WO2019044720A1 - 電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子 - Google Patents

電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子 Download PDF

Info

Publication number
WO2019044720A1
WO2019044720A1 PCT/JP2018/031434 JP2018031434W WO2019044720A1 WO 2019044720 A1 WO2019044720 A1 WO 2019044720A1 JP 2018031434 W JP2018031434 W JP 2018031434W WO 2019044720 A1 WO2019044720 A1 WO 2019044720A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional layer
electrochemical device
composition
polymer
electrochemical
Prior art date
Application number
PCT/JP2018/031434
Other languages
English (en)
French (fr)
Inventor
裕之 田口
慶一朗 田中
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP18851231.3A priority Critical patent/EP3678224A4/en
Priority to JP2019539464A priority patent/JP7207311B2/ja
Priority to US16/639,586 priority patent/US20210028458A1/en
Priority to CN201880053406.2A priority patent/CN111033815B/zh
Priority to KR1020207004677A priority patent/KR20200044807A/ko
Publication of WO2019044720A1 publication Critical patent/WO2019044720A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composition for an electrochemical device functional layer, a functional layer for an electrochemical device, and an electrochemical device.
  • Electrochemical devices such as lithium ion secondary batteries and electric double layer capacitors have characteristics of small size, light weight, high energy density, and capable of repeated charge and discharge, and are used in a wide range of applications.
  • the electrochemical device generally includes components such as a positive electrode, a negative electrode, and a separator that isolates the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode.
  • a binder is included, and optionally, particles (hereinafter referred to as "functional particles") which are blended to cause the component to exhibit a desired function are included.
  • the member provided with the functional layer which consists of is used.
  • a separator of an electrochemical device a separator provided with a porous film layer including an adhesive layer containing a binder and a binder and nonconductive particles as functional particles on a separator base material Is used.
  • an electrode of an electrochemical element an electrode including an electrode mixture layer including a binder and electrode active material particles as functional particles on a current collector, or an electrode mixture on a current collector On the electrode base material provided with a layer, the electrode further provided with the above-mentioned adhesion layer and porous membrane layer is used.
  • Patent Document 1 includes a binder soluble in an aqueous solution, and a polymer material having an ethylene oxide unit or a propylene oxide unit and having a number average molecular weight of 20,000 to 4,000,000.
  • a binder soluble in an aqueous solution and a polymer material having an ethylene oxide unit or a propylene oxide unit and having a number average molecular weight of 20,000 to 4,000,000.
  • this invention aims at providing the composition for electrochemical element functional layers which can provide an electrochemical element with few volume expansions.
  • the present invention has an object of providing an electrochemical device functional layer capable of providing an electrochemical device with a small volume expansion, and an electrochemical device provided with the electrochemical device functional layer and having a small volume expansion. Do.
  • the present inventors diligently studied for the purpose of solving the above-mentioned problems. And this inventor is a composition for electrochemical element functional layers containing the polymer and solvent which have a predetermined
  • the present invention is intended to advantageously solve the above-mentioned problems, and the composition for an electrochemical device functional layer of the present invention comprises a polymer having an oxide structure-containing monomer unit and a solvent. It is a composition for electrochemical element functional layers, Comprising:
  • the said oxide structure containing monomer unit is a following formula (I): (Wherein R 1 represents an alkylene group which may have a substituent, and n is a positive integer), and the number average molecular weight of the polymer is 5,000 or more and 15,000 or less It is characterized by
  • a composition for an electrochemical device functional layer which contains the polymer having the predetermined oxide structure-containing monomer unit described above and a solvent, and the number average molecular weight of the polymer is within the above-described range of values. Can be used to obtain an electrochemical device with less volume expansion.
  • the number average molecular weight of the said polymer can be measured using the method as described in the Example of this specification.
  • the R 1 be one selected from the group consisting of an ethylene group, a propylene group, and a phenylethylene group.
  • R 1 is one selected from the group consisting of ethylene group, propylene group and phenylethylene group, the volumetric expansion of the electrochemical device can be further suppressed, and at the same time, the functional layer of the electrochemical device Peel strength can be increased.
  • n is preferably an integer of 2 or more and 30 or less.
  • n is an integer of 2 or more and 30 or less, the volumetric expansion of the electrochemical device can be further suppressed, and the peel strength of the functional layer for an electrochemical device can be increased.
  • the above n can be determined by measurement by nuclear magnetic resonance (NMR) method.
  • the proportion of the oxide structure-containing monomer unit in the polymer is preferably 20% by mole or more and 80% by mole or less. If the polymer has an oxide structure-containing monomer unit in the above-mentioned range of values, the volume expansion of the electrochemical device can be further suppressed and the peel strength of the functional layer for an electrochemical device can be increased. Can. Furthermore, the low temperature output characteristics of the electrochemical device can also be improved. In the present invention, the proportion of the oxide structure-containing monomer unit in the polymer can be measured by nuclear magnetic resonance (NMR) method.
  • NMR nuclear magnetic resonance
  • the polymer is preferably a copolymer.
  • various functions derived from two or more types of monomers can be imparted to the functional layer for an electrochemical element.
  • the composition for electrochemical element functional layers of this invention contains nonelectroconductive particle further.
  • the composition for an electrochemical device functional layer further includes nonconductive particles, the electrochemical device functional layer can be provided with various functions derived from the nonconductive particles. Electrical characteristics can be improved well.
  • the non-conductive particles preferably include at least one of inorganic particles and organic particles.
  • the present invention aims to advantageously solve the above-mentioned problems, and the functional layer for an electrochemical device of the present invention is characterized by being formed from the composition for an electrochemical device functional layer described above. I assume.
  • the functional layer can provide an electrochemical device with low volume expansion.
  • Another object of the present invention is to advantageously solve the above-mentioned problems, and an electrochemical device of the present invention comprises the above-mentioned functional layer for an electrochemical device.
  • the electrochemical device has low volumetric expansion and high performance.
  • an electrochemical device with less volume expansion can be provided. And according to the present invention, it is possible to provide an electrochemical device functional layer capable of providing an electrochemical device with less volume expansion, and an electrochemical device provided with the electrochemical device functional layer and having a small volume expansion. it can.
  • the composition for an electrochemical device functional layer according to the present invention is an optional functional layer (for example, an electrode mixture layer, a porous film) which performs functions such as electron transfer, reinforcement, or adhesion in the electrochemical device. Can be used to form layers and adhesive layers).
  • the functional layer for an electrochemical device of the present invention is formed from the composition for an electrochemical device functional layer of the present invention.
  • the electrochemical element of this invention is equipped with the functional layer for electrochemical elements of this invention.
  • composition for electrochemical device functional layer contains a polymer having an oxide structure-containing monomer unit and a solvent, and optionally, a binder, non-conductive particles, electrode active material particles, and a functional layer It is a slurry composition further containing at least one selected from the group consisting of other components (such as additives) that can be contained.
  • Use of the composition for electrochemical device function of the present invention provides an electrochemical device with less volume expansion.
  • the polymer having an oxide structure-containing monomer unit (hereinafter, may be simply referred to as "polymer") contains at least an oxide structure-containing monomer unit, and optionally further includes other monomer units. obtain.
  • “containing a monomer unit” means that “a structural unit derived from a monomer is contained in a polymer obtained using the monomer”.
  • the polymer which has an oxide structure containing monomer unit used for the composition for electrochemical element functional layers of this invention is explained in full detail.
  • the oxide structure-containing monomer unit has the following formula (I): (Wherein, R 1 represents an alkylene group which may have a substituent, and n is a positive integer).
  • the alkylene group is not particularly limited, and for example, carbon such as methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, etc.
  • a number of linear or branched alkylene groups of 1 to 10 can be mentioned. Among them, an ethylene group or a propylene group is preferable as the alkylene group.
  • the substituent is not particularly limited, and examples thereof include substituents other than alkyl groups, specifically, hydroxyl groups; cyano groups; amino groups; substituted amino groups such as dimethylamino group; methoxy group, An alkoxy group having 1 to 10 carbon atoms such as ethoxy group and propoxy group; nitro group; a cycloalkyl group having 3 to 10 carbon atoms such as cyclopropyl group and cyclohexyl group; and an aryl group such as phenyl group and naphthyl group It can be mentioned. Among them, as an optional substituent, a phenyl group is preferable.
  • the R 1 in the above formula (I) is not particularly limited, and includes a linear or branched alkylene group having 1 to 10 carbon atoms which may have the above-mentioned substituent.
  • R 1 in the above-mentioned formula (I) is preferably one selected from the group consisting of ethylene group, propylene group and phenylethylene group, and more preferably ethylene group. If R 1 is one selected from the group consisting of an ethylene group, a propylene group, and a phenylethylene group, the volumetric expansion of the electrochemical device can be further suppressed, and the peel of the functional layer for an electrochemical device can be further suppressed. The strength can be increased. Furthermore, if R 1 is an ethylene group, the low temperature output characteristics of the electrochemical device can be enhanced.
  • n in the above formula (I) is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, still more preferably 13 or more, 30 or less Is preferable, 23 or less is more preferable, 20 or less is further preferable, and 15 or less is more preferable.
  • n in the above formula (I) is 2 or more, elution of the polymer into the electrolytic solution is suppressed, so that the peel strength of the functional layer for an electrochemical element can be kept high.
  • the n is 30 or less, the water absorption amount of the functional layer for an electrochemical element is reduced, and the gas generation due to the reaction between the electrolytic solution and water is suppressed to further suppress the volume expansion of the electrochemical element.
  • plural (n pieces) of R 1 contained in the oxide structure-containing monomer unit may all have the same structure, or at least A part may have a different structure.
  • the monomer capable of forming the above-described oxide structure-containing monomer unit is not particularly limited, and, for example, ethylene oxide, propylene oxide, butylene oxide, pentylene oxide, hexylene oxide, heptylene oxide And linear or branched alkylene oxides having 1 to 10 carbon atoms such as octylene oxide, nonylene oxide, decanylene oxide and the like and derivatives thereof.
  • the alkylene oxide which has a substituent is mentioned.
  • substituent the same substituent as the substituent which the alkylene group of said R 1 may have is mentioned.
  • n in the above formula (II) is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, It is more preferably 13 or more, preferably 30 or less, more preferably 23 or less, still more preferably 20 or less, and still more preferably 15 or less.
  • the said substituent is not specifically limited, For example, a methyl group, an ethyl group And a linear or branched alkyl group having 1 to 10 carbon atoms such as propyl, butyl and pentyl.
  • "(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
  • the monomer represented by the above formula (II) include, for example, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polystyrene glycol mono (meth) acrylate, methoxypolyethylene glycol (meth) acrylate Methoxy polypropylene glycol (meth) acrylate, methoxy polystyrene glycol (meth) acrylate, ethoxy polyethylene glycol (meth) acrylate, ethoxy polypropylene glycol (meth) acrylate, ethoxy polystyrene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene Glycol di (meth) acrylate, polystyrene glycol di (meth) acrylate etc It is.
  • "(meth) acrylate” means acrylate and / or methacrylate.
  • the proportion of the oxide structure-containing monomer unit in the polymer is not particularly limited, and may be 100 mol%, but is preferably 20 mol% or more, and more preferably 25 mol% or more. It is further more preferable that it is 30 mol% or more, and it is preferable that it is 80 mol% or less.
  • the proportion of the oxide structure-containing monomer unit in the polymer is 20 mol% or more, elution of the polymer into the electrolytic solution is suppressed, so the peel strength of the functional layer for an electrochemical element can be kept high. . Furthermore, the low temperature output characteristics of the electrochemical device can also be improved.
  • the ratio of the oxide structure-containing monomer unit in the polymer is 80 mol% or less, the water absorption amount of the functional layer for an electrochemical element is reduced to suppress gas generation due to the reaction between the electrolytic solution and water.
  • the volume expansion of the electrochemical device can be further suppressed.
  • the polymer may contain other monomer units other than the above-mentioned oxide structure-containing monomer units.
  • the monomer that can form such other monomer units is not particularly limited as long as it does not contain an oxide structure, and, for example, (meth) acrylic acid alkyl ester monomer, (meth Acrylonitrile, an acidic group containing monomer, etc. are mentioned.
  • (meth) acrylic means acrylic and / or methacrylic
  • (meth) acrylonitrile” means acrylonitrile and / or methacrylonitrile.
  • the (meth) acrylic acid alkyl ester monomer for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate
  • acrylic acid alkyl esters such as octyl acrylate such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate and stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n- Butyl methacrylate, t-butyl methacrylate, pentyl methacrylate, hexyl methacrylate,
  • an acidic group containing monomer a carboxylic acid group containing monomer, a sulfonic acid group containing monomer, and a phosphoric acid group containing monomer are mentioned, for example.
  • a carboxylic acid group containing monomer monocarboxylic acid and its derivative, dicarboxylic acid and its acid anhydride, those derivatives, etc. are mentioned.
  • monocarboxylic acids include acrylic acid, methacrylic acid and crotonic acid.
  • monocarboxylic acid derivatives include 2-ethyl acrylic acid, isocrotonic acid, ⁇ -acetoxy acrylic acid, ⁇ -trans-aryloxy acrylic acid, and ⁇ -chloro- ⁇ -E-methoxy acrylic acid.
  • dicarboxylic acids include maleic acid, fumaric acid and itaconic acid.
  • dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, fluoro maleate
  • Maleic acid monoesters such as alkyl are mentioned.
  • acid anhydride of dicarboxylic acid maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like can be mentioned.
  • generates a carboxyl group by hydrolysis can also be used.
  • the sulfonic acid group-containing monomer include styrene sulfonic acid, vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, 3-allyloxy-2-hydroxypropane sulfonic acid and the like.
  • “(meth) allyl” means allyl and / or methallyl.
  • phosphoric acid group-containing monomer for example, phosphoric acid-2- (meth) acryloyloxyethyl, methyl 2- (meth) acryloyloxyethyl phosphate, ethyl phosphate- (meth) acryloyloxyethyl, Etc.
  • the polymer is prepared by polymerizing a composition containing the above-described oxide structure-containing monomer and any other monomer.
  • the content ratio of each monomer in the monomer composition is generally the same as the ratio of the monomer units in the desired polymer.
  • the polymerization mode of the polymer is not particularly limited, and any method such as solution polymerization, suspension polymerization, bulk polymerization and emulsion polymerization may be used.
  • addition polymerization such as ionic polymerization, radical polymerization, living radical polymerization and the like can be used.
  • an emulsifier, a dispersant, a polymerization initiator, a polymerization auxiliary and the like used for the polymerization those generally used can be used, and the amount thereof used is also the amount generally used.
  • the number average molecular weight of the polymer needs to be 5000 or more, preferably 5500 or more, more preferably 6000 or more, and still more preferably 6200 or more. Moreover, the said number average molecular weight needs to be 15000 or less, It is preferable that it is 14000 or less, It is more preferable that it is 12000 or less, It is still more preferable that it is 10800 or less.
  • the number average molecular weight of the polymer is 5,000 or more, elution of the polymer into the electrolytic solution is suppressed, so that the peel strength of the functional layer for an electrochemical element can be kept high.
  • the number average molecular weight is 15000 or less, the water absorption amount of the functional layer for an electrochemical element is reduced, gas generation due to the reaction between the electrolytic solution and water is suppressed, and volume expansion of the electrochemical element is further suppressed. can do.
  • the polymer may be, for example, a homopolymer such as polyethylene glycol, polypropylene glycol, polystyrene glycol or the like, or may be a copolymer, but is preferably a copolymer. If the polymer is a copolymer, various functions derived from two or more types of monomers can be imparted to the functional layer for an electrochemical element.
  • the polymer is usually water soluble.
  • water solubility means that, when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 50 ° C., the insoluble content is less than 10.0% by mass.
  • the addition amount of the polymer in the composition for an electrochemical element functional layer of the present invention is not particularly limited, but is preferably 1 part by mass or more, and 3 parts by mass with respect to 100 parts by mass of nonconductive particles described later.
  • the above content is more preferably, 5 parts by mass or more is further preferable, 90 parts by mass or less is preferable, 80 parts by mass or less is more preferable, and 50 parts by mass or less is still more preferable . If the addition amount of the polymer is 1 part by mass or more with respect to 100 parts by mass of the nonconductive particles, the peel strength of the functional layer for an electrochemical element can be kept high.
  • the addition amount of the polymer is 90 parts by mass or less, the water absorption amount of the functional layer for an electrochemical element is reduced, gas generation due to the reaction between the electrolyte and water is suppressed, and the volume of the electrochemical element is reduced. Expansion can be further suppressed.
  • a binder can function as a component which binds components, such as nonelectroconductive particle, in the functional layer for electrochemical devices formed using the composition for electrochemical device functional layers of this invention.
  • a known binder can be used as a binder used for a composition for electrochemical element functional layers of the present invention, the binder concerned is a polymer mentioned above, or nonelectroconductive mentioned below. It is a component different from the organic particles used as the organic particles.
  • a fluorine-based polymer such as polyvinylidene fluoride (PVdF) (a polymer mainly containing a fluorine-containing monomer unit), depending on the arrangement position of the functional layer; styrene-butadiene copolymer Aliphatic conjugated diene / aromatic vinyl copolymers (polymers mainly containing aliphatic conjugated diene monomer units and aromatic vinyl monomer units) such as combined (SBR) and the hydrides thereof; butadiene-acrylonitrile copolyester Aliphatic conjugated diene / acrylonitrile copolymers such as polymers (NBR) and their hydrides; and polyvinyl alcohol polymers such as polyvinyl alcohol (PVA) can be used.
  • PVdF polyvinylidene fluoride
  • PVdF polyvinylidene fluoride
  • PVdF polyvinylidene fluoride
  • PVdF polyvinylidene fluoride
  • mainly containing one or more types of monomer units means “one type when the amount of all the monomer units contained in the polymer is 100% by mass”.
  • the content ratio of the monomer units of (1) or the total content ratio of the plurality of monomer units is more than 50% by mass.
  • the method of preparing the binder is not particularly limited, and for example, it is prepared by polymerizing a monomer composition containing monomers capable of forming various monomer units.
  • the polymerization method is not particularly limited, and any method such as solution polymerization, suspension polymerization, bulk polymerization, and emulsion polymerization may be used.
  • As the polymerization reaction addition polymerization such as ionic polymerization, radical polymerization, living radical polymerization and the like can be used.
  • an emulsifier, a dispersant, a polymerization initiator, a polymerization auxiliary and the like used for the polymerization those generally used can be used, and the amount thereof used is also the amount generally used.
  • the property of the binding material is not particularly limited, but the glass transition temperature of the binding material is preferably ⁇ 75 ° C. or higher, more preferably ⁇ 55 ° C. or higher, and ⁇ 35 ° C. or higher Is more preferably 5 ° C. or less, and more preferably 0 ° C. or less. If the glass transition temperature of the binder is within the above-mentioned range, properties such as flexibility, winding property and binding property of the functional layer formed using the composition for an electrochemical device functional layer of the present invention Is preferably kept. In addition, the glass transition temperature of a binder can be measured using the measuring method as described in the Example of this specification.
  • the volume average particle diameter D50 of the binder is preferably 0.1 ⁇ m or more, and 0.5 ⁇ m or less. It is preferable that the thickness is 0.45 ⁇ m or less, more preferably 0.4 ⁇ m or less.
  • the volume average particle diameter D50 of the binder can be measured using the measurement method described in the examples of this specification.
  • the binder is generally insoluble in water.
  • non-water solubility means that, when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 50 ° C., the insoluble content is 50.0% by mass or more.
  • the addition amount of the binder in the composition for an electrochemical element functional layer of the present invention is not particularly limited, but is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the nonconductive particles. It is more preferably 0.2 parts by mass or more, still more preferably 0.5 parts by mass or more, preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and 10 parts by mass It is more preferable that it is less than 1 part.
  • the nonconductive particles are not particularly limited, and examples thereof include known nonconductive particles used in electrochemical devices.
  • the addition amount of the nonconductive particles is preferably 10% by mass or more, more preferably 20% by mass or more, and more preferably 50% by mass or more in terms of solid content in the composition for an electrochemical device functional layer Is more preferably 99% by mass or less, more preferably 97% by mass or less, and still more preferably 95% by mass or less.
  • the composition for an electrochemical device functional layer includes non-conductive particles, by imparting various functions derived from the conductive particles to the electrochemical device functional layer, the electrical characteristics of the electrochemical device can be improved. It can be improved.
  • the nonconductive particles at least one of inorganic particles and organic particles can be used, and it is preferable to use both inorganic particles and organic particles. The inorganic particles and the organic particles used as the nonconductive particles will be described in detail below.
  • inorganic particles for example, aluminum oxide (alumina), hydrated aluminum oxide (boehmite), silicon oxide, magnesium oxide (magnesia), calcium oxide, titanium oxide (titania), BaTiO 3 , ZrO, alumina-silica composite oxide Oxide particles such as aluminum; nitride particles such as aluminum nitride and boron nitride; covalently bonded crystal particles such as silicon and diamond; poorly soluble ionic crystal particles such as barium sulfate, calcium fluoride and barium fluoride; talc, montmorillonite Etc.
  • clay fine particles such as; Among them, alumina, boehmite, titanium oxide and barium sulfate are preferably used.
  • the inorganic particle mentioned above can be used individually by 1 type, or in combination of 2 or more types. If the composition for an electrochemical element functional layer contains inorganic particles as nonconductive particles, the strength and heat resistance of the electrochemical element functional layer can be improved.
  • the physical properties of the inorganic particles are not particularly limited, but the volume average particle diameter D50 of the inorganic particles is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and more preferably 0.3 ⁇ m or more. It is more preferable that the thickness is 1 ⁇ m or less, more preferably 0.9 ⁇ m or less, and still more preferably 0.8 ⁇ m or less.
  • the volume average particle diameter D50 of the inorganic particles is 0.1 ⁇ m or more, the decrease in ion conductivity of the functional layer can be suppressed, and the electrical characteristics, particularly the output characteristics, of the electrochemical device can be improved.
  • volume average particle diameter D50 is 1 ⁇ m or less
  • the functional layer can exhibit a good adhesive function.
  • an inorganic particle having a volume average particle diameter D50 of 1 ⁇ m or less is used, a functional layer exhibiting an excellent protective function can be obtained even if the thickness of the functional layer is thin, so the capacity of the electrochemical device is increased. be able to.
  • volume average particle diameter D50 of inorganic particle can be measured using the measuring method as described in the Example of this specification.
  • the addition amount of the inorganic particles is not particularly limited, but is preferably 80 parts by mass or more and 99 parts by mass or less with respect to 100 parts by mass of the total addition amount of the nonconductive particles.
  • Organic particles are not particularly limited as long as they are different from the above-described polymer and binder, and, for example, fluorine-based materials such as polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) copolymer and the like Examples thereof include polymers (polymers mainly containing fluorine-containing monomer units); and acrylic polymers (polymers mainly containing (meth) acrylic acid alkyl ester monomer units). From the viewpoint of electrochemical stability, it is preferable to use an acrylic polymer. As various monomers which can form the said various monomer units, a well-known thing can be used like the binder mentioned above. If the composition for an electrochemical device functional layer contains organic particles as non-conductive particles, the electrochemical device functional layer exhibits excellent adhesion in an electrolytic solution, and the electrical property of the electrochemical device provided with the functional layer The characteristics can be improved well.
  • fluorine-based materials such as polyvinylidene fluoride-hexafluoro
  • the core-shell structure means a structure having a core portion and a shell portion respectively formed of polymers having different compositions and / or different properties.
  • the particulate polymer having the core-shell structure is not particularly limited, and, for example, the core portion is an aromatic monovinyl monomer such as styrene; (meth) acrylonitrile monomer such as (meth) acrylonitrile; (Meth) acrylic acid alkyl ester monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate; acid group-containing such as (meth) acrylic acid Monomers; and polymerization of crosslinkable monomers such as di (meth) acrylic acid ester compounds such as ethylene dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol
  • the shell portion partially covers the outer surface of the core portion. That is, it is preferable that the shell portion of the organic particle covers the outer surface of the core portion but does not cover the entire outer surface of the core portion. Even if it looks like the outer surface of the core portion is completely covered by the shell portion in appearance, if the hole communicating the inside and outside of the shell portion is formed, the shell portion is outside the core portion It is a shell part which partially covers the surface. Therefore, for example, an organic particle provided with a shell portion having pores communicating from the outer surface of the shell portion (that is, the peripheral surface of the organic particles) to the outer surface of the core portion is included in the particulate polymer having the core shell structure. Be
  • the organic particles can be prepared by polymerizing a monomer composition containing the above mentioned monomers, for example in an aqueous solvent such as water. Under the present circumstances, the content rate of each monomer in a monomer composition can be determined according to the content rate of each repeating unit (monomer unit) in an organic particle.
  • the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • any reaction such as ionic polymerization, radical polymerization, living radical polymerization can be used.
  • seed particles may be employed to carry out seed polymerization.
  • the polymerization conditions can be appropriately adjusted according to the polymerization method and the like.
  • additives such as an emulsifier, a polymerization initiator, a polymerization assistant, a dispersion stabilizer, and a co-stabilizer may be used.
  • the emulsifying agent, the polymerization initiator and the polymerization assistant those generally used can be used, and the amount thereof used can also be a generally used amount.
  • the particulate polymer includes a monomer of a polymer of the core portion and a monomer of a polymer of the shell portion. It can be prepared by using stepwise polymerization with changing the ratio of those monomers with time. Specifically, the particulate polymer is prepared by a continuous multistage emulsion polymerization method and a multistage suspension polymerization method in which the polymer of the first stage is sequentially coated with the polymer of the second stage. Can.
  • the physical properties of the organic particles are not particularly limited, but the volume average particle diameter D50 of the organic particles is preferably 0.1 ⁇ m or more, more preferably 0.12 ⁇ m or more, and preferably 0.15 ⁇ m or more. Is more preferably 1 ⁇ m or less, more preferably 0.9 ⁇ m or less, and still more preferably 0.8 ⁇ m or less.
  • the volume average particle diameter D50 of the organic particles is 0.1 ⁇ m or more, the increase in internal resistance of the functional layer for an electrochemical element is suppressed, so that the low temperature output characteristics of the electrochemical element can be improved.
  • volume average particle diameter D50 of the organic particles is 1 ⁇ m or less, the adhesiveness of the organic particles in the electrolytic solution is enhanced, so that the high temperature cycle characteristics of the electrochemical device can be improved.
  • volume average particle diameter D50 of organic particle can be measured using the measuring method as described in the Example of this specification.
  • the electrolyte solution swelling degree of the organic particles is preferably 1 or more, more preferably 1.2 or more, still more preferably 1.5 or more, and 16 or less. Is preferably 10 times or less, more preferably 5 times or less. If the electrolyte solution swelling degree of the organic particles is within the above-mentioned range, the functional layer for an electrochemical device exhibits excellent adhesiveness in the electrolytic solution, so that the electrical characteristics of the electrochemical device provided with the functional layer Can be improved well.
  • grains can be measured using the measuring method as described in the Example of this specification.
  • the glass transition temperature of the organic particles is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 30 ° C. or higher, and preferably 110 ° C. or lower, 90 ° C. It is more preferable that it is the following, and it is still more preferable that it is 80 degrees C or less. If the glass transition temperature of the organic particles is within the above-mentioned range, the functional layer for an electrochemical device exhibits excellent adhesion in the electrolyte, so that the electrical characteristics of the electrochemical device provided with the functional layer are It can be improved well.
  • the organic particles are usually insoluble in water.
  • non-water solubility means that, when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 50 ° C., the insoluble content is 50.0% by mass or more.
  • the addition amount of the organic particles is not particularly limited, but it is preferably 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total addition amount of the nonconductive particles.
  • the ratio of the organic particles to the nonconductive particles to be added is not particularly limited, but is preferably 5% by volume or more, and more preferably 50% by volume or less. When the proportion of the organic particles is 5% by volume or more, the process adhesiveness of the functional layer for an electrochemical element can be kept high. On the other hand, when the ratio of the organic particles is 50% by volume or less, the low temperature output characteristics of the electrochemical device can be kept high.
  • the composition for an electrochemical device functional layer may contain electrode active material particles.
  • the electrode active material particles for example, particles made of an electrode active material disclosed in JP-A-2014-42063 can be used.
  • the composition for an electrochemical device functional layer of the present invention may contain any other component in addition to the components described above.
  • the other components are not particularly limited as long as they do not affect the cell reaction, and known components can be used. Moreover, these other components may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the other components include, for example, known additives such as dispersants, thickeners, and wetting agents.
  • solvent used for the composition for an electrochemical device functional layer of the present invention the above-mentioned polymer, binder, non-conductive particles, electrode active material particles, and additives can be dissolved or dispersed, especially, for example, known solvents such as water, N-methyl pyrrolidone (NMP), and acetone can be used without limitation.
  • solvent mentioned above may be used individually by 1 type, and may be used as a 2 or more types of liquid mixture.
  • the method of preparing the composition for an electrochemical device functional layer of the present invention is not particularly limited.
  • a functional layer formed using the composition for an electrochemical device functional layer is used as an electrode mixture layer
  • the above-described polymer, electrode active material particles, and a binder used according to need And other components may be mixed in the presence of a solvent to prepare a composition for an electrochemical device functional layer.
  • the functional layer formed using the composition for an electrochemical device functional layer is used as a porous film layer, the above-described polymer, non-conductive particles, and a binder used as needed
  • the other components can be mixed in the presence of a solvent to prepare a composition for an electrochemical device functional layer.
  • the functional layer formed using the composition for electrochemical device functional layers is used as an adhesive layer
  • the polymer mentioned above and the binder used as needed are diluted with a solvent, and electric It can also be used as a composition for a chemical element functional layer, and the polymer described above, a binder optionally used, and other components are mixed in the presence of a solvent to obtain an electrochemical element function.
  • Layering compositions can also be prepared.
  • the mixing method is not particularly limited, but the mixing may be performed using a stirrer or a disperser which can be usually used.
  • the functional layer for an electrochemical element of the present invention is a layer responsible for electron transfer, reinforcement, or adhesion in a non-aqueous secondary battery, and the functional layer includes, for example, electron transfer via an electrochemical reaction. And a porous film layer for improving heat resistance and strength, and an adhesive layer for improving adhesion.
  • the functional layer for an electrochemical device of the present invention is formed from the above-mentioned composition for an electrochemical device functional layer of the present invention, and for example, the above-mentioned composition for an electrochemical device functional layer is an appropriate group After apply
  • Use of the functional layer for an electrochemical device of the present invention can provide an electrochemical device with less volume expansion.
  • the substrate to which the composition for electrochemical device functional layer is applied is not limited.
  • a coating film of the composition for electrochemical device functional layer is formed on the surface of a release substrate, and the coating film is dried. Then, the functional layer may be formed, and the release substrate may be peeled off from the functional layer.
  • the functional layer peeled off from the release substrate can be used as a self-supporting film to form a component of the electrochemical device.
  • the composition for an electrochemical device functional layer when preparing the electrode mixture layer, it is preferable to apply the composition for an electrochemical device functional layer on a current collector as a substrate. Moreover, when preparing a porous film layer and an adhesive layer, it is preferable to apply the composition for electrochemical element functional layers on a separator base material or an electrode (negative electrode or positive electrode) base material, a separator base material or a negative electrode It is more preferable to apply
  • the current collector a material having electrical conductivity and electrochemical durability is used.
  • a current collector for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum or the like can be used.
  • copper foil is particularly preferable as a current collector used for the negative electrode.
  • aluminum foil is especially preferable.
  • the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the organic separator substrate is a porous member made of an organic material, and examples of the organic separator substrate include a microporous film or non-woven fabric containing a polyolefin resin such as polyethylene or polypropylene, an aromatic polyamide resin, etc. From the viewpoint of excellent strength, a microporous membrane or nonwoven fabric made of polyethylene is preferred.
  • the electrode base material (positive electrode base material and negative electrode base material) is not particularly limited, but an electrode base material layer in which electrode active material particles and a binder are formed on the above-described current collector is It can be mentioned.
  • the electrode active material particles and the binder contained in the electrode mixture layer in the electrode substrate are not particularly limited, and the electrode active material particles and the binder described above in the section of (composition for electrochemical device functional layer) A dressing can be used.
  • the following method may be mentioned as a method of forming the functional layer for an electrochemical device on a substrate such as the current collector, the separator substrate, or the electrode substrate described above. 1) A method of applying the composition for an electrochemical device functional layer of the present invention to the surface of a substrate (the surface on the electrode mixture layer side in the case of an electrode substrate, the same applies hereinafter) and then drying it; 2) A method of immersing a substrate in the composition for an electrochemical device functional layer of the present invention and drying the substrate; and 3) applying the composition for an electrochemical device functional layer of the present invention on a release substrate, A method of drying to produce a functional layer, and transferring the obtained functional layer to the surface of a substrate.
  • the method 1) is particularly preferable because it is easy to control the layer thickness of the functional layer.
  • the method 1) comprises the steps of applying the composition for electrochemical device functional layer on a substrate (application step) and drying the composition for electrochemical device functional layer applied on the substrate Forming a functional layer (drying step).
  • a method of drying the composition for an electrochemical device functional layer on a substrate is not particularly limited, and a known method can be used.
  • a drying method for example, drying by warm air, hot air, low humidity air, vacuum drying, drying by irradiation of infrared rays, electron beams and the like can be mentioned.
  • the properties of the electrochemical functional layer formed by the above-mentioned method are not particularly limited, but the thickness of the functional layer is preferably 0.1 ⁇ m or more, and preferably 0.3 ⁇ m or more. More preferably, the thickness is 0.5 ⁇ m or more, further preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and still more preferably 5 ⁇ m or less. If the thickness of the functional layer is 0.1 ⁇ m or more, the strength of the functional layer can be sufficiently secured. On the other hand, if the thickness of the functional layer is 10 ⁇ m or less, the low temperature output characteristics of the electrochemical device can be improved by keeping the ion diffusivity in the functional layer favorable.
  • the constituent members for an electrochemical element (separator and electrode) provided with the functional layer for an electrochemical element of the present invention are the components other than the functional layer of the present invention and the base described above as long as the effects of the present invention are not significantly impaired. You may have.
  • Such components are not particularly limited, and examples thereof include an electrode mixture layer, a porous membrane layer, and an adhesive layer which do not correspond to the functional layer for an electrochemical device of the present invention.
  • a structural member may be equipped with multiple types of functional layers for electrochemical elements of this invention.
  • the electrode comprises an electrode mixture layer formed from the composition for an electrochemical device functional layer of the present invention on a current collector, and for the electrochemical device functional layer of the present invention on the electrode composite material layer.
  • a porous membrane layer and / or an adhesive layer formed from the composition may be provided.
  • the separator comprises a porous film layer formed from the composition for an electrochemical device functional layer of the present invention on a separator substrate, and for the electrochemical device functional layer of the present invention on the porous film layer.
  • An adhesive layer formed from the composition may be provided.
  • the electrochemical device of the present invention is not particularly limited, and is a lithium ion secondary battery or an electric double layer capacitor, preferably a lithium ion secondary battery.
  • the electrochemical device of the present invention is characterized by including the above-mentioned functional layer for an electrochemical device of the present invention.
  • an electrochemical element is a lithium ion secondary battery
  • the lithium ion secondary battery as an example of the electrochemical device of the present invention comprises a positive electrode, a negative electrode, a separator, and an electrolytic solution, and at least one of the positive electrode, the negative electrode and the separator is for the electrochemical device of the present invention described above It has a functional layer.
  • the lithium ion secondary battery as an electrochemical element of this invention has little volume expansion, and is high performance.
  • At least one of the positive electrode, the negative electrode and the separator used in the lithium ion secondary battery as the electrochemical device of the present invention is a battery member provided with the above-mentioned functional layer for an electrochemical device of the present invention.
  • a positive electrode, a negative electrode, and a separator which are not equipped with the functional layer for electrochemical elements of this invention it does not specifically limit, A well-known positive electrode, a negative electrode, and a separator can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a supporting electrolyte of a lithium ion secondary battery for example, a lithium salt is used.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • the electrolyte may be used alone or in combination of two or more.
  • the lithium ion conductivity tends to be higher as the supporting electrolyte having a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted by the type of the supporting electrolyte.
  • the organic solvent used for the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte, and examples thereof include dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), Carbonates such as butylene carbonate (BC), ethyl methyl carbonate (EMC), vinylene carbonate (VC); esters such as ⁇ -butyrolactone, methyl formate; ethers such as 1,2-dimethoxyethane, tetrahydrofuran; sulfolane, dimethyl carbonate Sulfur-containing compounds such as sulfoxide; and the like are suitably used. Also, a mixture of these solvents may be used.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • Carbonates such as butylene carbonate (BC), ethyl methyl carbonate (EMC), vinylene carbonate (VC); est
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be controlled by the type of the solvent.
  • the concentration of the electrolyte in the electrolyte can be adjusted as appropriate.
  • known additives may be added to the electrolytic solution.
  • the positive electrode and the negative electrode are stacked via a separator, and this is wound, folded, etc. into the battery container, if necessary, placed in the battery container It can manufacture by inject
  • at least one battery member among a positive electrode, a negative electrode, and a separator be a battery member provided with the functional layer for electrochemical elements of this invention.
  • expanded metal, a fuse, an overcurrent preventing element such as a PTC element, a lead plate, and the like may be inserted into the battery container as necessary to prevent pressure increase inside the battery and overcharge and discharge.
  • the shape of the battery may be, for example, a coin, a button, a sheet, a cylinder, a square, or a flat.
  • ⁇ Number average molecular weight> The polymers obtained in the respective Examples and Comparative Examples were dissolved in dimethylformamide to prepare a 1% solution, which was used as a measurement sample. The number average molecular weight of each polymer was determined by GPC measurement using polystyrene as a standard substance and a solution of 0.85 g / mL sodium nitrate in 10% by volume aqueous solution of dimethylformamide as a developing solvent. .
  • HLC-8220GPC (made by Tosoh Corp.) as a GPC measuring device
  • HLC-8320GPCRI detector (made by Tosoh Corp.) as a detector
  • TSKgeISuperHZM-M (made by Tosoh Corp.) as a measurement column
  • measurement temperature 40 degreeC The measurement was performed under the conditions of a developing solvent flow rate of 0.6 mL / min and a sample injection amount of 20 ⁇ L.
  • ⁇ Glass transition temperature> The dispersion containing the binder or organic particles obtained in each of the examples and comparative examples was dried at 50% humidity and an environment of 23 to 25 ° C. for 3 days to obtain a film having a thickness of 1 ⁇ 0.3 mm. .
  • the film was dried in a hot air oven at 120 ° C. for 1 hour. Thereafter, using a dried film as a sample, a differential scanning calorimeter (DSC 6220 SII, manufactured by Nano Technology Co., Ltd.) at a measurement temperature of -100 ° C. to 180 ° C. and a temperature rising rate of 5 ° C./min.
  • the glass transition temperature (° C.) was measured.
  • volume average particle diameter D50 The volume average particle diameter D50 of the binder and the nonconductive particles obtained in each of the examples and the comparative examples was measured using a laser diffraction / light scattering type particle size distribution analyzer (LS230, manufactured by Beckman Coulter, Inc.) .
  • ⁇ Swelling degree to electrolyte> The aqueous dispersion of organic particles obtained in each example and comparative example is coated on a copper foil, dried at 50 ° C. for 20 minutes, at 120 ° C. for 20 minutes, and dried in a hot air drier to obtain a 1 cm ⁇ 1 cm film (thickness : 100 ⁇ m) was produced, and the weight M 0 was measured. Thereafter, the obtained film was immersed in the electrolytic solution at 60 ° C. for 72 hours.
  • the LiPF 6 as an electrolyte was used dissolved in a concentration of 1M.
  • the electrolytic solution on the surface of the film after immersion was wiped off and the weight M1 was measured.
  • the test piece was taken out, the electrolyte adhering to the surface was wiped off, and the test piece was attached to the surface of the electrode with the surface of the electrode (positive electrode or negative electrode) facing down.
  • the cellophane tape was fixed on a horizontal test stand. Further, as the cellophane tape, one defined in JIS Z1522 was used. Thereafter, the stress was measured when one end of the separator was pulled vertically at a tensile speed of 50 mm / min and peeled off.
  • the measurement is performed a total of six times each three times for the laminate including the positive electrode and the separator, and the laminate including the negative electrode and the separator, and the average value of the stress is determined, and the obtained average value is the peel strength of the functional layer. As, it evaluated as follows. A: Peel strength 5.0 N / m or more B: Peel strength 3.0 N / m to 5.0 N / m C: Peel strength 0.5 N / m to 3.0 N / m D: Peel strength 0.5 N / less than m
  • volume change rate ⁇ V (V1 ⁇ V0) / V0 ⁇ 100”.
  • the volume change rate ⁇ V was evaluated based on the following criteria. The smaller the value of the volume change rate ⁇ V, the better the lithium ion secondary battery is in the function of suppressing the volume expansion due to the generation of gas.
  • C Volume change rate ⁇ V is 30% or more and less than 40%.
  • D Volume change rate ⁇ V is 40% or more.
  • the lithium ion secondary battery manufactured in each of the examples and comparative examples was charged at a constant current and constant voltage (CCCV) to 4.3 V in an atmosphere at a temperature of 25 ° C. to prepare a cell.
  • Example 1 Preparation of Polymer> After nitrogen-substituting the inside of a glass reactor with a stirrer, methoxy polyethylene glycol acrylate as a monomer containing an oxide structure (manufactured by Shin-Nakamura Chemical Co., Ltd., “methoxy polyethylene glycol # 550 acrylate”, R 1 : ethylene group, n: 13 7.1 g, 2.9 g of 2-ethylhexyl acrylate (2-EHA) as another monomer, and 100.0 g of toluene were added into the reactor and heated at 80 ° C.
  • methoxy polyethylene glycol acrylate as a monomer containing an oxide structure (manufactured by Shin-Nakamura Chemical Co., Ltd., “methoxy polyethylene glycol # 550 acrylate”, R 1 : ethylene group, n: 13 7.1 g, 2.9 g of 2-ethylhexyl acrylate (2-EHA) as another monomer
  • a mixture of 0.3 part of dodecyl mercaptan and 0.3 part of sodium lauryl sulfate as an emulsifier was added to the pressure container B at the same time as the addition of the mixture was started, and at the same time the pressure resistance of 1 part of potassium persulfate as a polymerization initiator Addition to vessel B was started and polymerization was started.
  • the reaction temperature was maintained at 75 ° C.
  • An acrylic polymer having a core-shell structure was prepared as organic particles.
  • One part of sodium benzenesulfonate, 150 parts of ion exchange water, and 0.5 parts of potassium persulfate as a polymerization initiator were added and sufficiently stirred, and then heated to 60 ° C. to start polymerization.
  • Non-Conductive Particle Slurry Composition 86 parts of alumina (manufactured by Sumitomo Chemical Co., Ltd., product name “AKP3000”, volume average particle diameter D50: 0.5 ⁇ m) as inorganic particles and 14 parts of the organic particles obtained by the above operation were mixed. At this time, the ratio of the organic particles to the nonconductive particles in which the inorganic particles (alumina) and the organic particles were combined was 40% by volume. Furthermore, 5 parts of a binder, 1.5 parts of polyacrylamide as a thickener, and poly as a dispersant with respect to 100 parts of non-conductive particles in which the inorganic particles (alumina) and the organic particles are combined. A non-conductive particle slurry composition was prepared by adding 0.8 parts of acrylic acid, adding ion exchange water so that the solid concentration would be 15%, and mixing using a ball mill.
  • composition for electrochemical device functional layer ⁇ Preparation of composition for electrochemical device functional layer>
  • the nonconductive particle slurry composition and the polymer A were mixed in a stirring vessel such that the addition amount of the polymer A was 10 parts in terms of solid content with respect to 100 parts of the nonconductive particles.
  • the mixture was further diluted with ion exchanged water to obtain a composition for an electrochemical device functional layer with a solid content concentration of 10%.
  • separator with functional layer for electrochemical device The composition for an electrochemical device functional layer was applied onto a separator (made of polypropylene, product name “Celgard 2500”) substrate, and dried at 50 ° C. for 3 minutes. This operation was performed on both sides of the separator substrate to obtain a separator (a separator with a functional layer for an electrochemical element) having a functional layer for an electrochemical element having a thickness of 5 ⁇ m on both sides.
  • SBR negative electrode mixture layer
  • a 5% aqueous solution of sodium hydroxide was added to the mixture containing the binder for the negative electrode mixture layer to adjust to pH 8, and unreacted monomers were removed by heating under reduced pressure and distillation. Then, it cooled to 30 degrees C or less, and obtained the aqueous dispersion containing the binder for desired negative mix layers.
  • 100 parts of artificial graphite (volume average particle diameter: 15.6 ⁇ m) as a negative electrode active material 1 part of a 2% aqueous solution of carboxymethylcellulose sodium salt (“MAC 350 HC” manufactured by Nippon Paper Industries Co., Ltd.) as a viscosity modifier
  • the mixture was mixed with deionized water to adjust the solid concentration to 68%, and the mixture was further mixed at 25 ° C.
  • the solid concentration was adjusted to 62% with ion-exchanged water, and further mixed at 25 ° C. for 15 minutes.
  • the slurry was defoamed under reduced pressure to obtain a slurry composition for a secondary battery negative electrode having good fluidity.
  • the obtained slurry composition for lithium ion secondary battery negative electrode is applied by a comma coater on a 20 ⁇ m thick copper foil as a current collector so that the film thickness after drying becomes about 150 ⁇ m, and dried. I did.
  • This drying was performed by conveying the copper foil at a speed of 0.5 m / min for 2 minutes in an oven at 60 ° C. Then, it heat-processed at 120 degreeC for 2 minutes, and obtained the negative electrode original fabric before a press.
  • the negative electrode material sheet before this pressing was rolled by a roll press to obtain a pressed negative electrode having a thickness of the negative electrode mixture layer of 80 ⁇ m.
  • the obtained slurry composition for lithium ion secondary battery positive electrode is applied by a comma coater on a 20 ⁇ m thick aluminum foil as a current collector so that the film thickness after drying becomes about 150 ⁇ m, and dried. I did.
  • This drying was performed by conveying the aluminum foil at a speed of 0.5 m / min for 2 minutes in an oven at 60 ° C. Then, it heat-processed at 120 degreeC for 2 minutes, and obtained the positive electrode original fabric before a press. By rolling the positive electrode material sheet before the pressing with a roll press, a positive electrode after pressing including the positive electrode mixture layer was obtained.
  • the obtained positive electrode after pressing is cut out into a 49 cm ⁇ 5 cm rectangle, placed with the surface on the positive electrode mixture layer side facing up, and the separator cut into 120 cm ⁇ 5.5 cm on the positive electrode mixture layer is Were placed on the left side of the separator in the longitudinal direction. Furthermore, the negative electrode after pressing is cut into a rectangle of 50 ⁇ 5.2 cm, and the negative electrode is positioned on the separator on the right side in the longitudinal direction of the separator so that the surface on the negative electrode mixture layer side faces the separator. Arranged as. Then, the obtained laminate was wound by a winding machine to obtain a wound body.
  • the volume change and low temperature output characteristics of the cell were evaluated using the obtained lithium ion secondary battery. The results are shown in Table 1.
  • Example 2 At the time of preparation of the polymer, as an oxide structure-containing monomer, methoxy polyethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., “methoxy polyethylene glycol # 550 acrylate”, R 1 : ethylene group, n: 13) is replaced with polypropylene glycol mono Polymer A, binder, organic particles in the same manner as in Example 1 except that acrylate (manufactured by NOF Corporation, “Blenmer AP series AP-800”, R 1 : propylene group, n: 13) was used.
  • a non-conductive particle slurry composition, a composition for an electrochemical device functional layer, a separator with a functional layer for an electrochemical device, a negative electrode, a positive electrode, and a lithium ion secondary battery were manufactured, and the same items were evaluated. The results are shown in Table 1.
  • Example 3 In the same manner as in Example 2 except that acrylonitrile (AN) was used as the other monomer in place of 2-EHA at the time of preparation of polymer A, polymer A, a binder, organic particles, non-polymer A conductive particle slurry composition, a composition for an electrochemical device functional layer, a separator with a functional layer for an electrochemical device, a negative electrode, a positive electrode, and a lithium ion secondary battery were manufactured, and the same items were evaluated. The results are shown in Table 1.
  • Example 4 At the time of preparation of the polymer A, as an oxide structure-containing monomer, methoxy polyethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., “methoxy polyethylene glycol # 550 acrylate”, R 1 : propylene group, n: 13) is polystyrene glycol The procedure of Example 1 was repeated except that monoacrylate (R 1 : phenylethylene group, n: 13) was used, and methacrylic acid (MAA) was used in place of 2-EHA as the other monomer.
  • monoacrylate R 1 : phenylethylene group, n: 13
  • MAA methacrylic acid
  • Example 5 At the time of preparation of polymer A, the addition amount of methoxy polyethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., “methoxy polyethylene glycol # 550 acrylate”, R 1 : propylene group, n: 13) as an oxide structure-containing monomer is 7 Example 1 except that 1 g is changed to 10 g, 2-EHA as another monomer is not added, and the addition amount of ammonium persulfate as a polymerization initiator is changed from 0.1 g to 1.9 g Polymer A, binder, organic particles, non-conductive particle slurry composition, composition for electrochemical device functional layer, separator with functional layer for electrochemical device, negative electrode, positive electrode, and lithium ion The following battery was manufactured and evaluated about the same item. The results are shown in Table 1.
  • Example 1 is the same as Example 1 except that the amount is changed from 0.08 g (Example 6) to 0.09 g (Example 7), 0.15 g (Example 8), and 0.17 g (Example 9), respectively.
  • Polymer A, binder, organic Child, nonconductive particle slurry composition, electrochemical device functional layer composition, functional layers with separators for an electrochemical device to produce a negative electrode, positive electrode, and a lithium ion secondary battery was evaluated for the same items. The results are shown in Table 1.
  • Example 10 At the time of preparation of the polymer A, polyethylene glycol is substituted for methoxy polyethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., “methoxy polyethylene glycol # 550 acrylate”, R 1 : ethylene group, n: 13) as an oxide structure-containing monomer Polymer A, binder, organic substance in the same manner as in Example 1 except that monoacrylate (“Blenmer AE series AE-90”, manufactured by NOF Corporation, R 1 : ethylene group, n: 2) was used.
  • monoacrylate (“Blenmer AE series AE-90”, manufactured by NOF Corporation, R 1 : ethylene group, n: 2) was used.
  • a particle, a nonconductive particle slurry composition, a composition for electrochemical device functional layer, a separator with a functional layer for electrochemical device, a negative electrode, a positive electrode, and a lithium ion secondary battery were manufactured, and the same items were evaluated. The results are shown in Table 1.
  • methoxy polyethylene glycol acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., “methoxy polyethylene glycol # 550 acrylate”, R 1 : ethylene group, n: 13
  • methoxy polyethylene glycol # 550 acrylate R 1 : ethylene group, n: 13
  • glycol # 1000 methacrylate manufactured by Shin-Nakamura Chemical Co., Ltd., R 1 : ethylene group, n: 23
  • a slurry composition, a composition for an electrochemical device functional layer, a separator with a functional layer for an electrochemical device, a negative electrode, a positive electrode, and a lithium ion secondary battery were manufactured, and the same items were evaluated. The results are shown in Table 1.
  • Example 12 At the time of preparation of the polymer A, in Example 12, the polymerization temperature was changed from 80 ° C. to 70 ° C., and in Example 13, the addition amount of ammonium persulfate as a polymerization initiator was changed from 0.1 g to 0.11 g.
  • Polymer A, a binder, an organic particle, a nonconductive particle slurry composition, a composition for an electrochemical device functional layer, a separator with a functional layer for an electrochemical device, an anode , Positive electrodes, and lithium ion secondary batteries were manufactured and evaluated for the same items. The results are shown in Table 1.
  • Example 14 70 parts of ion-exchanged water, 0.15 parts of sodium lauryl sulfate (product name "Emar 2F” manufactured by Kao Chemical Co., Ltd.) as an emulsifier, and ammonium ammonium persulfate in a reactor equipped with a stirrer when preparing a binder 0.5 parts were respectively supplied, the gas phase part was substituted by nitrogen gas, and it heated up at 60 degreeC.
  • sodium lauryl sulfate product name "Emar 2F” manufactured by Kao Chemical Co., Ltd.
  • Example 15 Example 1 except that in the preparation of the nonconductive particle slurry composition, the addition amount of the inorganic particles (alumina) was changed to 86 parts and then 0 parts, and the addition amount of the organic particles was changed to 14 parts and was changed to 100 parts.
  • Polymer A, binder, organic particles, non-conductive particle slurry composition, composition for electrochemical device functional layer, separator with functional layer for electrochemical device, negative electrode, positive electrode, and lithium ion The following battery was manufactured and evaluated about the same item. The results are shown in Table 1.
  • Example 16 As the organic particles, polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP, manufactured by SIGMA-ALDRICH) is used in place of the acrylic polymer prepared in Example 1 for an electrochemical device functional layer
  • Table 1 The results are shown in Table 1.
  • Example 17 100 parts of polymer A in the composition for electrochemical element functional layer, 5 parts of binder added, 0 parts of organic particles added, and 0 parts of inorganic particles added
  • the method of preparing the nonconductive particle slurry composition and the composition for the electrochemical device functional layer is changed, and further, the polymer A, the binder, the nonconductive particle slurry composition and the composition for the electrochemical device functional layer
  • the negative electrode, and the positive electrode were manufactured.
  • composition for an electrochemical device functional layer is applied to the negative electrode composite material layer surface of the obtained negative electrode, dried at 50 ° C. for 3 minutes, and a 0.1 ⁇ m thick electrochemical device functional layer is provided on one side of the negative electrode.
  • a negative electrode (a negative electrode with a functional layer for an electrochemical element) was obtained.
  • a lithium ion secondary battery is manufactured in the same manner as in Example 1 except that the negative electrode with a functional layer for an electrochemical element is used and a separator not having the functional layer for an electrochemical element is used, and the same items are also included. Was rated. The results are shown in Table 1.
  • Example 18 Polymer A, non-conductive particle slurry composition, for an electrochemical element functional layer in the same manner as in Example 17 except that PVdF (manufactured by Kureha, product name "# 7208") was used as a binder.
  • the composition, the negative electrode, and the positive electrode were manufactured. Furthermore, the composition for an electrochemical device functional layer is applied to the positive electrode active material layer surface of the obtained positive electrode, dried at 50 ° C. for 3 minutes, and a 0.1 ⁇ m thick electrochemical device functional layer is provided on one side of the positive electrode.
  • the positive electrode positive electrode with functional layer for electrochemical device was obtained.
  • a lithium ion secondary battery is manufactured in the same manner as in Example 1 except that the positive electrode with the functional layer for an electrochemical element is used and a separator without the functional layer for an electrochemical element is used, and the same items are also included. Was rated. The results are shown in Table 1.
  • Example 2 Polymer A, binder, organic particles, in the same manner as in Example 1, except that methyl methacrylate (MMA) was used as the other monomer instead of 2-EHA when preparing polymer A.
  • a non-conductive particle slurry composition, a composition for an electrochemical device functional layer, a separator with a functional layer for an electrochemical device, a negative electrode, a positive electrode, and a lithium ion secondary battery were manufactured, and the same items were evaluated. The results are shown in Table 1.
  • Binder organic particles, nonconductive particle slurry composition, electrochemical element functional layer in the same manner as in Example 1 except that polyvinyl alcohol (PVA, number average molecular weight: 10000) was used as polymer A.
  • PVA number average molecular weight: 10000
  • Composition, a separator with a functional layer for an electrochemical element, a negative electrode, a positive electrode, and a lithium ion secondary battery were manufactured, and the same items were evaluated. The results are shown in Table 1.
  • a composition for an electrochemical device functional layer containing polymer A having a predetermined oxide structure-containing monomer unit and having a number average molecular weight within a predetermined value range, and a solvent is used. It is understood that in Examples 1 to 18 in which the invention is applied, a lithium ion secondary battery in which the volume expansion is well suppressed can be obtained. In addition, the functional layer for electrochemical elements formed using the said composition for electrochemical element functional layers is excellent also in peel strength. On the other hand, in Comparative Example 1 in which the number average molecular weight of the polymer A exceeds the range of the predetermined value, it is found that the lithium ion secondary battery is significantly inferior in the function of suppressing the volume expansion.
  • the functional layer for an electrochemical element of Comparative Example 1 is inferior also in peel strength.
  • Comparative Example 2 in which the number average molecular weight of the polymer A is less than the range of the predetermined value, it can be seen that the functional layer for an electrochemical element is significantly inferior in peel strength.
  • the lithium ion secondary battery of Comparative Example 2 is inferior also in the function of suppressing the volume expansion.
  • Comparative Example 3 using the polymer A having no predetermined oxide structure-containing monomer unit, it is found that the lithium ion secondary battery is significantly inferior in the function of suppressing the volume expansion.
  • the present invention it is possible to provide a composition for an electrochemical device functional layer which can provide an electrochemical device having a small volume expansion. And according to the present invention, it is possible to provide an electrochemical device functional layer capable of providing an electrochemical device with less volume expansion, and an electrochemical device provided with the electrochemical device functional layer and having a small volume expansion. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

本発明は、体積膨張が少ない電気化学素子を提供可能な電気化学素子機能層用組成物を提供することを目的とする。本発明の電気化学素子機能層用組成物は、オキサイド構造含有単量体単位を有する重合体および溶媒を含む電気化学素子機能層用組成物であって、前記オキサイド構造含有単量体単位が下記式(I)(式中、R1は置換基を有し得るアルキレン基を表し、nは正の整数である。)で示される構造を有し、前記重合体の数平均分子量が5000以上15000以下である。

Description

電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子
 本発明は、電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子に関するものである。
 リチウムイオン二次電池や電気二重層キャパシタなどの電気化学素子は、小型で軽量、且つ、エネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして、電気化学素子は、一般に、正極、負極、および、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレーターなどの構成部材を備えている。
 ここで、電気化学素子の構成部材としては、結着材を含み、任意に、構成部材に所望の機能を発揮させるために配合されている粒子(以下、「機能性粒子」という。)を含んでなる機能層を備える部材が使用されている。
 具体的に、電気化学素子のセパレーターとしては、セパレーター基材の上に、結着材を含む接着層や、結着材と機能性粒子としての非導電性粒子とを含む多孔膜層を備えるセパレーターが使用されている。また、電気化学素子の電極としては、集電体の上に、結着材と機能性粒子としての電極活物質粒子とを含む電極合材層を備える電極や、集電体上に電極合材層を備える電極基材の上に、さらに上述の接着層や多孔膜層を備える電極が使用されている。
 そして、近年、電気化学素子の更なる高性能化を目的として、機能層の改良が盛んに行われている(例えば、特許文献1参照)。
 具体的には、特許文献1では、水溶液に溶解可能な結着材と、エチレンオキサイド単位あるいはプロピレンオキサイド単位を有し、且つ、数平均分子量が2万~400万である高分子材料とを含む負極材料を用いることで、少量の結着材で負極材料を集電体に結着させることを可能にし、高容量で充放電サイクル特性に優れた非水系二次電池を提供することが提案されている。
特開2005-25963号公報
 しかし、上記従来の高分子材料を用いた機能層には、機能層に保持される水分量が増加し、水と電解液との反応によりガスが発生して、電気化学素子の体積膨張が生じるという問題があった。
 そこで、本発明は、体積膨張が少ない電気化学素子を提供可能な電気化学素子機能層用組成物を提供することを目的とする。
 また、本発明は、体積膨張が少ない電気化学素子を提供可能な電気化学素子用機能層、および、当該電気化学素子用機能層を備え、体積膨張が少ない電気化学素子を提供することを目的とする。
 本発明者は上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、所定のオキサイド構造含有単量体単位を有する重合体および溶媒を含む電気化学素子機能層用組成物であって、前記重合体の数平均分子量が5000以上15000以下である、電気化学素子機能層用組成物を用いることで、体積膨張が少ない電気化学素子が得られることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子機能層用組成物は、オキサイド構造含有単量体単位を有する重合体および溶媒を含む電気化学素子機能層用組成物であって、前記オキサイド構造含有単量体単位が下記式(I):
Figure JPOXMLDOC01-appb-C000002
(式中、Rは置換基を有し得るアルキレン基を表し、nは正の整数である。)で示される構造を有し、前記重合体の数平均分子量が5000以上15000以下であることを特徴とする。このように、上述した所定のオキサイド構造含有単量体単位を有する重合体および溶媒を含み、且つ、前記重合体の数平均分子量が上述した値の範囲内である電気化学素子機能層用組成物を用いれば、体積膨張が少ない電気化学素子を得ることができる。
 なお、本発明において、前記重合体の数平均分子量は、本明細書の実施例に記載の方法を用いて測定することができる。
 ここで、本発明の電気化学素子機能層用組成物は、前記Rが、エチレン基、プロピレン基、およびフェニルエチレン基からなる群から選択される1つであることが好ましい。前記Rが、エチレン基、プロピレン基、およびフェニルエチレン基からなる群から選択される1つであれば、電気化学素子の体積膨張を更に抑制することができると共に、電気化学素子用機能層のピール強度を高めることができる。
 また、本発明の電気化学素子機能層用組成物は、前記nが2以上30以下の整数であることが好ましい。前記nが2以上30以下の整数であれば、電気化学素子の体積膨張を更に抑制することができると共に、電気化学素子用機能層のピール強度を高めることができる。
 なお、本発明において、前記nは、核磁器共鳴(NMR)法による測定により求めることができる。
 さらに、本発明の電気化学素子機能層用組成物は、前記重合体における前記オキサイド構造含有単量体単位の割合が20モル%以上80モル%以下であることが好ましい。前記重合体がオキサイド構造含有単量体単位を上述した値の範囲内で有すれば、電気化学素子の体積膨張を更に抑制することができると共に、電気化学素子用機能層のピール強度を高めることができる。さらに、電気化学素子の低温出力特性を向上させることもできる。
 なお、本発明において、重合体におけるオキサイド構造含有単量体単位の割合は核磁器共鳴(NMR)法により測定することができる。
 また、本発明の電気化学素子機能層用組成物は、前記重合体が共重合体であることが好ましい。このように、前記重合体が共重合体であれば、電気化学素子用機能層に2種類以上の単量体に由来する多様な機能を付与することができる。
 また、本発明の電気化学素子機能層用組成物は、さらに非導電性粒子を含むことが好ましい。このように、電気化学素子機能層用組成物がさらに非導電性粒子を含めば、当該非導電性粒子に由来する多様な機能を電気化学素子用機能層に付与することで、電気化学素子の電気的特性を良好に向上させることができる。
 なお、本発明の電気化学素子機能層用組成物は、前記非導電性粒子が、無機粒子および有機粒子の少なくとも一方を含むことが好ましい。
 さらに、本発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子用機能層は、上述した電気化学素子機能層用組成物から形成されることを特徴とする。当該機能層は、体積膨張が少ない電気化学素子を提供可能である。
 また、本発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子は、上述した電気化学素子用機能層を備えることを特徴とする。当該電気化学素子は、体積膨張が少なく、高性能である。
 本発明の電気化学素子機能層用組成物によれば、体積膨張の少ない電気化学素子を提供することができる。
 そして、本発明によれば、体積膨張の少ない電気化学素子を提供可能な電気化学素子用機能層、および、当該電気化学素子用機能層を備え、体積膨張の少ない電気化学素子を提供することができる。
 以下に、本発明の実施形態について詳細に説明する。
 ここで、本発明の電気化学素子機能層用組成物は、電気化学素子内において電子の授受、または補強、もしくは接着等の機能を担う、任意の機能層(例えば、電極合材層、多孔膜層および接着層など)の形成に用いることができる。さらに、本発明の電気化学素子用機能層は、本発明の電気化学素子機能層用組成物から形成される。そして、本発明の電気化学素子は、本発明の電気化学素子用機能層を備える。
(電気化学素子機能層用組成物)
 本発明の電気化学素子機能層用組成物は、オキサイド構造含有単量体単位を有する重合体および溶媒を含み、任意に、結着材、非導電性粒子、電極活物質粒子、および機能層に含有され得るその他の成分(添加剤など)からなる群より選択される少なくとも一種をさらに含有するスラリー組成物である。
 本発明の電気化学素子機能用組成物を使用することで、体積膨張の少ない電気化学素子が提供される。
<オキサイド構造含有単量体単位を有する重合体>
 オキサイド構造含有単量体単位を有する重合体(以下、単に「重合体」と称することがある。)は、少なくともオキサイド構造含有単量体単位を含み、任意にその他の単量体単位をさらに含み得る。
 なお、本発明において「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味する。
 以下、本発明の電気化学素子機能層用組成物に用いられるオキサイド構造含有単量体単位を有する重合体について詳述する。
[オキサイド構造含有単量体単位]
 オキサイド構造含有単量体単位は、下記式(I):
Figure JPOXMLDOC01-appb-C000003
(式中、Rは置換基を有し得るアルキレン基を表し、nは正の整数である。)で示される構造を有する。
 ここで、アルキレン基としては特に限定されることはなく、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デカニレン基などの炭素数1~10の直鎖状または分岐状のアルキレン基が挙げられる。中でも、アルキレン基としては、エチレン基またはプロピレン基が好ましい。
 また、置換基としては、特に限定されることはなく、例えば、アルキル基以外の置換基、具体的には、ヒドロキシル基;シアノ基;アミノ基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、プロポキシ基等の炭素数1~10のアルコキシ基;ニトロ基;シクロプロピル基、シクロヘキシル基等の炭素数3~10のシクロアルキル基;および、フェニル基、ナフチル基等のアリール基などが挙げられる。中でも、任意の置換基としては、フェニル基が好ましい。
 上記式(I)中のRとしては、特に限定されることはなく、上述した置換基を有し得る、炭素数1~10の直鎖状または分岐状のアルキレン基などが挙げられる。そして、上記式(I)中のRは、エチレン基、プロピレン基、およびフェニルエチレン基からなる群から選択される1つであることが好ましく、エチレン基であることがより好ましい。Rが、エチレン基、プロピレン基、およびフェニルエチレン基からなる群から選択される1つであれば、電気化学素子の体積膨張を更に抑制することができると共に、電気化学素子用機能層のピール強度を高めることができる。さらに、Rがエチレン基であれば、電気化学素子の低温出力特性を高めることができる。
 ここで、上記式(I)中のnは、2以上であることが好ましく、3以上であることがより好ましく、4以上であることが更に好ましく、13以上であることが一層好ましく、30以下であることが好ましく、23以下であることがより好ましく、20以下であることが更に好ましく、15以下であることが一層好ましい。前記nが2以上であれば、重合体の電解液への溶出が抑制されるため、電気化学素子用機能層のピール強度を高く保つことができる。一方、前記nが30以下であれば、電気化学素子用機能層の吸水量を少なくし、電解液と水との反応によるガス発生を抑制して、電気化学素子の体積膨張を更に抑制することができる。
 なお、上記式(I)中のnが2以上である場合、オキサイド構造含有単量体単位に含まれる複数(n個)のRは、全て同じ構造を有していてもよいし、少なくとも一部が異なる構造を有していてもよいものとする。
 上述したオキサイド構造含有単量体単位を形成し得る単量体としては、特に限定されることはなく、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、ペンチレンオキサイド、へキシレンオキサイド、ヘプチレンオキサイド、オクチレンオキサイド、ノニレンオキサイド、デカニレンオキサイドなどの炭素数1~10の直鎖状または分岐状のアルキレンオキサイドおよびそれらの誘導体などが挙げられる。誘導体としては、置換基を有するアルキレンオキサイドが挙げられる。置換基としては、上記Rのアルキレン基が有し得る置換基と同様の置換基が挙げられる。
 また、上述したオキサイド構造含有単量体単位を形成し得る単量体としては、下記式(II):
Figure JPOXMLDOC01-appb-C000004
(式中、Rは上記の通り、XおよびYの一方は(メタ)アクリロイル基、他方は水素原子、(メタ)アクリロイル基または(メタ)アクリロイル基以外の置換基を表し、nは正の整数である。)で示される単量体も挙げられる。
 なお、上記式(II)中のnは、上述した式(I)中のnと同様、2以上であることが好ましく、3以上であることがより好ましく、4以上であることが更に好ましく、13以上であることが一層好ましく、30以下であることが好ましく、23以下であることがより好ましく、20以下であることが更に好ましく、15以下であることが一層好ましい。
 また、上記式(II)において、XまたはYのいずれか一方が(メタ)アクリロイル基以外の置換基である場合、当該置換基は、特に限定されることはなく、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などの炭素数1~10の直鎖状または分岐状のアルキル基などであり得る。
 なお、本発明において、「(メタ)アクリロイル基」とは、アクリロイル基および/またはメタクリロイル基を意味する。
 上記式(II)で示される単量体の具体例としては、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリスチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、メトキシポリスチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリスチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリスチレングリコールジ(メタ)アクリレートなどが挙げられる。
 なお、本発明において「(メタ)アクリレート」とは、アクリレートおよび/またはメタクリレートを意味する。
 重合体におけるオキサイド構造含有単量体単位の割合は、特に限定されず、100モル%であってもよいが、20モル%以上であることが好ましく、25モル%以上であることがより好ましく、30モル%以上であることが更に好ましく、80モル%以下であることが好ましい。重合体におけるオキサイド構造含有単量体単位の割合が20モル%以上であれば、重合体の電解液への溶出が抑制されるため、電気化学素子用機能層のピール強度を高く保つことができる。さらに、電気化学素子の低温出力特性を向上させることもできる。一方、重合体におけるオキサイド構造含有単量体単位の割合が80モル%以下であれば、電気化学素子用機能層の吸水量を少なくし、電解液と水との反応によるガス発生を抑制して、電気化学素子の体積膨張を更に抑制することができる。
[その他の単量体単位]
 重合体は、上述したオキサイド構造含有単量体単位以外のその他の単量体単位を含んでいてもよい。そのようなその他の単量体単位を形成しうる単量体としては、オキサイド構造を含有しなければ、特に限定されることはなく、例えば、(メタ)アクリル酸アルキルエステル単量体、(メタ)アクリロニトリル、酸性基含有単量体などが挙げられる。
 なお、本発明において、「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味し、「(メタ)アクリロニトリル」とは、アクリロニトリルおよび/またはメタクリロニトリルを意味する。
 ここで、(メタ)アクリル酸アルキルエステル単量体としては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、2-エチルヘキシルアクリレートなどのオクチルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、2-エチルヘキシルメタクリレートなどのオクチルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステル;などが挙げられる。
 また、酸性基含有単量体としては、例えば、カルボン酸基含有単量体、スルホン酸基含有単量体、およびリン酸基含有単量体が挙げられる。
 そして、カルボン酸基含有単量体としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸モノエステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 また、カルボン酸基含有単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 また、スルホン酸基含有単量体としては、例えば、スチレンスルホン酸、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリルおよび/またはメタリルを意味する。
 さらに、リン酸基含有単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチル、などが挙げられる。
[重合体の調製]
 重合体は、上述したオキサイド構造含有単量体と任意のその他の単量体とを含む組成物を重合することにより調製される。
 ここで、単量体組成物中の各単量体の含有割合は、通常、所望の重合体における単量体単位の割合と同様にする。
 重合体の重合様式は、特に限定はされず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とする。
[重合体の性状]
 重合体の数平均分子量は5000以上であることが必要であり、5500以上であることが好ましく、6000以上であることがより好ましく、6200以上であることが更に好ましい。また、当該数平均分子量は、15000以下であることが必要であり、14000以下であることが好ましく、12000以下であることがより好ましく、10800以下であることが更に好ましい。重合体の数平均分子量が5000以上であれば、重合体の電解液への溶出が抑制されるため、電気化学素子用機能層のピール強度を高く保つことができる。一方、当該数平均分子量が15000以下であれば、電気化学素子用機能層の吸水量を少なくし、電解液と水との反応によるガス発生を抑制して、電気化学素子の体積膨張を更に抑制することができる。
 また、重合体は、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリスチレングリコールなどの単独重合体であってもよいし、共重合体であってもよいが、共重合体であることが好ましい。重合体が共重合体であれば、電気化学素子用機能層に2種類以上の単量体に由来する多様な機能を付与することができる。
 なお、重合体は、通常水溶性である。ここで、水溶性とは、温度50℃において重合体0.5gを100gの水に溶解した際に、不溶解分が10.0質量%未満となることをいう。
[重合体の添加量]
 本発明の電気化学素子機能層用組成物における重合体の添加量は、特に限定されないが、後述する非導電性粒子100質量部に対して、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることが更に好ましく、90質量部以下であることが好ましく、80質量部以下であることがより好ましく、50質量部以下であることが更に好ましい。非導電性粒子100質量部に対する重合体の添加量が1質量部以上であれば、電気化学素子用機能層のピール強度を高く保つことができる。一方、当該重合体の添加量が90質量部以下であれば、電気化学素子用機能層の吸水量を少なくし、電解液と水との反応によるガス発生を抑制して、電気化学素子の体積膨張を更に抑制することができる。
<結着材>
 結着材は、本発明の電気化学素子機能層用組成物を用いて形成した電気化学素子用機能層中において、非導電性粒子等の成分を結着する成分として機能し得る。
 そして、本発明の電気化学素子機能層用組成物に用いられる結着材としては、既知の結着材を用いることができるが、当該結着材は、上述した重合体や、後述する非導電性粒子として使用される有機粒子とは異なる成分である。
 結着材としては、例えば、機能層の配設位置に応じて、ポリビニリデンフルオライド(PVdF)等のフッ素系重合体(フッ素含有単量体単位を主として含む重合体);スチレン-ブタジエン共重合体(SBR)等の脂肪族共役ジエン/芳香族ビニル系共重合体(脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を主として含む重合体)およびその水素化物;ブタジエン-アクリロニトリル共重合体(NBR)等の脂肪族共役ジエン/アクリロニトリル系共重合体およびその水素化物;ならびにポリビニルアルコール(PVA)等のポリビニルアルコール系重合体などを用いることができる。
 ここで、上記各種単量体単位を形成し得る各種単量体としては、既知のものを使用することができる。なお、本発明において、1種または複数種の単量体単位を「主として含む」とは、「重合体に含有される全単量体単位の量を100質量%とした場合に、当該1種の単量体単位の含有割合、または当該複数種の単量体単位の含有割合の合計が50質量%を超える」ことを意味する。
[結着材の調製]
 結着材の調製方法としては、特に限定されることはないが、例えば、各種単量体単位を形成し得る単量体を含む単量体組成物を重合することにより調製される。重合様式としては、特に限定はされず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とする。
[結着材の性状]
 結着材の性状としては、特に限定されることはないが、結着材のガラス転移温度は-75℃以上であることが好ましく、-55℃以上であることがより好ましく、-35℃以上であることが更に好ましく、5℃以下であることが好ましく、0℃以下であることがより好ましい。結着材のガラス転移温度が上述した値の範囲内であれば、本発明の電気化学素子機能層用組成物を用いて形成した機能層の柔軟性、捲回性および結着性などの特性が好適に保たれる。
 なお、結着材のガラス転移温度は、本明細書の実施例に記載の測定方法を用いて測定することができる。
 また、結着材が粒子状である場合、結着材の分散性を高める観点から、当該結着材の体積平均粒子径D50は、0.1μm以上であることが好ましく、0.5μm以下であることが好ましく、0.45μm以下であることがより好ましく、0.4μm以下であることが更に好ましい。
 なお、結着材の体積平均粒子径D50は、本明細書の実施例に記載の測定方法を用いて測定することができる。
 なお、結着材は、通常非水溶性である。ここで、非水溶性とは、温度50℃において重合体0.5gを100gの水に溶解した際に、不溶解分が50.0質量%以上となることをいう。
[結着材の添加量]
 本発明の電気化学素子機能層用組成物における結着材の添加量は、特に限定されることはないが、非導電性粒子100質量部に対して0.1質量部以上であることが好ましく、0.2質量部以上であることがより好ましく、0.5質量部以上であることが更に好ましく、20質量部以下であることが好ましく、15質量部以下であることがより好ましく、10質量部以下であることが更に好ましい。
<非導電性粒子>
 非導電性粒子としては、特に限定されることなく、電気化学素子に用いられる既知の非導電性粒子を挙げることができる。
 非導電性粒子の添加量は、電気化学素子機能層用組成物中の固形分換算で10質量%以上であることが好ましく、20質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、99質量%以下であることが好ましく、97質量%以下であることがより好ましく、95質量%以下であることが更に好ましい。電気化学素子機能層用組成物が非導電性粒子を含めば、当該導電性粒子に由来する多様な機能を電気化学素子用機能層に付与することで、電気化学素子の電気的特性を良好に向上させることができる。
 ここで、非導電性粒子としては、無機粒子および有機粒子の少なくとも一方を用いることができ、無機粒子および有機粒子の両方を用いることが好ましい。
 以下に非導電性粒子として用いられる無機粒子および有機粒子について詳述する。
[無機粒子]
 無機粒子としては、例えば、酸化アルミニウム(アルミナ)、水和アルミニウム酸化物(ベーマイト)、酸化ケイ素、酸化マグネシウム(マグネシア)、酸化カルシウム、酸化チタン(チタニア)、BaTiO、ZrO、アルミナ-シリカ複合酸化物等の酸化物粒子;窒化アルミニウム、窒化ホウ素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイト等の粘土微粒子;などが挙げられる。中でも、アルミナ、ベーマイト、酸化チタン、および硫酸バリウムを用いることが好ましい。なお、上述した無機粒子は1種類を単独で、または、2種類以上を組み合わせて用いることができる。
 電気化学素子機能層用組成物が非導電性粒子として無機粒子を含めば、電気化学素子用機能層の強度や耐熱性を向上させることができる。
―無機粒子の物性―
 無機粒子の物性としては、特に限定されることはないが、無機粒子の体積平均粒子径D50が0.1μm以上であることが好ましく、0.2μm以上であるこがより好ましく、0.3μm以上であることが更に好ましく、1μm以下であることが好ましく、0.9μm以下であることがより好ましく、0.8μm以下であることが更に好ましい。無機粒子の体積平均粒子径D50が0.1μm以上であれば、機能層のイオン伝導性の低下が抑制され、電気化学素子の電気的特性、特に出力特性を向上させることができる。一方、当該体積平均粒子径D50が1μm以下であれば、機能層に良好な接着機能を発揮させることができる。さらに、体積平均粒子径D50が1μm以下である無機粒子を用いれば、機能層の厚みを薄くしても、優れた保護機能を発揮する機能層が得られるため、電気化学素子を高容量化することができる。
 なお、無機粒子の体積平均粒子径D50は、本明細書の実施例に記載の測定方法を用いて測定することができる。
―無機粒子の添加量―
 無機粒子の添加量としては、特に限定されることはないが、非導電性粒子の総添加量100質量部に対して80質量部以上99質量部以下であることが好ましい。
[有機粒子]
 有機粒子としては、上述した重合体および結着剤と異なるものであれば、特に限定されることはなく、例えば、ポリビニリデンフルオライド-ヘキサフルオロプロピレン(PVdF-HFP)共重合体等のフッ素系重合体(フッ素含有単量体単位を主として含む重合体);およびアクリル系重合体((メタ)アクリル酸アルキルエステル単量体単位を主として含む重合体)等を挙げることができる。電気化学的安定性の観点から、アクリル系重合体を用いることが好ましい。上記各種単量体単位を形成し得る各種単量体としては、上述した結着材と同様、既知のものを使用することができる。
 電気化学素子機能層用組成物が非導電性粒子として有機粒子を含めば、電気化学素子用機能層が電解液中において優れた接着性を発揮し、当該機能層を備える電気化学素子の電気的特性を良好に向上させることができる。
 ここで、有機粒子として、コアシェル構造を有する粒子状重合体を用いることが好ましい。コアシェル構造とは、組成およびまたは性状が相互に異なる重合体によりそれぞれ形成されたコア部およびシェル部を有する構造を意味する。当該コアシェル構造を有する粒子状重合体としては、特に限定されることなく、例えば、コア部が、スチレン等の芳香族モノビニル単量体;(メタ)アクリロニトリル等の(メタ)アクリロニトリル単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル単量体;(メタ)アクリル酸等の酸基含有単量体;および、エチレンジメタクリレート、ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート等のジ(メタ)アクリル酸エステル化合物などの架橋性単量体を重合することで形成された重合体であり、シェル部が、スチレンおよびスチレンスルホン酸等のスチレン誘導体などの芳香族モノビニル単量体;および(メタ)アクリル酸等の酸基含有単量体を重合して形成された重合体であり得る。
 また、上記コアシェル構造を有する粒子状重合体において、シェル部は、コア部の外表面を部分的に覆っていることが好ましい。即ち、有機粒子のシェル部は、コア部の外表面を覆っているが、コア部の外表面の全体を覆ってはいないことが好ましい。外観上、コア部の外表面がシェル部によって完全に覆われているように見える場合であっても、シェル部の内外を連通する孔が形成されていれば、そのシェル部はコア部の外表面を部分的に覆うシェル部である。したがって、例えば、シェル部の外表面(即ち、有機粒子の周面)からコア部の外表面まで連通する細孔を有するシェル部を備える有機粒子は、上記コアシェル構造を有する粒子状重合体に含まれる。
―有機粒子の調製―
 有機粒子は、上述した単量体を含む単量体組成物を、例えば水などの水系溶媒中で重合することにより、調製し得る。この際、単量体組成物中の各単量体の含有割合は、有機粒子中の各繰り返し単位(単量体単位)の含有割合に準じて定めることができる。
 そして、重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。重合に際しては、シード粒子を採用してシード重合を行ってもよい。重合条件は、重合方法などに応じて適宜調整しうる。
 また、重合には、乳化剤、重合開始剤、重合助剤、分散安定剤、補助安定剤などの添加剤を使用しうる。
 乳化剤、重合開始剤、重合助剤としては、一般に用いられるものを使用することができ、これらの使用量も、一般に使用される量としうる。
 また、有機粒子が上述したコアシェル構造を有する粒子状重合体である場合、当該粒子状重合体は、例えば、コア部の重合体の単量体と、シェル部の重合体の単量体とを用い、経時的にそれらの単量体の比率を変えて段階的に重合することにより、調製することができる。具体的には、当該粒子状重合体は、先の段階の重合体を後の段階の重合体が順次に被覆するような連続した多段階乳化重合法および多段階懸濁重合法によって調製することができる。
―有機粒子の物性―
 有機粒子の物性としては、特に限定されることはないが、有機粒子の体積平均粒子径D50が0.1μm以上であることが好ましく、0.12μm以上であることがより好ましく、0.15μm以上であることが更に好ましく、1μm以下であることが好ましく、0.9μm以下であることがより好ましく、0.8μm以下であることが更に好ましい。有機粒子の体積平均粒子径D50が0.1μm以上であれば、電気化学素子用機能層の内部抵抗の上昇が抑制されるため、電気化学素子の低温出力特性を向上させることができる。一方、有機粒子の体積平均粒子径D50が1μm以下であれば、電解液中での有機粒子の接着性が高まるため、電気化学素子の高温サイクル特性を向上させることができる。
 なお、有機粒子の体積平均粒子径D50は、本明細書の実施例に記載の測定方法を用いて測定することができる。
 また、有機粒子の電解液膨潤度は、1倍以上であることが好ましく、1.2倍以上であることがより好ましく、1.5倍以上であることが更に好ましく、16倍以下であることが好ましく、10倍以下であることがより好ましく、5倍以下であることが更に好ましい。有機粒子の電解液膨潤度が上述した値の範囲内であれば、電気化学素子用機能層が電解液中で優れた接着性を発揮するため、当該機能層を備える電気化学素子の電気的特性を良好に向上させることができる。
 なお、有機粒子の電解液膨潤度は、本明細書の実施例に記載の測定方法を用いて測定することができる。
 さらに、有機粒子のガラス転移温度は、10℃以上であることが好ましく、20℃以上であることがより好ましく、30℃以上であることが更に好ましく、110℃以下であることが好ましく、90℃以下であることがより好ましく、80℃以下であることが更に好ましい。有機粒子のガラス転移温度が上述した値の範囲内にあれば、電気化学素子用機能層が電解液中で優れた接着性を発揮するため、当該機能層を備える電気化学素子の電気的特性を良好に向上させることができる。
 なお、有機粒子は、通常非水溶性である。ここで、非水溶性とは、温度50℃において重合体0.5gを100gの水に溶解した際に、不溶解分が50.0質量%以上となることをいう。
―有機粒子の添加量―
 有機粒子の添加量としては、特に限定されることはないが、非導電性粒子の総添加量100質量部に対して1質量部以上20質量部以下であることが好ましい。
 また、添加する非導電性粒子に占める有機粒子の比率としては、特に限定されることはないが、5体積%以上であることが好ましく、50体積%以下であることが好ましい。当該有機粒子の比率が5体積%以上であれば、電気化学素子用機能層のプロセス接着性を高く保つことができる。一方、当該有機粒子の比率が50体積%以下であれば、電気化学素子の低温出力特性を高く保つことができる。
<電極活物質粒子>
 本発明の電気化学素子機能層用組成物を用いて形成された機能層が電極合材層として使用される場合、電気化学素子機能層用組成物は電極活物質粒子を含んでいてもよい。
 電極活物質粒子としては、例えば、特開2014-42063号公報に開示されている電極活物質などからなる粒子を用いることができる。
<添加剤>
 本発明の電気化学素子機能層用組成物は、上述した成分以外にも、任意のその他の成分を含んでいてもよい。前記その他の成分は、電池反応に影響を及ぼさないものであれば特に限られず、公知のものを使用することができる。また、これらのその他の成分は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
 前記その他の成分としては、例えば、分散剤、増粘剤、および濡れ剤などの既知の添加剤が挙げられる。
<溶媒>
 本発明の電気化学素子機能層用組成物に用いられる溶媒としては、上述した重合体、結着材、非導電性粒子、電極活物質粒子、および添加剤を溶解または分散可能であれば、特に限定されることはなく、例えば、水、N-メチルピロリドン(NMP)、およびアセトンなどの既知の溶媒を用いることができる。
 なお、上述した溶媒は1種類を単独で使用してもよいし、2種類以上の混合液として使用してもよい。
<電気化学素子機能層用組成物の調製>
 本発明の電気化学素子機能層用組成物の調製方法は、特に限定はされない。
 例えば、電気化学素子機能層用組成物を用いて形成される機能層が電極合材層として使用される場合、上述した重合体と、電極活物質粒子と、必要に応じて用いられる結着材と、その他の成分とを、溶媒の存在下で混合して電気化学素子機能層用組成物を調製することができる。
 また、電気化学素子機能層用組成物を用いて形成される機能層が多孔膜層として使用される場合、上述した重合体と、非導電性粒子と、必要に応じて用いられる結着材と、その他の成分とを、溶媒の存在下で混合して電気化学素子機能層用組成物を調製することができる。
 そして、電気化学素子機能層用組成物を用いて形成される機能層が接着層として使用される場合、上述した重合体と、必要に応じて用いられる結着材とを溶媒で希釈して電気化学素子機能層用組成物として使用することもできるし、上述した重合体と、必要に応じて用いられる結着材と、その他の成分とを、溶媒の存在下で混合して電気化学素子機能層用組成物を調製することもできる。
 なお、混合方法は特に制限されないが、通常用いられうる撹拌機や、分散機を用いて混合を行う。
(電気化学素子用機能層)
 本発明の電気化学素子用機能層は、非水系二次電池内において電子の授受または補強若しくは接着などの機能を担う層であり、機能層としては、例えば、電気化学反応を介して電子の授受を行う電極合材層や、耐熱性や強度を向上させる多孔膜層や、接着性を向上させる接着層などが挙げられる。
 そして、本発明の電気化学素子用機能層は、上述した本発明の電気化学素子機能層用組成物から形成されたものであり、例えば、上述した電気化学素子機能層用組成物を適切な基材の表面に塗布して塗膜を形成した後、形成した塗膜を乾燥することにより形成することができる。
 本発明の電気化学素子用機能層を用いれば、体積膨張の少ない電気化学素子を提供することができる。
<基材>
 ここで、電気化学素子機能層用組成物を塗布する基材に制限は無く、例えば、離型基材の表面に電気化学素子機能層用組成物の塗膜を形成し、その塗膜を乾燥して機能層を形成し、機能層から離型基材を剥がすようにしてもよい。このように、離型基材から剥がされた機能層を自立膜として電気化学素子の構成部材の形成に用いることもできる。
 しかし、機能層を剥がす工程を省略して構成部材の製造効率を高める観点からは、基材として、集電体、セパレーター基材、または電極基材を用いることが好ましい。具体的には、電極合材層の調製の際には、電気化学素子機能層用組成物を、基材としての集電体上に塗布することが好ましい。また、多孔膜層や接着層を調製する際には、電気化学素子機能層用組成物を、セパレーター基材または電極(負極もしくは正極)基材上に塗布することが好ましく、セパレーター基材または負極基材上に塗布することがより好ましく、セパレーター基材上に塗布することが更に好ましい。
[集電体]
 集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。中でも、負極に用いる集電体としては銅箔が特に好ましい。また、正極に用いる集電体としては、アルミニウム箔が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[セパレーター基材]
 セパレーター基材としては、特に限定されないが、有機セパレーター基材などの既知のセパレーター基材が挙げられる。有機セパレーター基材は、有機材料からなる多孔性部材であり、有機セパレーター基材の例を挙げると、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微多孔膜または不織布などが挙げられ、強度に優れることからポリエチレン製の微多孔膜や不織布が好ましい。
[電極基材]
 電極基材(正極基材および負極基材)としては、特に限定されないが、上述した集電体上に、電極活物質粒子および結着材を含む電極合材層が形成された電極基材が挙げられる。
 電極基材中の電極合材層に含まれる電極活物質粒子および結着材としては、特に限定されず、(電気化学素子機能層用組成物)の項で上述した電極活物質粒子、および結着材を使用することができる。なお、電極基材中の電極合材層として、本発明の電気化学素子用機能層を使用してもよい。
<電気化学素子用機能層の形成方法>
 上述した集電体、セパレーター基材、電極基材などの基材上に電気化学素子用機能層を形成する方法としては、以下の方法が挙げられる。
1)本発明の電気化学素子機能層用組成物を基材の表面(電極基材の場合は電極合材層側の表面、以下同じ)に塗布し、次いで乾燥する方法;
2)本発明の電気化学素子機能層用組成物に基材を浸漬後、これを乾燥する方法;および
3)本発明の電気化学素子機能層用組成物を離型基材上に塗布し、乾燥して機能層を製造し、得られた機能層を基材の表面に転写する方法。
 これらの中でも、前記1)の方法が、機能層の層厚制御をしやすいことから特に好ましい。前記1)の方法は、詳細には、電気化学素子機能層用組成物を基材上に塗布する工程(塗布工程)と、基材上に塗布された電気化学素子機能層用組成物を乾燥させて機能層を形成する工程(乾燥工程)を含む。
[塗布工程]
 そして、塗布工程において、電気化学素子機能層用組成物を基材上に塗布する方法としては、特に制限は無く、例えば、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。
[乾燥工程]
 また、乾燥工程において、基材上の電気化学素子機能層用組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができる。乾燥法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥が挙げられる。
<機能層の性状>
 上述した方法により形成された電気化学用機能層の性状としては、特に限定されることはないが、当該機能層の厚みが0.1μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.5μm以上であることが更に好ましく、10μm以下であることが好ましく、7μm以下であることがより好ましく、5μm以下であることが更に好ましい。機能層の厚みが0.1μm以上であれば、機能層の強度を十分に確保することができる。一方、機能層の厚みが10μm以下であれば、機能層におけるイオン拡散性を良好に保つことで、電気化学素子の低温出力特性を向上させることができる。
(電気化学素子用機能層を備える電気化学素子用構成部材)
 本発明の電気化学素子用機能層を備える電気化学素子用構成部材(セパレーターおよび電極)は、本発明の効果を著しく損なわない限り、上述した本発明の機能層と、基材以外の構成要素を備えていてもよい。このような構成要素としては、特に限定されることなく、本発明の電気化学素子用機能層に該当しない電極合材層、多孔膜層、および接着層などが挙げられる。
 また、構成部材は、本発明の電気化学素子用機能層を複数種類備えていてもよい。例えば、電極は、集電体上に本発明の電気化学素子機能層用組成物から形成される電極合材層を備え、且つ、当該電極合材層上に本発明の電気化学素子機能層用組成物から形成される多孔膜層および/または接着層を備えていてもよい。また、例えば、セパレーターは、セパレーター基材上に本発明の電気化学素子機能層用組成物から形成される多孔膜層を備え、且つ、当該多孔膜層上に本発明の電気化学素子機能層用組成物から形成される接着層を備えていてもよい。
(電気化学素子)
 本発明の電気化学素子は、特に限定されることなく、リチウムイオン二次電池や電気二重層キャパシタであり、好ましくはリチウムイオン二次電池である。
 そして、本発明の電気化学素子は、上述した本発明の電気化学素子用機能層を備えることを特徴とする。
 ここで、以下では、一例として電気化学素子がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。
 本発明の電気化学素子の一例としてのリチウムイオン二次電池は、正極、負極、セパレーター、および電解液を備え、当該正極、負極、およびセパレーターの少なくとも1つが、上述した本発明の電気化学素子用機能層を備える。そして、本発明の電気化学素子としてのリチウムイオン二次電池は、体積膨張が少なく、高性能である。
<正極、負極およびセパレーター>
 本発明の電気化学素子としてのリチウムイオン二次電池に用いる正極、負極およびセパレーターは、少なくとも一つが、上述した本発明の電気化学素子用機能層を備える電池部材である。なお、本発明の電気化学素子用機能層を備えない正極、負極およびセパレーターとしては、特に限定されることなく、既知の正極、負極およびセパレーターを用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。リチウムイオン二次電池の支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。また、これらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
<リチウムイオン二次電池の製造方法>
 本発明の電気化学素子としてのリチウムイオン二次電池は、例えば、正極と負極とをセパレーターを介して重ね合わせ、これを必要に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することで製造することができる。なお、正極、負極、セパレーターのうち、少なくとも一つの電池部材を、本発明の電気化学素子用機能層を備える電池部材とする。また、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明についての実施例に基づき具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、重合体におけるオキサイド構造含有単量体単位の割合、重合体の数平均分子量、結着材および有機粒子のガラス転移温度、結着材および非導電性粒子の体積平均粒子径D50、有機粒子の電解液に対する膨潤度、機能層のピール強度、並びに、リチウムイオン二次電池のセルの体積変化および低温出力特性は、下記の方法で評価した。
<重合体におけるオキサイド構造含有単量体単位の割合>
 各実施例および比較例で得られた重合体について、測定溶媒として重水素化クロロホルムを、化学シフトの標準物質としてテトラメチルシランを用いて、核磁気共鳴分光法によりHNMRスペクトル測定および13CNMRスペクトル測定を行った。得られた各ピーク面積比より、重合体におけるオキサイド構造含有単量体単位の割合(モル%)を求めた。
<数平均分子量>
 各実施例および比較例にて得られた重合体を、ジメチルホルムアミドに溶解させて1%溶液を調製し、測定サンプルとした。標準物質としてポリスチレン、展開溶媒としてジメチルホルムアミドの10体積%水溶液に0.85g/mLの硝酸ナトリウムを溶解させた溶液を用いて、GPC測定を行うことにより、各重合体の数平均分子量を求めた。
 なお、GPC測定装置としてはHLC-8220GPC(東ソー社製)、検出器としてはHLC-8320GPCRI検出器(東ソー社製)、測定カラムとしてはTSKgeISuperHZM-M(東ソー社製)を用い、測定温度40℃、展開溶媒流速0.6mL/min、サンプル注入量20μLの条件で測定を行った。
<ガラス転移温度>
 各実施例および比較例で得られた結着材または有機粒子を含む分散液を50%湿度、23~25℃の環境下で3日間乾燥させて、厚み1±0.3mmのフィルムを得た。このフィルムを、120℃の熱風オーブンで1時間乾燥させた。その後、乾燥させたフィルムをサンプルとして、JIS K7121に準じて、測定温度-100℃~180℃、昇温速度5℃/分にて、示差走査熱量分析計(DSC6220SII、ナノテクノロジー社製)を用いてガラス転移温度(℃)を測定した。
<体積平均粒子径D50>
 各実施例および比較例で得られた結着材および非導電性粒子について、レーザー回折・光散乱方式粒度分布測定装置(LS230、ベックマンコールター社製)を用いて、体積平均粒子径D50を測定した。
<電解液に対する膨潤度>
 各実施例および比較例で得られた有機粒子の水分散液を銅箔上に塗布し、50℃で20分、120℃で20分、熱風乾燥器で乾燥させ1cm×1cmのフィルム(厚さ:100μm)を作製し、重量M0を測定した。その後、得られたフィルムを電解液に60℃で72時間浸漬した。なお、電解液としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ビニレンカーボネート(VC)の混合溶媒(EC/DEC/VC=68.5/30/1.5(体積比))に支持電解質としてLiPFを1Mの濃度で溶かしたものを用いた。浸漬後のフィルムの表面の電解液をふき取り、重量M1を測定した。そして、下記式に従って、有機粒子の電解液に対する膨潤度を算出した。
 電解液に対する膨潤度=M1/M0
<機能層のピール強度>
 実施例および比較例で得られた、正極およびセパレーターを備える積層体、ならびに、負極およびセパレーターを備える積層体を、それぞれ10mm幅に切り出して、試験片を得た。この試験片を電解液中に温度60℃で3日間浸漬した。この際、電解液としては、溶媒:エチレンカーボネート/ジエチルカーボネート/ビニレンカーボネート=68.5/30/1.5(体積比)、電解質:濃度1MのLiPFを用いた。その後、試験片を取り出し、表面に付着した電解液を拭き取り、当該試験片を、電極(正極または負極)の表面を下にして、電極の表面にセロハンテープを貼り付けた。この際、セロハンテープは水平な試験台に固定しておいた。また、セロハンテープとしては、JIS Z1522に規定されるものを用いた。その後、セパレーターの一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。当該測定を、正極およびセパレーターを備える積層体、ならびに、負極およびセパレーターを備える積層体でそれぞれ3回の合計6回行い、応力の平均値を求めて、得られた平均値を機能層のピール強度として、下記のように評価した。
 A:ピール強度5.0N/m以上
 B:ピール強度3.0N/m以上5.0N/m未満
 C:ピール強度0.5N/m以上3.0N/m未満
 D:ピール強度0.5N/m未満
<セルの体積変化>
 各実施例および比較例で製造したリチウムイオン二次電池を、25℃の環境下で24時間静置した。次いで、25℃の環境下で、0.1Cの充電レートで4.35Vまで充電し、0.1Cの放電レートで2.75Vまで放電する充放電の操作を行った。その後、電池のセルを流動パラフィンに浸漬し、その体積V0を測定した。さらに、60℃環境下で、0.1Cの充電レートで4.35Vまで充電し0.1Cの放電レートで2.75Vまで放電する充放電の操作を1000サイクル繰り返した。1000サイクルの充放電を行った後の電池のセルを流動パラフィンに浸漬し、その体積V1を測定した。
 充放電を1000サイクル繰り返す前後での電池のセルの体積変化率ΔVを、「ΔV(%)=(V1-V0)/V0×100」にて計算した。この体積変化率ΔVを、下記の基準で評価した。この体積変化率ΔVの値が小さいほど、リチウムイオン二次電池が、ガスの発生による体積膨張を抑制する機能に優れていることを示す。
 A:体積変化率ΔVが、20%未満である。
 B:体積変化率ΔVが、20%以上30%未満である。
 C:体積変化率ΔVが、30%以上40%未満である。
 D:体積変化率ΔVが、40%以上である。
<低温出力特性>
 各実施例および比較例で製造したリチウムイオン二次電池を、温度25℃の雰囲気下で、4.3Vまで定電流定電圧(CCCV)充電し、セルを準備した。準備したセルを、温度-10℃の雰囲気下で、0.2Cおよび1Cの定電流法によって、3.0Vまで放電し、電気容量を求めた。そして、電気容量の比(=(1Cでの電気容量/0.2Cでの電気容量)×100(%))で表わされる放電容量維持率を求めた。これらの測定を、リチウムイオン二次電池5セルについて行ない、各セルの放電容量維持率の平均値を低温出力特性として、以下の基準で評価した。この値が大きいほど、低温出力特性に優れることを示す。
 A:放電容量維持率の平均値が90%以上
 B:放電容量維持率の平均値が80%以上90%未満
 C:放電容量維持率の平均値が70%以上80%未満
 D:放電容量維持率の平均値が70%未満
(実施例1)
<重合体の調製>
 攪拌機付きガラス反応器の内部を窒素置換した後に、オキサイド構造含有単量体としてのメトキシポリエチレングリコールアクリレート(新中村化学社製、「メトキシポリエチレングリコール#550アクリレート」、R:エチレン基、n:13)7.1g、その他の単量体としての2-エチルヘキシルアクリレート(2-EHA)2.9gと、トルエン100.0gとを当該反応器中に添加し、80℃で加熱した。重合開始剤として過硫酸アンモニウム0.1gを添加し、重合転化率が95%になった時点で、室温に冷却し、反応を停止した。得られた反応物をエバポレーターでトルエンを除去し、重合体Aを得た。得られた重合体Aについて、オキサイド構造含有単量体単位の割合および数平均分子量を測定した。結果を表1に示す。
<結着材の調製>
 脂肪族共役ジエン単量体としての1,3-ブタジエン33部、芳香族ビニル単量体としてのスチレン62部、カルボン酸基含有単量体としてのイタコン酸4部、連鎖移動剤としてのtert-ドデシルメルカプタン0.3部、乳化剤としてのラウリル硫酸ナトリウム0.3部の混合物を入れた容器Aから耐圧容器Bへと混合物の添加を開始すると同時に、重合開始剤としての過硫酸カリウム1部の耐圧容器Bへの添加を開始し、重合を開始した。なお、反応温度は75℃を維持した。
 また、重合開始から4時間後(混合物の70%を耐圧容器Bへと添加した後)に、水酸基含有単量体としての2-ヒドロキシエチルアクリレート(アクリル酸-2-ヒドロキシエチル)1部を1時間30分にわたって耐圧容器Bに加えた。
 重合開始から5時間30分後に、上述した単量体の全量の添加が完了した。その後、さらに85℃に加温して6時間反応させた。
 重合転化率が97%になった時点で冷却し、反応を停止して、粒子状重合体を含む混合物を得た。この粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pHを8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。そして、冷却し、結着材としてのスチレン-ブタジエン共重合体(SBR)の粒子状重合体を含む水分散液(固形分濃度:40%)を得た。得られた結着材について、ガラス転移温度および体積平均粒子径D50を測定した。結果を表1に示す。
<有機粒子の調製>
 有機粒子として、コアシェル構造を有するアクリル系重合体を調製した。
 まず、コア部の形成にあたり、攪拌機付き5MPa耐圧容器に、アクリロニトリル22部と、スチレン42部と、アクリル酸ブチル33部と、メタクリル酸2部と、エチレングリコールジメタクリレート1部と、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部と、イオン交換水150部と、重合開始剤としての過硫酸カリウム0.5部とを入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で、シェル部を形成するために、スチレン98部と、メタクリル酸2部とを連続添加し、70℃に加温して重合を継続し、転化率が96%になった時点で、冷却して反応を停止し、有機粒子として、シェル部がコア部の外表面を部分的に覆っているアクリル系重合体を含む水分散液を得た。得られた有機粒子について、体積平均粒子径D50、電解液に対する膨潤度、およびガラス転移温度を測定した。結果を表1に示す。
<非導電性粒子スラリー組成物の調製>
 無機粒子としてのアルミナ(住友化学社製、製品名「AKP3000」、体積平均粒子径D50:0.5μm)86部と上述の操作で得られた有機粒子14部とを混合した。このとき、無機粒子(アルミナ)と有機粒子とを合わせた非導電性粒子に占める有機粒子の比率は40体積%であった。さらに、当該無機粒子(アルミナ)と有機粒子とを合わせた非導電性粒子100部に対して、結着材5部と、増粘剤としてのポリアクリルアミド1.5部と、分散剤としてのポリアクリル酸0.8部とを添加し、固形分濃度が15%となるようにイオン交換水を加え、ボールミルを用いて混合することにより、非導電性粒子スラリー組成物を調製した。
<電気化学素子機能層用組成物の調製>
 非導電性粒子100部に対して、重合体Aの添加量が固形分相当で10部となるように、非導電性粒子スラリー組成物と重合体Aとを撹拌容器内で混合した。さらに当該混合物をイオン交換水で希釈し、固形分濃度10%の電気化学素子機能層用組成物を得た。
<電気化学素子用機能層付きセパレーターの製造>
 セパレーター(ポリプロピレン製、製品名「セルガード2500」)基材上に、上記電気化学素子機能層用組成物を塗布し、50℃で3分間乾燥させた。この操作をセパレーター基材の両面について行ない、厚み5μmの電気化学素子用機能層を両面に備えるセパレーター(電気化学素子用機能層付きセパレーター)を得た。
<負極の製造>
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン33部、イタコン酸(IA)3.5部、スチレン(ST)63.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部および重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却して反応を停止し、負極合材層用結着材(SBR)を含む混合物を得た。上記負極合材層用結着材を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の負極合材層用結着材を含む水分散液を得た。
 負極活物質としての人造黒鉛(体積平均粒子径:15.6μm)100部、粘度調整剤としてのカルボキシメチルセルロースナトリウム塩(日本製紙社製「MAC350HC」)の2%水溶液を固形分相当で1部、およびイオン交換水を混合して固形分濃度68%に調整した後、25℃で60分間さらに混合した。さらにイオン交換水で固形分濃度を62%に調整した後、25℃で15分間さらに混合した。上記混合液に、上記の負極合材層用結着材を固形分相当量で1.5部、およびイオン交換水を入れ、最終固形分濃度が52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い二次電池負極用スラリー組成物を得た。
 得られたリチウムイオン二次電池負極用スラリー組成物を、コンマコーターで、集電体としての厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極合材層の厚みが80μmのプレス後の負極を得た。
<正極の製造>
 正極活物質としての体積平均粒子径12μmのLiCoOを100部と、導電材としてのアセチレンブラック(電気化学工業社製、製品名「HS-100」)を2部と、結着材としてのポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部と、溶媒としてのN-メチルピロリドンとを混合して全固形分濃度を70%とした。これらをプラネタリーミキサーにより混合し、リチウムイオン二次電池正極用スラリー組成物を得た。
 得られたリチウムイオン二次電池正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の正極原反を得た。このプレス前の正極原反をロールプレス機で圧延することにより、正極合材層を備えるプレス後の正極を得た。
 上述した操作により得られた電気化学素子用機能層付きセパレーター、正極、および負極を用いて、正極およびセパレーターを備える積層体、ならびに、負極およびセパレーターを備える積層体を作製し、機能層のピール強度について評価した。結果を表1に示す。
<リチウムイオン二次電池の作製>
 得られたプレス後の正極を49cm×5cmの長方形に切り出して正極合材層側の表面が上側になるように置き、その正極合材層上に120cm×5.5cmに切り出したセパレーターを、正極がセパレーターの長手方向左側に位置するように配置した。さらに、得られたプレス後の負極を50×5.2cmの長方形に切り出し、セパレーター上に、負極合材層側の表面がセパレーターに向かい合うように、かつ、負極がセパレーターの長手方向右側に位置するように配置した。そして、得られた積層体を捲回機により捲回し、捲回体を得た。この捲回体を電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート/ジエチルカーボネート/ビニレンカーボネート=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF)を空気が残らないように注入し、さらにアルミ包材外装の開口を150℃のヒートシールで閉口して、容量800mAhの捲回型リチウムイオン二次電池を製造した。
 得られたリチウムイオン二次電池を用いて、セルの体積変化および低温出力特性を評価した。結果を表1に示す。
(実施例2)
 重合体の調製時に、オキサイド構造含有単量体として、メトキシポリエチレングリコールアクリレート(新中村化学社製、「メトキシポリエチレングリコール#550アクリレート」、R:エチレン基、n:13)に替えてポリプロピレングリコールモノアクリレート(日本油脂社製、「ブレンマーAPシリーズ AP-800」、R:プロピレン基、n:13)を使用した以外は、実施例1と同様にして、重合体A、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(実施例3)
 重合体Aの調製時に、その他の単量体として、2-EHAに替えてアクリロニトリル(AN)を使用した以外は、実施例2と同様にして、重合体A、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(実施例4)
 重合体Aの調製時に、オキサイド構造含有単量体として、メトキシポリエチレングリコールアクリレート(新中村化学社製、「メトキシポリエチレングリコール#550アクリレート」、R:プロピレン基、n:13)に替えてポリスチレングリコールモノアクリレート(R:フェニルエチレン基、n:13)を使用し、その他の単量体として2-EHAに替えてメタクリル酸(MAA)を使用した以外は、実施例1と同様にして、重合体A、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
 なお、ポリスチレングリコールモノアクリレートは特許第5466374号公報に記載の方法に従って合成した。
(実施例5)
 重合体Aの調製時に、オキサイド構造含有単量体としてのメトキシポリエチレングリコールアクリレート(新中村化学社製、「メトキシポリエチレングリコール#550アクリレート」、R:プロピレン基、n:13)の添加量を7.1gから10gに変更し、その他の単量体としての2-EHAを添加せず、重合開始剤としての過硫酸アンモニウムの添加量を0.1gから1.9gに変更した以外は、実施例1と同様にして、重合体A、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(実施例6~9)
 重合体Aの調製時に、メトキシポリエチレングリコールアクリレート(新中村化学社製、「メトキシポリエチレングリコール#550アクリレート」、R:エチレン基、n:13)の添加量を7.1gから、それぞれ4.72g(実施例6)、5.44g(実施例7)、8.43g(実施例8)、9.35g(実施例9)に変更し、2-EHAの添加量を2.9gから、それぞれ5.28g(実施例6)、4.56g(実施例7)、1.57g(実施例8)、0.65g(実施例9)に変更し、重合開始剤としての過硫酸アンモニウムの添加量を0.1gから、それぞれ0.08g(実施例6)、0.09g(実施例7)、0.15g(実施例8)、0.17g(実施例9)に変更した以外は実施例1と同様にして、重合体A、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(実施例10)
 重合体Aの調製時に、オキサイド構造含有単量体として、メトキシポリエチレングリコールアクリレート(新中村化学社製、「メトキシポリエチレングリコール#550アクリレート」、R:エチレン基、n:13)に替えてポリエチレングリコールモノアクリレート (日本油脂社製、「ブレンマーAEシリーズ AE-90」、R:エチレン基、n:2)を使用した以外は、実施例1と同様にして、重合体A、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(実施例11)
 重合体Aの調製時に、オキサイド構造含有単量体として、メトキシポリエチレングリコールアクリレート(新中村化学社製、「メトキシポリエチレングリコール#550アクリレート」、R:エチレン基、n:13)に替えてメトキシポリエチレングリコール#1000メタクリレート(新中村化学社製、R:エチレン基、n:23)を使用した以外は、実施例1と同様にして、重合体A、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(実施例12、13)
 重合体Aの調製時に、実施例12では、重合温度を80℃から70℃に変更し、実施例13では、重合開始剤としての過硫酸アンモニウムの添加量を0.1gから0.11gにそれぞれ変更した以外は、実施例1と同様にして、重合体A、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(実施例14)
 結着材の調製時に、撹拌機を備えた反応器に、イオン交換水70部、乳化剤としてラウリル硫酸ナトリウム(花王ケミカル社製、製品名「エマール2F」)0.15部、および過流酸アンモニウム0.5部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。一方、別の容器でイオン交換水50部、分散剤としてドデシルベンゼンスルホン酸ナトリウム0.7部、並びに、重合性単量体として、2-エチルヘキシルアクリレート(2-EHA)77.8部、アクリロニトリル(AN)20部、メタクリル酸(MAA)2部、およびアリルメタクリレート(AMA)0.2部を混合して単量体混合物を得た。この単量体混合物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに70℃で3時間撹拌して反応を終了し、結着材としてアクリル系結着材を含む水分散液を得た。
 結着材として、SBRに替えて上記のアクリル系結着材を使用した以外は、実施例1と同様にして、重合体A、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(実施例15)
 非導電性粒子スラリー組成物の調製時に、無機粒子(アルミナ)の添加量を86部に替えて0部、有機粒子の添加量を14部に替えて100部に変更した以外は、実施例1と同様にして、重合体A、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(実施例16)
 有機粒子として、実施例1で調製したアクリル系重合体に替えて、ポリビニリデンフルオライド-ヘキサフルオロプロピレン共重合体(PVdF-HFP、SIGMA-ALDRICH社製)を使用し、電気化学素子機能層用組成物の溶媒として、水に替えてアセトンを使用した以外は、実施例1と同様にして、重合体A、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(実施例17)
 電気化学素子機能層用組成物における重合体Aの添加量が100部、結着材の添加量が5部、有機粒子の添加量が0部、無機粒子の添加量が0部となるように、非導電性粒子スラリー組成物および電気化学素子機能層用組成物の調製方法を変更し、さらに、重合体A、結着材、非導電性粒子スラリー組成物および電気化学素子機能層用組成物の調製に用いる溶媒として、水に替えてアセトンを使用した以外は、実施例1と同様にして、重合体A、結着材、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、負極、および正極を製造した。さらに、得られた負極の負極合材層面に、電気化学素子機能層用組成物を塗布し、50℃で3分間乾燥させ、負極の片面に厚み0.1μmの電気化学素子用機能層を備える負極(電気化学素子用機能層付き負極)を得た。当該電気化学素子用機能層付き負極を使用し、さらに、電気化学素子用機能層を備えないセパレーターを使用した以外は実施例1と同様にして、リチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(実施例18)
 結着材として、PVdF(クレハ社製、製品名「#7208」)を使用した以外は、実施例17と同様にして、重合体A、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、負極、および正極を製造した。さらに、得られた正極の正極活物質層面に、電気化学素子機能層用組成物を塗布し、50℃で3分間乾燥させ、正極の片面に厚み0.1μmの電気化学素子用機能層を備える正極(電気化学素子用機能層付き正極)を得た。当該電気化学素子用機能層付き正極を使用し、さらに、電気化学素子用機能層を備えないセパレーターを使用した以外は実施例1と同様にして、リチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(比較例1)
 重合体Aの調製時に、オキサイド構造含有単量体として、メトキシポリエチレングリコールアクリレート(新中村化学社製、「メトキシポリエチレングリコール#550アクリレート」、R:エチレン基、n:13)に替えてメトキシポリエチレングリコールモノメタクリレート(日本油脂社製、「ブレンマーPMEシリーズ PME-200」、R:エチレン基、n:4)およびポリプロピレングリコールモノアクリレート(日本油脂社製、「ブレンマーAPシリーズ AP-550」、R:プロピレン基、n:9)を使用し、その他の単量体として2-EHAに替えてMAAを使用した以外は、実施例1と同様にして、重合体A、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(比較例2)
 重合体Aの調製時に、その他の単量体として2-EHAに替えてメタクリル酸メチル(MMA)を使用した以外は、実施例1と同様にして、重合体A、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(比較例3)
 重合体Aとして、ポリビニルアルコール(PVA、数平均分子量:10000)を使用した以外は、実施例1と同様にして、結着材、有機粒子、非導電性粒子スラリー組成物、電気化学素子機能層用組成物、電気化学素子用機能層付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1より、所定のオキサイド構造含有単量体単位を有し、且つ、数平均分子量が所定の値の範囲内である重合体Aと、溶媒とを含む電気化学素子機能層用組成物を用いた実施例1~18では、体積膨張が良好に抑制されたリチウムイオン二次電池が得られることがわかる。なお、当該電気化学素子機能層用組成物を用いて形成した電気化学素子用機能層はピール強度にも優れている。
 一方、重合体Aの数平均分子量が所定の値の範囲を上回る比較例1では、リチウムイオン二次電池が体積膨張の抑制機能において著しく劣ることがわかる。さらに、比較例1の電気化学素子用機能層はピール強度においても劣ることがわかる。
 また、重合体Aの数平均分子量が所定の値の範囲を下回る比較例2では、電気化学素子用機能層がピール強度において著しく劣ることがわかる。さらに、比較例2のリチウムイオン二次電池は、体積膨張の抑制機能においても劣ることがわかる。
 また、所定のオキサイド構造含有単量体単位を有しない重合体Aを用いた比較例3では、リチウムイオン二次電池が体積膨張の抑制機能において著しく劣ることがわかる。
 本発明によれば、体積膨張の少ない電気化学素子を提供可能な電気化学素子機能層用組成物を提供することができる。
 そして、本発明によれば、体積膨張の少ない電気化学素子を提供可能な電気化学素子用機能層、および、当該電気化学素子用機能層を備え、体積膨張の少ない電気化学素子を提供することができる。
 

Claims (9)

  1.  オキサイド構造含有単量体単位を有する重合体および溶媒を含む電気化学素子機能層用組成物であって、
     前記オキサイド構造含有単量体単位が下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは置換基を有し得るアルキレン基を表し、nは正の整数である。)で示される構造を有し、
     前記重合体の数平均分子量が5000以上15000以下である、電気化学素子機能層用組成物。
  2.  前記Rが、エチレン基、プロピレン基、およびフェニルエチレン基からなる群から選択される1つである、請求項1に記載の電気化学素子機能層用組成物。
  3.  前記nが2以上30以下の整数である、請求項1または2に記載の電気化学素子機能層用組成物。
  4.  前記重合体における前記オキサイド構造含有単量体単位の割合が20モル%以上80モル%以下である、請求項1~3の何れかに記載の電気化学素子機能層用組成物。
  5.  前記重合体が共重合体である、請求項1~4の何れかに記載の電気化学素子機能層用組成物。
  6.  さらに非導電性粒子を含む、請求項1~5の何れかに記載の電気化学素子機能層用組成物。
  7.  前記非導電性粒子が、無機粒子および有機粒子の少なくとも一方を含む、請求項1~6の何れかに記載の電気化学素子機能層用組成物。
  8.  請求項1~7の何れかに記載の電気化学素子機能層用組成物から形成された、電気化学素子用機能層。
  9.  請求項8に記載の電気化学素子用機能層を有する、電気化学素子。
     
PCT/JP2018/031434 2017-08-31 2018-08-24 電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子 WO2019044720A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18851231.3A EP3678224A4 (en) 2017-08-31 2018-08-24 COMPOSITION FOR FUNCTIONAL LAYER OF ELECTROCHEMICAL ELEMENT, FUNCTIONAL LAYER OF ELECTROCHEMICAL ELEMENT, AND ELECTROCHEMICAL ELEMENT
JP2019539464A JP7207311B2 (ja) 2017-08-31 2018-08-24 電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子
US16/639,586 US20210028458A1 (en) 2017-08-31 2018-08-24 Composition for electrochemical device functional layer, functional layer for electrochemical device, and electrochemical device
CN201880053406.2A CN111033815B (zh) 2017-08-31 2018-08-24 电化学元件功能层用组合物、电化学元件用功能层以及电化学元件
KR1020207004677A KR20200044807A (ko) 2017-08-31 2018-08-24 전기 화학 소자 기능층용 조성물, 전기 화학 소자용 기능층 및 전기 화학 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-167538 2017-08-31
JP2017167538 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019044720A1 true WO2019044720A1 (ja) 2019-03-07

Family

ID=65527428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031434 WO2019044720A1 (ja) 2017-08-31 2018-08-24 電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子

Country Status (6)

Country Link
US (1) US20210028458A1 (ja)
EP (1) EP3678224A4 (ja)
JP (1) JP7207311B2 (ja)
KR (1) KR20200044807A (ja)
CN (1) CN111033815B (ja)
WO (1) WO2019044720A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059880A1 (ja) * 2019-09-27 2021-04-01 日本ゼオン株式会社 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池
WO2022181275A1 (ja) * 2021-02-26 2022-09-01 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体および電気化学素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005025963A (ja) 2003-06-30 2005-01-27 Toshiba Corp 非水系電解液二次電池
JP2009531820A (ja) * 2006-03-31 2009-09-03 アルケマ フランス トリブロックコポリマー、特にポリスチレン−ポリ(オキシエチレン)ポリスチレンをベースにした固体ポリマー電解質
JP2012051962A (ja) * 2010-08-31 2012-03-15 Mie Univ 共重合体及び高分子固体電解質
JP2014042063A (ja) 2013-10-31 2014-03-06 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法、電気化学素子用電極及び電気化学素子
JP5466374B2 (ja) 2007-04-05 2014-04-09 株式会社日本触媒 不飽和(ポリ)アルキレングリコール系エーテル単量体の製造方法及び(ポリ)アルキレングリコール鎖を有する重合体の製造方法
JP2014534570A (ja) * 2011-12-27 2014-12-18 エルジー・ケム・リミテッド セパレータの製造方法、その方法によって製造されたセパレータ、及びそれを備える電気化学素子

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4005192B2 (ja) * 1997-12-09 2007-11-07 第一工業製薬株式会社 固体電池
JP4399904B2 (ja) * 1999-07-15 2010-01-20 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物およびその利用
JP4325061B2 (ja) * 2000-03-09 2009-09-02 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダーおよびその利用
JP2003268053A (ja) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd 電池用バインダ樹脂、これを含有する電極及び電池
CN100454610C (zh) * 2002-06-19 2009-01-21 夏普株式会社 锂聚合物二次电池及其制造方法
EP1553117B1 (en) * 2002-07-23 2007-01-17 Nippon Soda Co., Ltd. Solid polymer electrolyte
JP4058396B2 (ja) * 2003-07-31 2008-03-05 三菱製紙株式会社 イオン伝導性組成物および電気化学素子
JP2005158703A (ja) * 2003-10-29 2005-06-16 Nippon Synthetic Chem Ind Co Ltd:The リチウムポリマー電池及びその製造方法
WO2006077855A1 (ja) * 2005-01-21 2006-07-27 Nippon Soda Co., Ltd. 高分子、架橋高分子、高分子固体電解質用組成物、高分子固体電解質及び接着性組成物
JP2006294605A (ja) * 2005-03-18 2006-10-26 Nippon Zeon Co Ltd ポリマー電池用積層体、その製造方法およびポリマー電池
WO2007086518A1 (ja) * 2006-01-27 2007-08-02 Zeon Corporation 二次電池用電解質組成物、電解質フィルムおよび二次電池
JP2009099530A (ja) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd 非水電解質電池用正極及び非水電解質電池
KR20110135933A (ko) * 2009-02-11 2011-12-20 다우 글로벌 테크놀로지스 엘엘씨 고전도성 중합체 전해질 및 이를 포함하는 2차 배터리
WO2011071101A1 (ja) * 2009-12-09 2011-06-16 株式会社日本触媒 電解質材料並びにそれを用いた電池用材料及び二次電池
US8628881B2 (en) * 2010-11-17 2014-01-14 Ngk Insulators, Ltd. Lithium secondary battery cathode
KR101521036B1 (ko) * 2011-02-23 2015-05-15 다이니치 세이카 고교 가부시키가이샤 수성 액상 조성물, 수성 도공액, 기능성 도공막 및 복합재료
KR101998658B1 (ko) * 2011-09-14 2019-07-10 제온 코포레이션 전기 화학 소자용 전극
PL2903064T3 (pl) * 2012-09-28 2017-10-31 Zeon Corp Kompozycja kleju przewodzącego prąd elektryczny do elektrody do urządzenia elektrochemicznego, odbierak prądu z warstwą kleju i elektroda do urządzenia elektrochemicznego
KR102301032B1 (ko) * 2013-10-28 2021-09-09 제온 코포레이션 리튬 이온 2 차 전지 부극용 슬러리 조성물, 리튬 이온 2 차 전지용 부극, 리튬 이온 2 차 전지, 및 제조 방법
JP6314491B2 (ja) * 2014-01-17 2018-04-25 東洋インキScホールディングス株式会社 二次電池電極形成用組成物、二次電池用電極および二次電池
JP6311331B2 (ja) * 2014-01-31 2018-04-18 日本ゼオン株式会社 リチウムイオン二次電池多孔膜用組成物、リチウムイオン二次電池用多孔膜、及びリチウムイオン二次電池
JP2015187941A (ja) * 2014-03-26 2015-10-29 三洋化成工業株式会社 ポリマー電解質組成物、リチウム金属二次電池用負極及びリチウム金属二次電池
CN105390744B (zh) * 2014-08-29 2021-10-22 三星电子株式会社 复合物、其制备方法、包括其的电解质及锂二次电池
US10797343B2 (en) * 2015-09-16 2020-10-06 Zeon Corporation Binder for all-solid-state secondary batteries, and all-solid-state secondary battery
KR20200044805A (ko) * 2017-08-31 2020-04-29 니폰 제온 가부시키가이샤 전기 화학 소자 기능층용 조성물, 전기 화학 소자용 기능층, 및 전기 화학 소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005025963A (ja) 2003-06-30 2005-01-27 Toshiba Corp 非水系電解液二次電池
JP2009531820A (ja) * 2006-03-31 2009-09-03 アルケマ フランス トリブロックコポリマー、特にポリスチレン−ポリ(オキシエチレン)ポリスチレンをベースにした固体ポリマー電解質
JP5466374B2 (ja) 2007-04-05 2014-04-09 株式会社日本触媒 不飽和(ポリ)アルキレングリコール系エーテル単量体の製造方法及び(ポリ)アルキレングリコール鎖を有する重合体の製造方法
JP2012051962A (ja) * 2010-08-31 2012-03-15 Mie Univ 共重合体及び高分子固体電解質
JP2014534570A (ja) * 2011-12-27 2014-12-18 エルジー・ケム・リミテッド セパレータの製造方法、その方法によって製造されたセパレータ、及びそれを備える電気化学素子
JP2014042063A (ja) 2013-10-31 2014-03-06 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法、電気化学素子用電極及び電気化学素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678224A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059880A1 (ja) * 2019-09-27 2021-04-01 日本ゼオン株式会社 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池
CN114175383A (zh) * 2019-09-27 2022-03-11 日本瑞翁株式会社 非水系二次电池耐热层用浆料组合物、非水系二次电池用耐热层和非水系二次电池
WO2022181275A1 (ja) * 2021-02-26 2022-09-01 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用機能層、電気化学素子用積層体および電気化学素子

Also Published As

Publication number Publication date
US20210028458A1 (en) 2021-01-28
JP7207311B2 (ja) 2023-01-18
CN111033815B (zh) 2023-04-28
KR20200044807A (ko) 2020-04-29
EP3678224A1 (en) 2020-07-08
CN111033815A (zh) 2020-04-17
EP3678224A4 (en) 2021-05-19
JPWO2019044720A1 (ja) 2020-08-13

Similar Documents

Publication Publication Date Title
CN109565016B (zh) 非水系二次电池多孔膜用组合物、非水系二次电池用多孔膜及非水系二次电池
JP7259746B2 (ja) 電気化学素子機能層用バインダー組成物、電気化学素子機能層用組成物、電気化学素子用機能層、及び電気化学素子
KR20140116190A (ko) 이차 전지 전극용 바인더 수지 조성물, 이차 전지 전극용 슬러리, 이차 전지용 전극, 및 리튬 이온 이차 전지
CN109565017B (zh) 非水系二次电池功能层用组合物、非水系二次电池用功能层及非水系二次电池
JP6988799B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層及び非水系二次電池
JP6515574B2 (ja) 非水系二次電池機能層用バインダー、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
CN111406339A (zh) 固体聚合物电解质和包含该固体聚合物电解质的锂二次电池
WO2019044452A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP7302476B2 (ja) 電気化学素子機能層用組成物、電気化学素子用機能層、及び電気化学素子
WO2019065416A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
WO2019065370A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池部材、および非水系二次電池
WO2019065130A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP7207311B2 (ja) 電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子
WO2021059880A1 (ja) 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池
JP7230810B2 (ja) 電気化学素子機能層用組成物、電気化学素子用機能層、及び電気化学素子
CN113661592A (zh) 非水系二次电池电极用粘结剂组合物、非水系二次电池正极用浆料组合物、非水系二次电池用正极及非水系二次电池
CN113892202A (zh) 非水系二次电池耐热层用粘结剂组合物、非水系二次电池耐热层用浆料组合物、非水系二次电池用耐热层以及非水系二次电池
WO2019004460A1 (ja) 電気化学素子用バインダー組成物、電気化学素子機能層用スラリー組成物、電気化学素子接着層用スラリー組成物、および複合膜
WO2022045295A1 (ja) 蓄電デバイス用イオン伝導層
WO2024024574A1 (ja) 二次電池機能層用バインダー、二次電池機能層用スラリー組成物、二次電池用機能層、及び二次電池
WO2023008502A1 (ja) 二次電池機能層用バインダー、二次電池機能層用スラリー組成物、二次電池用機能層、及び二次電池
WO2023074502A1 (ja) 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ及び非水系二次電池
WO2022114033A1 (ja) 二次電池機能層用バインダー、二次電池機能層用スラリー組成物、二次電池用機能層、および二次電池
WO2023127300A1 (ja) 非水系二次電池用バインダー重合体、非水系二次電池用バインダー組成物および非水系二次電池電極
KR20240087816A (ko) 비수계 이차 전지 기능층용 슬러리 조성물, 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018851231

Country of ref document: EP

Effective date: 20200331