WO2010069189A1 - 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途 - Google Patents

水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途 Download PDF

Info

Publication number
WO2010069189A1
WO2010069189A1 PCT/CN2009/073955 CN2009073955W WO2010069189A1 WO 2010069189 A1 WO2010069189 A1 WO 2010069189A1 CN 2009073955 W CN2009073955 W CN 2009073955W WO 2010069189 A1 WO2010069189 A1 WO 2010069189A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous polyolefin
modified
aqueous polymer
polymer
membrane
Prior art date
Application number
PCT/CN2009/073955
Other languages
English (en)
French (fr)
Inventor
潘中来
邓正华
李仁贵
王璐
王凯
邓佳闽
杜鸿昌
高建东
索继栓
Original Assignee
常州中科来方能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州中科来方能源科技有限公司 filed Critical 常州中科来方能源科技有限公司
Priority to RU2011106298/05A priority Critical patent/RU2470700C2/ru
Priority to JP2011538821A priority patent/JP5457460B2/ja
Priority to KR1020117008692A priority patent/KR101298273B1/ko
Priority to US13/129,697 priority patent/US8808925B2/en
Priority to DE112009002032T priority patent/DE112009002032T5/de
Priority to BRPI0923158A priority patent/BRPI0923158A2/pt
Publication of WO2010069189A1 publication Critical patent/WO2010069189A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2439/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2439/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an aqueous polymer-modified microporous polyolefin separator for an energy storage device such as a nonaqueous electrolyte battery, a preparation method thereof and use thereof, and belongs to the technical field of energy storage device manufacturing such as a battery and a capacitor.
  • Microporous polymer membranes are one of the three indispensable materials for manufacturing non-aqueous electrolyte energy storage devices such as lithium ion batteries, metal lithium secondary batteries, supercapacitors, etc., which have been used in commercial non-aqueous electrolyte energy storage devices.
  • the separator is mainly a microporous polyolefin membrane, a microporous polyvinylidene fluoride membrane, and a microporous polyolefin/polyvinylidene fluoride composite membrane.
  • the microporous polyolefin film mainly has a polyethylene film, a polypropylene film, a polyethylene-propylene composite film, and is mechanically biaxially stretched.
  • the polyolefin is a non-polar material, it has poor compatibility with the polar organic solvent of the electrolyte solution, and only plays a mechanical isolation between the positive and negative electrodes in the battery, but has no affinity for the electrolyte, so that the electrolyte solution is free. The state exists in the battery.
  • the free electrolyte inevitably undergoes a redox side reaction with the positive and negative materials, consuming the electrolyte in the battery, causing the battery to be poor, thereby making the battery pole Increasing, it is easy to reduce lithium ions into metallic lithium and deposit and crystallize to form lithium dendrites, which leads to diaphragm piercing.
  • the dry zone and lithium dendrite generated by the battery lean liquid tend to cause electrostatic breakdown inside the battery and direct short-circuit between positive and negative, which leads to safety hazards such as burning and explosion of the lithium ion battery.
  • the safety hazard of lithium-ion batteries has limited its development space in high-capacity, high-power power supply applications.
  • PVDF Polyvinylidene fluoride
  • the preparation method of the microporous polymer film basically adopts the plasticizer-containing PVDF film and the positive and negative electrode sheets of the battery to form a dry battery by thermal bonding, and then extracts with an organic solvent to form a composite with the positive and negative electrodes. PVDF microporous polymer membrane.
  • PVDF microporous polymer film In order to solve the technical difficulties in the preparation of PVDF microporous polymer film, it can be formed into a film like a microporous polyolefin film to improve the operability of the battery.
  • the PVDF solution is coated on the microporous polyolefin film, and then the solvent is used.
  • a microporous polyolefin/polyvinylidene fluoride composite membrane was prepared by extraction or reverse phase film formation.
  • microporous polyolefin membrane the microporous polyvinylidene fluoride membrane, and the microporous polyolefin/polyvinylidene fluoride composite membrane
  • its heat resistance is low, when the internal temperature of the battery once exceeds 150 ° C, despite the polyolefin
  • the substrate melts, the pores disappear, and the ion conduction is blocked, which is called the fuse protection effect.
  • the microporous polymer film melts it is inevitably accompanied. A large volume shrinkage, film area shrinkage becomes small, so that there may be a direct short circuit between the positive and negative inside the battery, causing battery safety problems such as burning, explosion and the like.
  • the modification work of the CN101250276 on the polyolefin film is mainly to use a chemical crosslinking agent monomer (bifunctional group).
  • Acrylate monomer) and a polymer having a hinge property are dissolved in an organic solvent such as acetone, and a liquid lithium ion battery separator is impregnated to obtain a modified separator.
  • the polymerization of the monomer during the modification process will directly affect the performance of the modified membrane, the conditions are difficult to control, and the injection of 0. 0001%-0. 1% of the thermal initiator, the positive pole and the negative pole A certain amount of chemical crosslinking monomer is also added to the film, which complicates the battery manufacturing process.
  • the inventors of the present invention have synthesized a microporous polymer film prepared by a water-based polymer colloidal emulsion through a large number of tests, and on the basis of this, the aqueous polymer colloidal emulsion is coated on a non-woven fabric to obtain a higher heat resistance.
  • the high mechanical strength diaphragm CN101226994, the preparation process uses water as solvent, a clean and environmentally friendly production process technology for preparing microporous polymer film.
  • the inventors have made bold attempts to modify the non-polar microporous polyolefin membrane with a polar aqueous polymer.
  • aqueous polymer coating is composed of 100 parts of water-soluble polymer and 30 to 500 parts of hydrophobic monomer.
  • the hydrophilic monomer 0 ⁇ 200 parts
  • the initiator 1 ⁇ 5 parts copolymerized polymer colloidal emulsion, according to the polymer colloidal emulsion solid content of 100%
  • adding 0 ⁇ 100% inorganic filler, 0 ⁇ 50% of the organic filler and 20 to 100% of the plasticizer form an aqueous polymer slurry which is coated on the surface of the microporous polyolefin membrane to be dried.
  • the water-soluble polymer of the present invention is a polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone or polyvinylpyrrolidone water-soluble copolymer; wherein, the polyvinyl alcohol has a degree of polymerization of 1700 to 2400, a degree of hydrolysis of 50 to 99;
  • the molecular weight of ethylene oxide is from 100,000 to 2,000,000;
  • the molecular weight of polyvinylpyrrolidone or its water-soluble copolymer is from 500 to 100,000, preferably from 1 to 30,000.
  • the structural formula of the hydrophobic monomer is: wherein
  • R one H or one CH 3 ;
  • R a C 6 3 ⁇ 4, a 0C0CH 3 , a C00CH 3 , a COOCH 2 CH 3 , a COOCH 2 CH 2 CH 2 CH 3 ,
  • R -H, one CH 3 or one COOLi
  • R 4 —H, a CH 3 or a COOLi ;
  • R 5 — COOLi, a CH 2 C00Li, a COO (CH 2 ) 6 S0 3 Li, a C0NH 2 , a C0NHCH 3 , , a CONHCH 2 CH 3 , a CON (CH 3 ) 2 , a CON (CH 2 CH 3 ) 2 .
  • the hydrophilic monomer is at least one of the above hydrophilic monomers;
  • the polyolefin separator is a polypropylene microporous membrane (PP membrane), a polyethylene microporous membrane (PE membrane), a polypropylene microporous membrane / a polyethylene microporous membrane / a polypropylene microporous membrane three-layer composite membrane, the invention
  • the polyolefin membrane used may have a porosity of 20% to 90%, preferably a porosity of 35% to 85%.
  • Another technical problem to be solved by the present invention is to provide an environmentally friendly method for preparing an aqueous polymer-modified microporous polyolefin separator, and to provide an aqueous polymer having low production cost and excellent performance for the manufacture of a non-aqueous electrolyte energy storage device. Modified microporous polyolefin separator.
  • the method for preparing the above aqueous polymer modified microporous polyolefin separator provided by the invention comprises the following steps: a. Preparation of polymer colloidal emulsion
  • the water-soluble polymer and the hydrophilic monomer are stirred with water until completely dissolved; a hydrophobic monomer, an initiator, and a polymerization reaction are added to obtain a polymer colloidal emulsion;
  • the polymer colloidal emulsion is added with 0 ⁇ 100% inorganic filler, 0 ⁇ 50% organic filler and 20 ⁇ 100% plasticizer in the polymer colloidal emulsion according to the solid content of 100%, stirred, milled, filtered Obtaining an aqueous polymer slurry; c, coating to prepare an aqueous polymer modified microporous polyolefin separator
  • the aqueous polymer slurry obtained in the step b is coated on one or both sides of the microporous polyolefin membrane and dried.
  • the microporous polyolefin separator is surface modified by the following method to increase the surface energy and roughness of the microporous polyolefin separator, so that the microporous polyolefin separator can be bonded to the aqueous polymer slurry.
  • the inventors of the surface modification of the microporous polyolefin membrane are: using at least one of heat treatment (corona), plasma treatment, high energy irradiation treatment or illumination treatment on the polyolefin microporous membrane Performing a pretreatment; or using at least one of a coupling agent or a bonding aid
  • the surface of the microporous membrane is subjected to surface pre-coating treatment, or the surface of the microporous membrane is modified by the above two methods. These treatment methods only change the surface characteristics of the microporous membrane, maintain its bulk properties, and do not affect the properties of the membrane microporous structure.
  • a third technical problem to be solved by the present invention is to provide an aqueous polymer modified microporous polyolefin membrane for use in the preparation of lithium ion batteries, supercapacitors, and battery/supercapacitor accumulators.
  • the water-based polymer-modified polyolefin separator of the invention has the characteristics of heat-shrinking effect (melting of the polyolefin separator in a high-temperature environment, causing the micropores to be closed) and small heat shrinkage, and the large problem of shrinkage of the polyolefin separator at a high temperature is improved. Improve battery safety, while increasing the membrane rupture temperature to ensure the integrity of the diaphragm under high temperature conditions, thereby improving battery safety.
  • the coating material has high polarity, the liquid absorbing property and liquid retention property of the polyolefin separator can be improved, and the battery can be improved in charge and discharge performance, rate performance, cycle life, and safety performance.
  • the invention has no chemical reaction in the process of preparing the membrane and is easy to control; at the same time, the slurry has good adhesion with the polyolefin membrane, ensuring stable and uniform bonding of the slurry and the membrane interface, and compatibility between the slurry and the electrode Ok, make sure the battery is performing. And other processes in the battery preparation process are identical to existing battery processes.
  • the flame retardant properties of the coating material are preserved, ensuring that the separator is safely protected on three levels: 1. Thermal shutdown performance of the membrane, 2.
  • the working coated modified membrane has a small shrinkage to ensure positive and negative Extremely in short contact with a short circuit. 3, the flame retardant of the diaphragm itself, to avoid further burning after the battery has a safety accident.
  • the present invention provides an aqueous polymer-modified polyolefin separator comprising 100 parts of a water-soluble polymer, 30 to 500 parts of a hydrophobic monomer, 0 to 200 parts of a hydrophilic monomer, and 1 to 5 parts of an initiator.
  • Polymerization to obtain a polymer colloidal emulsion according to the polymer colloidal emulsion solid content of 100%, adding 0 ⁇ 100% inorganic filler and 20 ⁇ 100% plasticizer, the obtained slurry is coated on the surface modified micro
  • One or both sides of the porous polyolefin separator are obtained by drying.
  • the polyolefin separator is a polypropylene microporous membrane (PP membrane), a polyethylene microporous membrane (PE membrane), a polypropylene microporous membrane / a polyethylene microporous membrane / a polypropylene microporous membrane three-layer composite membrane, the invention
  • the polyolefin membrane used may have a porosity of 20% to 90%, preferably a porosity of 35% to 85%.
  • the polyolefin-based material is a non-polar high polymer and has no polar group, its surface energy is low. Its membrane material is chemically inert, and its functional properties such as wettability, cohesiveness, dyeability and biocompatibility are low. In practical applications, it exhibits poor compatibility with most polymers, and polymerization. The problem of low bond strength of the colloid.
  • the surface modification of the polyolefin-based separator is required to introduce a polar group or a pre-coating on the surface of the polyolefin microporous membrane to increase the surface energy of the membrane material;
  • the roughness of the surface increases the bonding property of the surface and eliminates the weak boundary layer of the surface, thereby achieving the purpose of bonding with the aqueous polymer slurry.
  • the surface modification methods of polyolefin membrane mainly include chemical modification, physical modification, blend modification, surfactant method, plasma treatment and photografting, and high energy radiation graft modification.
  • chemical oxidation, physical blasting, polishing, etc. have difficulties in controlling the thickness of the film material and the complexity of the post-treatment process, so it is difficult to form a large-scale production.
  • the polyolefin film is subjected to graft modification of the polymer monomer by plasma, light, high-energy radiation, etc., the grafting reaction is not easy to control, and the uniformity of the film is poor, and the grafting reaction is in the separator.
  • the inventors pretreat the polyolefin microporous membrane by at least one of heat treatment (corona), plasma treatment, high-energy irradiation treatment or light treatment, or use a coupling agent or a bonding aid.
  • At least one of the surface treatment of the polyolefin microporous membrane is pre-coated, or the surface of the microporous membrane is modified by the combination of the above two methods. These treatment methods only change the surface characteristics of the microporous membrane, maintain its bulk properties, and do not affect the properties of the membrane microporous structure.
  • the pretreated microporous membrane Preferably, it is pretreated by at least one of heat treatment (corona), plasma treatment, illumination, high-energy radiation, etc., and then modified with EVA (ethylene-vinyl acetate copolymer), functional group
  • At least one coupling agent or adhesion promoter of a silane (vinyl silane, octyl silane, amino silane, epoxy silane, 3- methacryloxypropyl trimethoxy silane, isocyanate silane, etc.) Coating was performed on the pretreated microporous membrane.
  • the water-soluble polymer is a water-soluble polymer of polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone or polyvinylpyrrolidone; wherein, the degree of polymerization of polyvinyl alcohol is 1700 to 2400, and the degree of hydrolysis is 50 to 99;
  • the molecular weight of ethylene oxide is from 100,000 to 2,000,000;
  • the molecular weight of polyvinylpyrrolidone or its water-soluble copolymer is from 500 to 100,000, preferably from 1 to 30,000.
  • the structural formula of the hydrophobic monomer is: wherein
  • R one H or one CH 3 ;
  • R 2 — C 6 H 5 , — 0C0CH 3 , — C00CH 3 , — COOCH 2 CH 3 , — COOCH 2 CH 2 CH 2 CH 3 , one COOCH 2 CH (CH 2 CH 3 ) CH 2 CH 2 CH 2 CH 3 , a CN.
  • R -H, one CH 3 or one COOLi
  • R 4 —H, a CH 3 or a COOLi ;
  • R 5 — COOLi, a CH 2 C00Li, a COO (CH 2 ) 6 S0 3 Li, a C0NH 2 , a C0NHCH 3 , , a CONHCH 2 CH 3 , a CON (CH 3 ) 2 , a CON (CH 2 CH 3 ) 2 .
  • the hydrophilic monomer is at least one of the above hydrophilic monomers.
  • the preparation method of the aqueous polymer modified microporous polyolefin separator provided by the invention is an environmentally friendly method, and the production cost is low, and the modified microporous polyolefin membrane has excellent performance. It includes the following steps:
  • the initiator is ammonium persulfate, potassium persulfate, hydrogen peroxide or azobisisobutylphosphonium, or a redox initiation system composed of them with N3 ⁇ 4S0 3 and F e S0 4 .
  • an auxiliary agent may be added to act as an emulsifier, which exerts a certain stabilizing effect on the colloidal emulsion.
  • the adjuvant is selected from the group consisting of dodecylsulfonate, dodecylbenzenesulfonate, and vinylsulfonate.
  • the plasticizer is propylene glycol, benzyl alcohol, n-butanol, isopropanol, diethyl phosphate, triethyl phosphate, trimethyl phosphate, tributyl phosphate, isoamyl acetate, ethyl lactate, lactate Ester, ethyl butyrate, diethyl carbonate, tributyl propionate, methyl amyl acetate, isopropyl acetate, diisobutyl ketone, methyl ethyl ketone, dipropyl ketone, ethyl butyl Ketone or methyl amyl ketone acetate isoamyl ester, ethyl lactate, methyl lactate, ethyl butyrate, diethyl carbonate, tributyl propionate, methyl amyl acetate, isopropyl acetate, diisobutyl At least one of
  • an inorganic filler may be added to the aqueous polymer colloidal emulsion.
  • the inorganic filler generally adopts an ultrafine powder, has a high specific surface area and a strong surface adsorption capacity, is favorable for adsorption of the electrolyte and increases dissociation of the electrolyte salt and thereby increases the ionic conductivity of the membrane.
  • the inorganic filler is fumed silica, alumina, titania, zirconia, magnesia, calcium carbonate or glass fibers.
  • a silane coupling agent may be added, and the coupling agent may be 3-aminopropyltriethoxysilane or 2-aminoethyl-3-aminopropyltrimethyl Alkoxysilane, 3-glycidyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane or vinyltris(2-methoxyethoxy)silane, silane coupling agent 0 ⁇ 5. 0% ⁇ The weight of the inorganic filler 0. 5 ⁇ 5. 0%.
  • the ion conduction blocking property of the micron-sized organic filler reinforced membrane can be added, so that the battery of the modified microporous polyolefin separator is at 10 (T13 (TC range)
  • the ions continue to flow, and the safety of the battery can be ensured once the operating temperature of the battery is out of control.
  • the micron-sized organic filler can be any of ultrafine polyethylene wax, oxidized wax powder, and ultrafine polyethylene wax powder. 0 ⁇ 20% ⁇ The amount of the organic filler is 5. 0 ⁇ 20%.
  • polyolefin-based materials are non-polar high polymers, such microporous membranes have low surface energy, poor compatibility with most polymers, and low bonding strength with polymer colloids.
  • the present invention surface-modifies the polyolefin separator:
  • At least one surface coating treatment of the microporous polyolefin membrane At least one surface coating treatment of the microporous polyolefin membrane; or
  • microporous polyolefin membrane is pretreated by at least one of heat treatment, plasma treatment, high energy irradiation treatment or light treatment, and then at least one of acrylonitrile modified EVA rubber or functionalized silane is used. Surface coating treatment.
  • the slurry obtained in step b is coated on one side or both sides of the surface-modified polyolefin microporous film by a coater according to the use requirement, and the wet coating thickness is 2 to 600 Mm, preferably the wet coating thickness is 5 ⁇ 400Mm.
  • the coating method is printing, micro gravure printing, dip coating, reverse roller coating, roller smoothing, roller coating, comma blade coating, precision micro-roller coating, precision micro-roller reverse coating, slope flow , coating, extrusion, slitting, falling curtains and other coating methods.
  • the wet film coated in step d is dried in an oven and dried using heated air, hot air, infrared radiation, and other techniques.
  • the drying temperature is 30 to 160 ° C, and the preferred temperature is 40 to 100 ° C.
  • the final separator has a thickness of 10 to 100 ⁇ m, preferably 12 to 50 ⁇ m.
  • the above aqueous polymer modified microporous polyolefin separator can be used for preparing lithium ion batteries, super capacitors, and battery/super capacitor accumulators.
  • Example 1 Preparation of aqueous polymer modified microporous polyolefin separator of the present invention a. Preparation of polymer colloidal emulsion
  • styrene (St) / butyl acrylate (BA) / acrylonitrile (AN) is added to the aqueous phase for ternary copolymerization.
  • the polymer emulsion adopts stepwise polymerization: in a four-port reaction vessel with condensed water, 1000 g of distilled water is added, and then 100 g of polyvinylpyrrolidone is added, and the reactor is heated to 90 ° C, and stirred until the material is transparent. 20 g of styrene (St) monomer and 2 g of ammonium persulfate initiator were added, and the mixture was reacted for 20 hours to give a white emulsion. 40 g of butyl acrylate (BA) was added, and the reaction was continued for 2 hours.
  • St styrene
  • BA butyl acrylate
  • the obtained polymer colloidal emulsion was added with 19 g of zirconium dioxide filler, 5 g of polyethylene wax powder and 160 g of benzyl alcohol plasticizer, stirred at high speed for 6 hours, and ball milled for 5 hours.
  • the surface modification of polyolefins is mainly to improve the wettability and cohesiveness with aqueous polymer pastes.
  • the simpler and more scalable method is to combine the pretreatment with the precoating method, that is, pretreating the microporous membrane by using corona, plasma, illumination, high-energy radiation, etc., and then coupling the coupling agent.
  • an adhesion aid is applied to the pretreated microporous film to form a precoat layer, that is, a coating is introduced between the microporous film and the aqueous slurry, the coating is provided with a polyolefin microporous film and water
  • the polymer paste has good bonding properties.
  • a polypropylene (PP) microporous film having a thickness of 16 ⁇ m and a basis weight of 10.8 g/m 2 was first subjected to corona treatment, a machine running speed of 20 m/min, and a corona power of 400 w. 8 ⁇ Then, the acrylonitrile-modified EVA adhesive (solid content of 20%) 20 parts, 200 parts of ethyl acetate, a solid content of 1.8% of the slurry. The slurry was applied to the pretreated polypropylene microporous film in a printed manner. The thickness of the single-sided coating is less than 2Mffl according to parameters such as gravure roll, machine speed and rubber roll pressure. d, coating preparation of water-based polymer modified microporous polyolefin separator
  • the aqueous slurry prepared above was applied to the above pre-coated PP microporous film by a continuous roll coating process (belt speed 5 m/min).
  • a continuous roll coating process belt speed 5 m/min.
  • the thickness of the slurry is controlled by a doctor blade, and the base tape is brought into contact with the running roller in the opposite direction to coat and control the coating.
  • the coated wet film was then dried in an oven for circulating hot air to obtain a modified polypropylene separator having a thickness of 25 MW.
  • the prepared membrane has a gas permeability of about 40 (sec/in 2 -100 ml ⁇ 1.22 kPa), and the unit is the time taken to pass 100 ml of gas per square inch of area under the pressure of 1.22 kPa (the following is implemented) The same example).
  • the shrinkage and air permeability of the separator under different temperature conditions are shown in Table 1, Table 2. Shrinkage of the diaphragm under different temperature conditions
  • the test conditions are as follows: The separator is vacuum treated at each temperature for 2 hours.
  • the thickness of the separator, PP and PE and the three-layer composite separator are both 25 ⁇ lMffl (the shrinkage test conditions in the following examples are the same as in this example) .
  • Table 1 is the shrinkage data of the modified polypropylene separator of Example 1 at different temperatures, and the modified polypropylene film of this example was maintained at 160 ° C compared with the unmodified polypropylene (PP) separator. Better shape, showing better temperature resistance, which is very beneficial to the safety of the battery.
  • the shrinkage of the membrane tested in the examples of the present invention is the test result of the membrane in a free state, and its shrinkage performance is smaller in the battery, which is further reflected in the subsequent battery hot box test.
  • Table 2 Air permeability of the diaphragm at different temperatures
  • test conditions are: The membrane is treated at each temperature for 10 minutes (the high temperature air permeability test conditions in the following examples are This embodiment is the same).
  • Example 2 Preparation of the aqueous polymer modified microporous polyolefin separator of the present invention a. Preparation of polymer colloidal emulsion
  • a hydrophilic polymer polyvinyl alcohol (PVA) 1750 and a lipophilic monomer vinyl acetate (VAc) I ethyl acrylate (EA) / acrylonitrile (AN) are graft copolymerized in an aqueous phase.
  • An aqueous polymer colloidal emulsion for a lithium battery separator having a copolymer composition of PVA: VAc: EA: AN 10 : 2 : 2 : 5 (weight ratio, the same below), a copolymer content of 17%, and a product of white Opaque emulsion.
  • the polymer colloidal emulsion is prepared by adding: 1000g of distilled water and 100g of polyvinyl alcohol (PVA) 1750 in a four-port reaction vessel with condensed water, and the reactor is heated to 75 ° C, stirred and dissolved, and the rotation speed is After 100 rpm, after 3 hours, when the material is transparent, it can be regarded as dissolved, the heating is turned off, and it is naturally cooled to 55 °C. 5 ⁇ After 20 minutes, the material was light blue, turned into a white milk after 30 minutes, and copolymerized for 2 hours to obtain a reaction intermediate.
  • PVA polyvinyl alcohol
  • the reaction mixture was mixed with 50 g of a lipophilic monomer, acrylonitrile (AN), and further added with 1.5 g of an initiator and 0.5 g of a weakly acidic lithium vinyl sulfonate (SVSLi).
  • the reaction time was 10 hours, that is, the reaction time was 10 hours.
  • a polymer colloidal emulsion is obtained.
  • the resulting polymer colloidal emulsion was charged with 19 g of silica filler and 160 g of methyl amyl acetate plasticizer, stirred at high speed for 6 hours, and ball milled for 5 hours.
  • the polyethylene microporous membrane having a thickness of 16 Mffl and a basis weight of 9.8 g/m 2 is used in the embodiment.
  • the adhesion promoter uses octyltriethoxysilane. d, coating preparation of water-based polymer modified microporous polyolefin separator
  • the above slurry is applied to the pretreated polyethylene microporous membrane by a roll extrusion method (belt speed of about 2 m/min), and then the water is oxidized by the hot air of the specified temperature and the infrared irradiation of the drying tunnel. Plasticizer. Finally, a modified polyethane microporous membrane having a thickness of about 25 um was obtained.
  • the prepared membrane gas permeability was about 30 (sec/in 2 ⁇ 100 ml ⁇ 1. 22 kPa). See Table 3 and Table 4 for the shrinkage and air permeability of the separator under different temperature conditions. Shrinkage of the diaphragm under different temperature conditions Table 4. Air permeability of the diaphragm at different temperatures
  • Table 4 is the air permeability data of the modified polyethylene separator of Example 2 at different temperatures. As shown in Table 4, when the temperature is raised to 130 °C, the gas permeates through the diaphragm and the air permeability rises rapidly. This is mainly because when the temperature rises to 130 °C, the melting point of the separator material is reached, melting occurs, the pores are shut off due to the tension, and the porosity is suddenly reduced or even disappeared, so the gas permeability is rapidly decreased. This performance is very beneficial for battery safety. When the battery is abnormal and the temperature rises above 130 °C, the diaphragm is turned off, that is, the reaction is further blocked to avoid battery explosion and combustion.
  • Example 3 Preparation of aqueous polymer modified microporous polyolefin separator of the present invention a. Preparation of polymer colloidal emulsion
  • polyvinyl alcohol 1799 PVA
  • a hydrophobic monomer is a vinyl triethoxysilane coupling agent (151) / acrylonitrile (AN), which is graft-polymerized in an aqueous phase to prepare an aqueous polymer.
  • the polymer colloidal emulsion is specifically prepared by adding 1000 g of distilled water and 100 g of hydrophilic monomer polyvinyl alcohol (PVA) 1799 in a four-port reaction vessel with condensed water, and heating to 90 ° C to the material. Transparent. Vinyltriethoxysilane 151 40 g and acrylonitrile (AN) 50 g of initiator persulfate amine 1. 9 g were added, and graft copolymerization was carried out for 12 hours. A polymer colloidal emulsion is obtained.
  • PVA hydrophilic monomer polyvinyl alcohol
  • alumina filler dispersed in triethyl phosphate is added to the polymer emulsion, and the specific amount is: 20% alumina filler and 100% triethyl phosphate plasticizer. Stir at high speed for 4 hours and ball mill for 5 hours to adjust the viscosity of the slurry to 2500 mPa * s. c. Surface modification of polyolefin separator
  • the procedure is the same as in the first embodiment except that the polyolefin microporous membrane used in the embodiment is a polypropylene microporous membrane/polyethylene microporous membrane/polypropylene microporous three-layer composite membrane having a thickness of 16 micrometers.
  • the basis weight is 10. 7g / m 2 .
  • the micro hole uses Co60 High energy irradiation, dose rate 2.35 million rad / h, dose 5Mrad.
  • the slurry was applied to the pretreated polyethylene microporous membrane in c by slope coating method (belt speed about 12 m/min), and then volatilized and plasticized by the hot air at the specified temperature and the infrared irradiation tunnel. Agent. Finally, a modified microporous membrane having a thickness of about 25 ⁇ m was obtained.
  • the membrane gas permeability prepared was about 34 (sec/in 2 ⁇ 100 ml ⁇ 1. 22 kPa). See Table 5 and Table 6 for the shrinkage and air permeability of the separator under different temperature conditions. Shrinkage of the diaphragm under different temperature conditions Table 6. Air permeability of the diaphragm at different temperatures
  • Example 4 Preparation of the aqueous polymer modified microporous polyolefin separator of the present invention a. Preparation of polymer colloidal emulsion
  • the resulting polymer colloidal emulsion was added with 10% alumina and 20% silica filler and 120% methyl amyl ketone plasticizer, and 35% polyethylene wax powder was added. Stir at high speed for 8 hours and ball mill for 2 hours to adjust the viscosity of the slurry to 2500 mPa *s.
  • the PE microporous film precoat having a thickness of 20 ⁇ m and a basis weight of 11.2 g/m 2 was modified with an octyl silane coupling agent.
  • d coating preparation of water-based polymer modified microporous polyolefin separator
  • Air permeability 42 (sec/in 2 ⁇ 100ml ⁇ 1. 22kPa). See Table 7 and Table 8 for the shrinkage and air permeability of the separator under different temperature conditions. Shrinkage of the diaphragm under different temperature conditions Table 8. Air permeability of the diaphragm at different temperatures
  • Example 5 Preparation of aqueous polymer modified microporous polyolefin separator of the present invention a. Preparation of polymer colloidal emulsion
  • the reaction step is basically the same as in Example 2, except that the lipophilic monomer vinyl acetate (VAc) and ethyl acrylate (EA) blends are replaced by hydrophilic methacrylic acid (MAA) 2.5 parts.
  • PVA: MAA: AN 10: 2. 5: 5; the copolymer content was 11%, and the product was white translucent gel.
  • the obtained polymer colloidal emulsion was added at a solid content of 100%, and 15% of a silica filler treated with a 2% coupling agent and 15% of an ethyl butyrate plasticizer were added to adjust the viscosity of the slurry to 2500 mpa. s.
  • the procedure is the same as that of the embodiment 1, except that the plasma pair thickness is 18Mffl and the basis weight is 18Mffl and the basis weight is 18Mffl.
  • Example 1 Method Precoat Treatment. , d, coating preparation of water-based polymer modified microporous polyolefin separator
  • Example 2 The procedure was the same as in Example 1, and the slurry obtained in this Example b was applied to the microporous film in c. The final diaphragm.
  • the air permeability was measured to be 3642 (sec/in 2 ⁇ 100 ml ⁇ 1. 22 kPa). See Table 9 and Table 10 for the shrinkage and air permeability of the separator under different temperature conditions. Shrinkage of the diaphragm under different temperature conditions Table 10. Air permeability of the diaphragm at different temperatures
  • Test Example 1 Electrical property test of aqueous polymer modified microporous polyolefin separator of the present invention Preparation of battery positive electrode
  • lithium cobalt oxide LiCo0 2
  • deionized water 90 parts by weight of lithium manganese oxide (LiM 0 4 ) and 7 Parts by weight of acetylene black, 3 parts by weight of LA aqueous binder and 90 parts by weight of deionized water or 85 parts by weight of lithium iron oxide (LiFeP0 4 ), 7 parts by weight of acetylene black, 8 parts by weight of LA aqueous binder and 90 parts by weight Mixing parts by weight of deionized water] to obtain a positive electrode mixture slurry.
  • lithium manganese oxide LiM 0 4
  • LA aqueous binder and 90 parts by weight of deionized water 85 parts by weight of lithium iron oxide (LiFeP0 4 ), 7 parts by weight of acetylene black, 8 parts by weight of LA aqueous binder and 90 parts by weight Mixing parts by weight of deionized water
  • Electrolyte An electrolyte composed of ethylene carbonate / diethyl carbonate / ethyl methyl carbonate and LiPF6. Battery production
  • the above-mentioned fabricated pole piece is packaged by a winding method and an aluminum-plastic composite film which are recognized by those in the art, vacuum-dried for 24 hours, and then sealed with an electrolyte to complete the production of the battery core. Charge and discharge and life test
  • the sulphate of lithium sulphate is 4. 2V (lithium lithium cobalt oxide) is 4. 2V (lithium lithium cobalt oxide) [lithium manganate is 4. 3V
  • the lithium iron oxide is 2. 2V.
  • the lithium iron oxide is 2. 2V.
  • the lithium iron oxide is 2. 2V.
  • the lithium iron oxide is 2. 2V.
  • the fully fabricated battery prepared in the above steps was placed in a hot air drying oven, and the battery was forcibly heated at a heating rate of 6 ° C / min, and the temperature of the drying oven was finally raised to 150 ° C, when the temperature reached 150 ° C. After that, the temperature was maintained for 30 minutes, and the internal resistance change of the battery was detected by an alternating current resistance meter (the detection standard was based on the Chinese National Standard for Lithium Ion Secondary Batteries GB/T18287-2000).
  • Overcharge test was based on the Chinese National Standard for Lithium Ion Secondary Batteries GB/T18287-2000.
  • the battery fabricated according to the above steps is fully charged, and it is overcharged using a constant current and constant voltage source at 25 ⁇ 3 °C (the internal resistance of the wire clamp is less than 50 ⁇ ⁇ ), and the overcharge current is the battery design capacity.
  • the current of 3 times current (ie 3C), charged to 10V to 10V constant voltage and kept for 30 minutes or current is less than 0.
  • 05C The internal resistance of the battery is detected by AC resistance meter in the process.
  • the detection standard is based on lithium ion secondary battery China country Standard GB/T18287—2000) The test ends.
  • the modified polyolefin microporous membranes prepared in the first embodiment to the fifth embodiment were assembled into a lithium ion battery, and the positive electrodes were LiMn 2 0 4 , LiCo0 2 , LiFeP0 4 , LiCo0 2 , and LiMn 2 0 4 , respectively.
  • a matching graphite negative electrode was carried out as described above. The hot box test and overcharge test are shown in Table 11 and Table 12.
  • the battery has a slight explosion and burning
  • Example 1 LiMn 2 0 4 35 mQ is greater than 2 ⁇
  • Example 2 LiCo0 2 35 mQ is greater than 2 ⁇
  • Example 3 LiFeP0 4 46 mQ is greater than 2 ⁇
  • Example 4 LiCo0 2 32 mQ is greater than 2 ⁇
  • Example 5 LiMn 2 0 4 36 mQ is greater than 2 ⁇
  • the content of the test detection diaphragm mainly has three aspects, one is the reaction to overheating, that is, the heat.
  • the closing effect the second is the heat shrinkage of the diaphragm under overheating conditions, and the small shrinkage avoids direct shorting between the positive and negative electrodes due to diaphragm shrinkage.
  • the third aspect is the interface compatibility and stability between the separator and the electrolyte, the positive and negative electrodes.
  • the modified polyolefin microporous membrane has high temperature resistance, small shrinkage, and The electrolyte has good compatibility with the positive and negative electrodes, so it can improve the safety of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途
技术领域 本发明涉及用于非水电解质电池等储能器件的水性聚合物改性微孔聚烯烃隔膜及其制 备方法和用途, 属于电池、 电容器等储能器件制造技术领域。 背景技术 微孔聚合物隔膜是制造非水电解质储能器件如锂离子电池, 金属锂二次电池, 超级电 容器等不可或缺的三大材料之一, 已商品化的非水电解质储能器件所用隔膜主要是微孔聚 烯烃膜、 微孔聚偏氟乙烯膜, 以及微孔聚烯烃 /聚偏氟乙烯复合膜。
微孔聚烯烃膜主要有聚乙烯膜、聚丙烯膜、聚乙烯-丙烯复合膜, 是采用机械双向拉伸
(干法) 和溶剂萃取法 (湿法) 工艺技术制造。 由于聚烯烃属于非极性材料, 它与电解质 溶液的极性有机溶剂相容性差, 在电池中只起到正负极间机械隔离作用, 而对电解液没有 亲和作用, 使得电解质溶液以游离状态存在于电池中, 在电池充放电循环使用过程中这种 游离的电解液不可避免地与正负极材料发生氧化还原副反应, 消耗电池中的电解液, 造成 电池贫液, 从而使得电池极化增大, 易使锂离子还原成金属锂并沉积、 结晶生成锂枝晶, 导致隔膜剌穿现象。 电池贫液产生的干区和锂枝晶易使电池内部发生静电击穿和正负间直 接短路现象, 从而导致锂离子电池燃烧、 爆炸等安全隐患。 锂离子电池的安全隐患制约了 它在大容量、 大功率动力型电源应用中的发展空间。
聚偏氟乙烯 (PVDF)及其衍生物只有在增塑剂存在下才具有成膜性。含有增塑剂的 PVDF 膜自粘连性大, 而且机械强度低, 工艺可操作性差, 无法单独制备成微孔聚合物膜。 这类 微孔聚合物膜的制备方法基本采用将含增塑剂的 PVDF膜与电池正负极极片通过热粘合制 成干电芯, 然后使用有机溶剂进行萃取, 形成与正负极复合的 PVDF微孔聚合物膜。 为了解 决 PVDF微孔聚合物膜制备技术难点, 使之能像微孔聚烯烃膜一样单独成膜,提高电池制作 的可操作性,将 PVDF溶液涂覆在微孔聚烯烃膜上,然后采用溶剂萃取法或倒相成膜法制备 微孔聚烯烃 /聚偏氟乙烯复合膜。
微孔聚烯烃膜、微孔聚偏氟乙烯膜、微孔聚烯烃 /聚偏氟乙烯复合膜存在的主要缺点是 其耐热性较低, 当电池内部温度一旦超过 150 °C, 尽管聚烯烃基材产生熔化、 微孔消失, 阻断离子传导, 即所谓熔断保护效应, 但由于微孔聚合物膜发生熔化时, 必然伴随着产生 大量的体积收缩, 膜面积收缩变小, 从而使电池内部有可能发生正负之间直接短路, 引发 电池安全性问题如燃烧、 爆炸等现象。
为了克服微孔聚烯烃膜耐热性问题, 降低在高温情况下隔膜的收缩性, 提高电池的安 全性, CN101250276 在聚烯烃膜上改性的工作主要是将化学交联剂单体 (双官能团丙烯酸 酯单体) 和具有铰链性质的聚合物 (聚偏氟乙烯、 聚四氟乙烯等) 溶解于丙酮等有机溶剂 中, 浸渍液态锂离子电池隔膜得到改性隔膜。 改性过程中单体聚合反应的情况将直接影响 改性后隔膜的性能, 条件难于控制, 且要求电芯中注入 0. 0001%-0. 1%的热引发剂, 正极极 片和负极极片中也要加入一定量化学交联单体, 使得电池制造工艺复杂。
总之, 目前迫切需要一种新的改性聚烯烃膜以改善其高温情况下收缩性, 且生产方法 简单、 成本低廉的非水电解质储能器件用隔膜。
本发明的发明人经过大量试验合成出水性聚合物胶体乳液制备的微孔聚合物膜, 并在 此基础上将该水性聚合物胶体乳液涂敷在无纺布上制备得到具有更高耐热性、 较高的机械 强度的隔膜 CN101226994, 制备过程采用水为溶剂, 一种清洁环保的制备微孔聚合物膜的 生产工艺技术。 对于非极性的微孔聚烯烃膜可否采用极性的水性聚合物进行改性, 发明人 做出了大胆的尝试。 发明内容 本发明第一个所要解决的技术问题是提供一种热收缩小的水性聚合物改性微孔聚烯烃 隔膜。
本发明的技术方案: 它是由微孔聚烯烃隔膜及表面覆盖的水性聚合物涂层组成, 其中 所述水性聚合物涂层是由水溶性聚合物 100份, 疏水性单体 30〜500份, 亲水性单体 0〜 200份,引发剂 1〜5份共聚得到的聚合物胶体乳液中,按聚合物胶体乳液固形物含量以 100 %计,加入 0〜100 %的无机填料, 0〜50 %的有机填料和 20〜100 %的增塑剂形成水性聚合 物浆料, 涂覆在微孔聚烯烃隔膜表面干燥而得。
本发明所述水溶性聚合物为聚乙烯醇、 聚氧化乙烯、 聚乙烯基吡咯烷酮或聚乙烯基吡 咯烷酮水溶性共聚物; 其中, 聚乙烯醇聚合度为 1700〜2400, 水解度 50〜99; 聚氧化乙烯 分子量 10万至 200万; 聚乙烯基吡咯烷酮或其水溶性共聚物分子量为 500至 10万, 优选 1〜3万。
所述疏水性单体结构式为: 其中,
R =一 H或一 CH3 ; R = 一 C6¾、 一 0C0CH3、 一 C00CH3、 一 COOCH2CH3、 一 COOCH2CH2CH2CH3
— C00CH2CH (CH2CH3) CH2CH2CH2CH3或一 CN。 疏水性单体为上述疏水性单体中的至少 所述亲水单体结构式为: CHR3=CR4R5, 其中,
R = —H、 一CH3或一 COOLi ;
R4= —H、 一CH3或一 COOLi ;
R5= — COOLi、 一 CH2C00Li、 一 COO (CH2) 6S03Li、 一 C0NH2、 一 C0NHCH3
Figure imgf000005_0001
、 一 CONHCH2CH3、 一 CON (CH3) 2、 一 CON (CH2CH3) 2。 亲水性单体为上述亲水性单 体中的至少一种;
所述聚烯烃隔膜为聚丙烯微孔膜 (PP膜)、 聚乙烯微孔膜 (PE膜)、 聚丙稀微孔膜 /聚 乙烯微孔膜 /聚丙稀微孔膜三层复合膜, 本发明的使用的聚烯烃隔膜孔隙率可为 20 %〜90 % , 优选孔隙率为 35 %〜85 %。 本发明所要解决的另外一个技术问题是提供一种对环境友好的水性聚合物改性微孔聚 烯烃隔膜的制备方法, 为非水电解质储能器件制造提供生产成本低廉, 性能优异的水性聚 合物改性微孔聚烯烃隔膜。
本发明提供的制备上述水性聚合物改性微孔聚烯烃隔膜的方法, 包括以下步骤: a、 聚合物胶体乳液的制备
将水溶性聚合物、 亲水性单体加水搅拌直到完全溶解; 加入疏水性单体, 引发剂, 聚 合反应得到聚合物胶体乳液;
b、 聚合物胶体浆料的制备
以聚合物胶体乳液按固形物含量 100 %计, 聚合物胶体乳液中加入 0〜100 %的无机填 料和 0〜50 %的有机填料和 20〜100 %的增塑剂, 搅拌, 碾磨, 过滤得到水性聚合物浆料; c、 涂布制备水性聚合物改性微孔聚烯烃隔膜
将步骤 b所得水性聚合物浆料涂覆在微孔聚烯烃隔膜的一面或双面, 干燥即得。
所述微孔聚烯烃隔膜经过以下方法进行表面改性, 以提高微孔聚烯烃隔膜的表面能和 粗糙度, 使得微孔聚烯烃隔膜与水性聚合物浆料能够粘结。 在本发明中, 发明人对微孔聚 烯烃隔膜进行表面改性的方法为: 利用热处理(电暈)、 等离子体处理、 高能辐照处理或光 照处理中至少一种方法对聚烯烃微孔膜进行预处理; 或采用偶联剂或粘结助剂中的至少一 种对聚烯烃微孔膜进行表面预涂层处理, 亦或采用上述两种方法结合对微孔膜表面进行改 性处理。 这些处理方法只改变微孔膜表面特性, 可保持其本体特性, 不影响隔膜微孔结构 等性能。 本发明第三个所要解决的技术问题是提供水性聚合物改性微孔聚烯烃隔膜在制备锂离 子电池、 超级电容器、 电池 /超级电容储能器中的应用。
本发明的有益效果:
本发明水性聚合物改性聚烯烃隔膜具有热关闭效应 (聚烯烃隔膜在高温环境下熔融, 使得微孔关闭) 和热收缩小的特性, 改善了聚烯烃隔膜在高温情况下收缩的大问题, 提高 电池安全性, 同时提高了隔膜的破膜温度, 确保在高温条件下隔膜的完整性, 进而提高电 池安全性。 另外由于涂敷材料具有高的极性, 能够改善聚烯烃隔膜的吸液性、 保液性, 对 电池充放电性能、 倍率性能、 循环寿命以及安全性能具有较好的改善作用。
本发明在制备隔膜过程中无化学反应, 易于控制; 同时浆料与聚烯烃隔膜具有很好的 粘结性, 确保浆料与隔膜界面结合稳定和均匀, 同时浆料与电极之间相容性好, 确保电池 性能。 且电池制备过程的其它工艺与现有电池工艺完全一致。 同时保留了涂层材料的阻燃 性质, 确保隔膜在三个层面上对电池进行安全保护: 1、 隔膜的热关闭性能, 2、 该工作涂 覆改性的隔膜具有小的收缩, 确保正负极不能直接接触发生短路。 3、 隔膜自身的阻燃性, 避免电池发生安全事故后进一步燃烧。
具体实施方式 本发明提供的水性聚合物改性聚烯烃隔膜是由水溶性聚合物 100份, 疏水性单体 30〜 500份, 亲水性单体 0〜200份, 引发剂 1〜5份共聚合得到聚合物胶体乳液, 按聚合物胶 体乳液固形物含量以 100 %计, 加入 0〜100 %的无机填料和 20〜100 %的增塑剂, 所得浆 料涂覆在经过表面改性的微孔聚烯烃隔膜的一面或双面, 干燥得到。
所述聚烯烃隔膜为聚丙烯微孔膜 (PP膜)、 聚乙烯微孔膜 (PE膜)、 聚丙稀微孔膜 /聚 乙烯微孔膜 /聚丙稀微孔膜三层复合膜, 本发明的使用的聚烯烃隔膜孔隙率可为 20 %〜90 % , 优选孔隙率为 35 %〜85 %。
由于聚烯烃类材料是非极性的高聚物, 无极性基团的存在, 因此其表面能较低。 其膜 材料呈化学惰性, 且其润湿性、 粘结性、 染色性及生物相容性等功能化性能较低, 在实际 应用中表现出与大多数聚合物相容性较差, 与聚合物胶体的粘结强度较低等问题。 因此为 了本发明的顺利实施, 需对聚烯烃类隔膜进行表面改性, 目的就是在聚烯烃微孔膜表面引 人极性基团或涂覆预涂层, 提高膜材料的表面能; 同时提高膜表面的粗糙度, 增加表面的 粘接性能, 消除表面的弱边界层, 从而达到与水性聚合物浆料粘结的目的。
目前, 聚烯烃膜表面改性的方法主要有化学改性、 物理改性, 共混改性, 表面活性剂 法, 等离子体处理和光接枝以及高能辐射接枝改性等。 其中化学氧化法、 物理喷砂、 抛光 等方法存在难于控制膜材料的厚度以及后处理工艺复杂等缺点,因此很难形成规模化生产。 而目前采用的等离子体、 光照、 高能辐射等技术对聚烯烃膜进行聚合物单体接枝改性时, 由于接枝反应不易控制, 制得膜均匀性较差, 同时接枝反应会在隔膜的微孔中进行, 接枝 后孔体积及孔隙率减小, 孔形状、 孔的曲折度发生变化, 影响隔膜性能, 进而影响电池性 能。 在本发明中, 发明人利用热处理(电暈)、 等离子体处理、 高能辐照处理或光照处理中 至少一种方法对聚烯烃微孔膜进行预处理, 或采用偶联剂或粘结助剂中的至少一种对聚烯 烃微孔膜进行表面预涂层处理, 亦或采用上述两种方法结合对微孔膜表面进行改性处理。 这些处理方法只改变微孔膜表面特性, 可保持其本体特性, 不影响隔膜微孔结构等性能。
优选的是: 采用热处理(电暈)、 等离子体处理、 光照、 高能辐射等方法中至少一种处 理方法预先处理, 再采用丙稀腈改性 EVA (乙烯一醋酸乙烯酯共聚物) 胶、 官能团化的硅 烷 (乙烯基硅烷、 辛基硅烷、 氨基硅烷、 环氧基硅烷、 3—甲基丙烯酰氧丙基三甲氧硅烷、 异氰酸酯类硅烷等) 中的至少一种偶联剂或助粘剂在预处理的微孔膜上进行涂覆。
其中, 所述水溶性聚合物为聚乙烯醇、 聚氧化乙烯、 聚乙烯基吡咯烷酮或聚乙烯基吡 咯烷酮水溶性共聚物; 其中, 聚乙烯醇聚合度为 1700〜2400, 水解度 50〜99; 聚氧化乙烯 分子量 10万至 200万; 聚乙烯基吡咯烷酮或其水溶性共聚物分子量为 500至 10万, 优选 1〜3万。
所述疏水性单体结构式为: 其中,
R = 一 H或一 CH3 ;
R2= — C6H5 、 — 0C0CH3 、 — C00CH3 、 — COOCH2CH3 、 — COOCH2CH2CH2CH3 、 一 COOCH2CH (CH2CH3) CH2CH2CH2CH3、 一 CN。 疏水性单体为上述疏水性单体中的至少一种; 所述亲水单体结构式为: CHR3=CR4R5, 其中,
R = —H、 一CH3或一 COOLi ;
R4= —H、 一CH3或一 COOLi ;
R5= — COOLi、 一 CH2C00Li、 一 COO (CH2) 6S03Li、 一 C0NH2、 一 C0NHCH3
Figure imgf000008_0001
、 一 CONHCH2CH3、 一 CON (CH3) 2、 一 CON (CH2CH3) 2。 亲水性单体为上述亲水性单 体中的至少一种。 本发明提供的水性聚合物改性微孔聚烯烃隔膜的制备方法是一种对环境友好的方法, 且生产成本低廉, 改性后的微孔聚烯烃隔膜性能优异。 它包括以下步骤:
a、 聚合物胶体乳液的制备
将水溶性聚合物、 亲水性单体与助剂加水, 加热搅拌直到完全溶解; 将反应器温度恒 定到所需反应温度 30— 90 °C, 将疏水性单体采用一次、 分次或滴加的方式加入反应器中, 加入引发剂聚合反应 4一 35小时, 得到聚合物胶体乳液; 引发剂也可以在反应过程中滴加 或分次加入。
所述的引发剂为过硫酸铵、过硫酸钾、过氧化氢或偶氮二异丁脒,或它们与N¾S03、FeS04 构成的氧化还原引发体系。
反应中还可加入不超过 3重量份的助剂充当乳化剂的作用, 对胶体乳液起到一定的稳 定作用。 所述助剂选自十二烷基磺酸盐、 十二烷基苯磺酸盐、 乙烯基磺酸盐。
b、 聚合物胶体浆料的制备
以聚合物胶体乳液按固形物含量 100 %计, 聚合物胶体乳液中加入 0〜100 %的无机填 料和 20〜100 %的增塑剂, 搅拌分散均匀, 碾磨 2〜10小时, 优选 3〜5小时。 碾磨后的浆 料再通过〈200目的筛网过滤以除去未碾细的较大颗粒的物料。
所述增塑剂是丙二醇、 苯甲醇、 正丁醇、 异丙醇、 磷酸二乙酯、 磷酸三乙酯、 磷酸三 甲酯、 磷酸三丁酯、 乙酸异戊酯、 乳酸乙酯、 乳酸甲酯、 丁酸乙酯、 碳酸二乙酯、 丙酸三 丁酯、 乙酸甲基戊酯、 乙酸异丙酯、 二异丁基酮、 甲基乙基酮、 二丙基酮、 乙基丁基酮或 甲基戊基酮乙酸异戊酯、 乳酸乙酯、 乳酸甲酯、 丁酸乙酯、 碳酸二乙酯、 丙酸三丁酯、 乙 酸甲基戊酯、 乙酸异丙酯、 二异丁基酮、 甲基乙基酮、 二丙基酮、 乙基丁基酮或甲基戊基 酮中的至少一种。
为了提高微孔聚合物耐热性, 孔隙率和膜的刚性, 可在水性聚合物胶体乳液中加入无 机填料。 无机填料通常采用超细粉, 具有较高的比表面积和较强的表面吸附能力, 有利于 电解液的吸附和增大电解质盐的离解并由此提高膜的离子导电性。 所述的无机填料是气相 法白炭黑、 三氧化二铝、 二氧化钛、 二氧化锆、 氧化镁、 碳酸钙或玻璃纤维。 为了提高无机填料在聚合物胶体乳液中的分散性, 可加入硅烷偶联剂, 偶联剂可为 3 一氨基丙基三乙氧基硅烷、 2—氨基乙基一 3—胺基丙基三甲氧基硅烷、 3—缩水甘油基三甲 氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷或乙烯基三(2—甲氧乙氧)基硅烷, 硅烷偶联剂的加入量为无机填料重量的 0. 5〜5. 0%。
为了强化改性微孔聚烯烃隔膜安全性的目的, 还可以添加微米级有机填料强化隔膜的 离子传导阻断特性, 使得改性微孔聚烯烃隔膜的电池在 10(T13(TC范围以阻正离子继续流 动, 一旦电池工作温度失控可确保电池的安全性。 所述的微米级有机填料可以是超细聚乙 烯蜡、 氧化蜡粉、 超细聚乙烯蜡粉任一种。 以聚合物胶体乳液固形物含量为 100 %计, 有 机填料的添加量为 5. 0〜20%。
c、 对聚烯烃隔膜进行表面改性
由于聚烯烃类材料是非极性的高聚物, 该类微孔膜表面能较低, 与大多数聚合物相容 性较差, 与聚合物胶体的粘结强度较低。 为了克服这一缺点, 提高其表面能, 本发明对聚 烯烃隔膜进行表面改性:
对微孔聚烯烃隔膜进行热处理、 等离子体处理、 高能辐照处理或光照处理中至少一种 方法进行处理得到; 或
采用丙稀腈改性 EVA胶或官能团化的硅烷 (乙烯基硅烷、 辛基硅烷、 氨基硅烷、 环氧 基硅烷、 3—甲基丙烯酰氧丙基三甲氧硅烷、异氰酸酯类硅烷等)中的至少一种对微孔聚烯 烃隔膜进行表面涂层处理得到; 或
对微孔聚烯烃隔膜采用热处理、 等离子体处理、 高能辐照处理或光照处理中至少一种 方法进行预处理, 再采用丙稀腈改性 EVA胶或官能团化的硅烷中的至少一种对其进行表面 涂层处理。
d、 涂布制备水性聚合物改性微孔聚烯烃隔膜
将 b步骤中所得浆料经涂布机按使用要求涂覆在经 c步骤表面改性的聚烯烃微孔膜的 一面或双面, 湿涂层厚度 2〜600Mm, 优选湿涂层厚度为 5〜400Mm。
所述的涂布方式为印刷, 微细凹版印刷, 浸涂, 对辊逆涂, 对辊顺涂, 对辊刮涂, 逗 号刮刀涂布, 精密微辊顺涂, 精密微辊逆涂, 坡流, 挤压, 条缝, 落帘等涂布法等涂布而 成。
采用上述方法中的任何一种涂布方法一次涂成。 也可以采用上述方法中的几种涂布方 法组合涂布一次涂成。 还可以采用一机多点涂布的方法进行涂布, 如: 涂布 1——干燥 1 ; 涂布 2—干燥 2, ……, 即在一种支持体上进行不同物料的接力涂布, 或在一种支持体上 进行不同位置的涂布, 该涂布方式可以在一台涂布机上接力进行几种方法的连续涂布。
e、 干燥
将 d步骤中涂覆好的湿膜经烘箱, 进行干燥, 干燥可利用加热的空气、 热风、 红外辐 射以及其它技术中的加热方法来完成干燥。 干燥温度为 30〜160°C, 优选温度为 40〜100 °C。 得最终隔膜, 隔膜厚度为 10〜100微米, 优选厚度为 12〜50微米。
上述水性聚合物改性微孔聚烯烃隔膜可应用于制备锂离子电池、 超级电容器、 电池 / 超级电容储能器。
以下通过具体实施例的方式对本发明做进一步详述。 实施例 1 本发明水性聚合物改性微孔聚烯烃隔膜的制备 a、 聚合物胶体乳液的制备
聚乙烯基吡咯烷酮水溶液中加入亲油性单体苯乙烯 (St ) /丙烯酸丁酯 (BA) /丙烯腈 (AN) 在水相中进行三元共聚, 其共聚组成为 PVP: St: BA: AN=10 : 2 : 4 : 2 (重量比, 下同), 共聚物含量为 15%。
该聚合物乳液采用分步聚合: 在带冷凝水的四口反应容器中, 加入 1000g蒸熘水, 再 加入 100g聚乙烯基吡咯烷酮, 将反应釜升温到 90°C, 搅拌至物料呈透明状时加入 20g苯 乙烯 (St ) 单体和 2g过硫酸铵引发剂, 反应 20小时, 变白色乳液, 加入 40g丙烯酸丁酯 (BA), 继续反应 2小时。 再向上述反应液中加入 20g丙烯腈单体, 并补加 1. 5g引发剂继 续聚合 12小时, 即得聚合物胶体乳液。 b、 聚合物胶体浆料的制备
制得的聚合物胶体乳液加入 19g的二氧化锆填料、 5g聚乙烯蜡粉和 160g苯甲醇增塑 齐 U, 高速搅拌 6小时, 球磨 5小时。于 20. 6°C, RH=64%环境温度下测定浆料粘度: T衆料 =35 粘度 =2500mpa · s。 c、 对聚烯烃隔膜进行表面改性
聚烯烃的表面改性主要是改进与水性聚合物浆体的润湿性和粘结性。 其中比较简单、 易于规模化的方法就是预处理与预涂层法结合使用, 即在使用电暈、 等离子体、 光照、 高 能辐射等处理方法对微孔膜先进行预处理, 然后将偶联剂或粘结助剂涂覆在预处理的微孔 膜形成预涂层, 即在微孔膜与水性浆料之间引入一涂层, 该涂层具备与聚烯烃微孔膜和水 性聚合物浆料都有很好的粘结性能。在本实施例中,首先将厚度为 16微米,基重为 10. 8g/m2 的聚丙稀 (PP) 微孔膜进行电暈处理, 机器走速 20m/min, 电暈功率 400w。 然后取丙稀腈 改性 EVA胶 (固体含量 20 % ) 20份, 乙酸乙酯 200份, 配置固形物含量为 1. 8 %的浆料。 将该浆料以印刷方式涂覆在预处理的聚丙烯微孔膜上。 根据凹版辊、 机器走速以及胶辊压 力等参数控制单面涂覆厚度小于 2Mffl。 d、 涂布制备水性聚合物改性微孔聚烯烃隔膜
以连续辊涂工艺(带速 5m/min)将上述制备的水性浆料涂覆于上述经预涂层处理的 PP 微孔膜上。 在辊涂工艺中, 利用刮刀控制浆料的厚度, 利用基带走向与相反方向运行的料 辊的接触, 从而进行涂覆并能够控制涂层。 随后将涂覆的湿膜进入循环热风的烘箱中进行 烘干, 即得厚度为 25Mffl厚度的改性聚丙稀隔膜。
所制备的隔膜透气率约为 40 (sec/in2 -100ml ·1. 22kPa),该单位是指在压力为 1. 22 kPa 条件下, 每平方英寸面积上通过 100ml气体所用的时间 (以下实施例相同)。 隔膜在不同温 度条件的收缩性、 透气率见表 1、 表 2。 隔膜在不同温度条件的收缩性
Figure imgf000011_0001
注: 测试条件为: 隔膜每种温度下真空处理 2小时, 实施例中隔膜、 PP和 PE以及三 层复合隔膜厚度均为 25 ± lMffl (以下实施例中收缩性测试条件与该实施例相同)。 表 1是实施例 1中的改性聚丙烯隔膜在不同温度下的收缩性数据,与未改性聚丙烯 (PP) 隔膜相比, 本实施例中改性聚丙烯膜在 160°C时保持较好形状, 表现出较好的耐温性, 这 对电池的安全性是十分有利的。 另外说明, 本发明实施例中测试的隔膜收缩性均是膜在自 由状态的测试结果,在电池中其收缩性能更小一些,在后面电池热箱试验中有进一步体现。 表 2.隔膜在不同温度下的透气率
Figure imgf000011_0002
注: 测试条件为: 隔膜每种温度下处理 lOmin (以下实施例中高温透气率测试条件与 该实施例相同)。
实施例 2 本发明水性聚合物改性微孔聚烯烃隔膜的制备 a、 聚合物胶体乳液的制备
本实施例中以亲水性高分子聚乙烯醇 (PVA) 1750 和亲油性单体醋酸乙烯酯 (VAc ) I 丙烯酸乙酯(EA) /丙烯腈(AN)在水相中进行接枝共聚, 制出用于锂电池隔膜的水性聚合 物胶体乳液, 其共聚组成为 PVA: VAc: EA: AN=10 : 2 : 2 : 5 (重量比, 下同), 共聚物含 量为 17%, 产物为白色不透明乳液。
该聚合物胶体乳液的具体制法是: 在带冷凝水的四口反应容器中, 加入 lOOOg蒸熘水 和 100g聚乙烯醇 (PVA) 1750, 反应釜升温到 75°C, 搅拌溶解, 转速为 100转 /分, 3小时 后, 物料呈透明状时, 可视为溶解完毕, 关闭加热, 自然冷却至 55°C。 一次性加入 40g的 亲油性单体醋酸乙烯酯 (VAc ) 和丙烯酸乙酯 (EA) 1 : 1 的共混物, 搅拌分散 10分钟, 加 入 0. 5g水性引发剂过硫酸胺 (aps), 约 20分钟后, 物料呈浅蓝色, 30分钟后转为白色乳 状, 共聚反应 2小时, 得到反应中间体。
将上述反应液和 50g亲油性单体丙烯腈 (AN) 混合分散, 补加 1. 5g引发剂和 0. 5g弱 酸性乙烯基磺酸锂 (SVSLi ) 进行乳液聚合, 反应时间为 10小时, 即得聚合物胶体乳液。 b、 聚合物胶体浆料的制备
制得的聚合物胶体乳液加入 19g的二氧化硅填料和 160g乙酸甲基戊酯增塑剂,高速搅 拌 6小时, 再球磨 5小时。 T=20. 6°C, RH=64%环境温度下测定浆料粘度: T浆料 =35°C, 粘 度 =2800mpa · s; c、 对聚烯烃隔膜进行表面改性
步骤基本同实施例 1, 不同之处在于, 本实施例中聚烯烃隔膜采用厚度 16Mffl, 基重为 9. 8g/m2的聚乙烯微孔膜。 助粘剂使用辛烷基三乙氧基硅烷。 d、 涂布制备水性聚合物改性微孔聚烯烃隔膜
以对辊挤压法 (带速约 2m/min ) 将上述浆料涂于 c中预处理的聚乙烯微孔膜, 随即通 过所规定温度的热风和红外辐照的烘道挥发水份和增塑剂。最后得到厚度约为 25um改性聚 乙烃微孔膜。 所制备的隔膜气体透过率约为 30 (sec/in2 · 100ml · 1. 22kPa)。 隔膜在不同温 度条件的收缩性、 透气率见表 3、 表 4。 隔膜在不同温度条件的收缩性
Figure imgf000013_0001
表 4.隔膜在不同温度下的透气率
Figure imgf000013_0002
表 4是实施例 2中的改性聚乙烯隔膜在不同温度下的透气率数据。 如表 4所示, 当温 度升高到 130 °C时, 气体透过隔膜时间迅速上升, 即透气率明显下降。 这主要由于温度升 高到 130 °C时, 达到隔膜材料的熔点, 发生熔融, 由于张力作用微孔被关断, 孔率骤减甚 至消失, 因此透气率急速下降。 该性能对电池安全是十分有利的, 当电池发生异常, 温度 上升达到 130 °C以上时, 隔膜发生关断, 即阻断反应的进一步进行, 避免电池爆炸和燃烧。 实施例 3 本发明水性聚合物改性微孔聚烯烃隔膜的制备 a、 聚合物胶体乳液的制备
本实施例中以聚乙烯醇 1799 ( PVA)、 疏水性单体为乙烯基三乙氧基硅烷偶联剂(151) / 丙烯腈(AN)在水相中接枝聚合,制出水性聚合物乳液,其共聚组成为 PVA: ( 151 ) : AN=10 : 4 : 5 (重量比)。
该聚合物胶体乳液的具体制法是: 在带冷凝水的四口反应容器中, 加入 1000g蒸熘水 和 100g亲水性单体聚乙烯醇 (PVA ) 1799, 加热到 90 °C, 至物料呈透明状。 加入乙烯基三 乙氧基硅烷 151 40g和丙烯腈 (AN) 50g引发剂过硫酸胺 1. 9 g, 接枝共聚 12小时。 得到 聚合物胶体乳液。 b、 聚合物胶体浆料的制备
在聚合物乳液加入磷酸三乙酯分散的氧化铝填料, 具体用量为: 20%氧化铝填料和 100%磷酸三乙酯增塑剂。 高速搅拌 4小时, 并球磨 5小时, 调节浆料粘度到 2500mpa * s。 c、 对聚烯烃隔膜进行表面改性
步骤同实施例 1, 不同之处在于, 本实施例中所使用的聚烯烃微孔膜为聚丙烯微孔膜 /聚乙烯微孔膜 /聚丙稀微孔三层复合膜, 厚度为 16微米, 基重 10. 7g/m2。该微孔采用 Co60 高能辐照, 剂量率 235万 rad/h, 剂量 5Mrad。
d、 涂布制备水性聚合物改性微孔聚烯烃隔膜
以坡涂布方式 (带速约 12m/min)将上述浆料涂于 c中预处理的聚乙烯微孔膜, 随即通 过所规定温度的热风和红外辐照的烘道挥发水份和增塑剂。 最后得到厚度约为 25 μ πι改性 微孔膜。 所制备的膜气体透过率约为 34 (sec/in2 · 100ml · 1. 22kPa)。 隔膜在不同温度条件 的收缩性、 透气率见表 5、 表 6。 隔膜在不同温度条件的收缩性
Figure imgf000014_0002
表 6.隔膜在不同温度下的透气率
Figure imgf000014_0003
实施例 4 本发明水性聚合物改性微孔聚烯烃隔膜的制备 a、 聚合物胶体乳液的制备
浆料合成步骤: 125. 0g丙烯酰胺(AM)搅拌溶解在 1800. 0ml水中, 加入 75. 0ml醋酸乙 烯酯 (VAc ) 和 15. 0ml异丙醇 (IPA), 60°C通 N2除氧 40min后, 加入引发剂过硫酸铵 (AP) 2. 0g, 体系粘度逐渐增大, 反应约
Figure imgf000014_0001
, 共聚得 到聚合物胶体乳液。 b、 聚合物胶体浆料的制备
制得的聚合物胶体乳液加入 10%的三氧化二铝和 20 %二氧化硅填料和 120%甲基戊基酮 增塑剂,加入 35%聚乙烯蜡粉。高速搅拌 8小时并球磨 2小时,调节浆料粘度到 2500mpa *s。
c、 对聚烯烃隔膜进行表面改性
采用辛烷基硅烷偶联剂对厚度 20微米, 基重 11. 2g/m2的 PE微孔膜预涂层改性。 d、 涂布制备水性聚合物改性微孔聚烯烃隔膜 同实施例 1, 得 25Mm厚度改性 PE微孔膜。 透气率 42 (sec/in2 · 100ml · 1. 22kPa)。 隔 膜在不同温度条件的收缩性、 透气率见表 7、 表 8。 隔膜在不同温度条件的收缩性
Figure imgf000015_0001
表 8.隔膜在不同温度下的透气率
Figure imgf000015_0002
实施例 5 本发明水性聚合物改性微孔聚烯烃隔膜的制备 a、 聚合物胶体乳液的制备
反应步骤基本同实施例 2, 不同之处在于, 将亲油性单体醋酸乙烯酯 (VAc)和丙烯酸 乙酯 (EA) 共混物换为亲水性甲基丙烯酸 (MAA) 2. 5份, 亲油性单体丙烯腈 (AN) 5份, 弱酸性乙烯基磺酸锂 (SVSLi ) 换为强酸性十二烷基磺酸锂 (DsLi ) 乳液聚合。
其共聚组成为 PVA: MAA: AN=10: 2. 5: 5;共聚物含量为 11%,产物呈白色半透明胶状。 b、 聚合物胶体浆料的制备
制得的聚合物胶体乳液按固形物含量 100 %计, 加入 15%的用 2%偶联剂处理的二氧化 硅填料和 15%的丁酸乙酯增塑剂, 调节浆料粘度到 2500mpa · s。
c、 对聚烯烃隔膜进行表面改性
步骤同实施例 1, 不同之处在于, 本实施例中采用等离子体对厚度为 18Mffl, 基重为
10g/m2的聚丙烯微孔膜 /聚乙烯微孔膜 /聚丙稀微孔膜三层复合隔膜进行预处理, 然后采用 异氰酸酯基三乙氧基硅烷对预处理的三层复合膜进行如实施例 1方法预涂层处理。 , d、 涂布制备水性聚合物改性微孔聚烯烃隔膜
步骤同实施例 1, 将本实施例 b中得浆料涂覆于 c中微孔膜。 得最终隔膜。 测得透气率 3642 (sec/in2 · 100ml · 1. 22kPa)。 隔膜在不同温度条件的收缩性、 透气率见表 9、 表 10。 隔膜在不同温度条件的收缩性
Figure imgf000016_0001
表 10.隔膜在不同温度下的透气率
Figure imgf000016_0002
试验例 1 本发明水性聚合物改性微孔聚烯烃隔膜的电性能测试 电池正极的制备
将 92重量份锂钴氧化物(LiCo02 ) 与 5重量份乙炔黑、 3重量份 LA水性粘合剂和 90重 量份去离子水混合【90重量份锂锰氧化物 (LiM 04) 与 7重量份乙炔黑、 3重量份 LA水性 粘合剂和 90重量份去离子水混合或 85重量份锂铁氧化物 (LiFeP04)、 7重量份乙炔黑、 8 重量份 LA水性粘合剂和 90重量份去离子水混合】 以获得正极混合浆料。 使该浆料通过 100 目的筛网, 以除去大的固体颗粒。之后将浆料均匀涂覆到 20微米厚度铝箔的双面。然后经 轧制获得正极极片, 按制作尺寸裁切及端子焊接。 电池负极的制备
将 95重量份的人造石墨与 5重量份 LA132水性粘合剂及 100重量份去离子水。 以获得 负极混合浆料。 使该浆料通过 100 目的筛网, 以除去大的固体颗粒。 之后将浆料均匀涂覆 到 12微米厚度铜箔的双面。 然后经轧制获得负极极片, 按制作尺寸裁切及端子焊接。 电池隔膜
隔膜为实施例 1〜实施例 5制得的隔膜。 电解液: 碳酸乙烯酯 /碳酸二乙酯 /碳酸甲乙酯和 LiPF6组成的电解质构成。 电池制作
将上述制作极片采用本领域人员共识的卷绕方式及铝塑复合膜进行包装, 真空干燥 24 小时后加入电解液密封, 完成电芯制作。 充放电及寿命测试
lc倍率的电流充至 4. 2V (钴酸锂)【锰酸锂为 4. 3V; 锂铁氧化物为 3. 6V】 并以 4. 2V (钴酸锂)【锰酸锂为 4. 3V; 锂铁氧化物为 3. 6V】恒压; 然后采用 lc倍率的电流对电池进 行放电至 2. 75V (钴酸锂)【锰酸锂为 3. 0V; 锂铁氧化物为 2. 2V】, 完成一个循环。 热箱测试
将充满电的上述步骤制作的电池置于热空气干燥箱中, 以 6°C/min升温速度强制加热 该电池, 并设定该干燥箱温度最终升至 150°C, 当温度达到 150°C后, 保持该温度 30分钟, 并用交流电阻计检测电池内阻变化 (检测标准依据锂离子二次电池中国国家标准 GB/T18287— 2000)。 过充测试
将按上述步骤制作的电池充至满电态, 在 25 ± 3°C环境下使用恒流恒压源对其进行过 充电检测 (导线夹具内阻小于 50πι Ω ), 过充电流为电池设计容量的 3倍率电流 (即 3C), 充至 10V转为 10V恒压并保持 30分钟或电流小于 0. 05C (过程中使用交流电阻计检测电池 内阻变化。 检测标准依据锂离子二次电池中国国家标准 GB/T18287— 2000) 时测试结束。
将按实施例 1〜实施例 5所制备的改性聚烯烃微孔膜组装成锂离子电池, 正极分别为 LiMn204、 LiCo02、 LiFeP04、 LiCo02、 和 LiMn204, 负极为与之相匹配的石墨负极。 测试按上 述方法进行, 热箱测试及过充测试见表 11和表 12。
表 11 各种隔膜电池热箱测试结果
电池常 电池
隔膜 正极材料 热箱测试结果
温内阻 150°C内阻
温度升至 138°C时,
PE LiCo02 36 mQ
电池发生轻微爆炸、 燃烧
温度升至 150°C
PP/PE/PP ,
LiCo02 34 mQ
保持 18分钟电池发生轻微爆炸、 燃烧
温度升至 150°C
PP ,
LiMn204 42 mQ
保持 2分钟电池发生轻微爆炸、 燃烧
温度升至 150°C,
实施例 1 LiMn204 35 mQ 大于 2 Ω
保持 30分钟电池未燃未爆。
温度升至 150°C,
实施例 2 LiCo02 35 mQ 大于 2 Ω
保持 30分钟电池未燃未爆。
温度升至 150°C,
实施例 3 LiFeP04 46 mQ 大于 2 Ω
保持 30分钟电池未燃未爆。
温度升至 150°C,
实施例 4 LiCo02 32 mQ 大于 2 Ω
保持 30分钟电池未燃未爆。
温度升至 150°C,
实施例 5 LiMn204 36 mQ 大于 2 Ω
保持 30分钟电池未燃未爆。 上表给出的结果显示了热箱实验中改性聚烯烃微孔膜在电池过热环境下的安全优越 性。 说明了本发明的改性聚烯烃微孔膜具有高的耐热性和小的收缩, 这些结果与以上实施 例中所测试的各种改性隔膜的热收缩结果是一致的。 该高耐热性使得膜能够承受 150°C的 高温, 降低的收缩避免了正负极极片直接接触, 因此可提高电池安全性。 表 12 各种隔膜电池过充测试结果
Figure imgf000018_0001
电池过充测试过程中, 电池内部发生电解液与正负极等材料的氧化还原反应, 同时放 出大量的热, 因此该测试检测隔膜的内容主要有三个方面, 一个是对过热的反应, 即热关 闭效应, 第二个是在过热条件下隔膜的热收缩问题, 小的收缩可避免由于隔膜收缩带来的 正负极之间的直接短路。第三个方面是隔膜与电解液、正负极之间的界面相容性和稳定性。 从本发明前面所阐述的改性聚烯烃微孔膜的特性及以上热箱和过充实验结果可以看出, 经 改性的聚烯烃微孔膜具有高的耐温性、 小的收缩、 与电解液和正负极有好的相容性, 因此 可很好的改善电池安全性能。

Claims

权利要求书
1、水性聚合物改性微孔聚烯烃隔膜, 其特征在于: 它是由微孔聚烯烃隔膜及表面覆盖 的水性聚合物涂层组成, 其中所述水性聚合物涂层是由水溶性聚合物 100份, 疏水性单体 30〜500份, 亲水性单体 0〜200份, 引发剂 1〜5份共聚得到的聚合物胶体乳液中, 按聚 合物胶体乳液固形物含量以 100 %计, 加入 0〜100 %的无机填料, 0〜50 %的有机填料和 20〜100 %的增塑剂形成水性聚合物浆料, 涂覆在微孔聚烯烃隔膜表面干燥而得。
2、根据权利要求 1所述的水性聚合物改性微孔聚烯烃隔膜, 其特征在于: 所述水溶性 聚合物为聚乙烯醇、 聚氧化乙烯、 聚乙烯基吡咯烷酮或聚乙烯基吡咯烷酮水溶性共聚物; 其中, 聚乙烯醇聚合度为 1700〜2400, 水解度 50〜99; 聚氧化乙烯分子量 10万至 200万; 聚乙烯基吡咯烷酮或其水溶性共聚物分子量为 500至 10万;
所述疏水性单体结构式为:
Figure imgf000019_0001
其中,
R1=— H或— CH3 ;
R2=— C6H5、 — OCOCH3、 _COOCH3、 _COOCH2CH3
— COOCH2CH2CH2CH3、 — COOCH2CH(CH2CH3)CH2CH2CH2CH3、 -CN;
疏水性单体为上述疏水性单体中的至少一种;
所述亲水单体结构式为: CHR3=CR4R5, 其中,
R3=— H、 — CH3或— COOLi;
R4=— H、 — CH3或—COOLi;
R5= -COOLi — CH2COOLi、 — COO(CH2)6S03Li、 — CO H2、 — CO HCH3
Figure imgf000019_0002
— CO HCH2CH3、 — CON(CH3)2、 -CON(CH2CH3)2;
亲水性单体为上述亲水性单体中的至少一种。
3、根据权利要求 1所述的水性聚合物改性微孔聚烯烃隔膜, 其特征在于: 所述微孔聚 烯烃隔膜为聚丙烯微孔膜、 聚乙烯微孔膜或聚丙稀微孔膜 /聚乙烯微孔膜 /聚丙稀微孔膜三 层复合膜。
4、根据权利要求 3所述的水性聚合物改性微孔聚烯烃隔膜, 其特征在于: 所述微孔聚 烯烃隔膜经过以下方法进行表面改性:
对微孔聚烯烃隔膜进行热处理、 等离子体处理、 高能辐照处理或光照处理中至少一种 方法进行处理得到; 或
采用丙稀腈改性 EVA胶或官能团化的硅烷中的至少一种对微孔聚烯烃隔膜进行表面涂 层处理得到; 或
对微孔聚烯烃隔膜采用热处理、 等离子体处理、 高能辐照处理或光照处理中至少一种 方法进行预处理, 再采用丙稀腈改性 EVA胶或官能团化的硅烷中的至少一种对其进行表面 涂层处理。
5、根据权利要求 1-3任一项所述的水性聚合物改性微孔聚烯烃隔膜, 其特征在于: 在 水性聚合物浆料中加入粘结助剂: 丙稀腈改性 EVA胶、 官能团化的硅烷。
6、根据权利要求 1-5任一项所述的水性聚合物改性微孔聚烯烃隔膜, 其特征在于: 所 述官能团化的硅烷是乙烯基硅烷、 辛基硅烷、 氨基硅烷、 环氧基硅烷、 3—甲基丙烯酰氧丙 基三甲氧硅烷或异氰酸酯类硅烷。
7、制备权利要求 1所述的水性聚合物改性微孔聚烯烃隔膜的方法, 其特征在于: 它由 以下步骤完成:
a、 聚合物胶体乳液的制备
将水溶性聚合物、 亲水性单体加水搅拌直到完全溶解; 加入疏水性单体, 引发剂, 聚 合反应得到聚合物胶体乳液;
b、 聚合物胶体浆料的制备
以聚合物胶体乳液按固形物含量 100 %计, 聚合物胶体乳液中加入 0〜100 %的无机填 料和 0〜50 %的有机填料和 20〜100 %的增塑剂, 搅拌, 碾磨, 过滤得到水性聚合物浆料; c、 涂布制备水性聚合物改性微孔聚烯烃隔膜
将步骤 b所得水性聚合物浆料涂覆在微孔聚烯烃隔膜的一面或双面, 干燥即得。
8、根据上述制备水性聚合物改性微孔聚烯烃隔膜的方法, 其特征在于: 在水性聚合物 浆料中加入粘结助剂: 丙稀腈改性 EVA胶、 官能团化的硅烷。
9、根据上述制备水性聚合物改性微孔聚烯烃隔膜的方法, 其特征在于: 所述微孔聚烯 烃隔膜经过以下方法进行表面改性:
对微孔聚烯烃隔膜进行热处理、 等离子体处理、 高能辐照处理或光照处理中至少一种 方法进行处理得到; 或
采用丙稀腈改性 EVA胶或官能团化的硅烷中的至少一种对微孔聚烯烃隔膜进行表面涂 层处理得到; 或
对微孔聚烯烃隔膜采用热处理、 等离子体处理、 高能辐照处理或光照处理中至少一种 方法进行预处理, 再采用丙稀腈改性 EVA胶或官能团化的硅烷中的至少一种对其进行表面 涂层处理。
10、 根据上述制备水性聚合物改性微孔聚烯烃隔膜的方法, 其特征在于: 步骤 a所述 聚合反应的温度为 30— 90°C, 聚合反应时间为 4一 35小时。
11、 根据上述制备水性聚合物改性微孔聚烯烃隔膜的方法, 其特征在于: 疏水性单体 采用一次、 分次或滴加的方式加入反应器中; 引发剂采用一次加入或在反应过程中滴加或 分次加入。
12、 根据上述制备水性聚合物改性微孔聚烯烃隔膜的方法, 其特征在于: 涂布制备水 性聚合物改性微孔聚烯烃隔膜时, 湿涂层厚度 2〜600Mffl; 干燥温度是 30〜160°C, 干燥后 隔膜厚度为 10〜100微米。
13、 根据上述制备水性聚合物改性微孔聚烯烃隔膜的方法, 其特征在于: 所述的引发 剂为过硫酸铵、 过硫酸钾、 过氧化氢或偶氮二异丁脒, 或它们与 Na2S03、 FeS04 构成的氧 化还原引发体系;
14、 根据上述制备水性聚合物改性微孔聚烯烃隔膜的方法, 其特征在于: 所述增塑剂 是丙二醇、 苯甲醇、 正丁醇、 异丙醇、 磷酸二乙酯、 磷酸三乙酯、 磷酸三甲酯、 磷酸三丁 酯、 乙酸异戊酯、 乳酸乙酯、 乳酸甲酯、 丁酸乙酯、 碳酸二乙酯、 丙酸三丁酯、 乙酸甲基 戊酯、 乙酸异丙酯、 二异丁基酮、 甲基乙基酮、 二丙基酮、 乙基丁基酮或甲基戊基酮中的 至少一种。
15、 根据上述制备水性聚合物改性微孔聚烯烃隔膜的方法, 其特征在于: 所述的无机 填料是气相法白炭黑、 三氧化二铝、 二氧化钛、 二氧化锆、 氧化镁、 碳酸钙或玻璃纤维。
16、 根据上述制备水性聚合物改性微孔聚烯烃隔膜的方法, 其特征在于: 所述偶联剂 为 3—氨基丙基三乙氧基硅烷、 2—氨基乙基一 3—胺基丙基三甲氧基硅烷、 3—缩水甘油基 三甲氧基硅烷、 乙烯基三乙氧基硅烷、 乙烯基三甲氧基硅烷或乙烯基三(2—甲氧乙氧)基 硅烷, 硅烷偶联剂的加入量为无机填料重量的 0. 5〜5. 0%。
17、 根据上述制备水性聚合物改性微孔聚烯烃隔膜的方法, 其特征在于: 所述的有机 填料是超细聚乙烯蜡、 氧化蜡粉、 超细聚乙烯蜡粉任一种, 以聚合物胶体乳液固形物含量 为 100 %计, 有机填料的添加量为 5. 0〜20%。
18、根据上述制备水性聚合物改性微孔聚烯烃隔膜的方法, 其特征在于: 其特征在于: a步骤加入亲水性单体后还加入不超过 3重量份的助剂, 所述助剂选自十二烷基磺酸盐、 十二烷基苯磺酸盐、 乙烯基磺酸盐。
19、权利要求 1〜6任一项所述水性聚合物改性微孔聚烯烃隔膜或权利要求 7〜18任一 项所述制备水性聚合物改性微孔聚烯烃隔膜的方法制备而得的水性聚合物改性微孔聚烯烃 隔膜在制备锂离子电池、 超级电容器或电池 /超级电容储能器中的用途。
PCT/CN2009/073955 2008-12-19 2009-09-16 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途 WO2010069189A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2011106298/05A RU2470700C2 (ru) 2008-12-19 2009-09-16 Микропористая полимерная мембрана, модифицированная водорастворимым полимером, способ ее изготовления и применение
JP2011538821A JP5457460B2 (ja) 2008-12-19 2009-09-16 水性ポリマーによって修飾された微孔性ポリマー膜、その製造及び使用
KR1020117008692A KR101298273B1 (ko) 2008-12-19 2009-09-16 수성 폴리머에 의해 개질된 미세다공성 폴리머 막, 이의 제조방법 및 용도
US13/129,697 US8808925B2 (en) 2008-12-19 2009-09-16 Microporous polymer membrane modified by aqueous polymer, manufacturing method and use thereof
DE112009002032T DE112009002032T5 (de) 2008-12-19 2009-09-16 Mikroporöse, mit wässrigem Polymer modifizierte Polymermembran, Herstellungsverfahren und deren Verwendung
BRPI0923158A BRPI0923158A2 (pt) 2008-12-19 2009-09-16 membrana de polímero microporoso modificada por polímero aquoso, método de produção e uso da mesma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008103063774A CN101434708B (zh) 2008-12-19 2008-12-19 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途
CN200810306377.4 2008-12-19

Publications (1)

Publication Number Publication Date
WO2010069189A1 true WO2010069189A1 (zh) 2010-06-24

Family

ID=40709352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073955 WO2010069189A1 (zh) 2008-12-19 2009-09-16 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途

Country Status (8)

Country Link
US (1) US8808925B2 (zh)
JP (1) JP5457460B2 (zh)
KR (1) KR101298273B1 (zh)
CN (1) CN101434708B (zh)
BR (1) BRPI0923158A2 (zh)
DE (1) DE112009002032T5 (zh)
RU (1) RU2470700C2 (zh)
WO (1) WO2010069189A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197100A (ja) * 2012-03-16 2013-09-30 Samsung Sdi Co Ltd リチウム2次電池用セパレータ、2次電池、および2次電池の製造方法
JP2014527476A (ja) * 2011-07-18 2014-10-16 セルガード エルエルシー 表面修飾ポリマー材料及びこれを備えた電池セパレータ
WO2015010304A1 (en) * 2013-07-25 2015-01-29 Essilor International (Compagnie Generale D'optique) Hybrid epoxy-acrylic with zirconium oxide nanocomposite for curable coatings

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434708B (zh) * 2008-12-19 2012-01-11 成都中科来方能源科技有限公司 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途
CN102054953A (zh) * 2010-12-10 2011-05-11 苏州大学 二次锂电池用隔膜的处理方法及二次锂电池
CN102122704B (zh) * 2010-12-29 2013-03-20 中科院广州化学有限公司 用作锂离子电池隔膜的复合微孔膜及其制备方法与应用
CN102306726A (zh) * 2011-08-12 2012-01-04 沧州明珠塑料股份有限公司 一种复合改性聚烯烃锂离子电池隔膜及其制备方法
JPWO2013051079A1 (ja) * 2011-10-03 2015-03-30 日立マクセル株式会社 耐熱性多孔質膜、非水電池用セパレータおよび非水電池
JP6257122B2 (ja) * 2011-10-04 2018-01-10 日産自動車株式会社 耐熱絶縁層付セパレータ
KR101711982B1 (ko) * 2012-03-22 2017-03-03 삼성에스디아이 주식회사 세퍼레이터 및 리튬 이차 전지
US9620760B2 (en) 2012-03-28 2017-04-11 Zeon Corporation Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
US9178198B2 (en) * 2012-06-01 2015-11-03 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including the same
CN102737850A (zh) * 2012-06-25 2012-10-17 侯栋 隔膜
CN103028535A (zh) * 2012-12-11 2013-04-10 天津力神电池股份有限公司 一种隔膜涂胶方法
CN102977394A (zh) * 2012-12-14 2013-03-20 中国科学院上海硅酸盐研究所 多孔无机涂层/聚烯烃微孔隔膜的复合隔膜及其制备方法
JP2014179321A (ja) * 2013-03-13 2014-09-25 Samsung Sdi Co Ltd セパレータおよびこれを含むリチウム二次電池
CN104183865A (zh) * 2013-05-24 2014-12-03 苏州宝时得电动工具有限公司 锂二次电池
RU2635919C1 (ru) * 2013-10-18 2017-11-17 ЭлДжи КЕМ, ЛТД. Разделительная мембрана и содержащий ее литий-серный аккумулятор
CN103555119B (zh) * 2013-11-01 2016-03-23 中国海诚工程科技股份有限公司 聚烯烃隔膜用涂料、改性聚烯烃隔膜及其制备
CN104140502B (zh) * 2013-11-14 2016-12-07 上海泛能新材料科技有限公司 一种锂离子电池隔膜用粘结剂、制备方法及使用该粘结剂的隔膜
CN103779579A (zh) * 2014-01-24 2014-05-07 湖北金泉新材料有限责任公司 锂电池负极片及其制备方法和相应的锂电池制备方法
JP2015141840A (ja) * 2014-01-29 2015-08-03 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
CN103855351A (zh) * 2014-03-11 2014-06-11 东莞新能源科技有限公司 锂离子电池、所使用的隔离膜及隔离膜的制备方法
KR101707193B1 (ko) * 2014-04-01 2017-02-27 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
CN105440770B (zh) * 2014-06-30 2021-05-04 四川茵地乐材料科技集团有限公司 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池
CN105226222B (zh) * 2014-07-03 2018-01-16 中国科学院大连化学物理研究所 亲水化改性的多孔隔膜在液流电池中的应用
CN104151667A (zh) * 2014-07-30 2014-11-19 安徽状元郎电子科技有限公司 一种疏水性阻燃电容器薄膜专用填料及其制备方法
CN104140593A (zh) * 2014-07-30 2014-11-12 安徽状元郎电子科技有限公司 一种高导热性高强度电容器薄膜专用填料及其制备方法
CN104356979B (zh) * 2014-10-28 2017-02-15 深圳市贝特瑞新能源材料股份有限公司 用于锂离子电池电极材料的聚丙烯酸酯类水性粘结剂、制备方法及锂离子电池极片
CN104538576B (zh) * 2014-12-17 2017-07-28 毛赢超 一种锂离子电池用改性陶瓷隔膜及制备方法
WO2016109527A1 (en) * 2014-12-29 2016-07-07 Celgard, Llc Polylactam coated separator membranes for lithium ion secondary batteries and related coating formulations
CN104882579B (zh) * 2015-04-10 2017-07-07 上海锐朗光电材料有限公司 一种pvdf‑pam聚合物锂电池隔膜的制备方法
JP6354650B2 (ja) * 2015-04-24 2018-07-11 住友化学株式会社 塗工液及び積層多孔質フィルム
CN104868079B (zh) * 2015-05-11 2017-05-03 河南师范大学 一种高浸润性锂离子电池隔膜的制备方法
CN105111482A (zh) * 2015-08-03 2015-12-02 铜陵市胜达电子科技有限责任公司 一种膜电容器用掺混乙炔黑的聚丙烯基复合介电薄膜及其制备方法
JP6380307B2 (ja) * 2015-09-09 2018-08-29 トヨタ自動車株式会社 電池用セパレータ
CN105336960B (zh) * 2015-10-15 2018-04-27 哈尔滨工业大学 一种用于锂离子电池电极材料的离子聚合物型水性粘结剂的制备方法
CN105742678A (zh) * 2016-04-07 2016-07-06 香港科技大学 应用于液流电池的聚合物膜及其制备方法和应用
CN105789538A (zh) * 2016-04-20 2016-07-20 宁德时代新能源科技股份有限公司 一种隔膜,其制备方法及含有该隔膜的二次电池
CN107346815A (zh) * 2016-05-06 2017-11-14 成都中科来方能源科技股份有限公司 锌锂锰水体系二次电池及其制备方法
CN107623098A (zh) * 2016-07-15 2018-01-23 万向二三股份公司 一种锂离子电池安全涂层、其应用及锂离子电池
EP3487946A4 (en) * 2016-07-22 2020-03-18 Celgard LLC IMPROVED COATINGS, COATED SEPARATORS, BATTERIES AND RELATED METHODS
JP6950528B2 (ja) * 2016-08-05 2021-10-13 東レ株式会社 共重合体並びにそれを用いた分離膜、医療デバイス及び血液浄化器
WO2018043209A1 (ja) * 2016-08-31 2018-03-08 東レ株式会社 医療用材料、医療用分離膜、および血液浄化器
CN106519742B (zh) * 2016-11-01 2018-11-16 旭成(福建)科技股份有限公司 一种阻燃陶瓷改性浆料及涂覆该浆料的锂离子电池隔膜
CN108075088B (zh) * 2016-11-10 2021-01-22 苏州高通新材料科技有限公司 含磺化石墨烯锂盐的锂电池隔膜、其制备方法及应用
JP6994151B2 (ja) * 2017-09-22 2022-02-04 トヨタ自動車株式会社 非水電解液二次電池用セパレータ
CN107829302B (zh) * 2017-11-10 2018-10-19 青岛大学 一种紫外光辐照制备改性聚烯烃非织造隔膜的方法
CN107887555B (zh) * 2017-11-10 2018-10-16 青岛大学 一种辉光放电制备改性聚烯烃非织造隔膜的方法
CN110350127B (zh) * 2018-04-04 2021-12-21 宁德时代新能源科技股份有限公司 一种隔离膜及电化学储能装置
CN108565396A (zh) * 2018-05-29 2018-09-21 溧阳天目先导电池材料科技有限公司 一种预锂化膜及其制备方法和应用
CN108917992B (zh) * 2018-07-10 2021-01-01 浙江欧仁新材料有限公司 基于柔性压敏元件的拉伸传感器
CN108923010B (zh) * 2018-07-10 2021-10-22 福建师范大学 涂覆三价阳离子磷酸盐的聚合物膜的制备方法
WO2020022848A1 (ko) * 2018-07-26 2020-01-30 주식회사 엘지화학 가교 폴리올레핀 분리막 및 이의 제조방법
CN109382291A (zh) * 2018-09-07 2019-02-26 珠海恩捷新材料科技有限公司 一种油性锂电池隔膜涂布处理方法和装置
CN109301319B (zh) * 2018-09-17 2019-07-16 惠州市典名新能源科技有限公司 一种凝胶聚合物电解质以及包括其的锂二次电池
KR102191140B1 (ko) * 2018-09-28 2020-12-16 더블유스코프코리아 주식회사 이온교환막 및 그 제조방법
EP4064443A3 (en) * 2018-10-11 2022-11-30 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
CN109742293B (zh) * 2018-12-18 2021-11-16 乐凯胶片股份有限公司 一种具有低含水量的锂电池涂层隔膜及其制备方法
KR102626778B1 (ko) * 2019-01-11 2024-01-17 누리온 케미칼즈 인터내셔널 비.브이. 방오성 코팅
CN109755024A (zh) * 2019-01-28 2019-05-14 江苏法拉电子有限公司 一种高电荷储存能力的铝电解电容器
KR102241065B1 (ko) * 2019-03-08 2021-04-19 더블유스코프코리아 주식회사 음이온 교환막 및 그 제조방법
CN110112348B (zh) * 2019-03-19 2021-09-28 上海恩捷新材料科技有限公司 电池涂布膜浆料、电池隔膜、二次电池及其制备方法
CN110052177B (zh) * 2019-04-04 2021-04-30 天津工业大学 一种中空微球增强高通量聚丙烯腈过滤膜的制备方法
KR102567596B1 (ko) * 2019-06-19 2023-08-17 주식회사 엘지에너지솔루션 이차전지용 코팅 분리막 및 이의 제조방법
CN112023723A (zh) * 2019-07-01 2020-12-04 江苏久吾高科技股份有限公司 一种中空纤维膜及其制造方法
CN111192992B (zh) * 2020-01-20 2022-04-22 武汉中兴创新材料技术有限公司 一种超薄涂层隔膜的制备方法和装置
CN111599969B (zh) * 2020-05-29 2023-04-11 东莞市溢兴新材料科技有限公司 一种pvdf涂覆的锂离子电池隔膜及其制备方法
KR20220021137A (ko) * 2020-08-13 2022-02-22 주식회사 엘지에너지솔루션 PVAc-PMA 공중합체를 포함하는 전지용 고접착 분리막 및 이를 포함하는 이차전지
CN112271403A (zh) * 2020-10-19 2021-01-26 深圳市鼎泰祥新能源科技有限公司 一种聚合物涂覆隔膜及其制备方法和锂离子电池
CN114534520B (zh) * 2020-12-02 2024-03-22 何谷雨 一种耐高温改性滤膜
CN112540488B (zh) * 2020-12-24 2023-04-04 清华大学深圳国际研究生院 一种可任意裁剪的电致变色器件及应用
CN115044139A (zh) * 2022-07-19 2022-09-13 宁夏清研高分子新材料有限公司 一种tpx聚合物材料及其制备方法和应用
CN115144448B (zh) * 2022-08-02 2023-11-07 清华大学 基于热收缩工艺的前列腺癌特异性抗原传感器、制备方法及应用
CN116694148B (zh) * 2023-07-10 2023-12-19 江西昊泽光学膜科技有限公司 一种锂电池电极用镀铜pp膜底涂剂及预处理制备工艺
CN118040232A (zh) * 2024-03-19 2024-05-14 肇庆理士电源技术有限公司 一种正极用材料、干法制备方法及其在锂电池中的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186752A (ja) * 1988-01-18 1989-07-26 Toray Ind Inc 親水化されたポリオレフィン微孔性膜及び電池用セパレータ
US5266391A (en) * 1992-12-18 1993-11-30 Hoechst Celanese Corporation Composite porous membranes
US20020110732A1 (en) * 2000-12-20 2002-08-15 Polystor Corporation Battery cell fabrication process
CN1404170A (zh) * 2001-08-23 2003-03-19 北京有色金属研究总院 电池用强化隔膜材料及其制造方法
CN1574419A (zh) * 2003-05-28 2005-02-02 思凯德公司 锂聚合物电池的电池隔板
CN101226994A (zh) * 2007-12-21 2008-07-23 成都中科来方能源科技有限公司 无纺布增强微孔聚合物隔膜及其制备方法和用途
CN101250276A (zh) * 2008-03-25 2008-08-27 深圳市富易达电子科技有限公司 聚合物锂离子电池用改性隔膜的制备方法
CN101434708A (zh) * 2008-12-19 2009-05-20 成都中科来方能源科技有限公司 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725094B2 (ja) 1991-07-30 1998-03-09 東燃化学株式会社 分離膜、その製造方法及び分離方法
RU2154817C2 (ru) * 1997-10-01 2000-08-20 Ельяшевич Галина Казимировна Электропроводящая композиционная полимерная мембрана
KR100296720B1 (ko) 1998-03-16 2001-10-25 장용균 전지격막용다공성폴리올레핀필름및그의제조방법
US6193077B1 (en) * 1999-02-08 2001-02-27 Osmonics, Inc. Non-cracking hydrophilic polyethersulfone membranes
DE60236696D1 (de) * 2001-04-27 2010-07-22 Millipore Corp Neue beschichtete Membranen und andere Artikel
DE10140131B4 (de) * 2001-08-16 2007-05-24 Wacker Polymer Systems Gmbh & Co. Kg Silan-modifizierte Polyvinylacetale
KR20050050615A (ko) * 2002-04-23 2005-05-31 알자 코포레이션 남용될 가능성이 감소된 경피용 진통제 시스템
KR100477885B1 (ko) 2002-07-08 2005-03-18 베스 주식회사 리튬이온 고분자 전해질 및 이를 포함하는 전지의 제조방법
JP2004247292A (ja) * 2003-01-21 2004-09-02 Hitachi Chem Co Ltd バインダー樹脂、合剤スラリー、非水電解液系二次電池の電極及び非水電解液系二次電池
JP4792688B2 (ja) * 2003-01-24 2011-10-12 住友化学株式会社 非水電解液二次電池用セパレータの製造方法
JP2006057019A (ja) * 2004-08-20 2006-03-02 Nippon Synthetic Chem Ind Co Ltd:The 水性アクリル共重合エマルジョン、再分散性アクリル共重合エマルジョン粉末、およびそれらの製造方法
KR100775310B1 (ko) * 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
EP1930156B1 (en) * 2005-09-28 2013-03-27 Toray Battery Separator Film Co., Ltd. Process for producing microporous polyethylene film and separator for cell
US8932748B2 (en) * 2005-10-24 2015-01-13 Toray Battery Separator Film Co., Ltd Multi-layer, microporous polyolefin membrane, its production method, and battery separator
CN102642345A (zh) * 2007-01-30 2012-08-22 旭化成电子材料株式会社 多层多孔膜及其制造方法
JP5448345B2 (ja) * 2007-01-30 2014-03-19 旭化成イーマテリアルズ株式会社 多層多孔膜及びその製造方法
KR100754746B1 (ko) * 2007-03-07 2007-09-03 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186752A (ja) * 1988-01-18 1989-07-26 Toray Ind Inc 親水化されたポリオレフィン微孔性膜及び電池用セパレータ
US5266391A (en) * 1992-12-18 1993-11-30 Hoechst Celanese Corporation Composite porous membranes
US20020110732A1 (en) * 2000-12-20 2002-08-15 Polystor Corporation Battery cell fabrication process
CN1404170A (zh) * 2001-08-23 2003-03-19 北京有色金属研究总院 电池用强化隔膜材料及其制造方法
CN1574419A (zh) * 2003-05-28 2005-02-02 思凯德公司 锂聚合物电池的电池隔板
CN101226994A (zh) * 2007-12-21 2008-07-23 成都中科来方能源科技有限公司 无纺布增强微孔聚合物隔膜及其制备方法和用途
CN101250276A (zh) * 2008-03-25 2008-08-27 深圳市富易达电子科技有限公司 聚合物锂离子电池用改性隔膜的制备方法
CN101434708A (zh) * 2008-12-19 2009-05-20 成都中科来方能源科技有限公司 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527476A (ja) * 2011-07-18 2014-10-16 セルガード エルエルシー 表面修飾ポリマー材料及びこれを備えた電池セパレータ
JP2017222864A (ja) * 2011-07-18 2017-12-21 セルガード エルエルシー 表面修飾ポリマー材料及びこれを備えた電池セパレータ
JP2013197100A (ja) * 2012-03-16 2013-09-30 Samsung Sdi Co Ltd リチウム2次電池用セパレータ、2次電池、および2次電池の製造方法
WO2015010304A1 (en) * 2013-07-25 2015-01-29 Essilor International (Compagnie Generale D'optique) Hybrid epoxy-acrylic with zirconium oxide nanocomposite for curable coatings
CN105593294A (zh) * 2013-07-25 2016-05-18 埃西勒国际通用光学公司 用于可固化涂层的混合环氧-丙烯酸与氧化锆纳米复合材料
US9638834B2 (en) 2013-07-25 2017-05-02 Essilor International (Compagnie Generale D'optique) Hybrid epoxy-acrylic with zirconium oxide nanocomposite for curable coatings

Also Published As

Publication number Publication date
DE112009002032T5 (de) 2012-07-26
RU2470700C2 (ru) 2012-12-27
BRPI0923158A2 (pt) 2016-02-10
CN101434708B (zh) 2012-01-11
CN101434708A (zh) 2009-05-20
JP2012510543A (ja) 2012-05-10
KR101298273B1 (ko) 2013-08-22
KR20110070874A (ko) 2011-06-24
US20110229768A1 (en) 2011-09-22
US8808925B2 (en) 2014-08-19
JP5457460B2 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
WO2010069189A1 (zh) 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途
JP5226704B2 (ja) 不織布補強微孔ポリマー膜、並びにその製造方法および用途
JP6148331B2 (ja) 水系コーティング液を用いたリチウム二次電池用有/無機複合コーティング多孔性分離膜の製造方法
TWI539647B (zh) An aqueous composition for modifying a separator of a lithium ion battery, and a separator containing the same
US8389587B2 (en) Microporous polymer separators for lithium ion batteries and method for producing the same
JP6334071B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2017082261A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2023155604A1 (zh) 复合隔膜及电化学装置
WO2022141508A1 (zh) 一种电化学装置和电子装置
JPWO2019176290A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2019054310A1 (ja) 非水系二次電池用セパレータ、および非水系二次電池
JP7054996B2 (ja) 非水系二次電池用セパレータ、非水系二次電池および非水系二次電池用セパレータの製造方法
JP7054997B2 (ja) 非水系二次電池用セパレータ、非水系二次電池、非水系二次電池用セパレータの製造方法、および、非水系二次電池用コーティング組成物
JP6779157B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP6890019B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2018147656A (ja) 非水系二次電池用セパレータ及び非水系二次電池
TWI511352B (zh) Ion polymer film material and its preparation method and lithium secondary battery
JP2016181439A (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2019029315A (ja) 非水系二次電池用セパレータ、非水系二次電池
JP7482935B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7416522B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
TW200939551A (en) Non-woven-fabric enhancement micro-pore polymeric membrane and the preparation method
WO2021241689A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2022041296A (ja) 非水系二次電池用セパレータ及び非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 310/MUMNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117008692

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120090020321

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13129697

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011538821

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011106298

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 09832871

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0923158

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0923158

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110620