WO2013031690A1 - 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池 - Google Patents

二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池 Download PDF

Info

Publication number
WO2013031690A1
WO2013031690A1 PCT/JP2012/071463 JP2012071463W WO2013031690A1 WO 2013031690 A1 WO2013031690 A1 WO 2013031690A1 JP 2012071463 W JP2012071463 W JP 2012071463W WO 2013031690 A1 WO2013031690 A1 WO 2013031690A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
water
active material
soluble polymer
Prior art date
Application number
PCT/JP2012/071463
Other languages
English (en)
French (fr)
Inventor
智一 佐々木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2013531283A priority Critical patent/JP5991321B2/ja
Priority to EP12827649.0A priority patent/EP2752927B1/en
Priority to KR1020147004875A priority patent/KR20140063632A/ko
Priority to CN201280041588.4A priority patent/CN103782426B/zh
Priority to US14/241,722 priority patent/US10224549B2/en
Publication of WO2013031690A1 publication Critical patent/WO2013031690A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery negative electrode binder composition, a secondary battery negative electrode, a negative electrode slurry composition for producing the negative electrode, a method for producing the negative electrode, and a secondary battery including the negative electrode.
  • the electrode is usually a liquid composition in which a polymer serving as a binder (binder) is dispersed or dissolved in a solvent such as water or an organic solvent, an electrode active material, and optionally conductive carbon or the like.
  • a solvent such as water or an organic solvent
  • an electrode active material such as water or an organic solvent
  • optionally conductive carbon or the like an electrode active material
  • the conductive agent is mixed to obtain a slurry composition, and this slurry composition is applied to a current collector and dried.
  • binders and various additives for binding the electrode active material and the like to the current collector for example, Patent Document 1). To 4).
  • Patent Document 1 describes that a binder containing cross-linked polymer particles is used as a binder.
  • Patent Document 2 and Patent Document 3 describe a slurry for a negative electrode of a non-aqueous secondary battery including a binder composed of a carbon material active material, a water-dispersed emulsion resin, and a water-soluble polymer.
  • the water-soluble polymer polyvinyl alcohol, carboxymethyl cellulose, sodium polyacrylate and the like are described. According to this, it is described that the coating film strength and the coating film density of the battery are improved.
  • Patent Document 4 includes 0.02 to 13% by weight of a fluorine-containing unsaturated monomer, 10 to 38% by weight of an aliphatic conjugated diene monomer, and 0.1 to 10% by weight of an ethylenically unsaturated carboxylic acid monomer.
  • a binder for a secondary battery electrode comprising a copolymer latex obtained by emulsion polymerization of a monomer composed of 49 to 88.88 wt% of other monomers copolymerizable therewith. ing. According to this, it is described that it is excellent in blending stability, blocking resistance, suitability for dust removal, and binding power.
  • Patent Document 5 describes a binder for a secondary battery electrode made of a polymer having a monomer unit derived from a fluorine atom-containing monomer such as alkyl fluoride (meth) acrylate. And it describes that a cellulose polymer, polyacrylate, etc. can be added in order to improve applicability
  • a fluorine atom-containing monomer such as alkyl fluoride (meth) acrylate.
  • JP-A-11-167721 Japanese Patent Laid-Open No. 2003-308841 JP 2003-217573 A JP 2010-146870 A JP 2002-42819 A
  • the particles of the electrode active material contained in the negative electrode may expand and contract with charge / discharge. When such expansion and contraction are repeated, the negative electrode gradually expands and the secondary battery may be deformed. Therefore, development of a technique capable of suppressing the swelling of the negative electrode as described above is desired.
  • some conventional secondary batteries have a reduced capacity when stored in a high temperature environment of, for example, 60 ° C. or in a low temperature environment of ⁇ 25 ° C. Therefore, it is desired to develop a technology that can suppress a decrease in the capacity of the secondary battery even when the secondary battery is stored in such an environment. Furthermore, in the conventional secondary battery, it is desired to develop a technique for reducing a decrease in capacity due to repeated charge and discharge in a high temperature environment. Further, in order to improve the above performance, it is desired to improve the adhesion between the current collector and the electrode active material layer formed on the current collector in the production of an electrode for a secondary battery, and It is also desirable to efficiently produce a homogeneous product.
  • the object of the present invention is to suppress the swelling of the negative electrode associated with charging / discharging, the capacity is difficult to decrease when stored in either a high temperature environment or a low temperature environment, and the capacity is decreased due to repeated charging / discharging in a high temperature environment.
  • Binder composition for secondary battery negative electrode capable of realizing few secondary batteries, negative electrode for secondary battery, slurry composition for negative electrode capable of efficiently producing the negative electrode for secondary battery, and method for producing negative electrode for secondary battery, And it is providing the secondary battery provided with the said negative electrode for secondary batteries.
  • the present inventor diligently studied to solve the above-mentioned problems, and paid attention to the relationship between the physical properties of the water-soluble polymer contained in the binder composition for a negative electrode for a secondary battery using water as a medium and the performance of the secondary battery. did.
  • the inventors As a result, as a water-soluble polymer, the inventors have found that the above problems can be solved by adopting a specific ratio of ionic conductivity and relative swelling degree with binder particles, and completed the present invention. I let you. That is, according to the present invention, the following [1] to [11] are provided.
  • a particulate binder, and a water-soluble polymer having an acidic functional group The water-soluble polymer has an ionic conductivity of 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 3 S / cm,
  • the degree of swelling of the water-soluble polymer with respect to a liquid having a solubility parameter of 8 to 13 (cal / cm 3 ) 1/2 is 1.0 to 2.0 of the degree of swelling of the particulate binder measured under the same conditions.
  • the water-soluble polymer contains a crosslinkable monomer unit, and the content of the crosslinkable monomer unit in the water-soluble polymer is 0.1 to 2% by weight
  • the binder composition for secondary battery negative electrodes as described in 2.
  • the water-soluble polymer contains a fluorine-containing (meth) acrylic acid ester monomer unit, and the content ratio of the fluorine-containing (meth) acrylic acid ester monomer unit in the water-soluble polymer is The binder composition for a secondary battery negative electrode according to [1] or [2], which is 1 to 20% by weight.
  • the water-soluble polymer contains a reactive surfactant unit, and the content of the reactive surfactant unit in the water-soluble polymer is 0.1 to 15% by weight [1]
  • the binder composition for secondary battery negative electrode according to any one of [3] to [3].
  • a secondary battery negative electrode comprising the secondary battery negative electrode binder composition according to any one of [1] to [5] and a negative electrode active material.
  • a secondary battery negative electrode slurry composition comprising a negative electrode active material, the secondary battery negative electrode binder composition of any one of [1] to [5], and water.
  • a method for producing a secondary battery negative electrode comprising applying the slurry composition for a secondary battery negative electrode according to [9] onto a current collector and drying.
  • a lithium ion secondary battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator, wherein the negative electrode is a secondary battery negative electrode according to any one of [6] to [8] battery.
  • the binder composition for a secondary battery negative electrode of the present invention and the negative electrode for a secondary battery of the present invention including the same it is possible to suppress the swelling of the negative electrode accompanying charge / discharge, even when stored in either a high temperature environment or a low temperature environment.
  • a secondary battery can be realized in which the capacity can be made difficult to decrease and the capacity is less reduced by repeated charge and discharge in a high temperature environment.
  • the negative electrode for a secondary battery of the present invention is easily manufactured with a low amount of pinholes, high adhesion between the current collector and the negative electrode active material layer, and little decrease in adhesion during use. Therefore, the negative electrode can be easily manufactured while satisfying the above performance.
  • the secondary battery of the present invention can suppress the swelling of the negative electrode accompanying charging / discharging, hardly reduces the capacity when stored in either a high temperature environment or a low temperature environment, and the capacity decreases due to repeated charging / discharging in a high temperature environment. Less is.
  • the slurry composition for negative electrodes of this invention is used, the negative electrode for secondary batteries of this invention can be manufactured.
  • the slurry has high stability, there is little occurrence of uneven distribution of particles dispersed in the slurry, and as a result, a battery with high performance can be easily manufactured.
  • the method for producing a negative electrode for a secondary battery of the present invention the negative electrode for a secondary battery of the present invention can be produced.
  • (meth) acryl means “acryl” or “methacryl”.
  • positive electrode active material means an electrode active material for positive electrode
  • negative electrode active material means an electrode active material for negative electrode
  • the “positive electrode active material layer” means an electrode active material layer provided on the positive electrode
  • the “negative electrode active material layer” means an electrode active material layer provided on the negative electrode.
  • the binder composition for a secondary battery negative electrode of the present invention includes a particulate binder and a specific water-soluble polymer.
  • the particulate binder (hereinafter sometimes simply referred to as “binder”) contained in the binder composition of the present invention is a component that binds the electrode active material to the surface of the current collector in the negative electrode.
  • binder In the negative electrode of the present invention, detachment of the negative electrode active material from the negative electrode active material layer is suppressed when the binder binds the negative electrode active material.
  • the binder usually binds particles other than the negative electrode active material contained in the negative electrode active material layer, and also plays a role of maintaining the strength of the negative electrode active material layer.
  • binder it is preferable to use a binder having excellent performance for holding the negative electrode active material and high adhesion to the current collector.
  • a polymer is used as the binder material.
  • the polymer as the binder material (hereinafter sometimes simply referred to as “binder polymer”) may be a homopolymer or a copolymer.
  • a polymer containing an aliphatic conjugated diene monomer unit is preferable. Since the aliphatic conjugated diene monomer unit is a low-rigidity and flexible repeating unit, a polymer containing the aliphatic conjugated diene monomer unit is used as a binder material, so that the negative electrode active material layer and the current collector are collected. Sufficient adhesion to the body can be obtained.
  • the aliphatic conjugated diene monomer unit is a repeating unit obtained by polymerizing an aliphatic conjugated diene monomer.
  • Examples of the aliphatic conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3 butadiene, 2-chloro-1,3-butadiene, Examples include substituted straight chain conjugated pentadienes, and substituted and side chain conjugated hexadienes. Of these, 1,3-butadiene is preferred.
  • the monomer composition for producing the binder polymer may contain only one type of aliphatic conjugated diene monomer, and may combine two or more types of aliphatic conjugated diene monomers in any ratio. May be included. Accordingly, the binder polymer may contain only one type of aliphatic conjugated diene monomer unit, or may contain two or more types in combination at any ratio.
  • the ratio of the aliphatic conjugated diene monomer unit is preferably 20% by weight or more, more preferably 30% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less, Particularly preferred is 55% by weight or less.
  • the binder polymer preferably contains an aromatic vinyl monomer unit.
  • the aromatic vinyl monomer unit is stable, and the negative electrode active material layer can be stabilized by reducing the solubility of the binder polymer containing the aromatic vinyl monomer unit in the electrolytic solution.
  • the aromatic vinyl monomer unit is a repeating unit obtained by polymerizing an aromatic vinyl monomer.
  • aromatic vinyl monomers include styrene, ⁇ -methylstyrene, vinyl toluene, and divinylbenzene. Of these, styrene is preferred.
  • the monomer composition for producing the binder polymer may contain only one kind of aromatic vinyl monomer, or may contain two or more kinds of aromatic vinyl monomers in combination at any ratio. But you can. Accordingly, the binder polymer may contain only one type of aromatic vinyl monomer unit, or may contain two or more types in combination at any ratio.
  • the ratio of the aromatic vinyl monomer units is preferably 30% by weight or more, more preferably 35% by weight or more, preferably 79.5% by weight or less, more preferably 69% by weight or less. It is.
  • the ratio of the aromatic vinyl monomer unit is preferably 30% by weight or more, more preferably 35% by weight or more, preferably 79.5% by weight or less, more preferably 69% by weight or less. It is.
  • the binder polymer is preferably a polymer containing both an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit.
  • a styrene / butadiene copolymer is preferable.
  • the resulting binder polymer has an unreacted aliphatic conjugated diene monomer as a residual monomer. And unreacted aromatic vinyl monomers may be included.
  • the amount of the unreacted aliphatic conjugated diene monomer contained in the binder polymer is preferably 50 ppm or less, more preferably 10 ppm or less, and the unreacted aromatic vinyl monomer contained in the binder polymer.
  • the amount of body is preferably 1000 ppm or less, more preferably 200 ppm or less.
  • the binder polymer preferably contains an ethylenically unsaturated carboxylic acid monomer unit.
  • the ethylenically unsaturated carboxylic acid monomer unit includes a carboxyl group (—COOH group) that enhances the adsorptivity to the negative electrode active material and the current collector, and is a repeating unit having high strength. Desorption of the negative electrode active material can be stably prevented, and the strength of the negative electrode can be improved.
  • the ethylenically unsaturated carboxylic acid monomer unit is a repeating unit obtained by polymerizing an ethylenically unsaturated carboxylic acid monomer.
  • the ethylenically unsaturated carboxylic acid monomer include monocarboxylic and dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and itaconic acid, and anhydrides thereof.
  • a monomer selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, and combinations thereof is preferable.
  • the monomer composition for producing the binder polymer may contain only one kind of ethylenically unsaturated carboxylic acid monomer, and may contain two or more kinds of ethylenically unsaturated carboxylic acid monomers in any ratio. May be included in combination. Therefore, the binder polymer may contain only one type of ethylenically unsaturated carboxylic acid monomer unit, or may contain two or more types in combination at any ratio.
  • the ratio of the ethylenically unsaturated carboxylic acid monomer unit is preferably 0.5% by weight or more, more preferably 1% by weight or more, particularly preferably 2% by weight or more, preferably 10% by weight. % Or less, more preferably 8% by weight or less, and particularly preferably 7% by weight or less.
  • the binder polymer may contain any repeating unit other than those described above as long as the effects of the present invention are not significantly impaired.
  • monomers corresponding to the above arbitrary repeating units include vinyl cyanide monomers, unsaturated carboxylic acid alkyl ester monomers, unsaturated monomers containing hydroxyalkyl groups, and unsaturated monomers. Examples thereof include carboxylic acid amide monomers. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • vinyl cyanide monomers examples include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, and ⁇ -ethylacrylonitrile. Of these, acrylonitrile and methacrylonitrile are preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaco Nates, monomethyl fumarate, monoethyl fumarate, and 2-ethylhexyl acrylate. Of these, methyl methacrylate is preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • Examples of unsaturated monomers containing hydroxyalkyl groups include ⁇ -hydroxyethyl acrylate, ⁇ -hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2- Examples include hydroxypropyl methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, and 2-hydroxyethyl methyl fumarate. Of these, ⁇ -hydroxyethyl acrylate is preferred. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • unsaturated carboxylic acid amide monomers include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, and N, N-dimethylacrylamide. Of these, acrylamide and methacrylamide are preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the binder polymer may contain monomers used in usual emulsion polymerization, such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the weight average molecular weight of the binder polymer is preferably 10,000 or more, more preferably 20,000 or more, preferably 1,000,000 or less, more preferably 500,000 or less.
  • the weight average molecular weight of the water-insoluble polymer can be determined as a value in terms of polystyrene using tetrahydrofuran as a developing solvent by gel permeation chromatography (GPC).
  • the glass transition temperature of the binder is preferably ⁇ 75 ° C. or higher, more preferably ⁇ 55 ° C. or higher, particularly preferably ⁇ 35 ° C. or higher, and usually 40 ° C. or lower, preferably 30 ° C. or lower, more preferably 20 ° C. or lower. Especially preferably, it is 15 degrees C or less.
  • the glass transition temperature of the binder is within the above range, characteristics such as flexibility, binding property and winding property of the negative electrode, and adhesion between the negative electrode active material layer and the current collector are highly balanced, which is preferable.
  • the binder becomes water-insoluble polymer particles. Therefore, in the negative electrode slurry composition of the present invention, the binder is not dissolved in water as a solvent but is dispersed as particles.
  • the polymer being water-insoluble means that the insoluble content becomes 90% by weight or more when 0.5 g of the polymer is dissolved in 100 g of water at 25 ° C.
  • a polymer being water-soluble means that at 25 ° C., 0.5 g of the polymer is dissolved in 100 g of water and the insoluble content is less than 0.5% by weight.
  • the number average particle diameter of the particulate binder is preferably 50 nm or more, more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less.
  • the presence of particles can be easily measured by transmission electron microscopy, Coulter counter, laser diffraction scattering, or the like.
  • the particulate binder is produced, for example, by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent to form polymer particles.
  • the ratio of each monomer in the monomer composition is usually a repeating unit in the binder polymer (for example, an aliphatic conjugated diene monomer unit, an aromatic vinyl monomer unit, and an ethylenically unsaturated group). Carboxylic acid monomer units) ratio.
  • the aqueous solvent is not particularly limited as long as the binder particles can be dispersed.
  • the boiling point at normal pressure is usually 80 ° C. or higher, preferably 100 ° C. or higher, and usually 350 ° C. or lower.
  • it is selected from 300 ° C. or lower aqueous solvents. Examples of the aqueous solvent will be given below.
  • the number in parentheses after the solvent name is the boiling point (unit: ° C) at normal pressure, and the value after the decimal point is a value rounded off or rounded down.
  • aqueous solvents examples include water (100); ketones such as diacetone alcohol (169) and ⁇ -butyrolactone (204); ethyl alcohol (78), isopropyl alcohol (82), and normal propyl alcohol (97).
  • Alcohols propylene glycol monomethyl ether (120), methyl cellosolve (124), ethyl cellosolve (136), ethylene glycol tertiary butyl ether (152), butyl cellosolve (171), 3-methoxy-3-methyl-1-butanol (174), Ethylene glycol monopropyl ether (150), diethylene glycol monobutyl pyrether (230), triethylene glycol monobutyl ether (271), dipropylene glycol monomethyl ether (18 Glycol ethers, etc.); and 1,3-dioxolane (75), 1,4-dioxolane (101), ethers such as tetrahydrofuran (66) and the like.
  • water is particularly preferable from the viewpoint that it is not flammable and a dispersion of binder particles can be easily obtained.
  • Water may be used as a main solvent, and an aqueous solvent other than the above-described water may be mixed and used within a range in which the dispersed state of the binder particles can be ensured.
  • the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used. It is easy to obtain a high molecular weight product, and since the polymer is obtained in a state of being dispersed in water as it is, no redispersion treatment is required, and it can be used for production of the negative electrode slurry composition according to the present invention. From the viewpoint of production efficiency, the emulsion polymerization method is particularly preferable.
  • the emulsion polymerization method is usually performed by a conventional method.
  • the method is described in “Experimental Chemistry Course” Vol. 28, (Publisher: Maruzen Co., Ltd., edited by The Chemical Society of Japan). That is, water, an additive such as a dispersant, an emulsifier, a crosslinking agent, a polymerization initiator, and a monomer are added to a sealed container equipped with a stirrer and a heating device so as to have a predetermined composition, and the composition in the container
  • a product is stirred to emulsify monomers and the like in water, and the temperature is increased while stirring to initiate polymerization.
  • it is the method of putting into a sealed container and starting reaction similarly.
  • polymerization initiators examples include organic compounds such as lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like. Peroxides; azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile; ammonium persulfate; and potassium persulfate.
  • a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • Emulsifiers, dispersants, polymerization initiators, and the like are generally used in these polymerization methods, and the amount used is generally the amount generally used.
  • seed polymerization may be performed using seed particles.
  • the polymerization temperature and the polymerization time can be arbitrarily selected depending on the polymerization method and the kind of the polymerization initiator. Usually, the polymerization temperature is about 30 ° C. or more, and the polymerization time is about 0.5 to 30 hours. Further, additives such as amines may be used as a polymerization aid.
  • an aqueous dispersion of binder particles obtained by these methods is used, for example, alkali metal (for example, Li, Na, K, Rb, Cs) hydroxide, ammonia, inorganic ammonium compound (for example, NH 4 Cl).
  • the pH may be adjusted to a range of usually 5 to 10, preferably 5 to 9, by mixing with a basic aqueous solution containing an organic amine compound (eg, ethanolamine, diethylamine, etc.).
  • pH adjustment with an alkali metal hydroxide is preferable because it improves the binding property (peel strength) between the current collector and the negative electrode active material.
  • the particulate binder may be a composite polymer particle composed of two or more kinds of polymers.
  • the composite polymer particles are prepared by polymerizing at least one monomer component by a conventional method, then polymerizing at least one other monomer component, and polymerizing by a conventional method (two-stage polymerization method), etc. Can also be obtained. In this way, by polymerizing the monomer stepwise, it is possible to obtain core-shell structured particles having a core layer present inside the particle and a shell layer covering the core layer.
  • the binder composition for a secondary battery negative electrode of the present invention includes a water-soluble polymer having an acidic functional group (hereinafter sometimes simply referred to as “water-soluble polymer”).
  • the water-soluble polymer having an acidic functional group can be prepared by polymerizing a monomer composition containing an acidic functional group-containing monomer and, if necessary, any other monomer. By preparing a water-soluble polymer by such a method, a water-soluble polymer containing an acidic functional group-containing monomer unit can be obtained, and this can be used for the binder composition of the present invention.
  • the acidic functional group-containing monomer is a monomer containing an acidic functional group.
  • Examples of the acidic functional group include a carboxyl group (—COOH), a sulfonic acid group (—SO 3 H), a phosphoric acid group (— PO 3 H 2 ).
  • Examples of acidic functional group-containing monomers include carboxyl group-containing monomers, sulfonic acid group-containing monomers, and phosphate group-containing monomers, and carboxyl group-containing monomers are particularly preferred.
  • the carboxyl group-containing monomer can be a monomer having a carboxyl group and a polymerizable group. Specific examples of the carboxyl group-containing monomer include an ethylenically unsaturated carboxylic acid monomer.
  • Examples of the ethylenically unsaturated carboxylic acid monomer include ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof, and derivatives thereof.
  • Examples of ethylenically unsaturated monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of derivatives of ethylenically unsaturated monocarboxylic acids include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, And ⁇ -diaminoacrylic acid.
  • Examples of ethylenically unsaturated dicarboxylic acids include maleic acid, fumaric acid, and itaconic acid.
  • Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • Examples of derivatives of ethylenically unsaturated dicarboxylic acids include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid and the like methylallyl maleate; and diphenyl maleate, nonyl maleate And maleate esters such as decyl maleate, dodecyl maleate, octadecyl maleate and fluoroalkyl maleate.
  • ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid are preferable. It is because the dispersibility with respect to water of the obtained water-soluble polymer can be improved more.
  • the ratio of the carboxyl group-containing monomer units in the water-soluble polymer is preferably 20% by weight or more, more preferably 25% by weight or more, and preferably 70% by weight or less, more preferably 65% by weight. % Or less.
  • the sulfonic acid group-containing monomer examples include a sulfonic acid group-containing monomer having no functional group other than the sulfonic acid group or a salt thereof, a monomer containing an amide group and a sulfonic acid group, or a salt thereof And monomers containing a hydroxyl group and a sulfonic acid group, or salts thereof.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer may contain only one type of sulfonic acid group-containing monomer unit, or may contain two or more types in combination at any ratio.
  • the sulfonic acid group-containing monomer having no functional group other than the sulfonic acid group examples include a monomer sulfonated one of conjugated double bonds of a diene compound such as isoprene and butadiene, vinyl sulfonic acid, Examples thereof include styrene sulfonic acid, allyl sulfonic acid, sulfoethyl methacrylate, sulfopropyl methacrylate, and sulfobutyl methacrylate.
  • the salt lithium salt, sodium salt, potassium salt etc. are mentioned, for example. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • Examples of the monomer containing an amide group and a sulfonic acid group include 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • salt lithium salt, sodium salt, potassium salt etc. are mentioned, for example. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • Examples of the monomer containing a hydroxyl group and a sulfonic acid group include 3-allyloxy-2-hydroxypropanesulfonic acid (HAPS).
  • HAPS 3-allyloxy-2-hydroxypropanesulfonic acid
  • salt lithium salt, sodium salt, potassium salt etc. are mentioned, for example. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • sulfonic acid group-containing monomers include styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), monomers containing amide groups and sulfonic acid groups, or salts thereof. Is preferred.
  • the ratio of the sulfonic acid group-containing monomer unit in the water-soluble polymer is preferably 2% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less, and particularly preferably 8% by weight or less. .
  • the dispersibility of the slurry for the negative electrode is improved when the density of sulfonic acid groups in the water-soluble polymer is increased.
  • a sulfonic acid group usually undergoes a crosslinking reaction when producing the negative electrode of the present invention, a crosslinked structure is formed by the sulfonic acid group in the negative electrode active material layer.
  • the water-soluble polymer since the water-soluble polymer has a sufficient amount of sulfonic acid groups, the number of cross-linked structures is increased to increase the strength of the negative electrode active material layer, and the secondary battery has high temperature storage characteristics and low temperature output. The characteristics can be improved. Therefore, the water-soluble polymer preferably contains a large amount of sulfonic acid group-containing monomer units as described above. However, if there are too many sulfonic acid group-containing monomer units, other monomer units are relatively reduced, and the adsorptivity and strength of the water-soluble polymer to the negative electrode active material can be reduced. The amount of the monomer unit to be contained is preferably not more than the upper limit of the above range.
  • the phosphoric acid group that the phosphoric acid group-containing monomer may have includes a monomer having a group —OP ( ⁇ O) (— OR 4 ) —OR 5 group (R 4 and R 5 are independently , Hydrogen atom, or any organic group), or a salt thereof.
  • R 4 and R 5 are independently , Hydrogen atom, or any organic group
  • Specific examples of the organic group as R 4 and R 5 include an aliphatic group such as an octyl group, an aromatic group such as a phenyl group, and the like.
  • a phosphate group containing monomer the compound containing a phosphate group and an allyloxy group, and a phosphate group containing (meth) acrylic acid ester can be mentioned, for example.
  • Examples of the compound containing a phosphate group and an allyloxy group include 3-allyloxy-2-hydroxypropane phosphate.
  • Examples of phosphoric acid group-containing (meth) acrylic acid esters include dioctyl-2-methacryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, monomethyl-2-methacryloyloxyethyl phosphate, dimethyl-2-methacryloyloxy Ethyl phosphate, monoethyl-2-methacryloyloxyethyl phosphate, diethyl-2-methacryloyloxyethyl phosphate, monoisopropyl-2-methacryloyloxyethyl phosphate, diisopropyl-2-methacryloyloxyethyl phosphate, mono n-butyl-2 -Methacryloyloxyethyl phosphate, di-n-
  • a phosphate group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer may contain only one type of phosphate group-containing monomer unit, or may contain two or more types in combination at any ratio.
  • the ratio of the phosphate group-containing monomer unit in the water-soluble polymer is preferably 5% by weight or more, preferably 10% by weight or more, and preferably 30% by weight or less, more preferably 25% by weight. % Or less.
  • the water-soluble polymer according to the present invention may contain only one kind of acidic functional group-containing monomer unit, or may contain two or more kinds in combination at any ratio.
  • the water-soluble polymer preferably includes a combination of a carboxyl group-containing monomer and a sulfonic acid group-containing monomer. More specifically, the water-soluble polymer preferably contains a combination of methacrylic acid and 2-acrylamido-2-methylpropanesulfonic acid.
  • the ratio of acidic functional group-containing monomer units in the water-soluble polymer is preferably 25% by weight or more, more preferably 30% by weight or more, preferably 60% by weight or less, more preferably 55% by weight or less, particularly Preferably it is 50 weight% or less.
  • the ratio of the acidic functional group-containing monomer unit is preferably 25% by weight or more, more preferably 30% by weight or more, preferably 60% by weight or less, more preferably 55% by weight or less, particularly Preferably it is 50 weight% or less.
  • the water-soluble polymer can have other arbitrary units in addition to the acidic functional group-containing monomer unit.
  • arbitrary units include crosslinkable monomer units, fluorine-containing (meth) acrylate monomer units, reactive surfactant units, or combinations thereof.
  • Each of these units is a repeating unit obtained by polymerizing a crosslinkable monomer, a fluorine-containing (meth) acrylate monomer, and a reactive surfactant monomer.
  • the crosslinkable monomer a monomer capable of forming a crosslinked structure upon polymerization can be used.
  • the crosslinkable monomer include monomers having two or more reactive groups per molecule. More specifically, a monofunctional monomer having a heat-crosslinkable crosslinkable group and one olefinic double bond per molecule, and a polyfunctional having two or more olefinic double bonds per molecule. Ionic monomers.
  • the thermally crosslinkable group contained in the monofunctional monomer include an epoxy group, an N-methylolamide group, an oxetanyl group, an oxazoline group, and combinations thereof. Among these, an epoxy group is more preferable in terms of easy adjustment of crosslinking and crosslinking density.
  • crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond examples include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl.
  • Unsaturated glycidyl ethers such as ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene Monoepoxides of dienes or polyenes such as; alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; and glycidyl acrylate, glycidyl methacrylate, Glycidyl crotonate, Unsaturated carboxylic acids such as glycidyl-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidyl este
  • crosslinkable monomer having an N-methylolamide group as a thermally crosslinkable group and having an olefinic double bond have a methylol group such as N-methylol (meth) acrylamide (meta ) Acrylamides.
  • crosslinkable monomer having an oxetanyl group as a thermally crosslinkable group and having an olefinic double bond examples include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, and 2-((meth) acryloyloxymethyl) ) -4-Trifluoromethyloxetane.
  • crosslinkable monomer having an oxazoline group as a heat crosslinkable group and having an olefinic double bond examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2- Oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline.
  • multifunctional monomers having two or more olefinic double bonds include allyl (meth) acrylate, ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, Tetraethylene glycol di (meth) acrylate, trimethylolpropane-tri (meth) acrylate, dipropylene glycol diallyl ether, polyglycol diallyl ether, triethylene glycol divinyl ether, hydroquinone diallyl ether, tetraallyloxyethane, trimethylolpropane-diallyl Ethers, allyl or vinyl ethers of polyfunctional alcohols other than those mentioned above, triallylamine, methylene bisacrylamide, and divinylbenzene.
  • crosslinkable monomer ethylene dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate can be particularly preferably used.
  • the ratio of the crosslinkable monomer unit in the water-soluble polymer is preferably 0.1% or more, more preferably 0.2% by weight or more, particularly preferably 0.5% by weight or more, preferably 2% by weight. Below, more preferably 1.5% by weight or less, particularly preferably 1% by weight or less.
  • fluorine-containing (meth) acrylic acid ester monomer examples include monomers represented by the following formula (I).
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a hydrocarbon group containing a fluorine atom.
  • the carbon number of the hydrocarbon group is usually 1 or more and usually 18 or less.
  • the number of fluorine atoms contained in R 2 may be one or two or more.
  • fluorine-containing (meth) acrylic acid ester monomers represented by formula (I) include (meth) acrylic acid alkyl fluoride, (meth) acrylic acid fluoride aryl, and (meth) acrylic acid fluoride.
  • Aralkyl is mentioned. Of these, alkyl fluoride (meth) acrylate is preferable. Specific examples of such monomers include 2,2,2-trifluoroethyl (meth) acrylate, ⁇ - (perfluorooctyl) ethyl (meth) acrylate, 2,2, (meth) acrylic acid.
  • the water-soluble polymer according to the present invention may contain only one type of fluorine-containing (meth) acrylic acid ester monomer unit, or may contain two or more types in combination at any ratio. .
  • the ratio of the fluorine-containing (meth) acrylic acid ester monomer unit in the water-soluble polymer is preferably 1% by weight or more, more preferably 2% by weight or more, particularly preferably 5% by weight or more, preferably 20% by weight. % Or less, more preferably 15% by weight or less, and particularly preferably 10% by weight or less.
  • the water-soluble polymer can be given wettability to the electrolytic solution, and the low-temperature output characteristics are improved. Can be made. Furthermore, the ionic conductivity of a water-soluble polymer can be made into a suitable range by making the ratio of the fluorine-containing (meth) acrylic acid ester monomer unit in a water-soluble polymer into the said range.
  • the reactive surfactant monomer is a monomer having a polymerizable group that can be copolymerized with other monomers and having a surfactant group (hydrophilic group and hydrophobic group).
  • the reactive surfactant unit obtained by polymerization of the reactive surfactant monomer constitutes a part of the molecule of the water-soluble polymer and can function as a surfactant.
  • the reactive surfactant monomer has a polymerizable unsaturated group, and this group also acts as a hydrophobic group after polymerization.
  • the polymerizable unsaturated group that the reactive surfactant monomer has include a vinyl group, an allyl group, a vinylidene group, a propenyl group, an isopropenyl group, and an isobutylidene group.
  • the type of the polymerizable unsaturated group may be one type or two or more types.
  • the reactive surfactant monomer usually has a hydrophilic group as a portion that exhibits hydrophilicity.
  • Reactive surfactant monomers are classified into anionic, cationic and nonionic surfactants depending on the type of hydrophilic group.
  • Examples of the anionic hydrophilic group include —SO 3 M, —COOM, and —PO (OH) 2 .
  • M represents a hydrogen atom or a cation.
  • Examples of cations include alkali metal ions such as lithium, sodium and potassium; alkaline earth metal ions such as calcium and magnesium; ammonium ions; ammonium ions of alkylamines such as monomethylamine, dimethylamine, monoethylamine and triethylamine; and Examples include ammonium ions of alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine.
  • Examples of the cationic hydrophilic group include —Cl, —Br, —I, and —SO 3 OR X.
  • R X represents an alkyl group. Examples of R X is methyl group, an ethyl group, a propyl group, and isopropyl group.
  • An example of a nonionic hydrophilic group is —OH.
  • Suitable reactive surfactant monomers include compounds represented by the following formula (II).
  • R represents a divalent linking group. Examples of R include —Si—O— group, methylene group and phenylene group.
  • R 3 represents a hydrophilic group. An example of R 3 includes —SO 3 NH 4 .
  • n is an integer of 1 or more and 100 or less.
  • Another example of a suitable reactive surfactant has a polymerized unit based on ethylene oxide and a polymerized unit based on butylene oxide, and further has an alkenyl group having a terminal double bond and —SO 3 NH 4 at the terminal.
  • a compound for example, trade name “Latemul PD-104” manufactured by Kao Corporation).
  • a reactive surfactant monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the reactive surfactant unit in the water-soluble polymer is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, particularly preferably 0.5% by weight or more, preferably 15% by weight. % Or less, more preferably 10% by weight or less, and particularly preferably 5% by weight or less.
  • the dispersibility of the negative electrode slurry composition can be improved by setting the ratio of the reactive surfactant unit to the lower limit value or more of the above range.
  • the durability of the negative electrode can be improved by setting the ratio of the reactive surfactant unit to the upper limit of the above range.
  • Examples of arbitrary units that the water-soluble polymer may have are not limited to the above-mentioned crosslinkable monomer units, fluorine-containing (meth) acrylate monomer units, and reactive surfactant units, Still other units may be included. Specific examples include (meth) acrylic acid ester monomer units other than fluorine-containing (meth) acrylic acid ester monomer units.
  • a (meth) acrylic acid ester monomer unit is a repeating unit obtained by polymerizing a (meth) acrylic acid ester monomer. However, among the (meth) acrylate monomers, those containing fluorine are distinguished from (meth) acrylate monomers as fluorine-containing (meth) acrylate monomers.
  • Examples of (meth) acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; and methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t -Butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl
  • (Meth) acrylic acid ester monomer may be used alone or in combination of two or more at any ratio. Therefore, the water-soluble polymer according to the present invention may contain only one type of (meth) acrylic acid ester monomer unit, or may contain two or more types in combination at any ratio.
  • the ratio of the (meth) acrylate monomer unit is preferably 30% by weight or more, more preferably 35% by weight or more, and particularly preferably 40% by weight or more. It is preferably 70% by weight or less.
  • the water-soluble polymer may have include units obtained by polymerizing the following monomers. That is, styrene monomers such as styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene and divinyl benzene; Amide monomers such as acrylamide and acrylamide-2-methylpropanesulfonic acid; ⁇ , ⁇ -unsaturated nitrile compound monomers such as acrylonitrile and methacrylonitrile; Olefin monomers such as ethylene and propylene; Vinyl chloride , Halogen atom-containing monomers such as vinylidene chloride; vinyl ester monomers such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; vinyl styrene mono
  • the weight average molecular weight of the water-soluble polymer is usually smaller than that of the polymer to be a binder, preferably 100 or more, more preferably 500 or more, particularly preferably 1000 or more, preferably 500000 or less, more preferably 250,000 or less. Particularly preferably, it is 100,000 or less.
  • the water-soluble polymer can be softened by setting it to the upper limit value or less of the above range, for example, it is possible to suppress swelling of the negative electrode and improve adhesion of the negative electrode active material layer to the current collector.
  • the weight average molecular weight of the water-soluble polymer can be determined by GPC as a value in terms of polystyrene using a solution obtained by dissolving 0.85 g / ml sodium nitrate in a 10% by volume aqueous solution of dimethylformamide.
  • the glass transition temperature of the water-soluble polymer is usually 0 ° C. or higher, preferably 5 ° C. or higher, and is usually 100 ° C. or lower, preferably 50 ° C. or lower. When the glass transition temperature of the water-soluble polymer is in the above range, both the adhesion and flexibility of the negative electrode can be achieved.
  • the glass transition temperature of the water-soluble polymer can be adjusted by combining various monomers.
  • the ionic conductivity of the water-soluble polymer is 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 3 S / cm.
  • “ionic conductivity of water-soluble polymer” refers to ionic conductivity measured under the following predetermined conditions. That is, an aqueous solution of a water-soluble polymer is poured into a silicon container so that the thickness after drying becomes 1 mm, and dried at room temperature for 72 hours to produce a 1 cm ⁇ 1 cm square film. It is immersed for 72 hours at 60 ° C. in a 0 mol / L LiPF 6 solution (solvent: a mixture of ethylene carbonate / diethyl carbonate in a 1/2 volume ratio).
  • This value is referred to as “ionic conductivity of water-soluble polymer” in the present application.
  • the value of ionic conductivity is preferably 2 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 3 S / cm, and more preferably 5 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 3 S / cm.
  • the ionic conductivity of the water-soluble polymer can be within the above range by appropriately adjusting the type and ratio of each monomer unit in the water-soluble polymer.
  • the degree of swelling of the water-soluble polymer measured under predetermined conditions is 1.0 to 2.0 times the degree of swelling of the particulate binder measured under the same conditions.
  • the swelling degree is a swelling degree with respect to a liquid having a solubility parameter of 8 to 13 (cal / cm 3 ) 1/2 . More specifically, an aqueous dispersion of a particulate binder and an aqueous solution of a water-soluble polymer are each flowed into a silicon container so that the thickness after drying is 1 mm, dried at room temperature for 72 hours, and 1 cm ⁇ A 1 cm square film is prepared and the weight M0 is measured. Thereafter, the film is immersed in a predetermined liquid at 60 ° C.
  • the weight M1 of the film after immersion is measured, and the degree of swelling is calculated from the formula (M1-M0) / M0.
  • the ratio V1 / V0 is calculated from the swelling degree V0 of the particulate binder and the swelling degree V1 of the water-soluble polymer, and if this value is in the range of 1.0 to 2.0, the swelling in the present invention Satisfy degree requirements.
  • the distance between the active materials can be set to an appropriate narrow range, and good durability can be obtained.
  • the value of the swelling ratio V1 / V0 is preferably 1.0 to 1.5, and more preferably 1.0 to 1.2.
  • the swelling ratio is within the above range by appropriately adjusting the type and ratio of each monomer unit in the particulate binder and the type and ratio of each monomer unit in the water-soluble polymer. can do.
  • the liquid having a predetermined solubility parameter for measuring the degree of swelling can be the same as, for example, the electrolytic solution of the secondary battery of the present invention. 8 to 13 (cal / cm 3 )
  • the values of the swelling degree V0 of the particulate binder and the swelling degree V1 of the water-soluble polymer are not particularly limited, but are preferably in the following ranges, respectively. That is, the degree of swelling V0 of the particulate binder is preferably 1.0 to 3.0 times, and more preferably 1.0 to 2.0 times.
  • the degree of swelling V1 of the water-soluble polymer is preferably 1.0 times to 5.0 times, more preferably 1.0 times to 4.0 times.
  • the water-soluble polymer can be produced by any production method.
  • a monomer composition containing an acidic functional group-containing monomer and a monomer that gives other arbitrary units as necessary is polymerized in an aqueous solvent to produce a water-soluble polymer.
  • the ratio of each monomer in the monomer composition is usually a repeating unit in a water-soluble polymer (for example, an acidic functional group-containing monomer unit, a crosslinkable monomer unit, a fluorine-containing (meth) acrylic acid).
  • the ratio of the ester monomer unit and the reactive surfactant unit is the same.
  • the aqueous solvent and the polymerization method can be the same as in the production of the binder, for example.
  • an aqueous solution in which a water-soluble polymer is usually dissolved in an aqueous solvent is obtained.
  • the water-soluble polymer may be taken out from the aqueous solution thus obtained, the negative electrode slurry composition is usually produced using the water-soluble polymer dissolved in an aqueous solvent, and the negative electrode slurry composition is Can be used to produce negative electrodes.
  • the aqueous solution containing the water-soluble polymer in an aqueous solvent is usually acidic, it may be alkalized to pH 7 to pH 13 as necessary. Thereby, the handleability of aqueous solution can be improved and the coating property of the slurry composition for negative electrodes can be improved.
  • Examples of the method for alkalinizing to pH 7 to pH 13 include alkali metal aqueous solutions such as lithium hydroxide aqueous solution, sodium hydroxide aqueous solution and potassium hydroxide aqueous solution; alkaline earth metal aqueous solutions such as calcium hydroxide aqueous solution and magnesium hydroxide aqueous solution; A method of adding an alkaline aqueous solution such as an aqueous ammonia solution may be mentioned.
  • One kind of the alkaline aqueous solution may be used alone, or two or more kinds may be used in combination at any ratio.
  • the binder composition for a secondary battery negative electrode of the present invention may comprise only a particulate binder and a water-soluble polymer, but may contain other optional components as necessary.
  • a surfactant may be included separately.
  • a surfactant for example, sodium dodecylbenzenesulfonate can be used.
  • the content ratio of the particulate binder and the water-soluble polymer in the binder composition for secondary battery negative electrode of the present invention is not particularly limited, and the slurry composition for secondary battery negative electrode of the present invention and the secondary battery of the present invention described later. It can adjust suitably to the ratio suitable for preparing the negative electrode for manufacture.
  • the weight ratio of the particulate binder / water-soluble polymer is preferably 99.5 / 0.5 to 95/5, more preferably 99/1 to 96/4, and 98.5 / Even more preferably, it is 1.5 to 97/3.
  • the negative electrode for a secondary battery of the present invention includes the binder composition for a negative electrode of the secondary battery of the present invention and a negative electrode active material.
  • the negative electrode of the present invention includes a current collector and a negative electrode active material layer formed on the surface of the current collector, and the electrode active material layer includes the binder composition and the negative electrode active material.
  • the negative electrode active material is an electrode active material for a negative electrode, and is a material that transfers electrons in the negative electrode of the secondary battery.
  • a material that can occlude and release lithium is usually used as the negative electrode active material.
  • the material that can occlude and release lithium include a metal-based active material, a carbon-based active material, and an active material that combines these materials.
  • the metal-based active material is an active material containing a metal, and usually contains an element capable of inserting lithium (also referred to as dope) in the structure, and the theoretical electric capacity per weight when lithium is inserted is 500 mAh.
  • the upper limit of the theoretical electric capacity is not particularly limited, but may be, for example, 5000 mAh / g or less.
  • the metal-based active material for example, lithium metal, a single metal that forms a lithium alloy and an alloy thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof are used.
  • the single metal forming the lithium alloy examples include single metals such as Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, Zn, and Ti. Can be mentioned. Moreover, as a single metal alloy which forms a lithium alloy, the compound containing the said single metal is mentioned, for example. Among these, silicon (Si), tin (Sn), lead (Pb), and titanium (Ti) are preferable, and silicon, tin, and titanium are more preferable. Accordingly, a single metal of silicon (Si), tin (Sn), or titanium (Ti), an alloy containing these single metals, or a compound of these metals is preferable.
  • the metallic active material may further contain one or more nonmetallic elements.
  • SiO x C y capable of inserting and detaching lithium (also referred to as dedoping) at a low potential is preferable.
  • SiO x C y can be obtained by firing a polymer material containing silicon.
  • the range of 0.8 ⁇ x ⁇ 3 and 2 ⁇ y ⁇ 4 is preferably used in view of the balance between capacity and cycle characteristics.
  • Lithium metal, elemental metal forming lithium alloy and oxides, sulfides, nitrides, silicides, carbides and phosphides of the alloys include oxides, sulfides, nitrides and silicides of lithium-insertable elements Products, carbides, phosphides and the like.
  • an oxide is particularly preferable.
  • a lithium-containing metal composite oxide containing an oxide such as tin oxide, manganese oxide, titanium oxide, niobium oxide, and vanadium oxide and a metal element selected from the group consisting of Si, Sn, Pb, and Ti atoms is used. .
  • Li x Ti y M z O 4 As the lithium-containing metal composite oxide, a lithium titanium composite oxide represented by Li x Ti y M z O 4 (0.7 ⁇ x ⁇ 1.5, 1.5 ⁇ y ⁇ 2.3, 0 ⁇ z ⁇ 1.6, and M represents an element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb.), Li x Mn y M A lithium manganese composite oxide represented by z O 4 (x, y, z and M are the same as defined in the lithium titanium composite oxide). Among these, Li 4/3 Ti 5/3 O 4 , Li 1 Ti 2 O 4 , Li 4/5 Ti 11/5 O 4 , and Li 4/3 Mn 5/3 O 4 are preferable.
  • an active material containing silicon is preferable as the metal-based active material.
  • an active material containing silicon By using an active material containing silicon, the electric capacity of the secondary battery can be increased.
  • an active material containing silicon expands and contracts greatly (for example, about 5 times) with charge and discharge.
  • battery performance due to expansion and contraction of an active material containing silicon is increased. The decrease can be prevented by the water-soluble polymer according to the present invention.
  • SiO x , SiC and SiO x Cy are preferable, and SiO x Cy is more preferable.
  • SiO x Cy is more preferable.
  • the carbon-based active material refers to an active material having carbon as a main skeleton into which lithium can be inserted, and examples thereof include a carbonaceous material and a graphite material.
  • the carbonaceous material is generally a carbon material with low graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower.
  • the minimum of the said heat processing is not specifically limited, For example, it can be 500 degreeC or more.
  • Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitic carbon having a structure close to an amorphous structure typified by glassy carbon.
  • Examples of the graphitizable carbon include carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
  • MCMB is carbon fine particles obtained by separating and extracting mesophase microspheres generated in the process of heating pitches at around 400 ° C.
  • the mesophase pitch-based carbon fiber is a carbon fiber using as a raw material mesophase pitch obtained by growing and coalescing the mesophase microspheres.
  • Pyrolytic vapor-grown carbon fibers are (1) a method of pyrolyzing acrylic polymer fibers, etc., (2) a method of spinning by spinning a pitch, or (3) using nanoparticles such as iron as a catalyst.
  • non-graphitizable carbon examples include phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic carbon, furfuryl alcohol resin fired bodies (PFA), and hard carbon.
  • the graphite material is a graphite material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher.
  • the upper limit of the said heat processing temperature is not specifically limited, For example, it can be 5000 degrees C or less.
  • Examples of the graphite material include natural graphite and artificial graphite.
  • Examples of artificial graphite include artificial graphite mainly heat-treated at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, graphitized mesophase pitch-based carbon fiber heat-treated mesophase pitch-based carbon fiber at 2000 ° C. or higher, etc. Is mentioned.
  • a graphite material is preferable. By using the graphite material, the resistance of the secondary battery can be reduced, and a secondary battery having excellent input / output characteristics can be manufactured.
  • a negative electrode active material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • an active material obtained by combining a metal-based active material and a carbon-based active material can be given.
  • a combination of SiOC, Sn, or SiOx (0 ⁇ x ⁇ 2) as a metal-based active material and a graphite material as a carbon-based active material can be mentioned as a particularly preferable embodiment.
  • the negative electrode active material is preferably particle-sized.
  • a higher density electrode can be formed during electrode molding.
  • the volume average particle diameter is appropriately selected in consideration of other constituent elements of the secondary battery, and is usually 0.1 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more. Usually, it is 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the 50% cumulative volume diameter of the negative electrode active material particles is usually 1 ⁇ m or more, preferably 15 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less, from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics. It is.
  • the 50% cumulative volume diameter can be obtained as a particle diameter at which the cumulative volume calculated from the small diameter side in the measured particle size distribution is 50% by measuring the particle size distribution by a laser diffraction method.
  • the tap density of the negative electrode active material is not particularly limited, but 0.6 g / cm 3 or more is preferably used.
  • the specific surface area of the negative electrode active material is usually 2 m 2 / g or more, preferably 3 m 2 / g or more, more preferably 5 m 2 / g or more, and usually 20 m 2 / g or less, preferably from the viewpoint of improving the output density. It is 15 m 2 / g or less, more preferably 10 m 2 / g or less.
  • the specific surface area of the negative electrode active material can be measured by, for example, the BET method.
  • the content ratio of the negative electrode active material and the binder composition in the negative electrode of the present invention is not particularly limited, the amount of the binder composition with respect to 100 parts by weight of the negative electrode active material is usually 0.1 parts by weight or more, preferably 0.5 weights. And usually not more than 10 parts by weight, preferably not more than 5.0 parts by weight. By setting the ratio of the binder composition to the negative electrode active material within the above range, the above-described effects of the present invention can be stably exhibited.
  • the negative electrode active material layer may contain other components in addition to the binder composition and the negative electrode active material described above.
  • the component include a viscosity modifier, a conductive agent, a reinforcing material, a leveling agent, and an electrolyte solution additive.
  • these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the viscosity modifier is a component used for adjusting the viscosity of the negative electrode slurry composition of the present invention to improve the dispersibility and coating property of the negative electrode slurry composition.
  • the viscosity modifier contained in the negative electrode slurry composition remains in the negative electrode active material layer.
  • a water-soluble polysaccharide as the viscosity modifier.
  • polysaccharides include natural polymer compounds and cellulose semisynthetic polymer compounds.
  • a viscosity modifier may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • natural polymer compounds include plant- and animal-derived polysaccharides and proteins. Moreover, the natural high molecular compound by which the fermentation process by the microorganisms etc., the process by heat
  • Examples of plant-based natural high molecular compounds include gum arabic, gum tragacanth, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, cannan, quince seed (malmello), alque colloid (gasso extract), starch (rice, corn, potato) , Derived from wheat, etc.), glycyrrhizin and the like.
  • Examples of animal-based natural polymer compounds include collagen, casein, albumin, and gelatin.
  • examples of the microbial natural polymer compound include xanthan gum, dextran, succinoglucan, and bullulan.
  • Cellulosic semisynthetic polymer compounds can be classified into nonionic, anionic and cationic.
  • Nonionic cellulose semisynthetic polymer compounds include, for example, alkylcelluloses such as methylcellulose, methylethylcellulose, ethylcellulose, and microcrystalline cellulose; hydroxyethylcellulose, hydroxybutylmethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxy And hydroxyalkylcelluloses such as propylmethylcellulose stearoxy ether, carboxymethylhydroxyethylcellulose, alkylhydroxyethylcellulose, and nonoxynylhydroxyethylcellulose;
  • anionic cellulose semi-synthetic polymer compound examples include alkyl celluloses obtained by substituting the above nonionic cellulose semi-synthetic polymer compound with various derivative groups, and sodium salts and ammonium salts thereof. Specific examples include sodium cellulose sulfate, methyl cellulose, methyl ethyl cellulose, ethyl cellulose, carboxymethyl cellulose (CMC) and salts thereof.
  • Examples of the cationic cellulose semisynthetic polymer compound include low nitrogen hydroxyethyl cellulose dimethyl diallylammonium chloride (polyquaternium-4), O- [2-hydroxy-3- (trimethylammonio) propyl] hydroxyethyl cellulose (polyquaternium). -10) and O- [2-hydroxy-3- (lauryldimethylammonio) propyl] hydroxyethyl cellulose (polyquaternium-24).
  • cellulose-based semi-synthetic polymer compounds sodium salts thereof and ammonium salts thereof are preferable because they can have cationic, anionic and amphoteric characteristics.
  • anionic cellulose semisynthetic polymer compounds are particularly preferable from the viewpoint of dispersibility of the negative electrode active material.
  • the degree of etherification of the cellulose semisynthetic polymer compound is preferably 0.5 or more, more preferably 0.6 or more, preferably 1.0 or less, more preferably 0.8 or less.
  • the degree of etherification refers to the degree of substitution of hydroxyl groups (three) per anhydroglucose unit in cellulose with a substitution product such as a carboxymethyl group.
  • the degree of etherification can theoretically take a value of 0-3.
  • the degree of etherification is in the above range, the cellulose semi-synthetic polymer compound is adsorbed on the surface of the negative electrode active material and is compatible with water, so it has excellent dispersibility, and the negative electrode active material is the primary particle. Fine dispersion to level.
  • the average degree of polymerization of the viscosity modifier calculated from the intrinsic viscosity obtained from an Ubbelohde viscometer is preferably 500 or more, more preferably 1000. Or more, preferably 2500 or less, more preferably 2000 or less, and particularly preferably 1500 or less.
  • the average degree of polymerization of the viscosity modifier may affect the fluidity of the negative electrode slurry composition of the present invention, the film uniformity of the negative electrode active material layer, and the process in the process. By making the average degree of polymerization within the above range, the stability of the negative electrode slurry composition of the present invention over time can be improved, and coating without agglomerates and without thickness unevenness becomes possible.
  • the amount of the viscosity modifier is preferably 0 part by weight or more and preferably 0.5 part by weight or less with respect to 100 parts by weight of the negative electrode active material.
  • the conductive agent is a component that improves electrical contact between the negative electrode active materials. By including the conductive agent, the discharge rate characteristics of the secondary battery of the present invention can be improved.
  • conductive agent for example, acetylene black, ketjen black, carbon black, graphite, vapor grown carbon fiber, conductive carbon such as carbon nanotube, and the like can be used.
  • One type of conductive agent may be used alone, or two or more types may be used in combination at any ratio.
  • the amount of the conductive agent is preferably 1 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material.
  • the reinforcing material for example, various inorganic and organic spherical, plate, rod or fiber fillers can be used. By using the reinforcing material, a tough and flexible negative electrode can be obtained, and a secondary battery exhibiting excellent long-term cycle characteristics can be realized.
  • the amount of the reinforcing material is usually 0.01 parts by weight or more, preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 10 parts by weight or less, with respect to 100 parts by weight of the negative electrode active material.
  • leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants.
  • the amount of the leveling agent is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material.
  • the leveling agent is in the above range, the productivity, smoothness, and battery characteristics during the production of the negative electrode are excellent.
  • the dispersibility of the negative electrode active material and the like in the negative electrode slurry composition can be improved, and the smoothness of the negative electrode obtained thereby can be improved.
  • Examples of the electrolytic solution additive include vinylene carbonate. By using the electrolytic solution additive, for example, decomposition of the electrolytic solution can be suppressed.
  • the amount of the electrolytic solution additive is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. By setting the amount of the electrolytic solution additive in the above range, a secondary battery excellent in cycle characteristics and high temperature characteristics can be realized.
  • the negative electrode active material layer may contain nanoparticles, such as fumed silica and fumed alumina, for example.
  • nanoparticles such as fumed silica and fumed alumina
  • the thixotropy of the negative electrode slurry composition can be adjusted, so that the leveling property of the negative electrode of the present invention obtained thereby can be improved.
  • the amount of the nanoparticles is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. When the nanoparticles are in the above range, the stability and productivity of the negative electrode slurry composition can be improved, and high battery characteristics can be realized.
  • the negative electrode of the present invention includes a negative electrode active material layer containing the negative electrode active material, the binder composition, and other components used as necessary. This negative electrode active material layer is usually provided on the surface of the current collector. At this time, the negative electrode active material layer may be provided on at least one side of the current collector, but is preferably provided on both sides.
  • the current collector for the negative electrode is not particularly limited as long as it has electrical conductivity and is electrochemically durable, but a metal material is preferable because of its heat resistance.
  • a metal material is preferable because of its heat resistance.
  • the material for the current collector for the negative electrode include iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum.
  • copper is particularly preferable as the current collector used for the secondary battery negative electrode.
  • One kind of the above materials may be used alone, or two or more kinds thereof may be used in combination at any ratio.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 mm to 0.5 mm is preferable.
  • the current collector is preferably used after roughening the surface in advance.
  • the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a mechanical polishing method usually, a polishing cloth with an abrasive particle fixed thereto, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity of the negative electrode active material layer.
  • a negative electrode active material layer is provided on the surface of the current collector.
  • the thickness of the negative electrode active material layer is usually 5 ⁇ m or more, preferably 30 ⁇ m or more, and is usually 300 ⁇ m or less, preferably 250 ⁇ m or less. When the thickness of the negative electrode active material layer is in the above range, load characteristics and cycle characteristics can be improved.
  • the content ratio of the negative electrode active material in the negative electrode active material layer is preferably 85% by weight or more, more preferably 88% by weight or more, preferably 99% by weight or less, more preferably 97% by weight or less.
  • the water content in the negative electrode active material layer is preferably 1000 ppm or less, and more preferably 500 ppm or less.
  • the amount of water can be measured by a known method such as the Karl Fischer method.
  • Such a low water content can be achieved by appropriately adjusting the composition of the units in the water-soluble polymer.
  • the water content can be reduced by setting the fluorine-containing (meth) acrylic acid ester monomer unit in the range of 0.5 to 20% by weight, preferably 1 to 10% by weight.
  • the manufacturing method of the negative electrode for secondary batteries of the present invention (hereinafter referred to as “the manufacturing method of the negative electrode of the present invention” as appropriate) is not particularly limited, for example, (I) preparing the slurry composition for negative electrode of the present invention, The negative electrode slurry composition is applied to the surface of the current collector and dried to form a negative electrode active material on the surface of the current collector (coating method), or (II) the negative electrode slurry composition of the present invention
  • the composite particles are prepared, supplied onto a current collector and formed into a sheet, and if desired, a method of further roll pressing to form a negative electrode active material layer (dry molding method) can be mentioned.
  • dry molding method is preferable in that the capacity of the obtained secondary battery negative electrode can be increased and the internal resistance can be reduced.
  • the negative electrode slurry composition of the present invention is a slurry-like composition containing a negative electrode active material, a binder, a water-soluble polymer, and water.
  • the slurry composition for negative electrodes of this invention may contain components other than a negative electrode active material, a binder, a water-soluble polymer, and water as needed.
  • the amount of the negative electrode active material, the binder, the water-soluble polymer, and the components included as necessary is usually the same as the amount of each component included in the negative electrode active material layer.
  • a part of the water-soluble polymer is usually dissolved in water, but another part of the water-soluble polymer is adsorbed on the surface of the negative electrode active material.
  • the negative electrode active material is covered with a stable layer of a water-soluble polymer, and the dispersibility of the negative electrode active material in the solvent is improved.
  • the slurry composition for negative electrodes of this invention has the favorable coating property at the time of apply
  • Water functions as a solvent or a dispersion medium in the negative electrode slurry composition, and the negative electrode active material is dispersed, the binder is dispersed in the form of particles, and the water-soluble polymer is dissolved.
  • a liquid other than water may be used as a solvent in combination with water. It is preferable to combine a binder and a liquid that dissolves the water-soluble polymer because the dispersion of the negative electrode active material is stabilized by adsorbing the binder and the water-soluble polymer to the surface.
  • the type of liquid to be combined with water is preferably selected from the viewpoint of drying speed and environment.
  • Preferred examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ⁇ -butyrolactone, Esters such as ⁇ -caprolactone; Acylonitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N— Examples include amides such as methylpyrrolidone and N, N-dimethylformamide, among which N-methylpyrrolidone (NMP) is preferable.
  • the amount of water and the liquid is preferably adjusted so that the viscosity of the slurry composition for negative electrode of the present invention is suitable for coating.
  • the concentration of the solid content of the slurry composition for negative electrode of the present invention is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 90% by weight or less, more preferably 80% by weight. It is used by adjusting to the following amount.
  • the slurry composition for negative electrode of the present invention can be produced by mixing the negative electrode active material, the binder composition and water, and components used as necessary.
  • the mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.
  • the method of coating the negative electrode slurry composition of the present invention on the surface of the current collector is not particularly limited.
  • the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying time is usually from 5 minutes to 30 minutes, and the drying temperature is usually from 40 ° C to 180 ° C.
  • the binder composition, the negative electrode active material, etc. contained in the slurry composition are integrated with Become.
  • the negative electrode active material and the particulate binder constituting the slurry composition do not exist as separate independent particles, but the negative electrode active material, the particulate binder and the water-soluble polymer which are constituent components are included.
  • One particle is formed by two or more components included. Specifically, a plurality of individual particles of the two or more components are combined to form secondary particles, and a plurality (preferably several to several tens) of negative electrode active materials are formed into a particulate binder. It is preferable that the particles are bound to form particles.
  • Composite particles suitably used in the dry molding method are produced by granulating a slurry composition for a negative electrode containing the binder composition of the present invention, a negative electrode active material, and a conductive agent used as necessary.
  • the granulation method of the composite particles is not particularly limited, and is a spray drying granulation method, a rolling bed granulation method, a compression granulation method, a stirring granulation method, an extrusion granulation method, a crushing granulation method, a fluidized bed. It can be produced by a known granulation method such as a granulation method, a fluidized bed multifunctional granulation method, a pulse combustion drying method, or a melt granulation method. Among these, the spray-drying granulation method is preferable because composite particles in which the binder composition and the conductive agent are unevenly distributed near the surface can be easily obtained. When the composite particles obtained by the spray drying granulation method are used, the secondary battery negative electrode of the present invention can be obtained with high productivity. Moreover, the internal resistance of the secondary battery negative electrode can be further reduced.
  • the slurry composition for secondary battery negative electrode of the present invention is spray dried and granulated to obtain composite particles.
  • Spray drying is performed by spraying and drying the slurry composition in hot air.
  • An atomizer is mentioned as an apparatus used for spraying the slurry composition.
  • the rotating disk system is a system in which the slurry composition is introduced almost at the center of the disk rotating at high speed, and the slurry composition is released from the disk by the centrifugal force of the disk, and the slurry composition is made into a mist at that time. .
  • the rotational speed of the disk depends on the size of the disk, but is usually 5,000 to 40,000 rpm, preferably 15,000 to 40,000 rpm. The lower the rotational speed of the disk, the larger the spray droplets and the larger the weight average particle diameter of the resulting composite particles.
  • the rotating disk type atomizer include a pin type and a vane type, and a pin type atomizer is preferable.
  • a pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks.
  • the slurry composition is introduced from the center of the spray disc, adheres to the spraying roller by centrifugal force, moves outward on the roller surface, and finally sprays away from the roller surface.
  • the pressurization method is a method in which the slurry composition is pressurized and sprayed from a nozzle to be dried.
  • the temperature of the slurry composition to be sprayed is usually room temperature, but may be heated to room temperature or higher.
  • the hot air temperature at the time of spray drying is usually 80 to 250 ° C., preferably 100 to 200 ° C.
  • the method of blowing hot air is not particularly limited, for example, a method in which the hot air and the spray direction flow in the horizontal direction, a method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air are in countercurrent contact. And a system in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact.
  • the sphericity is preferably 80% or more, more preferably 90% or more.
  • the minor axis diameter Ls and the major axis diameter Ll are values measured from a transmission electron micrograph image.
  • the volume average particle diameter of the composite particles suitably used in the dry molding method is usually in the range of 10 to 100 ⁇ m, preferably 20 to 80 ⁇ m, more preferably 30 to 60 ⁇ m.
  • the volume average particle diameter can be measured using a laser diffraction particle size distribution analyzer.
  • the feeder used in the step of supplying the composite particles onto the current collector is not particularly limited, but is preferably a quantitative feeder capable of supplying the composite particles quantitatively.
  • the quantitative feeder preferably used for the dry molding method has a CV value of preferably 2 or less.
  • Specific examples of the quantitative feeder include a gravity feeder such as a table feeder and a rotary feeder, and a mechanical force feeder such as a screw feeder and a belt feeder. Of these, the rotary feeder is preferred.
  • the current collector and the supplied composite particles are pressurized with a pair of rolls to form a negative electrode active material layer on the current collector.
  • the composite particles heated as necessary are formed into a sheet-like negative electrode active material layer with a pair of rolls.
  • the temperature of the supplied composite particles is preferably 40 to 160 ° C., more preferably 70 to 140 ° C. When composite particles in this temperature range are used, there is no slip of the composite particles on the surface of the press roll, and the composite particles are continuously and uniformly supplied to the press roll. A negative electrode active material layer with little variation can be obtained.
  • the temperature at the time of molding is usually 0 to 200 ° C., preferably higher than the melting point or glass transition temperature of the particulate binder used in the present invention, and more preferably 20 ° C. or more higher than the melting point or glass transition temperature.
  • the forming speed is usually larger than 0.1 m / min, preferably 35 to 70 m / min.
  • the press linear pressure between the press rolls is usually 0.2 to 30 kN / cm, preferably 0.5 to 10 kN / cm.
  • the arrangement of the pair of rolls is not particularly limited, but is preferably arranged substantially horizontally or substantially vertically.
  • the current collector is continuously supplied between a pair of rolls, and the composite particles are supplied to at least one of the rolls so that the composite particles are supplied to the gap between the current collector and the rolls.
  • the negative electrode active material layer can be formed by pressurization.
  • the current collector is transported in the horizontal direction, the composite particles are supplied onto the current collector, and the supplied composite particles are leveled with a blade or the like as necessary.
  • the negative electrode active material layer can be formed by supplying between a pair of rolls and applying pressure.
  • the negative electrode active material layer is applied to the negative electrode active material layer as necessary using, for example, a die press or a roll press. It is preferable to apply a pressure treatment. By the pressure treatment, the porosity of the negative electrode active material layer can be lowered.
  • the porosity is preferably 5% or more, more preferably 7% or more, preferably 30% or less, more preferably 20% or less.
  • the negative electrode active material layer contains a curable polymer
  • the secondary battery of the present invention includes the negative electrode of the present invention.
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the negative electrode is the negative electrode of the present invention. Since the negative electrode of the present invention is provided, the secondary battery of the present invention can suppress swelling of the negative electrode accompanying charging / discharging, or make it difficult to reduce the capacity even when stored in a high temperature environment.
  • the high-temperature cycle characteristics and low-temperature output characteristics of the secondary battery of the present invention can also be improved, and the adhesion of the negative electrode active material layer to the current collector can be improved.
  • the positive electrode usually includes a current collector and a positive electrode active material layer including a positive electrode active material and a positive electrode binder formed on the surface of the current collector.
  • the current collector of the positive electrode is not particularly limited as long as it is a material having electrical conductivity and electrochemical durability.
  • the current collector for the positive electrode for example, the current collector used for the negative electrode of the present invention may be used. Among these, aluminum is particularly preferable.
  • the positive electrode active material for example, when the secondary battery of the present invention is a lithium ion secondary battery, a material capable of inserting and removing lithium ions is used.
  • Such positive electrode active materials are roughly classified into those made of inorganic compounds and those made of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like.
  • Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
  • transition metal oxide examples include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 and the like can be mentioned. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity.
  • transition metal sulfide examples include TiS 2 , TiS 3 , amorphous MoS 2 , FeS, and the like.
  • lithium-containing composite metal oxide examples include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
  • lithium-containing composite metal oxide having a layered structure examples include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), lithium composite oxide of Co—Ni—Mn, Ni—Mn— Examples thereof include lithium composite oxides of Al and lithium composite oxides of Ni—Co—Al.
  • lithium-containing composite metal oxide having a spinel structure examples include Li [Mn 3/2 M 1/2 ] O 4 in which lithium manganate (LiMn 2 O 4 ) or a part of Mn is substituted with another transition metal. (Where M is Cr, Fe, Co, Ni, Cu, etc.).
  • lithium-containing composite metal oxide having an olivine type structure examples include Li X MPO 4 (wherein M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti).
  • Examples of the positive electrode active material made of an organic compound include conductive polymer compounds such as polyacetylene and poly-p-phenylene.
  • the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound.
  • a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and this composite material may be used as a positive electrode active material.
  • Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.
  • you may use as a positive electrode active material what carried out the element substitution of the said compound partially.
  • the positive electrode active material one type may be used alone, or two or more types may be used in combination at any ratio.
  • the volume average particle diameter of the positive electrode active material particles is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the volume average particle diameter of the positive electrode active material particles is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is preferably 90% by weight or more, more preferably 95% by weight or more, preferably 99.9% by weight or less, more preferably 99% by weight or less.
  • binder for the positive electrode examples include polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, and the like.
  • Resins; Soft polymers such as acrylic soft polymers, diene soft polymers, olefin soft polymers, and vinyl soft polymers can be used.
  • a binder may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the positive electrode active material layer may contain components other than the positive electrode active material and the binder as necessary. Examples thereof include a viscosity modifier, a conductive agent, a reinforcing material, a leveling agent, an electrolytic solution additive, and the like. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the thickness of the positive electrode active material layer is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and usually 300 ⁇ m or less, preferably 250 ⁇ m or less. When the thickness of the positive electrode active material layer is in the above range, high characteristics can be realized in both load characteristics and energy density.
  • the positive electrode may be manufactured, for example, in the same manner as the above-described negative electrode.
  • Electrolyte As the electrolytic solution, for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent may be used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the amount of the supporting electrolyte is usually 1% by weight or more, preferably 5% by weight or more, and usually 30% by weight or less, preferably 20% by weight or less with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the secondary battery may be lowered.
  • the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • the solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (MEC); Esters such as butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; In particular, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferred because high ion conductivity is easily obtained and the use temperature range is wide.
  • a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • an additive may be included in the electrolytic solution as necessary.
  • carbonate compounds such as vinylene carbonate (VC) are preferable.
  • An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution; an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N; Can do.
  • separator As the separator, a porous substrate having a pore portion is usually used.
  • separators include (a) a porous separator having pores, (b) a porous separator having a polymer coating layer formed on one or both sides, and (c) a porous resin coat containing inorganic ceramic powder. And a porous separator having a layer formed thereon. Examples of these are for solid polymer electrolytes such as polypropylene-based, polyethylene-based, polyolefin-based or aramid-based porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile or polyvinylidene fluoride hexafluoropropylene copolymer.
  • a polymer film for a gel polymer electrolyte a separator coated with a gelled polymer coat layer; a separator coated with a porous film layer composed of an inorganic filler and an inorganic filler dispersant; and the like.
  • the manufacturing method of the secondary battery of the present invention is not particularly limited.
  • the above-described negative electrode and positive electrode are overlapped via a separator, and this is wound into a battery container according to the shape of the battery, put into a battery container, and an electrolyte is injected into the battery container and sealed to manufacture a battery. sell.
  • an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge.
  • the shape of the battery may be any of, for example, a laminate cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.
  • Adhesive strength The negative electrodes produced in Examples and Comparative Examples were cut into rectangles having a length of 100 mm and a width of 10 mm to obtain test pieces. A cellophane tape was affixed on the surface of the negative electrode active material layer of the test piece with the surface of the negative electrode active material layer facing down. At this time, a cellophane tape defined in JIS Z1522 was used. Moreover, the cellophane tape was fixed to the test bench. Then, the stress when one end of the current collector was pulled vertically upward at a pulling speed of 50 mm / min and peeled was measured. This measurement was performed 3 times, the average value was calculated
  • Coating property Apply the slurry composition for negative electrode manufactured in Examples and Comparative Examples on a 20 ⁇ m thick copper foil as a current collector so that the film thickness after drying is about 150 ⁇ m, and then dry. It was. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode. The obtained negative electrode was cut out with a size of 10 ⁇ 10 cm, and the number of pinholes having a diameter of 0.1 mm or more was visually measured. The smaller the number of pinholes, the better the coatability.
  • the film was immersed for a period of time, the weight M1 of the film after immersion was measured, and the degree of swelling was calculated from the formula (M1-M0) / M0.
  • the ratio V1 / V0 was calculated from the degree of swelling V0 of the particulate binder and the degree of swelling V1 of the water-soluble polymer.
  • Example 1 (1-1. Production of water-soluble polymer) In a 5 MPa pressure vessel with a stirrer, 32.5 parts of methacrylic acid (acidic functional group-containing monomer), 0.8 part of ethylene dimethacrylate (crosslinkable monomer), 2,2,2-trifluoroethyl methacrylate (fluorine) Containing (meth) acrylic acid ester monomer) 7.5 parts, butyl acrylate (other monomers) 59.2 parts, polyoxyalkylene alkenyl ether ammonium sulfate (reactive surfactant monomer, manufactured by Kao, product) (Name “Latemul PD-104”) 1.5 parts, ion-exchanged water 150 parts, and potassium persulfate (polymerization initiator) 0.5 part, after sufficiently stirring, heated to 60 ° C.
  • methacrylic acid acidic functional group-containing monomer
  • crosslinkable monomer 0.8 part of ethylene dimethacrylate (crosslinkable monomer)
  • the slurry composition for negative electrode obtained in the above (1-3) was applied onto a 20 ⁇ m thick copper foil as a current collector with a comma coater so that the film thickness after drying was about 150 ⁇ m. , Dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, the negative electrode original fabric was obtained by heat-processing at 120 degreeC for 2 minute (s). This negative electrode original fabric was rolled with a roll press to obtain a negative electrode having a negative electrode active material layer thickness of 80 ⁇ m. About the obtained negative electrode, the adhesive strength and the moisture content of the electrode plate were measured. The results are shown in Table 2.
  • a 40% aqueous dispersion of an acrylate polymer having a glass transition temperature Tg of ⁇ 40 ° C. and a number average particle size of 0.20 ⁇ m was prepared.
  • the acrylate polymer is a copolymer obtained by emulsion polymerization of a monomer mixture containing 78% by weight of 2-ethylhexyl acrylate, 20% by weight of acrylonitrile, and 2% by weight of methacrylic acid.
  • LiFePO 4 having a volume average particle size of 0.5 ⁇ m and having an olivine crystal structure as a positive electrode active material and a 1% aqueous solution of carboxymethyl cellulose (“BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a dispersant
  • BSH-12 carboxymethyl cellulose
  • 1 part, a 40% aqueous dispersion of the above acrylate polymer as a binder, 5 parts corresponding to the solid content, and ion-exchanged water were mixed.
  • the amount of ion-exchanged water was such that the total solid concentration was 40%.
  • the positive electrode slurry composition was applied on a 20 ⁇ m-thick aluminum foil as a current collector by a comma coater so that the film thickness after drying was about 200 ⁇ m and dried. This drying was performed by transporting the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, it heat-processed for 2 minutes at 120 degreeC, and obtained the positive electrode.
  • Example 2 to 15 In the production of the water-soluble polymer of (1-1), lithium ion dioxide was prepared in the same manner as in Example 1, except that the type and amount of the monomer were changed as shown in Table 1, Table 3, and Table 5. Each component of the secondary battery and a lithium ion secondary battery were prepared and evaluated. The results are shown in Table 2, Table 4, and Table 6.
  • Example 16 (16-1. Production of water-soluble polymer)
  • a water-soluble polymer was prepared in the same manner as in Example 1 except that sodium dodecylbenzenesulfonate was added instead of adding ammonium polyoxyalkylene alkenyl ether sulfate.
  • An aqueous solution containing a functional polymer was obtained.
  • This aqueous solution contained added sodium dodecylbenzenesulfonate in addition to the water-soluble polymer.
  • the obtained water-soluble polymer was measured for ionic conductivity and degree of swelling. The results are shown in Table 6.
  • Examples 17 to 18 In the production of the negative electrode slurry composition of (1-3), the addition amount of a 5% aqueous solution of a water-soluble polymer and an aqueous dispersion containing a binder was changed, and the ratio of the binder to the water-soluble polymer is shown in Table 6. Except for the above, each component of the lithium ion secondary battery and the lithium ion secondary battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 6.
  • Example 19 In the production of the negative electrode slurry composition of (1-3), a lithium ion secondary battery was prepared in the same manner as in Example 1 except that SiOC was not added and the amount of artificial graphite was changed to 100 parts. Each component and lithium ion secondary battery were prepared and evaluated. The results are shown in Table 6.
  • Example 20 In the production of the slurry composition for negative electrode of (1-3), each configuration of the lithium ion secondary battery was performed in the same manner as in Example 1 except that Sn (volume average particle diameter 14 ⁇ m) was used instead of SiOC. Elements and lithium ion secondary batteries were fabricated and evaluated. The results are shown in Table 6.
  • Example 21 (21-1. Production of negative electrode) Using a spray dryer (OC-16; manufactured by Okawara Chemical Co., Ltd.), a rotating disk type atomizer (diameter 65 mm) with a rotation speed of 25,000 rpm, a hot air temperature of 150 ° C., and a particle recovery outlet temperature of 90 ° C.
  • the negative electrode slurry composition obtained in (1-3) of Example 1 was spray-dried and granulated to obtain spherical composite particles having a volume average particle diameter of 56 ⁇ m and a sphericity of 93%.
  • the composite particles are supplied together with a 20 ⁇ m-thick copper foil to a roll (roll temperature rough surface heat roll; manufactured by Hirano Giken Co., Ltd.) (roll temperature: 100 ° C., press linear pressure: 3.9 kN / cm).
  • a sheet-shaped electrode material was formed at a speed of 20 m / min.
  • This electrode original fabric was rolled with a roll press to obtain a secondary battery negative electrode having a layer configuration of (copper foil) / (negative electrode active material layer) and a thickness of the negative electrode active material layer of 80 ⁇ m.
  • Example 22 In the production of the slurry composition for negative electrode of (1-3), SiOx (volume average particle diameter: 5 ⁇ m) was used instead of SiOC (the composition of the negative electrode active material was 90 parts of artificial graphite and 10 parts of SiOx.
  • the other components of the lithium ion secondary battery and the lithium ion secondary battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 8.
  • Example 23 In the production of the water-soluble polymer (1-1), 30.0 parts of methacrylic acid and 2-acrylamido-2-methylpropanesulfonic acid are used as acidic functional group-containing monomers instead of 32.5 parts of methacrylic acid.
  • Each component of the lithium ion secondary battery and the lithium ion secondary battery were prepared and evaluated in the same manner as in Example 1 except that 2.5 parts were used in combination. The results are shown in Table 8.

Abstract

 粒子状バインダー、および酸性官能基を有する水溶性重合体を含み、前記水溶性重合体のイオン伝導度が1×10-5~1×10-3S/cmであり、前記水溶性重合体の、8~13(cal/cm1/2の溶解度パラメータを有する液体に対する膨潤度が、同条件で測定した前記粒子状バインダーの膨潤度の1.0~2.0倍である、二次電池負極用バインダー組成物;並びにその使用。

Description

二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池
 本発明は、二次電池負極用バインダー組成物、二次電池用負極、前記負極を製造するための負極用スラリー組成物、前記負極の製造方法、及び前記負極を備える二次電池に関する。
 近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源として用いられている二次電池には、例えばニッケル水素二次電池、リチウムイオン二次電池などが多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化および高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、二次電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化および高性能化が要求されている。
 二次電池の高性能化のために、電極、電解液およびその他の電池部材の改良が検討されている。このうち、電極は、通常、水や有機溶媒等の溶媒にバインダー(結着剤)となる重合体を分散または溶解させた液状の組成物に、電極活物質および必要に応じて導電性カーボン等の導電剤を混合してスラリー組成物を得、このスラリー組成物を集電体に塗布し、乾燥して製造される。電極については、電極活物質及び集電体そのものの検討の他、電極活物質などを集電体に結着するためのバインダー、並びに各種の添加剤の検討も行われている(例えば特許文献1~4参照)。
 例えば、特許文献1には、バインダーとして、架橋型ポリマー粒子を含むものを用いることが記載されている。特許文献2及び特許文献3には、炭素材活物質及び水分散エマルジョン樹脂と水溶性重合体から構成される結合剤を含む非水系二次電池の負極用スラリーが記載されている。水溶性重合体としては、ポリビニルアルコール、カルボキシメチルセルロース、ポリアクリル酸ナトリウムなどが記載されている。これによれば、電池の塗膜強度や塗膜密度が良好になる旨記載されている。
 特許文献4には、フッ素含有不飽和単量体0.02~13重量%、脂肪族共役ジエン系単量体10~38重量%、エチレン系不飽和カルボン酸単量体0.1~10重量%およびこれらと共重合可能な他の単量体49~88.88重量%から構成される単量体を乳化重合して得られた共重合体ラテックスからなる二次電池電極用バインダーが記載されている。これによれば、配合安定性、耐ブロッキング性、耐粉落ち適性、結着力に優れる旨記載されている。
 さらに、特許文献5には、(メタ)アクリル酸フッ化アルキルなどのフッ素原子含有単量体由来の単量体単位を有する重合体からなる二次電池電極用バインダーが記載されている。そして、塗布性を向上させたり、充放電特性を向上させるために、セルロース系ポリマー、ポリアクリル酸塩などを加えることができる旨記載されている。これによれば、活物質との結着性が持続的に良好な電極が得られる旨記載されている。
特開平11-167921号公報 特開2003-308841号公報 特開2003-217573号公報 特開2010-146870号公報 特開2002-42819号公報
 二次電池においては、充放電に伴って、負極に含まれる電極活物質の粒子が膨張及び収縮することがある。このような膨張及び収縮が繰り返されると、次第に負極が膨らみ、二次電池が変形する可能性がある。そこで、前記のような負極の膨らみを抑制しうる技術の開発が望まれる。
 また、従来の二次電池には、例えば60℃という高温環境や、-25℃という低温環境で保存すると容量が低下するものがあった。そこで、二次電池をこのような環境で保存した場合でも当該二次電池の容量の低下を抑制しうる技術の開発も望まれている。
 さらに、従来の二次電池においては、高温環境での充放電の繰り返しによる容量の低下を、より少なくする技術の開発も望まれている。また、上記の性能を向上させるため、二次電池用の電極の製造において、集電体と、集電体上に形成された電極活物質層との密着性を高めることが望まれ、且つ、均質な製品を効率的に製造することも望まれている。
 従って、本発明の目的は、充放電に伴う負極の膨らみを抑制でき、高温環境及び低温環境のいずれで保存した場合でも容量が低下し難く、高温環境での充放電の繰り返しによる容量の低下が少ない二次電池を実現できる二次電池負極用バインダー組成物、二次電池用負極、前記の二次電池用負極を効率的に製造できる負極用スラリー組成物及び二次電池用負極の製造方法、並びに、前記の二次電池用負極を備えた二次電池を提供することにある。
 本発明者は前記の課題を解決するべく鋭意検討し、水を媒体とする二次電池用負極用のバインダー組成物が含有する水溶性重合体の物性と二次電池の性能との関係に着目した。その結果、水溶性重合体として、イオン伝導度、並びにバインダー粒子との相対的な膨潤度の比が特定のものを採用することにより、上記の課題を解決しうることを見出し、本発明を完成させた。
 すなわち、本発明によれば以下の〔1〕~〔11〕が提供される。
〔1〕 粒子状バインダー、および酸性官能基を有する水溶性重合体を含み、
 前記水溶性重合体のイオン伝導度が1×10-5~1×10-3S/cmであり、
 前記水溶性重合体の、8~13(cal/cm1/2の溶解度パラメータを有する液体に対する膨潤度が、同条件で測定した前記粒子状バインダーの膨潤度の1.0~2.0倍である、
 二次電池負極用バインダー組成物。
〔2〕 前記水溶性重合体が、架橋性単量体単位を含有し、前記水溶性重合体中の前記架橋性単量体単位の含有割合が0.1~2重量%である〔1〕に記載の二次電池負極用バインダー組成物。
〔3〕 前記水溶性重合体が、フッ素含有(メタ)アクリル酸エステル単量体単位を含有し、前記水溶性重合体中の前記フッ素含有(メタ)アクリル酸エステル単量体単位の含有割合が1~20重量%である〔1〕または〔2〕に記載の二次電池負極用バインダー組成物。
〔4〕 前記水溶性重合体が、反応性界面活性剤単位を含有し、前記水溶性重合体中の前記反応性界面活性剤単位の含有割合が0.1~15重量%である〔1〕~〔3〕のいずれか1項に記載の二次電池負極用バインダー組成物。
〔5〕 前記粒子状バインダーと前記水溶性重合体の含有割合が、粒子状バインダー/水溶性重合体=99.5/0.5~95/5(重量比)である〔1〕~〔4〕のいずれか1項に記載の二次電池負極用バインダー組成物。
〔6〕 〔1〕~〔5〕のいずれか1項に記載の二次電池負極用バインダー組成物および負極活物質を含む二次電池用負極。
〔7〕 前記負極活物質が、リチウムを吸蔵し、放出する金属を含む〔6〕に記載の二次電池用負極。
〔8〕 前記負極活物質が、Si含有化合物を含む〔6〕または〔7〕に記載の二次電池用負極。
〔9〕 負極活物質、〔1〕~〔5〕のいずれか1項に記載の二次電池負極用バインダー組成物および水を含む二次電池負極用スラリー組成物。
〔10〕 〔9〕に記載の二次電池負極用スラリー組成物を、集電体上に塗布し、乾燥することを含む二次電池用負極の製造方法。
〔11〕 正極、負極、電解液、及びセパレーターを備えるリチウムイオン二次電池であって、前記負極が〔6〕~〔8〕のいずれか1項に記載の二次電池用負極である二次電池。
 本発明の二次電池負極用バインダー組成物及びそれを含む本発明の二次電池用負極によれば、充放電に伴う負極の膨らみを抑制でき、高温環境及び低温環境のいずれで保存した場合でも容量を低下し難くすることができ、且つ、高温環境での充放電の繰り返しによる容量の低下が少ない二次電池を実現できる。さらに、本発明の二次電池用負極は、ピンホールの発生量が少なく、集電体と負極活物質層との密着性が高く、且つ使用に際しての密着性の低下が少ないものとして容易に製造し得るので、上記の性能を満たしながら容易に製造しうる負極である。
 本発明の二次電池は、充放電に伴う負極の膨らみを抑制でき、高温環境及び低温環境のいずれで保存した場合でも容量を低下し難く、且つ高温環境での充放電の繰り返しによる容量の低下が少ない。
 本発明の負極用スラリー組成物を用いれば、本発明の二次電池用負極を製造できる。特に、スラリーの安定性が高いため、スラリー中に分散している粒子の偏在などの発生が少なく、その結果、性能の高い電池を容易に製造することができる。
 本発明の二次電池用負極の製造方法によれば、本発明の二次電池用負極を製造できる。
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。本明細書において、「(メタ)アクリル」は「アクリル」又は「メタクリル」を意味する。また、「正極活物質」とは正極用の電極活物質を意味し、「負極活物質」とは負極用の電極活物質を意味する。さらに、「正極活物質層」とは正極に設けられる電極活物質層を意味し、「負極活物質層」とは負極に設けられる電極活物質層を意味する。
 [1.二次電池負極用バインダー組成物]
 本発明の二次電池負極用バインダー組成物は、粒子状バインダー、および特定の水溶性重合体を含む。
 [1-1.粒子状バインダー]
 本発明のバインダー組成物が含有する粒子状バインダー(以下、単に「バインダー」ということがある。)は、負極において電極活物質を集電体の表面に結着させる成分である。本発明の負極では、バインダーが負極活物質を結着することにより、負極活物質層からの負極活物質の脱離が抑制される。また、バインダーは通常は負極活物質層に含まれる負極活物質以外の粒子をも結着し、負極活物質層の強度を維持する役割も果たしている。
 バインダーとしては、負極活物質を保持する性能に優れ、集電体に対する密着性が高いものを用いることが好ましい。通常、バインダーの材料としては重合体を用いる。バインダーの材料としての重合体(以下、単に「バインダー重合体」ということがある。)は、単独重合体でもよく、共重合体でもよい。中でも、脂肪族共役ジエン系単量体単位を含む重合体が好ましい。脂肪族共役ジエン系単量体単位は剛性が低く柔軟な繰り返し単位であるので、脂肪族共役ジエン系単量体単位を含む重合体をバインダーの材料として用いることにより、負極活物質層と集電体との十分な密着性を得ることができる。
 脂肪族共役ジエン系単量体単位は、脂肪族共役ジエン系単量体を重合して得られる繰り返し単位である。脂肪族共役ジエン系単量体の例としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、並びに置換および側鎖共役ヘキサジエン類が挙げられる。中でも、1,3-ブタジエンが好ましい。
 バインダー重合体を製造するための単量体組成物は、1種類のみの脂肪族共役ジエン系単量体を含んでもよく、2種類以上の脂肪族共役ジエン系単量体を任意の比率で組み合わせて含んでもよい。したがって、バインダー重合体は、脂肪族共役ジエン系単量体単位を、1種類だけ含んでもよく、2種類以上を任意の比率で組み合わせて含んでもよい。
 バインダー重合体において、脂肪族共役ジエン系単量体単位の比率は、好ましくは20重量%以上、より好ましくは30重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下、特に好ましくは55重量%以下である。脂肪族共役ジエン系単量体単位の比率を前記範囲の下限値以上にすることによって、負極の柔軟性を高めることができ、また、上限値以下とすることによって負極活物質層と集電体との十分な密着性を得たり、電極の耐電解液性を高めたりすることができる。
 バインダー重合体は、芳香族ビニル系単量体単位を含むことが好ましい。芳香族ビニル系単量体単位は安定であり、当該芳香族ビニル系単量体単位を含むバインダー重合体の電解液への溶解性を低下させて負極活物質層を安定化させることができる。
 芳香族ビニル系単量体単位は、芳香族ビニル系単量体を重合して得られる繰り返し単位である。芳香族ビニル系単量体の例としては、スチレン、α-メチルスチレン、ビニルトルエン、及びジビニルベンゼンが挙げられる。中でも、スチレンが好ましい。
 バインダー重合体を製造するための単量体組成物は、1種類のみの芳香族ビニル系単量体を含んでもよく、2種類以上の芳香族ビニル系単量体を任意の比率で組み合わせて含んでもよい。したがって、バインダー重合体は、芳香族ビニル系単量体単位を、1種類だけ含んでもよく、2種類以上を任意の比率で組み合わせて含んでもよい。
 バインダー重合体において、芳香族ビニル系単量体単位の比率は、好ましくは30重量%以上、より好ましくは35重量%以上であり、好ましくは79.5重量%以下、より好ましくは69重量%以下である。芳香族ビニル系単量体単位の比率を前記範囲の下限値以上とすることによって、本発明の二次電池用負極の耐電解液性を高めることができ、また、上限値以下とすることによって、本発明に係る負極用スラリー組成物を集電体に塗布した際に負極活物質層と集電体との十分な密着性を得ることができる。
 バインダー重合体は、脂肪族共役ジエン系単量体単位及び芳香族ビニル系単量体単位の両方を含む重合体であることが好ましく、例えばスチレン・ブタジエン共重合体が好ましい。
 バインダー重合体の製造に、脂肪族共役ジエン系単量体及び芳香族ビニル系単量体を用いる場合、得られるバインダー重合体には、残留単量体として未反応の脂肪族共役ジエン系単量体及び未反応の芳香族ビニル系単量体が含まれることがある。その場合、バインダー重合体が含む未反応の脂肪族共役ジエン系単量体の量は、好ましくは50ppm以下、より好ましくは10ppm以下であり、バインダー重合体が含む未反応の芳香族ビニル系単量体の量は、好ましくは1000ppm以下、より好ましくは200ppm以下である。バインダー重合体が含む脂肪族共役ジエン系単量体の量が前記範囲内であると、本発明に係る負極用スラリー組成物を集電体の表面に塗布及び乾燥させて負極を製造する際に、負極の表面に発泡による荒れが生じたり、臭気による環境負荷を引き起こしたりすることを防止できる。また、バインダー重合体が含む芳香族ビニル系単量体の量が前記範囲内であると、乾燥条件に応じて生じる環境負荷及び負極表面の荒れを抑制でき、更にはバインダー重合体の耐電解液性を高めることができる。
 バインダー重合体は、エチレン性不飽和カルボン酸単量体単位を含むことが好ましい。エチレン性不飽和カルボン酸単量体単位は、負極活物質及び集電体への吸着性を高めるカルボキシル基(-COOH基)を含み、強度が高い繰り返し単位であるので、負極活物質層からの負極活物質の脱離を安定して防止でき、また、負極の強度を向上させることができる。
 エチレン性不飽和カルボン酸単量体単位は、エチレン性不飽和カルボン酸単量体を重合して得られる繰り返し単位である。エチレン性不飽和カルボン酸単量体の例としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などのモノカルボン酸及びジカルボン酸並びにその無水物が挙げられる。中でも、本発明に係る負極用スラリー組成物の安定性の観点から、アクリル酸、メタクリル酸、イタコン酸、及びこれらの組み合わせからなる群より選ばれる単量体が好ましい。
 バインダー重合体を製造するための単量体組成物は、1種類のみのエチレン性不飽和カルボン酸単量体を含んでもよく、2種類以上のエチレン性不飽和カルボン酸単量体を任意の比率で組み合わせて含んでもよい。したがって、バインダー重合体は、エチレン性不飽和カルボン酸単量体単位を、1種類だけ含んでもよく、2種類以上を任意の比率で組み合わせて含んでもよい。
 バインダー重合体において、エチレン性不飽和カルボン酸単量体単位の比率は、好ましくは0.5重量%以上、より好ましくは1重量%以上、特に好ましくは2重量%以上であり、好ましくは10重量%以下、より好ましくは8重量%以下、特に好ましくは7重量%以下である。エチレン性不飽和カルボン酸単量体単位の比率を前記範囲の下限値以上とすることによって、本発明に係る負極用スラリー組成物の安定性を高めることができ、また、上限値以下とすることによって、本発明に係る負極用スラリーの粘度が過度に高くなることを防止して取り扱い易くすることができる。
 バインダー重合体は、本発明の効果を著しく損なわない限り、上述した以外にも任意の繰り返し単位を含んでいてもよい。前記の任意の繰り返し単位に対応する単量体の例としては、シアン化ビニル系単量体、不飽和カルボン酸アルキルエステル単量体、ヒドロキシアルキル基を含有する不飽和単量体、及び不飽和カルボン酸アミド単量体が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 シアン化ビニル系単量体の例としては、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、及びα-エチルアクリロニトリルが挙げられる。中でも、アクリロニトリル、及びメタクリロニトリルが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 不飽和カルボン酸アルキルエステル単量体の例としては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート、及び2-エチルヘキシルアクリレートが挙げられる。中でも、メチルメタクリレートが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ヒドロキシアルキル基を含有する不飽和単量体の例としては、β-ヒドロキシエチルアクリレート、β-ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、ジ-(エチレングリコール)マレエート、ジ-(エチレングリコール)イタコネート、2-ヒドロキシエチルマレエート、ビス(2-ヒドロキシエチル)マレエート、及び2-ヒドロキシエチルメチルフマレートが挙げられる。中でも、β-ヒドロキシエチルアクリレートが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 不飽和カルボン酸アミド単量体の例としては、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、及びN,N-ジメチルアクリルアミドが挙げられる。中でも、アクリルアミド、及びメタクリルアミドが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 さらに、バインダー重合体は、例えば、エチレン、プロピレン、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、塩化ビニリデン等、通常の乳化重合において使用される単量体を含んでもよい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 バインダー重合体の重量平均分子量は、好ましくは10000以上、より好ましくは20000以上であり、好ましくは1000000以下、より好ましくは500000以下である。バインダー重合体の重量平均分子量が上記範囲にあると、本発明の負極の強度及び負極活物質の分散性を良好にし易い。非水溶性重合体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって、テトラヒドロフランを展開溶媒としたポリスチレン換算の値として求めうる。
 バインダーのガラス転移温度は、好ましくは-75℃以上、より好ましくは-55℃以上、特に好ましくは-35℃以上であり、通常40℃以下、好ましくは30℃以下、より好ましくは20℃以下、特に好ましくは15℃以下である。バインダーのガラス転移温度が上記範囲であることにより、負極の柔軟性、結着性及び捲回性、負極活物質層と集電体との密着性などの特性が高度にバランスされ好適である。
 通常、バインダーは、非水溶性の重合体の粒子となる。したがって、本発明の負極用スラリー組成物においては、バインダーは溶媒である水には溶解せず、粒子となって分散している。重合体が非水溶性であるとは、25℃において、その重合体0.5gを100gの水に溶解した際に、不溶分が90重量%以上となることをいう。一方、重合体が水溶性であるとは、25℃において、その重合体0.5gを100gの水に溶解した際に、不溶分が0.5重量%未満であることをいう。
 粒子状バインダーの個数平均粒径は、好ましくは50nm以上、より好ましくは70nm以上であり、好ましくは500nm以下、より好ましくは400nm以下である。バインダーの個数平均粒径が上記範囲にあることで、得られる負極の強度および柔軟性を良好にできる。粒子の存在は、透過型電子顕微鏡法やコールターカウンター、レーザー回折散乱法などによって容易に測定することができる。
 粒子状バインダーは、例えば、上述した単量体を含む単量体組成物を水系溶媒中で重合し、重合体の粒子とすることにより製造される。
 単量体組成物中の各単量体の比率は、通常、バインダー重合体における繰り返し単位(例えば、脂肪族共役ジエン系単量体単位、芳香族ビニル系単量体単位、及びエチレン性不飽和カルボン酸単量体単位)の比率と同様にする。
 水系溶媒としては、バインダーの粒子の分散が可能なものであれば格別限定されることはなく、通常、常圧における沸点が通常80℃以上、好ましくは100℃以上であり、通常350℃以下、好ましくは300℃以下の水系溶媒から選ばれる。以下、その水系溶媒の例を挙げる。以下の例示において、溶媒名の後のカッコ内の数字は常圧での沸点(単位℃)であり、小数点以下は四捨五入または切り捨てられた値である。
 水系溶媒の例としては、水(100);ダイアセトンアルコール(169)、γ-ブチロラクトン(204)等のケトン類;エチルアルコール(78)、イソプロピルアルコール(82)、ノルマルプロピルアルコール(97)等のアルコール類;プロピレングリコールモノメチルエーテル(120)、メチルセロソルブ(124)、エチルセロソルブ(136)、エチレングリコールターシャリーブチルエーテル(152)、ブチルセロソルブ(171)、3-メトキシー3メチル-1-ブタノール(174)、エチレングリコールモノプロピルエーテル(150)、ジエチレングリコールモノブチルピルエーテル(230)、トリエチレングリコールモノブチルエーテル(271)、ジプロピレングリコールモノメチルエーテル(188)等のグリコールエーテル類;並びに1,3-ジオキソラン(75)、1,4-ジオキソラン(101)、テトラヒドロフラン(66)等のエーテル類が挙げられる。中でも水は可燃性がなく、バインダーの粒子の分散体が容易に得られやすいという観点から特に好ましい。主溶媒として水を使用して、バインダーの粒子の分散状態が確保可能な範囲において上記記載の水以外の水系溶媒を混合して用いてもよい。
 重合方法は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。高分子量体が得やすいこと、並びに、重合物がそのまま水に分散した状態で得られるので再分散化の処理が不要であり、そのまま本発明に係る負極用スラリー組成物の製造に供することができることなど、製造効率の観点から、中でも乳化重合法が特に好ましい。
 乳化重合法は、通常は常法により行う。例えば、「実験化学講座」第28巻、(発行元:丸善(株)、日本化学会編)に記載された方法で行う。すなわち、攪拌機および加熱装置付きの密閉容器に水と、分散剤、乳化剤、架橋剤などの添加剤と、重合開始剤と、単量体とを所定の組成になるように加え、容器中の組成物を攪拌して単量体等を水に乳化させ、攪拌しながら温度を上昇させて重合を開始する方法である。あるいは、上記組成物を乳化させた後に密閉容器に入れ、同様に反応を開始させる方法である。
 重合開始剤の例としては、過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイド等の有機過酸化物;α,α’-アゾビスイソブチロニトリル等のアゾ化合物;過硫酸アンモニウム;並びに過硫酸カリウムが挙げられる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 乳化剤、分散剤、重合開始剤などは、これらの重合法において一般的に用いられるものであり、通常はその使用量も一般に使用される量とする。また重合に際しては、シード粒子を採用してシード重合を行ってもよい。
 重合温度および重合時間は、重合方法及び重合開始剤の種類などにより任意に選択でき、通常、重合温度は約30℃以上、重合時間は0.5時間~30時間程度である。
 また、アミン類などの添加剤を重合助剤として用いてもよい。
 さらに、これらの方法によって得られるバインダーの粒子の水系分散液を、例えばアルカリ金属(例えば、Li、Na、K、Rb、Cs)の水酸化物、アンモニア、無機アンモニウム化合物(例えばNHClなど)、有機アミン化合物(例えばエタノールアミン、ジエチルアミンなど)などを含む塩基性水溶液と混合して、pHを通常5~10、好ましくは5~9の範囲になるように調整してもよい。なかでも、アルカリ金属水酸化物によるpH調整は、集電体と負極活物質との結着性(ピール強度)を向上させるので、好ましい。
 粒子状バインダーは、2種類以上の重合体からなる複合重合体粒子であってもよい。複合重合体粒子は、少なくとも1種類の単量体成分を常法により重合し、引き続き、他の少なくとも1種の単量体成分を重合し、常法により重合させる方法(二段重合法)などによっても得ることができる。このように単量体を段階的に重合することにより、粒子の内部に存在するコア層と、当該コア層を覆うシェル層とを有するコアシェル構造の粒子を得ることができる。
 [1-2.水溶性重合体]
 本発明の二次電池負極用バインダー組成物は、酸性官能基を有する水溶性重合体(以下、単に「水溶性重合体」という場合がある。)を含む。
 酸性官能基を有する水溶性重合体は、酸性官能基含有単量体、及び必要に応じて他の任意の単量体を含む単量体組成物を重合することによって調製しうる。このような方法によって水溶性重合体を調製することにより、酸性官能基含有単量体単位を含む水溶性重合体を得ることができ、これを本発明のバインダー組成物に用いることができる。
 酸性官能基含有単量体は、酸性官能基を含有する単量体であり、前記酸性官能基としては、カルボキシル基(-COOH)、スルホン酸基(-SOH)、リン酸基(-PO)が挙げられる。
 酸性官能基含有単量体の例としては、カルボキシル基含有単量体、スルホン酸基含有単量体、及びリン酸基含有単量体を挙げることができ、特にカルボキシル基含有単量体が好ましい。
 カルボキシル基含有単量体は、カルボキシル基及び重合可能な基を有する単量体とすることができる。カルボキシル基含有単量体の例としては、具体的には、エチレン性不飽和カルボン酸単量体を挙げることができる。
 エチレン性不飽和カルボン酸単量体の例としては、エチレン性不飽和モノカルボン酸及びその誘導体、エチレン性不飽和ジカルボン酸及びその酸無水物並びにそれらの誘導体が挙げられる。エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、及びクロトン酸が挙げられる。エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、及びβ-ジアミノアクリル酸が挙げられる。エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、及びイタコン酸が挙げられる。エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、及びジメチル無水マレイン酸が挙げられる。エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等のマレイン酸メチルアリル;並びにマレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルが挙げられる。これらの中でも、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸が好ましい。得られる水溶性重合体の水に対する分散性がより高めることができるからである。
 水溶性重合体におけるカルボキシル基含有単量体単位の比率は、好ましくは20重量%以上であり、より好ましくは25重量%以上であり、一方好ましくは70重量%以下であり、より好ましくは65重量%以下である。カルボキシル基含有単量体単位の量を上記範囲の下限値以上とすることにより、集電体と負極物質層との密着強度が向上する。また、上限値以下とすることにより、高温サイクル特性や高温保存特性といった耐久性が向上する。
 スルホン酸基含有単量体の例としては、スルホン酸基以外に官能基をもたないスルホン酸基含有単量体またはその塩、アミド基とスルホン酸基とを含有する単量体またはその塩、並びに、ヒドロキシル基とスルホン酸基とを含有する単量体またはその塩などが挙げられる。なお、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、水溶性重合体は、スルホン酸基含有単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 スルホン酸基以外に官能基をもたないスルホン酸基含有単量体としては、例えば、イソプレン及びブタジエン等のジエン化合物の共役二重結合の1つをスルホン化した単量体、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、スルホエチルメタクリレート、スルホプロピルメタクリレート、スルホブチルメタクリレートなどが挙げられる。また、その塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などが挙げられる。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 アミド基とスルホン酸基とを含有する単量体としては、例えば、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)などが挙げられる。また、その塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などが挙げられる。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ヒドロキシル基とスルホン酸基とを含有する単量体としては、例えば、3-アリロキシ-2-ヒドロキシプロパンスルホン酸(HAPS)などが挙げられる。また、その塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などが挙げられる。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、スルホン酸基含有単量体としては、スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)、並びに、アミド基とスルホン酸基とを含有する単量体またはその塩が好ましい。
 水溶性重合体におけるスルホン酸基含有単量体単位の比率は、好ましくは2重量%以上であり、好ましくは15重量%以下、より好ましくは10重量%以下、特に好ましくは8重量%以下である。水溶性重合体が有するスルホン酸基の存在密度が増加すると負極用スラリーの分散性が向上する。また、通常は本発明の負極を製造する際にスルホン酸基が架橋反応を生じるため、負極活物質層ではスルホン酸基により架橋構造が形成される。この場合、水溶性重合体が十分な量のスルホン酸基を有することにより、架橋構造の数を多くして負極活物質層の強度を強くし、また、二次電池の高温保存特性及び低温出力特性を改善することができる。したがって、水溶性重合体はスルホン酸基含有単量体単位を前記のように多く含むことが好ましい。ただし、スルホン酸基含有単量体単位が多すぎると、相対的に他の単量体単位が減り、水溶性重合体の負極活物質への吸着性及び強度が小さくなり得るので、スルホン酸基含有単量体単位の量は前記範囲の上限以下となることが好ましい。
 リン酸基含有単量体が有しうるリン酸基としては、基-O-P(=O)(-OR)-OR基を有する単量体(R及びRは、独立に、水素原子、又は任意の有機基である。)、又はこの塩を挙げることができる。R及びRとしての有機基の具体例としては、オクチル基等の脂肪族基、フェニル基等の芳香族基等が挙げられる。
 リン酸基含有単量体としては、例えば、リン酸基及びアリロキシ基を含む化合物、及びリン酸基含有(メタ)アクリル酸エステルを挙げることができる。リン酸基及びアリロキシ基を含む化合物としては、3-アリロキシ-2-ヒドロキシプロパンリン酸を挙げることができる。リン酸基含有(メタ)アクリル酸エステルとしては、ジオクチル-2-メタクリロイロキシエチルホスフェート、ジフェニル-2-メタクリロイロキシエチルホスフェート、モノメチル-2-メタクリロイロキシエチルホスフェート、ジメチル-2-メタクリロイロキシエチルホスフェート、モノエチル-2-メタクリロイロキシエチルホスフェート、ジエチル-2-メタクリロイロキシエチルホスフェート、モノイソプロピル-2-メタクリロイロキシエチルホスフェート、ジイソプロピル-2-メタクリロイロキシエチルホスフェート、モノn-ブチル-2-メタクリロイロキシエチルホスフェート、ジn-ブチル-2-メタクリロイロキシエチルホスフェート、モノブトキシエチル-2-メタクリロイロキシエチルホスフェート、ジブトキシエチル-2-メタクリロイロキシエチルホスフェート、モノ(2-エチルヘキシル)-2-メタクリロイロキシエチルホスフェート、ジ(2-エチルヘキシル)-2-メタクリロイロキシエチルホスフェートなどが挙げられる。
 なお、リン酸基含有単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、水溶性重合体は、リン酸基含有単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 水溶性重合体におけるリン酸基含有単量体単位の比率は、好ましくは5重量%以上であり、好ましくは10重量%以上であり、一方好ましくは30重量%以下であり、より好ましくは25重量%以下である。リン酸含有単量体単位の量を上記範囲の下限値以上とすることにより、集電体と負極活物質層との密着性の向上等の、リン酸基含有単量体単位に基づく効果を得ることができる。また、上限値以下とすることにより、水溶性重合体の重合に際し適切な重合度を得ることができ、耐久性の低下等の不所望な効果の発現を防止できる。
 酸性官能基含有単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、酸性官能基含有単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 酸性官能基含有単量体単位を2種類以上含む場合の好ましい態様として、水溶性重合体がカルボキシル基含有単量体とスルホン酸基含有単量体とを組み合わせて含むことが好ましい。より具体的には、水溶性重合体がメタクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸とを組み合わせて含むことが好ましい。
 水溶性重合体における酸性官能基含有単量体単位の比率は、好ましくは25重量%以上、より好ましくは30重量%以上であり、好ましくは60重量%以下、より好ましくは55重量%以下、特に好ましくは50重量%以下である。酸性官能基含有単量体単位の比率を前記範囲の下限値以上とすることにより電極活物質との静電反発力を発揮して良好な分散性を得ることができる。一方、酸性官能基含有単量体単位の比率を前記範囲の上限値以下とすることにより官能基と電解液との過度の接触を避けることができ、耐久性を向上させることができる。
 水溶性重合体は、酸性官能基含有単量体単位に加えて、他の任意の単位を有することができる。かかる任意の単位の例としては、架橋性単量体単位、フッ素含有(メタ)アクリル酸エステル単量体単位、反応性界面活性剤単位、又はこれらの組み合わせを挙げることができる。これらの単位は、それぞれ、架橋性単量体、フッ素含有(メタ)アクリル酸エステル単量体、及び反応性界面活性剤単量体を重合して得られる繰り返し単位である。
 架橋性単量体としては、重合した際に架橋構造を形成しうる単量体を用いることができる。架橋性単量体の例としては、1分子あたり2以上の反応性基を有する単量体を挙げることができる。より具体的には、熱架橋性の架橋性基及び1分子あたり1つのオレフィン性二重結合を有する単官能性単量体、及び1分子あたり2つ以上のオレフィン性二重結合を有する多官能性単量体が挙げられる。
 単官能性単量体に含まれる熱架橋性の架橋性基の例としては、エポキシ基、N-メチロールアミド基、オキセタニル基、オキサゾリン基、及びこれらの組み合わせが挙げられる。これらの中でも、エポキシ基が、架橋及び架橋密度の調節が容易な点でより好ましい。
 熱架橋性の架橋性基としてエポキシ基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセンなどのアルケニルエポキシド;並びにグリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステルなどの不飽和カルボン酸のグリシジルエステル類が挙げられる。
 熱架橋性の架橋性基としてN-メチロールアミド基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、N-メチロール(メタ)アクリルアミドなどのメチロール基を有する(メタ)アクリルアミド類が挙げられる。
 熱架橋性の架橋性基としてオキセタニル基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、3-((メタ)アクリロイルオキシメチル)オキセタン、3-((メタ)アクリロイルオキシメチル)-2-トリフロロメチルオキセタン、3-((メタ)アクリロイルオキシメチル)-2-フェニルオキセタン、2-((メタ)アクリロイルオキシメチル)オキセタン、及び2-((メタ)アクリロイルオキシメチル)-4-トリフロロメチルオキセタンが挙げられる。
 熱架橋性の架橋性基としてオキサゾリン基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、及び2-イソプロペニル-5-エチル-2-オキサゾリンが挙げられる。
 2つ以上のオレフィン性二重結合を有する多官能性単量体の例としては、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン-トリ(メタ)アクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、トリメチロールプロパン-ジアリルエーテル、前記以外の多官能性アルコールのアリルまたはビニルエーテル、トリアリルアミン、メチレンビスアクリルアミド、及びジビニルベンゼンが挙げられる。
 架橋性単量体としては、特に、エチレンジメタクリレート、アリルグリシジルエーテル、及びグリシジルメタクリレートを好ましく用いることができる。
 水溶性重合体における架橋性単量体単位の比率は、好ましくは0.1%以上、より好ましくは0.2重量%以上、特に好ましくは0.5重量%以上であり、好ましくは2重量%以下、より好ましくは1.5重量%以下、特に好ましくは1重量%以下である。架橋性単量体単位の比率を前記範囲の下限値以上とすることにより、水溶性重合体の分子量を高め、膨潤度が過度に上昇することを防止しうる。一方、架橋性単量体単位の比率を前記範囲の上限値以下とすることにより、水溶性重合体の水に対する可溶性を高め、分散性を良好にすることができる。したがって、水溶性重合体における架橋性単量体単位の比率を前記範囲内とすることにより、水溶性重合体の膨潤度及び分散性の両方を良好なものとすることができる。
 フッ素含有(メタ)アクリル酸エステル単量体としては、例えば、下記の式(I)で表される単量体が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 前記の式(I)において、Rは、水素原子またはメチル基を表す。
 前記の式(I)において、Rは、フッ素原子を含有する炭化水素基を表す。炭化水素基の炭素数は、通常1以上であり、通常18以下である。また、Rが含有するフッ素原子の数は、1個でもよく、2個以上でもよい。
 式(I)で表されるフッ素含有(メタ)アクリル酸エステル単量体の例としては、(メタ)アクリル酸フッ化アルキル、(メタ)アクリル酸フッ化アリール、及び(メタ)アクリル酸フッ化アラルキルが挙げられる。なかでも(メタ)アクリル酸フッ化アルキルが好ましい。このような単量体の具体例としては、(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸β-(パーフルオロオクチル)エチル、(メタ)アクリル酸2,2,3,3-テトラフルオロプロピル、(メタ)アクリル酸2,2,3,4,4,4-ヘキサフルオロブチル、(メタ)アクリル酸1H,1H,9H-パーフルオロ-1-ノニル、(メタ)アクリル酸1H,1H,11H-パーフルオロウンデシル、(メタ)アクリル酸パーフルオロオクチル、(メタ)アクリル酸3[4〔1-トリフルオロメチル-2、2-ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2-ヒドロキシプロピル等の(メタ)アクリル酸パーフルオロアルキルエステルが挙げられる。
 フッ素含有(メタ)アクリル酸エステル単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、フッ素含有(メタ)アクリル酸エステル単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 水溶性重合体におけるフッ素含有(メタ)アクリル酸エステル単量体単位の比率は、好ましくは1重量%以上、より好ましくは2重量%以上、特に好ましくは5重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下、特に好ましくは10重量%以下である。フッ素含有(メタ)アクリル酸エステル単量体単位の比率を前記範囲の下限値以上とすることにより、水溶性重合体に、電解液に対する反発力を与えることができ、膨潤度を適切な範囲内とすることができる。一方、フッ素含有(メタ)アクリル酸エステル単量体単位の比率を前記範囲の上限値以下とすることにより、水溶性重合体に、電解液に対する濡れ性を与えることができ、低温出力特性を向上させることができる。さらに、水溶性重合体におけるフッ素含有(メタ)アクリル酸エステル単量体単位の比率を前記範囲内とすることにより、水溶性重合体のイオン伝導度を適切な範囲内とすることができる。
 反応性界面活性剤単量体は、他の単量体と共重合しうる重合性の基を有し、且つ、界面活性基(親水性基及び疎水性基)を有する単量体である。反応性界面活性剤単量体の重合により得られる反応性界面活性剤単位は、水溶性重合体の分子の一部を構成し、且つ界面活性剤として機能しうる。
 通常、反応性界面活性剤単量体は重合性不飽和基を有し、この基が重合後に疎水性基としても作用する。反応性界面活性剤単量体が有する重合性不飽和基の例としては、ビニル基、アリル基、ビニリデン基、プロペニル基、イソプロペニル基、及びイソブチリデン基が挙げられる。かかる重合性不飽和基の種類は、1種類でもよく、2種類以上でもよい。
 また、反応性界面活性剤単量体は、親水性を発現する部分として、通常は親水性基を有する。反応性界面活性剤単量体は、親水性基の種類により、アニオン系、カチオン系、ノニオン系の界面活性剤に分類される。
 アニオン系の親水性基の例としては、-SOM、-COOM、及び-PO(OH)が挙げられる。ここでMは、水素原子又はカチオンを示す。カチオンの例としては、リチウム、ナトリウム、カリウム等のアルカリ金属イオン;カルシウム、マグネシウム等のアルカリ土類金属イオン;アンモニウムイオン;モノメチルアミン、ジメチルアミン、モノエチルアミン、トリエチルアミン等のアルキルアミンのアンモニウムイオン;並びにモノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミンのアンモニウムイオンが挙げられる。
 カチオン系の親水基の例としては、-Cl、-Br、-I、及び-SOORが挙げられる。ここでRは、アルキル基を示す。Rの例としては、メチル基、エチル基、プロピル基、及びイソプロピル基が挙げられる。
 ノニオン系の親水基の例としては、-OHが挙げられる。
 好適な反応性界面活性剤単量体の例としては、下記の式(II)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(II)において、Rは2価の結合基を表す。Rの例としては、-Si-O-基、メチレン基及びフェニレン基が挙げられる。式(II)において、Rは親水性基を表す。Rの例としては、-SONHが挙げられる。式(II)において、nは1以上100以下の整数である。
 好適な反応性界面活性剤の別の例としては、エチレンオキシドに基づく重合単位及びブチレンオキシドに基づく重合単位を有し、さらに末端に、末端二重結合を有するアルケニル基及び-SONHを有する化合物(例えば、商品名「ラテムルPD-104」花王株式会社製)を挙げることができる。
 反応性界面活性剤単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水溶性重合体における反応性界面活性剤単位の比率は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上、特に好ましくは0.5重量%以上であり、好ましくは15重量%以下、より好ましくは10重量%以下、特に好ましくは5重量%以下である。反応性界面活性剤単位の比率を前記範囲の下限値以上とすることにより、負極用スラリー組成物の分散性を向上させることができる。一方、反応性界面活性剤単位の比率を前記範囲の上限値以下とすることにより、負極の耐久性を向上させることができる。
 水溶性重合体が有しうる任意の単位の例は、上に述べた架橋性単量体単位、フッ素含有(メタ)アクリル酸エステル単量体単位、及び反応性界面活性剤単位に限られず、さらに他の単位を含みうる。具体的には、フッ素含有(メタ)アクリル酸エステル単量体単位以外の、(メタ)アクリル酸エステル単量体単位を挙げることができる。(メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体を重合して得られる繰り返し単位である。ただし、(メタ)アクリル酸エステル単量体の中でもフッ素を含有するものは、フッ素含有(メタ)アクリル酸エステル単量体として(メタ)アクリル酸エステル単量体とは区別する。
 (メタ)アクリル酸エステル単量体の例としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;並びにメチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルが挙げられる。
 (メタ)アクリル酸エステル単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、(メタ)アクリル酸エステル単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 本発明に係る水溶性重合体において、(メタ)アクリル酸エステル単量体単位の比率は、好ましくは30重量%以上、より好ましくは35重量%以上、特に好ましくは40重量%以上であり、また、好ましくは70重量%以下である。(メタ)アクリル酸エステル単量体単位の量を上記範囲の下限値以上とすることにより負極活物質の集電体への密着性を高くすることができ、上記範囲の上限値以下とすることにより負極の柔軟性を高めることができる。
 水溶性重合体が有しうる任意の単位のさらなる例としては、下記の単量体を重合して得られる単位が挙げられる。即ち、スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸等のアミド系単量体;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル化合物単量体;エチレン、プロピレン等のオレフィン類単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類単量体;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類単量体;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類単量体;並びにN-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物単量体の1以上を重合して得られる単位が挙げられる。水溶性重合体におけるこれらの単位の割合は、好ましくは0重量%~10重量%、より好ましくは0重量%~5重量%である。
 水溶性重合体の重量平均分子量は、通常はバインダーとなる重合体よりも小さく、好ましくは100以上、より好ましくは500以上、特に好ましくは1000以上であり、好ましくは500000以下、より好ましくは250000以下、特に好ましくは100000以下である。水溶性重合体の重量平均分子量を上記範囲の下限値以上とすることにより水溶性重合体の強度を高くして負極活物質を覆う安定な保護層を形成できるので、例えば負極活物質の分散性及び二次電池の高温保存特性などを改善できる。また、上記範囲の上限値以下とすることにより水溶性重合体を柔らかくできるので、例えば負極の膨らみの抑制、負極活物質層の集電体への密着性の改善などが可能となる。水溶性重合体の重量平均分子量は、GPCによって、ジメチルホルムアミドの10体積%水溶液に0.85g/mlの硝酸ナトリウムを溶解させた溶液を展開溶媒としたポリスチレン換算の値として求めうる。
 水溶性重合体のガラス転移温度は、通常0℃以上、好ましくは5℃以上であり、通常100℃以下、好ましくは50℃以下である。水溶性重合体のガラス転移温度が上記範囲であることにより、負極の密着性と柔軟性とを両立させることができる。水溶性重合体のガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。
 本発明においては、水溶性重合体のイオン伝導度は、1×10-5~1×10-3S/cmである。本願において、「水溶性重合体のイオン伝導度」とは、下記所定の条件において測定したイオン伝導度をいう。即ち、水溶性重合体の水溶液を乾燥後の厚みが1mmとなるようにシリコン容器に流入し、室温で、72時間乾燥し、1cm×1cmの正方形のフィルムを作製し、このフィルムを、1.0mol/LのLiPF溶液(溶媒:エチレンカーボネート/ジエチルカーボネートの1/2体積比の混合物)に60℃で72時間浸漬する。浸漬後のフィルムの厚みdを測定し、その後フィルムを2枚の銅箔に挟み、0.001~1000000Hzにおける交流インピーダンスから抵抗Rを測定し、イオン伝導度=R×1/dを算出する。この値を、本願における「水溶性重合体のイオン伝導度」とする。水溶性重合体のイオン伝導度を1×10-5S/cm以上とすることにより、低温出力特性を向上させることができ、1×10-3S/cm以下とすることにより、密着性を向上させ、ひいては耐久性を向上させることができる。イオン伝導度が1×10-3S/cmを超えると、水溶性重合体の電解液に対する膨潤度が大きくなり過ぎ、寿命特性が低下しうる。イオン伝導度の値は、2×10-5~1×10-3S/cmであることが好ましく、5×10-5~1×10-3S/cmであることがより好ましい。ここで、水溶性重合体のイオン伝導度は、水溶性重合体における各単量体単位の種類及びその比率を適宜調整することにより、前記範囲内にすることができる。
 本発明においては、所定条件で測定した水溶性重合体の膨潤度が、同条件で測定した前記粒子状バインダーの膨潤度の1.0~2.0倍である。ここで、膨潤度は、8~13(cal/cm1/2の溶解度パラメータを有する液体に対する膨潤度である。
 より具体的には、粒子状バインダーの水分散液及び水溶性重合体の水溶液を、それぞれ、乾燥後の厚みが1mmとなるようにシリコン容器に流入し、室温で、72時間乾燥し、1cm×1cmの正方形のフィルムを作製し、重量M0を測定する。その後、フィルムを所定の液体に60℃で72時間浸漬し、浸漬後のフィルムの重量M1を測定し、膨潤度を式(M1-M0)/M0より算出する。粒子状バインダーの膨潤度V0、及び水溶性重合体の膨潤度V1から、これらの比V1/V0を算出し、この値が1.0~2.0の範囲内であれば、本発明における膨潤度の要件を充足する。V1/V0の値が1.0以上とすることにより、活物質間距離が拡大し、電子移動抵抗が大きくなり、その結果、低温出力特性を向上させることができる。一方、V1/V0の値を2.0以下とすることにより、活物質間距離を適切な狭い範囲とすることができ、良好な耐久性を得ることができる。膨潤度比V1/V0の値は、1.0~1.5であることが好ましく、1.0~1.2であることがより好ましい。ここで、膨潤度比は、粒子状バインダーにおける各単量体単位の種類及びその比率や、水溶性重合体における各単量体単位の種類及びその比率を適宜調整することにより、前記範囲内にすることができる。
 膨潤度を測定するための、所定の溶解度パラメータを有する液体としては、具体的には例えば、本発明の二次電池の電解液と同様のものとすることができる。8~13(cal/cm1/2の範囲内のいずれかのある値の溶解度パラメータを有する液体において、上記膨潤度の要件を満たすものを、本発明における膨潤度の要件を充足するものとすることができる。より具体的には、1.0mol/LのLiPF溶液(溶媒:エチレンカーボネート/ジエチルカーボネートの1/2体積比の混合物、溶解度パラメーター10.8(cal/cm1/2)を、膨潤度を測定するための溶液として用いることができる。
 粒子状バインダーの膨潤度V0及び水溶性重合体の膨潤度V1の値は、特に限定されるものではないが、それぞれ下記の範囲であることが好ましい。即ち、粒子状バインダーの膨潤度V0は1.0倍~3.0倍であることが好ましく、1.0倍~2.0倍であることがより好ましい。水溶性重合体の膨潤度V1は、1.0倍~5.0倍であることが好ましく、1.0倍~4.0倍であることがより好ましい。
 水溶性重合体は、任意の製造方法で製造することができる。例えば、酸性官能基含有単量体を含み且つ必要に応じて他の任意の単位を与える単量体を含む単量体組成物を、水系溶媒中で重合して、水溶性重合体を製造することができる。
 単量体組成物中の各単量体の比率は、通常、水溶性重合体における繰り返し単位(例えば、酸性官能基含有単量体単位、架橋性単量体単位、フッ素含有(メタ)アクリル酸エステル単量体単位、及び反応性界面活性剤単位)の比率と同様にする。
 水系溶媒及び重合方法は、例えば、バインダーの製造と同様にしうる。これにより、通常は水系溶媒に水溶性重合体が溶解した水溶液が得られる。こうして得られた水溶液から水溶性重合体を取り出してもよいが、通常は、水系溶媒に溶解した状態の水溶性重合体を用いて負極用スラリー組成物を製造し、その負極用スラリー組成物を用いて負極を製造しうる。
 水溶性重合体を水系溶媒中に含む前記の水溶液は通常は酸性であるので、必要に応じて、pH7~pH13にアルカリ化してもよい。これにより水溶液の取り扱い性を向上させることができ、また、負極用スラリー組成物の塗工性を改善することができる。pH7~pH13にアルカリ化する方法としては、例えば、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ金属水溶液;水酸化カルシウム水溶液、水酸化マグネシウム水溶液等のアルカリ土類金属水溶液;アンモニア水溶液などのアルカリ水溶液を添加する方法が挙げられる。前記のアルカリ水溶液は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 [1-3.その他の成分]
 本発明の二次電池負極用バインダー組成物は、粒子状バインダー及び水溶性重合体のみからなってもよいが、必要に応じて、他の任意の成分を含みうる。例えば、反応性界面活性剤単位を含有するのに代えて、又は反応性界面活性剤単位を含有するのに加えて、別途界面活性剤を含むことができる。かかる界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウムを用いることができる。
 [1-4.粒子状バインダーと水溶性重合体との割合]
 本発明の二次電池負極用バインダー組成物における粒子状バインダー及び水溶性重合体の含有割合は、特に限定されず、後述する本発明の二次電池負極用スラリー組成物及び本発明の二次電池用負極を調製するのに適した割合に適宜調整することができる。例えば、粒子状バインダー/水溶性重合体の重量比として、99.5/0.5~95/5であることが好ましく、99/1~96/4であることがより好ましく、98.5/1.5~97/3であることがさらにより好ましい。これらの比率をこの範囲内とすることにより、電極活物質層と集電体との密着性、及び電池の耐久性を両立させることができる。
 [2.二次電池用負極]
 本発明の二次電池用負極(以下、適宜「本発明の負極」という。)は、前記本発明の二次電池負極用バインダー組成物及び負極活物質を含む。
 通常、本発明の負極は、集電体と、前記集電体の表面に形成された負極活物質層とを備え、電極活物質層が前記のバインダー組成物及び負極活物質を含む。
 [2-1.負極活物質]
 負極活物質は、負極用の電極活物質であり、二次電池の負極において電子の受け渡しをする物質である。
 例えば本発明の二次電池がリチウムイオン二次電池である場合には、負極活物質として、通常は、リチウムを吸蔵及び放出しうる物質を用いる。このようにリチウムを吸蔵及び放出しうる物質としては、例えば、金属系活物質、炭素系活物質、及びこれらを組み合わせた活物質などが挙げられる。
 金属系活物質とは、金属を含む活物質であり、通常は、リチウムの挿入(ドープともいう)が可能な元素を構造に含み、リチウムが挿入された場合の重量あたりの理論電気容量が500mAh/g以上である活物質をいう。当該理論電気容量の上限は、特に限定されないが、例えば5000mAh/g以下でもよい。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成する単体金属及びその合金、並びにそれらの酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が用いられる。
 リチウム合金を形成する単体金属としては、例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Ti等の単体金属が挙げられる。また、リチウム合金を形成する単体金属の合金としては、例えば、上記単体金属を含有する化合物が挙げられる。これらの中でもケイ素(Si)、スズ(Sn)、鉛(Pb)及びチタン(Ti)が好ましく、ケイ素、スズ及びチタンがより好ましい。したがって、ケイ素(Si)、スズ(Sn)又はチタン(Ti)の単体金属若しくはこれら単体金属を含む合金、または、それらの金属の化合物が好ましい。
 金属系活物質は、さらに、一つ以上の非金属元素を含有していてもよい。例えば、SiC、SiO(0<x≦3、0<y≦5)、Si、SiO、SiO(0<x≦2)、SnO(0<x≦2)、LiSiO、LiSnO等が挙げられる。中でも、低電位でリチウムの挿入及び脱離(脱ドープともいう)が可能なSiOが好ましい。例えば、SiOは、ケイ素を含む高分子材料を焼成して得ることができる。SiOの中でも、容量とサイクル特性の兼ね合いから、0.8≦x≦3、2≦y≦4の範囲が好ましく用いられる。
 リチウム金属、リチウム合金を形成する単体金属及びその合金の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物としては、リチウムの挿入可能な元素の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が挙げられる。その中でも、酸化物が特に好ましい。例えば、酸化スズ、酸化マンガン、酸化チタン、酸化ニオブ、酸化バナジウム等の酸化物と、Si、Sn、PbおよびTi原子よりなる群から選ばれる金属元素とを含むリチウム含有金属複合酸化物が用いられる。
 リチウム含有金属複合酸化物としては、更にLiTiで示されるリチウムチタン複合酸化物(0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であり、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる元素を表す。)、LiMnで示されるリチウムマンガン複合酸化物(x、y、z及びMは、リチウムチタン複合酸化物における定義と同様である。)が挙げられる。中でも、Li4/3Ti5/3、LiTi、Li4/5Ti11/5、Li4/3Mn5/3が好ましい。
 これらの中でも、金属系活物質としては、ケイ素を含有する活物質が好ましい。ケイ素を含有する活物質を用いることにより、二次電池の電気容量を大きくすることが可能となる。また、一般にケイ素を含有する活物質は充放電に伴って大きく(例えば5倍程度に)膨張及び収縮するが、本発明の負極においては、ケイ素を含有する活物質の膨張及び収縮による電池性能の低下を、本発明に係る水溶性重合体によって防ぐことができる。
 ケイ素を含有する活物質の中でも、SiO、SiC及びSiOが好ましく、SiOがさらに好ましい。Si及びCを組み合わせて含む活物質においては、高電位でSi(ケイ素)へのLiの挿入及び脱離が起こり、低電位でC(炭素)へのLiの挿入及び脱離が起こると推測される。このため、他の金属系活物質よりも膨張及び収縮が抑制されるので、二次電池の充放電サイクル特性を向上させることができる。
 炭素系活物質とは、リチウムが挿入可能な炭素を主骨格とする活物質をいい、例えば炭素質材料と黒鉛質材料が挙げられる。
 炭素質材料としては、一般的には、炭素前駆体を2000℃以下で熱処理して炭素化させた、黒鉛化の低い(即ち、結晶性の低い)炭素材料である。前記の熱処理の下限は特に限定されないが、例えば500℃以上としうる。
 炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 易黒鉛性炭素としては、例えば、石油又は石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。MCMBとは、ピッチ類を400℃前後で加熱する過程で生成したメソフェーズ小球体を分離抽出した炭素微粒子である。メソフェーズピッチ系炭素繊維とは、前記メソフェーズ小球体が成長、合体して得られるメソフェーズピッチを原料とする炭素繊維である。熱分解気相成長炭素繊維とは、(1)アクリル高分子繊維などを熱分解する方法、(2)ピッチを紡糸して熱分解する方法、又は(3)鉄などのナノ粒子を触媒として用いて炭化水素を気相熱分解する触媒気相成長(触媒CVD)法により得られた炭素繊維である。
 難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
 黒鉛質材料とは、易黒鉛性炭素を2000℃以上で熱処理することによって得られた黒鉛に近い高い結晶性を有する黒鉛質材料である。前記の熱処理温度の上限は、特に限定されないが、例えば5000℃以下としうる。
 黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛等が挙げられる。人造黒鉛としては、例えば、主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 前記の炭素系活物質の中でも、黒鉛質材料が好ましい。黒鉛質材料を用いることで、二次電池の抵抗を低減することができ、入出力特性の優れた二次電池を作製することが可能となる。
 負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 負極活物質の好ましい態様として、金属系活物質及び炭素系活物質を組み合わせた活物質を挙げることができる。この場合、特に金属系活物質としてのSiOC、SnまたはSiOx(0<x≦2)と、炭素系活物質としての黒鉛質材料との組み合わせを、特に好ましい態様として挙げることができる。この場合の金属系活物質と黒鉛質材料との割合は、金属活物質/黒鉛質材料=5/95~50/50重量比とすることができる。また、かかる割合の組み合わせとすることにより、高容量化とサイクル特性のバランス化が図れる。
 負極活物質は、粒子状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時に、より高密度な電極が形成できる。
 負極活物質が粒子である場合、その体積平均粒子径は、二次電池の他の構成要件との兼ね合いで適宜選択され、通常0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下、より好ましくは20μm以下である。
 負極活物質の粒子の50%累積体積径は、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、通常1μm以上、好ましくは15μm以上であり、通常50μm以下、好ましくは30μm以下である。50%累積体積径は、レーザー回折法によって粒径分布を測定し、測定された粒径分布において小径側から計算した累積体積が50%となる粒子径として求めることができる。
 負極活物質のタップ密度は、特に制限されないが、0.6g/cm以上のものが好適に用いられる。
 負極活物質の比表面積は、出力密度向上の観点から、通常2m/g以上、好ましくは3m/g以上、より好ましくは5m/g以上であり、通常20m/g以下、好ましくは15m/g以下、より好ましくは10m/g以下である。負極活物質の比表面積は、例えばBET法により測定できる。
 [2-2.負極活物質とバインダー組成物との割合]
 本発明の負極における負極活物質及びバインダー組成物の含有割合は、特に限定されないが、負極活物質100重量部に対するバインダー組成物の量として、通常0.1重量部以上、好ましくは0.5重量部以上であり、且つ、通常10重量部以下、好ましくは5.0重量部以下である。負極活物質に対するバインダー組成物の割合を上記範囲内とすることにより、上述した本発明の効果を安定して発揮できる。
 [2-3.負極活物質層に含まれていてもよい成分]
 本発明の負極において、負極活物質層には、上述したバインダー組成物及び負極活物質以外に他の成分が含まれていてもよい。その成分の例を挙げると、粘度調整剤、導電剤、補強材、レベリング剤、電解液添加剤等が挙げられる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粘度調整剤は、本発明の負極用スラリー組成物の粘度を調整して負極用スラリー組成物の分散性及び塗工性を改善するために用いられる成分である。通常、負極用スラリー組成物に含まれていた粘度調整剤は、負極活物質層に残留することになる。
 粘度調整剤としては、水溶性の多糖類を使用することが好ましい。多糖類としては、例えば、天然系高分子化合物、セルロース系半合成系高分子化合物などが挙げられる。粘度調整剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 天然系高分子化合物として、例えば、植物もしくは動物由来の多糖類及びたんぱく質等が挙げられる。また、場合により微生物等による発酵処理、熱による処理などがされた天然系高分子化合物も例示できる。これらの天然系高分子化合物は、植物系天然系高分子化合物、動物系天然系高分子化合物及び微生物系天然系高分子化合物等として分類することができる。
 植物系天然系高分子化合物としては、例えば、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンナン、クインスシード(マルメロ)、アルケコロイド(ガッソウエキス)、澱粉(コメ、トウモロコシ、馬鈴薯、小麦等に由来するもの)、グリチルリチン等が挙げられる。また、動物系天然系高分子化合物としては、例えば、コラーゲン、カゼイン、アルブミン、ゼラチン等が挙げられる。さらに、微生物系天然系高分子化合物としては、キサンタンガム、デキストラン、サクシノグルカン、ブルラン等が挙げられる。
 セルロース系半合成系高分子化合物は、ノニオン性、アニオン性及びカチオン性に分類することができる。
 ノニオン性セルロース系半合成系高分子化合物としては、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース等のアルキルセルロース;ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロース;などが挙げられる。
 アニオン性セルロース系半合成系高分子化合物としては、上記のノニオン性セルロース系半合成系高分子化合物を各種誘導基により置換したアルキルセルロース並びにそのナトリウム塩及びアンモニウム塩などが挙げられる。具体例を挙げると、セルロース硫酸ナトリウム、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース(CMC)及びそれらの塩等が挙げられる。
 カチオン性セルロース系半合成系高分子化合物としては、例えば、低窒素ヒドロキシエチルセルロースジメチルジアリルアンモニウムクロリド(ポリクオタニウム-4)、塩化O-[2-ヒドロキシ-3-(トリメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-10)、塩化O-[2-ヒドロキシ-3-(ラウリルジメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-24)等が挙げられる。
 これらの中でも、カチオン性、アニオン性また両性の特性を取りうることから、セルロース系半合成系高分子化合物、そのナトリウム塩及びそのアンモニウム塩が好ましい。さらにその中でも、負極活物質の分散性の観点から、アニオン性のセルロース系半合成系高分子化合物が特に好ましい。
 また、セルロース系半合成系高分子化合物のエーテル化度は、好ましくは0.5以上、より好ましくは0.6以上であり、好ましくは1.0以下、より好ましくは0.8以下である。ここで、エーテル化度とは、セルロース中の無水グルコース単位1個当たりの水酸基(3個)の、カルボキシメチル基等への置換体への置換度のことをいう。エーテル化度は、理論的には0~3の値を取りうる。エーテル化度が上記範囲にある場合は、セルロース系半合成系高分子化合物が負極活物質の表面に吸着しつつ水への相溶性も見られることから分散性に優れ、負極活物質を一次粒子レベルまで微分散できる。
 さらに、粘度調整剤として高分子化合物(重合体を含む)を使用する場合、ウベローデ粘度計より求められる極限粘度から算出される粘度調整剤の平均重合度は、好ましくは500以上、より好ましくは1000以上であり、好ましくは2500以下、より好ましくは2000以下、特に好ましくは1500以下である。粘度調整剤の平均重合度は本発明の負極用スラリー組成物の流動性及び負極活物質層の膜均一性、並びに工程上のプロセスへ影響することがある。平均重合度を前記の範囲にすることにより、本発明の負極用スラリー組成物の経時の安定性を向上させて、凝集物がなく厚みムラのない塗布が可能になる。
 粘度調整剤の量は、負極活物質の量100重量部に対して、好ましくは0重量部以上であり、好ましくは0.5重量部以下である。粘度調整剤の量を前記の範囲にすることにより、本発明の負極用スラリー組成物の粘度を取り扱い易い好適な範囲にすることができる。
 導電剤は、負極活物質同士の電気的接触を向上させる成分である。導電剤を含むことにより、本発明の二次電池の放電レート特性を改善することができる。
 導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンなどを使用することができる。導電剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 導電剤の量は、負極活物質の量100重量部に対して、好ましくは1~20重量部、より好ましくは1~10重量部である。
 補強材としては、例えば、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより、強靭で柔軟な負極を得ることができ、優れた長期サイクル特性を示す二次電池を実現できる。
 補強材の量は、負極活物質の量100重量部に対して、通常0.01重量部以上、好ましくは1重量部以上であり、通常20重量部以下、好ましくは10重量部以下である。補強剤の量を上記範囲とすることにより、二次電池は高い容量と高い負荷特性を示すことができる。
 レベリング剤としては、例えば、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を用いることにより、負極用スラリー組成物の塗布時に発生するはじきを防止したり、負極の平滑性を向上させたりすることができる。
 レベリング剤の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部~10重量部である。レベリング剤が上記範囲であることにより負極作製時の生産性、平滑性及び電池特性に優れる。また、界面活性剤を含有させることにより負極用スラリー組成物において負極活物質等の分散性を向上することができ、さらにそれにより得られる負極の平滑性を向上させることができる。
 電解液添加剤としては、例えば、ビニレンカーボネートなどが挙げられる。電解液添加剤を用いることにより、例えば電解液の分解を抑制することができる。
 電解液添加剤の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部~10重量部である。電解液添加剤の量を上記範囲にすることにより、サイクル特性及び高温特性に優れた二次電池を実現できる。
 また、負極活物質層は、例えば、フュームドシリカやフュームドアルミナなどのナノ微粒子を含んでいてもよい。ナノ微粒子を含む場合には負極用スラリー組成物のチキソ性を調整することができるので、それにより得られる本発明の負極のレベリング性を向上させることができる。
 ナノ微粒子の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部~10重量部である。ナノ微粒子が上記範囲であることにより、負極用スラリー組成物の安定性及び生産性を改善し、高い電池特性を実現できる。
 [2-4.集電体及び負極活物質層]
 本発明の負極は、上述した負極活物質、バインダー組成物、並びに必要に応じて用いられる他の成分を含む負極活物質層を備える。この負極活物質層は、通常、集電体の表面に設けられる。この際、負極活物質層は、集電体の少なくとも片面に設けられていればよいが、両面に設けられていることが好ましい。
 負極用の集電体は、電気導電性を有し、且つ、電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましい。負極用の集電体の材料としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、二次電池負極に用いる集電体としては銅が特に好ましい。前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 集電体の形状は特に制限されないが、厚さ0.001mm~0.5mm程度のシート状のものが好ましい。
 集電体は、負極活物質層との接着強度を高めるため、表面に予め粗面化処理して使用することが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、通常、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、負極活物質層の接着強度や導電性を高めるために、集電体の表面に中間層を形成してもよい。
 通常は前記の集電体の表面に、負極活物質層が設けられる。
 負極活物質層の厚みは、通常5μm以上、好ましくは30μm以上であり、通常300μm以下、好ましくは250μm以下である。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性を良好にすることができる。
 負極活物質層における負極活物質の含有割合は、好ましくは85重量%以上、より好ましくは88重量%以上であり、好ましくは99重量%以下、より好ましくは97重量%以下である。負極活物質の含有割合を上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示す負極を実現できる。
 負極活物質層における水分量は、1000ppm以下であることが好ましく、500ppm以下であることがより好ましい。負極活物質層の水分量を上記範囲内とすることにより、耐久性に優れる負極とすることができる。水分量は、カールフィッシャー法等の既知の方法により測定しうる。
 このような低い水分量は、水溶性重合体中の単位の組成を適宜調整することにより達成しうる。特に、フッ素含有(メタ)アクリル酸エステル単量体単位を0.5~20重量%、好ましくは1~10重量%の範囲にすることにより水分量を低減することができる。
 [3.二次電池用負極の製造方法、及び負極用スラリー組成物]
 本発明の二次電池用負極の製造方法(以下、適宜「本発明の負極の製造方法」という。)は特に制限されないが、例えば、(I)本発明の負極用スラリー組成物を用意し、その負極用スラリー組成物を集電体の表面に塗布し、乾燥させることにより集電体の表面に負極活物質を形成する方法(塗布法)や、(II)本発明の負極用スラリー組成物から複合粒子を調製し、これを集電体上に供給してシート成形し、所望により、さらにロールプレスして負極活物質層を形成する方法(乾式成形法)等が挙げられる。これらの中でも、(II)乾式成形法が、得られる二次電池負極の容量を高く、且つ内部抵抗を低減できる点で好ましい。
 本発明の負極用スラリー組成物は、負極活物質、バインダー、水溶性重合体及び水を含むスラリー状の組成物である。また、本発明の負極用スラリー組成物は、必要に応じて負極活物質、バインダー、水溶性重合体及び水以外の成分を含んでいてもよい。負極活物質、バインダー及び水溶性重合体、並びに必要に応じて含まれる成分の量は、通常は負極活物質層に含まれる各成分の量と同様にする。このような本発明の負極用スラリー組成物では、通常、一部の水溶性重合体は水に溶解しているが、別の一部の水溶性重合体が負極活物質の表面に吸着することによって、負極活物質が水溶性重合体の安定な層で覆われて、負極活物質の溶媒中での分散性が向上している。このため、本発明の負極用スラリー組成物は、集電体に塗布する際の塗工性が良好である。
 水は、負極用スラリー組成物において溶媒又は分散媒として機能し、負極活物質を分散させたり、バインダーを粒子状に分散させたり、水溶性重合体を溶解させたりする。この際、溶媒として水以外の液体を水と組み合わせて用いてもよい。バインダー及び水溶性重合体を溶解する液体を組み合わせると、バインダー及び水溶性重合体が表面に吸着することにより負極活物質の分散が安定化するので、好ましい。
 水と組み合わせる液体の種類は、乾燥速度や環境上の観点から選択することが好ましい。好ましい例を挙げると、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミド等のアミド類;などが挙げられるが、中でもN-メチルピロリドン(NMP)が好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水及び前記の液体の量は、本発明の負極用スラリー組成物の粘度が塗布に好適な粘度になるように調整することが好ましい。具体的には、本発明の負極用スラリー組成物の固形分の濃度が、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは90重量%以下、より好ましくは80重量%以下となる量に調整して用いられる。
 本発明の負極用スラリー組成物は、上記の負極活物質、バインダー組成物及び水、並びに必要に応じて用いられる成分を混合して製造しうる。混合方法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。
 (I)塗布法において、本発明の負極用スラリー組成物を集電体の表面に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。
 乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法などが挙げられる。乾燥時間は通常5分~30分であり、乾燥温度は通常40℃~180℃である。
 (II)乾式成形法における複合粒子は、前記本発明の負極用スラリー組成物から調製されるものであるため、上記スラリー組成物に含まれるバインダー組成物や負極活物質等が一体化した粒子となる。具体的には、スラリー組成物を構成する負極活物質や粒子状バインダーが、それぞれ別個に独立した粒子として存在するのではなく、構成成分である負極活物質、粒子状バインダー及び水溶性重合体を含む2成分以上によって一粒子を形成するものである。具体的には、前記2成分以上の個々の粒子の複数個が結合して二次粒子を形成しており、複数個(好ましくは数個~数十個)の負極活物質が、粒子状バインダーによって結着されて粒子を形成しているものが好ましい。負極活物質層を複合粒子を用いて形成することにより、得られる二次電池負極のピール強度をより高くできると共に、内部抵抗を低減することができる。
 乾式成形法に好適に用いる複合粒子は、本発明のバインダー組成物、負極活物質及び必要に応じて用いられる導電剤等を含む負極用スラリー組成物を造粒することにより製造される。
 複合粒子の造粒方法は特に制限されず、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、パルス燃焼式乾燥法、および溶融造粒法などの公知の造粒法により製造することができる。中でも、表面付近にバインダー組成物および導電剤が偏在した複合粒子を容易に得られるので、噴霧乾燥造粒法が好ましい。噴霧乾燥造粒法で得られる複合粒子を用いると、本発明の二次電池負極を高い生産性で得ることができる。また、二次電池負極の内部抵抗をより低減することができる。
 噴霧乾燥造粒法では、本発明の二次電池負極用スラリー組成物を噴霧乾燥して造粒し、複合粒子を得る。噴霧乾燥は、熱風中にスラリー組成物を噴霧して乾燥することにより行う。スラリー組成物の噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーは、回転円盤方式と加圧方式との二種類の装置がある。回転円盤方式は、高速回転する円盤のほぼ中央にスラリー組成物を導入し、円盤の遠心力によってスラリー組成物が円盤の外に放たれ、その際にスラリー組成物を霧状にする方式である。円盤の回転速度は円盤の大きさに依存するが、通常は5,000~40,000rpm、好ましくは15,000~40,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の重量平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。スラリー組成物は噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、スラリー組成物を加圧してノズルから霧状にして乾燥する方式である。
 噴霧されるスラリー組成物の温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。また、噴霧乾燥時の熱風温度は、通常80~250℃、好ましくは100~200℃である。
 噴霧乾燥において、熱風の吹き込み方法は特に制限されず、例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。
 乾式成形法に好適に用いる複合粒子の形状は、実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をLs、長軸径をLl、La=(Ls+Ll)/2とし、(1-(Ll-Ls)/La)×100の値を球形度(%)としたとき、球形度が80%以上であることが好ましく、より好ましくは90%以上である。ここで、短軸径Lsおよび長軸径Llは、透過型電子顕微鏡写真像より測定される値である。
 乾式成形法に好適に用いる複合粒子の体積平均粒子径は、通常10~100μm、好ましくは20~80μm、より好ましくは30~60μmの範囲である。体積平均粒子径は、レーザー回折式粒度分布測定装置を用いて測定することができる。
 乾式成形法において、複合粒子を集電体上に供給する工程で用いられるフィーダーは、特に限定されないが、複合粒子を定量的に供給できる定量フィーダーであることが好ましい。ここで、定量的に供給できるとは、かかるフィーダーを用いて複合粒子を連続的に供給し、一定間隔で供給量を複数回測定し、その測定値の平均値mと標準偏差σmから求められるCV値(=σm/m×100)が4以下であることをいう。乾式成形法に好適に用いられる定量フィーダーは、CV値が好ましくは2以下である。定量フィーダーの具体例としては、テーブルフィーダー、ロータリーフィーダーなどの重力供給機、スクリューフィーダー、ベルトフィーダーなどの機械力供給機などが挙げられる。これらのうちロータリーフィーダーが好適である。
 次いで、集電体と供給された複合粒子とを一対のロールで加圧して、集電体上に負極活物質層を形成する。この工程では、必要に応じ加温された前記複合粒子が、一対のロールでシート状の負極活物質層に成形される。供給される複合粒子の温度は、好ましくは40~160℃、より好ましくは70~140℃である。この温度範囲にある複合粒子を用いると、プレス用ロールの表面で複合粒子の滑りがなく、複合粒子が連続的かつ均一にプレス用ロールに供給されるので、膜厚が均一で、電極密度のばらつきが小さい、負極活物質層を得ることができる。
 成形時の温度は、通常0~200℃であり、本発明に用いる粒子状バインダーの融点またはガラス転移温度より高いことが好ましく、融点またはガラス転移温度より20℃以上高いことがより好ましい。ロールを用いる場合の成形速度は、通常0.1m/分より大きく、好ましくは35~70m/分である。またプレス用ロール間のプレス線圧は、通常0.2~30kN/cm、好ましくは0.5~10kN/cmである。
 上記製法では、前記一対のロールの配置は特に限定されないが、略水平または略垂直に配置されることが好ましい。略水平に配置する場合は、集電体を一対のロール間に連続的に供給し、該ロールの少なくとも一方に複合粒子を供給することで、集電体とロールとの間隙に複合粒子が供給され、加圧により負極活物質層を形成できる。略垂直に配置する場合は、集電体を水平方向に搬送させ、集電体上に複合粒子を供給し、供給された複合粒子を必要に応じブレード等で均した後、前記集電体を一対のロール間に供給し、加圧により負極活物質層を形成できる。
 また、(I)塗布法においては、集電体の表面に負極用スラリー組成物を塗布及び乾燥した後で、必要に応じて、例えば金型プレス又はロールプレスなどを用い、負極活物質層に加圧処理を施すことが好ましい。加圧処理により、負極活物質層の空隙率を低くすることができる。空隙率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは30%以下、より好ましくは20%以下である。空隙率を前記範囲の下限値以上とすることにより、高い体積容量が得易くなり、負極活物質層を集電体から剥がれ難くすることができ、また、上限値以下とすることにより高い充電効率及び放電効率が得られる。
 さらに、負極活物質層が硬化性の重合体を含む場合は、負極活物質層の形成後に前記重合体を硬化させることが好ましい。
 [4.二次電池]
 本発明の二次電池は、本発明の負極を備える。通常、本発明の二次電池は、正極、負極、電解液及びセパレーターを備え、前記負極が、本発明の負極となっている。
 本発明の負極を備えるので、本発明の二次電池では、充放電に伴う負極の膨らみを抑制できたり、高温環境で保存した場合でも容量を低下し難くしたりできる。また、通常は、本発明の二次電池の高温サイクル特性及び低温出力特性を改善したり、負極活物質層の集電体への密着性を高めたりすることもできる。
 [4-1.正極]
 正極は、通常、集電体と、集電体の表面に形成された、正極活物質及び正極用のバインダーを含む正極活物質層とを備える。
 正極の集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されない。正極の集電体としては、例えば、本発明の負極に使用される集電体を用いてもよい。中でも、アルミニウムが特に好ましい。
 正極活物質は、例えば本発明の二次電池がリチウムイオン二次電池である場合には、リチウムイオンの挿入及び脱離が可能な物質が用いられる。このような正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。
 上記の遷移金属としては、例えばTi、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 遷移金属酸化物としては、例えば、MnO、MnO、V、V13、TiO、Cu、非晶質VO-P、MoO、V、V13等が挙げられ、中でもサイクル安定性と容量からMnO、V、V13、TiOが好ましい。
 遷移金属硫化物としては、例えば、TiS、TiS、非晶質MoS、FeS等が挙げられる。
 リチウム含有複合金属酸化物としては、例えば、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
 層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム複合酸化物、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物等が挙げられる。
 スピネル構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn)又はMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。
 オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、LiMPO(式中、Mは、Mn、Fe、Co、Ni、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、B及びMoからなる群より選ばれる少なくとも1種を表し、Xは0≦X≦2を満たす数を表す。)で表されるオリビン型燐酸リチウム化合物が挙げられる。
 有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子化合物が挙げられる。
 また、無機化合物及び有機化合物を組み合わせた複合材料からなる正極活物質を用いてもよい。例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。
 さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。また、上記の無機化合物と有機化合物の混合物を正極活物質として用いてもよい。
 正極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 正極活物質の粒子の体積平均粒子径は、通常1μm以上、好ましくは2μm以上であり、通常50μm以下、好ましくは30μm以下である。正極活物質の粒子の体積平均粒子径を上記範囲にすることにより、正極活物質層を調製する際のバインダーの量を少なくすることができ、二次電池の容量の低下を抑制できる。また、正極活物質層を形成するためには、通常、正極活物質及びバインダーを含む正極用スラリー組成物を用意するが、この正極用スラリー組成物の粘度を塗布し易い適正な粘度に調整することが容易になり、均一な正極を得ることができる。
 正極活物質層における正極活物質の含有割合は、好ましくは90重量%以上、より好ましくは95重量%以上であり、好ましくは99.9重量%以下、より好ましくは99重量%以下である。正極活物質の含有量を上記範囲とすることにより、二次電池の容量を高くでき、また、正極の柔軟性並びに集電体と正極活物質層との結着性を向上させることができる。
 正極用のバインダーとしては、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂;アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。バインダーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、正極活物質層には、必要に応じて、正極活物質及びバインダー以外の成分が含まれていてもよい。その例を挙げると、例えば、粘度調整剤、導電剤、補強材、レベリング剤、電解液添加剤等が挙げられる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 正極活物質層の厚みは、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは250μm以下である。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度の両方で高い特性を実現できる。
 正極は、例えば、前述の負極と同様の要領で製造してもよい。
 [4-2.電解液]
 電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用してもよい。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 支持電解質の量は、電解液に対して、通常1重量%以上、好ましくは5重量%以上であり、また、通常30重量%以下、好ましくは20重量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し、二次電池の充電特性及び放電特性が低下する可能性がある。
 電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されない。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、電解液には必要に応じて添加剤を含有させてもよい。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、上記以外の電解液としては、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質;硫化リチウム、LiI、LiNなどの無機固体電解質;などを挙げることができる。
 [4-3.セパレーター]
 セパレーターとしては、通常、気孔部を有する多孔性基材を用いる。セパレーターの例を挙げると、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーター、などが挙げられる。これらの例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム;ゲル化高分子コート層がコートされたセパレーター;無機フィラーと無機フィラー用分散剤とからなる多孔膜層がコートされたセパレーター;などが挙げられる。
 [4-4.二次電池の製造方法]
 本発明の二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口し、電池を製造しうる。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下に示す実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。以下の実施例の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
 〔評価方法〕
 1.密着強度
 実施例および比較例で製造した負極を、長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、負極活物質層の表面を下にして、負極活物質層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求めて、当該平均値をピール強度とした。ピール強度が大きいほど、負極活物質層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
 2.塗工性
 実施例および比較例で製造した負極用スラリー組成物を、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極を得た。得られた負極を10×10cmの寸法で切り出し、目視にて直径0.1mm以上のピンホールの個数を測定した。ピンホールの個数が小さいほど、塗工性に優れることを示す。
 3.高温保存特性
 実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を、25℃の環境下で、24時間静置させた後に、0.1Cの定電流法により、4.2Vまで充電し、3.0Vまで放電する充放電の操作を行い、初期容量Cを測定した。さらに、25℃の環境下で4.2Vに充電し、60℃の環境下で7日間保存した。次いで、25℃の環境下で、0.1Cの定電流法により、4.2Vまで充電し、3.0Vまで放電する充放電の操作を行い、高温保存後の容量Cを測定した。高温保存特性は、ΔC=C/C×100(%)で示す容量変化率ΔCにて評価した。この容量変化率ΔCの値が高いほど、高温保存特性に優れることを示す。
 4.高温サイクル特性
 実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を、25℃の環境下で、24時間静置させた後に、0.1Cの定電流法により、4.2Vまで充電し、3.0Vまで放電する充放電の操作を行い、初期容量Cを測定した。さらに、60℃の環境下で、0.1Cの定電流法によって、4.2Vまで充電し、3.0Vまで放電する充放電を繰り返し、100サイクル後の容量Cを測定した。高温サイクル特性は、ΔC=C/C×100(%)で示す容量変化率ΔCにて評価した。この容量変化率ΔCの値が高いほど、高温サイクル特性に優れることを示す。
 5.極板膨らみ特性
 前記の「3.高温保存特性」の評価の後で、かかる評価に供されたリチウムイオン二次電池のセルを解体し、負極の極板の厚みd1を測定した。リチウムイオン二次電池のセルの作製前における負極の極板の厚みをd0として、負極の極板膨らみ率((d1-d0)/d0)×100(%)を算出した。この値が低いほど、極板膨らみ特性に優れることを示す。
 6.高温サイクル特性測定後の密着強度
 前記の「4.高温サイクル特性」の評価の後で、かかる評価に供されたリチウムイオン二次電池のセルを解体し、負極を取り出し、これを、60℃、24時間、0.1MPa以下の減圧下で乾燥させた。乾燥させた負極について「1.密着強度」と同様にして密着強度を測定した。但し、試験片の寸法は長さ40mm、幅10mmとした。
 7.低温出力特性
 実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、25℃の環境下で、0.1C、5時間の充電操作を行い、このときの電圧Vを測定した。その後、-25℃の環境下で、0.1Cの放電の操作を行い、放電開始10秒後の電圧V10を測定した。低温出力特性は、ΔV=V-V10で示す電圧変化ΔVにて評価した。この電圧変化ΔVの値が小さいほど、低温出力特性に優れることを示す。
 8.極板の水分量
 実施例および比較例で製造したリチウムイオン二次電池負極について、カールフィッシャー法(使用装置名:カールフィッシャー水分計(京都電子工業社製))により、極板の水分量(電極活物質層の単位重量当たりの重量、ppm)を測定した。
 9.イオン伝導度
 実施例および比較例で製造した水溶性重合体の水溶液を、それぞれ、乾燥厚みが1mmとなるようにシリコン容器に流入し、室温で、72時間乾燥し、1cm×1cmの正方形のフィルムを作製した。このフィルムを、1.0mol/LのLiPF溶液(溶媒:エチレンカーボネート/ジエチルカーボネートの1/2体積比の混合物)に60℃で72時間浸漬した。浸漬後のフィルムの厚みdを測定し、その後フィルムを2枚の銅箔に挟み、0.001~1000000Hzにおける交流インピーダンスから抵抗Rを測定し、イオン伝導度=R×1/dを算出した。
 10.膨潤度の測定方法
 実施例および比較例で製造した粒子状バインダーの水分散液及び水溶性重合体の水溶液を、それぞれ、乾燥厚みが1mmとなるようにシリコン容器に流入し、室温、72時間乾燥し、1cm×1cmの正方形のフィルムを作製し、重量M0を測定した。その後、フィルムを1.0mol/LのLiPF溶液(溶媒:エチレンカーボネート/ジエチルカーボネートの1/2体積比の混合物、溶解度パラメーター10.8(cal/cm1/2)に60℃で72時間浸漬し、浸漬後のフィルムの重量M1を測定し、膨潤度を式(M1-M0)/M0より算出した。
 粒子状バインダーの膨潤度V0、及び水溶性重合体の膨潤度V1から、これらの比V1/V0を算出した。
 〔実施例1〕
 (1-1.水溶性重合体の製造)
 攪拌機付き5MPa耐圧容器に、メタクリル酸(酸性官能基含有単量体)32.5部、エチレンジメタクリレート(架橋性単量体)0.8部、2,2,2-トリフルオロエチルメタクリレート(フッ素含有(メタ)アクリル酸エステル単量体)7.5部、ブチルアクリレート(その他の単量体)59.2部、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム(反応性界面活性剤単量体、花王製、商品名「ラテムルPD-104」)1.5部、イオン交換水150部、及び過硫酸カリウム(重合開始剤)0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む混合物を得た。上記水溶性重合体を含む混合物に、10%アンモニア水を添加して、pH8に調整し、所望の水溶性重合体を含む水溶液を得た。
 得られた水溶性重合体について、イオン伝導度及び膨潤度を測定した。結果を表2に示す。
 (1-2.バインダー組成物の製造)
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン33部、メタクリル酸1.5部、スチレン65.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状バインダー(SBR)を含む混合物を得た。上記粒子状バインダーを含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、所望の粒子状バインダーを含む水分散液を得た。
 得られた粒子状バインダーについて、膨潤度を測定し、水溶性重合体との膨潤度の比を求めた。結果を表2に示す。
 上記(1-1)で得られた水溶性重合体を含む水溶液をイオン交換水で希釈して濃度を5%に調整した。そして、上記で得られた粒子状バインダーを含む水分散液に、固形分相当で粒子状バインダー:水溶性重合体=98:2となるように混合して、バインダー組成物を得た。
 (1-3.負極用スラリー組成物の製造)
 ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積4m/gの人造黒鉛(体積平均粒子径:24.5μm)90部、SiOC(体積平均粒子径:12μm)10部、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH-12」)を固形分相当で1部を加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分混合し混合液を得た。
 上記混合液に、上記(1-2)で得られたバインダー組成物を含む水分散液を固形分相当量で1.0重量部、及びイオン交換水を入れ、最終固形分濃度50%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い負極用スラリー組成物を得た。
 得られた負極用スラリー組成物について、塗工性を測定した。結果を表2に示す。
 (1-4.負極の製造)
 上記(1-3)で得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmの負極を得た。
 得られた負極について、密着強度及び極板の水分量を測定した。結果を表2に示す。
 (1-5.正極の製造)
 正極用のバインダーとして、ガラス転移温度Tgが-40℃で、数平均粒子径が0.20μmのアクリレート重合体の40%水分散体を用意した。前記のアクリレート重合体は、アクリル酸2-エチルヘキシル78重量%、アクリロニトリル20重量%、及びメタクリル酸2重量%を含む単量体混合物を乳化重合して得られた共重合体である。
 正極活物質として体積平均粒子径0.5μmでオリビン結晶構造を有するLiFePOを100部と、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH-12」)を固形分相当で1部と、バインダーとして上記のアクリレート重合体の40%水分散体を固形分相当で5部と、イオン交換水とを混合した。イオン交換水の量は、全固形分濃度が40%となる量とした。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。
 上記の正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が200μm程度になるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極を得た。
 (1-6.セパレーターの用意)
 単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5cm×5cmの正方形に切り抜いた。
 (1-7.リチウムイオン二次電池)
 電池の外装として、アルミ包材外装を用意した。上記(1-5)で得られた正極を、4cm×4cmの正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。正極の正極活物質層の面上に、上記(1-6)で得られた正方形のセパレーターを配置した。電解液(溶媒:EC/DEC=1/2(体積比)、電解質:濃度1MのLiPF6)を空気が残らないように注入し、さらに、上記(1-4)で得られた負極を、4.2cm×4.2cmの正方形に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、リチウムイオン二次電池を製造した。
 得られたリチウムイオン二次電池について、高温保存特性、高温サイクル特性、極板膨らみ特性、高温サイクル特性測定後の密着強度、及び低温出力特性を評価した。結果を表2に示す。
 〔実施例2~15〕
 (1-1)の水溶性重合体の製造において、単量体の種類及び量を表1、表3、及び表5に示す通り変更した他は、実施例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表2、表4、及び表6に示す。
 〔実施例16〕
 (16-1.水溶性重合体の製造)
 実施例1の(1-1)の水溶性重合体の製造において、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウムを添加する代わりに、ドデシルベンゼンスルホン酸ナトリウムを添加した他は、実施例1と同様にして、水溶性重合体を含む水溶液を得た。
 この水溶液には、水溶性重合体に加えて、添加したドデシルベンゼンスルホン酸ナトリウムが含まれていた。
 得られた水溶性重合体について、イオン伝導度及び膨潤度を測定した。結果を表6に示す。
 (16-2.二次電池等の製造及び評価)
 水溶性重合体を含む水溶液として、実施例1の(1-1)で得られたものに代えて上記(16-1)で得られたものを用いた他は、実施例1の(1-2)~(1-7)と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表6に示す。
 〔実施例17~18〕
 (1-3)の負極用スラリー組成物の製造において、水溶性重合体の5%水溶液とバインダーを含む水分散液の添加量を変更し、バインダーと水溶性重合体の割合を表6に示す通りとした他は、実施例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表6に示す。
 〔実施例19〕
 (1-3)の負極用スラリー組成物の製造において、SiOCを添加せず、且つ人造黒鉛の添加量を100部に変更した他は、実施例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表6に示す。
 〔実施例20〕
 (1-3)の負極用スラリー組成物の製造において、SiOCに代えて、Sn(体積平均粒子径14μm)を用いた他は、実施例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表6に示す。
 〔実施例21〕
 (21-1.負極の製造)
 スプレー乾燥機(OC-16;大川原化工機社製)を使用し、回転円盤方式のアトマイザー(直径65mm)の回転数25,000rpm、熱風温度150℃、粒子回収出口の温度が90℃の条件で、実施例1の(1-3)で得られた負極スラリー組成物の噴霧乾燥造粒を行い、体積平均粒子径56μm、球形度93%の球状の複合粒子を得た。
 ロールプレス機(押し切り粗面熱ロール;ヒラノ技研社製)のロール(ロール温度100℃、プレス線圧3.9kN/cm)に、上記複合粒子を、厚さ20μmの銅箔とともに供給し、成形速度20m/分でシート状の電極原反を成形した。この電極原反をロールプレスで圧延して、(銅箔)/(負極活物質層)の層構成を有し、負極活物質層の厚みが80μmの二次電池負極を得た。
 (21-2.二次電池等の製造及び評価)
 負極として、実施例1の(1-4)で得られたものに代えて上記(21-1)で得られたものを用いた他は、実施例1の(1-5)~(1-7)と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表6に示す。
 〔実施例22〕
 (1-3)の負極用スラリー組成物の製造において、SiOCに代えて、SiOx(体積平均粒子径:5μm)を用いた(従って、負極活物質の組成は、人造黒鉛90部及びSiOx 10部とした)他は、実施例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表8に示す。
 〔実施例23〕
 (1-1)の水溶性重合体の製造において、酸性官能基含有単量体として、メタクリル酸32.5部に代えて、メタクリル酸30.0部及び2-アクリルアミド-2-メチルプロパンスルホン酸2.5部を組み合わせて用いた他は、実施例1と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表8に示す。
 〔比較例1~5〕
 (C1-1.水溶性重合体の製造)
 単量体の種類及び量を表7に示す通り変更した他は、実施例1の(1-1)の水溶性重合体の製造と同様にして、水溶性重合体を含む水溶液を得た。
 この水溶液には、水溶性重合体に加えて、添加したドデシルベンゼンスルホン酸ナトリウムが含まれていた。
 得られた水溶性重合体について、イオン伝導度及び膨潤度を測定した。結果を表8に示す。
 (C1-2.二次電池等の製造及び評価)
 水溶性重合体を含む水溶液として、実施例1の(1-1)で得られたものに代えて上記(C1-1)で得られたものを用いた他は、実施例1の(1-2)~(1-7)と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表8に示す。
 〔比較例6〕
 負極スラリー組成物として、実施例1の(1-3)で得られたものに代えて、比較例2において得られたものを用いた他は、実施例21と同様にして、リチウムイオン二次電池の各構成要素及びリチウムイオン二次電池を作製し、評価した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表中の略語は、それぞれ以下のものを示す。
 MAA:メタクリル酸
 AMPS:2-アクリルアミド-2-メチルプロパンスルホン酸
 EDMA:エチレンジメタクリレート
 TFEMA:2,2,2-トリフルオロエチルメタクリレート
 BA:ブチルアクリレート
 POAAE:ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム
 GMA:グリシジルメタクリレート
 AGE:アリルグリシジルエーテル
 TFMMA:トリフルオロメチルメタクリレート
 PFOA:パーフルオロオクチルアクリレート
 SDBS:ドデシルベンゼンスルホン酸ナトリウム
 酸性官能種類:酸性官能基含有単量体の種類
 酸性官能量:酸性官能基含有単量体の配合割合(部)
 架橋性種類:架橋性単量体の種類
 架橋性量:架橋性単量体の配合割合(部)
 フッ素種類:フッ素含有(メタ)アクリル酸エステル単量体の種類
 フッ素量:フッ素含有(メタ)アクリル酸エステル単量体の配合割合(部)
 その他単量体種類:水溶性重合体の製造に際して用いた、その他の(即ち酸性官能基含有単量体、架橋性単量体、フッ素含有(メタ)アクリル酸エステル単量体及び反応性界面活性剤単量体以外の)単量体の種類
 その他単量体量:水溶性重合体の製造に際して用いた、その他の(即ち酸性官能基含有単量体、架橋性単量体、フッ素含有(メタ)アクリル酸エステル単量体及び反応性界面活性剤単量体以外の)単量体の配合割合(部)
 反応性界面種類:反応性界面活性剤単量体の種類
 反応性界面量:反応性界面活性剤単量体の配合割合(部)
 その他界面種類:水溶性重合体の製造に際して添加した、反応性界面活性剤以外の界面活性剤の種類
 その他界面量:水溶性重合体の製造に際して添加した、反応性界面活性剤以外の界面活性剤の配合割合
 負極活物質:負極活物質種類及び重量比
 膨潤度:粒子状バインダーの膨潤度に対する、水溶性重合体の膨潤度の比V1/V0
 イオン伝導度:水溶性重合体のイオン伝導度(S/cm)
 バインダー/水溶性重合体:負極用バインダーにおける、粒子状バインダー/水溶性重合体の重量比
 ピール強度:密着性試験で測定された負極活物質のピール強度(N/m)
 ピンホール:塗工性試験で測定されたピンホール個数(個)
 極板の水分量:負極の電極活物質層の水分量(ppm)
 高温保存特性:高温保存特性試験で測定された容量変化率ΔC(%)
 高温サイクル特性:高温サイクル特性試験で測定された容量変化率ΔC(%)
 高温サイクル特性後のピール強度:高温サイクル特性後の密着強度試験で測定されたピール強度(N/m)
 極板膨らみ特性:負極の極板膨らみ率((d1-d0)/d0)×100(%)
 低温出力特性:低温出力特性で測定された電圧変化ΔV(mV)
 実施例及び比較例のそれぞれにおいて、酸性官能基含有単量体、架橋性単量体、フッ素含有(メタ)アクリル酸エステル単量体、反応性界面活性剤単量体、及びその他の単量体の合計を100%とした際のそれぞれの割合(%)を、下記表9に示す。
Figure JPOXMLDOC01-appb-T000011
 表1~表8の結果から、本発明の要件を充足する実施例においては、全ての評価項目においてバランス良く良好な結果が得られた。これに対し、水溶性重合体のイオン伝導度及び膨潤度比の一方又は両方が本願の要件を充足しない比較例1~6においては、ピール強度が劣り、ピンホールが多く発生し且つ極板水分量が高く、その結果、電池の特性においてもより劣る結果が得られた。

Claims (11)

  1.  粒子状バインダー、および酸性官能基を有する水溶性重合体を含み、
     前記水溶性重合体のイオン伝導度が1×10-5~1×10-3S/cmであり、
     前記水溶性重合体の、8~13(cal/cm1/2の溶解度パラメータを有する液体に対する膨潤度が、同条件で測定した前記粒子状バインダーの膨潤度の1.0~2.0倍である、
     二次電池負極用バインダー組成物。
  2.  前記水溶性重合体が、架橋性単量体単位を含有し、前記水溶性重合体中の前記架橋性単量体単位の含有割合が0.1~2重量%である請求項1に記載の二次電池負極用バインダー組成物。
  3.  前記水溶性重合体が、フッ素含有(メタ)アクリル酸エステル単量体単位を含有し、前記水溶性重合体中の前記フッ素含有(メタ)アクリル酸エステル単量体単位の含有割合が1~20重量%である請求項1または2に記載の二次電池負極用バインダー組成物。
  4.  前記水溶性重合体が、反応性界面活性剤単位を含有し、前記水溶性重合体中の前記反応性界面活性剤単位の含有割合が0.1~15重量%である請求項1~3のいずれか1項に記載の二次電池負極用バインダー組成物。
  5.  前記粒子状バインダーと前記水溶性重合体の含有割合が、粒子状バインダー/水溶性重合体=99.5/0.5~95/5(重量比)である請求項1~4のいずれか1項に記載の二次電池負極用バインダー組成物。
  6.  請求項1~5のいずれか1項に記載の二次電池負極用バインダー組成物および負極活物質を含む二次電池用負極。
  7.  前記負極活物質が、リチウムを吸蔵し、放出する金属を含む請求項6に記載の二次電池用負極。
  8.  前記負極活物質が、Si含有化合物を含む請求項6または7に記載の二次電池用負極。
  9.  負極活物質、請求項1~5のいずれか1項に記載の二次電池負極用バインダー組成物および水を含む二次電池負極用スラリー組成物。
  10.  請求項9に記載の二次電池負極用スラリー組成物を、集電体上に塗布し、乾燥することを含む二次電池用負極の製造方法。
  11.  正極、負極、電解液、及びセパレーターを備えるリチウムイオン二次電池であって、前記負極が請求項6~8のいずれか1項に記載の二次電池用負極である二次電池。
PCT/JP2012/071463 2011-08-30 2012-08-24 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池 WO2013031690A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013531283A JP5991321B2 (ja) 2011-08-30 2012-08-24 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池
EP12827649.0A EP2752927B1 (en) 2011-08-30 2012-08-24 Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
KR1020147004875A KR20140063632A (ko) 2011-08-30 2012-08-24 2 차 전지 부극용 바인더 조성물, 2 차 전지용 부극, 부극용 슬러리 조성물, 제조 방법 및 2 차 전지
CN201280041588.4A CN103782426B (zh) 2011-08-30 2012-08-24 二次电池负极用粘合剂组合物、二次电池用负极、负极用浆料组合物、制造方法及二次电池
US14/241,722 US10224549B2 (en) 2011-08-30 2012-08-24 Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-187087 2011-08-30
JP2011187087 2011-08-30

Publications (1)

Publication Number Publication Date
WO2013031690A1 true WO2013031690A1 (ja) 2013-03-07

Family

ID=47756180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071463 WO2013031690A1 (ja) 2011-08-30 2012-08-24 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池

Country Status (6)

Country Link
US (1) US10224549B2 (ja)
EP (1) EP2752927B1 (ja)
JP (1) JP5991321B2 (ja)
KR (1) KR20140063632A (ja)
CN (1) CN103782426B (ja)
WO (1) WO2013031690A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131368A (ja) * 2011-12-21 2013-07-04 Toyo Kagaku Kk 電極用バインダー
WO2014024937A1 (ja) * 2012-08-09 2014-02-13 日本ゼオン株式会社 二次電池用負極、二次電池、スラリー組成物、及び製造方法
WO2014024967A1 (ja) * 2012-08-10 2014-02-13 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物
WO2014148064A1 (ja) * 2013-03-22 2014-09-25 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2014185381A1 (ja) * 2013-05-14 2014-11-20 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
WO2014196547A1 (ja) * 2013-06-04 2014-12-11 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JPWO2013099990A1 (ja) * 2011-12-27 2015-05-11 日本ゼオン株式会社 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池
KR20150131014A (ko) * 2013-03-15 2015-11-24 제온 코포레이션 이차 전지용 바인더 조성물, 이차 전지용 슬러리 조성물, 이차 전지용 부극, 및 이차 전지
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2016066508A (ja) * 2014-09-25 2016-04-28 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP2016066529A (ja) * 2014-09-25 2016-04-28 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
WO2016067635A1 (ja) * 2014-10-31 2016-05-06 日本ゼオン株式会社 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2016067633A1 (ja) * 2014-10-31 2016-05-06 日本ゼオン株式会社 リチウムイオン二次電池負極用ペースト組成物、リチウムイオン二次電池負極用複合粒子、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN105659426A (zh) * 2013-10-31 2016-06-08 日本瑞翁株式会社 锂离子二次电池的粘合剂用的粒子状聚合物、粘接层及多孔膜组合物
KR20160077058A (ko) * 2013-10-28 2016-07-01 제온 코포레이션 리튬 이온 2 차 전지 부극용 슬러리 조성물, 리튬 이온 2 차 전지용 부극, 리튬 이온 2 차 전지, 및 제조 방법
CN105830257A (zh) * 2013-12-26 2016-08-03 日本瑞翁株式会社 锂离子二次电池负极用浆料组合物、锂离子二次电池用负极及锂离子二次电池
WO2016136178A1 (ja) * 2015-02-25 2016-09-01 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
US20170040612A1 (en) * 2014-04-21 2017-02-09 Wako Pure Chemical Industries, Ltd. Binder for lithium cell
US20170110733A1 (en) * 2014-07-11 2017-04-20 Lg Chem, Ltd. Cathode and method of manufacturing the same
US20170149039A1 (en) * 2015-11-20 2017-05-25 Samsung Electronics Co., Ltd. Electrode-composite separator assembly for lithium battery and battery including the same
JP2020102421A (ja) * 2018-12-25 2020-07-02 関西ペイント株式会社 全固体二次電池電極用導電性ペースト及び全固体二次電池
KR20220113542A (ko) * 2021-01-29 2022-08-12 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 바인더 및 이의 제조 방법, 이차 전지, 전지 모듈, 전지 팩 및 전기 장치
WO2023228877A1 (ja) * 2022-05-27 2023-11-30 三井化学株式会社 二次電池セパレータ用コート材原料、二次電池セパレータ用コート材、二次電池セパレータおよび二次電池

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506553B2 (ja) * 2012-04-23 2019-04-24 日本ゼオン株式会社 リチウムイオン二次電池
WO2014153465A1 (en) * 2013-03-20 2014-09-25 Kansas State University Research Foundation Flexible composite electrode high-rate performance lithium-ion batteries
KR102234294B1 (ko) * 2014-01-10 2021-03-31 삼성에스디아이 주식회사 2차전지용 바인더 조성물, 이를 채용한 양극과 리튬전지
KR102234295B1 (ko) * 2014-01-10 2021-03-31 삼성에스디아이 주식회사 2차전지용 바인더 조성물, 이를 채용한 양극과 리튬전지
WO2016209983A1 (en) * 2015-06-22 2016-12-29 Alliance For Sustainable Energy, Llc Magnesium metal devices and methods of making the same
KR101982571B1 (ko) 2015-10-08 2019-05-27 주식회사 엘지화학 전극 내 바인더 분포 측정방법
JP2018533819A (ja) * 2015-10-28 2018-11-15 サビック グローバル テクノロジーズ ビー.ブイ. リチウムイオン電池の電極のためのバインダ組成物
WO2017094252A1 (ja) * 2015-11-30 2017-06-08 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池
WO2017195563A1 (ja) * 2016-05-10 2017-11-16 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池
CN110870104A (zh) * 2017-05-18 2020-03-06 3M创新有限公司 用于电化学电池的材料及其制造和使用方法
KR20200042898A (ko) * 2017-08-24 2020-04-24 니폰 제온 가부시키가이샤 비수계 이차 전지용 바인더 조성물, 비수계 이차 전지 기능층용 슬러리 조성물, 비수계 이차 전지용 기능층, 비수계 이차 전지용 전지 부재, 및 비수계 이차 전지
KR102211109B1 (ko) * 2017-09-15 2021-02-02 주식회사 엘지화학 실리콘 전극 바인더
JP6783412B2 (ja) * 2018-09-28 2020-11-11 松本油脂製薬株式会社 二次電池負極用スラリー組成物、二次電池負極スラリー用分散剤組成物、二次電池用負極、及び二次電池
JP7364359B2 (ja) * 2019-05-28 2023-10-18 トヨタ自動車株式会社 全固体電池及びその製造方法
EP4015544A4 (en) * 2019-08-13 2022-10-26 ENEOS Materials Corporation COMPOSITION FOR ELECTRICITY STORAGE DEVICES, SUSPENSION FOR ELECTRICITY STORAGE DEVICE ELECTRODES, ELECTRICITY STORAGE DEVICE ELECTRODE AND ELECTRICITY STORAGE DEVICE
CN112467142A (zh) * 2020-11-25 2021-03-09 湖南高瑞电源材料有限公司 一种水溶液型磷酸铁锂正极粘合剂、制备方法及其应用
EP4338220A1 (en) * 2021-05-14 2024-03-20 Arkema, Inc. Binder composition for negative electrode and applications thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010146870A (ja) * 2008-12-19 2010-07-01 Nippon A&L Inc 二次電池電極用バインダー
WO2011001848A1 (ja) * 2009-06-30 2011-01-06 日本ゼオン株式会社 二次電池用電極及び二次電池
WO2012115096A1 (ja) * 2011-02-23 2012-08-30 日本ゼオン株式会社 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438102B2 (ja) 1997-12-02 2010-03-24 日本ゼオン株式会社 電池用バインダー、電池電極用スラリー、リチウム二次電池用電極およびリチウム二次電池
JP4441935B2 (ja) * 1998-06-09 2010-03-31 パナソニック株式会社 非水電解液二次電池用負極およびそれを用いた電池
JP4682401B2 (ja) 2000-07-31 2011-05-11 日本ゼオン株式会社 二次電池電極用バインダー、二次電池電極および二次電池
US8202652B2 (en) * 2000-11-13 2012-06-19 Zeon Corporation Slurry composition for secondary cell positive electrode, secondary cell positive electrode and secondary cell
JP5301753B2 (ja) * 2001-04-20 2013-09-25 日本エイアンドエル株式会社 二次電池負極用バインダーおよび二次電池電極用組成物
JP2003217573A (ja) 2002-01-22 2003-07-31 Hitachi Powdered Metals Co Ltd 非水系二次電池の負極塗膜形成用スラリーおよび該スラリーの調整方法
JP2003308841A (ja) 2002-04-16 2003-10-31 Hitachi Powdered Metals Co Ltd 非水系二次電池の負極塗膜形成用スラリー
JP4636444B2 (ja) * 2004-09-22 2011-02-23 日立化成工業株式会社 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
JP5227169B2 (ja) * 2006-04-26 2013-07-03 三井化学株式会社 電気化学セル電極用バインダー
JP5387404B2 (ja) 2007-03-30 2014-01-15 日本ゼオン株式会社 二次電池電極用バインダー、二次電池電極および二次電池
CN102197516B (zh) * 2008-08-29 2014-03-12 日本瑞翁株式会社 多孔膜、二次电池电极与锂离子二次电池
CN102124595B (zh) * 2009-06-30 2013-10-02 松下电器产业株式会社 非水电解质二次电池用负极及其制造方法以及非水电解质二次电池
PL2450985T3 (pl) * 2009-07-01 2018-03-30 Zeon Corporation Elektroda do baterii akumulatorowej, zawiesina do elektrody do baterii akumulatorowej i bateria akumulatorowa
US9263733B2 (en) * 2009-09-25 2016-02-16 Zeon Corporation Anode for use in a lithium-ion secondary battery, and lithium-ion secondary battery
KR20120010552A (ko) * 2010-07-26 2012-02-03 삼성전자주식회사 고체 리튬 이온 이차 전지 및 이에 사용될 수 있는 전극

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010146870A (ja) * 2008-12-19 2010-07-01 Nippon A&L Inc 二次電池電極用バインダー
WO2011001848A1 (ja) * 2009-06-30 2011-01-06 日本ゼオン株式会社 二次電池用電極及び二次電池
WO2012115096A1 (ja) * 2011-02-23 2012-08-30 日本ゼオン株式会社 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752927A4 *

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131368A (ja) * 2011-12-21 2013-07-04 Toyo Kagaku Kk 電極用バインダー
JPWO2013099990A1 (ja) * 2011-12-27 2015-05-11 日本ゼオン株式会社 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池
WO2014024937A1 (ja) * 2012-08-09 2014-02-13 日本ゼオン株式会社 二次電池用負極、二次電池、スラリー組成物、及び製造方法
WO2014024967A1 (ja) * 2012-08-10 2014-02-13 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物
KR102166878B1 (ko) 2013-03-15 2020-10-16 제온 코포레이션 이차 전지용 바인더 조성물, 이차 전지용 슬러리 조성물, 이차 전지용 부극, 및 이차 전지
KR20150131014A (ko) * 2013-03-15 2015-11-24 제온 코포레이션 이차 전지용 바인더 조성물, 이차 전지용 슬러리 조성물, 이차 전지용 부극, 및 이차 전지
CN105190967A (zh) * 2013-03-22 2015-12-23 日本瑞翁株式会社 锂离子二次电池负极用浆料组合物、锂离子二次电池用负极及锂离子二次电池
WO2014148064A1 (ja) * 2013-03-22 2014-09-25 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JPWO2014148064A1 (ja) * 2013-03-22 2017-02-16 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
US10566627B2 (en) 2013-03-22 2020-02-18 Zeon Corporation Slurry composition for negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
KR20160008519A (ko) * 2013-05-14 2016-01-22 제온 코포레이션 리튬 이온 이차 전지용 바인더 조성물, 리튬 이온 이차 전지용 슬러리 조성물, 리튬 이온 이차 전지용 전극, 리튬 이온 이차 전지, 그리고 리튬 이온 이차 전지용 바인더 조성물의 제조 방법
CN105122521B (zh) * 2013-05-14 2017-07-28 日本瑞翁株式会社 锂离子二次电池用粘合剂组合物、锂离子二次电池用浆料组合物、锂离子二次电池用电极、锂离子二次电池、以及锂离子二次电池用粘合剂组合物的制造方法
JPWO2014185381A1 (ja) * 2013-05-14 2017-02-23 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
WO2014185381A1 (ja) * 2013-05-14 2014-11-20 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
KR102188318B1 (ko) 2013-05-14 2020-12-08 제온 코포레이션 리튬 이온 이차 전지용 바인더 조성물, 리튬 이온 이차 전지용 슬러리 조성물, 리튬 이온 이차 전지용 전극, 리튬 이온 이차 전지, 그리고 리튬 이온 이차 전지용 바인더 조성물의 제조 방법
CN105122521A (zh) * 2013-05-14 2015-12-02 日本瑞翁株式会社 锂离子二次电池用粘合剂组合物、锂离子二次电池用浆料组合物、锂离子二次电池用电极、锂离子二次电池、以及锂离子二次电池用粘合剂组合物的制造方法
US9882216B2 (en) 2013-06-04 2018-01-30 Zeon Corporation Binder composition for lithium ion secondary battery electrodes, slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2014196547A1 (ja) * 2013-06-04 2014-12-11 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
CN105247718A (zh) * 2013-06-04 2016-01-13 日本瑞翁株式会社 锂离子二次电池电极用粘合剂组合物、锂离子二次电池电极用浆料组合物、锂离子二次电池用电极及锂离子二次电池
KR102237302B1 (ko) * 2013-06-04 2021-04-06 제온 코포레이션 리튬 이온 이차 전지 전극용 바인더 조성물, 리튬 이온 이차 전지 전극용 슬러리 조성물, 리튬 이온 이차 전지용 전극 및 리튬 이온 이차 전지
KR20160015222A (ko) * 2013-06-04 2016-02-12 제온 코포레이션 리튬 이온 이차 전지 전극용 바인더 조성물, 리튬 이온 이차 전지 전극용 슬러리 조성물, 리튬 이온 이차 전지용 전극 및 리튬 이온 이차 전지
JPWO2014196547A1 (ja) * 2013-06-04 2017-02-23 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
KR20160077058A (ko) * 2013-10-28 2016-07-01 제온 코포레이션 리튬 이온 2 차 전지 부극용 슬러리 조성물, 리튬 이온 2 차 전지용 부극, 리튬 이온 2 차 전지, 및 제조 방법
KR102301032B1 (ko) 2013-10-28 2021-09-09 제온 코포레이션 리튬 이온 2 차 전지 부극용 슬러리 조성물, 리튬 이온 2 차 전지용 부극, 리튬 이온 2 차 전지, 및 제조 방법
CN105659426A (zh) * 2013-10-31 2016-06-08 日本瑞翁株式会社 锂离子二次电池的粘合剂用的粒子状聚合物、粘接层及多孔膜组合物
CN105659426B (zh) * 2013-10-31 2018-04-27 日本瑞翁株式会社 锂离子二次电池的粘合剂用的粒子状聚合物、粘接层及多孔膜组合物
JPWO2015098050A1 (ja) * 2013-12-26 2017-03-23 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR20160102407A (ko) * 2013-12-26 2016-08-30 제온 코포레이션 리튬 이온 이차 전지 부극용 슬러리 조성물, 리튬 이온 이차 전지용 부극 및 리튬 이온 이차 전지
CN105830257A (zh) * 2013-12-26 2016-08-03 日本瑞翁株式会社 锂离子二次电池负极用浆料组合物、锂离子二次电池用负极及锂离子二次电池
KR102272378B1 (ko) 2013-12-26 2021-07-01 제온 코포레이션 리튬 이온 이차 전지 부극용 슬러리 조성물, 리튬 이온 이차 전지용 부극 및 리튬 이온 이차 전지
CN105830257B (zh) * 2013-12-26 2018-09-14 日本瑞翁株式会社 锂离子二次电池负极用浆料组合物、锂离子二次电池用负极及锂离子二次电池
US20170040612A1 (en) * 2014-04-21 2017-02-09 Wako Pure Chemical Industries, Ltd. Binder for lithium cell
US10854881B2 (en) * 2014-04-21 2020-12-01 Tokyo University Of Science Foundation Binder for lithium cell
JP2020123590A (ja) * 2014-06-04 2020-08-13 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
US20170110733A1 (en) * 2014-07-11 2017-04-20 Lg Chem, Ltd. Cathode and method of manufacturing the same
US11976218B2 (en) * 2014-07-11 2024-05-07 Lg Energy Solution, Ltd. Cathode and method of manufacturing the same
JP2016066508A (ja) * 2014-09-25 2016-04-28 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP2016066529A (ja) * 2014-09-25 2016-04-28 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
WO2016067635A1 (ja) * 2014-10-31 2016-05-06 日本ゼオン株式会社 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2016067633A1 (ja) * 2014-10-31 2016-05-06 日本ゼオン株式会社 リチウムイオン二次電池負極用ペースト組成物、リチウムイオン二次電池負極用複合粒子、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JPWO2016067635A1 (ja) * 2014-10-31 2017-08-10 日本ゼオン株式会社 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JPWO2016067633A1 (ja) * 2014-10-31 2017-08-10 日本ゼオン株式会社 リチウムイオン二次電池負極用ペースト組成物、リチウムイオン二次電池負極用複合粒子、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR20170078623A (ko) * 2014-10-31 2017-07-07 니폰 제온 가부시키가이샤 리튬 이온 2차 전지 부극용 페이스트 조성물, 리튬 이온 2차 전지 부극용 복합 입자, 리튬 이온 2차 전지 부극용 슬러리 조성물, 리튬 이온 2차 전지용 부극 및 리튬 이온 2차 전지
KR102493662B1 (ko) 2014-10-31 2023-01-31 니폰 제온 가부시키가이샤 리튬 이온 2차 전지 부극용 페이스트 조성물, 리튬 이온 2차 전지 부극용 복합 입자, 리튬 이온 2차 전지 부극용 슬러리 조성물, 리튬 이온 2차 전지용 부극 및 리튬 이온 2차 전지
US20180040886A1 (en) * 2015-02-25 2018-02-08 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary batteries
WO2016136178A1 (ja) * 2015-02-25 2016-09-01 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP2020174057A (ja) * 2015-02-25 2020-10-22 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
US10490812B2 (en) 2015-02-25 2019-11-26 Sanyo Electric Co., Ltd. Negative electrode including SiOx particles having carbon coating, carbonaceous active material particles, and compound having carboxyl or hydroxyl group and nonaqueous electrolyte secondary batteries
JPWO2016136178A1 (ja) * 2015-02-25 2017-11-30 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
US10615390B2 (en) * 2015-11-20 2020-04-07 Samsung Electronics Co., Ltd. Electrode-composite separator assembly for lithium battery and battery including the same
US20170149039A1 (en) * 2015-11-20 2017-05-25 Samsung Electronics Co., Ltd. Electrode-composite separator assembly for lithium battery and battery including the same
JP7136682B2 (ja) 2018-12-25 2022-09-13 関西ペイント株式会社 全固体二次電池電極用導電性ペースト及び全固体二次電池
JP2020102421A (ja) * 2018-12-25 2020-07-02 関西ペイント株式会社 全固体二次電池電極用導電性ペースト及び全固体二次電池
KR20220113542A (ko) * 2021-01-29 2022-08-12 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 바인더 및 이의 제조 방법, 이차 전지, 전지 모듈, 전지 팩 및 전기 장치
KR102535935B1 (ko) 2021-01-29 2023-05-26 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 바인더 및 이의 제조 방법, 이차 전지, 전지 모듈, 전지 팩 및 전기 장치
WO2023228877A1 (ja) * 2022-05-27 2023-11-30 三井化学株式会社 二次電池セパレータ用コート材原料、二次電池セパレータ用コート材、二次電池セパレータおよび二次電池

Also Published As

Publication number Publication date
EP2752927A4 (en) 2015-09-02
CN103782426A (zh) 2014-05-07
CN103782426B (zh) 2016-03-30
JP5991321B2 (ja) 2016-09-14
US10224549B2 (en) 2019-03-05
US20140205904A1 (en) 2014-07-24
JPWO2013031690A1 (ja) 2015-03-23
EP2752927A1 (en) 2014-07-09
EP2752927B1 (en) 2017-02-22
KR20140063632A (ko) 2014-05-27

Similar Documents

Publication Publication Date Title
JP5991321B2 (ja) 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池
JP6011608B2 (ja) 二次電池負極用バインダー組成物、二次電池用負極、二次電池負極用スラリー組成物、製造方法及び二次電池
JP6070570B2 (ja) リチウムイオン二次電池用電極、リチウムイオン二次電池及びスラリー組成物、並びにリチウムイオン二次電池用電極の製造方法
JP5900354B2 (ja) 二次電池負極用スラリー、二次電池用負極及びその製造方法、並びに二次電池
JP6417943B2 (ja) リチウムイオン二次電池正極用スラリー
JP5761197B2 (ja) 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池負極、二次電池及び二次電池負極用バインダー組成物の製造方法
KR102060429B1 (ko) 리튬 이온 이차 전지
JP5708301B2 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP6168051B2 (ja) リチウムイオン二次電池
JP6168058B2 (ja) 二次電池用負極、二次電池、スラリー組成物、及び製造方法
JP6287856B2 (ja) リチウムイオン二次電池
JP6052290B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP5987471B2 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
WO2012115096A1 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP2014056813A (ja) 二次電池用スラリー
WO2015174036A1 (ja) 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極およびその製造方法、並びに、二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280041588.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531283

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147004875

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14241722

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012827649

Country of ref document: EP