductivity tends to increase as a supporting electrolyte with a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted depending on the type of supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • a mixture of these solvents may also be used.
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted by the type of solvent.
  • concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. Further, known additives may be added to the electrolytic solution.
  • the method for manufacturing the electrochemical device of the present invention is not particularly limited.
  • the positive electrode and the negative electrode are superimposed with a separator interposed therebetween, and if necessary, this is wound, folded, etc. and put into a battery container.
  • At least one of the positive electrode, the negative electrode, and the separator is the laminate of the present invention.
  • expanded metal, fuses, overcurrent protection elements such as PTC elements, lead plates, etc. may be placed in the battery container to prevent pressure rise inside the battery and overcharge/discharge.
  • the shape of the battery may be, for example, coin-shaped, button-shaped, sheet-shaped, cylindrical, rectangular, or flat.
  • the particulate polymer was formed into a film having a thickness of about 0.1 mm, which was cut into a square of about 2 cm and weighed (weight before immersion). After that, it was immersed in an electrolytic solution at a temperature of 60° C. for 72 hours. The immersed film was pulled up, the electrolyte was wiped off, and the weight (weight after immersion) was measured immediately.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 at a concentration of 1 mol/liter in a mixed solvent of ethylene carbonate and diethylene carbonate at a volume ratio of 1:1 was used.
  • volume average particle size of polymer The volume average particle size of the polymer (particulate polymer and binder (other polymer)) was measured by a laser diffraction method. Specifically, an aqueous dispersion containing the prepared polymer (adjusted to a solid content concentration of 0.1% by mass) was used as a sample. Then, in the particle size distribution (volume basis) measured using a laser diffraction particle size distribution measuring device (manufactured by Beckman Coulter, "LS-230”), the cumulative volume calculated from the small diameter side is 50%. The particle diameter D50 was taken as the volume average particle diameter.
  • ⁇ Glass transition temperature of polymer> Weigh 10 mg of the measurement sample in an aluminum pan, and use an empty aluminum pan as a reference with a differential thermal analysis measurement device (manufactured by SII Nanotechnology Co., Ltd., "EXSTAR DSC6220"), measurement temperature range -100 ° C to 500 ° C. Measurement was performed under the conditions specified in JIS Z8703 at a heating rate of 10° C./min between and to obtain a differential scanning calorimetry (DSC) curve.
  • DSC differential scanning calorimetry
  • Glass transition temperature (glass transition temperature from hydrogenated isoprene block x content of hydrogenated isoprene block + glass transition temperature from hydrogenated styrene block x content of hydrogenated styrene block)/ (content of hydrogenated isoprene blocks + content of hydrogenated styrene blocks) was used as the glass transition temperature.
  • ⁇ Hydrogenation rate of particulate polymer> For the polymer before hydrogenation and the polymer after hydrogenation, the amount of each carbon-carbon unsaturated bond was determined by 1 H-NMR spectroscopy, and the difference in the amount of carbon-carbon unsaturated bonds before and after hydrogenation was calculated.
  • the hydrogenation rate (%) was calculated based on In the 1 H-NMR spectrum measurement, o-dichlorobenzene was used as a solvent, and JMN-AL series AL400 (manufactured by JEOL) was used as an NMR spectrometer.
  • ⁇ Process Adhesion (Dry Adhesion) of Functional Layer The prepared positive electrode and separator with functional layer were cut into pieces of 10 mm in width and 50 mm in length. to obtain an integrated product in which the positive electrode and the functional layer-attached separator are integrated. Cellophane tape was attached to the surface of the positive electrode with the surface of the positive electrode on the collector side facing down. At this time, the cellophane tape specified in JIS Z1522 was used.
  • the cellophane tape was fixed on a horizontal test stand. After that, one end of the functional layer-attached separator was pulled vertically upward at a pulling rate of 50 mm/min and peeled off, and the stress was measured. Moreover, the same operation as in the case of using the positive electrode was performed on the produced negative electrode, and the stress was measured. The stress measurement described above is performed 5 times for each of the integrated product of the positive electrode and the separator with the functional layer and the integrated product of the negative electrode and the separator with the functional layer, a total of 10 times, and the average value of the stress is obtained. The value was taken as the peel strength (N/m).
  • the process adhesiveness between the electrode and the separator with the functional layer was evaluated according to the following criteria.
  • the functional layer composition was applied to the separator substrate, and the functional layer composition on the separator substrate was dried at 50° C. for 10 minutes to form a functional layer.
  • a separator having this functional layer was used as a separator for evaluation.
  • a strip of 10 mm ⁇ 100 mm was cut out from the evaluation separator.
  • heat press for 6 minutes at a temperature of 85 ° C. and a pressure of 0.5 MPa to prepare a laminate comprising the negative electrode and the separator.
  • This laminate was used as a test piece.
  • This test piece was placed in a laminate packaging material together with about 400 ⁇ l of electrolyte. After 1 hour, the test piece together with the laminated packaging material was pressed at 60° C. and a pressure of 0.5 MPa for 15 minutes. After pressing, the temperature was kept at 60° C. for one day.
  • the stress when one end of the separator was pulled vertically upward at a pulling rate of 50 mm/min and peeled off was measured. This measurement was performed three times, and the average value of the stress was obtained as the peel strength P2, which was evaluated according to the following criteria. The higher the peel strength P2, the better the adhesiveness of the functional layer in the electrolytic solution, indicating that the negative electrode and the separator with the functional layer are firmly bonded.
  • Peel strength P2 is 4 N / m or more
  • B Peel strength P2 is 3 N / m or more and less than 4 N / m
  • C Peel strength P2 is 2 N / m or more and less than 3 N / m
  • D Peel strength P2 is less than 2 N / m
  • Process Characteristics (non-defective product rate)> A total of 100 measurements were performed according to the method described in ⁇ Process Adhesion (Dry Adhesion) of Functional Layer> above. Then, the number of samples having a peel strength of less than 1 N/m was counted and evaluated according to the following criteria. The smaller the number, the higher the non-defective product rate and the better the process characteristics.
  • a higher average discharge capacity retention rate indicates that the secondary battery has better output characteristics.
  • the produced lithium ion secondary battery was allowed to stand at a temperature of 25° C. for 5 hours after the electrolytic solution was injected. Next, it was charged to a cell voltage of 3.65 V by a constant current method at a temperature of 25° C. and 0.2 C, and then subjected to aging treatment at a temperature of 60° C. for 12 hours.
  • the battery was discharged to a cell voltage of 3.00 V by a constant current method at a temperature of 25° C. and 0.2 C.
  • CC-CV charging upper limit cell voltage 4.40V
  • CC discharge was performed to 3.00V by a 0.2C constant current method.
  • This charge/discharge at 0.2C was repeated three times.
  • 100 cycles of charge/discharge were performed at a cell voltage of 4.40 to 3.00 V and a charge/discharge rate of 1.5 C in an environment of 25°C.
  • the discharge capacity of the first cycle was defined as X1
  • the discharge capacity of the 100th cycle was defined as X2.
  • Capacity retention rate ⁇ C′ (X2/X1) ⁇ 100(%) was obtained and evaluated according to the following criteria.
  • a larger value of the capacity retention rate ⁇ C′ indicates that the secondary battery is superior in cycle characteristics and has a long life.
  • D Capacity retention rate ⁇ C' is less than 87%
  • Example 1 ⁇ Preparation of particulate polymer (A)> 2.0 parts of a monomer mixture (polymerization 1% relative to the total amount of monomers used for), 785 parts of dehydrated cyclohexane, 1.21 parts of 1-hexene as a molecular weight modifier, n-hexane solution of diethylaluminum ethoxide (concentration: 19%) 0.98 parts, and 11.7 parts of a toluene solution (concentration: 2.0%) of tungsten (phenylimide) tetrachloride and tetrahydrofuran were added and stirred at 50°C for 10 minutes. Then, while the total volume was kept at 50° C.
  • a monomer mixture polymerization 1% relative to the total amount of monomers used for
  • 785 parts of dehydrated cyclohexane 1.21 parts of 1-hexene as a molecular weight modifier
  • Pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (Ciba Specialty Chemicals, Inc.) is added to this solution as an antioxidant per 100 parts of polymer hydride.
  • product name "Irganox (registered trademark) 1010” was added, and then a filter ("Zeta Plus (registered trademark) 30H” manufactured by Cuno Filter Co., pore size: 0.5 to 1 ⁇ m) and Foreign matter was removed by filtration using a metal fiber filter (manufactured by Nichidai Co., Ltd., pore size 0.4 ⁇ m).
  • the filtrate obtained above is placed in a cylindrical concentration dryer (manufactured by Hitachi, Ltd.), and the solvent cyclohexane and other volatile components are removed under conditions of a temperature of 290 ° C. and a pressure of 1 kPa or less.
  • the resin (A) was extruded in a molten state into a strand from a die directly connected to the resin (A), cooled with water, and cut with a pelletizer (manufactured by Nagata Seisakusho, "OSP-2") to obtain pellets of the resin (A). Then, the electrolyte solution swelling degree, glass transition temperature and hydrogenation rate of the resin (A) were measured. Table 1 shows the results.
  • the resin solution obtained as described above was added to the colloidal dispersion (A) containing magnesium hydroxide, and the mixture was further stirred to obtain a mixed liquid.
  • the resulting mixture was stirred with high shear for 1 minute at a rotation speed of 15,000 rpm using an in-line emulsifying disperser (manufactured by Pacific Machinery Co., Ltd., "Cavitron”) to obtain a colloidal dispersion containing magnesium hydroxide ( In A) droplets of resin melt were formed.
  • the colloidal dispersion (A) containing the magnesium hydroxide is put into a container equipped with a stirrer, and the cyclohexane in the system is distilled off by heating under reduced pressure to obtain an aqueous dispersion containing the particulate polymer (A). I got the liquid. Furthermore, while stirring the aqueous dispersion containing the particulate polymer (A), sulfuric acid was added dropwise at room temperature (25° C.), and acid washing was carried out until the pH reached 6.5 or less. Next, filtration separation was performed, and 500 parts of ion-exchanged water was added to the obtained solid content to reslurry, and water washing treatment (washing, filtration and dehydration) was repeated several times.
  • Polymerization was carried out by continuously adding the obtained monomer composition ( ⁇ ) to the above-described reactor equipped with a stirrer over 4 hours. The reaction was carried out at 60° C. during the addition. After the addition was completed, the mixture was further stirred at 70° C. for 3 hours, and the reaction was terminated to obtain an aqueous dispersion containing the binder ( ⁇ ) in the form of particles as an acrylic polymer. The volume average particle size and glass transition temperature of the obtained binder ( ⁇ ) were measured. Table 1 shows the results.
  • ⁇ Preparation of slurry composition 0.5 parts of polyacrylic acid as a dispersant is added to 100 parts of alumina (manufactured by Sumitomo Chemical Co., Ltd., "AKP3000", volume average particle diameter: 0.7 ⁇ m) as inorganic fine particles, mixed using a ball mill, and further 6 parts of an aqueous dispersion containing a binder ( ⁇ ) corresponding to the solid content and 1.5 parts of carboxymethyl cellulose as a thickener (viscosity modifier) were added so that the solid content concentration was 55%. Ion-exchanged water was added to the mixture to obtain a pre-mixing slurry.
  • a polyethylene microporous film (thickness: 12 ⁇ m) was prepared as a separator base material.
  • the slurry composition obtained as described above was applied to one surface of this separator substrate by a bar coater method.
  • the separator base material coated with the slurry composition was dried at 50° C. for 1 minute to form a functional layer.
  • the same operation was performed on the other side of the separator base material to prepare a functional layer-attached separator having functional layers on both sides of the separator base material.
  • the thickness of each functional layer was set to 3.0 ⁇ m.
  • the positive electrode slurry composition was applied onto a 20 ⁇ m-thick aluminum foil as a current collector by a comma coater so that the film thickness after drying was about 150 ⁇ m, and dried. This drying was carried out by conveying the aluminum foil at a speed of 0.5 m/min in an oven at 60° C. for 2 minutes. After that, heat treatment was performed at 120° C. for 2 minutes to obtain a positive electrode material sheet before pressing. The positive electrode material before pressing was rolled by a roll press to obtain a positive electrode after pressing provided with a positive electrode mixture layer (thickness: 60 ⁇ m).
  • SBR negative electrode mixture layer
  • a 5% aqueous sodium hydroxide solution was added to the mixture containing the binder for the negative electrode mixture layer to adjust the pH to 8, and unreacted monomers were removed by heating under reduced pressure distillation. Thereafter, the mixture was cooled to 30° C. or less to obtain an aqueous dispersion containing the desired binder for the negative electrode mixture layer.
  • 80 parts of artificial graphite (volume average particle size: 15.6 ⁇ m) as negative electrode active material (1) and 16 parts of silicon-based active material SiOx (volume average particle size: 4.9 ⁇ m) as negative electrode active material (2) were blended.
  • a 2% aqueous solution of carboxymethyl cellulose sodium salt (manufactured by Nippon Paper Industries Co., Ltd., "MAC350HC”) as a viscosity modifier was mixed with 2.5 parts equivalent to solid content, and ion-exchanged water to adjust the solid content concentration to 68%. After that, it was further mixed for 60 minutes at 25°C. After adjusting the solid content concentration to 62% with ion-exchanged water, the mixture was further mixed at 25° C. for 15 minutes to obtain a mixed liquid. To this mixture, 1.5 parts of the aqueous dispersion containing the binder for the negative electrode mixture layer was added in terms of the solid content equivalent, and ion-exchanged water was added to adjust the final solid content concentration to 52%.
  • carboxymethyl cellulose sodium salt manufactured by Nippon Paper Industries Co., Ltd., "MAC350HC”
  • the negative electrode slurry composition was applied onto a copper foil having a thickness of 20 ⁇ m as a current collector with a comma coater so that the film thickness after drying was about 150 ⁇ m, and dried. This drying was carried out by conveying the copper foil at a speed of 0.5 m/min in an oven at 60° C. for 2 minutes. After that, heat treatment was performed at 120° C. for 2 minutes to obtain a negative electrode raw sheet before pressing.
  • the unpressed negative electrode material was rolled by a roll press to obtain a pressed negative electrode provided with a negative electrode mixture layer (thickness: 80 ⁇ m). Then, using the functional layer-attached separator, the positive electrode, and the negative electrode obtained as described above, the dry adhesiveness, the wet adhesiveness, and the non-defective product rate were evaluated. Table 1 shows the results. ⁇ Production of lithium ion secondary battery> The positive electrode after pressing produced as described above was cut into a rectangle of 49 cm ⁇ 5 cm, placed so that the surface of the positive electrode mixture layer side faced up, and a 120 cm ⁇ 5.5 cm square was placed on the positive electrode mixture layer.
  • the cut separator with the functional layer was arranged so that the positive electrode was located on one side in the longitudinal direction of the separator with the functional layer. Furthermore, the negative electrode after pressing produced as described above was cut into a rectangle of 50 cm ⁇ 5.2 cm, and placed on the separator with the functional layer so that the surface of the negative electrode mixture layer side faces the separator with the functional layer, and the negative electrode was positioned on the other side in the longitudinal direction of the functional layer-attached separator. Then, the obtained laminate was wound by a winding machine to obtain a wound body. After pressing this wound body at 70 ° C.
  • Example 2 instead of the particulate polymer (A), the composition of the monomer mixture was changed to 22% tetracyclododecene (TCD), 22% dicyclopentadiene (DCPD), and 56% norbornene (NB).
  • TCD tetracyclododecene
  • DCPD dicyclopentadiene
  • NB norbornene
  • a particulate polymer, a binder, a slurry composition, a separator with a functional layer, and a positive electrode were prepared in the same manner as in Example 1 except that the particulate polymer (B) prepared in the same manner as the polymer (A) was used.
  • a negative electrode and a lithium ion secondary battery were produced.
  • Table 1 shows the results.
  • Example 3 A particulate polymer, a binder, a slurry composition, A separator with a functional layer, a positive electrode, a negative electrode, and a lithium ion secondary battery were produced. Various evaluations were performed in the same manner as in Example 1. Table 1 shows the results. ⁇ Preparation of Particulate Polymer (C)> 550 parts of dehydrated cyclohexane, 15.0 parts of dehydrated styrene, and 0.475 parts of n-dibutyl ether were placed in a reactor equipped with a stirrer, the inside of which was sufficiently purged with nitrogen.
  • the polymerization conversion rate at this point was almost 100%.
  • 0.5 part of isopropyl alcohol was added to terminate the reaction.
  • the polymer solution is transferred to a pressure-resistant reactor equipped with a stirrer, and a diatomaceous earth-supported nickel catalyst (manufactured by Nikki Shokubai Kasei Co., Ltd., product name “E22U”, amount of nickel supported: 60%) as a hydrogenation catalyst.
  • 4.0 parts and 100 parts of dehydrated cyclohexane were added and mixed.
  • the inside of the reactor was replaced with hydrogen gas, hydrogen was supplied while stirring the solution, and a hydrogenation reaction was carried out at a temperature of 170° C.
  • the hydrogenated block copolymer [D] obtained by the hydrogenation reaction had a weight average molecular weight (Mw) of 52,500 and a molecular weight distribution (Mw/Mn) of 1.04.
  • Mw weight average molecular weight
  • Mw/Mn molecular weight distribution
  • the reaction solution was filtered to remove the hydrogenation catalyst, and the filtrate was added with pentaerythrityl tetrakis[3-(3,5-di-t-butyl- 4-Hydroxyphenyl)propionate] (Songnox 1010 manufactured by Koyo Kagaku Kenkyusho Co., Ltd.) dissolved in 1.0 part of a xylene solution was added and dissolved.
  • the above solution is filtered through a Zeta Plus (registered trademark) filter 30H (manufactured by Kyuno, pore size 0.5 to 1 ⁇ m), and further through another metal fiber filter (manufactured by Nichidai, pore size 0.4 ⁇ m).
  • a Zeta Plus (registered trademark) filter 30H manufactured by Kyuno, pore size 0.5 to 1 ⁇ m
  • another metal fiber filter manufactured by Nichidai, pore size 0.4 ⁇ m.
  • aqueous solution (A1) obtained by dissolving 4.0 parts of magnesium chloride in 200 parts of ion-exchanged water and an aqueous solution (A2) obtained by dissolving 2.8 parts of sodium hydroxide in 50 parts of ion-exchanged water were stirred.
  • a colloidal dispersion (A) containing magnesium hydroxide as a metal hydroxide was gradually added to prepare a colloidal dispersion (A) containing magnesium hydroxide as a metal hydroxide.
  • a particulate polymer (C) was prepared by a dissolution suspension method. Specifically, the resin solution obtained as described above was added to the colloidal dispersion (C) containing magnesium hydroxide, and the mixture was further stirred to obtain a mixture. The resulting mixture was stirred with high shear for 1 minute at a rotation speed of 15,000 rpm using an in-line emulsifying disperser (manufactured by Pacific Machinery Co., Ltd., "Cavitron”) to obtain a colloidal dispersion containing magnesium hydroxide ( In A) droplets of resin melt were formed.
  • an in-line emulsifying disperser manufactured by Pacific Machinery Co., Ltd., "Cavitron
  • the colloidal dispersion (A) containing the magnesium hydroxide is put into a container equipped with a stirrer, and the cyclohexane in the system is distilled off by heating under reduced pressure to obtain an aqueous dispersion containing the particulate polymer (C).
  • aqueous dispersion containing the particulate polymer (C) sulfuric acid was added dropwise at room temperature (25° C.), and acid washing was performed until the pH reached 6.5 or less.
  • filtration separation was performed, and 500 parts of ion-exchanged water was added to the obtained solid content to reslurry, and water washing treatment (washing, filtration and dehydration) was repeated several times.
  • Example 4 During the preparation of the particulate polymer (A), 2.5 parts of sodium dodecylbenzenesulfonate is used instead of the colloidal dispersion (A) containing magnesium hydroxide as a metal hydroxide to prepare a slurry composition and A particulate polymer, a binder, a slurry composition, a separator with a functional layer, a positive electrode, a negative electrode and a lithium ion secondary were prepared in the same manner as in Example 1, except that the separator with a functional layer was produced as follows. A battery was produced. Various evaluations were performed in the same manner as in Example 1. Table 1 shows the results.
  • Preparation of heat-resistant layer slurry composition 0.5 parts of polyacrylic acid as a dispersant is added to 100 parts of alumina (manufactured by Sumitomo Chemical Co., Ltd., "AKP3000", volume average particle diameter: 0.7 ⁇ m) as inorganic fine particles, mixed using a ball mill, and further 6 parts of an aqueous dispersion containing a binder ( ⁇ ) corresponding to the solid content and 1.5 parts of carboxymethyl cellulose as a thickener (viscosity modifier) were added so that the solid content concentration was 40%. Ion-exchanged water was added to to obtain a heat-resistant layer slurry composition.
  • the adhesive layer slurry composition obtained as described above was applied by a bar coater.
  • the separator base material coated with the adhesive layer slurry composition was dried at 50° C. for 1 minute to form an adhesive functional layer.
  • the same operation was performed on the other side of the separator substrate to prepare a separator with a functional layer having a heat-resistant functional layer and an adhesive functional layer on both sides of the separator substrate.
  • the thickness of the heat-resistant functional layer was 3.0 ⁇ m
  • the basis weight of the adhesive functional layer was 0.25 g/m 2 .
  • an aqueous solution (A1) obtained by dissolving 8.0 parts of magnesium chloride in 200 parts of ion-exchanged water and an aqueous solution (A2) obtained by dissolving 5.6 parts of sodium hydroxide in 50 parts of ion-exchanged water were stirred. was gradually added to prepare a colloidal dispersion (A) containing magnesium hydroxide as a metal hydroxide.
  • a particulate polymer (A) was prepared by a suspension polymerization method. Specifically, the monomer composition obtained as described above is added to the colloidal dispersion (A) containing magnesium hydroxide, and after further stirring, t-butyl peroxy as a polymerization initiator.
  • Example 2 Example except that the particulate polymer (F) prepared in the same manner as the particulate polymer (A) was used instead of the particulate polymer (A), except that the hydrogenation reaction time was changed to 3 hours. 1, a particulate polymer, a binder, a slurry composition, a separator with a functional layer, a positive electrode, a negative electrode, and a lithium ion secondary battery were produced. Various evaluations were performed in the same manner as in Example 1. Table 1 shows the results.
  • Example 3 A particulate polymer, a binder, a slurry composition, a separator with a functional layer, a positive electrode, a negative electrode and a lithium ion secondary battery were prepared in the same manner as in Example 4 except that 4.2 parts of sodium dodecylbenzenesulfonate was used. made. Various evaluations were performed in the same manner as in Example 1. Table 1 shows the results.
  • a particulate polymer, a binder, a slurry composition, a separator with a functional layer, a positive electrode, a negative electrode, and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the colloidal dispersion (H) was used.
  • Various evaluations were performed in the same manner as in Example 1. Table 1 shows the results.
  • a functional layer for an electrochemical device that has excellent wet adhesion and allows the electrochemical device to exhibit high output characteristics
  • an electrochemical device functional layer that can form the functional layer for the electrochemical device.
  • a composition for use is obtained.
  • an electrochemical device with high output characteristics and long life can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、ウェット接着性に優れ、且つ、電気化学素子に高い出力特性を発揮させ得る電気化学素子用機能層を形成可能な電気化学素子機能層用組成物を提供する。本発明の電気化学素子機能層用組成物は、体積平均粒子径が0.5μm以上10μm以下であり、且つ、電解液膨潤度が120%以下である粒子状重合体を含む。

Description

電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体および電気化学素子
 本発明は、電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体および電気化学素子に関するものである。
 リチウムイオン二次電池や電気二重層キャパシタなどの電気化学素子は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。
 ここで、例えばリチウムイオン二次電池は、一般に、正極、負極、および、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータなどの電池部材を備えている。
 そして、近年では、リチウムイオン二次電池の更なる高性能化を目的として、正極、負極およびセパレータなどの電気化学素子部材の更なる改良が検討されている。具体的には、耐熱性、接着性といった所期の機能を発揮するための層(機能層)を、セパレータ基材や電極基材の上に積層することが試みられている。そして、機能層を改良してリチウムイオン二次電池などの電気化学素子を更に高性能化する観点から、機能層の形成に用いられる機能層用組成物について、種々の検討がなされている。
 具体的には、例えば特許文献1,2では、機能層用組成物に含有させるバインダーとして非水系電解液に対する膨潤度が2倍以下の粒子状重合体を用いることにより、機能層の耐久性の低下を抑制したり、内部抵抗の上昇を抑制して電気化学素子の低温出力特性を向上させたりしている。
特開2015-185353号公報 特開2017-084589号公報
 しかし、上記従来の機能層用組成物には、電解液浸漬後の機能層の接着性(以下、「ウェット接着性」と称することがある。)を向上させると共に機能層のイオン透過性を高めて出力特性を向上させるという点において改善の余地があった。
 そこで、本発明は、ウェット接着性に優れ、且つ、電気化学素子に高い出力特性を発揮させ得る電気化学素子用機能層を形成可能な電気化学素子機能層用組成物を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、体積平均粒子径および電解液膨潤度の双方が所定の範囲内にある粒子状重合体を含有する電気化学素子機能層用組成物を用いれば、ウェット接着性に優れ、且つ、電気化学素子に高い出力特性を発揮させ得る電気化学素子用機能層を形成し得ることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子機能層用組成物は、体積平均粒子径が0.5μm以上10μm以下であり、且つ、電解液膨潤度が120%以下である粒子状重合体を含むことを特徴とする。上述した体積平均粒子径および電解液膨潤度を有する粒子状重合体を含有していれば、ウェット接着性に優れ、且つ、電気化学素子に高い出力特性を発揮させ得る電気化学素子用機能層を形成することができる。
 なお、本発明において、「体積平均粒子径」および「電解液膨潤度」は、本明細書の実施例に記載の方法により測定することができる。
 ここで、本発明の電気化学素子機能層用組成物は、前記粒子状重合体が水添重合体を含むことが好ましい。水添重合体を含む粒子状重合体を使用すれば、機能層のウェット接着性および電気化学素子の出力特性を更に高めることができる。
 そして、本発明の電気化学素子機能層用組成物において、前記水添重合体の水素化率は95%以上であることが好ましい。水素化率が95%以上であれば、粒子状重合体の電解液膨潤度を小さくし、機能層のウェット接着性および電気化学素子の出力特性を更に高めることができる。
 なお、本発明において、「水素化率」は、水素化された重合体に含まれていた全ての炭素-炭素不飽和結合(重合体が芳香環を有する場合には当該芳香環中の二重結合も含む)に対する水素化率であり、核磁気共鳴(NMR)法を用いて測定することができる。
 また、本発明の電気化学素子機能層用組成物は、前記粒子状重合体のガラス転移温度が0℃以上80℃以下であることが好ましい。粒子状重合体のガラス転移温度が上記範囲内であれば、機能層のドライ接着性(電気化学素子の製造プロセス中における機能層を介した電池部材同士の接着等に影響を与え得る、電解液に浸漬していない状態における機能層の接着性)を向上させることができると共に、電気化学素子の出力特性を更に高めることができる。
 なお、本発明において、「ガラス転移温度」は、本明細書の実施例に記載の方法により測定することができる。ここで、本発明において、粒子状重合体がブロック共重合体である場合等、複数のガラス転移温度が観察される場合には、「ガラス転移温度」とは、粒子状重合体中の各ガラス転移温度を与える構造の割合から加重平均により求めた値を指すものとする。具体的には、ブロック共重合体の場合には、ガラス転移温度は、各ブロックのガラス転移温度を各ブロックの含有量で加重平均することにより算出することができる。より具体的には、ブロックAとブロックBとを有するブロック共重合体の場合には、式:
ブロック共重合体のガラス転移温度=(ブロックAのガラス転移温度×ブロックAの含有量+ブロックBのガラス転移温度×ブロックBの含有量)/(ブロックAの含有量+ブロックBの含有量)
により求めることができる。
 更に、本発明の電気化学素子機能層用組成物は、前記粒子状重合体とは異なるその他の重合体を更に含有することが好ましい。その他の重合体を含有していれば、粒子状重合体が機能層から脱落することを抑制することができる。
 そして、本発明の電気化学素子機能層用組成物において、前記その他の重合体のガラス転移温度は、前記粒子状重合体のガラス転移温度よりも低いことが好ましい。その他の重合体のガラス転移温度が粒子状重合体のガラス転移温度よりも低ければ、機能層のドライ接着性を更に高めることができる。
 更に、本発明の電気化学素子機能層用組成物は、非導電性耐熱粒子を更に含むことが好ましい。非導電性耐熱粒子を含んでいれば、耐熱性に優れる機能層を形成し、電気化学素子の耐熱性を高めることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子用機能層は、上述した電気化学素子機能層用組成物の何れかを用いて形成されたことを特徴とする。上述した電気化学素子機能層用組成物を用いて形成した電気化学素子用機能層は、ウェット接着性に優れていると共に、電気化学素子に高い出力特性を発揮させ得る。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子用積層体は、基材の片面または両面に上述した電気化学素子用機能層を備えることを特徴とする。上述した電気化学素子用機能層を備える電気化学素子用積層体は、ウェット接着性に優れていると共に、電気化学素子に高い出力特性を発揮させ得るので、電気化学素子部材として好適である。
 ここで、本発明の電気化学素子用積層体において、前記基材はセパレータ基材であり得る。基材がセパレータ基材である電気化学素子用積層体は、電気化学素子のセパレータとして好適に使用し得る。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子は、上述した電気化学素子用積層体の何れかを備えることを特徴とする。上述した電気化学素子用積層体を備える電気化学素子は、高い出力特性を発揮し得ると共に、長寿命である。
 本発明によれば、ウェット接着性に優れ、且つ、電気化学素子に高い出力特性を発揮させ得る電気化学素子用機能層、および、当該電気化学素子用機能層を形成可能な電気化学素子機能層用組成物が得られる。
 また、本発明によれば、ウェット接着性に優れていると共に、電気化学素子に高い出力特性を発揮させ得る電気化学素子用積層体が得られる。
 更に、本発明によれば、出力特性が高く、長寿命な電気化学素子が得られる。
 以下、本発明の実施形態について、詳細に説明する。ここで、本発明の電気化学素子機能層用組成物は、本発明の電気化学素子用積層体に備えられる電気化学素子用機能層を形成する際に用いられる。そして、本発明の電気化学素子用積層体は、本発明の電気化学素子機能層用組成物を用いて形成された機能層を備える。また、本発明の電気化学素子は、少なくとも本発明の電気化学素子用積層体を備える。
(電気化学素子機能層用組成物)
 本発明の電気化学素子機能層用組成物は、所定の粒子状重合体を含有し、任意に、その他の重合体、非導電性耐熱粒子、その他の成分、および、水等の分散媒からなる群より選択される少なくとも1種を更に含み得る。そして、本発明の機能層用組成物を用いることで、ウェット接着性に優れ、且つ、電気化学素子に高い出力特性を発揮させ得る電気化学素子用機能層を形成することができる。
<粒子状重合体>
 ここで、粒子状重合体は、機能層用組成物を用いて形成した機能層においてバインダーとして機能し得るものであり、特に機能層が電解液に浸漬された後において良好な接着力を発揮し得る。
 そして、本発明において、粒子状重合体は、体積平均粒子径が0.5μm以上10μm以下であり、且つ、電解液膨潤度が120%以下であることを必要とする。このように粒子状重合体の電解液膨潤度が120%以下と低ければ、電解液に浸漬された際に膨潤して軟化するのを抑制することができるので、電解液中で接着力を十分に発揮することができると共に、膨潤に伴う体積増加により機能層の空隙が減少してイオン透過性が低下するのを抑制することができる。また、粒子状重合体の体積平均粒子径が0.5μm以上であれば、ウェット接着性およびドライ接着性を高めることができる。更に、粒子状重合体の体積平均粒子径が10μm以下であれば、機能層からの脱落を抑制し、粒子状重合体に所期の機能を発揮させることができる。従って、機能層用組成物を用いて形成した機能層を備える電気化学素子に高い出力特性を発揮させることができると共に、充放電に伴う電極活物質の膨張および収縮に起因した電気化学素子の変形を抑制し、電気化学素子のサイクル試験後の容量維持率を向上させる(長寿命化する)ことができる。
[体積平均粒子径]
 なお、粒子状重合体の体積平均粒子径は、機能層のウェット接着性およびドライ接着性を更に高める観点からは、1μm以上であることが好ましく、2μm以上であることがより好ましく、機能層からの粒子状重合体の脱落を更に抑制する観点からは、8μm以下であることが好ましく、6μm以下であることがより好ましい。
[電解液膨潤度]
 また、粒子状重合体の電解液膨潤度は、機能層のウェット接着性を更に高めると共に機能層のイオン透過性が低下するのを更に抑制する観点から、115%以下であることが好ましい。なお、粒子状重合体の電解液膨潤度は、通常、100%以上であり、好ましくは100%超である。
[ガラス転移温度]
 更に、粒子状重合体は、ガラス転移温度が、0℃以上であることが好ましく、10℃以上であることがより好ましく、30℃以上であることが更に好ましく、50℃以上であることが特に好ましく、80℃以下であることが好ましく、70℃以下であることがより好ましい。粒子状重合体のガラス転移温度が上記下限値以上であれば、粒子状重合体が変形して機能層の空隙が減少するのを抑制し、機能層のイオン透過性を高いレベルで確保することができる。また、粒子状重合体のガラス転移温度が上記上限値以下であれば、機能層のドライ接着性を更に高めることができる。
[重合体の種類]
 そして、粒子状重合体を構成する重合体は、特に限定されることなく、ランダム重合体であってよいし、ブロック重合体であってもよいし、それらの水素化物(水添重合体)であってもよい。中でも、粒子状重合体を構成する重合体は、水添重合体であることが好ましく、水素化率が95%以上の水添重合体であることがより好ましく、水素化率が98%以上の水添重合体であることが更に好ましい。粒子状重合体を構成する重合体が水添重合体、特には水素化率が上記下限値以上の水添重合体であれば、粒子状重合体の電解液膨潤度を小さくし、機能層のウェット接着性および電気化学素子の出力特性を更に高めることができる。
[重合体の組成]
 また、粒子状重合体を構成する重合体は、環状炭化水素構造を有する重合体であることが好ましく、環状飽和炭化水素構造を有する重合体であることがより好ましい。
 ここで、環状飽和炭化水素構造を有する重合体としては、特に限定されることなく、例えば、環状オレフィン化合物をモノマーとして用いた重合体(付加重合体または開環重合体)およびその水素化物、並びに、芳香族ビニル化合物をモノマーとして用いた重合体の水素化物が挙げられる。中でも、環状オレフィン化合物をモノマーとして用いた開環重合体の水素化物、および、芳香族ビニル化合物をモノマーとして用いた重合体の水素化物が好ましい。
 環状オレフィン化合物としては、特に限定されることなく、例えば、
ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-ヘキシルノルボルネン、5-デシルノルボルネン、5-シクロヘキシルノルボルネン、5-シクロペンチルノルボルネン等の非置換またはアルキル基を有するノルボルネン類;
5-エチリデンノルボルネン、5-ビニルノルボルネン、5-プロペニルノルボルネン、5-シクロヘキセニルノルボルネン、5-シクロペンテニルノルボルネン等のアルケニル基を有するノルボルネン類;
5-フェニルノルボルネン等の芳香環を有するノルボルネン類;
5-メトキシカルボニルノルボルネン、5-エトキシカルボニルノルボルネン、5-メチル-5-メトキシカルボニルノルボルネン、5-メチル-5-エトキシカルボニルノルボルネン、ノルボルネニル-2-メチルプロピオネート、ノルボルネニル-2-メチルオクタネート、5-ヒドロキシメチルノルボルネン、5,6-ジ(ヒドロキシメチル)ノルボルネン、5,5-ジ(ヒドロキシメチル)ノルボルネン、5-ヒドロキシ-i-プロピルノルボルネン、5,6-ジカルボキシノルボルネン、5-メトキシカルボニル-6-カルボキシノルボルネン等の酸素原子を含む極性基を有するノルボルネン類;
5-シアノノルボルネン等の窒素原子を含む極性基を有するノルボルネン類;
ジシクロペンタジエン、メチルジシクロペンタジエン、トリシクロ[5.2.1.02,6]デカ-8-エン等の芳香環構造を含まない3環以上の多環式ノルボルネン類;
テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン(1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセンともいう)等の芳香環を有する3環以上の多環式ノルボルネン類;
テトラシクロドデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、8-シクロヘキシルテトラシクロドデセン、8-シクロペンチルテトラシクロドデセン、8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン等の非置換またはアルキル基を有するテトラシクロドデセン類;
8-メチリデンテトラシクロドデセン、8-エチリデンテトラシクロドデセン、8-ビニルテトラシクロドデセン、8-プロペニルテトラシクロドデセン、8-シクロヘキセニルテトラシクロドデセン、8-シクロペンテニルテトラシクロドデセン等の環外に二重結合を有するテトラシクロドデセン類;
8-フェニルテトラシクロドデセン等の芳香環を有するテトラシクロドデセン類;
8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-メトキシカルボニルテトラシクロドデセン、8-ヒドロキシメチルテトラシクロドデセン、8-カルボキシテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸、テトラシクロドデセン-8,9-ジカルボン酸無水物等の酸素原子を含む置換基を有するテトラシクロドデセン類;
8-シアノテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸イミド等の窒素原子を含む置換基を有するテトラシクロドデセン類;
8-クロロテトラシクロドデセン等のハロゲン原子を含む置換基を有するテトラシクロドデセン類;
8-トリメトキシシリルテトラシクロドデセン等のケイ素原子を含む置換基を有するテトラシクロドデセン類;
上述したテトラシクロドデセン類とシクロペンタジエンとのディールズ・アルダー付加体等のヘキサシクロヘプタデセン類;
などが挙げられる。
 中でも、環状オレフィン化合物としては、非極性ノルボルネン系単量体が好ましく、非置換またはアルキル基を有するノルボルネン類(例えば、ノルボルネン、8-エチルテトラシクロドデセン)、アルケニル基を有するノルボルネン類(例えば、エチリデンテトラシクロドデセン(8-エチリデンテトラシクロドデセン))、ジシクロペンタジエン、芳香環を有するノルボルネン誘導体(例えば、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう))、非置換またはアルキル基を有するテトラシクロドデセン類(例えば、テトラシクロドデセン、8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン)がより好ましい。
 なお、任意に水素添加し得る、環状オレフィン化合物をモノマーとして用いた重合体は、モノマーとして環状オレフィン化合物のみを用いた重合体であってもよいし、モノマーとして環状オレフィン化合物と、環状オレフィン化合物以外の共重合可能な化合物とを用いた重合体であってもよいが、モノマーとして環状オレフィン化合物のみを用いた重合体であることが好ましい。
 そして、任意に水素添加し得る、環状オレフィン化合物をモノマーとして用いた重合体は、モノマーとしてテトラシクロドデセン、ジシクロペンタジエンおよびノルボルネンを用いた重合体であることが好ましく、モノマーとしてテトラシクロドデセン、ジシクロペンタジエンおよびノルボルネンを用いた開環重合体であることがより好ましい。
 ここで、重合体中におけるテトラシクロドデセンに由来する構造単位の割合は、15質量%以上であることが好ましく、25質量%以上であることがより好ましく、40質量%以下であることが好ましく、35質量%以下であることがより好ましい。また、重合体中におけるジシクロペンタジエンに由来する構造単位の割合は、15質量%以上であることが好ましく、25質量%以上であることがより好ましく、40質量%以下であることが好ましく、35質量%以下であることがより好ましい。更に、重合体中におけるノルボルネンに由来する構造単位の割合は、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。
 なお、環状オレフィン化合物をモノマーとして用いた重合体は、特に限定されることなく、例えば特許第3235219号公報に記載の方法や特許第6590156号公報に記載の方法を用いて調製することができる。
 また、芳香族ビニル化合物としては、特に限定されることなく、例えば、スチレン;α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン等のアルキル置換スチレン;4-クロロスチレン、2,4-ジクロロスチレン等のハロゲン置換スチレンなどが挙げられる。中でも、スチレンが好ましい。
 なお、芳香族ビニル化合物をモノマーとして用いた重合体は、モノマーとして芳香族ビニル化合物のみを用いた重合体であってもよいし、モノマーとして芳香族ビニル化合物と、芳香族ビニル化合物以外の共重合可能な化合物とを用いた重合体であってもよいが、モノマーとして芳香族ビニル化合物と、芳香族ビニル化合物以外の共重合可能な化合物とを用いた重合体であることが好ましい。
 また、モノマーとして芳香族ビニル化合物と、芳香族ビニル化合物以外の共重合可能な化合物とを用いた重合体は、ランダム重合体であってもよいし、ブロック重合体であってもよいが、ブロック重合体であることが好ましい。
 そして、芳香族ビニル化合物以外の共重合可能な化合物としては、特に限定されることなく、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの脂肪族共役ジエン化合物が挙げられる。中でも、1,3-ブタジエン、イソプレンが好ましい。
 なお、重合体中における芳香族ビニル化合物に由来する構造単位の割合は、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、60質量%以下であることが好ましく、40質量%以下であることがより好ましい。また、重合体中における脂肪族共役ジエン化合物に由来する構造単位の割合は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、80質量%以下であることが好ましく、75質量%以下であることがより好ましい。
 そして、芳香族ビニル化合物と、芳香族ビニル化合物以外の共重合可能な化合物とをモノマーとして用いた重合体の水素化物は、特に限定されることなく、例えば特許第6435733号公報に記載の方法を用いて調製することができる。
<その他の重合体>
 その他の重合体は、粒子状重合体とは異なる重合体であって、機能層用組成物を用いて形成した機能層においてバインダーとして機能し得るものである。
[組成]
 その他の重合体としては、結着材として用いられる既知の重合体、例えば、共役ジエン系重合体、アクリル系重合体、ポリフッ化ビニリデン(PVDF)、ポリビニルアルコール(PVOH)が挙げられる。その他の重合体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。そして、その他の重合体としては、共役ジエン系重合体、アクリル系重合体、ポリフッ化ビニリデン(PVDF)などの、非水溶性で、水などの分散媒中に分散可能な重合体が好ましく、共役ジエン系重合体、アクリル系重合体がより好ましく、アクリル系重合体が更に好ましい。なお、機能層を電気化学素子の正極表面に適用する場合においては、その他の重合体が共役ジエン系重合体以外であることが好ましい。
 なお、本発明において、重合体が「非水溶性」であるとは、温度25℃において重合体0.5gを100gの水に溶解した際に、不溶分が90質量%以上となることをいう。
 ここで、共役ジエン系重合体とは、共役ジエン単量体単位を含む重合体を指す。そして、共役ジエン系重合体の具体例としては、特に限定されることなく、スチレン-ブタジエン共重合体(SBR)などの芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む共重合体、ブタジエンゴム(BR)、アクリルゴム(NBR)(アクリロニトリル単位およびブタジエン単位を含む共重合体)、並びに、それらの水素化物などが挙げられる。
 また、アクリル系重合体とは、(メタ)アクリル酸エステル単量体単位を含む重合体を指す。
 なお、これらのその他の重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 そして、その他の重合体として好ましく使用し得るアクリル系重合体としては、特に限定されることなく、例えば、架橋性単量体単位と、(メタ)アクリル酸エステル単量体単位と、酸性基含有単量体単位とを含有する重合体などが挙げられる。
 なお、アクリル系重合体における(メタ)アクリル酸エステル単量体単位の割合は、好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは58質量%以上であり、好ましくは98質量%以下、より好ましくは97質量%以下、更に好ましくは96質量%以下である。(メタ)アクリル酸エステル単量体単位の割合を上記範囲の下限値以上にすることにより、機能層の接着性を高くすることができる。また、上限値以下にすることにより、機能層を備える電気化学素子の電気化学特性をより高めることができる。
 また、アクリル系重合体における架橋性単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは1.0質量%以上であり、好ましくは3.0質量%以下、より好ましくは2.5質量%以下である。架橋性単量体単位の割合を上記下限値以上にすることにより、機能層を備える電気化学素子の電気化学特性を更に高めることができる。また、架橋性単量体単位の割合を上記上限値以下にすることにより、機能層の接着性を高くすることができる。
 そして、アクリル系重合体における酸基含有単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。酸基含有単量体単位の割合を上記下限値以上にすることにより、機能層用組成物中および機能層中におけるその他の重合体の分散性を高め、機能層を備える電気化学素子の電気化学特性を十分に高めることができる。また、酸基含有単量体単位の割合を上記上限値以下にすることにより、機能層の残存水分量を低減して電気化学素子の電気化学特性を十分に高めることができる。
 なお、アクリル系重合体は、その他の単量体単位を含んでいてもよい。
[ガラス転移温度]
 その他の重合体は、ガラス転移温度が粒子状重合体のガラス転移温度よりも低いことが好ましい。その他の重合体のガラス転移温度が粒子状重合体のガラス転移温度よりも低ければ、機能層のドライ接着性を更に高めることができる。
 そして、その他の重合体のガラス転移温度は、好ましくは-100℃以上であり、より好ましくは-90℃以上であり、更に好ましくは-80℃以上であり、好ましくは30℃未満であり、より好ましくは20℃以下であり、更に好ましくは15℃以下である。その他の重合体のガラス転移温度が上記下限以上であれば、機能層のドライ接着性および強度を高めることができる。一方、その他の重合体のガラス転移温度が上記上限以下であれば、機能層の柔軟性を高めることができる。
[その他の重合体の含有量]
 その他の重合体の含有量は、後述する非導電性耐熱粒子と粒子状重合体との合計100質量部あたり、好ましくは0.1質量部以上、より好ましくは0.2質量部以上、更に好ましくは0.5質量部以上であり、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは10質量部以下である。その他の重合体の含有量が上記下限以上であれば、粒子状重合体や非導電性耐熱粒子が機能層から脱落するのを十分に防止するとともに、機能層のドライ接着性およびウェット接着性を十分に高めることができる。一方、機能層中のその他の重合体の含有量が上記上限以下であれば、機能層のイオン伝導性が低下するのを抑制し、電気化学素子の出力特性が低下するのを抑制することができる。
 なお、その他の重合体は、特に限定されることなく、例えば、上述した単量体を含む単量体組成物を、例えば水などの水系溶媒中で重合することにより調製することができる。ここで、単量体組成物中の各単量体の割合は、通常、その他の重合体中の各単量体単位の割合と同様とする。
 また、その他の重合体の重合様式は、特に限定されず、例えば、懸濁重合法、乳化重合凝集法、粉砕法などのいずれの方法も用いることができる。また、重合反応としては、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。
 そして、その他の重合体の形状は、粒子状であってもよく、非粒子状であってもよいが、機能層に含まれる成分が脱落することを良好に抑制する観点からは、その他の重合体の形状は粒子状であることが好ましい。
<非導電性耐熱粒子>
 ここで、非導電性耐熱粒子としては、特に限定されることなく、電気化学素子の使用環境下で安定に存在し電気化学的に安定である、無機材料からなる微粒子(即ち、無機微粒子)および有機材料からなる微粒子(即ち、有機微粒子)が挙げられる。
 なお、非導電性耐熱粒子としては、無機微粒子および有機微粒子をそれぞれ単独で使用してもよいし、無機微粒子と有機微粒子を組み合わせて使用してもよい。
[無機微粒子]
 無機微粒子としては、酸化アルミニウム(アルミナ、Al)、酸化アルミニウムの水和物(ベーマイト、AlOOH)、ギブサイト(Al(OH))、酸化ケイ素、酸化マグネシウム(マグネシア)、水酸化マグネシウム、酸化カルシウム、酸化チタン(チタニア)、チタン酸バリウム(BaTiO)、ZrO、アルミナ-シリカ複合酸化物等の無機酸化物粒子;窒化アルミニウム、窒化ホウ素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイト等の粘土微粒子;などが挙げられる。これらの粒子は、必要に応じて元素置換、表面処理、固溶体化等が施されていてもよい。なお、無機微粒子は、1種を単独で使用してもよいし、2種以上を組み合わせて用いてもよい。
[有機微粒子]
 有機微粒子は、上述した所定の粒子状重合体およびその他の重合体とは異なり、接着性を有さない重合体からなる微粒子である。
 ここで、有機微粒子としては、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリスチレン、ポリイミド、ポリアミド、ポリアミドイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物などの各種架橋高分子粒子や、ポリスルフォン、ポリアクリロニトリル、ポリアラミド、ポリアセタール、熱可塑性ポリイミドなどの耐熱性高分子粒子、並びにこれらの変性体及び誘導体、並びに、国際公開第2019/065416号に開示された耐熱性の有機粒子などが挙げられる。なお、有機微粒子は、1種を単独で使用してもよいし、2種以上を組み合わせて用いてもよい。
 なお、上述した通り、有機微粒子は接着性を有さない重合体で構成される。具体的に、有機微粒子を構成する重合体のガラス転移温度は、150℃以上であることが好ましい。
 上述した非導電性耐熱粒子の中でも、耐熱性を更に向上させる観点から、無機微粒子およびガラス転移温度が150℃以上である重合体で構成される有機微粒子が好ましく、無機微粒子がより好ましく、アルミナからなる粒子(アルミナ粒子)、ベーマイトからなる粒子(ベーマイト粒子)、硫酸バリウムからなる粒子(硫酸バリウム粒子)および水酸化マグネシウムからなる粒子(水酸化マグネシウム粒子)が更に好ましい。
[非導電性耐熱粒子の性状]
 非導電性耐熱粒子は、体積平均粒子径が、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.3μm以上であることが更に好ましく、1.0μm以下であることが好ましく、0.9μm以下であることがより好ましく、0.8μm以下であることが更に好ましい。非導電性耐熱粒子の体積平均粒子径が0.1μm以上であれば、機能層中で非導電性耐熱粒子が過度に密に充填されることに起因して機能層のイオン伝導性が低下するのを抑制し、電気化学素子に優れた出力特性を発揮させることができる。一方、非導電性耐熱粒子の体積平均粒子径が1.0μm以下であれば、機能層を薄くした場合でも、当該機能層を備える電気化学素子部材に優れた耐熱性を十分に発揮させることができる。したがって、電気化学素子部材の耐熱性を十分に確保しつつ、電気化学素子の容量を高めることができる。
[非導電性耐熱粒子の含有量]
 そして、機能層用組成物中の非導電性耐熱粒子の含有量は、非導電性耐熱粒子と粒子状重合体との混合比率が、体積比(非導電性耐熱粒子/粒子状重合体)で、1.2倍以上となる量であることが好ましく、1.5倍以上となる量であることがより好ましく、2.0倍以上となる量であることが更に好ましく、99倍以下となる量であることが好ましく、20倍以下となる量であることがより好ましく、15倍以下となる量であることがさらに好ましく、10倍以下となる量であることが特に好ましい。非導電性耐熱粒子と粒子状重合体との混合比率が体積比で上記範囲内であれば、機能層の耐熱性と接着性のバランスが良好になる。
<その他の成分>
 機能層用組成物は、上述した成分以外に、任意のその他の成分を含んでいてもよい。その他の成分は、電気化学素子における電気化学反応に影響を及ぼさないものであれば特に限定されず、例えば、分散剤、粘度調整剤、濡れ剤などの既知の添加剤が挙げられる。これらのその他の成分は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<電気化学素子機能層用組成物の調製方法>
 機能層用組成物の調製方法は、特に限定されることなく、例えば、上述した粒子状重合体と、その他の重合体と、非導電性耐熱粒子と、分散媒としての水と、その他の成分とを混合することにより調製できる。なお、水系溶媒中で単量体組成物を重合して粒子状重合体やその他の重合体を調製した場合には、粒子状重合体やその他の重合体は、水分散体の状態でそのまま他の成分と混合してもよい。また、粒子状重合体やその他の重合体を水分散体の状態で混合する場合には、水分散体中の水を分散媒として用いてもよい。
 ここで、上述した成分の混合方法は特に制限されないが、各成分を効率よく分散させるべく、混合装置として分散機を用いて混合を行うことが好ましい。そして、分散機は、上記成分を均一に分散および混合できる装置が好ましい。分散機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどが挙げられる。
 さらに、上述した所定の粒子状重合体を非導電性耐熱粒子およびその他の重合体と混合することに先立って、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤および両性界面活性剤などの分散剤と予混合することが好ましい。分散剤としては、これらの中でも、アニオン性界面活性剤を好適に用いることができる。アニオン性界面活性剤の具体例としては、ナトリウムラウリルサルフェート、アンモニウムラウリルサルフェート、ナトリウムドデシルサルフェート、アンモニウムドデシルサルフェート、ナトリウムオクチルサルフェート、ナトリウムデシルサルフェート、ナトリウムテトラデシルサルフェート、ナトリウムヘキサデシルサルフェート、ナトリウムオクタデシルサルフェートなどの高級アルコールの硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム、ラウリルベンゼンスルホン酸ナトリウム、ヘキサデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩;ラウリルスルホン酸ナトリウム、ドデシルスルホン酸ナトリウム、テトラデシルスルホン酸ナトリウムなどの脂肪族スルホン酸塩;などが挙げられる。そして、分散剤の配合量は、粒子状重合体100質量部に対して、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、0.1質量部以上がさらに好ましく、0.5質量部以下が好ましく、0.4質量部以下がより好ましく、0.3質量部以下がさらに好ましい。そして、分散剤の配合量が上記下限値以上であれば、機能層中における粒子状重合体の偏在を抑制し、得られる電気化学素子のサイクル特性を高めることができる。分散剤の配合量が上記上限値以下であれば、得られる電気化学素子の内部抵抗が上昇することを抑制することができ、出力特性の悪化を抑制することができる。
(電気化学素子用機能層および電気化学素子用積層体)
 本発明の電気化学素子用機能層は、上述した機能層用組成物を用いて形成されたものであり、例えば、上述した機能層用組成物を適切な基材の表面(片面または両面)に塗布して塗膜を形成した後、形成した塗膜を乾燥することにより、形成することができる。即ち、電気化学素子用機能層は、上述した機能層用組成物の乾燥物よりなり、機能層には、少なくとも、上述した粒子状重合体が含まれ、任意に、その他の重合体、非導電性耐熱粒子、および、その他の成分からなる群より選択される少なくとも1種が更に含まれている。なお、機能層中に含まれている各成分は、上記機能層用組成物中に含まれていたものであり、それら各成分の好適な存在比は、機能層用組成物中の各成分の好適な存在比と同じである。そして、電気化学素子用機能層は、上述した機能層用組成物を用いて形成されているため、ウェット接着性に優れるとともに、かかる機能層を用いて得られる電気化学素子の出力特性を高めることができる。また、基材の片面または両面に電気化学素子用機能層を形成してなる積層体は、本発明の電気化学素子用積層体として用いることができ、ウェット接着性に優れているとともに、電気化学素子の出力特性を高めることができる。
<基材>
 ここで、機能層用組成物を塗布する基材に制限は無く、例えば、離型基材の表面に機能層用組成物の塗膜を形成し、その塗膜を乾燥して機能層を形成し、機能層から離型基材を剥がすようにしてもよい。このように、離型基材から剥がされた機能層を自立膜として電気化学素子の部材の形成に用いることもできる。
 しかし、機能層を剥がす工程を省略して電気化学素子部材の製造効率を高める観点からは、基材として、セパレータ基材または電極基材を用いることが好ましい。セパレータ基材の片面または両面に機能層を形成してなる積層体は機能層を備えるセパレータとして良好に用いることができ、電極基材の片面または両面に機能層を形成してなる積層体は機能層を備える電極として良好に用いることができる。
[セパレータ基材]
 セパレータ基材としては、特に限定されないが、有機セパレータ基材などの既知のセパレータ基材が挙げられる。有機セパレータ基材は、有機材料からなる多孔性部材であり、有機セパレータ基材の例を挙げると、ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル等のポリオレフィン系樹脂、芳香族ポリアミド樹脂などを含む微多孔膜または不織布などが挙げられる。
 これらの中でも、電気化学素子内の電極活物質の比率を高くして体積当たりの容量を高くすることができるという観点から、ポリオレフィン系樹脂からなる微多孔膜が好ましい。
 なお、セパレータ基材の厚さは、任意の厚さとすることができ、好ましくは5μm以上30μm以下であり、より好ましくは5μm以上20μm以下であり、更に好ましくは5μm以上18μm以下である。
[電極基材]
 電極基材としては、特に限定されないが、上述した集電体上に、電極活物質粒子および結着材を含む電極合材層が形成された電極基材が挙げられる。
 ここで、電極基材中の電極合材層に含まれる電極活物質粒子および結着材としては、特に限定されず、電気化学素子の分野において使用し得る任意の電極活物質粒子および結着材を使用することができ、例えば特開2013-145763号公報に記載のものを用いることができる。
 また、集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。中でも、負極に用いる集電体としては銅箔が特に好ましい。また、正極に用いる集電体としては、アルミニウム箔が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<機能層および積層体の製造方法>
 本発明の機能層および積層体を製造する方法は、特に限定されず、例えば離型シート上に機能層を形成し、当該機能層を基材上に転写するといった方法を用いることもできる。しかしながら、転写の作業を不要とし製造効率を高める観点から、積層体は、機能層用組成物を基材上に供給する工程(供給工程)と、基材上に供給された機能層用組成物を乾燥する工程(乾燥工程)を経て製造することが好ましい。
[供給工程]
 供給工程では、上述した本発明の機能層用組成物を基材上に供給して、当該基材上に機能層用組成物の被膜を形成する。基材上に機能層用組成物を供給する方法は、特に限定されず、機能層用組成物を基材の表面に塗布してもよいし、機能層用組成物に基材を浸漬させてもよい。そして、製造される機能層の厚みを制御し易いことから、機能層用組成物を基材の表面に塗布することが好ましい。
 機能層用組成物を基材の表面に塗布する方法としては、特に制限は無く、例えば、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビアコート法、バーコート法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。
 なお、供給工程においては、基材の一方の面のみに機能層用組成物の被膜を形成してもよいし、基材の両面に機能層用組成物の被膜を形成してもよい。
[乾燥工程]
 乾燥工程では、供給工程で基材上に形成された機能層用組成物の被膜を乾燥して分散媒を除去し、機能層を形成する。
 機能層用組成物の被膜を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。乾燥条件は特に限定されないが、乾燥温度は好ましくは50~150℃で、乾燥時間は好ましくは1~30分である。
 なお、本発明の積層体を製造するに際しては、基材の一方の面に対して、供給工程および乾燥工程を実施して機能層を形成した後に、更に、基材の他方の面に対して、供給工程および乾燥工程を実施して機能層を形成してもよい。
 ここで、機能層の厚みは、好ましくは0.5μm以上、より好ましくは0.8μm以上、更に好ましくは1μm以上であり、好ましくは6μm以下、より好ましくは5μm以下、更に好ましくは3.5μm以下である。機能層の厚みが上記下限以上であれば、機能層の耐熱性が極めて良好となる。一方、機能層の厚みが上記上限以下であれば、機能層のイオン拡散性を確保して、電気化学素子の出力特性を更に高めることができる。
[機能層の厚みに対する粒子状重合体の体積平均粒子径の比]
 また、上記機能層の厚みに対する粒子状重合体の体積平均粒子径の比(粒子状重合体の体積平均粒子径/機能層の厚み)は、好ましくは0.5以上、より好ましくは1.5以上であり、好ましくは10.0以下、より好ましくは9.0以下、さらに好ましくは8.0以下である。機能層の厚みに対する粒子状重合体の体積平均粒子径の比が上記下限以上であれば、機能層の厚み方向表面において粒子状重合体が突出し易くなるため、良好なウェット接着性が発揮され得る。また、機能層の厚みに対する粒子状重合体の体積平均粒子径の比が上記上限値以下であれば、粒子状重合体の接着点が多くなるため、良好な接着性が発揮されうる。
(電気化学素子)
 本発明の電気化学素子は、電極と、セパレータとを備え、電極とセパレータの少なくとも一方、好ましくはセパレータとして、上述した本発明の積層体を備えることを特徴とする。本発明の電気化学素子は、電極とセパレータの少なくとも何れかの電気化学素子部材として上述した本発明の積層体を用いているため、出力特性に優れていると共に、充放電に伴う電極活物質の膨張および収縮に起因した電気化学素子の変形を抑制することができ、長寿命である。
 なお、積層体を用いた電気化学素子において、積層体の機能層に含まれていた粒子状重合体は、粒子状の形状を維持していてもよいし、その他の任意の形状になっていてもよい。
 そして、本発明の電気化学素子は、特に限定されることなく、例えば、リチウムイオン二次電池、電気二重層キャパシタおよびリチウムイオンキャパシタであり、好ましくはリチウムイオン二次電池である。
 ここで、以下では、本発明の電気化学素子の一例としてのリチウムイオン二次電池を挙げつつ、当該リチウムイオン二次電池のセパレータとして、上述した本発明の積層体を用いた場合について説明するが、本発明の電気化学素子はこれに限定されるものではない。
<正極および負極>
 正極および負極としては、「基材」の項で上述した既知の電極基材(正極基材および負極基材)からなる電極を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLi等が挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すことから、LiPF、LiClO、CFSOLiが好ましい。なお、電解質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えばリチウムイオン二次電池においては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(エチルメチルカーボネート(EMC))、ビニレンカーボネート等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;等が好適に用いられる。また、これらの溶媒の混合液を用いてもよい。
 中でも、誘電率が高く、安定な電位領域が広いことから、カーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
<電気化学素子の製造方法>
 本発明の電気化学素子を製造する方法は、特に限定されない。例えば、上述した本発明の電気化学素子の一例としてのリチウムイオン二次電池は、正極と負極とをセパレータを介して重ね合わせ、これを必要に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することで製造することができる。なお、正極、負極、セパレータのうち、少なくとも一つの部材を本発明の積層体とする。また、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される構造単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 そして、実施例および比較例において、各種の測定および評価は、以下に従って実施した。
<電解液膨潤度>
 粒子状重合体を約0.1mm厚のフィルムに成形し、これを約2センチ角に切り取って重量(浸漬前重量)を測定した。その後、温度60℃の電解液中で72時間浸漬した。浸漬したフィルムを引き上げ、電解液をふき取ってすぐ重量(浸漬後重量)を測定し、(浸漬後重量)/(浸漬前重量)×100(%)の値を電解液膨潤度とした。なお、電解液としては、エチレンカーボネートとジエチレンカーボネートの1:1(体積比)の混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
<重合体の体積平均粒子径>
 重合体(粒子状重合体および結着材(その他の重合体))の体積平均粒子径は、レーザー回折法にて測定した。具体的には、調製した重合体を含む水分散溶液(固形分濃度0.1質量%に調整)を試料とした。そして、レーザー回折式粒子径分布測定装置(ベックマン・コールター社製、「LS-230」)を用いて測定された粒子径分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径D50を、体積平均粒子径とした。
<重合体のガラス転移温度>
 測定試料10mgをアルミパンに計量し、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製、「EXSTAR DSC6220」)にて、リファレンスとして空のアルミパンを用い、測定温度範囲-100℃~500℃の間で、昇温速度10℃/分で、JIS Z8703に規定された条件下で測定を実施し、示差走査熱量分析(DSC)曲線を得た。この昇温過程で、微分信号(DDSC)が0.05mW/分/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点を、ガラス転移温度(℃)として求めた。
 なお、実施例3の粒子状重合体においてはガラス転移温度が2つ測定されたため、下記式:
ガラス転移温度=(水素化されたイソプレンブロック由来のガラス転移温度×水素化されたイソプレンブロックの含有量+水素化されたスチレンブロック由来のガラス転移温度×水素化されたスチレンブロックの含有量)/(水素化されたイソプレンブロックの含有量+水素化されたスチレンブロックの含有量)
を用いて算出した値をガラス転移温度とした。
<粒子状重合体の水素化率>
 水素化前の重合体および水素化後の重合体について、H-NMRスペクトル測定により各々の炭素-炭素不飽和結合の量を求め、水素化前後の炭素-炭素不飽和結合の量の差に基づいて水素化率(%)を算出した。なお、H-NMRスペクトル測定においては、溶媒にo-ジクロロベンゼンを用い、NMR測定装置としてJMN-AL seriesAL400(JEOL社製)を用いた。
<機能層のプロセス接着性(ドライ接着性)>
 作製した正極および機能層付きセパレータを、それぞれ幅10mm、長さ50mmに切り出し、正極および機能層付きセパレータを積層させ、温度70℃、荷重10kN/m、プレス速度30m/分の条件で、ロールプレスを用いてプレスし、正極と機能層付きセパレータとを一体化させた一体化物を得た。
 得られた一体化物を、正極の集電体側の面を下にして、正極の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは水平な試験台に固定しておいた。その後、機能層付きセパレータの一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。
 また、作製した負極に対しても、正極を用いた場合と同様の操作を行い、応力を測定した。
 上述した応力の測定を、正極および機能層付きセパレータの一体化物、並びに、負極および機能層付きセパレータの一体化物でそれぞれ5回、合計10回行い、応力の平均値を求めて、得られた平均値をピール強度(N/m)とした。
 そして、算出されたピール強度を用いて、以下の基準により電極と機能層付きセパレータとのプロセス接着性を評価した。ピール強度が大きいほど、プロセス接着性(電池の製造プロセス中における部材の接着性)が高いことを意味する。
 A:ピール強度が6N/m以上
 B:ピール強度が4N/m以上6N/m未満
 C:ピール強度が2N/m以上4N/m未満
 D:ピール強度が2N/m未満
<機能層の電解液浸漬後の接着性(ウエット接着性)>
 セパレータ基材に機能層用組成物を塗布し、セパレータ基材上の機能層用組成物を50℃で10分間乾燥して、機能層を形成した。この機能層を備えるセパレータを評価用セパレータとした。評価用セパレータを10mm×100mmの短冊状に切り出した。そして、機能層を介して負極の負極合材層側の表面にセパレータを沿わせた後、温度85℃、圧力0.5MPaで6分間加熱プレスし、負極およびセパレータを備える積層体を調製し、この積層体を試験片とした。
 この試験片を、電解液約400μlと共にラミネート包材に入れた。1時間経過後、試験片を、ラミネート包材ごと60℃、圧力0.5MPaで15分間プレスした。プレス後、温度60℃で1日間保持した。ここで、電解液としては、EC、DECおよびビニレンカーボネート(VC)の混合溶媒(EC/DEC/VC(25℃における体積混合比)=68.5/30/1.5)に対し、支持電解質としてLiPFを1mol/Lの濃度で溶かしたものを用いた。
 その後、試験片を取り出し、表面に付着した電解液を拭き取った。次いで、この試験片を、負極の集電体側の表面を下にして、負極の集電体側の表面にセロハンテープを貼り付けた。この際、セロハンテープとしては、JIS Z1522に規定されるものを用いた。また、セロハンテープは、水平な試験台に固定しておいた。そして、セパレータの一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、応力の平均値をピール強度P2として求め、下記の基準で評価した。ピール強度P2が大きいほど、電解液中における機能層の接着性が優れており、負極と機能層付きセパレータとが強固に接着していることを示す。
 A:ピール強度P2が4N/m以上
 B:ピール強度P2が3N/m以上4N/m未満
 C:ピール強度P2が2N/m以上3N/m未満
 D:ピール強度P2が2N/m未満
<プロセス特性(良品率)>
 上記<機能層のプロセス接着性(ドライ接着性)>に記載の方法に従い計100回の測定を行った。そして、ピール強度が1N/m未満のサンプルの個数をカウントし、下記の基準で評価した。個数が少ないほど、良品率が高く、プロセス特性に優れていることを示す。
 A:0個
 B:1個以上3個未満
 C:3個以上6個未満
 D:6個以上
<出力特性>
 作製したリチウムイオン二次電池を、温度25℃の雰囲気下で、4.40Vまで定電流定電圧(CC-CV)充電し、セルを準備した。準備したセルを、0.2Cおよび3.0Cの定電流法によって、3.0Vまで放電し、電気容量を求めた。そして、電気容量の比(=(3.0Cでの電気容量/0.2Cでの電気容量)×100(%))で表わされる放電容量維持率を求めた。この測定を、リチウムイオン二次電池5セルについて行なった。そして、各セルの放電容量維持率の平均値を求め、以下の基準で評価した。放電容量維持率の平均値が大きいほど、二次電池が出力特性に優れていることを示す。
 A:放電容量維持率の平均値が90%以上
 B:放電容量維持率の平均値が85%以上90%未満
 C:放電容量維持率の平均値が75%以上85%未満
 D:放電容量維持率の平均値が75%未満
<サイクル特性>
 作製したリチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流法にて、CC-CV充電(上限セル電圧4.40V)を行い、0.2Cの定電流法にて3.00VまでCC放電した。この0.2Cにおける充放電を3回繰り返し実施した。
 その後、温度25℃の環境下、セル電圧4.40-3.00V、1.5Cの充放電レートにて充放電の操作を100サイクル行った。その際、第1回目のサイクルの放電容量をX1,第100回目のサイクルの放電容量をX2と定義した。
 そして、放電容量X1および放電容量X2を用いて、容量維持率ΔC´=(X2/X1)×100(%)を求め、以下の基準により評価した。容量維持率ΔC´の値が大きいほど、二次電池はサイクル特性に優れており、長寿命であることを示す。
 A:容量維持率ΔC´が93%以上
 B:容量維持率ΔC´が90%以上93%未満
 C:容量維持率ΔC´が87%以上90%未満
 D:容量維持率ΔC´が87%未満
(実施例1)
<粒子状重合体(A)の調製>
 内部を乾燥し、窒素置換した重合反応器に、テトラシクロドデセン(TCD)29%、ジシクロペンタジエン(DCPD)30%、ノルボルネン(NB)41%からなる単量体混合物2.0部(重合に使用するモノマー全量に対して1%)、脱水シクロヘキサン785部、分子量調節剤としての1-ヘキセン1.21部、ジエチルアルミニウムエトキシドのn-ヘキサン溶液(濃度:19%)0.98部、及びタングステン(フェニルイミド)テトラクロリド・テトラヒドロフランのトルエン溶液(濃度:2.0%)11.7部を入れ、50℃で10分間攪拌した。
 次いで、全容を50℃に保持し、攪拌しながら、前記重合反応器中に、前記組成と同じ単量体混合物198.0部を150分かけて連続的に滴下した。滴下終了後30分間攪拌を継続した後、イソプロピルアルコール4部を添加して重合反応を停止させた。ガスクロマトグラフィーによって重合反応溶液を測定したしたところ、単量体の重合体への転化率は100%であった。
 次いで、得られた重合反応溶液300部を攪拌器付きオートクレーブに移し、シクロヘキサン32部、珪藻土担持ニッケル触媒(日揮化学社製、「T8400RL」、ニッケル担持率:58%)3.8部を加えた。オートクレーブ内を水素で置換した後、190℃、4.5MPaの水素圧力下で6時間反応させた。
 水素化反応終了後、珪藻土(「ラヂオライト(登録商標)♯500」)を濾過床として、加圧濾過器(石川島播磨重工社製、「フンダフィルタ-」)を使用し、圧力0.25MPaで加圧濾過して、無色透明の溶液を得た。
 この溶液に、重合体水素化物100部当り、酸化防止剤として、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製、製品名「イルガノックス(登録商標)1010」)0.5部を加えた後、フィルター(キュノーフィルター社製、「ゼータプラス(登録商標)30H」、孔径:0.5~1μm)および金属ファイバー製フィルター(ニチダイ社製、孔径0.4μm)を用いて異物を濾別除去した。
 次いで、上記で得られた濾液を、円筒型濃縮乾燥機(日立製作所製)に入れ、温度290℃、圧力1kPa以下の条件で、溶媒であるシクロヘキサンおよびその他の揮発成分を除去し、濃縮乾燥機に直結したダイから溶融状態でストランド状に押出し、水冷後、ペレタイザー(長田製作所製、「OSP-2」)でカッティングして樹脂(A)のペレットを得た。
 そして、樹脂(A)の電解液膨潤度、ガラス転移温度および水素化率を測定した。結果を表1に示す。
 その後、撹拌機付きの容器にシクロヘキサン90部、上記で得られた樹脂(A)のペレット10部を添加し、ペレットを完全に溶解させることで樹脂溶解物を得た。
 また、イオン交換水200部に塩化マグネシウム4.0部を溶解してなる水溶液(A1)に、イオン交換水50部に水酸化ナトリウム2.8部を溶解してなる水溶液(A2)を撹拌下で徐々に添加して、金属水酸化物としての水酸化マグネシウムを含むコロイド分散液(A)を調製した。
 そして、溶解懸濁法により粒子状重合体(A)を調製した。具体的には、上記水酸化マグネシウムを含むコロイド分散液(A)に、上述のようにして得た樹脂溶解物を投入し、更に撹拌することで混合液を得た。得られた混合液を、インライン型乳化分散機(大平洋機工社製、「キャビトロン」)を用いて15,000rpmの回転数で1分間高剪断撹拌して、水酸化マグネシウムを含むコロイド分散液(A)中に、樹脂溶解物の液滴を形成した。
 それから上記水酸化マグネシウムを含むコロイド分散液(A)を撹拌機付きの容器に投入し、加熱減圧蒸留を行うことで系内のシクロヘキサンを留去し、粒子状重合体(A)を含む水分散液を得た。
 更に、上記粒子状重合体(A)を含む水分散液を撹拌しながら、室温(25℃)下で硫酸を滴下し、pHが6.5以下となるまで酸洗浄を行った。次いで、濾過分離を行い、得られた固形分にイオン交換水500部を加えて再スラリー化させて、水洗浄処理(洗浄、濾過および脱水)を数回繰り返し行った。それから、濾過分離を行い、得られた固形分を乾燥器の容器内に入れ、40℃で48時間乾燥を行い、乾燥した粒子状重合体(A)を得た。
 得られた粒子状重合体(A)の粒子径を測定した。結果を表1に示す。
<結着材(その他の重合体)を含む水分散液の調製>
 撹拌機を備えた反応器に、イオン交換水70部、乳化剤としてのラウリル硫酸ナトリウム(花王ケミカル社製、「エマール(登録商標)2F」)0.15部、及び重合開始剤としての過流酸アンモニウム0.5部を供給し、気相部を窒素ガスで置換し、60℃に昇温した。
 一方、別の容器で、イオン交換水50部、分散安定剤としてのドデシルベンゼンスルホン酸ナトリウム0.5部、(メタ)アクリル酸エステル単量体としてのn-ブチルアクリレート94部、酸基含有単量体としてのメタクリル酸2部、及びニトリル基含有単量体としてのアクリロニトリル2部、並びに架橋性単量体としてのアリルメタクリレート1部及びアリルグリシジルエーテル1部を混合して、単量体組成物(α)を調製した。
 得られた単量体組成物(α)を4時間かけて上述した撹拌機を備えた反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、更に70℃で3時間撹拌してから反応を終了し、アクリル系重合体としての粒子状の結着材(α)を含む水分散液を得た。得られた結着材(α)の体積平均粒子径およびガラス転移温度を測定した。結果を表1に示す。
<スラリー組成物の調製>
 無機微粒子としてのアルミナ(住友化学社製、「AKP3000」、体積平均粒子径:0.7μm)100部に分散剤としてのポリアクリル酸0.5部を添加し、ボールミルを用いて混合し、さらに結着材(α)を含む水分散液を固形分相当で6部と、増粘剤(粘度調整剤)としてのカルボキシメチルセルロース1.5部とを添加し、固形分濃度が55%となるようにイオン交換水を加え、混合前スラリーを得た。
 粒子状重合体(A)100部に対して、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム(花王ケミカル社製、「ネオペレックスG-15」)0.2部を添加し、固形分濃度が20%となるように混合し、得られた混合液を、上記のようにして得た混合前スラリーに加えた。更に固形分濃度が40%となるようにイオン交換水を添加して、無機粒子(アルミナ)と粒子状重合体(A)との混合比率が表1に示す混合比率となるスラリー組成物(機能層用組成物)を得た。
<機能層付きセパレータの作製>
 ポリエチレン製の微多孔膜(厚み:12μm)をセパレータ基材として用意した。このセパレータ基材の一方の面に、上述のようにして得たスラリー組成物をバーコーター法により塗布した。次に、スラリー組成物が塗布されたセパレータ基材を50℃で1分間乾燥し、機能層を形成した。同様の操作をセパレータ基材の他方の面に対しても行い、セパレータ基材の両面にそれぞれ機能層を備える機能層付きセパレータを作製した。なお、それぞれの機能層の厚みは3.0μmとした。
<正極の作製>
 正極活物質としてのLiCoO(体積平均粒子径:12μm)を100部、導電材としてのアセチレンブラック(電気化学工業社製、「HS-100」)を2部、正極合材層用結着材としてのポリフッ化ビニリデン(クレハ社製、「#7208」)を固形分相当で2部、及び溶媒としてのN-メチル-2-ピロリドンを混合し、全固形分濃度を70%とした。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。
 上記正極用スラリー組成物を、コンマコーターで、集電体としての厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の正極原反を得た。このプレス前の正極原反をロールプレスで圧延して、正極合材層(厚さ:60μm)を備えるプレス後の正極を得た。
<負極の作製>
 撹拌機付き5MPa耐圧容器に、1,3-ブタジエン33部、イタコン酸3.5部、スチレン63.5部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤としての過硫酸カリウム0.5部を入れ、十分に撹拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却して反応を停止し、負極合材層用結着材(SBR)を含む混合物を得た。この負極合材層用結着材を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の負極合材層用結着材を含む水分散液を得た。
 負極活物質(1)としての人造黒鉛(体積平均粒子径:15.6μm)80部、負極活物質(2)としてシリコン系活物質SiOx(体積平均粒径:4.9μm)16部を配合し、粘度調整剤としてのカルボキシメチルセルロースナトリウム塩(日本製紙社製、「MAC350HC」)の2%水溶液を固形分相当で2.5部、及びイオン交換水を混合して固形分濃度68%に調整した後、25℃で60分間更に混合した。更にイオン交換水で固形分濃度を62%に調整した後、25℃で15分間更に混合し、混合液を得た。この混合液に、上記負極合材層用結着材を含む水分散液を固形分相当量で1.5部、及びイオン交換水を入れ、最終固形分濃度が52%となるように調整し、更に10分間混合し、混合液を得た。この混合液を減圧下で脱泡処理して流動性の良い負極用スラリー組成物を得た。
 上記負極用スラリー組成物を、コンマコーターで、集電体としての厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極合材層(厚さ:80μm)を備えるプレス後の負極を得た。
 そして、上述のようにして得た機能層付きセパレータ、正極、及び負極を用いて、ドライ接着性、ウエット接着性、良品率を評価した。結果を表1に示す。
<リチウムイオン二次電池の作製>
 上述のようにして作製したプレス後の正極を49cm×5cmの長方形に切り出して、正極合材層側の表面が上側になるように置き、その正極合材層上に、120cm×5.5cmに切り出した上記機能層付きセパレータを、正極が機能層付きセパレータの長手方向の一方側に位置するように配置した。更に、上述のようにして作製したプレス後の負極を50cm×5.2cmの長方形に切り出し、機能層付きセパレータ上に、負極合材層側の表面が機能層付きセパレータに対向し、且つ、負極が機能層付きセパレータの長手方向の他方側に位置するように配置した。そして、得られた積層体を捲回機によって捲回し、捲回体を得た。
 この捲回体を70℃、1MPaでプレスし、扁平体とした後、電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート/ジエチルカーボネート/ビニレンカーボネート(体積比)=68.5/30/1.5、電解質:濃度1molのLiPF)を空気が残らないように注入した。そして、アルミ包材外装の開口を温度150℃でヒートシールして閉口して、容量800mAhの捲回型リチウムイオン二次電池を作製した。
 得られたリチウムイオン二次電池を用いて、二次電池の出力特性およびサイクル特性を評価した。結果を表1に示す。
(実施例2)
 粒子状重合体(A)に替えて、単量体混合物の組成をテトラシクロドデセン(TCD)22%、ジシクロペンタジエン(DCPD)22%、ノルボルネン(NB)56%に変更した以外は粒子状重合体(A)と同様にして調製した粒子状重合体(B)を用いた以外は実施例1と同様にして、粒子状重合体、結着材、スラリー組成物、機能層付きセパレータ、正極、負極およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例3)
 粒子状重合体(A)に替えて以下のようにして調製した粒子状重合体(C)を用いた以外は実施例1と同様にして、粒子状重合体、結着材、スラリー組成物、機能層付きセパレータ、正極、負極およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<粒子状重合体(C)の調製>
 内部が充分に窒素置換された、攪拌装置を備えた反応器に、脱水シクロヘキサン550部、脱水スチレン15.0部、及び、n-ジブチルエーテル0.475部を入れた。全容を60℃で攪拌しながら、n-ブチルリチウム(15%シクロヘキサン溶液)0.83部を加えて重合を開始させ、60℃で攪拌しながら、さらに60分反応させた。反応液をガスクロマトグラフィーにより測定したところ、この時点で重合転化率は99.5%であった。
 その後、反応液に脱水イソプレン70.0部を加え、そのまま60℃で30分攪拌を続けた。反応液をガスクロマトグラフィーにより測定したところ、この時点で重合転化率は99%であった。
 その後さらに、反応液に脱水スチレンを15.0部加え、全容を60℃で60分攪拌した。反応液をガスクロマトグラフィーにより測定したところ、この時点での重合転化率はほぼ100%であった。
 ここでイソプロピルアルコール0.5部を加えて反応を停止させた。
 次に、上記重合体溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として珪藻土担持型ニッケル触媒(日揮触媒化成社製、製品名「E22U」、ニッケル担持量:60%)4.0部及び脱水シクロヘキサン100部を添加して混合した。反応器内部を水素ガスで置換し、更に溶液を攪拌しながら水素を供給し、温度170℃、圧力4.5MPaにて6時間水素化反応を行った。
 水素化反応により得られたブロック共重合体水素化物[D]の重量平均分子量(Mw)は52,500、分子量分布(Mw/Mn)は1.04であった。
 水素化反応終了後、反応液を濾過して水素化触媒を除去した後、濾液にフェノ-ル系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](コーヨ化学研究所社製、Songnox1010)0.05部を溶解したキシレン溶液1.0部を添加して溶解させた。
 次いで、上記溶液を、ゼータプラス(登録商標)フィルター30H(キュノ社製、孔径0.5~1μm)にて濾過し、更に別の金属ファイバー製フィルター(ニチダイ社製、孔径0.4μm)にて順次濾過して微小な固形分を除去した後、円筒型濃縮乾燥器(日立製作所社製、コントロ)を用いて、温度260℃、圧力0.001MPa以下で、溶液から、溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去し、濃縮乾燥器に直結したダイから溶融状態でストランド状に押し出し、冷却後、ペレタイザーでカットして、ブロック共重合体(スチレン-イソプレン-スチレンブロック共重合体)水素化物のペレット95部を得た。
 得られたブロック共重合体水素化物の重量平均分子量(Mw)は51,900、分子量分布(Mw/Mn)は1.05であった。
 そして、ブロック共重合体水素化物の電解液膨潤度、ガラス転移温度および水素化率を測定した。結果を表1に示す。なお、ガラス転移温度は、-50℃(水素化されたイソプレンブロック由来)と、135℃(水素化されたスチレンブロック由来)の2つが観察された。
 その後、撹拌機付きの容器にシクロヘキサン90部、上記で得られたブロック共重合体水素化物のペレット10部を添加し、ペレットを完全に溶解させることで樹脂溶解物を得た。
 また、イオン交換水200部に塩化マグネシウム4.0部を溶解してなる水溶液(A1)に、イオン交換水50部に水酸化ナトリウム2.8部を溶解してなる水溶液(A2)を撹拌下で徐々に添加して、金属水酸化物としての水酸化マグネシウムを含むコロイド分散液(A)を調製した。
 そして、溶解懸濁法により粒子状重合体(C)を調製した。具体的には、上記水酸化マグネシウムを含むコロイド分散液(C)に、上述のようにして得た樹脂溶解物を投入し、更に撹拌することで混合液を得た。得られた混合液を、インライン型乳化分散機(大平洋機工社製、「キャビトロン」)を用いて15,000rpmの回転数で1分間高剪断撹拌して、水酸化マグネシウムを含むコロイド分散液(A)中に、樹脂溶解物の液滴を形成した。
 それから上記水酸化マグネシウムを含むコロイド分散液(A)を撹拌機付きの容器に投入し、加熱減圧蒸留を行うことで系内のシクロヘキサンを留去し、粒子状重合体(C)を含む水分散液を得た。
 更に、上記粒子状重合体(C)を含む水分散液を撹拌しながら、室温(25℃)下で硫酸を滴下し、pHが6.5以下となるまで酸洗浄を行った。次いで、濾過分離を行い、得られた固形分にイオン交換水500部を加えて再スラリー化させて、水洗浄処理(洗浄、濾過および脱水)を数回繰り返し行った。それから、濾過分離を行い、得られた固形分を乾燥器の容器内に入れ、40℃で48時間乾燥を行い、乾燥した粒子状重合体(C)を得た。
 得られた粒子状重合体(C)の粒子径を測定した。結果を表1に示す。
(実施例4)
 粒子状重合体(A)の調製時に、金属水酸化物としての水酸化マグネシウムを含むコロイド分散液(A)に替えてドデシルベンゼンスルホン酸ナトリウム2.5部を使用し、スラリー組成物の調製および機能層付きセパレータの作製を以下のようにして行った以外は実施例1と同様にして、粒子状重合体、結着材、スラリー組成物、機能層付きセパレータ、正極、負極およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<スラリー組成物の調製>
[耐熱層スラリー組成物の調製]
 無機微粒子としてのアルミナ(住友化学社製、「AKP3000」、体積平均粒子径:0.7μm)100部に分散剤としてのポリアクリル酸0.5部を添加し、ボールミルを用いて混合し、さらに結着材(α)を含む水分散液を固形分相当で6部と、増粘剤(粘度調整剤)としてのカルボキシメチルセルロース1.5部とを添加し、固形分濃度が40%となるようにイオン交換水を加え、耐熱層スラリー組成物を得た。
[接着層スラリー組成物の調製]
 粒子状重合体100部に結着材(α)を含む水分散液を固形分相当で20部添加し、固形分濃度が5%となるようにイオン交換水を加え、接着層スラリーを得た。
<機能層付きセパレータの作製>
 ポリエチレン製の微多孔膜(厚み:12μm)をセパレータ基材として用意した。このセパレータ基材の一方の面に、上述のようにして得た耐熱層スラリー組成物をバーコーター法により塗布した。次に、耐熱層スラリー組成物が塗布されたセパレータ基材を50℃で1分間乾燥し、耐熱機能層を形成した。次いで、上述のようにして得た接着層スラリー組成物をバーコーターにより塗布した。次に接着層スラリー組成物が塗布されたセパレータ基材を50℃で1分間乾燥し、接着機能層を形成した。同様の操作をセパレータ基材の他方の面に対しても行い、セパレータ基材の両面にそれぞれ耐熱機能層および接着機能層を備える機能層付きセパレータを作製した。なお、それぞれの機能層における耐熱機能層の厚みは3.0μm、接着機能層の目付は0.25g/mとした。
(比較例1)
 粒子状重合体(A)に替えて以下のようにして調製した粒子状重合体(E)を用いた以外は実施例1と同様にして、粒子状重合体、結着材、スラリー組成物、機能層付きセパレータ、正極、負極およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<粒子状重合体(E)の調製>
 芳香族ビニル単量体としてのスチレン81部、(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート16部、及び架橋性単量体としてのエチレングリコールジメタクリレート3部を混合して、単量体組成物を調製した。
 また、イオン交換水200部に塩化マグネシウム8.0部を溶解してなる水溶液(A1)に、イオン交換水50部に水酸化ナトリウム5.6部を溶解してなる水溶液(A2)を撹拌下で徐々に添加して、金属水酸化物としての水酸化マグネシウムを含むコロイド分散液(A)を調製した。
 懸濁重合法により粒子状重合体(A)を調製した。具体的には、上記水酸化マグネシウムを含むコロイド分散液(A)に、上述のようにして得た単量体組成物を投入し、更に撹拌した後、重合開始剤としてのt-ブチルパーオキシ-2-エチルヘキサノエート(日油社製、「パーブチル(登録商標)O」)2.0部を添加して混合液を得た。得られた混合液を、インライン型乳化分散機(太平洋機工社製、「キャビトロン」)を用いて15,000rpmの回転数で1分間高剪断撹拌して、水酸化マグネシウムを含むコロイド分散液(A)中に、単量体組成物の液滴を形成した。
 それから、上記水酸化マグネシウムを含むコロイド分散液(A)を反応器に入れ、90℃に昇温して5時間重合反応を行ない、粒子状重合体(E)を含む水分散液を得た。
 更に、上記粒子状重合体(E)を含む水分散液を撹拌しながら、室温(25℃)下で硫酸を滴下し、pHが6.5以下となるまで酸洗浄を行った。次いで、濾過分離を行い、得られた固形分にイオン交換水500部を加えて再スラリー化させて、水洗浄処理(洗浄、濾過及び脱水)を数回繰り返し行った。それから、濾過分離を行い、得られた固形分を乾燥器の容器内に入れ、40℃で48時間乾燥を行い、乾燥した粒子状重合体(E)を得た。
 得られた粒子状重合体(E)の粒子径を測定した。結果を表1に示す。
(比較例2)
 粒子状重合体(A)に替えて、水素化反応時間を3時間に変更した以外は粒子状重合体(A)と同様にして調製した粒子状重合体(F)を用いた以外は実施例1と同様にして、粒子状重合体、結着材、スラリー組成物、機能層付きセパレータ、正極、負極およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例3)
 ドデシルベンゼンスルホン酸ナトリウムを4.2部とした以外は実施例4と同様にして、粒子状重合体、結着材、スラリー組成物、機能層付きセパレータ、正極、負極およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例4)
 粒子状重合体(A)の調製時に、金属水酸化物としての水酸化マグネシウムを含むコロイド分散液(A)に替えて、イオン交換水200部に塩化マグネシウム3.3部を溶解してなる水溶液(H1)に、イオン交換水50部に水酸化ナトリウム2.3部を溶解してなる水溶液(H2)を撹拌下で徐々に添加して調製した、金属水酸化物としての水酸化マグネシウムを含むコロイド分散液(H)を用いた以外は実施例1と同様にして、粒子状重合体、結着材、スラリー組成物、機能層付きセパレータ、正極、負極およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~4では、ウェット接着性に優れ、且つ、電気化学素子に高い出力特性を発揮させ得る電気化学素子用機能層が得られることが分かる。また、表1の比較例1,2より、粒子状重合体の電解液膨潤度が大きい場合には出力特性が低下し、比較例3より、粒子状重合体の体積平均粒子径が小さい場合にはウェット接着性および出力特性が低下し、比較例4より、粒子状重合体の体積平均粒子径が大きい場合にはウェット接着性およびサイクル特性が低下することが分かる。
 本発明によれば、ウェット接着性に優れ、且つ、電気化学素子に高い出力特性を発揮させ得る電気化学素子用機能層、および、当該電気化学素子用機能層を形成可能な電気化学素子機能層用組成物が得られる。
 また、本発明によれば、ウェット接着性に優れていると共に、電気化学素子に高い出力特性を発揮させ得る電気化学素子用積層体が得られる。
 更に、本発明によれば、出力特性が高く、長寿命な電気化学素子が得られる。
 

Claims (11)

  1.  体積平均粒子径が0.5μm以上10μm以下であり、且つ、電解液膨潤度が120%以下である粒子状重合体を含む、電気化学素子機能層用組成物。
  2.  前記粒子状重合体が水添重合体を含む、請求項1に記載の電気化学素子機能層用組成物。
  3.  前記水添重合体の水素化率が95%以上である、請求項2に記載の電気化学素子機能層用組成物。
  4.  前記粒子状重合体のガラス転移温度が0℃以上80℃以下である、請求項1~3の何れかに記載の電気化学素子機能層用組成物。
  5.  前記粒子状重合体とは異なるその他の重合体を更に含有する、請求項1~4の何れかに記載の電気化学素子機能層用組成物。
  6.  前記その他の重合体のガラス転移温度が前記粒子状重合体のガラス転移温度よりも低い、請求項5に記載の電気化学素子機能層用組成物。
  7.  非導電性耐熱粒子を更に含む、請求項1~6の何れかに記載の電気化学素子機能層用組成物。
  8.  請求項1~6の何れかに記載の電気化学素子機能層用組成物を用いて形成された、電気化学素子用機能層。
  9.  基材の片面または両面に請求項8に記載の電気化学素子用機能層を備える、電気化学素子用積層体。
  10.  前記基材がセパレータ基材である、請求項9に記載の電気化学素子用積層体。
  11.  請求項9または10に記載の電気化学素子用積層体を備える、電気化学素子。
     
PCT/JP2022/004119 2021-02-26 2022-02-02 電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体および電気化学素子 WO2022181275A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22759316.7A EP4300695A1 (en) 2021-02-26 2022-02-02 Composition for electrochemical element functional layers, functional layer for electrochemical elements, multilayer body for electrochemical elements, and electrochemical element
JP2023502236A JPWO2022181275A1 (ja) 2021-02-26 2022-02-02
KR1020237027953A KR20230152665A (ko) 2021-02-26 2022-02-02 전기 화학 소자 기능층용 조성물, 전기 화학 소자용기능층, 전기 화학 소자용 적층체 및 전기 화학 소자
US18/546,429 US20240136658A1 (en) 2021-02-26 2022-02-02 Composition for electrochemical device functional layer, functional layer for electrochemical device, laminate for electrochemical device, and electrochemical device
CN202280015142.8A CN116918158A (zh) 2021-02-26 2022-02-02 电化学元件功能层用组合物、电化学元件用功能层、电化学元件用层叠体以及电化学元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021030859 2021-02-26
JP2021-030859 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181275A1 true WO2022181275A1 (ja) 2022-09-01

Family

ID=83048205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004119 WO2022181275A1 (ja) 2021-02-26 2022-02-02 電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体および電気化学素子

Country Status (6)

Country Link
US (1) US20240136658A1 (ja)
EP (1) EP4300695A1 (ja)
JP (1) JPWO2022181275A1 (ja)
KR (1) KR20230152665A (ja)
CN (1) CN116918158A (ja)
WO (1) WO2022181275A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0135733B2 (ja) 1980-12-09 1989-07-26 Hehl Karl
JP3235219B2 (ja) 1992-09-30 2001-12-04 日本ゼオン株式会社 ノルボルネン系共重合体、その水素添加物、それからなる光学材料、医療用材料、電気絶縁材料、および電子部品処理用器材
JP2013145763A (ja) 2013-04-30 2013-07-25 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
WO2018168502A1 (ja) * 2017-03-13 2018-09-20 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2019044720A1 (ja) * 2017-08-31 2019-03-07 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子
WO2019065416A1 (ja) 2017-09-28 2019-04-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP6590156B2 (ja) 2014-09-29 2019-10-16 日本ゼオン株式会社 環状オレフィン開環重合体水素化物、樹脂成形体、および光学部材
JP2019192340A (ja) * 2018-04-18 2019-10-31 三井化学株式会社 二次電池用セパレータ、これを含む二次電池用積層体および捲回体、ならびに非水二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6221875B2 (ja) 2014-03-24 2017-11-01 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
JP6657780B2 (ja) 2015-10-27 2020-03-04 日本ゼオン株式会社 非水系二次電池多孔膜用スラリー組成物、非水系二次電池用電極の製造方法および非水系二次電池の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0135733B2 (ja) 1980-12-09 1989-07-26 Hehl Karl
JP3235219B2 (ja) 1992-09-30 2001-12-04 日本ゼオン株式会社 ノルボルネン系共重合体、その水素添加物、それからなる光学材料、医療用材料、電気絶縁材料、および電子部品処理用器材
JP2013145763A (ja) 2013-04-30 2013-07-25 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
JP6590156B2 (ja) 2014-09-29 2019-10-16 日本ゼオン株式会社 環状オレフィン開環重合体水素化物、樹脂成形体、および光学部材
WO2018168502A1 (ja) * 2017-03-13 2018-09-20 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2019044720A1 (ja) * 2017-08-31 2019-03-07 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子
WO2019065416A1 (ja) 2017-09-28 2019-04-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP2019192340A (ja) * 2018-04-18 2019-10-31 三井化学株式会社 二次電池用セパレータ、これを含む二次電池用積層体および捲回体、ならびに非水二次電池

Also Published As

Publication number Publication date
CN116918158A (zh) 2023-10-20
EP4300695A1 (en) 2024-01-03
JPWO2022181275A1 (ja) 2022-09-01
US20240136658A1 (en) 2024-04-25
KR20230152665A (ko) 2023-11-03

Similar Documents

Publication Publication Date Title
KR102408245B1 (ko) 비수계 이차 전지 다공막용 조성물, 비수계 이차 전지용 다공막 및 비수계 이차 전지
KR101714114B1 (ko) 비수 전해액계 전지의 전극용 바인더 조성물, 비수 전해액계 전지용 전극 및 비수 전해액계 전지
KR20210132000A (ko) 전기 화학 소자용 기능층, 전기 화학 소자용 기능층 형성 세퍼레이터, 및 전기 화학 소자
KR102422236B1 (ko) 비수계 이차 전지 기능층용 조성물, 비수계 이차 전지용 기능층 및 비수계 이차 전지
CN109565020B (zh) 非水系二次电池功能层用组合物、非水系二次电池用功能层、非水系二次电池和非水系二次电池用电极的制造方法
US10673057B2 (en) Negative electrode for lithium ion battery and method for producing negative electrode for lithium ion battery
WO2016031163A1 (ja) 非水系二次電池用積層体および非水系二次電池部材の製造方法
KR20210127925A (ko) 전기 화학 소자 기능층용 조성물, 전기 화학 소자용 기능층 및 전기 화학 소자
JP7388506B2 (ja) 非水系二次電池
US20230079279A1 (en) Laminate for electrochemical device and electrochemical device
EP4053867A1 (en) Functional layer for electrochemical elements and method for producing same, separator with functional layer for electrochemical elements and method for producing same, and electrochemical element and method for producing same
WO2022181275A1 (ja) 電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体および電気化学素子
JP6874689B2 (ja) 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用スラリー組成物、非水系二次電池用多孔膜、及び非水系二次電池
WO2024096017A1 (ja) 電気化学素子機能層用組成物、電気化学素子機能層用組成物前駆体、電気化学素子用機能層、電気化学素子用積層体、および電気化学素子
WO2022163591A1 (ja) 電気化学素子機能層用組成物、電気化学素子用積層体及び電気化学素子
WO2024048378A1 (ja) 電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体、および電気化学素子
KR20220161300A (ko) 전기 화학 소자 기능층용 조성물, 전기 화학 소자용 적층체, 및 전기 화학 소자
WO2022163780A1 (ja) 電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体及び電気化学素子
KR20240001137A (ko) 전기 화학 소자 기능층용 조성물 및 그 제조 방법, 전기 화학 소자용 기능층, 전기 화학 소자용 적층체, 그리고 전기 화학 소자
US20240186651A1 (en) Composition for electrochemical device functional layer and method of producing same, functional layer for electrochemical device, laminate for electrochemical device, and electrochemical device
KR20230151988A (ko) 전기 화학 소자 기능층용 조성물, 전기 화학 소자용적층체 및 전기 화학 소자
CN116615812A (zh) 电化学元件功能层用组合物、电化学元件用层叠体以及电化学元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502236

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18546429

Country of ref document: US

Ref document number: 202280015142.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022759316

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759316

Country of ref document: EP

Effective date: 20230926