WO2022113860A1 - 非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法、非水系リチウムイオン二次電池電極用バインダー溶液、非水系リチウムイオン二次電池電極用スラリー組成物、非水系リチウムイオン二次電池用電極、並びに非水系リチウムイオン二次電池 - Google Patents

非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法、非水系リチウムイオン二次電池電極用バインダー溶液、非水系リチウムイオン二次電池電極用スラリー組成物、非水系リチウムイオン二次電池用電極、並びに非水系リチウムイオン二次電池 Download PDF

Info

Publication number
WO2022113860A1
WO2022113860A1 PCT/JP2021/042328 JP2021042328W WO2022113860A1 WO 2022113860 A1 WO2022113860 A1 WO 2022113860A1 JP 2021042328 W JP2021042328 W JP 2021042328W WO 2022113860 A1 WO2022113860 A1 WO 2022113860A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion secondary
secondary battery
electrode
polymer
Prior art date
Application number
PCT/JP2021/042328
Other languages
English (en)
French (fr)
Inventor
勉 藤井
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP21897834.4A priority Critical patent/EP4253435A1/en
Priority to CN202180077189.2A priority patent/CN116457379A/zh
Priority to JP2022565275A priority patent/JPWO2022113860A1/ja
Priority to KR1020237015547A priority patent/KR20230113733A/ko
Priority to US18/252,884 priority patent/US20240030442A1/en
Publication of WO2022113860A1 publication Critical patent/WO2022113860A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • C08F220/48Acrylonitrile with nitrogen-containing monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/22Homopolymers or copolymers of nitriles containing four or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/18Homopolymers or copolymers of nitriles
    • C09D133/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/18Homopolymers or copolymers of nitriles
    • C09D133/22Homopolymers or copolymers of nitriles containing four or more carbon atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a non-aqueous lithium ion secondary battery electrode and a method for producing the same, a binder solution for a non-aqueous lithium ion secondary battery electrode, a slurry composition for a non-aqueous lithium ion secondary battery electrode, and a non-aqueous lithium ion.
  • the present invention relates to an electrode for a secondary battery and a non-aqueous lithium ion secondary battery.
  • PVDF Polyvinylidene fluoride
  • PAN-based polymer a polyacrylonitrile-based polymer mainly composed of acrylonitrile as a constituent component of the polymer.
  • the PAN-based polymer exhibits high binding properties by increasing the acrylonitrile ratio in the constituents of the polymer to reduce the degree of swelling with respect to the electrolytic solution (hereinafter, also referred to as “electrolyte solution swelling degree”), similar to PVDF. It is possible to improve the input / output characteristics of the battery.
  • the PAN-based polymer has a rigid molecular structure, when an electrode for a non-aqueous lithium-ion secondary battery is manufactured using the PAN-based polymer, the flexibility, processability, and particularly rollability of the obtained electrode are lowered. There is a problem of doing it.
  • Patent Document 1 when the mass of the entire binder composition is 100 parts by mass, 70 to 95 parts by mass is used as a repeating unit derived from acrylonitrile and / or methacrylonitrile, and (meth) acrylic having 4 to 100 carbon atoms. It has been studied to suppress an increase in the degree of swelling of an electrolytic solution and to achieve both flexibility of an electrode by using a binder composition having a repeating unit derived from an acid ester of 5 to 30 parts by mass.
  • the binder composition using the conventional PAN-based polymer has a low electrolytic solution swelling degree and the rollability (electrode density) of the electrode for a non-aqueous lithium ion secondary battery formed by using the binder composition. There is room for further improvement in terms of both ease of enhancement). Therefore, it has not been able to meet the demands for higher energy density and higher input / output density required for lithium ion secondary batteries.
  • the present invention relates to a binder composition for a non-aqueous lithium ion secondary battery electrode, which can easily increase the electrode density of the electrode for a non-aqueous lithium ion secondary battery while suppressing the degree of swelling with respect to the electrolytic solution to a low level.
  • the purpose is to provide a manufacturing method.
  • the present invention provides a binder solution for a non-aqueous lithium ion secondary battery electrode, which can easily increase the electrode density of the electrode for a non-aqueous lithium ion secondary battery while keeping the degree of swelling with respect to the electrolytic solution low. The purpose.
  • the present invention provides a slurry composition for a non-aqueous lithium ion secondary battery electrode capable of easily increasing the electrode density of the electrode for a non-aqueous lithium ion secondary battery while keeping the degree of swelling with respect to the electrolytic solution low.
  • the purpose is to do.
  • Another object of the present invention is to provide an electrode for a non-aqueous lithium ion secondary battery having excellent energy density and input / output characteristics.
  • An object of the present invention is to provide a non-aqueous lithium ion secondary battery having both high energy density and excellent input / output characteristics.
  • the present inventor has conducted diligent studies for the purpose of solving the above problems.
  • the present inventor has determined that the low electrolytic solution swelling degree and high binding force based on the high cohesive force derived from polyacrylonitrile in the PAN-based polymer have hydrogen and nitrile at the ⁇ -position of the acrylonitrile unit in the skeleton of the PAN-based polymer. It was found that the hydrogen bond generated with the group and the crystallinity consisting of the regularity of the hydrogen bond contributed greatly.
  • the present inventor partially introduced a repeating unit derived from an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer substituted with an ⁇ -position hydrogen into a PAN-based polymer.
  • the present invention is intended to advantageously solve the above problems, and is a binder composition for a non-aqueous lithium ion secondary battery electrode of the present invention (hereinafter, also simply referred to as "binder composition").
  • binder composition a binder composition containing a polymer, wherein the polymer contains an acrylonitrile unit and an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit substituted with at least one kind of hydrogen at the ⁇ -position.
  • the binder composition is a binder composition containing a polymer containing an acrylonitrile unit and an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit substituted with at least one kind of hydrogen at the ⁇ -position of the polymer. If a binder composition having a crystallite size of 2.5 nm or more and 7.0 nm or less under predetermined conditions in X-ray structural diffraction is used, the degree of swelling with respect to the electrolytic solution is kept low, and the non-aqueous lithium ion secondary is used. The electrode density of the battery electrode can be easily increased.
  • containing a monomer unit means "a repeating unit derived from a monomer is contained in a polymer obtained by using the monomer".
  • the ratio of the monomer unit in the polymer can be measured by using a nuclear magnetic resonance (NMR) method such as 1 H-NMR and a pyrolysis GC / MS method.
  • NMR nuclear magnetic resonance
  • the binder composition for a non-aqueous lithium ion secondary battery electrode of the present invention preferably has a weight average molecular weight (Mw) of 300,000 or more of the polymer.
  • Mw weight average molecular weight
  • the "weight average molecular weight" can be measured as a standard polystyrene-equivalent value by using gel permeation chromatography, and specifically, it is measured by the method described in the examples of the present specification. be able to.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit substituted with hydrogen at the ⁇ -position contains a methacrylonitrile unit, and the above.
  • the molar ratio of the acrylonitrile unit to the ⁇ , ⁇ -ethylenic unsaturated nitrile monomer unit in which the hydrogen at the ⁇ -position contained in the polymer is substituted is preferably 3.0 or more and 20.0 or less.
  • the polymer contains a methacrylonitrile unit and the molar ratio of the acrylonitrile unit to the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit substituted with the hydrogen at the ⁇ -position contained in the polymer is within the above range. Since the swelling of the binder composition with respect to the electrolytic solution can be suppressed to a low level and the electrode density of the electrode for the non-aqueous lithium ion secondary battery can be easily increased, the energy density of the non-aqueous lithium ion secondary battery and It is possible to improve the input / output characteristics.
  • the polymer contains an acid group-containing monomer unit in a proportion of 1% by mass or more and 6% by mass or less. If the polymer contains an acid group-containing monomer unit within the above range, an electrode mixture layer obtained by using a slurry composition for a non-aqueous lithium ion secondary battery electrode containing the binder composition of the present invention. Peel strength can be further increased.
  • the present invention is intended to advantageously solve the above problems, and the method for producing a binder composition for a non-aqueous lithium ion secondary battery electrode of the present invention is any of the above-mentioned binder compositions.
  • a composition containing acrylonitrile and an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer substituted with at least one kind of hydrogen at the ⁇ -position is polymerized. It comprises a step of obtaining the polymer, and is characterized in that the solid content concentration containing the polymer in the binder composition is 15% by mass or more.
  • the present invention comprises the step of polymerizing a composition containing acrylonitrile and an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer substituted with at least one kind of hydrogen at the ⁇ -position to obtain the polymer.
  • the solid content concentration containing the polymer in the binder composition is 15% by mass or more, it becomes possible to produce a binder composition for electrodes for non-aqueous lithium ion secondary batteries with high productivity.
  • the present invention is intended to advantageously solve the above problems, and the binder solution for a non-aqueous lithium ion secondary battery electrode of the present invention (hereinafter, also simply referred to as “binder solution”) is used. It contains an organic solvent and any of the above-mentioned binder compositions for a non-aqueous lithium ion secondary battery electrode, and is characterized in that the polymer is dissolved in the organic solvent.
  • the degree of swelling of the electrolytic solution of the binder composition can be suppressed to a low level, and the electrode density of the electrode for a non-aqueous lithium ion secondary battery can be suppressed. Can be easily increased. Therefore, by using the binder solution of the present invention, it becomes possible to provide an electrode for a non-aqueous lithium ion secondary battery having excellent energy density and input / output characteristics.
  • the present invention is intended to advantageously solve the above problems, and is a slurry composition for a non-aqueous lithium ion secondary battery electrode of the present invention (hereinafter, also simply referred to as "slurry composition").
  • slurry composition Is characterized by containing at least an electrode active material and any of the above-mentioned non-aqueous lithium ion secondary battery electrode binder compositions.
  • the degree of swelling of the electrolytic solution of the binder composition can be suppressed to a low level, and the electrode for a non-aqueous lithium ion secondary battery can be used.
  • the electrode density of the above can be easily increased. Therefore, by using the slurry composition of the present invention, it is possible to produce an electrode for a non-aqueous lithium ion secondary battery having excellent energy density and input / output characteristics.
  • the present invention is intended to advantageously solve the above problems, and is also referred to as an electrode for a non-aqueous lithium ion secondary battery of the present invention (hereinafter, simply referred to as an "electrode for a lithium ion secondary battery”. ) Is provided with an electrode mixture layer formed by using the above-mentioned slurry composition.
  • An electrode for a lithium-on secondary battery provided with such an electrode mixture layer can suppress the degree of swelling of the electrolytic solution of the binder composition to a low level and can easily increase the electrode density, and thus has energy density and input / output characteristics. Excellent for.
  • the present invention aims to advantageously solve the above problems, and the non-aqueous lithium ion secondary battery of the present invention (hereinafter, also simply referred to as "lithium ion secondary battery”) is described above. It is characterized by being provided with an electrode for a lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention has a high energy density and excellent input / output characteristics.
  • a binder composition for a non-aqueous lithium ion secondary battery electrode capable of easily increasing the electrode density of the electrode for a non-aqueous lithium ion secondary battery while keeping the degree of swelling with respect to the electrolytic solution low, and a binder composition thereof.
  • a manufacturing method can be provided.
  • a binder solution for a non-aqueous lithium ion secondary battery electrode capable of easily increasing the electrode density of the electrode for a non-aqueous lithium ion secondary battery while suppressing the degree of swelling with respect to the electrolytic solution to a low level is provided. Can be provided.
  • a slurry composition for a non-aqueous lithium ion secondary battery electrode capable of easily increasing the electrode density of the electrode for a non-aqueous lithium ion secondary battery while suppressing the degree of swelling with respect to the electrolytic solution to a low level.
  • the binder composition for a non-aqueous lithium ion secondary battery electrode of the present invention is the binder solution for the non-aqueous lithium ion secondary battery electrode of the present invention or the slurry composition for the non-aqueous lithium ion secondary battery electrode of the present invention. It can be used when preparing a product.
  • the binder composition for a non-aqueous lithium ion secondary battery electrode of the present invention can be produced, for example, by the method for producing a binder composition for a non-aqueous lithium ion secondary battery electrode of the present invention.
  • the slurry composition for a non-aqueous lithium ion secondary battery electrode of the present invention can be used when producing an electrode for a non-aqueous lithium ion secondary battery.
  • the electrode for a non-aqueous lithium ion secondary battery of the present invention includes an electrode mixture layer formed by using the slurry composition for a non-aqueous lithium ion secondary battery electrode of the present invention.
  • the non-aqueous lithium ion secondary battery of the present invention includes the electrode for the non-aqueous lithium ion secondary battery of the present invention.
  • the binder composition for a non-aqueous lithium ion secondary battery electrode of the present invention is a binder composition containing a polymer.
  • the binder composition of the present invention may optionally contain a solvent and other components in addition to the above polymer.
  • the binder composition of the present invention contains a polymer, and the polymer contains an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in which an acrylonitrile unit and at least one kind of hydrogen at the ⁇ -position are substituted.
  • the binder composition of the present invention holds the component contained in the electrode mixture layer so as not to be detached from the electrode mixture layer in the electrode mixture layer formed by using the slurry composition containing the binder composition. It is a component that can impart an appropriate viscosity to the slurry composition. This makes it possible to improve the coatability of the slurry composition and impart excellent peel strength to the obtained electrode mixture layer. Further, when the binder composition of the present invention is used in the slurry composition, it is possible to delay or suppress the sedimentation of the electrode active material and the like in the slurry composition with time, so that the non-aqueous lithium ion battery having excellent productivity can be delayed or suppressed. Electrodes for sub-batteries can be manufactured.
  • the polymer is required to contain an acrylonitrile unit and an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit substituted with at least one kind of hydrogen at the ⁇ -position.
  • the polymer may optionally further contain a monomer unit other than the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit (hereinafter, referred to as “other monomer unit”). ..
  • the ⁇ , ⁇ -ethylenic unsaturated nitrile monomer unit substituted with hydrogen at the ⁇ -position is derived from the ⁇ , ⁇ -ethylenic unsaturated nitrile monomer substituted with hydrogen at the ⁇ -position. It is a repeating unit of.
  • the acrylonitrile unit is a repeating unit derived from acrylonitrile and is included in the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit.
  • Examples of the monomer capable of forming the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in which the ⁇ -position hydrogen contained in the polymer is substituted include ⁇ -chloroacrylonitrile and ⁇ -bromoacrylonitrile.
  • ⁇ -halogenoacrylonitrile such as; ⁇ -alkylaccrylonitrile such as methacrylonitrile, ⁇ -ethylacrylonitrile; and the like. Of these, methacrylnitrile is preferred.
  • the content ratio of the acrylonitrile unit in the polymer is preferably 60% by mass or more, more preferably 65% by mass or more, further preferably 70% by mass or more, and 93% by mass or less. It is preferably 90% by mass or less, and more preferably 90% by mass or less.
  • the content ratio of the acrylonitrile unit in the polymer is at least the above lower limit value, the degree of swelling of the binder composition with respect to the electrolytic solution can be further suppressed.
  • the content ratio of the acrylonitrile unit in the polymer is not more than the above upper limit value, the rollability of the electrode mixture layer is further improved, and the electrode density can be easily increased by pressing. Further, the polymerization stability in producing the binder composition by the emulsion polymerization method can be enhanced.
  • the total content of the acrylonitrile unit and the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit substituted with hydrogen at the ⁇ position in the polymer is preferably 85% by mass or more, preferably 90% by mass. The above is preferable, 97% by mass or less is preferable, and 95% by mass or less is more preferable. If the total content of the acrylonitrile unit and the ⁇ , ⁇ -unsaturated nitrile monomer unit substituted with hydrogen at the ⁇ position in the polymer is within the above range, the peel strength of the electrode mixture layer can be increased. can. Further, since the degree of swelling of the polymer with respect to the electrolytic solution can be further suppressed, the input / output characteristics of the lithium ion secondary battery can be sufficiently improved.
  • the ⁇ , ⁇ -ethylenic unsaturated nitrile monomer unit in which the ⁇ -position hydrogen in the polymer is substituted contains a methacrylonitrile unit, and the ⁇ -position hydrogen contained in the polymer is substituted ⁇ .
  • the molar ratio of acrylonitrile units to ⁇ -ethylenically unsaturated nitrile monomer units is preferably 3.0 or more, preferably 20.0 or less, and preferably 12.0 or less.
  • the degree of swelling of the polymer with respect to the electrolytic solution can be further suppressed.
  • the molar ratio is not more than the above upper limit value, the rollability of the electrode for the lithium ion secondary battery is enhanced, and the electrode density can be further increased.
  • the acid group-containing monomer unit is a repeating unit derived from the acid group-containing monomer. If the polymer contains an acid group-containing monomer unit, the peel strength of the obtained electrode mixture layer can be further improved.
  • Examples of the carboxy group-containing monomer include monocarboxylic acid and its derivative, dicarboxylic acid and its acid anhydride, and their derivatives.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of the monocarboxylic acid derivative include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid and the like.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • dicarboxylic acid derivative examples include methyl maleic acid, dimethyl maleic acid, phenyl maleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, and fluoromaleate.
  • Maleic acid monoesters such as alkyl can be mentioned.
  • acid anhydride of the dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like.
  • carboxy group-containing monomer an acid anhydride that produces a carboxyl group by hydrolysis can also be used.
  • sulfonic acid group-containing monomer examples include styrene sulfonic acid, vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, 3-allyloxy-2-hydroxypropane sulfonic acid and the like.
  • (meth) allyl means allyl and / or metallyl.
  • examples of the phosphate group-containing monomer include -2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, ethyl phosphate- (meth) acryloyloxyethyl and the like. Can be mentioned.
  • "(meth) acryloyl” means acryloyl and / or methacryloyl.
  • These acid group-containing monomers may be used alone or in combination of two or more. Above all, from the viewpoint of further enhancing the peel strength of the obtained electrode mixture layer, it is preferable to use a carboxy group-containing monomer, and among them, acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid may be used. It is preferable to use methacrylic acid, and it is more preferable to use methacrylic acid.
  • the content ratio of the acid group-containing monomer unit in the polymer is preferably 1% by mass or more, more preferably 2% by mass or more, and preferably 6% by mass or less. It is more preferably mass% or less.
  • the peel strength of the obtained electrode mixture layer can be further improved.
  • the (meth) acrylic acid ester monomer unit is a repeating unit derived from the (meth) acrylic acid ester monomer. If the polymer contains a (meth) acrylic acid ester monomer unit, the size of the crystallites of the polymer can be reduced, so that the obtained electrode mixture layer has good rollability. Therefore, the density of the electrode mixture layer can be effectively increased by pressing.
  • "(meth) acrylic” means acrylic and / or methacrylic.
  • examples of the (meth) acrylic acid ester monomer that can form a (meth) acrylic acid ester monomer unit include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, and t-.
  • Acrylic acids such as butyl acrylate, isobutyl acrylate, n-pentyl acrylate, isopentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate and stearyl acrylate.
  • Alkyl esters methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, isobutyl methacrylate, n-pentyl methacrylate, isopentyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2- Examples thereof include methacrylic acid alkyl esters such as ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n-tetradecyl methacrylate, and stearyl methacrylate. These (meth) acrylic acid ester monomers may be used alone or in combination of two or more. Among these, it is preferable to use n-butyl acrylate.
  • the content ratio of the (meth) acrylic acid ester monomer unit in the polymer is preferably less than 10% by mass, more preferably less than 5% by mass.
  • the degree of swelling with respect to the electrolytic solution can be lowered.
  • the amide group-containing monomer unit is a repeating unit derived from the amide group-containing monomer.
  • the amide group-containing monomer that can form an amide group-containing monomer unit include methacrylamide, acrylamide, dimethylacrylamide, diethylacrylamide, diacetoneacrylamide, hydroxyethylacrylamide, and hydroxymethylacrylamide.
  • These amide group-containing monomers may be used alone or in combination of two or more.
  • acrylamide and methacrylamide are preferably used from the viewpoint of enhancing the polymerization stability in the case of producing a binder composition containing a polymer by using an emulsion polymerization method.
  • the content ratio of the amide group-containing monomer unit in the polymer can be arbitrarily adjusted within the range in which the desired effect of the present invention can be obtained.
  • the hydroxyl group-containing monomer unit is a repeating unit derived from the hydroxyl group-containing monomer.
  • an ethylenically unsaturated alcohol such as (meth) allyl alcohol, 3-butene-1-ol, and 5-hexene-1-ol is used.
  • Mono (meth) allyl ethers of alkylene glycols such as -2-hydroxybutyl ether, (meth) allyl-3-hydroxybutyl ether, (meth) allyl-4-hydroxybutyl ether, (meth) allyl-6-hydroxyhexyl ether; diethylene glycol Polyoxyalkylene glycol mono (meth) allyl ethers such as mono (meth) allyl ethers and dipropylene glycol mono (meth) allyl ethers; glycerin mono (meth) allyl ethers, (meth) allyl-2-chloro-3-hydroxy Mono (meth) allyl ethers of halogens and hydroxy substitutions of (poly) alkylene glycols such as propyl ethers, (meth) allyl-2-hydroxy-3-chloropropyl ethers; mono-hydraulic phenols such as eugenol, isooigenol.
  • (Meta) allyl ether and its halogen substituents (meth) allyl-2-hydroxyethylti (Meta) allylthioethers of alkylene glycols such as oether, (meth) allyl-2-hydroxypropylthioether; N-hydroxymethylacrylamide (N-methylolacrylamide), N-hydroxymethylmethacrylicamide, N-hydroxyethylacrylamide, N -Amids having a hydroxyl group such as hydroxyethyl methacrylamide can be mentioned.
  • the above-mentioned polymer preferably has a weight average molecular weight (Mw) of 300,000 or more, more preferably 500,000 or more, particularly preferably 700,000 or more, and 2,000. It is preferably 000 or less, and more preferably 1,500,000 or less.
  • Mw weight average molecular weight
  • the peel strength of the obtained electrode mixture layer can be further improved.
  • the stability of the slurry with time can be improved.
  • the weight average molecular weight of the polymer is not more than the above upper limit value, it is possible to suppress a decrease in the solid content concentration when the viscosity of the slurry composition is within a desired range, and the productivity at the time of slurry coating and drying can be suppressed. Can be suppressed.
  • the weight average molecular weight of the polymer can be adjusted, for example, by changing the polymerization conditions such as the amount of the polymerization initiator, the amount of the chain transfer agent, and the polymerization temperature at the time of producing the polymer.
  • the method for preparing the above-mentioned polymer is not particularly limited, and the polymer is obtained, for example, by subjecting a monomer composition containing the above-mentioned monomer to a polymerization reaction by adding a polymerization initiator such as potassium persulfate. Can be prepared.
  • a polymerization initiator such as potassium persulfate.
  • the content ratio of each monomer in the monomer composition used for preparing the heavy body can be determined according to the content ratio of each monomer unit in the polymer.
  • any reaction such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the polymerization mode is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, a precipitation polymerization method, and an emulsion polymerization method can be used, but from the viewpoint of polymer productivity, emulsification can be used.
  • the polymerization method is preferable.
  • the size of the crystallites of the polymer is within the above range, the electrode density of the electrode for the lithium ion secondary battery can be easily increased while keeping the degree of swelling with respect to the electrolytic solution low.
  • the size of the crystallites of the polymer is controlled by adjusting the content ratio of the acrylonitrile unit in the polymer and the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit other than the acrylonitrile unit. be able to.
  • the solvent that can be contained in the binder composition of the present invention is not particularly limited, and for example, an organic solvent can be used.
  • the organic solvent is not particularly limited, and is not particularly limited, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, and amyl alcohol.
  • Alcohols such as; ketones such as acetone, methyl ethyl ketone, cyclohexane; esters such as ethyl acetate, butyl acetate; ethers such as diethyl ether, dioxane, tetrahydrofuran; N, N-dimethylformamide, N-methyl-2-pyrrolidone.
  • Examples thereof include amide-based polar organic solvents such as (NMP); aromatic hydrocarbons such as toluene, xylene, chlorobenzene, orthodichlorobenzene, and paradichlorobenzene; and the like. One of these may be used alone, or two or more thereof may be mixed and used.
  • Other components that can be contained in the binder composition of the present invention are not particularly limited, and examples thereof include components such as a reinforcing material, a leveling agent, a viscosity modifier, and an electrolytic solution additive.
  • these components known ones, for example, those described in International Publication No. 2012/115096 can be used. Further, these components may be used alone or in combination of two or more.
  • the binder composition of the present invention can be prepared by mixing the above-mentioned polymer with an arbitrary solvent and / or other components by a known method. Specifically, the binder composition is obtained by mixing each of the above components using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, and a fill mix. You can prepare things. When the binder composition is prepared using the dispersion liquid of the polymer, the liquid component contained in the dispersion liquid and / or the aqueous solution may be used as it is as the solvent of the binder composition.
  • the binder composition of the present invention is not described below. It is preferable to prepare according to the method for producing a binder composition for an aqueous lithium ion secondary battery electrode.
  • the method for producing a binder composition of the present invention is a composition containing acrylonitrile and an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer substituted with at least one kind of hydrogen at the ⁇ -position in the presence of a solvent or a dispersion medium.
  • the above-mentioned polymer is obtained by polymerizing the above-mentioned polymer, and the solid content concentration of the polymer in the binder composition is 15% by mass or more.
  • the solid content concentration containing the polymer in the binder composition is preferably 20% by mass or more, and more preferably 30% by mass or more. According to the method for producing a binder composition of the present invention, it is possible to produce a binder composition containing a larger amount of polymer in one production, so that the productivity of the binder composition can be increased.
  • the binder solution of the present invention contains an organic solvent and the above-mentioned binder composition for a non-aqueous lithium ion secondary battery electrode, and the polymer is dissolved in an organic solvent.
  • the binder solution of the present invention may optionally contain other components.
  • Organic solvent contained in the binder solution of the present invention is not particularly limited, and examples thereof include the same organic solvents that can be blended in the above-mentioned binder composition.
  • one type of organic solvent may be used alone, or two or more types may be mixed and used. Above all, it is preferable to use NMP as the organic solvent.
  • the other components that can be blended in the binder solution of the present invention are not particularly limited, and examples thereof include the same components as those that can be blended in the binder composition described above.
  • one type of other components may be used alone, or two or more types may be used in combination.
  • the binder solution of the present invention can be prepared by mixing an organic solvent, the binder composition of the present invention, and any other component by a known method. At that time, the mixing method is not particularly limited, and mixing can be performed using the same mixer used for preparing the binder composition of the present invention.
  • the slurry composition for a lithium ion secondary battery electrode of the present invention contains at least an electrode active material and the above-mentioned binder composition, and may further contain a conductive auxiliary agent, an organic solvent and other components. Since the slurry composition of the present invention contains the above-mentioned binder composition, the electrode mixture layer formed by using the slurry composition of the present invention can be densified by pressing. Therefore, by using an electrode for a non-aqueous lithium ion secondary battery provided with such an electrode mixture layer, it is possible to achieve both a high energy density of the lithium ion secondary battery and excellent input / output characteristics.
  • the electrode active material contained in the slurry composition of the present invention is a substance that transfers electrons in the electrode of a lithium ion secondary battery.
  • a substance capable of storing and releasing lithium is usually used.
  • the positive electrode active material of the lithium ion secondary battery is not particularly limited, and is limited to a lithium-containing cobalt oxide (LiCoO 2 ), a lithium manganate (LiMn 2 O 4 ), and a lithium-containing nickel oxide (LiMn 2 O 4).
  • LiCoO 2 lithium-containing cobalt oxide
  • LiMn 2 O 4 lithium manganate
  • LiMn 2 O 4 lithium-containing nickel oxide
  • LiNiO 2 Co—Ni—Mn lithium-containing composite oxide (Li (CoMnNi) O 2 ), Ni—Mn—Al lithium-containing composite oxide, Ni—Co-Al lithium-containing composite oxide, olivine type Lithium iron phosphate (LiFePO 4 ), olivine-type lithium manganese phosphate (LiMnPO 4 ), Li 2 MnO 3 -LiNiO 2 -based solid solution, Li 1 + x Mn 2-x O 4 (0 ⁇ X ⁇ 2)
  • positive electrode active materials such as excess spinel compounds, Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 , LiNi 0.5 Mn 1.5 O 4 .
  • the blending amount and particle size of the positive electrode active material are not particularly limited, and can be the same as those of the conventionally used positive electrode active material.
  • Examples of the negative electrode active material of the lithium ion secondary battery include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material combining these.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton into which lithium can be inserted (also referred to as “dope”), and examples of the carbon-based negative electrode active material include carbonaceous materials and graphite. Examples include quality materials.
  • Examples of the carbonaceous material include easily graphitizable carbon and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon.
  • examples of the easily graphitizable carbon include carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fiber, and pyrolysis vapor phase grown carbon fiber.
  • examples of the non-graphitizable carbon include a phenol resin calcined product, a polyacrylonitrile-based carbon fiber, a pseudo-isotropic carbon, a frilly alcohol resin calcined product (PFA), and hard carbon.
  • the graphitic material for example, natural graphite, artificial graphite and the like can be mentioned.
  • artificial graphite for example, artificial graphite obtained by heat-treating carbon containing easily graphitizable carbon mainly at 2800 ° C. or higher, graphitized MCMB obtained by heat-treating MCMB at 2000 ° C. or higher, and mesophase-pitch carbon fiber 2000. Examples thereof include graphitized mesophase pitch-based carbon fibers heat-treated at ° C or higher.
  • the metal-based negative electrode active material is an active material containing a metal, and usually contains an element in which lithium can be inserted in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh /.
  • the metal-based active material include a lithium metal and a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn. , Sr, Zn, Ti, etc.) and their alloys, as well as their oxides, sulfides, nitrides, silicates, carbides, phosphite and the like.
  • an active material containing silicon silicon-based negative electrode active material
  • the capacity of the lithium ion secondary battery can be increased.
  • silicon-based negative electrode active material examples include silicon (Si), an alloy containing silicon, SiO, SiO x , and a composite of a Si-containing material obtained by coating or compounding a Si-containing material with conductive carbon and a conductive carbon. And so on.
  • Binder composition contained in the slurry composition of the present invention, the binder composition of the present invention containing the above-mentioned polymer can be used.
  • the conductive auxiliary agent that can be contained in the slurry composition of the present invention is for ensuring electrical contact between the electrode active materials.
  • the conductive auxiliary agent carbon black (for example, acetylene black, Ketjen black (registered trademark), furnace black, etc.), graphite, carbon fiber, carbon flake, carbon ultrashort fiber (for example, carbon nanotube and gas phase growth). (Carbon fiber, etc.), conductive carbon material such as graphene; various metal fibers or foils can be used.
  • acetylene black, carbon nanotubes, and graphene are preferable as the conductive auxiliary agent. These can be used individually by 1 type or in combination of 2 or more types.
  • the blending amount of the conductive auxiliary agent in the slurry composition depends on the shape, bulk density, specific surface area, etc. of the conductive auxiliary agent used, but is usually 0.1 part by mass or more per 100 parts by mass of the electrode active material. Is preferable, and it is preferably 10 parts by mass or less.
  • the conductive auxiliary agent is included in the slurry composition in an appropriate amount and in an appropriate dispersed state, a good current collecting structure is formed in the electrode mixture layer produced by using the slurry composition, and a lithium ion secondary battery is formed. It is possible to improve the input / output characteristics of the battery and suppress the capacitance decay in the charge / discharge cycle.
  • Organic solvent that can be blended in the slurry composition of the present invention is not particularly limited, and examples thereof include the same organic solvents contained in the binder solution of the present invention.
  • one type of organic solvent may be used alone, or two or more types may be mixed and used.
  • the other components that can be blended in the slurry composition of the present invention are not particularly limited, and examples thereof include the same components as those that can be blended in the binder composition described above.
  • one type of other components may be used alone, or two or more types may be used in combination.
  • the above-mentioned slurry composition can be prepared by mixing each of the above-mentioned components by a known method. Specifically, the slurry composition can be prepared by mixing each of the above components using the mixer mentioned in the above-mentioned preparation of the binder composition. At that time, the slurry composition of the present invention may be prepared by mixing the binder solution containing the binder composition of the present invention described above, the electrode active material, and any other component.
  • the solid content concentration of the slurry composition of the present invention depends on the true specific gravity and particle size distribution of the electrode active material used, and the compounding composition of the slurry composition such as the type and amount of the conductive auxiliary agent used, but the present invention.
  • the solid content concentration of the slurry composition is 60% by mass. Is preferable, 65% or more is more preferable, 80% by mass or less is preferable, and 75% by mass or less is preferable.
  • the electrode for a lithium ion secondary battery of the present invention is characterized by comprising an electrode mixture layer formed by using the slurry composition of the present invention. More specifically, the electrode of the present invention includes a current collector and an electrode mixture layer formed on the current collector, and the electrode mixture layer is formed by using the slurry composition of the present invention. There is. That is, the electrode mixture layer included in the electrode of the present invention contains at least an electrode active material and a polymer, and optionally contains other components. Each component contained in the electrode mixture layer was contained in the above slurry composition, and the suitable abundance ratio of each component is the suitable abundance ratio of each component in the slurry composition. It is the same.
  • the electrode for a lithium ion secondary battery of the present invention includes an electrode mixture layer formed by using a slurry composition containing the binder composition of the present invention, and the electrode mixture layer has a high density by pressing. Can be transformed into. Therefore, the electrode for a lithium ion secondary battery of the present invention can have a high electrode density.
  • the lithium ion secondary electrode of the present invention is, for example, a step of applying the above-mentioned slurry composition onto a current collector (coating step) and a step of drying the slurry composition coated on the current collector to form a current collector. It can be manufactured through a step of forming an electrode mixture layer on the top (drying step).
  • the method for applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as the coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method and the like can be used. At this time, the slurry composition may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
  • the current collector to which the slurry composition is applied a material having electrical conductivity and electrochemical durability is used.
  • a current collector for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum or the like can be used.
  • the above-mentioned materials may be used alone or in combination of two or more.
  • the method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used, for example, drying with warm air, hot air, low humidity air, vacuum drying, irradiation with infrared rays, electron beams, or the like. Drying method by.
  • a known method can be used, for example, drying with warm air, hot air, low humidity air, vacuum drying, irradiation with infrared rays, electron beams, or the like. Drying method by.
  • an electrode mixture layer is formed on the current collector, and an electrode for a lithium ion secondary battery including the current collector and the electrode mixture layer is obtained.
  • the electrode mixture layer may be pressure-treated by using a die press, a roll press, or the like. The pressure treatment can improve the adhesion between the electrode mixture layer and the current collector.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and uses the electrode for the lithium ion secondary battery of the present invention as at least one of the positive electrode and the negative electrode. Since the lithium ion secondary battery of the present invention includes the electrode for the lithium ion secondary battery of the present invention, the energy density is high and the battery characteristics such as input / output characteristics are excellent.
  • the electrode other than the above-mentioned electrode for the lithium ion secondary battery that can be used in the lithium ion secondary battery of the present invention is not particularly limited and is used for manufacturing the lithium ion secondary battery.
  • Known electrodes can be used.
  • an electrode other than the above-mentioned electrode for a lithium ion secondary battery an electrode formed by forming an electrode mixture layer on a current collector using a known manufacturing method can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as the supporting electrolyte of the lithium ion secondary battery.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 N Li. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 , CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because they are easily dissolved in a solvent and show a high degree of dissociation.
  • One type of electrolyte may be used alone, or two or more types may be used in combination at any ratio. Normally, the lithium ion conductivity tends to be higher as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte, and for example, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), and the like.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • Carbonates such as butylene carbonate (BC) and ethylmethyl carbonate (EMC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethylsulfoxide. kind; etc. are preferably used. Further, a mixed solution of these solvents may be used.
  • the concentration of the electrolyte in the electrolytic solution can be appropriately adjusted, for example, preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and 5 to 10% by mass. Is more preferable. Further, known additives such as fluoroethylene carbonate and ethylmethyl sulfone can be added to the electrolytic solution.
  • the separator is not particularly limited, and for example, the separator described in Japanese Patent Application Laid-Open No. 2012-204303 can be used. Among these, the film thickness of the entire separator can be reduced, and as a result, the ratio of the electrode active material in the lithium ion secondary battery can be increased and the capacity per volume can be increased.
  • a microporous film made of a based resin polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferable.
  • a positive electrode and a negative electrode are overlapped with each other via a separator, and if necessary, the positive electrode and the negative electrode are placed in a battery container by winding or folding according to the battery shape, and the battery container is used. It can be manufactured by injecting an electrolytic solution into the battery and sealing it.
  • overcurrent prevention elements such as fuses and PTC elements, expanded metal, lead plates, etc. may be provided as necessary. ..
  • the shape of the lithium ion secondary battery may be, for example, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, or the like.
  • Example 1 ⁇ Preparation of binder composition containing polymer> As shown in Table 1, 75 parts of ion-exchanged water as a solvent and emulsifier A as an emulsifier (“Neoperex G-15” manufactured by Kao Co., Ltd.) were placed in a reactor A equipped with a mechanical stirrer and a condenser under a nitrogen atmosphere. ) With 1.25 parts of a 16% aqueous solution. Then, the mixture was heated to 60 ° C. with stirring, and 7.5 parts of a 4% aqueous solution of potassium persulfate (KPS) as a polymerization initiator was added to the reactor A.
  • KPS potassium persulfate
  • the weight average molecular weight of the polymer contained in the binder composition was measured by gel permeation chromatography (GPC). Specifically, first, 0.004 g of the polymer powder is weighed, then about 4 mL of an eluent is added so that the solid content concentration becomes about 1,000 ppm, and the polymer powder is shaken at room temperature. Was dissolved in the eluent. After visually confirming the dissolution of the polymer powder, a sample for measurement was prepared by filtering using a 0.45 ⁇ m filter. Then, after preparing a calibration curve with a standard substance, the measurement sample was measured to calculate the weight average molecular weight as a standard substance equivalent value.
  • the measurement conditions are as follows.
  • the glass container containing the film piece and the electrolytic solution was placed.
  • the swelling of the film piece was promoted by allowing it to stand in an environment of 60 ° C. for 3 days in a tightly closed state. After 3 days, the film piece was pulled up from the glass container at room temperature to remove the electrolyte solution exuding from the surface. After wiping, the mass was measured. The mass of the film piece after swelling was taken as W1, and the degree of swelling of the electrolytic solution was calculated using the following formula.
  • Electrolyte swelling degree (% by mass) ⁇ (W1-W0) / W0 ⁇ ⁇ 100
  • the electrolytic solution swelling degree of the binder composition (polymer) is suppressed to a low level, and the binder composition in the non-aqueous lithium ion secondary battery electrode is present even in the presence of the electrolytic solution. It can be said that it exhibits good binding properties. Further, it can be said that the non-aqueous lithium ion secondary battery can exhibit excellent input / output characteristics because the current collecting structure by the conductive auxiliary agent is not interrupted in the electrode mixture layer.
  • NMC532 lithium-containing composite oxide of C Cincinnati-Ni—Mn
  • a positive electrode active material was added to a planetary mixer ⁇ Hibismix (registered trademark) 2P-03 type manufactured by Primex Co., Ltd. ⁇ with 96.5 parts and a conductive auxiliary agent.
  • 2 parts of acetylene black (manufactured by Denka Co., Ltd., trade name "Li100") and 1.5 parts of the binder solution obtained according to the above in terms of solid content of the polymer were added and mixed.
  • a non-aqueous lithium ion secondary battery positive electrode slurry composition (hereinafter referred to as “positive electrode slurry composition”) was prepared.
  • Table 2 shows the solid content concentration of the obtained slurry composition for positive electrode.
  • the slurry composition for a positive electrode obtained in accordance with the above was applied with a comma coater on an aluminum foil having a thickness of 20 ⁇ m, which is a current collector, so that the coating amount was 20.5 ⁇ 0.5 mg / cm 2 . ..
  • the slurry composition for a positive electrode on an aluminum foil is obtained by transporting the slurry composition for a positive electrode on an aluminum foil at a speed of 300 mm / min in an oven at a temperature of 80 ° C. for 3.3 minutes and further in an oven at a temperature of 120 ° C. for 3.3 minutes. After drying, a positive electrode original fabric having a positive electrode mixture layer formed on the current collector was obtained.
  • Electrode density of positive electrode mixture layer The positive electrode raw fabric produced above is cut into strips having a length of 100 mm and a width of 20 mm to form test pieces, and the upper and lower parts of the test pieces are sandwiched between copper foils having a length of 300 mm, a width of 100 mm and a thickness of 15 ⁇ m by a press roll. The press operation was performed. After pressing, the electrode density of the positive electrode mixture layer was measured. The roll gap in the press roll was 30 ⁇ m, the press load was 14 tons, and the test environment temperature was 25 ⁇ 2 ° C.
  • a positive electrode was prepared by roll-pressing the positive electrode mixture layer side of the prepared positive electrode raw fabric under an environment of a temperature of 25 ⁇ 3 ° C. with a load of 14 t (ton). This positive electrode was cut into strips having a length of 100 mm and a width of 10 mm to form test pieces, and cellophane tape (based on JIS Z1522) was attached to the surface of the positive electrode mixture layer with the side having the positive electrode mixture layer facing down. ..
  • the stress when one end of the current collector was pulled in the vertical direction at a tensile speed of 50 mm / min and peeled off was measured (note that the cellophane tape was fixed to the test table).
  • the measurement was performed three times, the average value was obtained, and the obtained average value was used as the peel strength of the positive material mixture layer. The larger the value of the peel strength of the positive electrode mixture layer, the better the adhesion between the positive electrode mixture layer and the current collector.
  • Example 2 In preparing the binder composition, the amount of each component used was changed to the amount shown in Table 1, and 1.6 parts of a 25% aqueous solution of emulsifier B (“Emulgen 120” manufactured by Kao Corporation) was further added to a monomer mixed solution. The same operation and measurement as in Example 1 were carried out except that the mixture was blended in. The results are shown in Table 2.
  • Example 4 In preparing the binder composition, the amount of each component used was changed to the amount shown in Table 1, the 40% aqueous solution of acrylamide was changed to 21.4 parts of a 14% aqueous solution of methacrylamide (MAam), and the polymerization temperature was 70. The same operations and measurements as in Example 1 were performed except that the temperature was changed to ° C. The results are shown in Table 2.
  • Example 5 In preparing the binder composition, the amount of each component used was changed to the amount shown in Table 1, the 40% aqueous solution of acrylamide was changed to 21.4 parts of a 14% aqueous solution of methacrylamide (MAam), and the emulsifier C (No. 1) was used. 1. The same operation and measurement as in Example 1 except that 1.2 parts of a 25% aqueous solution of "Aqualon KH-1025" manufactured by Kogyo Seiyaku Co., Ltd. was further added to the monomer mixed solution and the polymerization temperature was changed to 70 ° C. Was done. The results are shown in Table 2.
  • Examples 6 and 12 In preparing the binder composition, the amount of each component used was changed to the amounts shown in Tables 1 and 3, and 1.6 parts (Example 6) and 1.2 parts (Example) of the 25% aqueous solution of emulsifier B were added. 12) was further added to the monomer mixed solution, and the same operations and measurements as in Example 1 were carried out except that the polymerization temperature was changed to 70 ° C. The results are shown in Tables 2 and 4.
  • Examples 7,8,10 In preparing the binder composition, the amount of each component used was changed to the amounts shown in Tables 1 and 3, and the polymerization temperature was changed to 65 ° C (Example 7) and 70 ° C (Examples 8 and 10). Performed the same operation and measurement as in Example 1. The results are shown in Tables 2 and 4.
  • Example 9 In preparing the binder composition, the amount of each component used was changed to the amount shown in Table 3, and 1.0 part of a 30% aqueous solution of emulsifier D (“Newcol-707SN” manufactured by Nippon Emulsifier Co., Ltd.) was further added as a single amount. The same operation and measurement as in Example 1 were carried out except that the mixture was mixed with the body mixture and the polymerization temperature was changed to 70 ° C. The results are shown in Table 4.
  • Example 11 Example 1 except that the amount of each component used in the preparation of the binder composition was changed to the amount shown in Table 3, the polymerization temperature was changed to 70 ° without using tert-dodecyl mercaptan as a chain transfer agent. The same operation and measurement as above were performed. The results are shown in Table 4.
  • Comparative Example 1 In preparing the binder composition, the amount of each component used was changed to the amount shown in Table 3, 1.6 parts of a 25% aqueous solution of emulsifier B was further added to the monomer mixed solution, and the polymerization temperature was set to 57 ° C. The same operations and measurements as in Example 1 were performed except for the changes. The results are shown in Table 4.
  • Comparative Example 2 In preparing the binder composition, the same operations and measurements as in Example 1 were carried out except that the amount of each component used was changed to the amount shown in Table 3 and the polymerization temperature was changed to 57 ° C. The results are shown in Table 4.
  • KPS potassium persulfate
  • TDM tert-dodecyl mercaptan
  • AN indicates acrylonitrile
  • MAN indicates methacrylonitrile
  • MAA indicates methacrylic acid
  • Aam indicates acrylamide, which indicates acrylamide.
  • MAam indicates methacrylamide
  • BA indicates n-butyl acrylate.
  • an electrode having a high electrode density can be easily obtained, but it can be seen that the degree of swelling of the binder composition with respect to the electrolytic solution (degree of swelling of the electrolytic solution) becomes high.
  • a binder composition for a non-aqueous lithium ion secondary electrode capable of easily increasing the electrode density of the electrode for a non-aqueous lithium ion secondary battery while suppressing the degree of swelling with respect to the electrolytic solution to a low level, and production thereof.
  • a method can be provided.
  • a binder solution for a non-aqueous lithium ion secondary battery electrode capable of easily increasing the electrode density of the electrode for a non-aqueous lithium ion secondary battery while suppressing the degree of swelling with respect to the electrolytic solution to a low level is provided. Can be provided.
  • a slurry for a non-aqueous lithium ion secondary battery electrode capable of easily increasing the electrode density of the electrode for a non-aqueous lithium ion secondary battery while suppressing the degree of swelling with respect to the electrolytic solution to a low level. can do. Further, according to the present invention, it is possible to provide an electrode for a non-aqueous lithium ion secondary battery having excellent energy density and input / output characteristics. According to the present invention, it is possible to provide a non-aqueous lithium ion secondary battery having high energy density and excellent input / output characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電解液に対して膨潤し難く、かつ非水系リチウムイオン二次電池用電極の電極密度を容易に高めることが可能な非水系リチウムイオン二次電池電極用バインダー組成物は、重合体を含み、重合体は、アクリロニトリル単位及び少なくとも1種類以上のα位が置換されたα,β-エチレン性不飽和ニトリル単量体単位を含み、かつ、重合体は、X線構造回折における2θ=14°~18°の範囲内におけるピーク及びこのピークの半値幅より求められる結晶子の大きさが2.5nm以上7.0nm以下である。

Description

非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法、非水系リチウムイオン二次電池電極用バインダー溶液、非水系リチウムイオン二次電池電極用スラリー組成物、非水系リチウムイオン二次電池用電極、並びに非水系リチウムイオン二次電池
 本発明は、非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法、非水系リチウムイオン二次電池電極用バインダー溶液、非水系リチウムイオン二次電池電極用スラリー組成物、非水系リチウムイオン二次電池用電極、並びに非水系リチウムイオン二次電池に関する。
 非水系リチウムイオン二次電池の電極の製造に用いられるバインダー組成物には、ポリフッ化ビニリデン(以下、「PVDF」という。)が広く使用されている。PVDFは高い加工性、高い耐酸化性、低い電解液膨潤度、高い結着性といった特長を有しており、PVDFの物性は、電極製造の容易化や、電池の良好な入出力特性に寄与している。
 その一方でPVDFを用いた非水系リチウムイオン二次電池では、電池の充電時の副反応として脱フッ素化が生じ、これにより生成するフッ化水素が正極や負極上での副反応へとつながることで電池の耐久性が低下してしまうことがある。
 そこで、PVDFに代わる重合体が長年検討されている。その一つとして、重合体の構成成分としてアクリロニトリルを主体とするポリアクリロニトリル系重合体(以下、「PAN系重合体」と称する。)が挙げられる。PAN系重合体は重合体の構成成分中のアクリロニトリル比率を高めることでPVDF同様に電解液に対する膨潤度(以下、「電解液膨潤度」ともいう。)を低くして、高い結着性を発現することが可能であり、電池の入出力特性を良好にすることができる。
 しかし、PAN系重合体は剛直な分子構造を有するため、PAN系重合体を用いて非水系リチウムイオン二次電池用電極を製造すると、得られる電極の柔軟性、加工性、特に圧延性が低下してしまう問題がある。
 そこで、この問題を解消するためにこれまで数多くの検討がなされている。しかし、その検討内容の多くは、例えば特許文献1で提案されているように、所定量の(メタ)アクリル酸エステルをアクリロニトリルと共重合することで、犠牲となる電解液膨潤度の上昇を最小限に抑えつつ、電極の柔軟性を高めるというものである。また、特許文献2では、バインダー組成物全体の質量を100質量部とした場合、70~95質量部をアクリロニトリル及び/又はメタクリロニトリル由来の繰り返し単位とし、炭素数4~100の(メタ)アクリル酸エステル由来の繰り返し単位を5~30質量部としたバインダー組成物を用いることで、電解液膨潤度の上昇の抑制と電極の柔軟性を両立させることが検討されている。
特表2019-526693号公報 特許第4748439号公報
 しかし、上記従来のPAN系重合体を用いたバインダー組成物は、低い電解液膨潤度と、当該バインダー組成物を用いて形成される非水系リチウムイオン二次電池用電極の圧延性(電極密度の高め易さ)の両立という点において更なる改善の余地がある。そのため、リチウムイオン二次電池に求められる更なる高エネルギー密度化、高入出力密度化という要望に対して応えられていない。
 そこで、本発明は、電解液に対する膨潤度を低く抑えつつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることが可能な非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法を提供することを目的とする。
 また、本発明は、電解液に対する膨潤度を低く抑えつつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることが可能な非水系リチウムイオン二次電池電極用バインダー溶液の提供を目的とする。
 さらに、本発明は、電解液に対する膨潤度を低く抑えつつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることが可能な非水系リチウムイオン二次電池電極用スラリー組成物を提供することを目的とする。
 また、本発明は、エネルギー密度及び入出力特性に優れた非水系リチウムイオン二次電池用電極を提供することを目的とする。
 そして、本発明は、高いエネルギー密度と優れた入出力特性を両立させた非水系リチウムイオン二次電池を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、PAN系重合体におけるポリアクリロニトリル由来の高い凝集力に基づく低い電解液膨潤度及び高い結着力には、PAN系重合体の骨格中のアクリロニトリル単位のα位における水素とニトリル基との間で生じる水素結合、及び当該水素結合の規則性からなる結晶性が大きく寄与していることを見出した。そして、本発明者は更に検討を重ねた結果、α位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体由来の繰り返し単位をPAN系重合体に部分的に導入することで、PAN系重合体の結晶性を適切に制御することができることを見出した。さらに、当該PAN系重合体を含むバインダー組成物を用いれば、電解液に対する膨潤度を低く抑えつつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることができることを見出し、本発明を完成させた。
 すなわち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系リチウムイオン二次電池電極用バインダー組成物(以下、単に「バインダー組成物」ともいう。)は、重合体を含むバインダー組成物であって、前記重合体は、アクリロニトリル単位と、少なくとも1種類以上のα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位とを含み、かつ、前記重合体は、X線構造回折における2θ=14°~18°の範囲内におけるピーク及び前記ピークの半値幅より求められる結晶子の大きさが2.5nm以上7.0nm以下であることを特徴とする。このように、アクリロニトリル単位及び少なくとも1種類以上のα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位を含む重合体を含むバインダー組成物であって、当該重合体のX線構造回折における所定の条件下での結晶子の大きさが2.5nm以上7.0nm以下であるバインダー組成物を用いれば、電解液に対する膨潤度を低く抑えつつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることができる。
 なお、本明細書において、「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。また、重合体中における単量体単位の割合は、H-NMRなどの核磁気共鳴(NMR)法、熱分解GC/MS法を用いて測定することができる。
 また、本発明において、「X線構造回折における2θ=14°~18°の範囲内におけるピーク及び前記ピークの半値幅より求められる結晶子の大きさ」は、シェラーの式を用いて求めることができ、具体的には、本明細書の実施例に記載の方法により求めることができる。
 ここで、本発明の非水系リチウムイオン二次電池電極用バインダー組成物は、前記重合体の重量平均分子量(Mw)が300,000以上であることが好ましい。前記重合体の重量平均分子量が300,000以上であれば、本発明のバインダー組成物を含む非水系リチウムイオン二次電池電極用スラリー組成物を用いて形成した電極合材層のピール強度を高めることができる。
 なお、本発明において、「重量平均分子量」は、ゲル浸透クロマトグラフィーを使用し、標準ポリスチレン換算値として測定することができ、具体的には、本明細書の実施例に記載の方法により測定することができる。
 また、本発明の非水系リチウムイオン二次電池電極用バインダー組成物において、前記α位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位がメタクリロニトリル単位を含み、前記重合体中に含まれる前記α位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位に対する前記アクリロニトリル単位のモル比が3.0以上20.0以下であることが好ましい。重合体がメタクリロニトリル単位を含み、当該重合体に含まれるα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位に対するアクリロニトリル単位のモル比が上記範囲内であれば、電解液に対するバインダー組成物の膨潤を低い水準に抑え、かつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることができるため、非水系リチウムイオン二次電池のエネルギー密度、及び入出力特性を高めることが可能になる。
 さらに、本発明の非水系リチウムイオン二次電池電極用バインダー組成物は、前記重合体が酸基含有単量体単位を1質量%以上6質量%以下の割合で含むことが好ましい。前記重合体が酸基含有単量体単位を上記範囲内で含んでいれば、本発明のバインダー組成物を含む非水系リチウムイオン二次電池電極用スラリー組成物を用いて得られる電極合材層のピール強度を一層高めることができる。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系リチウムイオン二次電池電極用バインダー組成物の製造方法は、上述したいずれかのバインダー組成物の製造方法であって、溶媒あるいは分散媒の存在下、アクリロニトリル及び少なくとも1種類以上のα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体を含む組成物を重合して前記重合体を得る工程を含み、前記バインダー組成物中の前記重合体を含む固形分濃度が15質量%以上であることを特徴とする。このように、アクリロニトリル及び少なくとも1種類以上のα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体を含む組成物を重合して前記重合体を得る工程を含み、その際、前記バインダー組成物中の前記重合体を含む固形分濃度を15質量%以上とすれば、非水系リチウムイオン二次電池用電極用バインダー組成物を生産性高く製造することが可能になる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系リチウムイオン二次電池電極用バインダー溶液(以下、単に「バインダー溶液」ともいう。)は、有機溶媒と、上述したいずれかの非水系リチウムイオン二次電池電極用バインダー組成物とを含み、前記重合体が前記有機溶媒に溶解してなることを特徴とする。このように、有機溶媒と、上述したいずれかのバインダー組成物とを含むバインダー溶液を用いれば、バインダー組成物の電解液膨潤度を低く抑え、かつ非水系リチウムイオン二次電池用電極の電極密度を容易に高めることができる。そのため、本発明のバインダー溶液を用いれば、エネルギー密度及び入出力特性に優れる非水系リチウムイオン二次電池用電極を提供することが可能になる。
 さらに、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系リチウムイオン二次電池電極用スラリー組成物(以下、単に「スラリー組成物」ともいう。)は、電極活物質と、上述したいずれかの非水系リチウムイオン二次電池電極用バインダー組成物とを少なくとも含むことを特徴とする。このように、電極活物質と、上述したいずれかのバインダー組成物とを少なくとも含むスラリー組成物を用いれば、バインダー組成物の電解液膨潤度を低く抑え、かつ非水系リチウムイオン二次電池用電極の電極密度を容易に高めることができる。そのため、本発明のスラリー組成物を用いれば、エネルギー密度及び入出力特性に優れる非水系リチウムイオン二次電池用電極を作製することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系リチウムイオン二次電池用電極(以下、単に「リチウムイオン二次電池用電極」ともいう。)は、上述したスラリー組成物を用いて形成した電極合材層を備えることを特徴とする。このような電極合材層を備えるリチウムオン二次電池用電極は、バインダー組成物の電解液膨潤度を低く抑え、かつ電極密度を容易に高めることが可能になるため、エネルギー密度及び入出力特性に優れる。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系リチウムイオン二次電池(以下、単に「リチウムイオン二次電池」ともいう。)は、上述したリチウムイオン二次電池用電極を備えることを特徴とする。本発明のリチウムイオン二次電池は、エネルギー密度が高く、かつ、入出力特性に優れる。
 本発明によれば、電解液に対する膨潤度を低く抑えつつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることが可能な非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法を提供することができる。
 また、本発明によれば、電解液に対する膨潤度を低く抑えつつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることが可能な非水系リチウムイオン二次電池電極用バインダー溶液を提供することができる。
 さらに、本発明によれば、電解液に対する膨潤度を低く抑えつつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることが可能な非水系リチウムイオン二次電池電極用スラリー組成物を提供することができる。
 また、本発明によれば、エネルギー密度及び入出力特性に優れた非水系リチウムイオン二次電池用電極を提供することができる。
 そして、本発明によれば、高いエネルギー密度と優れた入出力特性を両立させた非水系リチウムイオン二次電池を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系リチウムイオン二次電池電極用バインダー組成物は、本発明の非水系リチウムイオン二次電池電極用バインダー溶液や、本発明の非水系リチウムイオン二次電池電極用スラリー組成物を調製する際に用いることができる。そして、本発明の非水系リチウムイオン二次電池電極用バインダー組成物は、例えば、本発明の非水系リチウムイオン二次電池電極用バインダー組成物の製造方法によって製造することができる。また、本発明の非水系リチウムイオン二次電池電極用スラリー組成物は、非水系リチウムイオン二次電池用電極を製造する際に用いることができる。さらに、本発明の非水系リチウムイオン二次電池用電極は、本発明の非水系リチウムイオン二次電池電極用スラリー組成物を用いて形成した電極合材層を備える。そして、本発明の非水系リチウムイオン二次電池は、本発明の非水系リチウムイオン二次電池用電極を備える。
(非水系リチウムイオン二次電池電極用バインダー組成物)
 本発明の非水系リチウムイオン二次電池電極用バインダー組成物は、重合体を含むバインダー組成物である。そして、重合体は、アクリロニトリル単位、及び、少なくとも1種類以上のα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位を含み、かつ、上記重合体は、X線構造回折における2θ=14°~18°の範囲内におけるピーク及び当該ピークの半値幅により求められる結晶子の大きさが2.5nm以上7.0nm以下であることを特徴とする。
 なお、本発明のバインダー組成物は、上記重合体に加えて、任意に、溶媒及びその他の成分を含有していてもよい。
 そして、本発明のバインダー組成物は、重合体を含み、当該重合体が、アクリロニトリル単位及び少なくとも1種類以上のα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位を含み、かつ、当該重合体は、X線構造回折における2θ=14°~18°の範囲内におけるピーク及び当該ピーク半値幅により求められる結晶子の大きさが2.5nm以上7.0nm以下であるため、本発明のバインダー組成物によれば、電解液に対する膨潤度を低く抑えつつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることができる。
 また、本発明のバインダー組成物は、当該バインダー組成物を含むスラリー組成物を用いて形成した電極合材層において、電極合材層に含まれる成分が電極合材層から脱離しないように保持する成分であるとともに、スラリー組成物に適度な粘度を付与し得る成分である。これにより、スラリー組成物の塗工性を高め、得られる電極合材層に優れたピール強度を付与することができる。さらに、本発明のバインダー組成物をスラリー組成物に用いれば、スラリー組成物中の電極活物質等の経時的な沈降を遅延あるいは抑制させることができるため、生産性に優れた非水系リチウムイオン二次電池用電極を製造することができる。
 そして、重合体は、上述したように、アクリロニトリル単位及び少なくとも1種類以上のα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位を含むことを必要とする。また、重合体は、任意に、α,β-エチレン性不飽和ニトリル単量体単位以外の単量体単位(以下、「その他の単量体単位」という。)を更に含有していてもよい。
 なお、本発明において、α位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位は、α位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体由来の繰り返し単位である。また、アクリロニトリル単位はアクリロニトリル由来の繰り返し単位であって、α,β-エチレン性不飽和ニトリル単量体単位に含まれる。
[α,β-エチレン性不飽和ニトリル単量体単位]
 本発明のバインダー組成物に含まれる重合体は、アクリロニトリル単位及び少なくとも1種類以上のα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位を含むことにより、電解液に対する膨潤度を低く抑えることができる。したがって、本発明のバインダー組成物を含むスラリー組成物を用いて電極合材層を形成すれば、電解液存在下において重合体が過度に膨張して電極合材層中の導電助剤により集電構造が破壊され、リチウムイオン二次電池の内部抵抗が増大することを抑制できる。そして、結果として、リチウムイオン二次電池のエネルギー密度及び入出力特性を高めることができる。また、重合体がα,β-エチレン性不飽和ニトリル単量体単位を含むことにより重合体の強度が向上するため、電極合材層のピール強度を高めることができる。
 そして、重合体中に含まれるα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位を形成し得る単量体としては、例えば、α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリル、α-エチルアクリロニトリルなどのα-アルキルアクリロニトリル;等が挙げられる。これらの中でもメタクリロニトリルが好ましい。
 ここで、重合体中のアクリロニトリル単位の含有割合は、60質量%以上であることが好ましく、65質量%以上であることがより好ましく、70質量%以上であることが更に好ましく、93質量%以下であることが好ましく、90質量%以下であることがより好ましい。重合体中のアクリロニトリル単位の含有割合が上記下限値以上であれば、バインダー組成物の電解液に対する膨潤度を更に低く抑えることができる。また、重合体中のアクリロニトリル単位の含有割合が上記上限値以下であれば、電極合材層の圧延性を一層良好なものとして、プレスにより電極密度を容易に高めることができる。さらにバインダー組成物を乳化重合法により製造する際における重合安定性を高めることができる。
 また、重合体中のアクリロニトリル単位及びα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位の合計の含有割合は、85質量%以上であることが好ましく、90質量%以上であることが好ましく、97質量%以下であることが好ましく、95質量%以下であることがより好ましい。重合体中のアクリロニトリル単位及びα位の水素が置換されたα,β-不飽和ニトリル単量体単位の合計の含有割合が上記範囲内であれば、電極合材層のピール強度を高めることができる。また、重合体の電解液に対する膨潤度をより一層低く抑えることが可能であるため、リチウムイオン二次電池の入出力特性を十分に高めることができる。
 さらに、重合体中のα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位はメタクリロニトリル単位を含み、重合体中に含まれるα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位に対するアクリロニトリル単位のモル比は3.0以上であることが好ましく、20.0以下であることが好ましく、12.0以下であることが好ましい。前記モル比が上記下限値以上であれば、重合体の電解液に対する膨潤度を更に一層低く抑えることができる。また、前記モル比が上記上限値以下であれば、リチウムイオン二次電池用電極の圧延性が高まり、電極密度を更に容易に高めることができる。
[その他の単量体単位]
 重合体が含み得るその他の単量体単位としては、上述したα,β-エチレン性不飽和ニトリル単量体と共重合可能な既知の重合体に由来する繰り返し単位が挙げられる。具体的には、その他の単量体単位としては、特に限定されず、例えば、酸基含有単量体単位、(メタ)アクリル酸エステル単量体単位、アミド基含有単量体単位、ヒドロキシル基含有単量体単位などが挙げられる。なお、その他の単量体単位は、1種類を単独で、又は、2種類以上を組み合わせて用いることができる。中でも、重合体は、酸基含有単量体単位及び/又は(メタ)アクリル酸エステル単量体単位を含むことが好ましい。
-酸基含有単量体単位-
 酸基含有単量体単位は、酸基含有単量体由来の繰り返し単位である。そして、重合体が酸基含有単量体単位を含有していれば、得られる電極合材層のピール強度を更に優れたものとすることができる。
 ここで、酸基含有単量体単位を形成し得る酸基含有単量体としては、例えば、カルボキシ基含有単量体、スルホン酸基含有単量体、及びリン酸基含有単量体が挙げられる。
 カルボキシ基含有単量体としては、モノカルボン酸及びその誘導体や、ジカルボン酸及びその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸モノエステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 また、カルボキシ基含有単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 また、スルホン酸基含有単量体としては、例えば、スチレンスルホン酸、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリル及び/又はメタリルを意味する。
 さらに、リン酸基含有単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 なお、本発明において、「(メタ)アクリロイル」とは、アクリロイル及び/又はメタクリロイルを意味する。
 これらの酸基含有単量体は、1種類を単独で、又は、2種類以上を組み合わせて用いることができる。中でも、得られる電極合材層のピール強度を一層高める観点から、カルボキシ基含有単量体を用いることが好ましく、その中でもアクリル酸、メタクリル酸、イタコン酸、マレイン酸、及びフマル酸を用いることが好ましく、メタクリル酸を用いることがより好ましい。
 そして、重合体中の酸基含有単量体単位の含有割合は、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、6質量%以下であることが好ましく、5質量%以下であることがより好ましい。重合体中の酸基含有単量体単位の含有割合が上記範囲内であれば、得られる電極合材層のピール強度をより一層優れたものとすることができる。
-(メタ)アクリル酸エステル単量体単位-
 (メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体由来の繰り返し単位である。そして、重合体が(メタ)アクリル酸エステル単量体単位を含んでいれば、重合体の結晶子の大きさを小さくすることができるので、得られる電極合材層の圧延性を良好なものとして、プレスにより効果的に電極合材層を高密度化することができる。
 なお、本発明において、「(メタ)アクリル」とは、アクリル及び/又はメタアクリルを意味する。
 ここで、(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イソブチルアクリレート、n-ペンチルアクリレート、イソペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、イソブチルメタクリレート、n-ペンチルメタクリレート、イソペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。これらの(メタ)アクリル酸エステル単量体は、1種類を単独で、又は、2種類以上を組み合わせて用いることができる。そしてこれらの中でも、n-ブチルアクリレートを用いること好ましい。
 そして、重合体中の(メタ)アクリル酸エステル単量体単位の含有割合は、10質量%未満であることが好ましく、5質量%未満であることがより好ましい。重合体中の(メタ)アクリル酸エステル単量体単位の含有割合が10質量%未満であれば、電解液に対する膨潤度を低くすることができる。
-アミド基含有単量体単位-
 アミド基含有単量体単位は、アミド基含有単量体由来の繰り返し単位である。そして、アミド基含有単量体単位を形成し得るアミド基含有単量体としては、メタクリルアミド、アクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、ダイアセトンアクリルアミド、ヒドロキシエチルアクリルアミド、ヒドロキシメチルアクリルアミドなどが挙げられる。これらのアミド基含有単量体は、1種類を単独で、又は、2種類以上を組み合わせて用いることができる。そしてこれらの中でも、乳化重合法を用いて重合体を含むバインダー組成物を製造する場合における重合安定性を高めることができる観点から、アクリルアミド、メタクリルアミドを用いることが好ましい。
 なお、重合体中のアミド基含有単量体単位の含有割合は、本発明の所望の効果が得られる範囲内で任意に調整することができる。
-ヒドロキシル基含有単量体単位-
 ヒドロキシル基含有単量体単位は、ヒドロキシル基含有単量体由来の繰り返し単位である。そして、ヒドロキシル基含有単量体単位を形成しうるヒドロキシル基含有単量体としては、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オールなどのエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、アクリル酸-4-ヒドロキシブチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式:CH=CR-COO-(C2qO)-H(式中、pは2~9の整数、qは2~4の整数、Rは水素原子又はメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコールモノ(メタ)アリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;N-ヒドロキシメチルアクリルアミド(N-メチロールアクリルアミド)、N-ヒドロキシメチルメタクリルアミド、N-ヒドロキシエチルアクリルアミド、N-ヒドロキシエチルメタクリルアミドなどのヒドロキシル基を有するアミド類などが挙げられる。
[重量平均分子量]
 また、上述した重合体は、重量平均分子量(Mw)が300,000以上であることが好ましく、500,000以上であることがより好ましく、700,000以上であることが特に好ましく、2,000,000以下であることが好ましく、1,500,000以下であることがより好ましい。重合体の重量平均分子量が上記下限値以上であれば、得られる電極合材層のピール強度を更に一層優れたものとすることができる。さらに、スラリー組成物中の電極活物質等の経時的な沈降を遅延あるいは抑制させることができるため、スラリーの経時安定性を高めることができる。そして、重合体の重量平均分子量が上記上限値以下であれば、スラリー組成物の粘度を所望の範囲にした場合における固形分濃度の低下を抑えることができ、スラリー塗工・乾燥時における生産性の低下を抑制することができる。なお、重合体の重量平均分子量は、例えば、重合体製造時における重合開始剤の量、連鎖移動剤の量、及び重合温度等の重合条件を変更することにより調整することができる。
[重合体の調製方法]
 上述した重合体の調製方法は特に限定されず、重合体は、例えば、上述した単量体を含む単量体組成物を、過硫酸カリウム等の重合開始剤を添加して重合反応させることにより調製することができる。
 ここで、重量体の調製に用いる単量体組成物中の各単量体の含有割合は、重合体中の各単量体単位の含有割合に準じて定めることができる。
 重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などのいずれの反応も用いることができる。重合様式としては、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、沈殿重合法、乳化重合法などのいずれの方法も用いることができるが、重合体の生産性の観点から乳化重合法が好ましい。
[結晶子の大きさ]
 そして、本発明のバインダー組成物において、重合体のX線回折における2θ=14°~18°の範囲内におけるピーク及び当該ピークの半値幅より求められる結晶子の大きさ(以下、単に「結晶子の大きさ」ともいう。)が2.5nm以上であることを必要とし、3.0以上であることが好ましく、7.0nm以下であることを必要とし、6.8nm以下であることが好ましい。重合体の結晶子の大きさが上記範囲内であれば、電解液に対する膨潤度を低く抑えつつ、リチウムイオン二次電池用電極の電極密度を容易に高めることができる。なお、重合体の結晶子の大きさは、重合体中のアクリロニトリル単位の含有割合と、アクリロニトリル単位以外のα,β-エチレン性不飽和ニトリル単量体単位の含有割合を調整することによって制御することができる。
<溶媒>
 本発明のバインダー組成物が含み得る溶媒としては、特に限定されず、例えば有機溶媒を用いることができる。そして、有機溶媒としては、特に限定されず、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコールなどのアルコール類;アセトン、メチルエチルケトン、シクロヘキサンなどのケトン類;酢酸エチル、酢酸ブチルなどのエステル類;ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類;N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン(NMP)などのアミド系極性有機溶媒;トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類;などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。
<その他の成分>
 本発明のバインダー組成物が含み得るその他の成分としては、特に限定されず、例えば、補強材、レベリング剤、粘度調整剤、電解液添加剤等の成分が挙げられる。これらの成分は、公知のもの、例えば、国際公開第2012/115096号に記載のものを使用することができる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[バインダー組成物の調製]
 本発明のバインダー組成物は、上述した重合体と、任意の溶媒及び/又はその他の成分とを既知の方法で混合することにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分を混合することにより、バインダー組成物を調製することができる。
 なお、重合体の分散液を用いてバインダー組成物を調製する場合には、分散液及び/又は水溶液が含有している液分をそのままバインダー組成物の溶媒として利用してもよい。さらに、本発明のバインダー組成物を含むスラリー組成物を用いて作製するリチウムイオン二次電池用電極の生産性を高める観点からは、本発明のバインダー組成物は、以下に説明する本発明の非水系リチウムイオン二次電池電極用バインダー組成物の製造方法に従って調製することが好ましい。
(非水系リチウムイオン二次電池電極用バインダー組成物の製造方法)
 本発明のバインダー組成物の製造方法は、溶媒あるいは分散媒の存在下、アクリロニトリル及び少なくとも1種類以上のα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体を含む組成物を重合して上述した重合体を得る工程を含み、当該バインダー組成物中の当該重合体を含む固形分濃度は15質量%以上であることを特徴とする。そして好ましくは、上記バインダー組成物中の重合体を含む固形分濃度は20質量%以上であり、より好ましくは30質量%以上である。本発明のバインダー組成物の製造方法によれば、一度の製造でより多くの重合体を含むバインダー組成物を製造することが可能であるため、バインダー組成物の生産性を高めることができる。
(非水系リチウムイオン二次電池電極用バインダー溶液)
 本発明のバインダー溶液は、有機溶媒と、上述した非水系リチウムイオン二次電池電極用バインダー組成物とを含み、前記重合体は、有機溶媒に溶解してなるものである。そして、本発明のバインダー溶液は、任意に、その他の成分を含み得る。
<有機溶媒>
 本発明のバインダー溶液に含まれる有機溶媒としては、特に限定することなく、上述したバインダー組成物に配合し得る有機溶媒と同様のものが挙げられる。また、有機溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。中でも、有機溶媒としては、NMPを用いることが好ましい。
<その他の成分>
 本発明のバインダー溶液に配合し得るその他の成分としては、特に限定することなく、上述したバインダー組成物に配合し得るその他の成分と同様ものものが挙げられる。また、その他の成分は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[バインダー溶液の調製]
 本発明のバインダー溶液は、有機溶媒と、本発明のバインダー組成物と、任意のその他の成分とを既知の方法で混合することにより調製することができる。その際、混合方法は、特に限定されず、本発明のバインダー組成物の調製に用いられる混合機と同様のものを用いて混合することができる。
(非水系リチウムイオン二次電池電極用スラリー組成物)
 本発明のリチウムイオン二次電池電極用スラリー組成物は、電極活物質と、上述したバインダー組成物とを少なくとも含み、任意に、導電助剤、有機溶媒及びその他の成分を更に含み得る。そして、本発明のスラリー組成物は、上述したバインダー組成物を含んでいるので、本発明のスラリー組成物を用いて形成した電極合材層は、プレスにより高密度化することができる。そのため、かかる電極合材層を備えた非水系リチウムイオン二次電池用電極を用いれば、リチウムイオン二次電池の高いエネルギー密度と優れた入出力特性とを両立させることができる。
<電極活物質>
 本発明のスラリー組成物に含まれる電極活物質は、リチウムイオン二次電池の電極において電子の受け渡しをする物質である。そして、リチウムイオン二次電池用の正極活物質としては、通常は、リチウムを吸蔵及び放出し得る物質を用いる。
 具体的には、リチウムイオン二次電池の正極活物質としては、特に限定されることなく、リチウム含有コバルト酸化物(LiCoO)、マンガン酸リチウム(LiMn)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物(Li(CoMnNi)O)、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO)、オリビン型リン酸マンガンリチウム(LiMnPO)、LiMnO-LiNiO系固溶体、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O、LiNi0.5Mn1.5等の既知の正極活物質が挙げられる。
 なお、正極活物質の配合量や粒径は、特に限定されることなく、従来使用されている正極活物質と同様とすることができる。
 また、リチウムイオン二次電池の負極活物質としては、例えば、炭素系負極活物質、金属系負極活物質、及びこれらを組み合わせた負極活物質などが挙げられる。
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
 そして、炭素質材料としては、例えば、易黒鉛化性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛化性炭素などが挙げられる。
 ここで、易黒鉛化性炭素としては、例えば、石油又は石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
 また、難黒鉛化性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フリフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
 さらに、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
 ここで、人造黒鉛としては、例えば、易黒鉛化性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)及びその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。これらの中でも、金属系負極活物質としては、ケイ素を含む活物質(シリコン系負極活物質)が好ましい。シリコン系負極活物質を用いることにより、リチウムイオン二次電池を高容量化することができる。
 シリコン系負極活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiO、Si含有材料を導電性カーボンで被覆又は複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。
<バインダー組成物>
 本発明のスラリー組成物中に含まれるバインダー組成物としては、上述した重合体を含む本発明のバインダー組成物を用いることができる。
<導電助剤>
 また、本発明のスラリー組成物が含み得る導電助剤は、電極活物質同士の電気的接触を確保するためのものである。そして、導電助剤としては、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラックなど)、グラファイト、炭素繊維、カーボンフレーク、炭素超短繊維(例えば、カーボンナノチューブや気相成長炭素繊維など)、グラフェン等の導電性炭素材料;各種金属のファイバー又は箔などを用いることができる。中でも、導電助剤としては、アセチレンブラックやカーボンナノチューブ、グラフェンが好ましい。これらは1種類を単独で、又は、2種類以上を組み合わせて用いることができる。
 そして、スラリー組成物中の導電助剤の配合量は、用いる導電助剤の形状、嵩密度、比表面積等によるが、通常、電極活物質100質量部当たり、0.1質量部以上であることが好ましく、また、10質量部以下であることが好ましい。導電助剤を適切な量、及び適切な分散状態でスラリー組成物に含めれば、スラリー組成物を用いて製造される電極合材層中で良好な集電構造が形成され、リチウムイオン二次電池の入出力特性の向上、充放電サイクルにおける容量減衰の抑制が可能である。
<有機溶媒>
 本発明のスラリー組成物に配合し得る有機溶媒としては、特に限定されず、本発明のバインダー溶液に含まれる有機溶媒と同様のものが挙げられる。また、有機溶媒は、1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。
<その他の成分>
 本発明のスラリー組成物に配合し得るその他の成分としては、特に限定されず、上述したバインダー組成物に配合し得るその他の成分と同様のものが挙げられる。また、その他の成分は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[スラリー組成物の調製]
 上述したスラリー組成物は、上記各成分を既知の方法で混合することにより調製することができる。具体的には、上述したバインダー組成物の調製の項で挙げた混合機を用いて上記各成分を混合することにより、スラリー組成物を調製することができる。その際、上述した本発明のバインダー組成物を含むバインダー溶液と、電極活物質と、任意のその他の成分とを混合して、本発明のスラリー組成物を調製してもよい。
[スラリー組成物の性状]
 そして、本発明のスラリー組成物の固形分濃度は、用いる電極活物質の真比重及び粒度分布、並びに、用いる導電助剤の種類及び量などのスラリー組成物の配合組成にもよるが、本発明のスラリー組成物が電極活物質にNMC532(Ni-Mn-Coのリチウム含有複合酸化物)を用いた正極スラリー組成物の場合には、当該スラリー組成物の固形分濃度は60質量%であることが好ましく、65%以上であることがより好ましく、80質量%以下であることが好ましく、75質量%以下であることが好ましい。
(リチウムイオン二次電池用電極)
 本発明のリチウムイオン二次電池用電極は、本発明のスラリー組成物を用いて形成された電極合材層を備えることを特徴とする。より具体的には、本発明の電極は、集電体と、集電体上に形成された電極合材層とを備え、電極合材層は本発明のスラリー組成物を用いて形成されている。すなわち、本発明の電極が備える電極合材層には、少なくとも電極活物質及び重合体が含有されており、任意に、その他の成分が含有されている。なお、電極合材層に含まれる各成分は、上記スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、スラリー組成物中の各成分の好適な存在比と同じである。
 そして、本発明のリチウムイオン二次電池用電極は、本発明のバインダー組成物を含むスラリー組成物を用いて形成された電極合材層を備えており、当該電極合材層はプレスにより高密度化することができる。したがって、本発明のリチウムイオン二次電池用電極は高い電極密度を有することができる。
[リチウムイオン二次電池用電極の製造方法]
 本発明のリチウムイオン二次電極は、例えば、上述したスラリー組成物を集電体上に塗布する工程(塗布工程)と、集電体上に塗布されたスラリー組成物を乾燥して集電体上に電極合材層を形成する工程(乾燥工程)とを経て製造することができる。
[塗布工程]
 上記スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
 ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[乾燥工程]
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず、公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備えるリチウムイオン二次電池用電極を得ることができる。
 なお、乾燥工程の後、金型プレス又はロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極合材層と集電体との密着性を向上させることができる。
(リチウムイオン二次電池)
 本発明のリチウムイオン二次電池は、正極と、負極と、電解液と、セパレータとを備え、正極及び負極の少なくとも一方として本発明のリチウムイオン二次電池用電極を用いたものである。そして、本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用電極を備えているので、エネルギー密度が高く、入出力特性等の電池特性に優れている。
<電極>
 ここで、本発明のリチウムイオン二次電池に使用し得る、上述したリチウムイオン二次電池用電極以外の電極としては、特に限定されることなく、リチウムイオン二次電池の製造に用いられている既知の電極を用いることができる。具体的には、上述したリチウムイオン二次電池用電極以外の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。リチウムイオン二次電池の支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましく、LiPFが特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類を用いることが好ましい。
 なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5~15質量%することが好ましく、2~13質量%とすることがより好ましく、5~10質量%とすることが更に好ましい。また、電解液には、既知の添加剤、例えばフルオロエチレンカーボネートやエチルメチルスルホンなどを添加することができる。
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積当たりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<リチウムイオン二次電池の製造方法>
 本発明のリチウムイオン二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。リチウムイオン二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。リチウムイオン二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、いずれであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体に用いる全単量体に占める当該ある単量体単位の比率(仕込み比)と一致する。
 (実施例1)
<重合体を含むバインダー組成物の調製>
 メカニカルスターラー及びコンデンサを装着した反応器Aに、窒素雰囲気下、表1に示すように、溶媒としてのイオン交換水75部と、乳化剤としての乳化剤A(花王株式会社製「ネオペレックスG-15」)の16%水溶液1.25部とを入れた。その後、撹拌しながら60℃に加熱し、重合開始剤としての過硫酸カリウム(KPS)の4%水溶液7.5部を反応器Aに添加した。次いで、反応器Aとは別の反応器Bに、窒素雰囲気下、表1に示すように、溶媒としてのイオン交換水90部と、乳化剤としての乳化剤Aの16%水溶液6.3部と、α,β-エチレン性不飽和ニトリル単量体としてのアクリロニトリル(AN)87部及びメタクリロニトリル(MAN)5.5部と、酸基含有単量体としてのメタクリル酸(MAA)3部と、アミド基含有単量体としてアクリルアミド(Aam)の40%水溶液6.3部と、(メタ)アクリル酸エステル単量体としてのn-ブチルアクリレート(BA)2部と、連鎖移動剤としてのtert-ドデシルメルカプタン(TDM)0.05部と、を添加し、これらを撹拌乳化させて単量体混合液を調製した。そして、この単量体混合液を撹拌乳化させた状態にて反応器A内に滴下した。その際、滴下は、一定の速度で内温を一定(重合温度:60℃)に維持しつつ、5時間かけて行った。滴下終了後、内温一定の状態を3時間保つことで、重合転化率が98%のアクリロニトリル-メタクリロニトリル-メタクリル酸-アクリルアミド-n-ブチルアクリレート共重合体の水分散液(バインダー組成物)を得た。
<重合体粉末の調製>
 前記にて製造したバインダー組成物約2gをアルミ皿に加え、このアルミ皿を80℃に加温されたホットプレート上に3時間静置することで前記バインダー組成物から水を除去した。その後、得られた重合体をメノウの乳鉢に移し、乳棒ですり潰し、回収することで重合体粉末を得た。
<重合体の重量平均分子量>
 バインダー組成物に含まれる重合体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定した。具体的には、まず、前記重合体粉末を0.004g秤量したのちに固形分濃度が約1,000ppmとなるよう溶離液を約4mL加え、室温において振とう操作を加えることで、重合体粉末を溶離液に溶解させた。目視で重合体粉末の溶解を確認後、0.45μmのフィルターを用いて濾過を施すことで測定用試料を調製した。そして、標準物質で検量線を作成したのちに測定用試料を測定することにより、標準物質換算値としての重量平均分子量を算出した。なお、測定条件は、以下のとおりである。
[測定条件]
装置:製品名「HLC-8320GPC」、東ソー株式会社製
カラム:東ソー株式会社製、製品名「TSKgel α-M」×2本(φ7.8mmI.D.×30cm×2本)
溶離液:N,N-ジメチルホルムアミド(10mMの濃度で臭化リチウムを含有)
流速:1mL/分
注入量:10μL
カラム温度:40℃
検出器:示差屈折率検出器(RI)
標準物質:標準ポリスチレンキット(東ソー株式会社製、製品名「PSt Quick Kit-H」)
<重合体の結晶子の大きさ>
 重合体の結晶子の大きさは、前述の重合体粉末をX線構造回折装置の試料板に充填して下記条件にて測定した。具体的には、X線構造解析で得られたX線構造解析プロファイルに対してバックグラウンド除去処理をした。その後、ピーク分離処理を行うことで、X線構造回折プロファイルから2θ=14~18°の範囲におけるピークを単離した。そして、当該ピークの半値幅(β)(ラジアン)、並びに、X線の波長(λ)、ブラッグ角(θ)(ラジアン)、及びシェラー定数(k)をシェラーの式に当てはめることで、重合体の結晶子の大きさを求めた。その際、シェラー定数(k)は0.94を用いた。以下にシェラーの式を示す。また、結果を表2に示す。
   重合体の結晶子の大きさ=kλ/βcоsθ
[測定条件]
X線構造回折装置:全自動多目的X線回折装置SmartLab(株式会社リガク製)
測定方法:集中法
スキャンスピード:20°/分
管電圧:45kV
管電流:200mA
<非水系リチウムイオン二次電池電極用バインダー溶液の調製>
 前記にて得られたバインダー組成物に、有機溶媒としてのN-メチル-2-ピロリドン(NMP)を適量添加して混合物を調製した後、80℃にて減圧蒸留を実施して、当該混合物から水及び過剰なNMPを除去し、バインダー溶液を得た。また、得られたバインダー溶液を用いて後述のとおりにしてバインダー組成物の電解液膨潤度を測定した。結果を表2に示す。
[電解液膨潤度]
 前記で調製したバインダー溶液を、ポリテトラフルオロエチレン製シャーレに所定量注加したのちに温度80~120℃の環境下で3~8時間乾燥させて、重合体からなる厚み約400μmのキャストフィルムを得た。このキャストフィルムを裁断し、質量200~400mgのフィルム片を作製した。得られたフィルム片の質量をW0とした。このフィルム片を密栓付きガラス容器に入れたのちに電解液(組成:濃度1.0MのLiPF溶液(溶媒はエチレンカーボネート(EC):エチルメチルカーボネート(EMC)=3:7(重量比)の混合溶媒、添加剤としてビニレンカーボネート2体積%(溶媒比)を添加)を前記ガラス容器に加えることでフィルム片を電解液に浸漬させた。その後、フィルム片及び電解液を含有する前記ガラス容器を密栓した状態で温度60℃の環境下で3日間静置することで、フィルム片の膨潤を促進させた。3日経過後、室温下でガラス容器からフィルム片を引き上げ、表面から滲み出る電解液を拭いた後、質量を測定した。膨潤後のフィルム片の質量をW1とし、以下の計算式を用いて電解液膨潤度を算出した。
   電解液膨潤度(質量%)={(W1-W0)/W0}×100
 電解液膨潤度が200%未満であれば、バインダー組成物(重合体)の電解液膨潤度が低く抑えられており、非水系リチウムイオン二次電池電極中のバインダー組成物は電解液存在下でも良好な結着性を発揮するといえる。また、電極合材層中において、導電助剤による集電構造が途切れ難く、非水系リチウムイオン二次電池が優れた入出力特性を発揮できるといえる。
<非水系リチウムイオン二次電池正極用スラリー組成物の調製>
 プラネタリーミキサー{プライミクス株式会社製ハイビスミックス(登録商標)2P-03型}に、正極活物質としてのNMC532(Cо-Ni―Mnのリチウム含有複合酸化物)を96.5部と、導電助剤としてのアセチレンブラックを2部(デンカ株式会社製、商品名「Li100」)と、上記に従って得たバインダー溶液を重合体の固形分換算で1.5部と、を添加し、混合した。さらに、有機溶媒としてのNMPを徐々に加えながら撹拌混合を繰り返し、B型粘度計、60rpm(ローターM4)にて、25±3℃、粘度が4,250±250mPa・sとなるまで希釈することで非水系リチウムイオン二次電池正極用スラリー組成物(以下、「正極用スラリー組成物」という。)を調製した。得られた正極用スラリー組成物の固形分濃度を表2に示す。
<正極の作製>
 上記に従って得られた正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミニウム箔の上に、塗布量が20.5±0.5mg/cmとなるように塗布した。
 さらに、300mm/分の速度で、温度80℃のオーブン内を3.3分間、さらに温度120℃のオーブン内を3.3分間かけて搬送することにより、アルミニウム箔上の正極用スラリー組成物を乾燥させ、集電体上に正極合材層が形成された正極原反を得た。
 得られた正極原反を用いて、後述のとおりにして正極合材層の電極密度及び正極合材層のピール強度を測定した。結果を表2に示す。
[正極合材層の電極密度]
 前記で作製した正極原反を長さ100mm、幅20mmの短冊状に切出して試験片とし、試験片の上下を長さ300mm、幅100mm、厚さ15μmの銅箔で挟んだ状態でプレスロールによりプレス操作を行った。プレス後に正極合材層の電極密度を測定した。プレスロールにおけるロールギャップは30μm、プレス荷重は14t、試験環境温度は25±2℃とした。同一条件でプレスした場合、プレス後の電極密度が高いほど、圧延性に優れる、すなわち、容易に電極密度を高められることを示す。
[正極合材層のピール強度]
 作製した正極原反の正極合材層側を温度25±3℃の環境下、14t(トン)の荷重でロールプレスして正極を作製した。この正極を長さ100mm、幅10mmの短冊状に切り出して試験片とし、正極合材層を有する面を下にして正極合材層表面にセロハンテープ(JIS Z1522に準拠するもの)を貼り付けた。そして、集電体の一端を垂直方向に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した(なお、セロハンテープは試験台に固定した)。測定を3回行い、その平均値を求めて、得られた平均値を正材合材層のピール強度とした。正極合材層のピール強度の値が大きいほど、正極合材層と集電体との密着性に優れることを示す。
(実施例2,3)
 バインダー組成物の調製に当たり、使用する各成分の量を表1に示す量に変更し、乳化剤B(花王株式会社製「エマルゲン120」)の25%水溶液1.6部を更に単量体混合液に配合した以外は、実施例1と同様の操作及び測定を行った。結果を表2に示す。
(実施例4)
 バインダー組成物の調製に当たり、使用する各成分の量を表1に示す量に変更し、アクリルアミドの40%水溶液をメタクリルアミド(MAam)の14%水溶液21.4部に変更し、重合温度を70℃に変更した以外は、実施例1と同様の操作及び測定を行った。結果を表2に示す。
(実施例5)
 バインダー組成物の調製に当たり、使用する各成分の量を表1に示す量に変更し、アクリルアミドの40%水溶液をメタクリルアミド(MAam)の14%水溶液21.4部に変更し、乳化剤C(第一工業製薬製「アクアロンKH-1025」)の25%水溶液1.2部を更に単量体混合液に配合し、重合温度を70℃に変更した以外は、実施例1と同様の操作及び測定を行った。結果を表2に示す。
(実施例6,12)
 バインダー組成物の調製に当たり、使用する各成分の量を表1、表3に示す量に変更し、乳化剤Bの25%水溶液を1.6部(実施例6)、1.2部(実施例12)を更に単量体混合液に配合し、重合温度を70℃に変更した以外は、実施例1と同様の操作及び測定を行った。結果を表2、表4に示す。
(実施例7,8,10)
 バインダー組成物の調製に当たり、使用する各成分の量を表1、表3に示す量に変更し、重合温度を65℃(実施例7)、70℃(実施例8,10)に変更した以外は、実施例1と同様の操作及び測定を行った。結果を表2、表4に示す。
(実施例9)
 バインダー組成物の調製に当たり、使用する各成分の量を表3に示す量に変更し、乳化剤D(日本乳化剤株式会社製「ニューコール-707SN」)の30%水溶液1.0部を更に単量体混合液に配合し、重合温度を70℃に変更した以外は、実施例1と同様の操作及び測定を行った。結果を表4に示す。
(実施例11)
 バインダー組成物の調製に当たり、使用する各成分の量を表3に示す量に変更し、連鎖移動剤としてのtert-ドデシルメルカプタンを用いず、重合温度を70°に変更した以外は、実施例1と同様の操作及び測定を行った。結果を表4に示す。
(比較例1)
 バインダー組成物の調製に当たり、使用する各成分の量を表3に示す量に変更し、乳化剤Bの25%水溶液1.6部を更に単量体混合液に配合し、重合温度を57℃に変更した以外は、実施例1と同様の操作及び測定を行った。結果を表4に示す。
(比較例2)
 バインダー組成物の調製に当たり、使用する各成分の量を表3に示す量に変更し、重合温度を57℃に変更した以外は、実施例1と同様の操作及び測定を行った。結果を表4に示す。
(比較例3)
 バインダー組成物の調製に当たり、使用する各成分の量を表3に示す量に変更し、乳化剤Bの25%水溶液1.6部を更に単量体混合液に配合し、重合温度を70℃に変更した以外は、実施例1と同様の操作及び測定を行った。結果を表4に示す。
 なお、以下に示す表中、
「KPS」は、過硫酸カリウムを示し、
「TDM」は、tert-ドデシルメルカプタンを示し、
「AN」は、アクリロニトリルを示し、
「MAN」は、メタクリロニトリルを示し、
「MAA」は、メタクリル酸を示し、
「Aam」は、アクリルアミドを示し、
「MAam」は、メタクリルアミドを示し、
「BA」は、n-ブチルアクリレートを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記表より、アクリロニトリル単位とメタクリロニトリル単位とを含む重合体を含み、かつ、当該重合体のX線構造回折における2θ=14°~18°の範囲内におけるピーク及び当該ピークの半値幅より求められる結晶子の大きさが2.5nm以上7.0nm以下のバインダー組成物(実施例1~12)を用いた場合には、バインダー組成物の電解液に対する膨潤度(電解液膨潤度)は低く抑えられており、また、当該バインダー組成物を用いることで、電極密度の高い電極が得られることがわかる。
 一方、上記表より、メタクリロニトリル単位を含まずアクリロニトリル単位のみを含むバインダー組成物(比較例1)を用いた場合、及び、重合体のX線構造回折における2θ=14°~18°の範囲内におけるピーク及び当該ピークの半値幅より求められる結晶子の大きさが7.0nmを超えるバインダー組成物(比較例2)を用いた場合は、バインダー組成物の電解液に対する膨潤度を低く抑えることが可能であるが、電極密度の高い電極が得られないことがわかる。
 また、重合体のX線構造回折における2θ=14°~18°の範囲内におけるピーク及び当該ピークの半値幅より求められる結晶子の大きさが2.5nm未満のバインダー組成物(比較例3)を用いた場合には、電極密度の高い電極を容易に得ることができるが、バインダー組成物の電解液に対する膨潤度(電解液膨潤度)が高くなってしまうことがわかる。
 本発明によれば、電解液に対する膨潤度を低く抑えつつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることが可能な非水系リチウムイオン二次電極用バインダー組成物及びその製造方法を提供することができる。
 また、本発明によれば、電解液に対する膨潤度を低く抑えつつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることが可能な非水系リチウムイオン二次電池電極用バインダー溶液を提供することができる。
 さらに、本発明によれば、電解液に対する膨潤度を低く抑えつつ、非水系リチウムイオン二次電池用電極の電極密度を容易に高めることが可能な非水系リチウムイオン二次電池電極用スラリーを提供することができる。
 また、本発明によれば、エネルギー密度及び入出力特性に優れた非水系リチウムイオン二次電池用電極を提供することができる。
 そして、本発明によれば、高いエネルギー密度と入出力特性に優れた非水系リチウムイオン二次電池を提供することができる。
 

Claims (9)

  1.  重合体を含む非水系リチウムイオン二次電池電極用バインダー組成物であって、
     前記重合体は、アクリロニトリル単位と、少なくとも1種類以上のα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位とを含み、かつ、
     前記重合体は、X線構造回折における2θ=14°~18°の範囲内におけるピーク及び前記ピークの半値幅より求められる結晶子の大きさが2.5nm以上7.0nm以下である、非水系リチウムイオン二次電池電極用バインダー組成物。
  2.  前記重合体の重量平均分子量(Mw)が300,000以上である、請求項1に記載の非水系リチウムイオン二次電池電極用バインダー組成物。
  3.  前記α位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位がメタクリロニトリル単位を含み、前記重合体中に含まれる前記α位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体単位に対する前記アクリロニトリル単位のモル比が3.0以上20.0以下である、請求項1又は2に記載の非水系リチウムイオン二次電池電極用バインダー組成物。
  4.  前記重合体が酸基含有単量体単位を1質量%以上6質量%以下の割合で含む、請求項1~3のいずれか1項に記載の非水系リチウムイオン二次電池電極用バインダー組成物。
  5.  請求項1~4のいずれか1項に記載の非水系リチウムイオン二次電池電極用バインダー組成物の製造方法であって、
     溶媒あるいは分散媒の存在下、アクリロニトリル及び少なくとも1種類以上のα位の水素が置換されたα,β-エチレン性不飽和ニトリル単量体を含む組成物を重合して前記重合体を得る工程を含み、
     前記非水系リチウムイオン二次電池電極用バインダー組成物中の前記重合体を含む固形分濃度が15質量%以上である、非水系リチウムイオン二次電池電極用バインダー組成物の製造方法。
  6.  有機溶媒と、請求項1~4のいずれか1項に記載の非水系リチウムイオン二次電池電極用バインダー組成物とを含み、前記重合体が前記有機溶媒に溶解してなる、非水系リチウムイオン二次電池電極用バインダー溶液。
  7.  電極活物質と、請求項1~4のいずれか1項に記載の非水系リチウムイオン二次電池電極用バインダー組成物とを少なくとも含む、非水系リチウムイオン二次電池電極用スラリー組成物。
  8.  請求項7に記載の非水系リチウムイオン二次電池電極用スラリー組成物を用いて形成した電極合材層を備える、非水系リチウムイオン二次電池用電極。
  9.  請求項8に記載の非水系リチウムイオン二次電池用電極を備える非水系リチウムイオン二次電池。
     
PCT/JP2021/042328 2020-11-30 2021-11-17 非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法、非水系リチウムイオン二次電池電極用バインダー溶液、非水系リチウムイオン二次電池電極用スラリー組成物、非水系リチウムイオン二次電池用電極、並びに非水系リチウムイオン二次電池 WO2022113860A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21897834.4A EP4253435A1 (en) 2020-11-30 2021-11-17 Binder composition for nonaqueous lithium ion secondary battery electrodes, method for producing same, binder solution for nonaqueous lithium ion secondary battery electrodes, slurry composition for nonaqueous lithium ion secondary battery electrodes, electrode for nonaqueous lithium ion secondary batteries, and nonaqueous lithium ion secondary battery
CN202180077189.2A CN116457379A (zh) 2020-11-30 2021-11-17 非水系锂离子二次电池电极用黏结剂组合物及其制造方法、非水系锂离子二次电池电极用黏结剂溶液、非水系锂离子二次电池电极用浆料组合物、非水系锂离子二次电池用电极、以及非水系锂离子二次电池
JP2022565275A JPWO2022113860A1 (ja) 2020-11-30 2021-11-17
KR1020237015547A KR20230113733A (ko) 2020-11-30 2021-11-17 비수계 리튬 이온 이차 전지 전극용 바인더 조성물 및 그 제조 방법, 비수계 리튬 이온 이차 전지 전극용 바인더 용액, 비수계 리튬 이온 이차 전지 전극용 슬러리 조성물, 비수계 리튬 이온 이차 전지용 전극, 그리고 비수계 리튬 이온 이차 전지
US18/252,884 US20240030442A1 (en) 2020-11-30 2021-11-17 Binder composition for electrode of non-aqueous lithium ion secondary battery and method of producing the same, binder solution for electrode of non-aqueous lithium ion secondary battery, slurry composition for electrode of non-aqueous lithium ion secondary battery, electrode for non-aqueous lithium ion secondary battery, and non-aqueous lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020199119 2020-11-30
JP2020-199119 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022113860A1 true WO2022113860A1 (ja) 2022-06-02

Family

ID=81754264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042328 WO2022113860A1 (ja) 2020-11-30 2021-11-17 非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法、非水系リチウムイオン二次電池電極用バインダー溶液、非水系リチウムイオン二次電池電極用スラリー組成物、非水系リチウムイオン二次電池用電極、並びに非水系リチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20240030442A1 (ja)
EP (1) EP4253435A1 (ja)
JP (1) JPWO2022113860A1 (ja)
KR (1) KR20230113733A (ja)
CN (1) CN116457379A (ja)
WO (1) WO2022113860A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024056103A1 (zh) * 2023-03-07 2024-03-21 深圳市研一新材料有限责任公司 一种水性粘结剂及其制备方法和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185826A (ja) * 2002-11-29 2004-07-02 Nippon Zeon Co Ltd 電極用スラリー組成物、電極および二次電池
WO2012091001A1 (ja) * 2010-12-28 2012-07-05 日本ゼオン株式会社 非水電解液系電池の電極用バインダー組成物、非水電解液系電池用電極および非水電解液系電池
WO2012115096A1 (ja) 2011-02-23 2012-08-30 日本ゼオン株式会社 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
WO2015133423A1 (ja) * 2014-03-03 2015-09-11 日本ゼオン株式会社 二次電池用バインダー組成物
JP2020167144A (ja) * 2019-03-29 2020-10-08 住友ゴム工業株式会社 硫黄系活物質
JP6962428B1 (ja) * 2020-09-03 2021-11-05 東洋インキScホールディングス株式会社 導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び、非水電解質二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748439B2 (ja) 2004-07-30 2011-08-17 日立化成工業株式会社 リチウム電池電極用バインダ樹脂組成物、電極および電池
CN106220779B (zh) 2016-08-17 2018-08-31 四川茵地乐科技有限公司 丙烯腈共聚物粘合剂及其在锂离子电池中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185826A (ja) * 2002-11-29 2004-07-02 Nippon Zeon Co Ltd 電極用スラリー組成物、電極および二次電池
WO2012091001A1 (ja) * 2010-12-28 2012-07-05 日本ゼオン株式会社 非水電解液系電池の電極用バインダー組成物、非水電解液系電池用電極および非水電解液系電池
WO2012115096A1 (ja) 2011-02-23 2012-08-30 日本ゼオン株式会社 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
WO2015133423A1 (ja) * 2014-03-03 2015-09-11 日本ゼオン株式会社 二次電池用バインダー組成物
JP2020167144A (ja) * 2019-03-29 2020-10-08 住友ゴム工業株式会社 硫黄系活物質
JP6962428B1 (ja) * 2020-09-03 2021-11-05 東洋インキScホールディングス株式会社 導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び、非水電解質二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024056103A1 (zh) * 2023-03-07 2024-03-21 深圳市研一新材料有限责任公司 一种水性粘结剂及其制备方法和用途

Also Published As

Publication number Publication date
JPWO2022113860A1 (ja) 2022-06-02
KR20230113733A (ko) 2023-08-01
US20240030442A1 (en) 2024-01-25
EP4253435A1 (en) 2023-10-04
CN116457379A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
KR102629515B1 (ko) 비수계 2차 전지 전극용 바인더 조성물, 비수계 2차 전지 전극용 슬러리 조성물, 비수계 2차 전지용 전극, 및 비수계 2차 전지
US10044026B2 (en) Paste composition for lithium ion secondary battery negative electrode-use, composite particles for lithium ion secondary battery negative electrode-use, slurry composition for lithium ion secondary battery negative electrode-use, negative electrode for lithium ion secondary battery-use, and lithium ion secondary battery
JP7184076B2 (ja) カーボンナノチューブ分散液、二次電池電極用スラリー、二次電池電極用スラリーの製造方法、二次電池用電極および二次電池
CN108780894B (zh) 电化学元件电极用粘结剂组合物、电化学元件电极用浆料组合物、电化学元件用电极以及电化学元件
CN108604685B (zh) 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极及非水系二次电池
JP7327398B2 (ja) 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
WO2019181871A1 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
JP6996503B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2022113860A1 (ja) 非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法、非水系リチウムイオン二次電池電極用バインダー溶液、非水系リチウムイオン二次電池電極用スラリー組成物、非水系リチウムイオン二次電池用電極、並びに非水系リチウムイオン二次電池
JP2017069063A (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
CN108140838B (zh) 非水系二次电池电极用粘结剂组合物、浆料组合物、电极以及非水系二次电池
JP7334721B2 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565275

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18252884

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180077189.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021897834

Country of ref document: EP

Effective date: 20230630