WO2011096463A1 - リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウム二次電池 - Google Patents

リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウム二次電池 Download PDF

Info

Publication number
WO2011096463A1
WO2011096463A1 PCT/JP2011/052216 JP2011052216W WO2011096463A1 WO 2011096463 A1 WO2011096463 A1 WO 2011096463A1 JP 2011052216 W JP2011052216 W JP 2011052216W WO 2011096463 A1 WO2011096463 A1 WO 2011096463A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
secondary battery
ion secondary
polymer particles
Prior art date
Application number
PCT/JP2011/052216
Other languages
English (en)
French (fr)
Inventor
佳 小林
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2011552812A priority Critical patent/JPWO2011096463A1/ja
Priority to CN2011800160471A priority patent/CN102823029A/zh
Priority to US13/576,899 priority patent/US20120295159A1/en
Publication of WO2011096463A1 publication Critical patent/WO2011096463A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a slurry composition for a negative electrode of a lithium ion secondary battery, a negative electrode of a lithium ion secondary battery, and a lithium ion secondary battery.
  • HEV hybrid electric vehicle
  • a hybrid electric vehicle that uses an engine and a motor as a power source for the purpose of reducing CO 2 emissions and improving fuel efficiency
  • One of the challenges of HEV is the development of a high output, small size, light weight and low cost battery.
  • nickel-hydrogen secondary batteries are used, but there are problems in input / output characteristics and energy density. Therefore, a lithium ion secondary battery having high voltage and high energy density and excellent input / output characteristics can be reduced in size and weight, and thus is highly expected as a power source for HEV.
  • graphite-based carbon materials are being studied when energy density is a priority, and amorphous carbon materials are being considered when input / output characteristics are important.
  • the graphite-based carbon material has a high initial charge / discharge efficiency because of its small specific surface area, but has a problem that the capacity of 372 Ah / kg or more, which is the theoretical capacity, cannot be obtained and the input / output characteristics are inferior.
  • the amorphous carbon material has low reactivity with the electrolytic solution, and it is difficult to form dendritic metallic lithium, so that it has excellent input / output characteristics and obtains a material having a discharge capacity per unit mass of 500 Ah / kg or more.
  • the crystallinity is low, it is difficult to improve the electrode plate density by a rolling process such as a press roll as compared with the graphite-based carbon material. As a result, the adhesion area between the active material particles is impaired, which causes a problem that the adhesion strength of the electrode plate is reduced.
  • low crystal carbon having a graphite interlayer distance (d002) of 0.345 to 0.370 nm as a negative electrode active material, styrene-butadiene copolymer (SBR) as a binder, and carboxymethyl cellulose as a thickener. It has been shown that a favorable negative electrode can be obtained by using it, and a battery having excellent output characteristics can be obtained.
  • d002 graphite interlayer distance
  • SBR styrene-butadiene copolymer
  • the present invention provides a lithium ion secondary battery negative electrode slurry composition that is excellent in lithium ion acceptability at low temperatures, improves the adhesion strength of the negative electrode plate, and can provide a lithium ion secondary battery with excellent life characteristics. It aims at providing the negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
  • polymer particles used as a binder contain polymer units of dicarboxylic acid monomers, and thus the hydrophilicity of the polymer particle surfaces is high. Moreover, the oligomer derived from the dicarboxylic acid monomer is adsorbed on the surface of the polymer particles. Therefore, it is difficult for the binder to cover the surface of the negative electrode active material which is hydrophobic, and carboxymethyl cellulose which is a thickener is preferentially present on the surface of the negative electrode active material. Since carboxymethylcellulose hardly swells in the electrolytic solution, it inhibits lithium ion migration, and as a result, the output characteristics and input characteristics, in particular, the lithium ion acceptability at a low temperature is lowered.
  • carboxymethyl cellulose used as a thickener in Patent Document 1 has a low molecular weight, so it is difficult to say that sufficient adhesion of the negative electrode is obtained, and peeling of the negative electrode occurs during a battery cycle test. In addition, there is a concern about deterioration of life characteristics due to an increase in internal resistance.
  • a negative electrode including a carbon material having a graphite interlayer distance (a spacing (d value) of (002) plane by X-ray diffraction method) of 0.340 to 0.370 nm.
  • a negative electrode slurry composition containing an active material, a thickener, a binder composed of polymer particles, and water, a polymer having a polymerization degree in a specific range is used as the thickener, and the polymer particles contain a monocarboxylic acid monomer.
  • the amount of acid groups on the surface of the polymer particles per 1 g of the polymer particles obtained by polymerizing a monomer composition containing a specific amount and measured by conductivity titration (hereinafter referred to as “surface acid groups”)
  • surface acid groups a lithium ion secondary battery having excellent lithium ion acceptability at low temperatures, improved adhesion strength of the negative electrode plate, and excellent life characteristics. Gain It found that it is possible, and have completed the present invention.
  • the gist of the present invention aimed at solving such problems is as follows.
  • a negative electrode active material, a thickener, a binder composed of polymer particles, and a slurry composition for a negative electrode of a lithium ion secondary battery containing water includes a carbon material, and a distance between graphite layers of the carbon material (a spacing (d value) of (002) plane by X-ray diffraction method) is 0.340 to 0.370 nm.
  • the thickener is a polymer having a polymerization degree of 1,400 to 3,000,
  • the polymer particles are obtained by polymerizing a monomer composition containing 1 to 10% by mass of a monocarboxylic acid monomer, and A slurry composition for a negative electrode of a lithium ion secondary battery, wherein the amount of acid groups on the surface of the polymer particles per 1 g of the polymer particles measured by conductivity titration is 0.1 to 1.0 mmol.
  • a lithium ion secondary battery negative electrode obtained by applying the slurry composition for a lithium ion secondary battery negative electrode described in (1) to (3) to a current collector and drying.
  • a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolyte, wherein the negative electrode is the lithium ion secondary battery negative electrode according to (4).
  • a negative electrode active material containing a carbon material having a graphite interlayer distance (plane distance (d value) of (002) plane by X-ray diffraction method) of 0.340 to 0.370 nm, and a polymerization degree of 1 , 400 to 3,000, a slurry composition for a negative electrode of a lithium ion secondary battery containing a binder comprising polymer particles and water, wherein the polymer particles are monocarboxylic acid monomers Is obtained by polymerizing a monomer composition containing 1 to 10% by mass, and the amount of acid groups on the surface of the polymer particles per 1 g of the polymer particles measured by conductivity titration is 0.
  • a binder composed of polymer particles is present in the vicinity of the surface of the negative electrode active material preferentially over the thickener. Therefore, when a lithium ion secondary battery is produced using the slurry composition, the polymer particles are more swellable in the electrolyte solution than the thickener, and therefore the lithium ion acceptability at a low temperature ( Improved low temperature characteristics).
  • the adhesion strength (peel strength) of the negative electrode is improved, and the life characteristics of the lithium ion secondary battery (charge / discharge cycle characteristics) Will improve.
  • requiring the amount of surface acid groups of a polymer particle is shown.
  • the slurry composition for a negative electrode of a lithium ion secondary battery of the present invention contains a negative electrode active material, a thickener, a binder composed of polymer particles, and water.
  • the negative electrode active material used in the present invention has a graphite interlayer distance (plane distance (d value) of (002) plane by X-ray diffraction method) of 0.340 to 0.370 nm, preferably 0.345 to 0.370 nm.
  • a carbon material When the distance between graphite layers of the carbon material is in the above range, a lithium ion secondary battery having excellent output characteristics can be obtained without reducing the capacity per volume excessively.
  • the true density of the negative electrode active material is preferably 1.4 to 2.1 g / cm 3 , more preferably 1.5 to 2.0 g / cm 3 .
  • a lithium ion secondary battery having excellent output characteristics can be obtained without excessively reducing the capacity per volume.
  • the negative electrode active material in the present invention refers to a negative electrode active material having carbon as a main skeleton capable of being doped and dedoped with lithium ions.
  • Specific examples include carbonaceous materials and graphite materials.
  • the carbonaceous material generally indicates a carbonaceous material with low graphitization (low crystallinity) obtained by heat treatment (carbonization) of a carbon precursor at 2000 ° C. or less. A graphitic material having high crystallinity close to that of the graphite obtained by heat treatment as described above will be shown.
  • Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitic carbon having a structure close to an amorphous structure typified by glassy carbon.
  • graphitizable carbon examples include carbon materials made from tar pitch obtained from petroleum and coal, such as coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fibers, pyrolytic vapor-grown carbon fibers, etc. Is mentioned.
  • MCMB is a carbon fine particle obtained by separating and extracting mesophase spherules produced in the process of heating pitches at around 400 ° C.
  • mesophase pitch-based carbon fiber is a mesophase pitch obtained by growing and coalescing the mesophase spherules. Is a carbon fiber made from a raw material.
  • non-graphitizable carbon examples include phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic carbon, and furfuryl alcohol resin fired bodies (PFA).
  • the specific surface area of the negative electrode active material used in the present invention is preferably in the range of 0.1 to 20 m 2 / g, and more preferably in the range of 0.5 to 10 m 2 / g.
  • the specific surface area of the negative electrode active material is in the above range, the amount of binder at the time of preparation of the slurry composition described later can be reduced, the decrease in battery capacity can be suppressed, and the slurry composition described later is applied. Therefore, it becomes easy to adjust to a proper viscosity.
  • the particle diameter of the negative electrode active material used in the present invention is usually 1 to 50 ⁇ m, preferably 2 to 30 ⁇ m.
  • the particle diameter of the negative electrode active material is in the above range, the amount of the binder when preparing a slurry composition to be described later can be reduced, the decrease in battery capacity can be suppressed, and the slurry composition is applied. Therefore, it becomes easy to adjust to a proper viscosity.
  • a negative electrode active material in which the distance between the graphite layers of the carbon material (the (002) plane spacing (d value) by the X-ray diffraction method) is less than 0.340 nm within a range that does not hinder the effects of the present invention. You may mix and use.
  • the negative electrode active material having a graphite interlayer distance of less than 0.34 nm is mixed and used, the negative electrode active material having a graphite interlayer distance of 0.340 to 0.370 nm and a negative electrode having a graphite interlayer distance of less than 0.340 nm
  • the mass ratio with respect to the active material is preferably 99: 1 to 60:40, and more preferably 90:10 to 70:30.
  • the thickener in the present invention is a polymer that can impart high viscosity to the slurry composition with a small amount of addition and has the property of improving the coating property of the slurry composition.
  • the polymerization degree of the thickener used in the present invention is 1,400 to 3,000, preferably 1,450 to 2,500, more preferably 1,500 to 2,000. When the polymerization degree of the thickener is in the above range, the thickener is present between the negative electrode active materials without being adsorbed on the surface of the negative electrode active material, so that the adhesion strength inside the negative electrode active material layer is improved.
  • the degree of polymerization of the thickener is measured by the copper ammonia method described in ISO-4312 method.
  • thickener used in the present invention examples include those obtained by modifying natural polymers such as plant or animal-derived polysaccharides and proteins using chemical reactions.
  • specific examples of the thickener include starch polymer, cellulose polymer, alginic acid polymer and microbial polymer.
  • polyacrylic acid and its salt etc. can also be used as a thickener.
  • starch polymer examples include solubilized starch, carboxymethyl starch, methylhydroxypropyl starch, and modified potato starch.
  • Cellulose polymers can be classified into nonionic, cationic and anionic.
  • Nonionic cellulose polymers include, for example, alkylcelluloses such as methylcellulose, methylethylcellulose, ethylcellulose, microcrystalline cellulose, and hydroxyethylcellulose, hydroxybutylmethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose stearoxy
  • alkylcelluloses such as methylcellulose, methylethylcellulose, ethylcellulose, microcrystalline cellulose, and hydroxyethylcellulose, hydroxybutylmethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose stearoxy
  • hydroxyalkyl celluloses such as ether, carboxymethyl hydroxyethyl cellulose, alkyl hydroxyethyl cellulose, and nonoxynyl hydroxyethyl cellulose.
  • Examples of cationic cellulose polymers include low nitrogen hydroxyethyl cellulose dimethyl diallyl ammonium chloride (polyquaternium-4), chloride- [2-hydroxy-3- (trimethylammonio) propyl] hydroxyethylcellulose (polyquaternium-10), chloride- Examples include [2-hydroxy-3- (lauryldimethylammonio) propyl] hydroxyethylcellulose (polyquaternium-24).
  • anionic cellulose polymer examples include alkyl cellulose ethers having the structures of the general formulas (1) and (2) in which the above nonionic cellulose polymers are substituted with various derivative groups, and metal salts and ammonium salts thereof. It is done. Specific examples include sodium cellulose sulfate, methyl cellulose ether, methyl ethyl cellulose ether, ethyl cellulose ether, carboxymethyl cellulose ether (CMC), and salts thereof.
  • CMC carboxymethyl cellulose ether
  • alginic acid polymers include sodium alginate and propylene glycol alginate.
  • chemically modified microbial polymer include polymer compounds obtained by chemically modifying xanthan gum, dehydroxanthan gum, dextran, succinoglucan, bullulan and the like.
  • a cellulosic polymer is preferable, Furthermore, an anionic cellulosic polymer is preferred because it exhibits high adhesion during the production of the negative electrode.
  • carboxymethyl cellulose is most preferable because it has a small amount of foam at the time of aqueous solution preparation and a smooth electrode can be obtained.
  • the degree of etherification of an anionic cellulose polymer suitable as a thickener is preferably 0.5 to 1.5, more preferably 0.6 to 1.0.
  • the degree of etherification of the anionic cellulosic polymer is in the above range, thereby reducing the affinity with the negative electrode active material, preventing the thickener from being unevenly distributed on the surface of the negative electrode active material, and The adhesion between the material layer and the current collector can be maintained, and the adhesion of the negative electrode plate, which is one of the effects of the present invention, is significantly improved.
  • the degree of substitution of a carboxymethyl group or the like with a hydroxyl group (3) per anhydroglucose unit in cellulose is referred to as a degree of etherification.
  • A is the amount (ml) of N / 10 sulfuric acid consumed by the bound alkali metal ions in 1 g of the sample.
  • a is the amount (ml) of N / 10 sulfuric acid used.
  • f is the titer coefficient of N / 10 sulfuric acid.
  • b is the titration amount (ml) of N / 10 potassium hydroxide.
  • f 1 is the titer coefficient of N / 10 potassium hydroxide.
  • M is the weight average molecular weight of the sample.
  • alkyl cellulose ethers and their metal salts and ammonium salts that is, those in which X in the general formula (2) is an alkali metal, NH 4 , H are preferable, and X is Li, Na , NH 4 and H are more preferable.
  • the binder used in the present invention comprises polymer particles.
  • the polymer particles are obtained by polymerizing a monomer composition containing 1 to 10% by mass of a monocarboxylic acid monomer.
  • the content of the monocarboxylic acid monomer in the monomer composition is preferably 1.5 to 8% by mass, more preferably 2 to 5% by mass.
  • the amount of acid groups on the surface of the polymer particles per gram of the polymer particles measured by conductivity titration is 0.10 to 1.0 mmol, preferably 0.15 to 0.75 mmol, more preferably Is 0.20 to 0.50 mmol.
  • the content of the monocarboxylic acid monomer in the monomer composition and the amount of acid groups on the surface of the polymer particles per gram of the polymer particles measured by conductivity titration are in the above range, whereby the negative electrode active material
  • the polymer particles can be selectively present on the surface of the metal, and the acceptability of lithium ions at a low temperature can be improved.
  • the adhesiveness of negative electrode active materials and the adhesiveness of a negative electrode active material and a collector can be improved, the adhesive strength of a negative electrode improves.
  • the content of the monocarboxylic acid monomer in the monomer composition is less than 1% by mass, sufficient adhesion between the negative electrode active material and the current collector cannot be obtained, and the adhesion strength of the negative electrode decreases.
  • the content of the monocarboxylic acid monomer in the monomer composition exceeds 10% by mass, the hydrophilicity of the polymer particles becomes high and may be selectively present on the surface of the hydrophobic negative electrode active material. Since this is not possible, the above effect cannot be obtained.
  • the amount of acid groups on the surface of the polymer particles per 1 g of the polymer particles measured by conductivity titration is less than 0.10 mmol, the blending stability of the binder is remarkably lowered during the production of the slurry composition.
  • the composition thickens, the above effect cannot be obtained.
  • the amount of acid groups on the surface of the polymer particles per 1 g of the polymer particles measured by conductivity titration exceeds 1.0 mmol, the hydrophilicity of the polymer particles becomes high, and the negative electrode is hydrophobic. The effect cannot be obtained because it cannot be selectively present on the surface of the active material.
  • the monocarboxylic acid monomer is preferably an ethylenically unsaturated monocarboxylic acid monomer, and examples of the ethylenically unsaturated monocarboxylic acid monomer include acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, angelic acid, tiglic acid, or Examples thereof include partially esterified products of ethylenically unsaturated polyvalent carboxylic acids such as monobutyl fumarate, monoethyl maleate and monomethyl itaconate. Among them, methacrylic acid, crotonic acid, isocrotonic acid, angelic acid, and tiglic acid are preferable because they are highly hydrophobic and have high affinity with the negative electrode active material. In addition, the dicarboxylic acid monomer may be contained in the monomer composition as long as the above effects are not hindered.
  • an ethylenically unsaturated monocarboxylic acid monomer having a hydrophobic functional group at the ⁇ -position or ⁇ -position of the carboxyl group for example, an alkyl side chain Is preferable, and specifically, methacrylic acid is particularly preferable.
  • the binder is a dispersion in which the polymer particles having binding properties are dispersed in water (hereinafter, these may be collectively referred to as “polymer particle dispersion”).
  • the polymer particle dispersion include a diene polymer particle dispersion, an acrylic polymer particle dispersion, a fluorine polymer particle dispersion, and a silicon polymer particle dispersion.
  • a diene polymer particle dispersion or an acrylic polymer particle dispersion is preferable because of excellent binding properties with the negative electrode active material and strength and flexibility of the obtained negative electrode.
  • a diene polymer particle dispersion or an acrylic polymer particle dispersion When a diene polymer particle dispersion or an acrylic polymer particle dispersion is used, it has a high binding property with the negative electrode active material, and thus the negative electrode does not easily peel off. As a result, the binder is unlikely to peel off due to the expansion / contraction of the negative electrode active material during charge / discharge, thus preventing the negative electrode active material from peeling from the current collector and suppressing an increase in resistance of the negative electrode. As a result, high charge / discharge cycle characteristics can be exhibited.
  • the diene polymer particle dispersion is an aqueous dispersion of a polymer (diene polymer) containing a monomer unit obtained by polymerizing a conjugated diene such as butadiene or isoprene.
  • the proportion of the monomer unit obtained by polymerizing the conjugated diene in the diene polymer is usually 30% by mass or more, preferably 40% by mass or more, more preferably 50% by mass or more.
  • the diene polymer include a copolymer of a conjugated diene, an ethylenically unsaturated monocarboxylic acid monomer, and a copolymerizable monomer.
  • copolymerizable monomer examples include ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl Styrene monomers such as naphthalene, chloromethylstyrene, hydroxymethylstyrene, ⁇ -methylstyrene, divinylbenzene; olefins such as ethylene and propylene; halogen atom-containing monomers such as vinyl chloride and vinylidene chloride; vinyl acetate, vinyl propionate, Vinyl esters such as vinyl butyrate and vinyl benzoate; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, and butyl vinyl ether; Methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ket
  • ⁇ , ⁇ -unsaturated nitrile compounds and styrene monomers are preferable, and styrene monomers are particularly preferable.
  • the proportion of the monomer units of these copolymerizable monomers is preferably 5 to 70% by mass, and more preferably 10 to 60% by mass.
  • the acrylic polymer particle dispersion is an aqueous dispersion of a polymer (acrylic polymer) containing a monomer unit obtained by polymerizing an acrylic ester and / or a methacrylic ester.
  • the proportion of monomer units obtained by polymerizing acrylic acid ester and / or methacrylic acid ester in the acrylic polymer is usually 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more.
  • the acrylic polymer include a copolymer of an acrylic ester and / or a methacrylic ester, an ethylenically unsaturated monocarboxylic acid monomer, and a copolymerizable monomer.
  • acrylic acid ester and / or methacrylic acid ester examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2- Acrylic acid alkyl esters such as ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate , Pentyl methacrylate, hexyl methacrylate D
  • Examples of the copolymerizable monomer include carboxylic acid ester monomers having two or more carbon-carbon double bonds such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate; styrene, chlorostyrene, vinyl Styrene monomers such as toluene, t-butylstyrene, vinylbenzoic acid, methyl vinylbenzoate, vinylnaphthalene, chloromethylstyrene, hydroxymethylstyrene, ⁇ -methylstyrene, divinylbenzene; acrylamide, N-methylolacrylamide, acrylamide-2 -Amide monomers such as methylpropanesulfonic acid; ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; Olefins such as ethylene and propylene; Halogen atom-containing monomers such as vinyl and vinylidene chloride
  • ⁇ , ⁇ -unsaturated nitrile compounds and styrene monomers are preferable, and ⁇ , ⁇ -unsaturated nitrile compounds are particularly preferable.
  • the proportion of structural units derived from these copolymerizable monomers is preferably 3 to 50% by mass, and more preferably 5 to 40% by mass.
  • the polymer particle dispersion can be produced, for example, by emulsion polymerization of a monomer composition containing the above monomer in water.
  • the number average particle size of the polymer particles in the polymer particle dispersion is preferably 50 to 500 nm, more preferably 70 to 400 nm. When the number average particle diameter of the polymer particles is in the above range, the strength and flexibility of the obtained negative electrode are improved.
  • the glass transition temperature of the binder is preferably 25 ° C. or less, more preferably ⁇ 100 to + 25 ° C., still more preferably ⁇ 80 to + 10 ° C., and most preferably ⁇ 80 to 0 ° C.
  • the glass transition temperature of the binder is in the above range, characteristics such as flexibility, binding and winding properties of the negative electrode, and adhesion between the negative electrode active material and the current collector are highly balanced, which is preferable.
  • the binder may be a binder composed of polymer particles having a core-shell structure obtained by stepwise polymerizing two or more kinds of monomer compositions.
  • the core portion is not particularly limited, but the monomer composition constituting the shell portion contains 1 to 5% by mass of a monocarboxylic acid monomer, and is measured by conductivity titration.
  • the amount of acid groups on the surface of the polymer particles per gram of the polymer particles is preferably 0.10 to 0.50 mmol.
  • the total content of the negative electrode active material and the binder is preferably 10 to 90 parts by mass, more preferably 30 parts per 100 parts by mass of the slurry composition. ⁇ 80 parts by mass.
  • the binder content (solid content equivalent amount) relative to the total amount of the negative electrode active material is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material. 2 parts by mass.
  • the viscosity of the slurry composition for a lithium ion secondary battery negative electrode obtained when the total content of the negative electrode active material and the binder in the slurry composition and the content of the binder are within the above ranges is optimized, and the coating can be performed smoothly.
  • sufficient adhesion strength can be obtained without increasing the resistance of the obtained negative electrode.
  • peeling of the binder from the negative electrode active material in the electrode plate pressing step can be suppressed.
  • Dispersion medium In the present invention, water is used as the dispersion medium.
  • a dispersion medium in which a hydrophilic solvent is mixed may be used as long as the dispersion stability of the binder is not impaired.
  • the hydrophilic solvent include methanol, ethanol, N-methylpyrrolidone and the like, and it is preferably 5% by mass or less based on water.
  • a conductive agent In the slurry composition for negative electrodes of the lithium ion secondary battery of the present invention, it is preferable to contain a conductive agent.
  • a conductive agent conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube can be used.
  • the content of the conductive agent in the slurry composition is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material.
  • the slurry composition for a negative electrode of a lithium ion secondary battery further includes other components such as a reinforcing material, a leveling agent, and an electrolytic solution additive having a function of inhibiting electrolytic decomposition.
  • a reinforcing material such as aluminum, copper, copper, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium
  • the reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • a reinforcing material By using a reinforcing material, a tough and flexible negative electrode can be obtained, and excellent long-term cycle characteristics can be exhibited.
  • the content of the reinforcing material in the slurry composition is usually 0.01 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material. By being included in the said range, a high capacity
  • the leveling agent examples include surfactants such as alkyl surfactants, silicon surfactants, fluorine surfactants, and metal surfactants.
  • the content of the leveling agent in the slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material.
  • the productivity, smoothness, and battery characteristics during the production of the negative electrode are excellent.
  • the surfactant By containing the surfactant, the dispersibility of the negative electrode active material and the like in the slurry composition can be improved, and the smoothness of the negative electrode obtained thereby can be improved.
  • the electrolytic solution additive vinylene carbonate used in the slurry composition and the electrolytic solution can be used.
  • the content of the electrolytic solution additive in the slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material.
  • the cycle characteristics and the high temperature characteristics are excellent.
  • Other examples include nanoparticles such as fumed silica and fumed alumina. By mixing the nanoparticles, the thixotropy of the slurry composition can be controlled, and the leveling property of the negative electrode obtained thereby can be improved.
  • the content of the nanoparticles in the slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material.
  • the nanoparticles are in the above range, the slurry stability and productivity are excellent, and high battery characteristics are exhibited.
  • the slurry composition for a lithium ion secondary battery negative electrode is obtained by mixing the above-described negative electrode active material, a thickener, a binder made of polymer particles, a conductive agent used as necessary, and the like in water.
  • the mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type. Further, a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, and a planetary kneader can be used.
  • a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, and a planetary kneader can be used.
  • the lithium ion secondary battery negative electrode of the present invention is obtained by applying the slurry composition for a lithium ion secondary battery negative electrode of the present invention to a current collector and drying it.
  • Method for producing negative electrode of lithium ion secondary battery is not specifically limited, For example, the method of apply
  • the method for applying the slurry composition onto the current collector is not particularly limited.
  • Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying time is usually 5 to 30 minutes, and the drying temperature is usually 40 to 180 ° C.
  • the porosity of the negative electrode active material layer is increased by pressure treatment using a die press or a roll press. It is preferable to have a lowering step. A preferable range of the porosity is 5 to 30%, more preferably 7 to 20%. If the porosity is too high, charging efficiency and discharging efficiency are deteriorated. When the porosity is too low, it is difficult to obtain a high volume capacity, and the negative electrode active material layer is liable to be peeled off from the current collector, resulting in a defect. Further, when a curable polymer is used as the binder, it is preferably cured.
  • the thickness of the negative electrode active material layer in the negative electrode of the lithium ion secondary battery of the present invention is usually 5 to 300 ⁇ m, preferably 30 to 250 ⁇ m. When the thickness of the negative electrode active material layer is in the above range, both load characteristics and cycle characteristics are high.
  • the content ratio of the negative electrode active material in the negative electrode active material layer is preferably 85 to 99% by mass, more preferably 88 to 97% by mass.
  • the density of the negative electrode active material layer of a lithium ion secondary battery negative electrode is preferably 1.6 ⁇ 1.9g / cm 3, more preferably 1.65 ⁇ 1.85g / cm 3.
  • the density of the negative electrode active material layer is in the above range, a high-capacity battery can be obtained.
  • the current collector used in the present invention is not particularly limited as long as it is an electrically conductive and electrochemically durable material.
  • a metal material is preferable because it has heat resistance.
  • iron, copper, aluminum Nickel, stainless steel, titanium, tantalum, gold, platinum and the like are particularly preferable as the current collector used for the negative electrode of the lithium ion secondary battery.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable.
  • the current collector is preferably used after roughening in advance.
  • Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity of the mixture.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the negative electrode is the lithium ion secondary battery negative electrode.
  • the positive electrode is formed by laminating a positive electrode active material layer containing a positive electrode active material and a positive electrode binder on a current collector.
  • Positive electrode active material an active material that can be doped and dedoped with lithium ions is used, and the positive electrode active material is roughly classified into an inorganic compound and an organic compound.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like.
  • Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
  • Transition metal oxides include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O. 5 , V 6 O 13 and the like. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity.
  • the lithium-containing composite metal oxide include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
  • lithium-containing composite metal oxide having a layered structure lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium composite oxide, Ni—Mn—Al lithium
  • lithium-containing cobalt oxide (LiCoO 2 ) lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium composite oxide, Ni—Mn—Al lithium
  • examples thereof include composite oxides and lithium composite oxides of Ni—Co—Al.
  • the lithium-containing composite metal oxide having a spinel structure include lithium manganate (LiMn 2 O 4 ) and Li [Mn 3/2 M 1/2 ] O 4 in which a part of Mn is substituted with another transition metal (wherein M may be Cr, Fe, Co, Ni, Cu or the like.
  • Li X MPO 4 (wherein, M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Li X MPO 4 as the lithium-containing composite metal oxide having an olivine structure)
  • An olivine type lithium phosphate compound represented by at least one selected from Si, B, and Mo, 0 ⁇ X ⁇ 2) may be mentioned.
  • a conductive polymer such as polyacetylene or poly-p-phenylene can be used.
  • An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted.
  • the positive electrode active material for a lithium ion secondary battery may be a mixture of the above inorganic compound and organic compound.
  • the average particle diameter of the positive electrode active material is usually 1 to 50 ⁇ m, preferably 2 to 30 ⁇ m.
  • the amount of the positive electrode binder when preparing the positive electrode slurry composition described later can be reduced, the decrease in battery capacity can be suppressed, and the positive electrode slurry composition can be reduced. Therefore, it becomes easy to prepare a viscosity suitable for application, and a uniform electrode can be obtained.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is preferably 90 to 99.9% by mass, more preferably 95 to 99% by mass.
  • the positive electrode binder is not particularly limited and a known binder can be used.
  • a known binder can be used.
  • Resins such as derivatives and polyacrylonitrile derivatives
  • soft polymers such as acrylic soft polymers, diene soft polymers, olefin soft polymers, and vinyl soft polymers can be used. These may be used alone or in combination of two or more.
  • the positive electrode may further contain other components such as an electrolyte additive having a function of suppressing the above-described electrolyte decomposition. These are not particularly limited as long as they do not affect the battery reaction.
  • the current collector can be the current collector used for the negative electrode of the above-described lithium ion secondary battery, and is not particularly limited as long as it is an electrically conductive and electrochemically durable material.
  • Aluminum is particularly preferable for the positive electrode of the lithium ion secondary battery.
  • the thickness of the positive electrode active material layer is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m. When the thickness of the positive electrode active material layer is in the above range, both load characteristics and energy density are high.
  • the positive electrode can be produced in the same manner as the above-described negative electrode for a lithium ion secondary battery.
  • the separator is a porous substrate having pores
  • usable separators include (a) a porous separator having pores, and (b) a porous separator in which a polymer coat layer is formed on one or both sides. Or (c) a porous separator in which a porous resin coat layer containing an inorganic ceramic powder is formed.
  • Non-limiting examples of these include solids such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers.
  • the electrolytic solution used in the present invention is not particularly limited.
  • a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. These can be used alone or in admixture of two or more.
  • the amount of the supporting electrolyte is usually 1% by mass or more, preferably 5% by mass or more, and usually 30% by mass or less, preferably 20% by mass or less, with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the battery are degraded.
  • the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • Alkyl carbonates such as carbonate (BC) and methyl ethyl carbonate (MEC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane; tetrahydrofuran; sulfolane and dimethyl sulfoxide Sulfur-containing compounds are used.
  • dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable because high ion conductivity is easily obtained and the use temperature range is wide. These can be used alone or in admixture of two or more. Moreover, it is also possible to use an electrolyte containing an additive. As the additive, carbonate compounds such as vinylene carbonate (VC) are preferable.
  • VC vinylene carbonate
  • Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution, and an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N.
  • the manufacturing method of the lithium ion secondary battery of the present invention is not particularly limited.
  • the above-described negative electrode and positive electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery and placed in the battery container, and the electrolytic solution is injected into the battery container and sealed.
  • an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate and the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a laminated cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
  • Each of the negative electrodes is cut into a rectangle having a width of 1 cm and a length of 10 cm to form a test piece, which is fixed with the negative electrode active material layer surface facing up.
  • the stress when the cellophane tape is peeled off from the end of the test piece at a rate of 50 mm / min in the 180 ° direction is measured.
  • the measurement is performed 10 times, the average value is obtained, and this is used as the peel strength, and the determination is made according to the following criteria. It shows that the adhesion strength of a negative electrode is so large that this value is large.
  • the polymerization degree of the thickener and the surface acid group amount of the polymer particles are measured as follows.
  • the degree of polymerization of the thickener is measured by the copper ammonia method described in ISO-4312 method.
  • the electric conductivity (electric conductivity at the start) of the polymer particle dispersion is measured.
  • 0.5 ml of 0.1 N hydrochloric acid manufactured by Wako Pure Chemical Industries, Ltd., reagent grade
  • the electrical conductivity is measured after 30 seconds. This operation is repeated at 30 second intervals until the electrical conductivity of the polymer particle dispersion becomes equal to or higher than the initial electrical conductivity.
  • the electric conductivity (mS) is plotted on the vertical axis, and the cumulative amount (mmol) of added hydrochloric acid is plotted on the vertical axis to obtain a graph having three inflection points shown in FIG.
  • the values on the horizontal axis at the three inflection points are P1, P2, and P3 in order from the smallest, and the value on the horizontal axis when the addition of hydrochloric acid is finished is P4.
  • the approximate curve L1 in the 0-P1 section From the data of the approximate curve L2 from the data in the P1-P2 section, the approximate curve L3 from the data in the P2-P3 section, and the approximate curve L4 from the data in the P3-P4 section Each is obtained by multiplication.
  • the horizontal axis coordinate of the intersection point of L1 and L2 is A1 (mmol)
  • the horizontal axis coordinate of the intersection point of L2 and L3 is A2 (mmol)
  • the horizontal axis coordinate of the intersection point of L3 and L4 is A3 (mmol).
  • Example 1 Manufacture of binder
  • a polymerization initiator 46 parts of styrene, 49 parts of 1,3-butadiene, 5 parts of methacrylic acid, 5 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water, and 1 part of potassium persulfate as a polymerization initiator, After sufficiently stirring, the polymerization was started by heating to 50 ° C.
  • the monomer composition used for obtaining the diene polymer particles contains 5% by mass of a monocarboxylic acid monomer (methacrylic acid), and the amount of acid groups on the surface per 1 g of the polymer particles is 0.00. 30 mmol.
  • Carboxymethylcellulose (Production of slurry composition for negative electrode of lithium ion secondary battery)
  • CMC Carboxymethylcellulose
  • BSH-12 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • the polymerization degree of the thickener was 1,700, and the etherification degree was 0.65.
  • the above mixture was mixed with 1 part of the binder (based on solid content) and ion-exchanged water, adjusted to a final solid content concentration of 42%, and further mixed for 10 minutes. This was defoamed under reduced pressure to obtain a slurry composition for a negative electrode of a lithium ion secondary battery having good fluidity.
  • the lithium ion secondary battery negative electrode slurry composition was applied onto a 20 ⁇ m thick copper foil with a comma coater so that the film thickness after drying was about 200 ⁇ m, and dried for 2 minutes (0.5 m / Min. Speed, 60 ° C.) and heat treatment (120 ° C.) for 2 minutes to obtain an electrode stock.
  • the electrode stock was rolled with a roll press to obtain a lithium ion secondary battery negative electrode having a negative electrode active material layer thickness of 80 ⁇ m.
  • Table 1 shows the evaluation results of the peel strength of the negative electrode.
  • the negative electrode is cut into a disk shape having a diameter of 15 mm, and a separator made of a disk-shaped porous polypropylene film having a diameter of 18 mm and a thickness of 25 ⁇ m, a metallic lithium used as the positive electrode, and an expanded metal are sequentially laminated on the negative electrode active material layer surface side of the negative electrode.
  • the electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A half cell of 20 mm and a thickness of about 2 mm was produced.
  • Example 2 In Example 1, except that the thickening agent was changed to carboxymethylcellulose having a polymerization degree of 1,420 and an etherification degree of 0.7, the same operation as in Example 1 was performed to obtain a slurry composition, a negative electrode, and a half cell. Were prepared and evaluated. The results are shown in Table 1.
  • Example 3 Manufacture of binder
  • the monomer composition used to obtain the diene polymer particles contains 1.5% by mass of a monocarboxylic acid monomer (methacrylic acid), and the amount of acid groups on the surface per 1 g of polymer particles is It was 0.11 mmol.
  • Example 1 The same operations as in Example 1 were performed except that the binder was used, and a slurry composition, a negative electrode, and a half cell were produced and evaluated. The results are shown in Table 1.
  • Example 4 Manufacture of binder
  • styrene In a 5 MPa pressure vessel equipped with a stirrer, 47 parts of styrene, 45 parts of 1,3-butadiene, 8 parts of methacrylic acid, 5 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water, and 1 part of potassium persulfate as a polymerization initiator were added. After sufficiently stirring, the polymerization was started by heating to 50 ° C.
  • the monomer composition used for obtaining the diene polymer particles contains 8% by mass of a monocarboxylic acid monomer (methacrylic acid), and the amount of acid groups on the surface per 1 g of the polymer particles is 0.8. It was 76 mmol.
  • Example 1 The same operations as in Example 1 were performed except that the binder was used, and a slurry composition, a negative electrode, and a half cell were produced and evaluated. The results are shown in Table 1.
  • Example 5 Manufacture of binder
  • the emulsion prepared in this manner was continuously added to the pressure vessel A over about 420 minutes, then heated to 60 ° C. and stirred for about 300 minutes to cool the reaction when the monomer consumption reached 95%.
  • the acrylic polymer particle dispersion liquid having a solid content concentration of 40% as a binder (number average particle diameter of polymer particles: 360 nm, polymer particle glass) Transition temperature: to obtain a -35 °C).
  • the monomer composition used for obtaining the acrylic polymer particles contains 3% by mass of a monocarboxylic acid monomer (methacrylic acid), and the amount of acid groups on the surface per 1 g of the polymer particles is 0.00. 18 mmol.
  • Example 1 The same operations as in Example 1 were carried out except that the above binder was used, and a slurry composition, a negative electrode and a half cell were produced and evaluated. The results are shown in Table 1.
  • Example 6 In Example 1, except that the thickener was changed to carboxymethylcellulose having a polymerization degree of 2,700 and an etherification degree of 0.7, the same operation as in Example 1 was carried out to obtain a slurry composition, a negative electrode and a half cell. Were prepared and evaluated. The results are shown in Table 1.
  • the monomer composition used for obtaining the diene polymer particles contains 3.4% by mass of a dicarboxylic acid monomer (itaconic acid), and the amount of acid groups on the surface per 1 g of polymer particles is 1. .12 mmol.
  • Example 1 The same operations as in Example 1 were performed except that the binder was used, and a slurry composition, a negative electrode, and a half cell were produced and evaluated. The results are shown in Table 1.
  • Example 2 (Comparative Example 2) In Example 1, except that the thickener was changed to carboxymethylcellulose having a polymerization degree of 1,100, the same operation as in Example 1 was performed to prepare a slurry composition, a negative electrode, and a half cell, and evaluation was performed. It was. The results are shown in Table 1.
  • the monomer composition used to obtain the diene polymer particles contains 15% by mass of a monocarboxylic acid monomer (methacrylic acid), and the amount of acid groups on the surface per 1 g of polymer particles is 1. 41 mmol.
  • Example 1 The same operations as in Example 1 were performed except that the binder was used, and a slurry composition, a negative electrode, and a half cell were produced and evaluated. The results are shown in Table 1.
  • the reaction was stopped by cooling, 0.5 part of sodium nitrite aqueous solution (5%) was added to complete the polymerization, and a diene polymer particle dispersion liquid having a solid content concentration of 40% as a binder (
  • the number average particle diameter of the polymer particles was 110 nm, and the glass transition temperature of the polymer particles was ⁇ 3 ° C.).
  • the monomer composition used to obtain the diene polymer particles contains 1.0% by mass of a monocarboxylic acid monomer (methacrylic acid), and the amount of acid groups on the surface per 1 g of polymer particles is 0.08 mmol.
  • Example 1 The same operations as in Example 1 were performed except that the binder was used, and a slurry composition, a negative electrode, and a half cell were produced and evaluated. The results are shown in Table 1.
  • Example 1 Except having used the said binder, operation similar to Example 1 was performed, and the slurry composition, the negative electrode, and the half cell were produced and evaluated. The results are shown in Table 1.
  • the polymer particles are obtained by polymerizing a monomer composition containing 1 to 10% by mass of a monocarboxylic acid monomer, and the weight per 1 g of the polymer particles measured by conductivity titration.
  • a slurry composition for a negative electrode of a lithium ion secondary battery in which the amount of acid groups on the surface of the coalesced particles is 0.10 to 1.0 mmol, the peel strength (adhesion strength) of the negative electrode and the lithium ion secondary battery Low temperature characteristics and charge / discharge cycle Characteristics excellent balance of (life characteristic) (Examples 1-6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 【課題】 低温でのリチウムイオン受け入れ性に優れ、かつ負極板の密着強度を向上させ、寿命特性に優れたリチウムイオン二次電池を提供可能なリチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、およびリチウムイオン二次電池を提供すること。 【解決手段】 本発明に係るリチウムイオン二次電池負極用スラリー組成物は、負極活物質、増粘剤、重合体粒子からなるバインダー、及び水を含有するリチウムイオン二次電池負極用スラリー組成物であって、前記負極活物質が炭素材料を含み、前記炭素材料の黒鉛層間距離(X線回折法による(002)面の面間隔(d値))が0.340~0.370nmであり、前記増粘剤は、重合度が1,400~3,000の高分子であり、前記重合体粒子が、モノカルボン酸モノマーを1~10質量%含む単量体組成物を重合して得られるものであり、かつ、伝導度滴定で測定される前記重合体粒子1gあたりの重合体粒子の表面の酸基量が、0.1~1.0mmolであることを特徴とする。 

Description

リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウム二次電池
 本発明は、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池に関する。
 近年、CO排出削減や燃費向上を目的としてエンジンとモーターを動力源として併用するハイブリッド型電気自動車(HEV)の開発、製品化が世界的規模で進められている。HEVの課題の1つとして、高出力、小型軽量かつ低コスト電池の開発がある。現在、ニッケル・水素二次電池が用いられているが、入出力特性、エネルギー密度に課題がある。そのため、高電圧、高エネルギー密度を有し、入出力特性に優れたリチウムイオン二次電池は、小型・軽量化が可能であることから、HEV用電源として大きな期待が寄せられている。
 HEV用リチウムイオン二次電池用負極の活物質としては、エネルギー密度を重視する設計の場合には黒鉛系炭素材が、入出力特性を重視する場合には非晶質炭素材が検討されている。黒鉛系炭素材は、比表面積が小さいため初回充放電効率が高いが、理論容量である372Ah/kg以上の容量は得られず、入出力特性が劣るという問題点がある。一方、非晶質炭素材は、電解液との反応性が低く、樹枝状金属リチウムが生成しづらいため、入出力特性に優れ、単位質量あたりの放電容量として500Ah/kg以上の材料を得ることができるが、結晶性が低いため、プレスロールなどの圧延工程による極板密度の向上が黒鉛系炭素材と比較して困難である。この事によって活物質粒子間の接着面積が損なわれるため、極板の密着強度が低下するという課題が発生する。
 例えば、特許文献1では、負極活物質として黒鉛層間距離(d002)が0.345~0.370nmの低結晶炭素と、バインダーとしてスチレン-ブタジエン共重合体(SBR)、増粘剤としてカルボキシメチルセルロースを用いることで良好な負極が得られ、出力特性に優れた電池を得られることが示されている。
特開2009-158099号 公報
 しかしながら、本発明者らが検討した結果、特許文献1に記載の負極を用いた電池は、出力特性及び入力特性、その中でも特に低温でのリチウムイオン受け入れ性が低下することがわかった。
 従って、本発明は、低温でのリチウムイオン受け入れ性に優れ、かつ負極板の密着強度を向上させ、寿命特性に優れたリチウムイオン二次電池を提供可能なリチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、およびリチウムイオン二次電池を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究を進めた結果、以下の知見を得た。特許文献1において、バインダーとして用いられている重合体粒子は、ジカルボン酸モノマーの重合単位を含むため、重合体粒子表面の親水性が高い。また、ジカルボン酸モノマー由来のオリゴマーが重合体粒子表面に吸着している。そのため、疎水性である負極活物質の表面をバインダーが覆いにくく、増粘剤であるカルボキシメチルセルロースが優先的に負極活物質の表面に存在する。カルボキシメチルセルロースは電解液にほとんど膨潤しないため、リチウムイオンの移動を阻害し、その結果、出力特性及び入力特性、その中でも特に低温でのリチウムイオン受け入れ性が低下する。
 また、特許文献1において、増粘剤として用いられているカルボキシメチルセルロースは、分子量が小さいため、十分な負極の密着性が得られるとは言い難く、電池のサイクル試験の際に負極の剥がれが起こり、内部抵抗が増大することにより寿命特性の劣化が懸念される。
  そこで、本発明者らは、さらに鋭意検討した結果、黒鉛層間距離(X線回折法による(002)面の面間隔(d値))が0.340~0.370nmである炭素材料を含む負極活物質、増粘剤、重合体粒子からなるバインダー及び水を含有する負極用スラリー組成物において、増粘剤として重合度が特定範囲にある高分子を用い、重合体粒子がモノカルボン酸モノマーを特定量含む単量体組成物を重合して得られるものであり、かつ、伝導度滴定で測定される前記重合体粒子1gあたりの重合体粒子の表面の酸基量(以下において「表面酸基量」ということがある。)が特定割合であるものを用いることにより、低温でのリチウムイオン受け入れ性に優れ、かつ負極板の密着強度が向上し、寿命特性に優れたリチウムイオン二次電池を得ることができることを見出し、本発明を完成するに至った。
 このような課題の解決を目的とした本発明の要旨は以下のとおりである。
(1)負極活物質、増粘剤、重合体粒子からなるバインダー、及び水を含有するリチウムイオン二次電池負極用スラリー組成物であって、
 前記負極活物質が炭素材料を含み、前記炭素材料の黒鉛層間距離(X線回折法による(002)面の面間隔(d値))が0.340~0.370nmであり、
 前記増粘剤は、重合度が1,400~3,000の高分子であり、
 前記重合体粒子が、モノカルボン酸モノマーを1~10質量%含む単量体組成物を重合して得られるものであり、かつ、
 伝導度滴定で測定される前記重合体粒子1gあたりの重合体粒子の表面の酸基量が、0.1~1.0mmolであるリチウムイオン二次電池負極用スラリー組成物。
(2)前記増粘剤が、アニオン性セルロース系高分子であって、そのエーテル化度が0.5~1.5である(1)に記載のリチウムイオン二次電池負極用スラリー組成物。
(3)前記重合体粒子が、ジエン系重合体又はアクリル系重合体である(1)又は(2)に記載のリチウムイオン二次電池負極用スラリー組成物。
(4)上記(1)~(3)に記載のリチウムイオン二次電池負極用スラリー組成物を集電体に塗布、乾燥してなるリチウムイオン二次電池負極。
(5)正極、負極、セパレーター及び電解液を備えてなり、前記負極が、(4)に記載のリチウムイオン二次電池負極であるリチウムイオン二次電池。
 本発明によれば、黒鉛層間距離(X線回折法による(002)面の面間隔(d値))が0.340~0.370nmである炭素材料を含む負極活物質と、重合度が1,400~3,000である増粘剤と、重合体粒子からなるバインダーと、水とを含有するリチウムイオン二次電池負極用スラリー組成物であって、前記重合体粒子が、モノカルボン酸モノマーを1~10質量%含む単量体組成物を重合して得られるものであり、かつ、伝導度滴定で測定される前記重合体粒子1gあたりの重合体粒子の表面の酸基量が、0.10~1.0mmolであるリチウムイオン二次電池負極用スラリー組成物を用いることで、重合体粒子からなるバインダーが増粘剤よりも優先的に負極活物質の表面近傍に存在する。そのため、該スラリー組成物を用いてリチウムイオン二次電池を製造すると、重合体粒子が増粘剤よりも電解液への膨潤性に優れることに起因して、低温でのリチウムイオンの受け入れ性(低温特性)が向上する。また、増粘剤が負極活物質に吸着することなく、負極活物質間に存在するため、負極の密着強度(ピール強度)が向上し、リチウムイオン二次電池の寿命特性(充放電サイクル特性)が向上する。
重合体粒子の表面酸基量を求めるためのグラフを示す。
(リチウムイオン二次電池負極用スラリー組成物)
 本発明のリチウムイオン二次電池負極用スラリー組成物は、負極活物質、増粘剤、重合体粒子からなるバインダー、及び水を含有する。
(負極活物質)
 本発明に用いる負極活物質は、黒鉛層間距離(X線回折法による(002)面の面間隔(d値))が0.340~0.370nmであり、好ましくは0.345~0.370nmである炭素材料を含む。炭素材料の黒鉛層間距離が上記範囲にあることで、体積当たりの容量を下げすぎることなく、出力特性に優れるリチウムイオン二次電池を得ることができる。
 また、負極活物質の真密度は、好ましくは1.4~2.1g/cmであり、より好ましくは1.5~2.0g/cmである。負極活物質の真密度が上記範囲にあることで、体積当たりの容量を下げすぎることなく、出力特性に優れるリチウムイオン二次電池を得ることができる。
 本発明における負極活物質とは、リチウムイオンをドープ及び脱ドープ可能な炭素を主骨格とする負極活物質をいう。具体的には、炭素質材料と黒鉛質材料が挙げられる。炭素質材料とは一般的に炭素前駆体を2000℃以下で熱処理(炭素化)した黒鉛化の低い(結晶性の低い)炭素質材料を示し、黒鉛質材料とは易黒鉛性炭素を2000℃以上で熱処理することによって得られた黒鉛に近い高い結晶性を有する黒鉛質材料を示す。
 炭素質材料としては、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素が挙げられる。
 易黒鉛性炭素としては石油や石炭から得られるタールピッチを原料とした炭素材料が挙げられ、例えば、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。MCMBとはピッチ類を400℃前後で加熱する過程で生成したメソフェーズ小球体を分離抽出した炭素微粒子であり、メソフェーズピッチ系炭素繊維とは、前記メソフェーズ小球体が成長、合体して得られるメソフェーズピッチを原料とする炭素繊維である。
 難黒鉛性炭素としては、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)などが挙げられる。
 本発明において用いる負極活物質の比表面積は、0.1~20m/gの範囲内であるものが好ましく、0.5~10m/gの範囲内であるものがより好ましい。負極活物質の比表面積が上記範囲にあることにより、後述するスラリー組成物の作製時におけるバインダー量を少なくすることができ、電池容量の低下を抑制できると共に、後述するスラリー組成物を、塗布するのに適正な粘度に調整することが容易になる。
 本発明において用いられる負極活物質の粒子径は、通常1~50μm、好ましくは2~30μmである。負極活物質の粒子径が上記範囲にあることにより、後述するスラリー組成物を調製する際のバインダー量を少なくすることができ、電池の容量の低下を抑制できると共に、スラリー組成物を、塗布するのに適正な粘度に調整することが容易になる。
 また本発明においては、本発明の効果を妨げない範囲で、炭素材料の黒鉛層間距離(X線回折法による(002)面の面間隔(d値))が0.340nm未満の負極活物質を混合して使用してもよい。前記黒鉛層間距離が0.34nm未満の負極活物質を混合して使用する場合において、前記黒鉛層間距離が0.340~0.370nmの負極活物質と、黒鉛層間距離が0.340nm未満の負極活物質との質量比率は、99:1~60:40であることが好ましく、90:10~70:30であることがより好ましい。
(増粘剤)
 本発明における増粘剤とは、少量の添加でスラリー組成物に高い粘性を付与することができ、スラリー組成物の塗工性を向上させる性質をもつ高分子である。本発明に用いる増粘剤の重合度は、1,400~3,000であり、好ましくは1,450~2,500、より好ましくは1,500~2,000である。増粘剤の重合度が上記範囲にあることで、増粘剤が負極活物質の表面に吸着することなく負極活物質間に存在するため、負極活物質層内部の密着強度が向上する。増粘剤の重合度が前記範囲未満であると、増粘剤が負極活物質の表面を被覆しやすくなり、負極活物質層内部の密着強度が低下する。逆に増粘剤の重合度が前記範囲を超えると、スラリー組成物の静置状態の粘度と、流動状態の粘度との差が大きくなり、スラリー組成物の塗工時に厚みムラが発生するといった問題が発生する。
 増粘剤の重合度は、ISO-4312法に記載の銅アンモニア法により測定する。
 本発明に用いる増粘剤としては、例えば、植物もしくは動物由来の多糖類及びたんぱく質等の天然高分子を、化学反応を用いて変性させたものが挙げられる。増粘剤の具体例としては、澱粉系高分子、セルロース系高分子、アルギン酸系高分子及び微生物系高分子が例示できる。また、増粘剤としては、ポリアクリル酸およびその塩等も用いることができる。
 澱粉系高分子として、可溶化澱粉、カルボキシメチル澱粉、メチルヒドロキシプロピル澱粉、変性ポテトスターチ等を例示できる。
 セルロース系高分子は、ノニオン性、カチオン性及びアニオン性に分類することができる。
 ノニオン性セルロース系高分子として、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース等のアルキルセルロース、並びにヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロースを例示できる。
 カチオン性セルロース系高分子として、例えば、低窒素ヒドロキシエチルセルロースジメチルジアリルアンモニウムクロリド(ポリクオタニウム-4)、塩化-[2-ヒドロキシ-3-(トリメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-10)、塩化-[2-ヒドロキシ-3-(ラウリルジメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-24)等を例示できる。
 アニオン性セルロース系高分子としては上記のノニオン性セルロース系高分子を各種誘導基により置換された一般式(1)および(2)の構造を有するアルキルセルロースエーテル及びそれらの金属塩やアンモニウム塩が挙げられる。具体的には、セルロース硫酸ナトリウム、メチルセルロースエーテル、メチルエチルセルロースエーテル、エチルセルロースエーテル、カルボキシメチルセルロースエーテル(CMC)及びそれらの塩等を例示することができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 アルギン酸系高分子として、アルギン酸ナトリウム、アルギン酸プロピレングリコール等を例示できる。化学変性した微生物系高分子として、キサンタンガム、デヒドロキサンタンガム、デキストラン、サクシノグルカン、ブルラン等を化学的に変性した高分子化合物を例示できる。
 これらの中でも、負極活物質との併用時に分散性に優れたスラリー組成物を作製でき、該スラリー組成物を用いて得られた負極の表面平滑性を高くできることから、セルロース系高分子が好ましく、さらに負極作製時に高い密着性を示すとの理由から、アニオン性セルロース系高分子が好ましい。中でも、水溶液調整時の泡かみ等が少なく、平滑な電極を得ることができることから、カルボキシメチルセルロースが最も好ましい。
 本発明において、増粘剤として好適なアニオン性セルロース系高分子のエーテル化度は、好ましくは0.5~1.5であり、より好ましくは0.6~1.0である。アニオン性セルロース系高分子のエーテル化度が上記範囲にあることで、負極活物質との親和性を下げ、増粘剤が負極活物質表面に偏在化するのを防ぎ、また電極中での活物質層-集電体間の密着性を保持することができ、本発明の効果の一つである負極板の密着性が顕著に向上する。セルロース中の無水グルコース単位1個当たりの水酸基(3個)への、カルボキシメチル基等の置換度をエーテル化度という。理論的に0~3までの値を取りうる。エーテル化度が大きくなればなるほどセルロース中の水酸基の割合が減少し置換体の割合が増加し、エーテル化度が小さいほどセルロース中の水酸基が増加し置換体が減少するということを示している。エーテル化度(置換度)は、以下の方法および式により求められる。
 まず、試料0.5~0.7gを精密にはかり、磁製ルツボ内で灰化する。冷却後、得られた灰化物を500mlビーカーに移し、水約250ml 、さらにピペットでN/10硫酸35mlを加えて30分間煮沸する。これを冷却し、フェノールフタレイン指示薬を加えて、過剰の酸をN/10水酸化カリウムで逆滴定して、次式(I)および(II)から置換度を算出する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 上記式(I)及び(II)において、Aは、試料1g中の結合アルカリ金属イオンに消費されたN/10硫酸の量(ml)である。aは、N/10硫酸の使用量(ml)である。fは、N/10硫酸の力価係数である。bは、N/10水酸化カリウムの滴定量(ml)である。fは、N/10水酸化カリウムの力価係数である。Mは、試料の重量平均分子量である。
 また、アニオン性セルロース系高分子の中でも、アルキルセルロースエーテル及びそれらの金属塩やアンモニウム塩、すなわち上記一般式(2)におけるXがアルカリ金属、NH、Hのものが好ましく、XがLi、Na、NH、Hがさらには好ましい。上記のようなXを用いることでスラリー組成物中での重合体粒子の分散安定性を保つことができ、スラリー組成物の増粘による極板塗布量の不均一化を防ぐことができる。また、Xの異なる構造を複数種類有していてもよい。
(バインダー)
 本発明に用いるバインダーは、重合体粒子からなる。
 重合体粒子は、モノカルボン酸モノマーを1~10質量%含む単量体組成物を重合して得られるものである。前記単量体組成物におけるモノカルボン酸モノマーの含有量は、好ましくは1.5~8質量%、より好ましくは2~5質量%である。また、伝導度滴定で測定される重合体粒子1gあたりの重合体粒子の表面の酸基量は、0.10~1.0mmolであり、好ましくは0.15~0.75mmolであり、より好ましくは0.20~0.50mmolである。
 前記単量体組成物におけるモノカルボン酸モノマーの含有量と、伝導度滴定で測定される重合体粒子1gあたり重合体粒子の表面の酸基量とが、上記範囲にあることで、負極活物質の表面に選択的に重合体粒子を存在させることができ、低温でのリチウムイオンの受け入れ性を向上させることができる。また、負極活物質同士の密着性および負極活物質と集電体との密着性を向上させることができるため、負極の密着強度が向上する。
 前記単量体組成物におけるモノカルボン酸モノマーの含有量が1質量%未満の場合、負極活物質と集電体との十分な密着性が得られず、負極の密着強度が低下する。単量体組成物におけるモノカルボン酸モノマーの含有量が10質量%を超える場合、重合体粒子の親水性が高くなってしまい、疎水性である負極活物質の表面に選択的に存在させることができないため、上記効果が得られない。また、伝導度滴定で測定される重合体粒子1gあたりの重合体粒子の表面の酸基量が、0.10mmol未満の場合、スラリー組成物作製中にバインダーの配合安定性が著しく低下し、スラリー組成物が増粘してしまうため、上記効果が得られない。逆に伝導度滴定で測定される重合体粒子1gあたりの重合体粒子の表面の酸基量が、1.0mmolを超える場合、重合体粒子の親水性が高くなってしまい、疎水性である負極活物質の表面に選択的に存在させることができないため、上記効果が得られない。
 モノカルボン酸モノマーは、エチレン性不飽和モノカルボン酸モノマーであることが好ましく、エチレン性不飽和モノカルボン酸モノマーとしては、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、アンゲリカ酸、チグリン酸、またはフマル酸モノブチル、マレイン酸モノエチル、イタコン酸モノメチルなどのエチレン性不飽和多価カルボン酸の部分エステル化物などが挙げられる。中でも、疎水性が高く負極活物質との親和性が高いという点で、メタクリル酸、クロトン酸、イソクロトン酸、アンゲリカ酸、チグリン酸が好ましい。なお、上記効果を妨げない範囲で、単量体組成物にはジカルボン酸モノマーが含まれていてもよい。
 重合体粒子表面に酸成分に由来する官能基を有するための手段としては、カルボキシル基のα位、もしくはβ位に疎水性の官能基、例えばアルキル側鎖を持つエチレン性不飽和モノカルボン酸モノマーを用いるのが好ましく、具体的にはメタクリル酸を用いるのが特に好ましい。
 バインダーは、結着性を有する上記重合体粒子が水に分散された分散液である(以下、これらを総称して「重合体粒子分散液」と記載することがある)。重合体粒子分散液としては、例えば、ジエン系重合体粒子分散液、アクリル系重合体粒子分散液、フッ素系重合体粒子分散液、シリコン系重合体粒子分散液などが挙げられる。この中でも、負極活物質との結着性および得られる負極の強度や柔軟性に優れるため、ジエン系重合体粒子分散液又はアクリル系重合体粒子分散液が好ましい。ジエン系重合体粒子分散液やアクリル系重合体粒子分散液を用いると、負極活物質との結着性が高い為、負極の剥がれ等を生じにくい。その結果、充放電時の負極活物質の膨張・収縮に対してバインダーの剥がれが生じにくいため、負極活物質の集電体からの剥がれを防ぎ、負極の抵抗増加を抑制する。その結果高い充放電サイクル特性を示すことができる。
 ジエン系重合体粒子分散液とは、ブタジエン、イソプレンなどの共役ジエンを重合してなる単量体単位を含む重合体(ジエン系重合体)の水分散液である。ジエン系重合体中の共役ジエンを重合してなる単量体単位の割合は、通常30質量%以上、好ましくは40質量%以上、より好ましくは50質量%以上である。ジエン系重合体としては、共役ジエンと、エチレン性不飽和モノカルボン酸モノマーと、共重合可能な単量体との共重合体が挙げられる。前記共重合可能な単量体としては、アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系モノマー;エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有モノマー;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。これらの中でもα,β-不飽和ニトリル化合物やスチレン系モノマーが好ましく、スチレン系モノマーが特に好ましい。これらの共重合可能な単量体の単量体単位の割合は、5~70質量%が好ましく、10~60質量%がさらに好ましい。
 アクリル系重合体粒子分散液とは、アクリル酸エステルおよび/またはメタクリル酸エステルを重合してなる単量体単位を含む重合体(アクリル系重合体)の水分散液である。アクリル系重合体中のアクリル酸エステルおよび/またはメタクリル酸エステルを重合してなる単量体単位の割合は、通常40質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上である。アクリル系重合体としては、アクリル酸エステル及び/又はメタクリル酸エステルと、エチレン性不飽和モノカルボン酸モノマーと、共重合可能な単量体との共重合体が挙げられる。
 アクリル酸エステルおよび/またはメタクリル酸エステルとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステルが挙げられる。
 前記共重合可能な単量体としては、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステルモノマー;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系モノマー;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系モノマー;アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有モノマー;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。これらの中でも、α,β-不飽和ニトリル化合物やスチレン系モノマーが好ましく、α,β-不飽和ニトリル化合物が特に好ましい。これらの共重合可能な単量体由来の構造単位の割合は、3~50質量%が好ましく、5~40質量%がさらに好ましい。
 重合体粒子分散液は、例えば、上記単量体を含む単量体組成物を水中で乳化重合することにより製造できる。重合体粒子分散液中の重合体粒子の個数平均粒径は、50~500nmが好ましく、70~400nmがさらに好ましい。重合体粒子の個数平均粒径が上記範囲にあることで、得られる負極の強度および柔軟性が良好となる。
 バインダーのガラス転移温度は、25℃以下であることが好ましく、より好ましくは-100~+25℃、更に好ましくは-80~+10℃、最も好ましくは-80~0℃である。バインダーのガラス転移温度が、上記範囲であることにより、負極の柔軟性、結着性及び捲回性、負極活物質と集電体との密着性などの特性が高度にバランスされ好適である。
 また、バインダーは、2種以上の単量体組成物を段階的に重合することにより得られるコアシェル構造を有する重合体粒子からなるバインダーであってもよい。コアシェル構造の重合体粒子を用いる場合、コア部は特に限定されないが、シェル部を構成する単量体組成物にモノカルボン酸モノマーが1~5質量%含まれ、かつ、伝導度滴定で測定される重合体粒子1gあたりの重合体粒子の表面の酸基量が0.10~0.50mmolであることが好ましい。
 本発明のリチウムイオン二次電池負極用スラリー組成物における、負極活物質及びバインダーの合計含有量は、スラリー組成物100質量部に対して、好ましくは10~90質量部であり、さらに好ましくは30~80質量部である。また負極活物質の総量に対するバインダーの含有量(固形分相当量)は、負極活物質の総量100質量部に対して、好ましくは0.1~5質量部であり、さらに好ましくは0.5~2質量部である。スラリー組成物における負極活物質及びバインダーの合計含有量およびバインダーの含有量が、上記範囲であると得られるリチウムイオン二次電池負極用スラリー組成物の粘度が適正化され、塗工を円滑に行えるようになり、また得られた負極に関して抵抗が高くなることなく、十分な密着強度が得られる。その結果、極板プレス工程における負極活物質からのバインダーの剥がれを抑制することができる。
(分散媒)
 本発明では、分散媒として水を用いる。本発明においては、バインダーの分散安定性を損なわない範囲であれば、分散媒として水に親水性の溶媒を混ぜたものを使用してもよい。親水性の溶媒としては、メタノール、エタノール、N-メチルピロリドンなどがあげられ、水に対して5質量%以下であることが好ましい。
(導電剤)
 本発明のリチウムイオン二次電池負極用スラリー組成物においては、導電剤を含有することが好ましい。導電剤としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンを使用することができる。導電剤を含有することにより、負極活物質同士の電気的接触を向上させることができ、リチウムイオン二次電池に用いる場合に放電レート特性を改善することができる。スラリー組成物における導電剤の含有量は、負極活物質の総量100質量部に対して、好ましくは1~20質量部、より好ましくは1~10質量部である。
 リチウムイオン二次電池負極用スラリー組成物には、上記成分のほかに、さらに補強材、レベリング剤、電解液分解抑制等の機能を有する電解液添加剤等の、他の成分が含まれていてもよく、後述の二次電池負極中に含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
 補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより強靭で柔軟な負極を得ることができ、優れた長期サイクル特性を示すことができる。スラリー組成物における補強材の含有量は、負極活物質の総量100質量部に対して通常0.01~20質量部、好ましくは1~10質量部である。上記範囲に含まれることにより、高い容量と高い負荷特性を示すことができる。
 レベリング剤としては、アルキル系界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を混合することにより、塗工時に発生するはじきを防止したり、負極の平滑性を向上させることができる。スラリー組成物中のレベリング剤の含有量は、負極活物質の総量100質量部に対して、好ましくは0.01~10質量部である。レベリング剤が上記範囲であることにより負極作製時の生産性、平滑性及び電池特性に優れる。界面活性剤を含有させることによりスラリー組成物中の負極活物質等の分散性を向上することができ、さらにそれにより得られる負極の平滑性を向上させることができる。
 電解液添加剤としては、スラリー組成物中及び電解液中に使用されるビニレンカーボネートなどを用いることができる。スラリー組成物中の電解液添加剤の含有量は、負極活物質の総量100質量部に対して、好ましくは0.01~10質量部である。電解液添加剤が、上記範囲であることによりサイクル特性及び高温特性に優れる。その他には、フュームドシリカやフュームドアルミナなどのナノ微粒子が挙げられる。ナノ微粒子を混合することによりスラリー組成物のチキソ性をコントロールすることができ、さらにそれにより得られる負極のレベリング性を向上させることができる。スラリー組成物中のナノ微粒子の含有量は、負極活物質の総量100質量部に対して、好ましくは0.01~10質量部である。ナノ微粒子が上記範囲であることによりスラリー安定性、生産性に優れ、高い電池特性を示す。
(リチウムイオン二次電池負極用スラリー組成物の製造方法)
 リチウムイオン二次電池負極用スラリー組成物は、上述した負極活物質と、増粘剤と、重合体粒子からなるバインダーと、必要に応じ用いられる導電剤等とを水中で混合して得られる。
 混合法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、および遊星式混練機などの分散混練装置を使用した方法が挙げられる。
(リチウムイオン二次電池負極)
 本発明のリチウムイオン二次電池負極は、本発明のリチウムイオン二次電池負極用スラリー組成物を集電体に塗布、乾燥してなる。
(リチウムイオン二次電池負極の製造方法)
 リチウムイオン二次電池負極の製造方法は、特に限定されないが、例えば、上記スラリー組成物を集電体の少なくとも片面、好ましくは両面に塗布、乾燥し、負極活物質層を形成する方法が挙げられる。
 スラリー組成物を集電体上に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。
 乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥時間は通常5~30分であり、乾燥温度は通常40~180℃である。
 本発明のリチウムイオン二次電池負極を製造するに際して、集電体上に上記スラリー組成物を塗布乾燥後、金型プレスやロールプレスなどを用い、加圧処理により負極活物質層の空隙率を低くする工程を有することが好ましい。空隙率の好ましい範囲は5~30%、より好ましくは7~20%である。空隙率が高すぎると充電効率や放電効率が悪化する。空隙率が低すぎる場合は、高い体積容量が得難く、負極活物質層が集電体から剥がれ易く不良を発生し易いといった問題を生じる。さらに、バインダーとして硬化性の重合体を用いる場合は、硬化させることが好ましい。
 本発明のリチウムイオン二次電池負極における負極活物質層の厚みは、通常5~300μmであり、好ましくは30~250μmである。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性共に高い特性を示す。
 本発明において、負極活物質層における負極活物質の含有割合は、好ましくは85~99質量%、より好ましくは88~97質量%である。負極活物質の含有割合を、上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。
 本発明において、リチウムイオン二次電池負極の負極活物質層の密度は、好ましくは1.6~1.9g/cmであり、より好ましくは1.65~1.85g/cmである。負極活物質層の密度が上記範囲にあることにより、高容量の電池を得ることができる。
(集電体)
 本発明で用いる集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、リチウムイオン二次電池負極に用いる集電体としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、負極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、合剤の接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
(リチウムイオン二次電池)
 本発明のリチウムイオン二次電池は、正極、負極、セパレーター及び電解液を備えてなり、負極が、上記リチウムイオン二次電池負極である。
(正極)
 正極は、正極活物質及び正極用バインダーを含む正極活物質層が、集電体上に積層されてなる。
(正極活物質)
 正極活物質は、リチウムイオンをドープ及び脱ドープ可能な活物質が用いられ、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が使用される。
 遷移金属酸化物としては、MnO、MnO、V、V13、TiO、Cu、非晶質VO-P、MoO、V、V13等が挙げられ、中でもサイクル安定性と容量からMnO、V、V13、TiOが好ましい。遷移金属硫化物としては、TiS、TiS、非晶質MoS、FeS等が挙げられる。リチウム含有複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
 層状構造を有するリチウム含有複合金属酸化物としてはリチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム複合酸化物、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物等が挙げられる。スピネル構造を有するリチウム含有複合金属酸化物としてはマンガン酸リチウム(LiMn)やMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。オリビン型構造を有するリチウム含有複合金属酸化物としてはLiMPO(式中、Mは、Mn,Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B及びMoから選ばれる少なくとも1種、0≦X≦2)であらわされるオリビン型燐酸リチウム化合物が挙げられる。
 有機化合物としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。リチウムイオン二次電池用の正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。
 正極活物質の平均粒子径は、通常1~50μm、好ましくは2~30μmである。粒子径が上記範囲にあることにより、後述する正極用スラリー組成物を調製する際の正極用バインダーの量を少なくすることができ、電池の容量の低下を抑制できると共に、正極用スラリー組成物を、塗布するのに適正な粘度に調製することが容易になり、均一な電極を得ることができる。
 正極活物質層における正極活物質の含有割合は、好ましくは90~99.9質量%、より好ましくは95~99質量%である。正極中の正極活物質の含有量を、上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。
(正極用バインダー)
 正極用バインダーとしては、特に制限されず公知のものを用いることができる。例えば、前述のリチウムイオン二次電池負極用に使用される、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂や、アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。これらは単独で使用しても、これらを2種以上併用してもよい。
 正極には、上記成分のほかに、さらに前述の電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
 集電体は、前述のリチウムイオン二次電池負極に使用される集電体を用いることができ、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、リチウムイオン二次電池の正極用としてはアルミニウムが特に好ましい。
 正極活物質層の厚みは、通常5~300μmであり、好ましくは10~250μmである。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度共に高い特性を示す。
 正極は、前述のリチウムイオン二次電池用負極と同様に製造することができる。
(セパレーター)
 セパレーターは気孔部を有する多孔性基材であって、使用可能なセパレーターとしては、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、または(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーターが挙げられる。これらの非制限的な例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム、ゲル化高分子コート層がコートされたセパレーター、または無機フィラー、無機フィラー用分散剤からなる多孔膜層がコートされたセパレーターなどがある。
(電解液)
 本発明に用いられる電解液は、特に限定されないが、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは、単独、または2種以上を混合して用いることができる。支持電解質の量は、電解液に対して、通常1質量%以上、好ましくは5質量%以上、また通常は30質量%以下、好ましくは20質量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し電池の充電特性、放電特性が低下する。
 電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されないが、通常、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびメチルエチルカーボネート(MEC)などのアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類、1,2-ジメトキシエタン、およびテトラヒドロフランなどのエーテル類;スルホラン、およびジメチルスルホキシドなどの含硫黄化合物類;が用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネートが好ましい。これらは、単独、または2種以上を混合して用いることができる。また、電解液には添加剤を含有させて用いることも可能である。添加剤としてはビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。
 上記以外の電解液としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、硫化リチウム、LiI、LiNなどの無機固体電解質を挙げることができる。
(リチウムイオン二次電池の製造方法)
 本発明のリチウムイオン二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する。さらに必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をすることもできる。電池の形状は、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。なお、本実施例における部および%は、特記しない限り質量基準である。実施例および比較例において、各種物性は以下のように評価した。
(ピール強度)
 負極を、それぞれ、幅1cm×長さ10cmの矩形に切って試験片とし、負極活物質層面を上にして固定する。試験片の負極活物質層の表面にセロハンテープを貼り付けた後、試験片の一端からセロハンテープを50mm/分の速度で180°方向に引き剥がしたときの応力を測定する。測定を10回行い、その平均値を求めてこれをピール強度とし、下記基準にて判定を行う。この値が大きいほど、負極の密着強度が大きいことを示す。
A:6N/m以上
B:5N/m以上~6N/m未満
C:4N/m以上~5N/m未満
D:3N/m以上~4N/m未満
E:2N/m以上~3N/m未満
F:2N/m未満
(充放電特性)
 (1)低温特性(0℃)
 得られたハーフセルを用いて、それぞれ25℃で充放電レートを0.1Cとし、定電流定電圧充電法にて、0.02Vになるまで定電流で充電し、その後定電圧で充電する。充電後に1.5Vまで放電する充放電を各2回繰り返し、その後0℃に設定した恒温槽内で0.1Cで定電流定電圧充電を行う。この定電流定電圧充電における定電流時に得られた電池容量をリチウムイオン受け入れ性の指標とし、下記の基準で判定する。この値が大きいほど、低温特性が優れ、リチウムイオン受け入れ性のよい電池であることを示す。
A:200mAh/g以上
B:180mAh/g以上200mAh/g未満
C:160mAh/g以上180mAh/g未満
D:140mAh/g以上160mAh/g未満
E:140mAh/g未満
 (2)充放電サイクル特性
 得られたハーフセルを用いて、それぞれ25℃で0.1Cの定電流定電圧充電法という方式で、0.02Vになるまで定電流で充電、その後定電圧で充電し、また0.1Cの定電流で1.5Vまで放電する充放電サイクルを行った。充放電サイクルは50サイクルまで行い、初期放電容量に対する50サイクル目の放電容量の比を容量維持率とし、下記の基準で判定する。この値が大きいほど繰り返し充放電による容量減が少ない、すなわち充放電サイクル特性に優れることを示す。
A:80%以上
B:70%以上80%未満
C:60%以上70%未満
D:50%以上60%未満
E:40%以上50%未満
F:40%未満
 また、増粘剤の重合度、並びに、重合体粒子の表面酸基量は、以下のようにして測定する。
(増粘剤の重合度)
 増粘剤の重合度はISO-4312法に記載の銅アンモニア法により測定する。
(重合体粒子の表面酸基量)
 固形分濃度を2%に調整した重合体粒子分散液50gを、蒸留水で洗浄された150mlのガラス容器に入れる。当該ガラス容器を溶液伝導率計(京都電子工業(株)製CM-117、使用セルタイプ:K-121)にセットし、当該重合体粒子分散液を攪拌する。攪拌は塩酸の添加が終了するまで継続する。0.1規定の水酸化ナトリウム(和光純薬工業(株)製、試薬特級)を、当該重合体粒子分散液の電気伝導度が2.5~3.0mSになるように、当該重合体粒子分散液に添加してから6分経過後、当該重合体粒子分散液の電気伝導度(開始時の電気伝導度)を測定する。次いで、0.1規定の塩酸(和光純薬工業(株)製、試薬特級)0.5mlを、当該重合体粒子分散液に添加し、30秒後に電気伝導度を測定する。当該操作を、重合体粒子分散液の電気伝導度が開始時の電気伝導度以上になるまで30秒間隔で繰り返し行う。
 電気伝導度(mS)を縦軸、添加された塩酸の累計量(mmol)を縦軸にプロットし、図1に示される、3つの変曲点を有するグラフを得る。3つの変曲点における横軸の値は、小さい方から順にそれぞれP1、P2、P3とし、塩酸の添加が終了したときの横軸の値をP4とする。近似曲線L1が0-P1区分のデータから、近似曲線L2がP1-P2区分のデータから、近似曲線L3がP2-P3区分のデータから、近似曲線L4がP3-P4区分のデータから、最小自乗法によりそれぞれ求められる。L1とL2の交点の横軸座標をA1(mmol)、L2とL3の交点の横軸座標をA2(mmol)、L3とL4の交点の横軸座標をA3(mmol)とする。重合体粒子分散液に含まれる重合体粒子を構成する共重合体1g当たりの表面酸基量を、以下に示す式により求める。
 重合体粒子1g当たりの表面酸基量(mmol/g)=A2-A1
(実施例1)
(バインダーの製造)
 攪拌機付き5MPa耐圧容器に、スチレン46部、1,3-ブタジエン49部、メタクリル酸5部、ドデシルベンゼンスルホン酸ナトリウム5部、イオン交換水150部、重合開始剤として過硫酸カリウム1部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。モノマー消費量が95.0%になった時点で冷却し反応を止め、バインダーとして固形分濃度40%のジエン系重合体粒子分散液(重合体粒子の数平均粒子径:100nm、重合体粒子のガラス転移温度:-15℃)を得た。なお、ジエン系重合体粒子を得るために用いられる単量体組成物には、モノカルボン酸モノマー(メタクリル酸)が5質量%含まれ、重合体粒子1gあたりの表面の酸基量は0.30mmolであった。
(リチウムイオン二次電池負極用スラリー組成物の製造)
 増粘剤として、カルボキシメチルセルロース(CMC、第一工業製薬株式会社製「BSH-12」)を用いた。増粘剤の重合度は、1,700、エーテル化度は0.65であった。
 ディスパー付きのプラネタリーミキサーに、負極活物質として人造黒鉛(平均粒子径:24.5μm、黒鉛層間距離(X線回折法による(002)面の面間隔(d値)):0.354nm)を100部、上記増粘剤の1%水溶液1部をそれぞれ加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分混合し、混合液を得た。
 上記混合液に、上記バインダーを1部(固形分基準)、及びイオン交換水を入れ、最終固形分濃度42%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良いリチウムイオン二次電池負極用スラリー組成物を得た。
(電池の製造)
 上記リチウムイオン二次電池負極用スラリー組成物を、コンマコーターで、厚さ20μmの銅箔の上に、乾燥後の膜厚が200μm程度になるように塗布し、2分間乾燥(0.5m/分の速度、60℃)し、2分間加熱処理(120℃)して電極原反を得た。この電極原反をロールプレスで圧延して負極活物質層の厚みが80μmのリチウムイオン二次電池負極を得た。負極のピール強度の評価結果を表1に示す。
 上記負極を直径15mmの円盤状に切り抜き、この負極の負極活物質層面側に直径18mm、厚さ25μmの円盤状のポリプロピレン製多孔膜からなるセパレーター、正極として用いる金属リチウム、エキスパンドメタルを順に積層し、これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mmのハーフセルを作製した。
 なお、電解液としてはエチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。このハーフセル(リチウムイオン二次電池)の性能の評価結果を表1に示す。
(実施例2)
 実施例1において、増粘剤を重合度が1,420、エーテル化度0.7のカルボキシメチルセルロースにかえたこと以外は、実施例1と同様の操作を行って、スラリー組成物、負極及びハーフセルを作製し、評価を行った。結果を表1に示す。
(実施例3)
(バインダーの製造)
 攪拌機付き5MPa耐圧容器に、スチレン50部、1,3-ブタジエン48.5部、メタクリル酸1.5部、ドデシルベンゼンスルホン酸ナトリウム5部、イオン交換水150部、重合開始剤として過硫酸カリウム1部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。モノマー消費量が95.0%になった時点で冷却し反応を止め、バインダーとして固形分濃度40%のジエン系重合体粒子分散液(重合体粒子の数平均粒子径:105nm、重合体粒子のガラス転移温度:-18℃)を得た。なお、ジエン系重合体粒子を得るために用いられる単量体組成物には、モノカルボン酸モノマー(メタクリル酸)が1.5質量%含まれ、重合体粒子1gあたりの表面の酸基量は0.11mmolであった。
 上記バインダーを用いたこと以外は、実施例1と同様の操作を行って、スラリー組成物、負極及びハーフセルを作製し、評価を行った。結果を表1に示す。
(実施例4)
(バインダーの製造)
 攪拌機付き5MPa耐圧容器に、スチレン47部、1,3-ブタジエン45部、メタクリル酸8部、ドデシルベンゼンスルホン酸ナトリウム5部、イオン交換水150部、重合開始剤として過硫酸カリウム1部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。モノマー消費量が95.0%になった時点で冷却し反応を止め、バインダーとして固形分濃度40%のジエン系重合体粒子分散液(重合体粒子の数平均粒子径:110nm、重合体粒子のガラス転移温度:4℃)を得た。なお、ジエン系重合体粒子を得るために用いられる単量体組成物には、モノカルボン酸モノマー(メタクリル酸)が8質量%含まれ、重合体粒子1gあたりの表面の酸基量は0.76mmolであった。
 上記バインダーを用いたこと以外は、実施例1と同様の操作を行って、スラリー組成物、負極及びハーフセルを作製し、評価を行った。結果を表1に示す。
(実施例5)
(バインダーの製造)
 攪拌機付き耐圧容器Aにブチルアクリレート12部、アクリロニトリル0.4部、ラウリル硫酸ナトリウム0.05部、イオン交換水70部を加え、48℃に加温して重合開始剤として過硫酸アンモニウム0.2部を加え120分攪拌した後に、別の攪拌機付き耐圧容器Bにブチルアクリレート82部、アクリロニトリル2.6部、メタクリル酸3部、ラウリル硫酸ナトリウム0.2部、イオン交換水30部を加えて攪拌して作製したエマルジョンを、約420分かけて耐圧容器Aに連続的に添加した後で60℃に加温して約300分攪拌してモノマー消費量が95%になったところで冷却して反応を終了し、バインダーとして固形分濃度40%のアクリル系重合体粒子分散液(重合体粒子の数平均粒子径:360nm、重合体粒子のガラス転移温度:-35℃)を得た。
 なお、アクリル系重合体粒子を得るために用いられる単量体組成物には、モノカルボン酸モノマー(メタクリル酸)が3質量%含まれ、重合体粒子1gあたりの表面の酸基量は0.18mmolであった。
 上記バインダーを用いたこと以外は、実施例1と同様の操作を行って、スラリー組成物、負極及びハーフセルを作製し、評価を行った。結果を表1に示す。
(実施例6)
 実施例1において、増粘剤を重合度が2,700、エーテル化度0.7のカルボキシメチルセルロースにかえたこと以外は、実施例1と同様の操作を行って、スラリー組成物、負極及びハーフセルを作製し、評価を行った。結果を表1に示す。
(比較例1)
(バインダーの製造)
 攪拌機付き5MPa耐圧容器に、イオン交換水200部、ラウリル硫酸ナトリウム0.5部、過硫酸カリウム1.0部、重亜硫酸ナトリウム0.5部およびスチレン30部、1,3-ブタジエン38部、メチルメタクリレート30部、イタコン酸3部、α-メチルスチレンダイマー0.1部を入れ、45℃で6時間反応させた。その後、スチレン45部、1,3-ブタジエン24部、メチルメタクリレート20部、イタコン酸3.5部及びα-メチルスチレンダイマー0.2部の混合物を、60℃で7時間にわたって連続的に添加して重合を継続させ、更に連続添加終了後6時間にわたって70℃で反応させて生成物を得た。得られた生成物を脱臭・濃縮工程を経て、バインダーとして固形分濃度40%のジエン系重合体粒子分散液(重合体粒子の数平均粒子径:120nm、重合体粒子のガラス転移温度:1℃)を得た。なお、ジエン系重合体粒子を得るために用いられる単量体組成物には、ジカルボン酸モノマー(イタコン酸)が3.4質量%含まれ、重合体粒子1gあたりの表面の酸基量は1.12mmolであった。
 上記バインダーを用いたこと以外は、実施例1と同様の操作を行って、スラリー組成物、負極及びハーフセルを作製し、評価を行った。結果を表1に示す。
(比較例2)
 実施例1において、増粘剤を重合度が1,100のカルボキシメチルセルロースにかえたこと以外は、実施例1と同様の操作を行って、スラリー組成物、負極及びハーフセルを作製し、評価を行った。結果を表1に示す。
(比較例3)
(バインダーの製造)
 攪拌機付き5MPa耐圧容器に、スチレン50部、1,3-ブタジエン35部、メタクリル酸15部、ドデシルベンゼンスルホン酸ナトリウム5部、イオン交換水150部、重合開始剤として過硫酸カリウム1部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。モノマー消費量が95.0%になった時点で冷却し反応を止め、バインダーとして固形分濃度40%のジエン系重合体粒子分散液(重合体粒子の数平均粒子径:130nm、重合体粒子のガラス転移温度:25℃)を得た。なお、ジエン系重合体粒子を得るために用いられる単量体組成物には、モノカルボン酸モノマー(メタクリル酸)が15質量%含まれ、重合体粒子1gあたりの表面の酸基量は1.41mmolであった。
 上記バインダーを用いたこと以外は、実施例1と同様の操作を行って、スラリー組成物、負極及びハーフセルを作製し、評価を行った。結果を表1に示す。
(比較例4)
 攪拌機付き耐圧容器に、イオン交換水19部、ドデシルジフェニルエーテルジスルホン酸ナトリウム(花王(株)製ペレックスSS-L)0.15部、t-ドデシルメルカプタン(TDM)0.7部、過硫酸カリウム0.35部、1,3-ブタジエン35部、スチレン34.5部、メタクリル酸0.5部を仕込み、攪拌して第1段階の単量体混合物の乳化物を得た。
 別の攪拌機付き耐圧容器に、ドデシルジフェニルエーテルジスルホン酸ナトリウム0.09部、t-ドデシルメルカプタン0.3部、過硫酸カリウム0.15部、1,3-ブタジエン15部、スチレン14.5部、メタクリル酸0.5部を仕込み、攪拌して第2段階の単量体混合物の乳化物を得た。
 攪拌機付き耐圧容器に、イオン交換水62部、ドデシルジフェニルエーテルジスルホン酸ナトリウム0.71部を仕込んで攪拌し、得られた混合物を80℃に加熱し、当該混合物に上記第1段階の単量体混合物の乳化物を250分間にわたり連続的に添加した。連続添加終了直後における重合転化率は、第1段階の単量体混合物全量に対して85%であった。次いで、上記第2段階の単量体混合物の乳化物を90分間にわたり連続的に耐圧容器に添加し、添加終了後、85℃に昇温し、さらに5時間反応を継続した後、モノマー消費量が95%になった時点で冷却し反応を止め、亜硝酸ナトリウム水溶液(5%)0.5部を添加し重合を終了し、バインダーとして固形分濃度40%のジエン系重合体粒子分散液(重合体粒子の数平均粒子径:110nm、重合体粒子のガラス転移温度:-3℃)を得た。
 なお、ジエン系重合体粒子を得るために用いられる単量体組成物には、モノカルボン酸モノマー(メタクリル酸)が1.0質量%含まれ、重合体粒子1gあたりの表面の酸基量は0.08mmolであった。
 上記バインダーを用いたこと以外は、実施例1と同様の操作を行って、スラリー組成物、負極及びハーフセルを作製し、評価を行った。結果を表1に示す。
(比較例5)
(バインダーの製造)
 攪拌機付き5MPa耐圧容器に、スチレン50部、1,3-ブタジエン50部、ドデシルベンゼンスルホン酸ナトリウム5部、イオン交換水150部、重合開始剤として過硫酸カリウム1部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。モノマー消費量が95.0%になった時点で冷却し反応を止め、バインダーとして固形分濃度40%のジエン系重合体粒子分散液(重合体粒子の数平均粒子径:120nm、重合体粒子のガラス転移温度:18℃)を得た。
 上記バインダーを用いたこと以外は、実施例1と同様の操作を行って、スラリー組成物、負極及びハーフセルを作製し、評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1の結果から、以下のことがいえる。
 負極活物質、増粘剤、重合体粒子からなるバインダー、及び水を含有するリチウムイオン二次電池負極用スラリー組成物であって、前記負極活物質が炭素材料を含み、炭素材料の黒鉛層間距離(X線回折法による(002)面の面間隔(d値))が0.340~0.370nmであり、前記増粘剤は、重合度が1,400~3,000の高分子であり、前記重合体粒子が、モノカルボン酸モノマーを1~10質量%含む単量体組成物を重合して得られるものであり、かつ、伝導度滴定で測定される前記重合体粒子1gあたりの重合体粒子の表面の酸基量が、0.10~1.0mmolであるリチウムイオン二次電池負極用スラリー組成物を用いることで、負極のピール強度(密着強度)と、リチウムイオン二次電池の低温特性と充放電サイクル特性(寿命特性)のバランスに優れる(実施例1~6)。

Claims (5)

  1.  負極活物質、増粘剤、重合体粒子からなるバインダー、及び水を含有するリチウムイオン二次電池負極用スラリー組成物であって、
     前記負極活物質が炭素材料を含み、前記炭素材料の黒鉛層間距離(X線回折法による(002)面の面間隔(d値))が0.340~0.370nmであり、
     前記増粘剤は、重合度が1,400~3,000の高分子であり、
     前記重合体粒子が、モノカルボン酸モノマーを1~10質量%含む単量体組成物を重合して得られるものであり、かつ、
     伝導度滴定で測定される前記重合体粒子1gあたりの重合体粒子の表面の酸基量が、0.1~1.0mmolであるリチウムイオン二次電池負極用スラリー組成物。
  2.  前記増粘剤が、アニオン性セルロース系高分子であって、そのエーテル化度が0.5~1.5である請求項1に記載のリチウムイオン二次電池負極用スラリー組成物。
  3.  前記重合体粒子が、ジエン系重合体又はアクリル系重合体である請求項1又は2に記載のリチウムイオン二次電池負極用スラリー組成物。
  4.  請求項1~3に記載のリチウムイオン二次電池負極用スラリー組成物を集電体に塗布、乾燥してなるリチウムイオン二次電池負極。
  5.  正極、負極、セパレーター及び電解液を備えてなり、前記負極が、請求項4に記載のリチウムイオン二次電池負極であるリチウムイオン二次電池。
PCT/JP2011/052216 2010-02-03 2011-02-03 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウム二次電池 WO2011096463A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011552812A JPWO2011096463A1 (ja) 2010-02-03 2011-02-03 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウム二次電池
CN2011800160471A CN102823029A (zh) 2010-02-03 2011-02-03 锂离子二次电池负极用浆料组合物、锂离子二次电池负极以及锂二次电池
US13/576,899 US20120295159A1 (en) 2010-02-03 2011-02-03 Lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-021827 2010-02-03
JP2010021827 2010-02-03

Publications (1)

Publication Number Publication Date
WO2011096463A1 true WO2011096463A1 (ja) 2011-08-11

Family

ID=44355456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052216 WO2011096463A1 (ja) 2010-02-03 2011-02-03 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウム二次電池

Country Status (5)

Country Link
US (1) US20120295159A1 (ja)
JP (1) JPWO2011096463A1 (ja)
KR (1) KR20120112712A (ja)
CN (1) CN102823029A (ja)
WO (1) WO2011096463A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219005A (ja) * 2011-09-26 2013-10-24 Sumitomo Chemical Co Ltd 二次電池用接着樹脂組成物
WO2013191239A1 (ja) * 2012-06-20 2013-12-27 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー、リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池
WO2014061803A1 (ja) * 2012-10-19 2014-04-24 旭硝子株式会社 蓄電デバイス用バインダー組成物の製造方法
WO2014073647A1 (ja) * 2012-11-09 2014-05-15 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極及びその製造方法、並びにリチウムイオン二次電池
JP2014103122A (ja) * 2012-06-18 2014-06-05 Jsr Corp 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP2014154506A (ja) * 2013-02-13 2014-08-25 Mitsubishi Chemicals Corp 非水系二次電池負極用活物質、非水系二次電池用負極及び非水系二次電池
CN104221194A (zh) * 2012-05-25 2014-12-17 日本瑞翁株式会社 锂离子二次电池
CN104396059A (zh) * 2012-07-31 2015-03-04 日本瑞翁株式会社 锂离子二次电池电极用浆料组合物、锂离子二次电池用电极及锂离子二次电池
CN104662627A (zh) * 2012-09-28 2015-05-27 松下知识产权经营株式会社 电容器用电极以及使用其的电容器
WO2015098507A1 (ja) * 2013-12-25 2015-07-02 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、二次電池用電極の製造方法、および、リチウムイオン二次電池
JP2017069108A (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
KR20170039227A (ko) 2014-09-08 2017-04-10 제이에스알 가부시끼가이샤 축전 디바이스 전극용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
JP2018147826A (ja) * 2017-03-08 2018-09-20 凸版印刷株式会社 非水電解質二次電池用負極バインダ、非水電解質二次電池用負極
US20200399458A1 (en) * 2018-03-07 2020-12-24 Zeon Corporation Binder composition for non-aqueous secondary battery electrode and method of producing same, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR20210028643A (ko) 2018-07-10 2021-03-12 제이에스알 가부시끼가이샤 축전 디바이스용 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
KR20210028644A (ko) 2018-07-10 2021-03-12 제이에스알 가부시끼가이샤 축전 디바이스용 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
KR20210029192A (ko) 2018-07-10 2021-03-15 제이에스알 가부시끼가이샤 축전 디바이스용 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
JP2021516414A (ja) * 2019-02-15 2021-07-01 エキョンペトロケミカル シーオー., エルティーディー.Aekyungpetrochemical Co., Ltd. リチウム二次電池負極活物質添加剤用の炭素質材料
KR20220006521A (ko) 2019-05-08 2022-01-17 제이에스알 가부시끼가이샤 축전 디바이스용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
KR20220046628A (ko) 2019-08-29 2022-04-14 제이에스알 가부시끼가이샤 축전 디바이스용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
KR20220047803A (ko) 2019-08-13 2022-04-19 제이에스알 가부시끼가이샤 축전 디바이스용 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987439B2 (ja) * 2012-04-19 2016-09-07 日立化成株式会社 リチウムイオン二次電池用負極活物質及びリチウムイオン二次電池
JP6058444B2 (ja) * 2013-03-26 2017-01-11 株式会社東芝 負極、非水電解質電池、電池パック及び自動車
JP6164289B2 (ja) * 2013-03-26 2017-07-19 日産自動車株式会社 非水電解質二次電池
KR102301032B1 (ko) * 2013-10-28 2021-09-09 제온 코포레이션 리튬 이온 2 차 전지 부극용 슬러리 조성물, 리튬 이온 2 차 전지용 부극, 리튬 이온 2 차 전지, 및 제조 방법
JP6343940B2 (ja) 2014-01-14 2018-06-20 株式会社ジェイテクト 蓄電材料の製造装置および製造方法
CN105900270B (zh) * 2014-01-16 2018-07-10 日本瑞翁株式会社 二次电池电极用粘合剂组合物、二次电池电极用浆料组合物、二次电池用电极、及二次电池
KR101572364B1 (ko) * 2014-03-19 2015-11-26 오씨아이 주식회사 탄소-실리콘 복합체, 이를 이용한 리튬 이차전지용 음극 및 리튬 이차전지
JP6213675B2 (ja) * 2014-06-10 2017-10-18 日立化成株式会社 リチウムイオン二次電池
JP6301819B2 (ja) * 2014-11-26 2018-03-28 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法
WO2016186076A1 (ja) * 2015-05-21 2016-11-24 凸版印刷株式会社 非水電解質二次電池用負極
CN106549158A (zh) * 2015-09-16 2017-03-29 深圳市比克动力电池有限公司 锂离子电池负极材料、锂离子电池负极片及锂离子电池
JPWO2017056984A1 (ja) * 2015-09-28 2018-07-12 Necエナジーデバイス株式会社 リチウムイオン二次電池用負極の製造方法
CN108028361B (zh) * 2015-09-30 2021-05-14 远景Aesc能源元器件有限公司 用于锂离子二次电池的正极以及锂离子二次电池
CN106920968A (zh) * 2015-12-25 2017-07-04 深圳市比克动力电池有限公司 锂离子电池负极混料、负极和锂离子电池
JP2019008961A (ja) * 2017-06-23 2019-01-17 Fdk株式会社 電極板および電池
JP6971732B2 (ja) * 2017-09-12 2021-11-24 関西ペイント株式会社 二次電池用硫黄化合物固体電解質分散ペースト、これを用いた二次電池用硫黄化合物固体電解質層及びこれを用いた全固体二次電池
CN111092255B (zh) * 2018-10-23 2021-11-09 深圳新宙邦科技股份有限公司 一种锂离子电池
CN111640945B (zh) * 2020-06-18 2023-01-03 合肥国轩高科动力能源有限公司 一种锂离子电池阳极浆料及其制作方法
CN112289974A (zh) * 2020-09-22 2021-01-29 合肥国轩高科动力能源有限公司 一种锂离子电池负极材料、负极片和电池
CN114261962A (zh) * 2021-12-24 2022-04-01 陕西煤业化工技术研究院有限责任公司 一种氮掺杂石墨复合负极材料及其制备方法及一种锂离子电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574461A (ja) * 1991-09-13 1993-03-26 Asahi Chem Ind Co Ltd 二次電池負極
JPH08203499A (ja) * 1995-01-25 1996-08-09 Namitsukusu Kk 導電性組成物およびそれを用いた電極
JPH08287915A (ja) * 1995-04-19 1996-11-01 Fuji Photo Film Co Ltd 非水二次電池
JPH10154513A (ja) * 1996-11-25 1998-06-09 Sanyo Electric Co Ltd 非水電解液電池
JPH10302797A (ja) * 1997-04-21 1998-11-13 Jsr Corp 電池電極バインダー
JPH11111268A (ja) * 1997-10-08 1999-04-23 Sanyo Electric Co Ltd リチウム二次電池用負極
WO2000045452A1 (en) * 1999-01-28 2000-08-03 Nippon Zeon Co., Ltd. Binder composition for electrode for lithium-ion secondary battery and utilization thereof
JP2001345104A (ja) * 2000-05-31 2001-12-14 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2002319403A (ja) * 2001-04-20 2002-10-31 Nippon A & L Kk 二次電池負極用バインダーおよび二次電池電極用組成物
JP2010140684A (ja) * 2008-12-09 2010-06-24 Nippon A&L Inc 電池電極用バインダー

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2955938B2 (ja) * 1989-04-20 1999-10-04 東洋紡績株式会社 電解槽用炭素系電極材
JP3091944B2 (ja) * 1994-05-09 2000-09-25 旭有機材工業株式会社 リチウムイオン二次電池負極用カーボン粒子の製造方法
JPH1069912A (ja) * 1996-08-27 1998-03-10 Japan Synthetic Rubber Co Ltd 電池電極形成用バインダー
JPH1167213A (ja) * 1997-08-21 1999-03-09 Jsr Corp 電池電極用組成物および電池電極
US7316864B2 (en) * 2001-10-26 2008-01-08 Zeon Corporation Slurry composition, electrode and secondary cell
KR100522698B1 (ko) * 2003-10-01 2005-10-19 삼성에스디아이 주식회사 카르복시메틸 셀룰로오스계 결합제 및 이를 채용한 리튬전지
JP4824302B2 (ja) * 2004-12-17 2011-11-30 パナソニック株式会社 電極用結着剤を含む水性分散体、水素吸蔵合金電極およびその製造法、アルカリ蓄電池、ならびにリチウムイオン二次電池
JP2009004222A (ja) * 2007-06-21 2009-01-08 Jsr Corp 二次電池電極用バインダー組成物、二次電池電極用スラリー、及び二次電池電極
JP2009070598A (ja) * 2007-09-11 2009-04-02 Hitachi Vehicle Energy Ltd リチウム二次電池
US7908458B2 (en) * 2007-11-21 2011-03-15 Microchip Technology Incorporated Ethernet controller
JP5401035B2 (ja) * 2007-12-25 2014-01-29 日立ビークルエナジー株式会社 リチウムイオン二次電池
US8426062B2 (en) * 2008-02-29 2013-04-23 Zeon Corporation Binder composition for nonaqueous electrolyte secondary battery electrode and nonaqueous electrolyte secondary battery
JP4670908B2 (ja) * 2008-07-11 2011-04-13 日立化成工業株式会社 リチウム二次電池用負極材料及びリチウム二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574461A (ja) * 1991-09-13 1993-03-26 Asahi Chem Ind Co Ltd 二次電池負極
JPH08203499A (ja) * 1995-01-25 1996-08-09 Namitsukusu Kk 導電性組成物およびそれを用いた電極
JPH08287915A (ja) * 1995-04-19 1996-11-01 Fuji Photo Film Co Ltd 非水二次電池
JPH10154513A (ja) * 1996-11-25 1998-06-09 Sanyo Electric Co Ltd 非水電解液電池
JPH10302797A (ja) * 1997-04-21 1998-11-13 Jsr Corp 電池電極バインダー
JPH11111268A (ja) * 1997-10-08 1999-04-23 Sanyo Electric Co Ltd リチウム二次電池用負極
WO2000045452A1 (en) * 1999-01-28 2000-08-03 Nippon Zeon Co., Ltd. Binder composition for electrode for lithium-ion secondary battery and utilization thereof
JP2001345104A (ja) * 2000-05-31 2001-12-14 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2002319403A (ja) * 2001-04-20 2002-10-31 Nippon A & L Kk 二次電池負極用バインダーおよび二次電池電極用組成物
JP2010140684A (ja) * 2008-12-09 2010-06-24 Nippon A&L Inc 電池電極用バインダー

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219005A (ja) * 2011-09-26 2013-10-24 Sumitomo Chemical Co Ltd 二次電池用接着樹脂組成物
US9843049B2 (en) 2011-09-26 2017-12-12 Sumitomo Chemical Company, Limited Adhesive resin composition for secondary battery
CN104221194A (zh) * 2012-05-25 2014-12-17 日本瑞翁株式会社 锂离子二次电池
KR102057573B1 (ko) * 2012-06-18 2019-12-19 제이에스알 가부시끼가이샤 축전 디바이스 전극용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극, 및 축전 디바이스
JP2014103122A (ja) * 2012-06-18 2014-06-05 Jsr Corp 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
US9583278B2 (en) 2012-06-18 2017-02-28 Jsr Corporation Binder composition for electrical storage device electrodes, slurry for electrical storage device electrodes, electrical storage device electrode, and electrical storage device
CN104205442A (zh) * 2012-06-18 2014-12-10 Jsr株式会社 蓄电设备电极用粘结剂组合物、蓄电设备电极用浆料、蓄电设备电极和蓄电设备
WO2013191239A1 (ja) * 2012-06-20 2013-12-27 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー、リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池
CN104396059A (zh) * 2012-07-31 2015-03-04 日本瑞翁株式会社 锂离子二次电池电极用浆料组合物、锂离子二次电池用电极及锂离子二次电池
CN104662627A (zh) * 2012-09-28 2015-05-27 松下知识产权经营株式会社 电容器用电极以及使用其的电容器
US9786917B2 (en) 2012-10-19 2017-10-10 Asahi Glass Company, Limited Method for producing binder composition for storage battery device
JPWO2014061803A1 (ja) * 2012-10-19 2016-09-05 旭硝子株式会社 蓄電デバイス用バインダー組成物の製造方法
WO2014061803A1 (ja) * 2012-10-19 2014-04-24 旭硝子株式会社 蓄電デバイス用バインダー組成物の製造方法
US10297819B2 (en) 2012-11-09 2019-05-21 Zeon Corporation Slurry composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
JPWO2014073647A1 (ja) * 2012-11-09 2016-09-08 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極及びその製造方法、並びにリチウムイオン二次電池
WO2014073647A1 (ja) * 2012-11-09 2014-05-15 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極及びその製造方法、並びにリチウムイオン二次電池
JP2014154506A (ja) * 2013-02-13 2014-08-25 Mitsubishi Chemicals Corp 非水系二次電池負極用活物質、非水系二次電池用負極及び非水系二次電池
WO2015098507A1 (ja) * 2013-12-25 2015-07-02 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、二次電池用電極の製造方法、および、リチウムイオン二次電池
JPWO2015098507A1 (ja) * 2013-12-25 2017-03-23 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、二次電池用電極の製造方法、および、リチウムイオン二次電池
KR102283287B1 (ko) 2013-12-25 2021-07-28 제온 코포레이션 리튬 이온 이차 전지용 바인더 조성물, 리튬 이온 이차 전지용 슬러리 조성물, 이차 전지용 전극의 제조 방법, 및 리튬 이온 이차 전지
KR20160102399A (ko) * 2013-12-25 2016-08-30 제온 코포레이션 리튬 이온 이차 전지용 바인더 조성물, 리튬 이온 이차 전지용 슬러리 조성물, 이차 전지용 전극의 제조 방법, 및 리튬 이온 이차 전지
KR20170039227A (ko) 2014-09-08 2017-04-10 제이에스알 가부시끼가이샤 축전 디바이스 전극용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
US10403896B2 (en) 2014-09-08 2019-09-03 Jsr Corporation Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device
JP2017069108A (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2018147826A (ja) * 2017-03-08 2018-09-20 凸版印刷株式会社 非水電解質二次電池用負極バインダ、非水電解質二次電池用負極
JP7151060B2 (ja) 2017-03-08 2022-10-12 凸版印刷株式会社 非水電解質二次電池用負極バインダ、非水電解質二次電池用負極
US20200399458A1 (en) * 2018-03-07 2020-12-24 Zeon Corporation Binder composition for non-aqueous secondary battery electrode and method of producing same, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR20210028643A (ko) 2018-07-10 2021-03-12 제이에스알 가부시끼가이샤 축전 디바이스용 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
KR20210028644A (ko) 2018-07-10 2021-03-12 제이에스알 가부시끼가이샤 축전 디바이스용 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
KR20210029192A (ko) 2018-07-10 2021-03-15 제이에스알 가부시끼가이샤 축전 디바이스용 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
JP2021516414A (ja) * 2019-02-15 2021-07-01 エキョンペトロケミカル シーオー., エルティーディー.Aekyungpetrochemical Co., Ltd. リチウム二次電池負極活物質添加剤用の炭素質材料
KR20220006521A (ko) 2019-05-08 2022-01-17 제이에스알 가부시끼가이샤 축전 디바이스용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
KR20220047803A (ko) 2019-08-13 2022-04-19 제이에스알 가부시끼가이샤 축전 디바이스용 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
KR20220046628A (ko) 2019-08-29 2022-04-14 제이에스알 가부시끼가이샤 축전 디바이스용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스

Also Published As

Publication number Publication date
US20120295159A1 (en) 2012-11-22
CN102823029A (zh) 2012-12-12
KR20120112712A (ko) 2012-10-11
JPWO2011096463A1 (ja) 2013-06-10

Similar Documents

Publication Publication Date Title
WO2011096463A1 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウム二次電池
JP5861845B2 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極、及びリチウムイオン二次電池
JP6201989B2 (ja) 負極スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP5673545B2 (ja) リチウムイオン二次電池負極及びリチウムイオン二次電池
KR101807543B1 (ko) 이차 전지 부극용 슬러리, 이차 전지용 부극 및 그 제조 방법, 그리고 이차 전지
JP5708301B2 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
KR102418499B1 (ko) 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극 및 이차 전지
JP6358256B2 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極の製造方法及びリチウムイオン二次電池
JP6245173B2 (ja) 二次電池用負極及び二次電池
JP5987471B2 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
WO2012115096A1 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
KR102468252B1 (ko) 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극 및 이차 전지
JPWO2011068215A1 (ja) 電気化学素子用バインダー粒子
WO2019208419A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー組成物、蓄電デバイス用電極、および蓄電デバイス
WO2012043763A1 (ja) 蓄電デバイス用電極合剤およびその製造方法、ならびにこれを用いた蓄電デバイス用電極およびリチウムイオン二次電池
JP6115468B2 (ja) 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池用負極および二次電池
WO2020137403A1 (ja) 二次電池電極用炭素材料分散液、二次電池電極用スラリー組成物、二次電池用電極および二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016047.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127020364

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13576899

Country of ref document: US

Ref document number: 2011552812

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739811

Country of ref document: EP

Kind code of ref document: A1