WO2023074502A1 - 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ及び非水系二次電池 - Google Patents
非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ及び非水系二次電池 Download PDFInfo
- Publication number
- WO2023074502A1 WO2023074502A1 PCT/JP2022/038973 JP2022038973W WO2023074502A1 WO 2023074502 A1 WO2023074502 A1 WO 2023074502A1 JP 2022038973 W JP2022038973 W JP 2022038973W WO 2023074502 A1 WO2023074502 A1 WO 2023074502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particulate polymer
- secondary battery
- separator
- functional layer
- slurry composition
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 109
- 239000002346 layers by function Substances 0.000 title claims abstract description 106
- 239000002002 slurry Substances 0.000 title claims abstract description 79
- 229920000642 polymer Polymers 0.000 claims abstract description 216
- 239000000178 monomer Substances 0.000 claims abstract description 182
- 230000009477 glass transition Effects 0.000 claims abstract description 41
- 125000000524 functional group Chemical group 0.000 claims abstract description 29
- 239000002245 particle Substances 0.000 claims abstract description 27
- 239000008151 electrolyte solution Substances 0.000 claims description 56
- 230000008961 swelling Effects 0.000 claims description 25
- 239000003792 electrolyte Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 description 40
- 238000007654 immersion Methods 0.000 description 26
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 24
- 238000005259 measurement Methods 0.000 description 24
- 125000003118 aryl group Chemical group 0.000 description 23
- 239000010410 layer Substances 0.000 description 22
- 238000006116 polymerization reaction Methods 0.000 description 20
- 239000000758 substrate Substances 0.000 description 20
- 238000011156 evaluation Methods 0.000 description 19
- 230000002378 acidificating effect Effects 0.000 description 18
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 239000006185 dispersion Substances 0.000 description 15
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 238000001035 drying Methods 0.000 description 13
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 12
- 229910001416 lithium ion Inorganic materials 0.000 description 12
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 11
- 230000014759 maintenance of location Effects 0.000 description 11
- -1 methacryloyl Chemical group 0.000 description 11
- 150000001993 dienes Chemical class 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 8
- 125000001931 aliphatic group Chemical group 0.000 description 8
- 230000000903 blocking effect Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 7
- 239000003995 emulsifying agent Substances 0.000 description 7
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 7
- 239000005022 packaging material Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000003115 supporting electrolyte Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 6
- 238000007600 charging Methods 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 5
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 4
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 4
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 150000004292 cyclic ethers Chemical class 0.000 description 4
- 150000001991 dicarboxylic acids Chemical class 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000003505 polymerization initiator Substances 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 3
- 229920000298 Cellophane Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical group C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- JJRUAPNVLBABCN-UHFFFAOYSA-N 2-(ethenoxymethyl)oxirane Chemical compound C=COCC1CO1 JJRUAPNVLBABCN-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000011883 electrode binding agent Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 125000005641 methacryl group Chemical group 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000003566 oxetanyl group Chemical group 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- 229960000834 vinyl ether Drugs 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- VIFLZVISSMOXOP-NSCUHMNNSA-N (e)-2-chloro-3-methoxyprop-2-enoic acid Chemical compound CO\C=C(\Cl)C(O)=O VIFLZVISSMOXOP-NSCUHMNNSA-N 0.000 description 1
- ZQHJVIHCDHJVII-OWOJBTEDSA-N (e)-2-chlorobut-2-enedioic acid Chemical compound OC(=O)\C=C(\Cl)C(O)=O ZQHJVIHCDHJVII-OWOJBTEDSA-N 0.000 description 1
- OISKHJXTRQPMQT-OWOJBTEDSA-N (e)-2-fluorobut-2-enedioic acid Chemical compound OC(=O)\C=C(\F)C(O)=O OISKHJXTRQPMQT-OWOJBTEDSA-N 0.000 description 1
- PNNFEYPWPCDLOC-UPHRSURJSA-N (z)-2,3-dichlorobut-2-enedioic acid Chemical compound OC(=O)C(\Cl)=C(\Cl)C(O)=O PNNFEYPWPCDLOC-UPHRSURJSA-N 0.000 description 1
- CQNPSIAJXGEDQS-VURMDHGXSA-N (z)-2-phenylbut-2-enedioic acid Chemical compound OC(=O)\C=C(/C(O)=O)C1=CC=CC=C1 CQNPSIAJXGEDQS-VURMDHGXSA-N 0.000 description 1
- VPTNWGPGDXUKCY-KHPPLWFESA-N (z)-4-decoxy-4-oxobut-2-enoic acid Chemical compound CCCCCCCCCCOC(=O)\C=C/C(O)=O VPTNWGPGDXUKCY-KHPPLWFESA-N 0.000 description 1
- IIPCXIGUIPAGQB-SEYXRHQNSA-N (z)-4-dodecoxy-4-oxobut-2-enoic acid Chemical compound CCCCCCCCCCCCOC(=O)\C=C/C(O)=O IIPCXIGUIPAGQB-SEYXRHQNSA-N 0.000 description 1
- ZUWTZMUABDXFJW-KTKRTIGZSA-N (z)-4-nonoxy-4-oxobut-2-enoic acid Chemical compound CCCCCCCCCOC(=O)\C=C/C(O)=O ZUWTZMUABDXFJW-KTKRTIGZSA-N 0.000 description 1
- CYIGRWUIQAVBFG-UHFFFAOYSA-N 1,2-bis(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOCCOC=C CYIGRWUIQAVBFG-UHFFFAOYSA-N 0.000 description 1
- GRFNSWBVXHLTCI-UHFFFAOYSA-N 1-ethenyl-4-[(2-methylpropan-2-yl)oxy]benzene Chemical compound CC(C)(C)OC1=CC=C(C=C)C=C1 GRFNSWBVXHLTCI-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- MFGALGYVFGDXIX-UHFFFAOYSA-N 2,3-Dimethylmaleic anhydride Chemical compound CC1=C(C)C(=O)OC1=O MFGALGYVFGDXIX-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- CFVZILWIXKITDD-UHFFFAOYSA-N 2-acetyloxyprop-2-enoic acid Chemical compound CC(=O)OC(=C)C(O)=O CFVZILWIXKITDD-UHFFFAOYSA-N 0.000 description 1
- CMPIGRYBIGUGTH-UHFFFAOYSA-N 2-bromoprop-2-enenitrile Chemical compound BrC(=C)C#N CMPIGRYBIGUGTH-UHFFFAOYSA-N 0.000 description 1
- OYUNTGBISCIYPW-UHFFFAOYSA-N 2-chloroprop-2-enenitrile Chemical compound ClC(=C)C#N OYUNTGBISCIYPW-UHFFFAOYSA-N 0.000 description 1
- VKNASXZDGZNEDA-UHFFFAOYSA-N 2-cyanoethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC#N VKNASXZDGZNEDA-UHFFFAOYSA-N 0.000 description 1
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 1
- AEPWOCLBLLCOGZ-UHFFFAOYSA-N 2-cyanoethyl prop-2-enoate Chemical compound C=CC(=O)OCCC#N AEPWOCLBLLCOGZ-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- BXAAQNFGSQKPDZ-UHFFFAOYSA-N 3-[1,2,2-tris(prop-2-enoxy)ethoxy]prop-1-ene Chemical compound C=CCOC(OCC=C)C(OCC=C)OCC=C BXAAQNFGSQKPDZ-UHFFFAOYSA-N 0.000 description 1
- DOYKFSOCSXVQAN-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(OCC)CCCOC(=O)C(C)=C DOYKFSOCSXVQAN-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- ULYIFEQRRINMJQ-UHFFFAOYSA-N 3-methylbutyl 2-methylprop-2-enoate Chemical compound CC(C)CCOC(=O)C(C)=C ULYIFEQRRINMJQ-UHFFFAOYSA-N 0.000 description 1
- ZVYGIPWYVVJFRW-UHFFFAOYSA-N 3-methylbutyl prop-2-enoate Chemical compound CC(C)CCOC(=O)C=C ZVYGIPWYVVJFRW-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- NCAVPEPBIJTYSO-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate;2-(oxiran-2-ylmethoxymethyl)oxirane Chemical compound C1OC1COCC1CO1.OCCCCOC(=O)C=C NCAVPEPBIJTYSO-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- FYYIUODUDSPAJQ-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-ylmethyl 2-methylprop-2-enoate Chemical compound C1C(COC(=O)C(=C)C)CCC2OC21 FYYIUODUDSPAJQ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910020680 Co—Ni—Mn Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- MHQJUHSHQGQVTM-HNENSFHCSA-N Octadecyl fumarate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)\C=C/C(O)=O MHQJUHSHQGQVTM-HNENSFHCSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RMKZLFMHXZAGTM-UHFFFAOYSA-N [dimethoxy(propyl)silyl]oxymethyl prop-2-enoate Chemical compound CCC[Si](OC)(OC)OCOC(=O)C=C RMKZLFMHXZAGTM-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- CGBYBGVMDAPUIH-UHFFFAOYSA-N acide dimethylmaleique Natural products OC(=O)C(C)=C(C)C(O)=O CGBYBGVMDAPUIH-UHFFFAOYSA-N 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000005399 allylmethacrylate group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- JQRRFDWXQOQICD-UHFFFAOYSA-N biphenylen-1-ylboronic acid Chemical compound C12=CC=CC=C2C2=C1C=CC=C2B(O)O JQRRFDWXQOQICD-UHFFFAOYSA-N 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- CGBYBGVMDAPUIH-ARJAWSKDSA-N dimethylmaleic acid Chemical compound OC(=O)C(/C)=C(/C)C(O)=O CGBYBGVMDAPUIH-ARJAWSKDSA-N 0.000 description 1
- WTIFDVLCDRBEJK-VAWYXSNFSA-N diphenyl (e)-but-2-enedioate Chemical compound C=1C=CC=CC=1OC(=O)/C=C/C(=O)OC1=CC=CC=C1 WTIFDVLCDRBEJK-VAWYXSNFSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 238000001382 dynamic differential scanning calorimetry Methods 0.000 description 1
- UJKWLAZYSLJTKA-UHFFFAOYSA-N edma Chemical compound O1CCOC2=CC(CC(C)NC)=CC=C21 UJKWLAZYSLJTKA-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010556 emulsion polymerization method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- MDNFYIAABKQDML-UHFFFAOYSA-N heptyl 2-methylprop-2-enoate Chemical compound CCCCCCCOC(=O)C(C)=C MDNFYIAABKQDML-UHFFFAOYSA-N 0.000 description 1
- SCFQUKBBGYTJNC-UHFFFAOYSA-N heptyl prop-2-enoate Chemical compound CCCCCCCOC(=O)C=C SCFQUKBBGYTJNC-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000012690 ionic polymerization Methods 0.000 description 1
- LDHQCZJRKDOVOX-IHWYPQMZSA-N isocrotonic acid Chemical compound C\C=C/C(O)=O LDHQCZJRKDOVOX-IHWYPQMZSA-N 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000005394 methallyl group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- FTJXXXSSRCHQKC-UHFFFAOYSA-N n-(2-cyanoethyl)prop-2-enamide Chemical compound C=CC(=O)NCCC#N FTJXXXSSRCHQKC-UHFFFAOYSA-N 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- LKEDKQWWISEKSW-UHFFFAOYSA-N nonyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCOC(=O)C(C)=C LKEDKQWWISEKSW-UHFFFAOYSA-N 0.000 description 1
- MDYPDLBFDATSCF-UHFFFAOYSA-N nonyl prop-2-enoate Chemical compound CCCCCCCCCOC(=O)C=C MDYPDLBFDATSCF-UHFFFAOYSA-N 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- GYDSPAVLTMAXHT-UHFFFAOYSA-N pentyl 2-methylprop-2-enoate Chemical compound CCCCCOC(=O)C(C)=C GYDSPAVLTMAXHT-UHFFFAOYSA-N 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- RAJUSMULYYBNSJ-UHFFFAOYSA-N prop-1-ene-1-sulfonic acid Chemical compound CC=CS(O)(=O)=O RAJUSMULYYBNSJ-UHFFFAOYSA-N 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- ARJOQCYCJMAIFR-UHFFFAOYSA-N prop-2-enoyl prop-2-enoate Chemical compound C=CC(=O)OC(=O)C=C ARJOQCYCJMAIFR-UHFFFAOYSA-N 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- ATZHWSYYKQKSSY-UHFFFAOYSA-N tetradecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCOC(=O)C(C)=C ATZHWSYYKQKSSY-UHFFFAOYSA-N 0.000 description 1
- XZHNPVKXBNDGJD-UHFFFAOYSA-N tetradecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCOC(=O)C=C XZHNPVKXBNDGJD-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- VPYJNCGUESNPMV-UHFFFAOYSA-N triallylamine Chemical compound C=CCN(CC=C)CC=C VPYJNCGUESNPMV-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a slurry composition for non-aqueous secondary battery functional layers, a separator for non-aqueous secondary batteries, and a non-aqueous secondary battery.
- Non-aqueous secondary batteries such as lithium-ion secondary batteries (hereinafter sometimes abbreviated as "secondary batteries”) are characterized by their small size, light weight, high energy density, and the ability to be charged and discharged repeatedly. are used for a wide range of purposes.
- a secondary battery generally includes electrodes (a positive electrode and a negative electrode) and a separator that separates the positive electrode from the negative electrode to prevent a short circuit between the positive electrode and the negative electrode.
- the separator has a predetermined function on the surface of the separator base material, such as a porous film layer for improving heat resistance and strength, an adhesive layer for improving adhesion with the electrode, etc.
- a separator provided with a layer for imparting (hereinafter collectively referred to as "functional layer”) has been conventionally used. Then, such a functional layer is formed by, for example, applying a secondary battery functional layer slurry composition containing components such as a binder onto a base material such as a separator base material, and drying the coating film on the base material.
- Patent Document 1 discloses a separator for an electricity storage device having a porous layer composed of an inorganic filler and a resin binder on a porous substrate layer.
- Patent Literature 1 proposes the use of a mixture of resin binders having different functional group equivalents and glass transition temperatures when manufacturing the separator for power storage devices.
- the present invention provides a slurry composition for a non-aqueous secondary battery functional layer that can form a functional layer having excellent adhesiveness after immersion in an electrolytic solution and that can exhibit excellent battery characteristics in a secondary battery.
- a slurry composition for a non-aqueous secondary battery functional layer that can form a functional layer having excellent adhesiveness after immersion in an electrolytic solution and that can exhibit excellent battery characteristics in a secondary battery.
- Another object of the present invention is to provide a non-aqueous secondary battery separator that adheres well to adjacent battery members after being immersed in an electrolytic solution, so that the secondary battery can exhibit excellent battery characteristics.
- Another object of the present invention is to provide a non-aqueous secondary battery having excellent battery characteristics.
- the inventor of the present invention conducted intensive studies with the aim of solving the above problems. Then, the present inventors have found a particulate polymer A having a glass transition temperature of 30 ° C. or higher and 95 ° C. or lower and a volume average particle diameter of 250 nm or higher and 800 nm or lower and containing a reactive functional group-containing monomer unit, and a glass transition temperature
- the particulate polymer B having a temperature of less than 30° C., it is possible to form a functional layer capable of exhibiting excellent adhesiveness after being immersed in the electrolytic solution.
- the functional layer is excellent in ion conductivity such as lithium ions, it was newly found that the battery characteristics of the secondary battery can be improved by using the functional layer, and the present invention was completed.
- an object of the present invention is to advantageously solve the above problems, and the present invention provides [1] a particulate polymer A containing a reactive functional group-containing monomer unit;
- the particulate polymer A has a glass transition temperature of 30° C. or higher and 95° C. or lower, the glass transition temperature of the particulate polymer B is lower than 30° C., and the particulate polymer A is a slurry composition for a non-aqueous secondary battery functional layer having a volume average particle size of 250 nm or more and 800 nm or less.
- the “particulate polymer” is a polymer component dispersed in the slurry composition for non-aqueous secondary battery functional layer of the present invention while maintaining the particle shape.
- the particulate polymer in the functional layer formed using the slurry composition for a non-aqueous secondary battery functional layer of the present invention may be in a particle shape or in any other shape.
- the "monomer unit” of the polymer means “a repeating unit derived from the monomer and contained in the polymer obtained using the monomer". Also, the content of monomer units in the polymer can be measured by 1 H-NMR. In the present invention, the "glass transition temperature” and “volume average particle size” of the polymer can be measured using the methods described in the Examples of the present specification.
- the slurry composition for the non-aqueous secondary battery functional layer of [1] above has a content ratio of the reactive functional group-containing monomer units in the particulate polymer A of 8% by mass or more and 40 % or less is preferable. If the content of the reactive functional group-containing monomer unit in the particulate polymer A is within the above range, the adhesion of the functional layer after immersion in the electrolyte can be further improved.
- the particulate polymer A has an electrolyte solution swelling degree of 1.2 times or more and 3 times or less. is preferred. If the electrolyte solution swelling degree of the particulate polymer A is within the above range, the cycle characteristics of the secondary battery can be improved.
- the "swelling degree of electrolyte solution" can be measured using the measuring method described in the examples of the present specification.
- a non-aqueous secondary battery separator comprising a non-aqueous secondary battery separator, wherein the functional layer is a dried slurry composition for a non-aqueous secondary battery functional layer according to any one of [1] to [4] It is a separator for a secondary battery.
- the separator provided with the functional layer formed from the slurry composition for the non-aqueous secondary battery functional layer of any one of [1] to [4] above is adjacent after immersion in the electrolyte solution via the functional layer. It can adhere well to battery members (eg, electrodes) that are compatible with each other. Therefore, by using the separator, the secondary battery can exhibit excellent battery characteristics.
- Another object of the present invention is to advantageously solve the above problems.
- the secondary battery provided with the non-aqueous secondary battery separator of [5] described above has excellent battery characteristics.
- a slurry composition for a non-aqueous secondary battery functional layer is capable of forming a functional layer having excellent adhesiveness after immersion in an electrolytic solution and capable of exhibiting excellent battery characteristics in a secondary battery.
- a non-aqueous secondary battery separator that adheres well to adjacent battery members after being immersed in an electrolytic solution, and that enables the secondary battery to exhibit excellent battery characteristics.
- the non-aqueous secondary battery which is excellent in a battery characteristic can be provided.
- the slurry composition for non-aqueous secondary battery functional layers of the present invention is used as a material for preparing functional layers provided in battery members such as separators and electrodes.
- the separator for non-aqueous secondary batteries of this invention is equipped with the functional layer formed using the slurry composition for non-aqueous secondary battery functional layers of this invention.
- the non-aqueous secondary battery of the present invention comprises the non-aqueous secondary battery separator of the present invention.
- the slurry composition for a non-aqueous secondary battery functional layer of the present invention contains a particulate polymer A and a particulate polymer B, and optionally particulate It further contains components other than the polymer A and the particulate polymer B (hereinafter referred to as “other components”). Moreover, the slurry composition of the present invention can further contain a solvent such as water.
- the particulate polymer A contains a reactive functional group-containing monomer unit, has a glass transition temperature of 30 ° C. or higher and 95 ° C. or lower, and a volume average particle diameter of 250 nm or higher and 800 nm. and the glass transition temperature of the particulate polymer B is less than 30°C.
- the particulate polymer A has a high strength because a crosslinked structure is formed inside the particulate polymer A by including the reactive functional group-containing monomer unit. Moreover, since the particulate polymer A contains a reactive functional group-containing monomer unit, the surface of the particulate polymer A easily interacts with the surface of the battery member. Further, the particulate polymer A has the above-described predetermined glass transition temperature and volume average particle diameter, and thus has excellent adhesiveness. And particulate polymer B is excellent in adhesiveness because the glass transition temperature is less than 30 degreeC.
- the functional layer formed by using the slurry composition containing both the particulate polymer A and the particulate polymer B is immersed in the electrolytic solution due to the synergistic effect of the particulate polymer A and the particulate polymer B. It can exhibit excellent adhesiveness and is excellent in ion conductivity such as lithium ion. Therefore, by using a separator having a functional layer formed using the slurry composition of the present invention, the secondary battery can exhibit excellent battery characteristics.
- the particulate polymer A has a glass transition temperature of 30° C. or higher, preferably 50° C. or higher, and 95° C. or lower, preferably 80° C. or lower. If the glass transition temperature of the particulate polymer A is at least the above lower limit, it is possible to suppress adhesion between adjacent battery members via the functional layer, that is, so-called blocking, and improve the battery characteristics of the secondary battery. can. Further, if the glass transition temperature of the particulate polymer A is equal to or lower than the above upper limit, the adhesiveness of the functional layer after immersion in the electrolytic solution is improved, and swelling of the electrode due to repeated charging and discharging is suppressed.
- the battery characteristics of the secondary battery can be improved.
- the glass transition temperature of the particulate polymer A can be adjusted, for example, by changing the type and ratio of the monomers used in the preparation of the particulate polymer A, and/or the polymerization conditions of the particulate polymerization A (e.g., It can be adjusted by changing the amount of emulsifier used).
- the particulate polymer A has a volume average particle diameter of 250 nm or more, preferably 300 nm or more, more preferably 400 nm or more, still more preferably 500 nm or more, 800 nm or less, and 600 nm or less. is preferably If the volume average particle size of the particulate polymer A is at least the above lower limit, the thickness of the functional layer can be sufficiently ensured, and the adhesiveness of the functional layer after immersion in the electrolyte can be further improved. Further, when the volume average particle diameter of the particulate polymer A is equal to or less than the above upper limit, a sufficient contact area between the functional layer and the battery member can be ensured, and the adhesiveness of the functional layer can be further improved.
- the volume average particle diameter of the particulate polymer A can be adjusted, for example, by changing the polymerization conditions of the particulate polymer A (for example, the amount of emulsifier used).
- the electrolytic solution swelling degree of the particulate polymer A is preferably 1.2 times, more preferably 1.5 times or more, preferably 3 times or less, and 2.5 times or less. is more preferable. If the degree of swelling of the particulate polymer A in the electrolyte solution is at least the above lower limit, the adhesiveness of the functional layer after immersion in the electrolyte solution can be further enhanced, and swelling of the battery due to repeated charging and discharging can be further suppressed. . Further, when the degree of swelling of the electrolyte solution of the particulate polymer A is equal to or less than the above upper limit, the rate characteristics and cycle characteristics of the secondary battery can be further improved.
- the degree of swelling of the electrolytic solution of the particulate polymer A can be adjusted, for example, by changing the type and ratio of the monomers used in the preparation of the particulate polymer A, and/or the polymerization conditions of the particulate polymer A ( For example, it can be adjusted by changing the amount of emulsifier used).
- the particulate polymer A contains reactive functional group-containing monomer units, and optionally monomers other than the reactive functional group-containing monomer units (hereinafter referred to as "other monomer units"). .).
- the other monomer units are not particularly limited, and examples thereof include (meth)acrylic acid ester monomer units, aromatic monovinyl monomer units, crosslinkable monomer units, and acidic group-containing units. Examples include monomer units.
- the reactive functional group-containing monomer units include cyclic ether-containing polymer units and/or silane-based monomer units.
- the cyclic ether-containing monomer that can form the cyclic ether-containing monomer unit is not particularly limited as long as it is a monomer containing a cyclic ether structure.
- an epoxy group (epoxy ring)-containing monomer and oxetanyl group (oxetane ring)-containing monomers are examples of an epoxy group (epoxy ring)-containing monomer and oxetanyl group (oxetane ring)-containing monomers.
- epoxy group-containing monomers examples include allyl glycidyl ether, glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether, glycidyl vinyl ether and the like. These may be used individually by 1 type, and may be used in combination of multiple types.
- (meth)acrylate means an acrylate and/or a methacrylate.
- oxetanyl group-containing monomers examples include 3-((meth)acryloyloxymethyl)oxetane, 3-((meth)acryloyloxymethyl)-2-trifluoromethyloxetane, 3-((meth)acryloyloxymethyl) )-2-phenyloxetane, 2-((meth)acryloyloxymethyl)oxetane, 2-((meth)acryloyloxymethyl)-4-trifluoromethyloxetane and the like. These may be used individually by 1 type, and may be used in combination of multiple types. In the present invention, "(meth)acryloyl” means acryloyl and/or methacryloyl.
- the silane-based monomer capable of forming the silane-based monomer unit is not particularly limited as long as it is a monomer containing silane.
- Group-containing monomers such as methacryloxypropylmethyldimethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropyltriethoxysilane; acryloxypropyltrimethoxysilane, etc. acrylic group-containing monomers. These may be used individually by 1 type, and may be used in combination of multiple types.
- the monomers forming the reactive functional group-containing monomer units are preferably epoxy group-containing monomers and methacrylic group-containing monomers, and glycidyl methacrylate. , glycidyl vinyl ether, and methacryloxypropyltrimethoxysilane are preferred.
- the content of the reactive functional group-containing monomer units in the particulate polymer A is 8% by mass or more when the total amount of monomer units in the particulate polymer A is 100% by mass. It is preferably 10% by mass or more, more preferably 40% by mass or less, and more preferably 30% by mass or less. If the content of the reactive functional group-containing monomer unit is within the above range, swelling of the secondary battery due to repeated charging and discharging can be further suppressed.
- (Meth) acrylic acid ester monomer unit - (Meth)acrylate monomers capable of forming (meth)acrylate monomer units include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, acrylic acid alkyl esters such as isobutyl acrylate, n-pentyl acrylate, isopentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-buty
- the content of the (meth)acrylic acid ester monomer units in the particulate polymer A is 10% by mass or more when the amount of the total monomer units in the particulate polymer A is 100% by mass. It is preferably 20% by mass or more, more preferably 50% by mass or less, and more preferably 40% by mass or less. If the content ratio of the (meth)acrylic acid ester monomer unit is within the above range, the degree of swelling of the particulate polymer A in the electrolytic solution can be well controlled while ensuring the flexibility of the particulate polymer A. can be done. Therefore, it is possible to further improve the adhesiveness of the functional layer after immersion in the electrolyte, and the rate characteristics and cycle characteristics of the secondary battery.
- aromatic monovinyl monomers capable of forming aromatic monovinyl monomer units include styrene, styrenesulfonic acid and salts thereof (eg, sodium styrenesulfonate), ⁇ -methylstyrene, vinyltoluene, 4-(tert -butoxy) styrene and the like. These may be used individually by 1 type, and may be used in combination of multiple types. Among these, styrene is preferred.
- the content of the aromatic monovinyl monomer units in the particulate polymer A is 30% by mass or more when the total amount of monomer units in the particulate polymer A is 100% by mass. is preferably 40% by mass or more, more preferably 80% by mass or less, and more preferably 70% by mass or less. If the content of the aromatic monovinyl monomer units is at least the above lower limit, the glass transition temperature of the particulate polymer A increases, and the blocking resistance of the secondary battery can be improved. In addition, if the content of the aromatic monovinyl monomer unit is equal to or less than the above upper limit, the deformability of the particulate polymer A during pressing or the like is sufficiently ensured when producing a secondary battery, so that electrolysis is possible. It is possible to further improve the adhesiveness of the functional layer after being immersed in the liquid.
- crosslinkable monomer capable of forming a crosslinkable monomer unit is not particularly limited, and includes a monomer capable of forming a crosslinked structure by polymerization.
- crosslinkable monomers generally include monomers having thermal crosslinkability.
- crosslinkable monomers include crosslinkable monomers having two or more olefinic double bonds per molecule.
- monomers classified into both the reactive functional group-containing monomer and the crosslinkable monomer are treated as reactive functional group-containing monomers.
- crosslinkable monomers having two or more olefinic double bonds per molecule examples include allyl (meth)acrylate (also referred to as "allyl methacrylate”), ethylene glycol di(meth)acrylate (“ethylene glycol dimethacrylate”), diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, trimethylolpropane-tri(meth)acrylate, dipropylene glycol diallyl ether , polyglycol diallyl ether, triethylene glycol divinyl ether, hydroquinone diallyl ether, tetraallyloxyethane, trimethylolpropane-diallyl ether, allyl or vinyl ethers of polyfunctional alcohols other than the above, triallylamine, methylenebisacrylamide and divinylbenzene.
- allyl (meth)acrylate also referred to as "allyl methacrylate”
- crosslinkable monomers may be used singly or in combination of multiple types. Among these, crosslinkable monomers having two or more olefinic double bonds per molecule are preferred, and allyl methacrylate and ethylene glycol dimethacrylate are preferred.
- the ratio of the crosslinkable monomer units in the particulate polymer A is 0.1% by mass or more and 1% by mass when the amount of the total monomer units in the particulate polymer A is 100% by mass. The following are preferred. If the content of the crosslinkable monomer unit is within the above range, the degree of swelling of the particulate polymer A in the electrolyte solution is well controlled, and the adhesion of the functional layer after immersion in the electrolyte solution and the secondary battery. Rate characteristics and cycle characteristics can be further improved.
- Acidic group-containing monomer unit examples include carboxylic acid group-containing monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, and the like. These may be used individually by 1 type, and may be used in combination of multiple types.
- carboxylic acid group-containing monomers examples include ethylenically unsaturated monocarboxylic acids and derivatives thereof, ethylenically unsaturated dicarboxylic acids and acid anhydrides thereof, and derivatives thereof.
- ethylenically unsaturated monocarboxylic acids include acrylic acid, methacrylic acid, crotonic acid, and the like.
- ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid.
- ethylenically unsaturated dicarboxylic acids include maleic acid, fumaric acid, itaconic acid, mesaconic acid, and the like.
- acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
- derivatives of ethylenically unsaturated dicarboxylic acids include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, diphenyl maleate, nonyl maleate, decyl maleate. , dodecyl maleate, octadecyl maleate, fluoroalkyl maleate, and the like.
- Sulfonic acid group-containing monomers include vinylsulfonic acid, methylvinylsulfonic acid, (meth)allylsulfonic acid, ethyl (meth)acrylic acid-2-sulfonate, 2-acrylamido-2-methylpropanesulfonic acid, 3 -allyloxy-2-hydroxypropanesulfonic acid and the like.
- (meth)allyl means allyl and/or methallyl
- (meth)acryl means acryl and/or methacryl.
- Examples of the phosphate group-containing monomer include 2-(meth)acryloyloxyethyl phosphate, methyl 2-(meth)acryloyloxyethyl phosphate, and ethyl phosphate-(meth)acryloyloxyethyl phosphate.
- the acidic group-containing monomer a carboxylic acid group-containing monomer is preferable, and acrylic acid, methacrylic acid, and itaconic acid are more preferable.
- the ratio of the acidic group-containing monomer units in the particulate polymer A is 5% by mass or less when the total amount of monomer units in the particulate polymer A is 100% by mass. Preferably, it is 2% by mass or less.
- the particulate polymer A described above can be prepared by a known polymerization method without any particular limitation.
- the polymerization method is not particularly limited, and any method such as solution polymerization method, suspension polymerization method, bulk polymerization method, and emulsion polymerization method can be used.
- As the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used. Commonly used emulsifiers, dispersants, polymerization initiators, polymerization aids and the like can be used in the polymerization, and the amounts used can also be the amounts generally used.
- the particulate polymer B has a glass transition temperature of less than 30°C, preferably 20°C or less, more preferably 0°C or less, preferably -50°C or more, and -40°C or more. is more preferable, and -30° C. or higher is even more preferable. If the glass transition temperature of the particulate polymer B is within the above range, the adhesion of the functional layer can be sufficiently ensured.
- the glass transition temperature of the particulate polymer B can be adjusted in the same manner as the particulate polymer A.
- the composition of the particulate polymer B is not particularly limited as long as it has at least a glass transition temperature of less than 30°C.
- the particulate polymer B includes, for example, the above-mentioned (meth)acrylic acid ester monomer units, aromatic monovinyl monomer units, crosslinkable monomer units, and acidic group-containing monomer units, as well as, for example, fatty conjugated diene monomer units, cyano group-containing monomer units, and the like.
- the particulate polymer B contains aromatic monovinyl monomer units, crosslinkable monomer units, and acidic group-containing monomers. It preferably contains units and aliphatic conjugated diene monomer units.
- the content of the (meth)acrylic acid ester monomer unit in the particulate polymer B is the total amount of the monomers in the particulate polymer B
- the body unit is 100% by mass, it is preferably 60% by mass or more and 95% by mass or less.
- the content of the aromatic monovinyl monomer units in the particulate polymer B is set to the total monomer units in the particulate polymer B.
- the content is preferably 10% by mass or more, more preferably 20% by mass or more, and preferably 70% by mass or less.
- crosslinkable monomer capable of forming the crosslinkable monomer units contained in the particulate polymer B examples include those similar to the crosslinkable monomers described in the ⁇ Particulate polymer A> section. be done.
- the content of the crosslinkable monomer units in the particulate polymer B is 100% of the total monomer units in the particulate polymer B.
- % by mass it is preferably 0.1% by mass or more and 1% by mass or less.
- Acidic group-containing monomer unit As the acidic group-containing monomer that can form the acidic group-containing monomer unit that can be contained in the particulate polymer B, the same acidic group-containing monomers as described in the ⁇ Particulate polymer A> section can be used. things are mentioned.
- the content of the acidic group-containing monomer units in the particulate polymer B is set to the total monomer units in the particulate polymer B.
- 100% by mass it is preferably 1% by mass or more and 5% by mass or less.
- Aliphatic conjugated diene monomer unit examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and the like. and a conjugated diene compound having 4 or more carbon atoms. Among them, 1,3-butadiene and isoprene are preferred, and 1,3-butadiene is more preferred. These can be used individually by 1 type or in combination of 2 or more types.
- the content of the aliphatic conjugated diene monomer units in the particulate polymer B is the total monomer units in the particulate polymer B
- the amount of is 100% by mass, it is preferably 10% by mass or more and 60% by mass or less.
- Cyano group-containing monomers capable of forming cyano group-containing monomer units include (meth)acrylonitrile such as acrylonitrile and methacrylonitrile; ⁇ -halogenoacrylonitrile such as ⁇ -chloroacrylonitrile and ⁇ -bromoacrylonitrile; 2-cyanoethyl (meth)acrylate such as cyanoethyl acrylate and 2-cyanoethyl methacrylate; 2-cyanoethyl acrylamide; and the like can be used.
- (meth)acrylonitrile is preferably used, and acrylonitrile is more preferably used.
- these may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
- (meth)acrylonitrile means acrylonitrile and/or methacrylonitrile
- (meth)acrylate means acrylate and/or methacrylate.
- the content of the cyano group-containing monomer units in the particulate polymer B is set to the total monomer units in the particulate polymer B.
- the amount of is 100% by mass, it is preferably 1% by mass or more and 20% by mass or less.
- the method for preparing the particulate polymer B is not particularly limited, and it can be prepared by the same method as for the particulate polymer A.
- the mass ratio of particulate polymer A to particulate polymer B is preferably 100:1 to 100:25. If the mass ratio of the particulate polymer A and the particulate polymer B is within the above range, the adhesiveness of the functional layer after immersion in the electrolyte and the cycle characteristics of the secondary battery can be well balanced. .
- slurry composition of the present invention may optionally contain are not particularly limited, and examples thereof include known additives.
- Known additives are not particularly limited, and may contain, for example, components such as surface tension modifiers, dispersants, viscosity modifiers, reinforcing materials, and electrolytic solution additives. These are not particularly limited as long as they do not affect the battery reaction, and known ones such as those described in International Publication No. 2012/115096 can be used.
- these components may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
- the method for preparing the slurry composition of the present invention is not particularly limited. can be prepared by At that time, the mixing method is not particularly limited, and can be mixed by a known method.
- the non-aqueous secondary battery separator of the present invention (hereinafter also simply referred to as "separator”) comprises a separator base material and a functional layer formed on at least one surface of the separator base material, wherein the functional layer is , a dried product of the slurry composition of the present invention described above. Further, according to the separator of the present invention, since the functional layer is formed from the slurry composition of the present invention, the functional layer can be firmly adhered to the separator substrate. Further, according to the separator of the present invention, the secondary battery can exhibit excellent battery characteristics.
- the separator base material used in the separator of the present invention is not particularly limited, but includes known separator base materials such as organic separator base materials.
- the organic separator base material is a porous member made of an organic material.
- organic separator substrates include polyolefin resins such as polyethylene and polypropylene, and microporous membranes and nonwoven fabrics containing aromatic polyamide resins. Polyethylene microporous membranes and nonwoven fabrics are preferred because of their excellent strength. .
- the functional layer is a dried product of the slurry composition of the present invention, as described above. That is, the functional layer of the separator of the present invention usually contains at least the particulate polymer A and the particulate polymer B, and optionally other components. In addition, since each component contained in the functional layer was contained in the slurry composition of the present invention, the preferred abundance ratio of each component is It is the same as the preferred abundance ratio of the components.
- the particulate polymer and / or the particulate polymer B contains a crosslinkable monomer unit
- the particulate polymer and / or the particulate polymer B is dried during drying of the slurry composition, or , the functional layer may be crosslinked by heat treatment optionally performed after drying (that is, the functional layer may contain a crosslinked product of the particulate polymer A and/or B described above).
- the functional layer which is a dried product of the slurry composition, may contain a solvent such as water derived from the slurry composition, but the solvent content in the functional layer may vary depending on the battery characteristics of the secondary battery ( rate characteristics, etc.), it is preferably 3% by mass or less, more preferably 1% by mass or less, even more preferably 0.1% by mass or less, and 0% by mass or less (detection below the limit) is particularly preferred.
- the method for producing the separator of the present invention is not particularly limited, and for example, the separator of the present invention can be produced by forming a functional layer on the separator base material described above.
- examples of the method of forming the functional layer on the separator base material to produce the separator of the present invention include the following methods. 1) A method of supplying the slurry composition of the present invention to the surface of a separator substrate and then drying; and 2) A method of supplying the slurry composition of the present invention onto a release substrate and drying to produce a functional layer. and a method of transferring the obtained functional layer to the surface of the separator substrate.
- the method 1) is particularly preferable because the layer thickness of the functional layer can be easily controlled.
- the method 1) includes a step of supplying the slurry composition onto the separator substrate (supplying step), and a step of drying the slurry composition coated on the separator substrate to form a functional layer. (drying process).
- examples of the method of supplying the slurry composition onto the separator substrate include a method of coating the surface of the separator substrate with the slurry composition and a method of immersing the separator substrate in the slurry composition. Specific examples of these methods are not particularly limited. is mentioned.
- the method for drying the slurry composition on the separator substrate is not particularly limited, and a known method can be used. Drying methods include, for example, drying with warm air, hot air, low humidity air, vacuum drying, and drying by irradiation with infrared rays, electron beams, or the like.
- the thickness of the functional layer produced on the separator substrate as described above is 0.1 ⁇ m or more and 10 ⁇ m or less from the viewpoint of further improving the rate characteristics of the secondary battery while ensuring the strength of the functional layer. Preferably.
- the secondary battery of the present invention includes the separator of the present invention described above. More specifically, the non-aqueous secondary battery of the present invention comprises a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the separator is the non-aqueous secondary battery separator of the present invention described above. And since the secondary battery of the present invention includes the separator of the present invention, it can exhibit excellent battery characteristics.
- the positive and negative electrodes used in the secondary battery of the present invention are not particularly limited, and known positive and negative electrodes can be used.
- an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
- a supporting electrolyte for example, a lithium salt is used in a lithium ion secondary battery.
- lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
- LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
- an electrolyte may be used individually by 1 type, and may be used in combination of 2 or more types.
- lithium ion conductivity tends to increase as a supporting electrolyte with a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted depending on the type of supporting electrolyte.
- the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
- carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
- the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted by the type of solvent.
- concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. Further, known additives may be added to the electrolytic solution.
- the positive electrode and the negative electrode are superimposed with a separator interposed therebetween, and if necessary, this is rolled or folded into a battery container, and the electrolyte is injected into the battery container. It can be produced by sealing with At least one member among the positive electrode, the negative electrode, and the separator is a battery member provided with the functional layer of the present invention. If necessary, expanded metal, fuses, overcurrent protection elements such as PTC elements, lead plates, etc. may be placed in the battery container to prevent pressure rise inside the battery and overcharge/discharge.
- the shape of the battery may be, for example, coin-shaped, button-shaped, sheet-shaped, cylindrical, rectangular, or flat.
- the glass transition temperature, volume average particle size, degree of swelling of the electrolyte, adhesion of the functional layer after immersion in the electrolyte, blocking resistance, swelling resistance, rate characteristics, and cycle characteristics are as follows. It was measured and evaluated by the following methods.
- ⁇ Glass transition temperature> Aqueous dispersions of particulate polymer A prepared in Examples and Comparative Examples were dried at a temperature of 25° C. for 48 hours to obtain powdery measurement samples. Weigh 10 mg of the measurement sample in an aluminum pan, and use a differential thermal analysis measurement device (manufactured by SII Nanotechnology Co., Ltd., product name "EXSTAR DSC6220") to measure the temperature range from -100 ° C. to 200 ° C. The temperature rise rate Measurement was performed at 20°C/min under the conditions specified in JIS Z8703 to obtain a differential scanning calorimetry (DSC) curve. An empty aluminum pan was used as a reference.
- DSC differential scanning calorimetry
- the temperature at which the differential signal (DDSC) shows a peak was determined as the glass transition temperature (°C).
- the glass transition temperature of the particulate polymer A the glass transition temperature indicated by the peak with a large displacement was taken as the glass transition temperature of the particulate polymer A.
- the same operation as above was performed except that the aqueous dispersion of particulate polymer B prepared in Examples and Comparative Examples was used instead of the aqueous dispersion of particulate polymer A.
- the glass transition temperature of B was determined.
- volume average particle size of the particulate polymer A prepared in Examples and Comparative Examples was measured by a laser diffraction method. Specifically, an aqueous dispersion of particulate polymer A adjusted to a solid concentration of 0.1% by mass was used as a sample. Then, in the particle size distribution (volume basis) measured using a laser diffraction particle size distribution analyzer (manufactured by Beckman Coulter, product name “LS-13 320”), the cumulative volume calculated from the small diameter side is 50 % was taken as the volume average particle size of the particulate polymer A (D50).
- ⁇ Swelling degree of electrolyte solution> Aqueous dispersions of particulate polymer A prepared in Examples and Comparative Examples were placed in a petri dish made of polytetrafluoroethylene. The aqueous dispersion in a petri dish was dried at a temperature of 25° C. for 48 hours to obtain a powdery sample. A test piece was obtained by pressing 0.2 g of the obtained sample at a temperature of 200° C. and a pressure of 5 MPa for 2 minutes. The weight of the obtained test piece was measured and defined as W0. Next, the obtained test piece was immersed in an electrolytic solution for measurement at a temperature of 60°C for 72 hours.
- LiPF A solution in which 6 (supporting electrolyte) was dissolved at a concentration of 1 mol/liter was used. After the immersion, the test piece was taken out of the electrolyte for measurement, and the electrolyte for measurement on the surface of the test piece was wiped off. Then, the weight of the test piece after immersion was measured and designated as W1. Using the measured W0 and W1, the degree of swelling of the electrolytic solution W1/W0 was calculated.
- a single-layer polyethylene separator (thickness: 12 ⁇ m) manufactured by a wet method was prepared as a separator base material.
- the slurry composition prepared in Examples and Comparative Examples was applied, the slurry composition on the separator substrate was dried at 50 ° C. for 10 minutes, and the functional layer (coating weight: 0.2 g/m 2 ).
- a separator provided with this functional layer on one side was used as a separator for evaluation.
- a negative electrode was produced in the same manner as in Example 1, which will be described later, and used as a negative electrode for evaluation.
- Each of the negative electrode for evaluation and the separator for evaluation obtained above was cut into a rectangular shape of 10 mm ⁇ 100 mm. Then, the negative electrode mixture layer of the negative electrode was formed along the surface of the functional layer of the separator to form a test piece, which was placed in a laminate packaging material together with about 400 ⁇ L of the electrolytic solution. After 12 hours, the test piece together with the laminated packaging material was pressed at 80° C. and a pressure of 1.0 MPa for 10 minutes.
- the electrolytic solution used had the same composition as the measuring electrolytic solution used for the measurement of the "swelling degree of the electrolytic solution". After that, the test piece was taken out, and the electrolytic solution adhering to the surface was wiped off.
- the negative electrode current collector side surface of the test piece was placed downward, and cellophane tape was attached to the negative electrode current collector side surface.
- the cellophane tape specified in JIS Z1522 was used.
- the cellophane tape was fixed on a horizontal test stand. Then, the stress when one end of the separator was pulled vertically upward at a pulling rate of 50 mm/min and peeled off was measured. This measurement was performed three times, and the average value of the stress was obtained as the peel strength, which was evaluated according to the following criteria.
- a separator similar to the separator having a functional layer on one side formed in the evaluation of "adhesiveness of functional layer after immersion in electrolytic solution” was cut into squares of width 5 cm x length 5 cm to obtain two square pieces. .
- the two square pieces are superimposed so that the surfaces of the functional layers formed on the separator substrate face each other, placed under a pressure of 0.1 MPa at a temperature of 40° C., and left for 24 hours.
- a test piece in a pressed state (pressed test piece) was produced. After being left for 24 hours, the pressed test piece was visually checked for adhesion between the two overlapping square pieces, and the blocking resistance was evaluated according to the following criteria.
- the ratio of increase in the thickness of the secondary battery after the cycle to that before the cycle was evaluated as the swelling property of the secondary battery.
- C Thickness of the battery after the cycle compared to before the cycle increase rate of 5% or more
- the secondary batteries produced in Examples and Comparative Examples were allowed to stand at a temperature of 25° C. for 5 hours after electrolyte injection. Next, it was charged to a cell voltage of 3.65 V by a constant current method at a temperature of 25° C. and 0.2 C, and then subjected to aging treatment at a temperature of 60° C. for 12 hours. Then, the battery was discharged to a cell voltage of 3.00 V by a constant current method at a temperature of 25° C. and 0.2 C. After that, CC-CV charging (upper limit cell voltage 4.35V) was performed at a constant current of 0.2C, and CC discharging was performed to a cell voltage of 3.00V at a constant current of 0.2C.
- Capacity retention rate ⁇ C is 75% or more
- B Capacity retention rate ⁇ C is 60% or more and less than 75%
- C Capacity retention rate ⁇ C is less than 60%
- ⁇ Cycle characteristics> The lithium ion secondary battery was allowed to stand in an environment of 25° C. for 24 hours after the injection of the electrolytic solution. Then, at 25°C, charge to 4.2 V (cutoff condition: 0.02 C) by a constant voltage constant current (CC-CV) method at a charge rate of 1 C, and discharge at a constant current (CC ) method to discharge to 3.0 V, and the initial capacity C2 was measured. Furthermore, the same charge/discharge operation was repeated under an environment of 45° C., and the capacity C3 was measured after 300 cycles. Then, the capacity retention rate ⁇ C′ (C3/C2) ⁇ 100(%) was calculated and evaluated according to the following criteria.
- Capacity retention rate ⁇ C' is 85% or more
- Example 1 ⁇ Preparation of Particulate Polymer A> In a 5 MPa pressure vessel equipped with a stirrer, 65.5 parts of styrene as an aromatic monovinyl monomer, 24.0 parts of n-butyl acrylate as a (meth)acrylic acid ester monomer, and a monomer containing a reactive functional group 10 parts of glycidyl methacrylate, 0.5 parts of ethylene glycol dimethacrylate as a crosslinkable monomer, 0.3 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and potassium persulfate as a polymerization initiator After adding 0.3 parts and sufficiently stirring, the mixture was heated to 80° C.
- ⁇ Preparation of Particulate Polymer B> In a 5 MPa pressure vessel equipped with a stirrer, 32.5 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 2 parts of itaconic acid as an acidic group-containing monomer, styrene 65 as an aromatic monovinyl monomer parts, 0.5 parts of allyl methacrylate as a crosslinkable monomer, 0.4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts by mass of ion-exchanged water, and 0.5 parts of potassium persulfate as a polymerization initiator. After thoroughly stirring, the mixture was heated to 50° C. to initiate polymerization.
- ⁇ Preparation of slurry composition 100 parts of the aqueous dispersion of the particulate polymer A (equivalent to the solid content), 10 parts of the aqueous dispersion of the particulate polymer B (equivalent to the solid content), and “Noptex (registered trademark) ED-052” as a wetting agent. (manufactured by San Nopco) and 2 parts (corresponding to the solid content) were mixed in a stirring vessel to obtain a mixture. The resulting mixture was diluted with ion-exchanged water to obtain a slurry composition (solid concentration: 10%).
- separator base material having a porous membrane layer on one side (thickness of porous membrane layer: 3 ⁇ m).
- the slurry composition described above was applied to the surface of the separator substrate on which the porous membrane layer was provided, and dried at a temperature of 50° C. for 3 minutes.
- the same operation was applied to the surface of the separator substrate opposite to the side on which the porous membrane layer was provided, to obtain a separator having functional layers on both sides (thickness of functional layer: 0.6 ⁇ m each).
- a slurry composition for a negative electrode mixture layer was prepared.
- the slurry composition for the negative electrode mixture layer was applied to the surface of a copper foil having a thickness of 15 ⁇ m as a current collector with a comma coater so that the coating amount was 11 ⁇ 0.5 mg/cm 2 .
- the copper foil coated with the slurry composition for the negative electrode mixture layer is conveyed at a speed of 400 mm / min in an oven at a temperature of 80 ° C.
- the negative electrode raw sheet in which a negative electrode mixture layer was formed on a current collector.
- the negative electrode mixture layer side of the negative electrode raw fabric thus prepared was roll-pressed under conditions of a temperature of 25 ⁇ 3° C. and a linear pressure of 11 t (tons), resulting in a negative electrode having a negative electrode mixture layer density of 1.60 g/cm 3 . got After that, the negative electrode was left for one week in an environment with a temperature of 25 ⁇ 3° C. and a relative humidity of 50 ⁇ 5%.
- NMP N-methyl-2-pyrrolidone
- the slurry composition on the aluminum foil is dried, and the current collector A positive electrode raw sheet having a positive electrode mixture layer formed thereon was obtained.
- the positive electrode material layer side of the positive electrode raw material prepared was roll-pressed under the conditions of a linear pressure of 14 t (tons) in an environment of a temperature of 25 ⁇ 3 ° C., and a positive electrode with a positive electrode material layer density of 3.40 g / cm 3 got After that, the positive electrode was left for one week in an environment with a temperature of 25 ⁇ 3° C. and a relative humidity of 50 ⁇ 5%.
- a wound cell (corresponding to a discharge capacity of 520 mAh) was produced using the separator, negative electrode, and positive electrode obtained as described above, and placed in an aluminum packaging material.
- the wound cell was pressed together with the aluminum packaging material for 8 seconds using a heating flat plate press at a temperature of 70° C. and a pressure of 1.0 MPa to bond the separator and the electrodes (negative electrode and positive electrode).
- the electrolytic solution was filled in the aluminum packaging material.
- LiPF 6 supporting electrolyte
- heat sealing was performed at a temperature of 150° C. to close the aluminum packaging material, thereby manufacturing a lithium ion secondary battery. Using this lithium ion secondary battery, swelling resistance, rate characteristics, and cycle characteristics were evaluated. Table 1 shows the results.
- Example 2 In preparing the particulate polymer A, the polymerization conditions for preparing the particulate polymer A were adjusted so that the volume average particle diameter of the particulate polymer A was 300 nm (Example 2) and 700 nm (Example 3). changed. Otherwise, in the same manner as in Example 1, particulate polymer A, particulate polymer B, slurry composition, separator, negative electrode, and positive electrode were produced to obtain a secondary battery. Then, in the same manner as in Example 1, various measurements and evaluations were performed. Table 1 shows the results.
- Example 4 In preparing Particulate Polymer A, the amount of styrene as the aromatic monovinyl monomer was changed to 40.5 parts, and the amount of glycidyl methacrylate as the reactive functional group-containing monomer was changed to 35 parts. Otherwise, in the same manner as in Example 1, a particulate polymer A, a particulate polymer B, a slurry composition, a separator, a negative electrode, and a positive electrode were produced to obtain a secondary battery. Then, in the same manner as in Example 1, various measurements and evaluations were performed. Table 1 shows the results.
- Example 5 In preparing the particulate polymer A, the amount of styrene as the aromatic monovinyl monomer was changed to 45.5 parts, and glycidyl methacrylate vinyl ether was replaced with 30 parts of glycidyl methacrylate vinyl ether as the reactive functional group-containing monomer. used. Otherwise, in the same manner as in Example 1, a particulate polymer A, a particulate polymer B, a slurry composition, a separator, a negative electrode, and a positive electrode were produced to obtain a secondary battery. Then, in the same manner as in Example 1, various measurements and evaluations were performed. Table 1 shows the results.
- Example 6 In the preparation of Particulate Polymer A, 10 parts of methacryloxypropyltrimethoxysilane was used in place of glycidyl methacrylate as a reactive functional group-containing monomer. Otherwise, in the same manner as in Example 1, a particulate polymer A, a particulate polymer B, a slurry composition, a separator, a negative electrode and a positive electrode were produced to obtain a secondary battery. Then, in the same manner as in Example 1, various measurements and evaluations were performed. Table 1 shows the results.
- Example 7 In preparing the particulate polymer A, the composition of the particulate polymer A was changed so that the glass transition temperature of the particulate polymer A was 40° C. (Example 7) and 90° C. (Example 8). Otherwise, in the same manner as in Example 1, a particulate polymer A, a particulate polymer B, a slurry composition, a separator, a negative electrode and a positive electrode were produced to obtain a secondary battery. Then, in the same manner as in Example 1, various measurements and evaluations were performed. Table 1 shows the results.
- Example 9 In preparing the particulate polymer A, the amount of styrene as the aromatic monovinyl monomer unit was changed to 65.9 parts, and 0.1 part of allyl methacrylate was used as the crosslinkable monomer instead of ethylene glycol dimethacrylate. It was used. Otherwise, in the same manner as in Example 1, a particulate polymer A, a particulate polymer B, a slurry composition, a separator, a negative electrode and a positive electrode were produced to obtain a secondary battery. Then, in the same manner as in Example 1, various measurements and evaluations were performed. Table 2 shows the results.
- Example 10 In the preparation of particulate polymer A, 24 parts of 2-ethylhexyl acrylate was used as a (meth)acrylic ester monomer in place of n-butyl acrylate. Otherwise, in the same manner as in Example 1, a particulate polymer A, a particulate polymer B, a slurry composition, a separator, a negative electrode and a positive electrode were produced to obtain a secondary battery. Then, in the same manner as in Example 1, various measurements and evaluations were performed. Table 2 shows the results.
- Example 11 In preparing the particulate polymer A, the composition of the particulate polymer A was changed so that the electrolyte solution swelling degree of the polymer A was 1.4 times (Example 11) and 2.8 times (Example 12). bottom. Otherwise, in the same manner as in Example 1, particulate polymer A, particulate polymer B, slurry composition, separator, negative electrode, and positive electrode were produced to obtain a secondary battery. Then, in the same manner as in Example 1, various measurements and evaluations were performed. Table 2 shows the results.
- Example 13 In preparing the particulate polymer A, the amount of styrene as the aromatic monovinyl monomer was changed to 64 parts, and 1.5 parts of methacrylic acid was used as the acidic group-containing monomer. Otherwise, in the same manner as in Example 1, a particulate polymer A, a particulate polymer B, a slurry composition, a separator, a negative electrode and a positive electrode were produced to obtain a secondary battery. Then, in the same manner as in Example 1, various measurements and evaluations were performed. Table 2 shows the results.
- Example 14 In the preparation of the particulate polymer B, neither the aromatic monovinyl monomer nor the aliphatic conjugated diene monomer was used, and 2 parts of methacrylic acid was used instead of 2 parts of itaconic acid as the acidic group-containing monomer. Furthermore, 95 parts of n-butyl acrylate as a (meth)acrylic acid ester monomer and 2.5 parts of acrylonitrile as a cyano group-containing monomer were used. Otherwise, in the same manner as in Example 1, a particulate polymer A, a particulate polymer B, a slurry composition, a separator, a negative electrode and a positive electrode were produced to obtain a secondary battery. Then, in the same manner as in Example 1, various measurements and evaluations were performed. Table 2 shows the results.
- Example 15 In preparing the particulate polymer B, the amount of styrene as the aromatic monovinyl monomer was changed to 25 parts, the aliphatic conjugated diene monomer was not used, and 2 parts of itaconic acid was used as the acidic group-containing monomer. 3 parts of methacrylic acid was used in place of , and 71.5 parts of 2-ethylhexyl acrylate was used as a (meth)acrylic acid ester monomer. Otherwise, in the same manner as in Example 1, a particulate polymer A, a particulate polymer B, a slurry composition, a separator, a negative electrode and a positive electrode were produced to obtain a secondary battery. Then, in the same manner as in Example 1, various measurements and evaluations were performed. Table 2 shows the results.
- Example 16 In preparing Particulate Polymer A, the amount of styrene as the aromatic monovinyl monomer was changed to 70.5 parts, and the amount of glycidyl methacrylate as the reactive functional group-containing monomer was changed to 5 parts. Otherwise, in the same manner as in Example 1, a particulate polymer A, a particulate polymer B, a slurry composition, a separator, a negative electrode and a positive electrode were produced to obtain a secondary battery. Then, in the same manner as in Example 1, various measurements and evaluations were performed. Table 2 shows the results.
- BA denotes n-butyl acrylate units
- 2EHA denotes a 2-ethylhexyl acrylate unit
- ST indicates a styrene unit
- GMA indicates a glycidyl methacrylate unit
- GVB denotes a glycidyl methacrylate vinyl ether unit
- AsSi denotes a methacryloxypropyltrimethoxysilane unit
- EDMA indicates ethylene glycol dimethacrylate units
- AMA indicates an allyl methacrylate unit
- MAA indicates a methacrylic acid unit
- BD denotes a 1,3-butadiene unit
- IA indicates an itaconic acid monomeric unit
- AN indicates an acrylonitrile unit.
- the glass transition temperature and the volume average particle size are within the predetermined ranges, and the particulate polymer A containing a reactive functional group-containing monomer unit, and the particles having a glass transition temperature of less than a predetermined value
- a functional layer having excellent adhesion after immersion in the electrolytic solution, and a separator having excellent blocking resistance can be produced. It can be seen that the secondary battery obtained is excellent in rate characteristics and cycle characteristics.
- Comparative Example 1 in which the particulate polymer A does not contain a reactive functional group-containing monomer unit
- Comparative Example 3 in which the glass transition temperature of Coalescing B exceeds the predetermined upper limit the cycle characteristics of the obtained secondary battery are deteriorated.
- a slurry composition for a non-aqueous secondary battery functional layer is capable of forming a functional layer having excellent adhesiveness after immersion in an electrolytic solution and capable of exhibiting excellent battery characteristics in a secondary battery.
- a non-aqueous secondary battery separator that adheres well to adjacent battery members after being immersed in an electrolytic solution, and that enables the secondary battery to exhibit excellent battery characteristics.
- the non-aqueous secondary battery which is excellent in a battery characteristic can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Cell Separators (AREA)
Abstract
Description
ここで、機能層に関する技術として、例えば、特許文献1には、多孔基材層上に、無機充填剤及び樹脂バインダーからなる多孔層を有する蓄電デバイス用セパレータが開示されている。特許文献1では、この蓄電デバイス用セパレータを製造する際に、樹脂バインダーとして、官能基当量及びガラス転移温度が異なる複数種のものを混合使用することが提案されている。
また、本発明は、電解液浸漬後に隣接する電池部材と良好に接着し、二次電池に優れた電池特性を発揮させることが可能な非水系二次電池用セパレータを提供することを目的とする。
さらに、本発明は、電池特性に優れる非水系二次電池を提供することを目的とする。
このように、ガラス転移温度が30℃以上95℃以下であり、体積平均粒子径が250nm以上800nm以下である反応性官能基含有単量体単位を含む粒子状重合体Aと、ガラス転移温度が30℃未満である粒子状重合体Bとを含有するスラリー組成物を用いれば、電解液浸漬後の接着性に優れた機能層を形成可能であり、当該機能層を用いれば、二次電池に優れた電池特性を発揮させることができる。
なお、本発明において、「粒子状重合体」とは、本発明の非水系二次電池機能層用スラリー組成物中において粒子形状を維持した状態で分散している重合体成分である。なお、粒子状重合体は、本発明の非水系二次電池機能層用スラリー組成物を用いて形成した機能層中では、粒子形状であってもよいし、その他の任意の形状であってもよい。
また、本発明において、重合体の「単量体単位」とは、「その単量体を用いて得た重合体中に含まれる、当該単量体由来の繰り返し単位」を意味する。また、重合体中における単量体単位の含有割合は、1H-NMRにより測定することができる。
そして、本発明において、重合体の「ガラス転移温度」及び「体積平均粒子径」は、本明細書の実施例に記載の方法を用いて測定することができる。
なお、本発明において、「電解液膨潤度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
また、本発明によれば、電解液浸漬後に隣接する電池部材と良好に接着し、二次電池に優れた電池特性を発揮させることが可能な非水系二次電池用セパレータを提供することができる。
そして、本発明によれば、電池特性に優れる非水系二次電池を提供することができる。
ここで、本発明の非水系二次電池機能層用スラリー組成物は、セパレータ又は電極等の電池部材が備える機能層を調製する際の材料として用いられる。そして、本発明の非水系二次電池用セパレータは、本発明の非水系二次電池機能層用スラリー組成物を用いて形成される機能層を備える。また、本発明の非水系二次電池は、本発明の非水系二次電池用セパレータを備える。
本発明の非水系二次電池機能層用スラリー組成物(以下、単に「スラリー組成物」ともいう。)は、粒子状重合体Aと、粒子状重合体Bとを含み、任意に、粒子状重合体A及び粒子状重合体B以外の成分(以下、「その他の成分」という。)を更に含有する。また、本発明のスラリー組成物は、水などの溶媒を更に含有することができる。そして、本発明のスラリー組成物は、粒子状重合体Aが、反応性官能基含有単量体単位を含み、かつ、ガラス転移温度が30℃以上95℃以下、体積平均粒子径が250nm以上800nm以下であり、粒子状重合体Bのガラス転移温度が30℃未満であることを特徴とする。
〔ガラス転移温度〕
粒子状重合体Aは、ガラス転移温度が30℃以上であり、50℃以上であることが好ましく、95℃以下であり、80℃以下であることが好ましい。粒子状重合体Aのガラス転移温度が上記下限値以上であれば、機能層を介して隣接する電池部材同士が癒着する、いわゆるブロッキングを抑制して、二次電池の電池特性を向上させることができる。また、粒子状重合体Aのガラス転移温度が上記上限値以下であれば、電解液浸漬後の機能層の接着性を向上させるとともに、充放電の繰り返しに伴う電極の膨れを抑制して、二次電池の電池特性を向上させることができる。
なお、粒子状重合体Aのガラス転移温度は、例えば、粒子状重合体Aの調製に用いる単量体の種類及び割合を変更すること、及び/又は、粒子状重合Aの重合条件(例えば、乳化剤の使用量)を変更することにより調整することができる。
粒子状重合体Aは、体積平均粒子径が250nm以上であり、300nm以上であることが好ましく、400nm以上であることがより好ましく、500nm以上であることが更に好ましく、800nm以下であり、600nm以下であることが好ましい。粒子状重合体Aの体積平均粒子径が上記下限値以上であれば、機能層の厚みを十分に確保して、電解液浸漬後の機能層の接着性を更に向上させることができる。また、粒子状重合体Aの体積平均粒子径が上記上限値以下であれば、機能層と電池部材との接触面積を十分に確保して、機能層の接着性を更に向上させることができる。
なお、粒子状重合体Aの体積平均粒子径は、例えば、粒子状重合体Aの重合条件(例えば、乳化剤の使用量)を変更することにより調整することができる。
粒子状重合体Aの電解液膨潤度は、1.2倍であることが好ましく、1.5倍以上であることがより好ましく、3倍以下であることが好ましく、2.5倍以下であることがより好ましい。粒子状重合体Aの電解液膨潤度が上記下限値以上であれば、電解液浸漬後の機能層の接着性を更に高めるとともに、充放電の繰り返しに伴う電池の膨れを更に抑制することができる。また、粒子状重合体Aの電解液膨潤度が上記上限値以下であれば、二次電池のレート特性及びサイクル特性を更に高めることができる。
なお、粒子状重合体Aの電解液膨潤度は、例えば、粒子状重合体Aの調製に用いる単量体の種類及び割合を変更すること、及び/又は、粒子状重合体Aの重合条件(例えば、乳化剤の使用量)を変更することにより調整することができる。
そして、粒子状重合体Aは、反応性官能基含有単量体単位を含み、任意に、反応性官能基含有単量体単位以外の単量体(以下、「その他の単量体単位」という。)を含み得る。ここで、その他の単量体単位としては、特に限定されることなく、例えば、(メタ)アクリル酸エステル単量体単位、芳香族モノビニル単量体単位、架橋性単量体単位、酸性基含有単量体単位などが挙げられる。
本発明において、反応性官能基含有単量体単位は、環状エーテル含有重合体単位及び/又はシラン系単量体単位を含むものである。
なお、本発明において、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。
なお、本発明において「(メタ)アクリロイル」とは、アクリロイル及び/又はメタクリロイルを意味する。
(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イソブチルアクリレート、n-ペンチルアクリレート、イソペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、イソブチルメタクリレート、n-ペンチルメタクリレート、イソペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート、グリシジルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。これらは、1種類を単独で用いてもよく、複数種類を組み合わせて用いてもよい。そしてこれらの中でも、n-ブチルアクリレート及び2-エチルヘキシルアクリレートが好ましい。
芳香族モノビニル単量体単位を形成し得る芳香族モノビニル単量体としては、スチレン、スチレンスルホン酸及びその塩(例えば、スチレンスルホン酸ナトリウムなど)、α-メチルスチレン、ビニルトルエン、4-(tert-ブトキシ)スチレンなどが挙げられる。これらは、1種類を単独で用いてもよく、複数種類を組み合わせて用いてもよい。そしてこれらの中でも、スチレンが好ましい。
架橋性単量体単位を形成し得る架橋性単量体としては、特に限定されることなく、重合により架橋構造を形成し得る単量体が挙げられる。架橋性単量体の例としては、通常、熱架橋性を有する単量体が挙げられる。そして、架橋性単量体としては、例えば、1分子当たり2つ以上のオレフィン性二重結合を有する架橋性単量体が挙げられる。
なお、本発明において、上述の反応性官能基含有単量体及び架橋性単量体の双方に分類される単量体は、反応性官能基含有単量体として扱うものとする。
架橋性単量体は、1種類を単独で用いてもよく、複数種類を組み合わせて用いてもよい。そしてこれらの中でも、1分子当たり2つ以上のオレフィン性二重結合を有する架橋性単量体が好ましく、アリルメタクリレート及びエチレングリコールジメタクリレートが好ましい。
酸性基含有単量体単位を形成し得る酸性基含有単量体としては、カルボン酸基含有単量体、スルホン酸基含有単量体、リン酸基含有単量体などを挙げることができる。これらは、1種類を単独で用いてもよく、複数種類を組み合わせて用いてもよい。
エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。そして、エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E一メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸、メサコン酸などが挙げられる。そして、エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。さらに、エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどが挙げられる。
なお、本発明において「(メタ)アリル」とは、アリル及び/又はメタリルを意味し、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味する。
上述した粒子状重合体Aは、特に限定されることなく、既知の重合方法により調製することができる。重合様式は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの様式も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とすることができる。
〔ガラス転移温度〕
粒子状重合体Bは、ガラス転移温度が30℃未満であり、20℃以下であることが好ましく、0℃以下であることがより好ましく、-50℃以上であることが好ましく、-40℃以上であることがより好ましく、-30℃以上であることが更に好ましい。粒子状重合体Bのガラス転移温度が上記範囲内であれば、機能層の接着性を十分に確保することができる。
なお、粒子状重合体Bのガラス転移温度は、粒子状重合体Aと同様にして調整することができる。
粒子状重合体Bは、少なくともガラス転移温度が30℃未満であればその組成は特に限定されない。粒子状重合体Bは、例えば、上述した(メタ)アクリル酸エステル単量体単位、芳香族モノビニル単量体単位、架橋性単量体単位、酸性基含有単量体単位のほか、例えば、脂肪族共役ジエン単量体単位、シアノ基含有単量体単位などを含み得る。これらの中でも、電解液浸漬後の機能層に優れた接着性を発揮させる観点から、粒子状重合体Bは、芳香族モノビニル単量体単位、架橋性単量体単位、酸性基含有単量体単位及び脂肪族共役ジエン単量体単位を含むことが好ましい。
粒子状重合体Bに含まれ得る(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、<粒子状重合体A>の項で説明した(メタ)アクリル酸エステル単量体と同様のものが挙げられる。
粒子状重合体Bに含まれ得る芳香族モノビニル単量体単位を形成し得る芳香族モノビニル単量体としては、<粒子状重合体A>の項で説明した芳香族モノビニル単量体と同様のものが挙げられる。
粒子状重合体Bに含まれ得る架橋性単量体単位を形成し得る架橋性単量体としては、<粒子状重合体A>の項で説明した架橋性単量体と同様のものが挙げられる。
粒子状重合体Bに含まれ得る酸性基含有単量体単位を形成し得る酸性基含有単量体としては、<粒子状重合体A>の項で説明した酸性基含有単量体と同様のものが挙げられる。
脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの炭素数4以上の共役ジエン化合物が挙げられる。中でも、1,3-ブタジエン及びイソプレンが好ましく、1,3-ブタジエンがより好ましい。これらは1種を単独で、又は、2種以上を組み合わせて用いることができる。
シアノ基含有単量体単位を形成し得るシアノ基含有単量体としては、アクリロニトリル、メタクリロニトリル等の(メタ)アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;2-シアノエチルアクリレート、2-シアノエチルメタクリレートなどの2-シアノエチル(メタ)アクリレート;2-シアノエチルアクリルアミド;などを用いることができる。そして、電解液浸漬後の機能層の接着性を更に向上させる観点から、(メタ)アクリロニトリルを用いることが好ましく、アクリロニトリルを用いることがより好ましい。なお、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
なお、本発明において、「(メタ)アクリロニトリル」とは、アクリロニトリル及び/又はメタクリロニトリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。
粒子状重合体Bの調製方法は、特に限定されず、粒子状重合体Aと同様の方法により調製することができる。
本発明のスラリー組成物は、粒子状重合体Aと粒子状重合体Bの質量比(粒子状重合体A:粒子状重合体B)が、100:1~100:25であることが好ましい。粒子状重合体Aと粒子状重合体Bの質量比が上記範囲内であれば、電解液浸漬後の機能層の接着性と、二次電池のサイクル特性のバランスとを良好にすることができる。
本発明のスラリー組成物が任意に含有し得るその他の成分としては、特に限定されず、例えば、既知の添加剤が挙げられる。既知の添加剤としては、特に制限されることなく、例えば、表面張力調整剤、分散剤、粘度調整剤、補強材、電解液添加剤等の成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。なお、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
本発明のスラリー組成物の調製方法は、特に限定されず、例えば、上述した粒子状重合体Aと、粒子状重合体Bと、溶媒と、必要に応じて用いられるその他の成分とを混合して調製することができる。その際、混合方法は特に限定されず、公知の方法によって混合することができる。
本発明の非水系二次電池用セパレータ(以下、単に「セパレータ」ともいう。)は、セパレータ基材と、このセパレータ基材の少なくとも一方の表面に形成された機能層と備え、この機能層が、上述した本発明のスラリー組成物の乾燥物である。そして、本発明のセパレータによれば、機能層が本発明のスラリー組成物から形成されているため、当該機能層をセパレータ基材に強固に密着させることができる。そして、本発明のセパレータによれば、二次電池に優れた電池特性を発揮させることができる。
本発明のセパレータに用いるセパレータ基材としては、特に限定されないが、有機セパレータ基材などの既知のセパレータ基材が挙げられる。有機セパレータ基材は、有機材料からなる多孔性部材である。有機セパレータ基材の例を挙げると、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微多孔膜又は不織布などが挙げられ、強度に優れることからポリエチレン製の微多孔膜や不織布が好ましい。
機能層は、上述したとおり、本発明のスラリー組成物の乾燥物である。すなわち、本発明のセパレータが備える機能層は、通常、少なくとも、粒子状重合体A及び粒子状重合体Bを含有し、任意に、その他の成分を含有する。なお、機能層中に含まれている各成分は、本発明のスラリー組成物中に含まれていたものであるため、それら各成分の好適な存在比は、本発明のスラリー組成物中の各成分の好適な存在比と同じである。また、粒子状重合体A及び/又は粒子状重合体Bが架橋性単量体単位を含む場合には、粒子状重合体及び/又は粒子状重合体Bは、スラリー組成物の乾燥時、あるいは、乾燥後に任意に実施される熱処理時などによって架橋されていてもよい(すなわち、機能層は、上述した粒子状重合体A及び/又はBの架橋物を含んでいてもよい)。
また、スラリー組成物の乾燥物である機能層には、スラリー組成物に由来する水等の溶媒が含まれていてもよいが、機能層中の溶媒含有量は、二次電池の電池特性(レート特性等)を確保する観点から、3質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることが更に好ましく、0質量%以下(検出限界下)であることが特に好ましい。
本発明のセパレータの製造方法は特に限定されず、例えば、上述のセパレータ基材上に機能層を形成することで、本発明のセパレータを製造することができる。
ここで、セパレータ基材上に機能層を形成して、本発明のセパレータを製造する方法としては、例えば以下の方法が挙げられる。
1)本発明のスラリー組成物をセパレータ基材の表面に供給し、次いで乾燥する方法;及び
2)本発明のスラリー組成物を離型基材上に供給し、乾燥して機能層を製造し、得られた機能層をセパレータ基材の表面に転写する方法。
これらの中でも、前記1)の方法が、機能層の層厚を制御しやすいことから特に好ましい。前記1)の方法は、詳細には、スラリー組成物をセパレータ基材上に供給する工程(供給工程)と、セパレータ基材上に塗布されたスラリー組成物を乾燥させて機能層を形成する工程(乾燥工程)を含む。
そして、供給工程において、スラリー組成物をセパレータ基材上に供給する方法としては、スラリー組成物をセパレータ基材の表面に塗布する方法、スラリー組成物にセパレータ基材を浸漬する方法が挙げられる。これらの方法の具体例としては、特に制限はなく、例えば、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法、ディップコート法、スプレーコート法、真空含浸法が挙げられる。
また、乾燥工程において、セパレータ基材上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができる。乾燥法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥が挙げられる。
本発明の二次電池は、上述した本発明のセパレータを備えるものである。より具体的には、本発明の非水系二次電池は、正極、負極、セパレータ、及び電解液を備え、セパレータが、上述した本発明の非水系二次電池用セパレータである。そして、本発明の二次電池は、本発明のセパレータを備えるため、優れた電池特性を発揮し得る。
本発明の二次電池に用いる正極及び負極としては、特に限定されることなく、既知の正極及び負極を用いることができる。
電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C4F9SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO2)2NLi、(C2F5SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
上述した本発明の二次電池は、例えば、正極と負極とをセパレータを介して重ね合わせ、これを必要に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することで製造することができる。なお、正極、負極、セパレータのうち、少なくとも一つの部材を、本発明の機能層を備える電池部材とする。また、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、いずれであってもよい。
また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される構造単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
そして、実施例及び比較例において、ガラス転移温度、体積平均粒子径、電解液膨潤度、電解液浸漬後の機能層の接着性、耐ブロッキング性、耐膨れ性、レート特性、及びサイクル特性は、以下の方法で測定及び評価した。
実施例、比較例で調製した粒子状重合体Aの水分散液を、温度25℃で48時間乾燥し、粉末状の測定試料を得た。
測定試料10mgをアルミパンに計量し、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製、製品名「EXSTAR DSC6220」)にて、測定温度範囲-100℃~200℃の間で、昇温速度20℃/分で、JIS Z8703に規定された条件下で測定を実施し、示差走査熱量分析(DSC)曲線を得た。なお、リファレンスとして空のアルミパンを用いた。この昇温過程で、微分信号(DDSC)がピークを示す温度をガラス転移温度(℃)として求めた。なお、ピークが複数測定された場合は、変位の大きいピークの示す温度を、粒子状重合体Aのガラス転移温度とした。
また、粒子状重合体Aの水分散液に替えて、実施例、比較例で調製した粒子状重合体Bの水分散液を使用した以外は、上記と同様の操作を行い、粒子状重合体Bのガラス転移温度を求めた。
実施例、比較例で調製した粒子状重合体Aの体積平均粒子径は、レーザー回折法にて測定した。具体的には、固形分濃度0.1質量%に調整した粒子状重合体Aの水分散液を試料とした。そして、レーザー回折式粒子径分布測定装置(ベックマン・コールター社製、製品名「LS-13 320」)を用いて測定された粒子径分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径(D50)を、粒子状重合体Aの体積平均粒子径とした。
実施例、比較例で調製した粒子状重合体Aの水分散液を、ポリテトラフルオロエチレン製のシャーレに入れた。シャーレに入った水分散液を、温度25℃で48時間乾燥し粉末状試料を得た。得られた試料0.2gを、温度200℃、圧力5MPaで2分間プレスすることにより試験片を得た。得られた試験片の重量を測定し、W0とした。
次に、得られた試験片を、温度60℃の測定用電解液中に72時間浸漬した。ここで、測定用電解液としては、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びビニレンカーボネート(VC)の混合溶媒(体積比:EC/EMC/VC=68/30/2)に、LiPF6(支持電解質)を1mol/リットルの濃度で溶かした溶液を用いた。
浸漬後の試験片を測定用電解液から取り出し、試験片の表面の測定用電解液を拭き取った。そして、浸漬後の試験片の重量を測定し、W1とした。測定したW0及びW1を用いて、電解液膨潤度=W1/W0を算出した。
湿式法により製造された単層のポリエチレン製セパレータ(厚み:12μm)を、セパレータ基材として準備した。このセパレータ基材の一方の面に、実施例、比較例で調製したスラリー組成物を塗布し、セパレータ基材上のスラリー組成物を50℃で10分間乾燥して、機能層(塗工目付:0.2g/m2)を形成した。この機能層を片面に備えるセパレータを評価用セパレータとした。
また、後述する実施例1と同様にして負極を作製し、評価用負極とした。
上記で得られた評価用負極と評価用セパレータとを、それぞれ、10mm×100mmの長方形状に切り出した。そして、セパレータの機能層表面に負極の負極合材層を沿わせ試験片とし、電解液約400μLと共にラミネート包材に入れた。12時間経過後、試験片を、ラミネート包材ごと80℃、圧力1.0MPaで10分間プレスした。なお、電解液は、「電解液膨潤度」の測定に用いた測定用電解液と同じ組成のものを使用した。
その後、試験片を取り出し、表面に付着した電解液を拭き取った。次いで、この試験片を、負極の集電体側の表面を下にして、負極の集電体側の表面にセロハンテープを貼り付けた。この際、セロハンテープとしては、JIS Z1522に規定されるものを用いた。また、セロハンテープは、水平な試験台に固定しておいた。そして、セパレータの一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、応力の平均値をピール強度として求め、下記の基準で評価した。ピール強度が大きいほど、機能層は電解液浸漬後の接着性に優れており、電解液中でセパレータと電極(負極)が機能層を介して強固に接着し得ることを示す。
A:ピール強度が6.0N/m以上
B:ピール強度が2.0N/m以上6.0N/m未満
C:ピール強度が2.0N/m未満
「電解液浸漬後の機能層の接着性」の評価において形成した機能層を片面に備えるセパレータと同様のセパレータを、幅5cm×長さ5cmの正方形に切って、2枚の正方形片を得た。次に、この2枚の正方形片を、セパレータ基材上に形成した機能層の面同士が向かい合うように重ね合わせ、さらに、温度40℃、0.1MPaの加圧下に置き、24時間放置することにより、プレス状態の試験片(プレス試験片)を作製した。そして、24時間放置後のプレス試験片において、重ね合わされた2枚の正方形片同士の接着状態を目視で確認し、以下の基準に従って、耐ブロッキング性を評価した。なお、重ね合わされた2枚の正方形片同士が接着している場合は、2枚の正方形片のうち一方の全体を固定し、他方を0.3N/mの力で引っ張って正方形片同士を剥離することが可能かどうかを確認した。重ね合わされた2枚の正方形片同士が接着していないほど、機能層を備えるセパレータは耐ブロッキング性に優れることを示す。
A:2枚の正方形片同士が接着していない
B:2枚の正方形片同士が接着しているが、引っ張って剥離可能である
C:2枚の正方形片同士が接着しており、引っ張って剥離することができない
実施例、比較例で作製した二次電池を、電解液注液後、25℃の環境下で24時間静置した。その際の電池の厚みをノギスで測定した。その後、25℃にて、1Cの充電レートにて定電圧定電流(CC-CV)方式で4.2V(カットオフ条件:0.02C)まで充電し、1Cの放電レートにて定電流(CC)方式で3.0Vまで放電する充放電の操作を行った。さらに、45℃環境下で同様の充放電の操作を繰り返し、300サイクル後の電池の厚みをノギスで測定した。そして、サイクル前に対するサイクル後の二次電池の厚みの増加割合を二次電池の膨れ性として評価した。サイクル前に対するサイクル後の二次電池の厚みの増加割合が少ないほど、二次電池は充放電の繰り返しに伴う膨れが抑制されており、耐膨れ性に優れることを示す。
A:サイクル前に対するサイクル後の電池の厚みの増加割合が1%未満
B:サイクル前に対するサイクル後の電池の厚みの増加割合が1%以上5%未満
C:サイクル前に対するサイクル後の電池の厚みの増加割合が5%以上
実施例、比較例で作製した二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流にて、CC-CV充電(上限セル電圧4.35V)を行い、0.2Cの定電流にてセル電圧3.00VまでCC放電を行った。この0.2Cにおける充放電を3回繰り返し実施した。
次に、温度25℃の環境下、セル電圧4.2-3.00V間で、0.2Cの定電流充放電を実施し、このときの放電容量をC0と定義した。その後、同様に0.2Cの定電流にてCC-CV充電し、温度-10℃の環境下において、0.5Cの定電流にて3.0Vまで放電を実施し、このときの放電容量をC1と定義した。そして、レート特性として、ΔC=(C1/C0)×100(%)で示される容量維持率を求め、以下の基準により評価した。この容量維持率ΔCの値が大きいほど、二次電池は、低温環境下、高電流での放電容量が高く、そして内部抵抗が低く、レート特性に優れていることを示す。
A:容量維持率ΔCが75%以上
B:容量維持率ΔCが60%以上75%未満
C:容量維持率ΔCが60%未満
リチウムイオン二次電池を、電解液注液後、25℃の環境下で24時間静置した。その後、25℃にて、1Cの充電レートにて定電圧定電流(CC-CV)方式で4.2V(カットオフ条件:0.02C)まで充電し、1Cの放電レートにて定電流(CC)方式で3.0Vまで放電する充放電の操作を行い、初期容量C2を測定した。
さらに、45℃環境下で同様の充放電の操作を繰り返し、300サイクル後の容量C3を測定した。そして、容量維持率ΔC´=(C3/C2)×100(%)を算出し、下記の基準で評価した。この容量維持率の値が高いほど、二次電池は放電容量の低下が少なく、サイクル特性に優れていることを示す。
A:容量維持率ΔC´が85%以上
B:容量維持率ΔC´が75%以上85%未満
C:容量維持率ΔC´が65%以上75%未満
D:容量維持率ΔC´が65%未満
<粒子状重合体Aの調製>
攪拌機付き5MPa耐圧容器に、芳香族モノビニル単量体としてのスチレン65.5部、(メタ)アクリル酸エステル単量体としてのn-ブチルアクリレート24.0部、反応性官能基含有単量体としてのグリシジルメタクリレート10部、架橋性単量体としてのエチレングリコールジメタクリレート0.5部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.3部、イオン交換水150部、及び重合開始剤としての過硫酸カリウム0.3部を入れ、十分に攪拌した後、80℃に加温して重合を開始した。重合転化率が96%になるまで重合を継続させることにより、粒子状重合体Aを含む水分散液を得た。転化率が96%になった時点で、冷却し反応を停止して、粒子状重合体Aの水分散液を得た。
得られた粒子状重合体Aの水分散液を用いて、粒子状重合体Aのガラス転移温度、体積平均粒子及び電解液膨潤度を測定した。結果を表1に示す。
撹拌機付き5MPa耐圧容器に、脂肪族共役ジエン単量体としての1,3-ブタジエン32.5部、酸性基含有単量体としてのイタコン酸2部、芳香族モノビニル単量体としてのスチレン65部、架橋性単量体としてのアリルメタクリレート0.5部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150質量部、及び重合開始剤としての過硫酸カリウム0.5部を入れ、十分に撹拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって混合物から未反応の単量体を除去した。その後、その混合物を30℃以下まで冷却し、粒子状重合体Bの水分散液を得た。
得られた粒子状重合体Bの水分散液を用いて、粒子状重合体Bのガラス転移温度を測定した。結果を表1に示す。
粒子状重合体Aの水分散液100部(固形分相当)と、粒子状重合体Bの水分散液10部(固形分相当)と、濡れ剤としての「ノプテックス(登録商標)ED-052」(サンノプコ社製)2部(固形分相当)とを撹拌容器内で混合し、混合物を得た。
得られた混合物をイオン交換水で希釈してスラリー組成物(固形分濃度:10%)を得た。このスラリー組成物を用いて、機能層を片面に備えるセパレータを作製して、電解液浸漬後の機能層の接着性、及び耐ブロッキング性を評価した。結果を表1に示す。
<セパレータの作製>
ポリエチレン製の微多孔膜(旭化成社製、製品名「ND412」、厚さ:12μm)を用意した。用意した微多孔膜の表面に、セラミックススラリー(日本ゼオン社製、製品名「BM-2000M」、非導電性粒子としてのアルミナと、結着材とを含む。)を塗布し、温度50℃下で3分間乾燥させ、片面に多孔膜層を備えるセパレータ基材(多孔膜層の厚み:3μm)を得た。
上述のセパレータ基材の多孔膜層が設けられた側の面上に、上述のスラリー組成物を塗布し、温度50℃下で3分間乾燥させた。同様の操作を、セパレータ基材の多孔膜層が設けられた側とは反対の面上にも塗布し、機能層を両面に備えるセパレータ(機能層の厚み:それぞれ0.6μm)を得た。
撹拌機付き5MPa耐圧容器に、脂肪族共役ジエン単量体としての1,3-ブタジエン32.5部、酸性基含有単量体としてのイタコン酸2部、芳香族モノビニル単量体としてのスチレン65部、架橋性単量体としてのメタクリル酸アリル0.5部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150質量部、及び重合開始剤としての過硫酸カリウム0.5部を入れ、十分に撹拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状の結着材(スチレン-ブタジエン共重合体)を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加してpH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、混合物を30℃以下まで冷却し、負極用結着材を含む水分散液を得た。
プラネタリーミキサーに、負極活物質としての人造黒鉛(理論容量:360mAh/g)48.75部、天然黒鉛(理論容量:360mAh/g)48.75部、及び増粘剤としてカルボキシメチルセルロースを固形分相当で1部を投入した。さらに、イオン交換水にて固形分濃度が60%となるように希釈し、その後、回転速度45rpmで60分混練した。その後、上述のようにして得られた負極用結着材を含む水分散液を固形分相当で1.5部投入し、回転速度40rpmで40分混練した。そして、粘度が3000±500mPa・s(B型粘度計、25℃、60rpmで測定)となるようにイオン交換水を加えることにより、負極合材層用スラリー組成物を調製した。
上記負極合材層用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の表面に、塗付量が11±0.5mg/cm2となるように塗布した。その後、負極合材層用スラリー組成物が塗布された銅箔を、400mm/分の速度で、温度80℃のオーブン内を2分間、さらに温度110℃のオーブン内を2分間かけて搬送することにより、銅箔上のスラリー組成物を乾燥させ、集電体上に負極合材層が形成された負極原反を得た。
その後、作製した負極原反の負極合材層側を温度25±3℃の環境下、線圧11t(トン)の条件でロールプレスし、負極合材層密度が1.60g/cm3の負極を得た。その後、当該負極を、温度25±3℃、相対湿度50±5%の環境下にて1週間放置した。
プラネタリーミキサーに、正極活物質としてのCo-Ni-Mnのリチウム複合酸化物(セルシード(登録商標)、NMC111、LiNi1/3Co1/3Mn1/3O2)96部、導電材としてのアセチレンブラック2部(電気化学工業製、製品名「HS-100」)、結着材としてのポリフッ化ビニリデン(クレハ化学製、製品名「KF-1100」)2部を添加し、さらに、分散媒としてのN-メチル-2-ピロリドン(NMP)を全固形分濃度が67%となるように加えて混合し、正極合材層用スラリー組成物を調製した。
続いて、得られた正極合材層用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミニウム箔の上に、塗布量が20±0.5mg/cm2となるように塗布した。
さらに、200mm/分の速度で、温度90℃のオーブン内を2分間、さらに温度120℃のオーブン内を2分間かけて搬送することにより、アルミニウム箔上のスラリー組成物を乾燥させ、集電体上に正極合材層が形成された正極原反を得た。
その後、作製した正極原反の正極合材層側を温度25±3℃の環境下、線圧14t(トン)の条件でロールプレスし、正極合材層密度が3.40g/cm3の正極を得た。その後、当該正極を、温度25±3℃、相対湿度50±5%の環境下にて1週間放置した。
上述のようにして得られたセパレータ、負極及び正極を用いて捲回セル(放電容量520mAh相当)を作製し、アルミ包材内に配置した。該捲回セルを加熱式平板プレス機にて、温度70℃、圧力1.0MPaでアルミ包材ごと8秒間プレスし、セパレータと電極(負極及び正極)を接着させた。
その後、アルミ包材内に、電解液を充填した。なお、電解液としては、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びビニレンカーボネート(VC)の混合溶媒(体積比:EC/EMC/VC=68/30/2)に、LiPF6(支持電解質)を1mol/リットルの濃度で溶かした溶液を用いた。さらに、アルミ包材の開口を密封するために、温度150℃のヒートシールをしてアルミ包材を閉口し、リチウムイオン二次電池を製造した。このリチウムイオン二次電池を用いて、耐膨れ性、レート特性、サイクル特性を評価した。結果を表1に示す。
粒子状重合体Aの調製に際し、粒子状重合体Aの体積平均粒子径が300nm(実施例2)、700nm(実施例3)になるように粒子状重合体Aを調製する際の重合条件を変更した。それ以外は、実施例1と同様にして、粒子状重合体A及び粒子状重合体B、スラリー組成物、セパレータ、負極、及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
粒子状重合体Aの調製に際し、芳香族モノビニル単量体としてのスチレンの量を40.5部、反応性官能基含有単量体としてのグリシジルメタクリレートの量を35部に変更した。それ以外は、実施例1と同様にして、粒子状重合体A、粒子状重合体B、スラリー組成物、セパレータ、負極、及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
粒子状重合体Aの調製に際し、芳香族モノビニル単量体としてのスチレンの量を45.5部に変更し、反応性官能基含有単量体として、グリシジルメタクリレートに替えてグリシジルメタクリレートビニルエーテル30部を使用した。それ以外は、実施例1と同様にして、粒子状重合体A、粒子状重合体B、スラリー組成物、セパレータ、負極、及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
粒子状重合体Aの調製に際し、反応性官能基含有単量体としてグリシジルメタクリレートに替えてメタクリロキシプロピルトリメトキシシラン10部を使用した。それ以外は、実施例1と同様にして、粒子状重合体A、粒子状重合体B、スラリー組成物、セパレータ、負極及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
粒子状重合体Aの調製に際し、粒子状重合体Aのガラス転移温度が40℃(実施例7)、90℃(実施例8)になるように粒子状重合体Aの組成を変更した。それ以外は、実施例1と同様にして、粒子状重合体A、粒子状重合体B、スラリー組成物、セパレータ、負極及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
粒子状重合体Aの調製に際し、芳香族モノビニル単量体単位としてのスチレンの量を65.9部に変更し、架橋性単量体として、エチレングリコールジメタクリレートに替えてアリルメタクリレート0.1部を使用した。それ以外は、実施例1と同様にして、粒子状重合体A、粒子状重合体B、スラリー組成物、セパレータ、負極及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表2に示す。
粒子状重合体Aの調製に際し、(メタ)アクリル酸エステル単量体として、n-ブチルアクリレートに替えて2-エチルヘキシルアクリレート24部を使用した。それ以外は、実施例1と同様にして、粒子状重合体A、粒子状重合体B、スラリー組成物、セパレータ、負極及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表2に示す。
粒子状重合体Aの調製に際し、重合体Aの電解液膨潤度が1.4倍(実施例11)、2.8倍(実施例12)になるように粒子状重合体Aの組成を変更した。それ以外は、実施例1と同様にして、粒子状重合体A及び粒子状重合体B、スラリー組成物、セパレータ、負極、及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表2に示す。
粒子状重合体Aの調製に際し、芳香族モノビニル単量体としてのスチレンの量を64部に変更し、さらに酸性基含有単量体としてのメタクリル酸を1.5部使用した。それ以外は、実施例1と同様にして、粒子状重合体A、粒子状重合体B、スラリー組成物、セパレータ、負極及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表2に示す。
粒子状重合体Bの調製に際し、芳香族モノビニル単量体及び脂肪族共役ジエン単量体は使用せず、酸性基含有単量体として、イタコン酸2部に替えてメタクリル酸2部を使用し、さらに、(メタ)アクリル酸エステル単量体としてのn-ブチルアクリレート95部と、シアノ基含有単量体としてのアクリロニトリル2.5部を使用した。それ以外は、実施例1と同様にして、粒子状重合体A、粒子状重合体B、スラリー組成物、セパレータ、負極及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表2に示す。
粒子状重合体Bの調製に際し、芳香族モノビニル単量体としてのスチレンの量を25部に変更し、脂肪族共役ジエン単量体は使用せず、酸性基含有単量体としてイタコン酸2部に替えてメタクリル酸3部を使用し、さらに(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート71.5部を使用した。それ以外は、実施例1と同様にして、粒子状重合体A、粒子状重合体B、スラリー組成物、セパレータ、負極及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表2に示す。
粒子状重合体Aの調製に際し、芳香族モノビニル単量体としてのスチレンの量を70.5部、反応性官能基含有単量体としてのグリシジルメタクリレートの量を5部に変更した。それ以外は、実施例1と同様にして、粒子状重合体A、粒子状重合体B、スラリー組成物、セパレータ、負極及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表2に示す。
粒子状重合体Aの調製に際し、芳香族モノビニル単量体としてのスチレンの量を75.5部に変更し、反応性官能基含有単量体を使用しなかった。それ以外は、実施例1と同様にして、粒子状重合体A、粒子状重合体B、スラリー組成物、セパレータ、負極及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表3に示す。
粒子状重合体Aの調製に際し、粒子状重合体Aのガラス転移温度が20℃(比較例2)、粒子状重合体Bのガラス転移温度が40℃(比較例3)となるように粒子状重合体A及び粒子状重合体Bの重合条件を変更した。それ以外は、実施例1と同様にして、粒子状重合体A、粒子状重合体B、スラリー組成物、セパレータ、負極及び正極を作製し、二次電池を得た。そして、実施例1と同様にして、各種測定及び評価を行った。結果を表3に示す。
「BA」は、n-ブチルアクリレート単位を示し、
「2EHA」は、2-エチルヘキシルアクリレート単位を示し、
「ST」は、スチレン単位を示し、
「GMA」は、グリシジルメタクリレート単位を示し、
「GVB」は、グリシジルメタクリレートビニルエーテル単位を示し、
「AsSi」は、メタクリロキシプロピルトリメトキシシラン単位を示し、
「EDMA」は、エチレングリコールジメタクリレート単位を示し、
「AMA」は、アリルメタクリレート単位を示し、
「MAA」は、メタクリル酸単位を示し、
「BD」は、1,3-ブタジエン単位を示し、
「IA」は、イタコン酸単量体単位を示し、
「AN」は、アクリロニトリル単位を示す。
一方、表3より、粒子状重合体Aが反応性官能基含有単量体単位を含まない比較例1、粒子状重合体Aのガラス転移温度が所定範囲外である比較例2、粒子状重合体Bのガラス転移温度が所定の上限値を超える比較例3では、得られる二次電池のサイクル特性が低下することが分かる。
また、本発明によれば、電解液浸漬後に隣接する電池部材と良好に接着し、二次電池に優れた電池特性を発揮させることが可能な非水系二次電池用セパレータを提供することができる。
そして、本発明によれば、電池特性に優れる非水系二次電池を提供することができる。
Claims (6)
- 反応性官能基含有単量体単位を含む粒子状重合体Aと、粒子状重合体Bとを含有し、
前記粒子状重合体Aのガラス転移温度が30℃以上95℃以下であり、
前記粒子状重合体Bのガラス転移温度が30℃未満であり、
前記粒子状重合体Aの体積平均粒子径が250nm以上800nm以下である、非水系二次電池機能層用スラリー組成物。 - 前記粒子状重合体Aにおける前記反応性官能基含有単量体単位の含有割合が8質量%以上40質量%以下である、請求項1に記載の非水系二次電池機能層用スラリー組成物。
- 前記粒子状重合体Aの電解液膨潤度が1.2倍以上3倍以下である、請求項1に記載の非水系二次電池機能層用スラリー組成物。
- 前記粒子状重合体Aと前記粒子状重合体Bの質量比が、100:1~100:25である、請求項1に記載の非水系二次電池機能層用スラリー組成物。
- セパレータ基材と、前記セパレータ基材の少なくとも一方の表面上に形成された機能層とを備える非水系二次電池用セパレータであって、
前記機能層が、請求項1~4のいずれか1項に記載の非水系二次電池機能層用スラリー組成物の乾燥物である、非水系二次電池用セパレータ。 - 正極、負極、セパレータ、及び電解液を備え、
前記セパレータが、請求項5に記載の非水系二次電池用セパレータである、非水系二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22886830.3A EP4425679A1 (en) | 2021-10-28 | 2022-10-19 | Slurry composition for nonaqueous secondary battery functional layers, separator for nonaqueous secondary batteries, and nonaqueous secondary battery |
CN202280068775.5A CN118104060A (zh) | 2021-10-28 | 2022-10-19 | 非水系二次电池功能层用浆料组合物、非水系二次电池用间隔件及非水系二次电池 |
JP2023556362A JPWO2023074502A1 (ja) | 2021-10-28 | 2022-10-19 | |
KR1020247011626A KR20240087816A (ko) | 2021-10-28 | 2022-10-19 | 비수계 이차 전지 기능층용 슬러리 조성물, 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021176882 | 2021-10-28 | ||
JP2021-176882 | 2021-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023074502A1 true WO2023074502A1 (ja) | 2023-05-04 |
Family
ID=86159403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/038973 WO2023074502A1 (ja) | 2021-10-28 | 2022-10-19 | 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ及び非水系二次電池 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4425679A1 (ja) |
JP (1) | JPWO2023074502A1 (ja) |
KR (1) | KR20240087816A (ja) |
CN (1) | CN118104060A (ja) |
WO (1) | WO2023074502A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012115096A1 (ja) | 2011-02-23 | 2012-08-30 | 日本ゼオン株式会社 | 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法 |
JP2015041603A (ja) * | 2013-08-23 | 2015-03-02 | 日本ゼオン株式会社 | リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池 |
WO2017073022A1 (ja) * | 2015-10-28 | 2017-05-04 | 日本ゼオン株式会社 | 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池用接着層付きセパレータ、非水系二次電池用接着層付き電極、並びに、非水系二次電池およびその製造方法 |
WO2019188719A1 (ja) * | 2018-03-26 | 2019-10-03 | 日本ゼオン株式会社 | 非水系二次電池用積層体の製造方法および非水系二次電池の製造方法 |
WO2020066857A1 (ja) * | 2018-09-27 | 2020-04-02 | 日本ゼオン株式会社 | 非水系二次電池接着層用スラリーおよび接着層付き非水系二次電池用電池部材、並びに、非水系二次電池用積層体の製造方法および非水系二次電池の製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6412760B2 (ja) | 2014-09-30 | 2018-10-24 | 旭化成株式会社 | 蓄電デバイス用セパレータ |
-
2022
- 2022-10-19 EP EP22886830.3A patent/EP4425679A1/en active Pending
- 2022-10-19 KR KR1020247011626A patent/KR20240087816A/ko unknown
- 2022-10-19 JP JP2023556362A patent/JPWO2023074502A1/ja active Pending
- 2022-10-19 CN CN202280068775.5A patent/CN118104060A/zh active Pending
- 2022-10-19 WO PCT/JP2022/038973 patent/WO2023074502A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012115096A1 (ja) | 2011-02-23 | 2012-08-30 | 日本ゼオン株式会社 | 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法 |
JP2015041603A (ja) * | 2013-08-23 | 2015-03-02 | 日本ゼオン株式会社 | リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池 |
WO2017073022A1 (ja) * | 2015-10-28 | 2017-05-04 | 日本ゼオン株式会社 | 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池用接着層付きセパレータ、非水系二次電池用接着層付き電極、並びに、非水系二次電池およびその製造方法 |
WO2019188719A1 (ja) * | 2018-03-26 | 2019-10-03 | 日本ゼオン株式会社 | 非水系二次電池用積層体の製造方法および非水系二次電池の製造方法 |
WO2020066857A1 (ja) * | 2018-09-27 | 2020-04-02 | 日本ゼオン株式会社 | 非水系二次電池接着層用スラリーおよび接着層付き非水系二次電池用電池部材、並びに、非水系二次電池用積層体の製造方法および非水系二次電池の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN118104060A (zh) | 2024-05-28 |
EP4425679A1 (en) | 2024-09-04 |
KR20240087816A (ko) | 2024-06-19 |
JPWO2023074502A1 (ja) | 2023-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6155967B2 (ja) | リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池 | |
JP2017098203A (ja) | 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池 | |
JP7020416B2 (ja) | 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池、および非水系二次電池用電極の製造方法 | |
US10714722B2 (en) | Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery | |
JP7259746B2 (ja) | 電気化学素子機能層用バインダー組成物、電気化学素子機能層用組成物、電気化学素子用機能層、及び電気化学素子 | |
US20210111408A1 (en) | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery | |
WO2021059880A1 (ja) | 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池 | |
JP6665484B2 (ja) | 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池 | |
US20190273261A1 (en) | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery | |
WO2019004459A1 (ja) | 電気化学素子用バインダー組成物、電気化学素子機能層用スラリー組成物、電気化学素子接着層用スラリー組成物、および複合膜 | |
JP2022177116A (ja) | 非水系二次電池 | |
JPWO2018003707A1 (ja) | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 | |
WO2021020061A1 (ja) | 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池 | |
JP7207311B2 (ja) | 電気化学素子機能層用組成物、電気化学素子用機能層および電気化学素子 | |
JP7371497B2 (ja) | 蓄電デバイス用接着剤組成物、蓄電デバイス用機能層、蓄電デバイス、及び蓄電デバイスの製造方法 | |
JP7501363B2 (ja) | 非水系二次電池接着層用スラリー組成物、非水系二次電池用接着層、非水系二次電池用セパレータ、及び非水系二次電池 | |
JP7143849B2 (ja) | 電気化学素子用バインダー組成物、電気化学素子機能層用スラリー組成物、電気化学素子接着層用スラリー組成物、および複合膜 | |
WO2023074502A1 (ja) | 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ及び非水系二次電池 | |
WO2024172131A1 (ja) | 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ、および非水系二次電池 | |
WO2024142724A1 (ja) | 電気化学素子用接着剤塗工液、接着剤層付き集電体、電気化学素子用電極及び電気化学素子 | |
JP7371498B2 (ja) | 蓄電デバイス用接着剤組成物、蓄電デバイス用機能層、蓄電デバイス、及び蓄電デバイスの製造方法 | |
WO2024135367A1 (ja) | 電気化学素子機能層用組成物、電気化学素子用部材、電気化学素子用積層体の製造方法、および電気化学素子 | |
WO2023189442A1 (ja) | 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ及び非水系二次電池 | |
WO2024135749A1 (ja) | 電気化学素子機能層用組成物、電気化学素子用部材、電気化学素子用積層体の製造方法、および電気化学素子 | |
WO2022114033A1 (ja) | 二次電池機能層用バインダー、二次電池機能層用スラリー組成物、二次電池用機能層、および二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22886830 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023556362 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280068775.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18701251 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022886830 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022886830 Country of ref document: EP Effective date: 20240528 |