US20210009718A1 - FLT3L-Fc FUSION PROTEINS AND METHODS OF USE - Google Patents

FLT3L-Fc FUSION PROTEINS AND METHODS OF USE Download PDF

Info

Publication number
US20210009718A1
US20210009718A1 US16/909,521 US202016909521A US2021009718A1 US 20210009718 A1 US20210009718 A1 US 20210009718A1 US 202016909521 A US202016909521 A US 202016909521A US 2021009718 A1 US2021009718 A1 US 2021009718A1
Authority
US
United States
Prior art keywords
fusion protein
flt3l
human
cell
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/909,521
Other languages
English (en)
Inventor
Alexandre Ambrogelly
Manuel Baca
Brian A. Carr
Hon Man Hamlet Chu
Magdeleine S. Hung
Manu Kanwar
Michelle R. Kuhne
Douglas S. Rehder
Matthew R. Schenauer
Nicholas S. Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gilead Sciences Inc
Original Assignee
Gilead Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gilead Sciences Inc filed Critical Gilead Sciences Inc
Priority to US16/909,521 priority Critical patent/US20210009718A1/en
Assigned to GILEAD SCIENCES, INC. reassignment GILEAD SCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARR, BRIAN A., KUHNE, MICHELLE R., SCHENAUER, MATTHEW R., BACA, MANUEL, AMBROGELLY, ALEXANDRE, HUNG, Magdeleine S., REHDER, Douglas S., KANWAR, Manu, CHU, Hon Man Hamlet, WILSON, NICHOLAS S.
Priority to US16/951,458 priority patent/US11124582B2/en
Publication of US20210009718A1 publication Critical patent/US20210009718A1/en
Priority to US17/405,124 priority patent/US20220049021A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/193Colony stimulating factors [CSF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/05Immunological preparations stimulating the reticulo-endothelial system, e.g. against cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4705Regulators; Modulating activity stimulating, promoting or activating activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/53Colony-stimulating factor [CSF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/122Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells for inducing tolerance or supression of immune responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/26Flt-3 ligand (CD135L, flk-2 ligand)

Definitions

  • DCs Dendritic cells
  • Fms related tyrosine kinase 3 ligand Fms related tyrosine kinase 3 ligand (FLT3LG, FLT3L, NCBI Gene ID: 2323) selectively expands DCs from bone marrow precursors, as well as promotes proliferation of terminally differentiated DCs in lymphoid and tumor tissues.
  • Soluble recombinant human protein forms of FLT3L have a serum half-life in humans of about 12-28 hours after five consecutive subcutaneous (SC) doses, requiring daily administration to the patient over a 28-day therapeutic cycle.
  • SC subcutaneous
  • Daily administration is undesirable, for both the patient and clinician, and is dose scheduling that does not align with other approved immune-oncology therapeutic agents, which is usually once every 2 to 3 weeks. Longer acting antiviral therapeutic agents are also considered desirable.
  • FLT3L-Fc fusion proteins that have an extended serum half-life in a human subject, relative to soluble FLT3L.
  • fusion proteins comprising: a human fms related tyrosine kinase 3 ligand (FLT3L) extracellular domain operably linked to an immunoglobulin fragment crystallizable region (Fc region), wherein: at least 5 amino acids are truncated from the C-terminus of the FLT3L extracellular domain; and/or the Fc region does not comprise a hinge region.
  • the FLT3L extracellular domain is derived from a human FLT3L extracellular domain.
  • the FLT3L extracellular domain is a human FLT3L extracellular domain.
  • the fusion protein is capable of binding to human FLT3.
  • the FLT3L extracellular domain is from FLT3L isoform 1 or from FLT3L isoform 2. In some embodiments, at least 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acids are truncated from the C-terminus of the FLT3L extracellular domain.
  • the FLT3L extracellular domain does not comprise (e.g., is deleted, removed or excluded) the amino acid sequence PTAPQ (SEQ ID NO:85), APTAPQ (SEQ ID NO:86), TAPTAPQ (SEQ ID NO:87), ATAPTAPQ (SEQ ID NO:88), EATAPTAPQ (SEQ ID NO:89), or LEATAPTAPQ (SEQ ID NO:90), PTAPQPP (SEQ ID NO:91), APTAPQPP (SEQ ID NO:92), TAPTAPQPP (SEQ ID NO:93), ATAPTAPQPP (SEQ ID NO:94), EATAPTAPQPP (SEQ ID NO:95), or LEATAPTAPQPP (SEQ ID NO:96).
  • PTAPQ amino acid sequence
  • APTAPQ SEQ ID NO:86
  • TAPTAPQ SEQ ID NO:87
  • ATAPTAPQ SEQ ID NO:88
  • EATAPTAPQ SEQ ID NO:89
  • the FLT3L extracellular domain comprises an N-terminal signal peptide.
  • the FLT3L extracellular domain comprises one or more of the following amino acid substitutions: H8Y; K84E; S102A; and/or S125A; wherein the amino acid residue positions are with reference to SEQ ID NOs: 1-18, 21-27 or 71-81.
  • one or both of serine residues at positions 102 and 125 are substituted to alanine, wherein the amino acid residue positions are with reference to SEQ ID NOs: 1-18, 21-27 or 71-81.
  • the Fc region is from a human IgG1, IgG2, IgG3 or IgG4.
  • the Fc region is from a human IgG1 or IgG4.
  • the Fc region comprises a human IgG1 isotype and comprises one or more amino acid substitutions in the Fc region at a residue position selected from the group consisting of: N297A, N297G, N297Q, N297G, D265A, L234A, L235A, C226S, C229S, P238S, E233P, L234V, P238A, A327Q, A327G, P329A, P329G, K322A, L234F, L235E, P331S, T394D, A330L, M252Y, S254T, T256E, M428L, N434S, T366W, T366S, L368A, Y407V, and any combination thereof, wherein the numbering of the residues is according to EU numbering.
  • the Fc region comprises a human IgG1 isotype and comprises one or more amino acid substitutions in the Fc region at a residue position selected from the group consisting of: L234A, L234V, L234F, L235A, L235E, P331S, and any combination thereof, wherein the numbering of the residues is according to EU numbering.
  • the Fc region comprises a human IgG4 isotype and comprises one or more amino acid substitutions in the Fc region at a residue position selected from the group consisting of: E233P, F234V, F234A, L235A, G237A, E318A, S228P, L235E, T394D, M252Y, S254T, T256E, N297A, N297G, N297Q, T366W, T366S, L368A, Y407V, M428L, N434S, and any combination thereof, wherein the numbering of the residues is according to EU numbering.
  • the Fc region comprises a human IgG4 isotype and comprises one or more amino acid substitutions in the Fc region at a residue position selected from the group consisting of: F234V, F234A, L235A, L235E, S228P, and any combination thereof, wherein the numbering of the residues is according to EU numbering.
  • the Fc region comprises the following amino acids at the indicated positions (EU index numbering): (i) Tyrosine at position 252, threonine at position 254 and glutamic acid at position 256 (YTE); or (ii) Leucine at position 428 and serine at position 434 (LS).
  • the FLT3L extracellular domain comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 71-81.
  • the Fc region comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 103-107.
  • the fusion protein comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-18 and 21-27.
  • the Fc region is from a human IgG1 and does not comprise a hinge region.
  • the C-terminus of the FLT3L extracellular domain is not truncated.
  • the fusion protein comprises or consists of an amino acid sequence of SEQ ID NO:1.
  • the fusion protein comprises or consists of an amino acid sequence of SEQ ID NO:9.
  • the fusion protein comprises or consists of an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 2, 5, 7, 9, 10, 13, 15, 22, 23 and 24, or comprises or consists of an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 2, 5, 7, 9, 10, 13, 15, 22, 23 and 24, wherein the Fc region is derived from a human IgG1 isotype and does not comprise a hinge region, e.g., does not the amino acid sequence EPKSCDKTHTCPPCP (SEQ ID NO:101) or EPKSCDKTHTCPPCPAPELL (SEQ ID NO:110).
  • the Fc region is from a human IgG4 and at least 5 amino acids are truncated from the C-terminus of the FLT3L extracellular domain. In some embodiments, the Fc region comprises a hinge region. In some embodiments, the fusion protein comprises or consists of an amino acid sequence of SEQ ID NO:6. In some embodiments, the fusion protein comprises or consists of an amino acid sequence of SEQ ID NO:14.
  • the fusion protein comprises or consists of an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 4, 6, 8, 11, 12, 14, 16, 17, 18, 25 and 26, or comprises or consists of an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 4, 6, 8, 11, 12, 14, 16, 17, 18, 25 and 26, wherein the Fc region is derived from a human IgG4 isotype and wherein at least 5 amino acids are truncated from the C-terminus of the FLT3L extracellular domain, e.g., wherein the FLT3L extracellular domain does not comprise the amino acid sequence PTAPQ (SEQ ID NO:85).
  • a fusion protein comprising an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 19-20.
  • fusion proteins comprising: (i) a FLT3L-Fc fusion protein comprising an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-27; and (ii) a second polypeptide.
  • the second polypeptide comprises a targeting moiety or domain, a growth factor, a cytokine, a chemokine or a TNF superfamily (TNFSF) member.
  • the second polypeptide is N-terminal to the FLT3L extracellular domain. In some embodiments, the second polypeptide is C-terminal to the Fc region. In some embodiments, the second polypeptide is between the FLT3L extracellular domain and the Fc region.
  • the targeting moiety domain binds to a target protein or antigen identified in Table B, below, such as without limitation CD19, MS4A1 (CD20), CD22, IL2RA (CD25), CD27, TNFRSF8 (CD30), CD33, CD37, CD38, CD40, CD44, CD48, CD52, CD70, NTSE (CD73), ENTPD1 (CD39), CD74, CD79b, CD80, CD86, IL3RA (CD123), PROM1 (CD133), CD137, SDC1 (CD138), alpha fetoprotein (AFP), c-Met; c-Kit; C-type lectin domain family 12 member A (CLEC12A, CLL1, CD371); C-type lectin domain containing 9A (CLEC9A, CD370); cadherin 3 (CDH3, p-cadherin, PCAD); carbonic anhydrase 6 (CA6); carbonic anhydrase 9 (CA9, CAIX
  • a homodimer comprising two (i.e., first and second) identical FLT3L-Fc fusion proteins, as described above and herein.
  • a heterodimer comprising two (i.e., first and second) non-identical FLT3L-Fc fusion proteins, as described above and herein.
  • the FLT3L domain is the same and the Fc region is different between the first and second FLT3L-Fc fusion proteins.
  • heterodimers comprising a FLT3L-Fc fusion protein, as described above and herein, and a second fusion protein comprising a targeting moiety domain fused to a second Fc region.
  • the targeting moiety domain binds to a target protein or antigen identified in Table B, below, such as without limitation CD19, MS4A1 (CD20), CD22, IL2RA (CD25), CD27, TNFRSF8 (CD30), CD33, CD37, CD38, CD40, CD44, CD48, CD52, CD70, NT5E (CD73), ENTPD1 (CD39), CD74, CD79b, CD80, CD86, IL3RA (CD123), PROM1 (CD133), CD137, SDC1 (CD138), alpha fetoprotein (AFP), c-Met; c-Kit; C-type lectin domain family 12 member A (CLEC12A, CLL1, CD371); C-type lectin domain
  • the targeting moiety domain comprises an antigen-binding antibody fragment.
  • the antibody fragment comprises a Fab or a single-chain variable fragment (scFv).
  • the targeting moiety domain comprises a non-immunoglobulin binding moiety or an antibody mimetic protein.
  • the non-immunoglobulin antigen-binding domain or antibody mimetic protein is selected from the group consisting of adnectins, affibody molecules, affilins, affimers, affitins, alphabodies, anticalins, peptide aptamers, armadillo repeat proteins (ARMs), atrimers, avimers, designed ankyrin repeat proteins (DARPins®), fynomers, knottins, Kunitz domain peptides, monobodies, and nanoCLAMPs.
  • both the first Fc region and the second Fc region do not comprise a hinge region.
  • the heterodimer is stabilized by an interaction between the first Fc region and the second Fc region.
  • the heterodimer comprises a heterodimeric human IgG1 or human IgG4.
  • the heterodimeric human IgG1 or human IgG4 comprises a first Fc region and a second Fc region, comprising the following amino acids at the indicated positions (EU numbering): (i) the first Fc region comprises a tryptophan at position 366 (T366W); and the second Fc region comprises a serine at position 366 (T366S), an alanine at position 368 (L368A) and a valine at position 407 (Y407V); (ii) the first Fc region comprises a serine at position 366 (T366S), an alanine at position 368 (L368A) and a valine at position 407 (Y407V); and the second Fc region comprises a tryptophan at position 3
  • a conjugate comprising: (i) a FLT3L-Fc fusion protein, as described above and herein, or a homodimer or heterodimer of such FLT3L-Fc protein; attached to a therapeutic agent or a detectable label.
  • the therapeutic agent is covalently linked.
  • the therapeutic agent is a small organic compound.
  • the therapeutic agent is an agonist or activator of a toll-like receptor (TLR) or a stimulator of interferon genes (STING) receptor.
  • the TLR agonist or activator is selected from the group consisting of a TLR2 agonist, a TLR3 agonist, a TLR4 agonist, a TLR5 agonist, a TLR7 agonist, a TLR8 agonist and a TLR9 agonist.
  • the TLR7 agonist is selected from the group consisting of GS 9620, DS-0509, LHC-165 and TMX-101 (imiquimod), and/or wherein the TLR8 agonist is selected from the group consisting of GS-9688 and NKTR-262 (dual TLR7/TLR8 agonist).
  • the STING receptor agonist or activator is selected from the group consisting of ADU-S100 (MIW-815), SB-11285, MK-1454, SR-8291, AdVCA0848, GSK-532, SYN-STING, MSA-1, SR-8291, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), cyclic-GAMP (cGAMP) and cyclic-di-AMP.
  • the therapeutic agents is an immune checkpoint inhibitor.
  • the immune checkpoint inhibitor is a small molecule inhibitor of CD274 (PDL1, PD-L1), programmed cell death 1 (PDCD1, PD1, PD-1) or CTLA4.
  • the small molecule inhibitor of CD274 or PDCD1 is selected from the group consisting of GS-4224, GS-4416, INCB086550 and MAX10181.
  • the small molecule inhibitor of CTLA4 is BPI-002.
  • polynucleotides encoding a FLT3L-Fc fusion protein, as described above and herein.
  • the polynucleotide is selected from the group consisting of DNA, cDNA, RNA or mRNA.
  • the polynucleotide comprises a nucleic acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, identical to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 28-70.
  • expression cassettes comprising one or more regulatory sequences operably linked to a FLT3L-Fc-encoding polynucleotide, as described herein.
  • vectors comprising a polynucleotide encoding the FLT3L-Fc fusion proteins described herein, or an expression cassette comprising such FLT3L-Fc-encoding polynucleotide.
  • the vector is a plasmid vector or a viral vector.
  • the viral vector comprises an oncolytic viral vector.
  • the viral vector comprises a DNA virus or a RNA virus.
  • the viral vector is from a viral family selected from the group consisting of Adenoviridae (e.g., Adenovirus), Arenaviridae (e.g., lymphocytic choriomeningitis mammarenavirus, Cali mammarenavirus (a.k.a., Pichinde mammarenavirus), Poxviridae (e.g., Vaccinia virus), Herpesviridae (e.g., Herpesvirus, e.g., HSV-1), Parvoviridae (e.g., Parvovirus H1), Reoviridae (e.g., Reovirus), Picornaviridae (e.g., Coxsackievirus, Seneca Valley Virus, Poliovirus), Paramyxoviridae (e.g., Measles virus, Newcastle disease virus (NDV)), Rhabdoviridae (e.g., Vesicular stomatitis virus
  • a lipoplex such as a lipid nanoparticle (LNP), comprising a polynucleotide encoding the FLT3L-Fc fusion proteins described herein, or an expression cassette or vector comprising such FLT3L-Fc-encoding polynucleotide.
  • LNP lipid nanoparticle
  • a cell or population of cells comprising a polynucleotide encoding the FLT3L-Fc fusion proteins described herein, or an expression cassette or vector comprising such FLT3L-Fc-encoding polynucleotide, wherein the cell expresses the FLT3L-Fc fusion protein, or homodimer or heterodimer comprising such FLT3L-Fc fusion protein.
  • the cell or population of cells is a eukaryotic cell.
  • the cell or population of cells comprises a mammalian cell, an insect cell, a plant cell or a yeast cell.
  • the mammalian cell is a Chinese Hamster Ovary (CHO) cell or a human cell.
  • the human cell is a human embryonic kidney cell.
  • the cell predominantly sialylates N-linked and/or O-linked glycosylation sites in the fusion protein. In some embodiments, at least 50%, at least 60%, at least 70%, least 80%, at least 85%, at least 90%, or more, N-linked and/or O-linked glycosylation sites in the fusion protein are sialylated.
  • the sialylated N-linked and/or O-linked glycosylation sites in the fusion protein comprise from 2 to 7 sialic acid residues, e.g., from 3 to 6 sialic acid residues, e.g., from 4 to 5 sialic acid residues.
  • compositions comprising a FLT3L-Fc fusion protein, as described herein, or a fusion protein, homodimer, heterodimer or conjugate comprising such FLT3L-Fc fusion protein; a polynucleotide encoding the FLT3L-Fc fusion proteins described herein, or an expression cassette, vector or lipoplex, such as an LNP, comprising such FLT3L-Fc-encoding polynucleotide, and a pharmaceutically acceptable carrier.
  • the composition comprises an aqueous formulation.
  • the composition comprises the FLT3L-Fc fusion protein, or a fusion protein, homodimer, heterodimer or conjugate comprising such FLT3L-Fc fusion protein at a concentration in the range of about 1 mg/ml to about 2 mg/ml, 3 mg/ml, 4 mg/ml, 5 mg/ml, 6 mg/ml, 7 mg/ml, 8 mg/ml, 9 mg/ml, 10 mg/ml, 11 mg/ml, 12 mg/ml, 13 mg/ml, 14 mg/ml, 15 mg/ml, 16 mg/ml, 17 mg/ml, 18 mg/ml, 19 mg/ml or 20 mg/ml.
  • the composition is lyophilized.
  • the composition further comprises one or more additional therapeutic agents, e.g., second, third or fourth therapeutic agents.
  • the methods comprise contacting the cell or population of cells with an effective amount of a FLT3L-Fc fusion protein, as described herein, or a fusion protein, homodimer, heterodimer, conjugate or pharmaceutical composition comprising such FLT3L-Fc fusion protein; a polynucleotide encoding a FLT3L-Fc fusion protein described herein, or an expression cassette, vector, lipoplex, such as an LNP, or pharmaceutical composition comprising such FLT3L-Fc-encoding polynucleotide.
  • the cell or population of cells that express FLT3 comprise dendritic cells (e.g., cDC1 cells and/or cDC2 cells), monocyte-derived dendritic cells (moDCs), and/or progenitor cells thereof.
  • the cell or population of cells that express FLT3 comprise hematopoietic progenitor cells.
  • the hematopoietic progenitor cells are selected from the group consisting of: Common Lymphoid Progenitors (CLPs), Early Progenitors with Lymphoid and Myeloid potential (EPLMs), granulocyte-monocyte (GM) progenitors (GMP), monocyte-derived dendritic cells (moDCs) progenitors, and early multi-potent progenitors (MPP) within the Lineage-kit+Sca1 (LSK) compartment.
  • CLPs Common Lymphoid Progenitors
  • EPLMs Early Progenitors with Lymphoid and Myeloid potential
  • GM granulocyte-monocyte
  • GMPP monocyte-derived dendritic cells
  • MPP early multi-potent progenitors
  • the cell or population of cells is contacted in vitro or in vivo.
  • the cell or population of cells proliferate or are expanded within a solid tumor.
  • conventional dendritic cells e.g., cDC1 and/or cDC2 are expanded or induced to proliferate.
  • cDC1 dendritic cells e.g., positive for surface expression of X-C motif chemokine receptor 1 (XCR1), thrombomodulin (THBD, CD141), and C-type lectin domain containing 9A (CLEC9A) are expanded or induced to proliferate.
  • dendritic cells expressing C-C motif chemokine receptor 5 (CCR5, CD195) and/or X-C motif chemokine receptor 1 (XCR1) on their cell surface are expanded or induced to proliferate.
  • dendritic cells expressing one or more cell surface proteins selected from the group consisting of XCR1, cell adhesion molecule 1 (CADM1), C-type lectin domain containing 9A (CLEC9A, CD370), and thrombomodulin (THBD) on their cell surface are expanded or induced to proliferate.
  • dendritic cells expressing one or more cell surface proteins selected from the group consisting of CD1A, CD1C, CD1E, signal regulatory protein alpha (SIRPA; CD172A), CD207 and Fc fragment of IgE receptor Ia (FCER1A) on their cell surface are expanded or induced to proliferate.
  • dendritic cells expressing one or more proteins selected from the group consisting of basic leucine zipper ATF-like transcription factor 3 (BATF3) and interferon regulatory factor 8 (IRF8) on their cell surface are expanded or induced to proliferate.
  • dendritic cells expressing one or more proteins selected from the group consisting of BATF3, IRF8, THBD, CLEC9A and XCR1 on their cell surface are expanded or induced to proliferate.
  • cDC2 dendritic cells e.g., positive for surface expression of CDlc molecule (BDCA) are expanded or induced to proliferate.
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide or the pharmaceutical composition is administered to a subject or patient, e.g., a mammal, e.g., a human.
  • HSCs hematopoietic stem cells
  • MSPCs mesenchymal lineage precursor or stem cells
  • a FLT3L-Fc fusion protein as described herein, or a fusion protein, homodimer, heterodimer, conjugate or pharmaceutical composition comprising such FLT3L-Fc fusion protein; a polynucleotide encoding a FLT3L-Fc fusion protein described herein, or an expression cassette, vector, or lipoplex, such as an LNP, comprising such FLT3L-Fc-encoding polynucleotide such that HSCs having the phenotype CD34+ are expanded.
  • MPSCs mesenchymal lineage precursor or stem cells
  • the HSCs are further cultured in the presence of at least one histone deacetylase inhibitor (HDACi).
  • HDACi histone deacetylase inhibitor
  • the HDACi is selected from the group consisting of valproic acid (VPA), trichostatin A (TSA), DLS3, MS275, and SAHA.
  • the HSCs have the phenotype CD34+, CD90+ or CD34+, CD45RA ⁇ , CD49f+ and are expanded at least 5-fold, at least 10-fold, at least 20-fold, or at least 40-fold.
  • the methods further comprise isolating cells having the phenotype the phenotype CD34+, CD90+ or CD34+, CD45RA ⁇ , CD49f+ to provide an enriched population of cells having the phenotype CD34+, CD90+ or CD34+, CD45RA ⁇ , CD49f+.
  • methods of treating or preventing a viral infection are also provided are methods for inhibiting the replication of a virus, treating a viral infection or delaying the onset of symptoms of a viral infection in a subject in need thereof.
  • methods of enhancing, improving, and/or increasing the response to an anticancer therapy or an antiviral therapy in a subject in need thereof Further provided are methods of promoting, increasing, supplementing and/or boosting the immune response induced by the vaccine. Further provided are methods of enhancing, improving, and/or increasing the response to an immune checkpoint protein in a subject in need thereof.
  • the methods comprise administering to the subject effective amount of a FLT3L-Fc fusion protein, as described herein, or a fusion protein, homodimer, heterodimer, conjugate or pharmaceutical composition comprising such FLT3L-Fc fusion protein; a polynucleotide encoding a FLT3L-Fc fusion protein described herein, or an expression cassette, vector, lipoplex, such as an LNP, or pharmaceutical composition comprising such FLT3L-Fc-encoding polynucleotide.
  • one or more additional therapeutic agents e.g., second, third and/or fourth therapeutic agents, are co-administered.
  • the one or more additional therapeutic agents comprises one or more of AGEN1884 (zalifrelimab), AGEN1181, AGEN2034 (balstilimab), AGEN1307, AGEN2373, AGEN1223 and GS-1423 (AGEN1423; see WO2019/173692).
  • the one or more additional therapeutic agents comprises a vaccine.
  • the vaccine is selected from the group consisting of an antiviral vaccine, an antibacterial vaccine and an anticancer vaccine (e.g., a neoantigen vaccine).
  • the vaccine comprises an antiviral vaccine against a virus selected from the group consisting of hepatitis A virus (HAV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), cytomegalovirus (CMV), a herpes simplex virus (HSV), Epstein-Barr virus (EBV), human orthopneumovirus or human respiratory syncytial virus (RSV), human papillomavirus (HPV), varicella-zoster virus, measles virus, mumps virus, poliovirus vaccine, influenza virus, paramyxovirus, rotavirus, Zika virus, Dengue virus, Ebola virus and coronavirus.
  • a virus selected from the group consisting of hepatitis A virus (HAV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), cytomegalovirus (CMV), a herpes simplex virus (HSV), Epstein-Barr virus (EBV), human orthop
  • the vaccine comprises an antibacterial vaccine against a bacterium selected from the group consisting of Mycobacterium tuberculosis , pertussis, tetanus, diphtheria, meningococcus, pneumococcus, Haemophilus influenza , cholera, typhoid, and anthrax.
  • the one or more additional therapeutic agents comprises an oncolytic viral vector.
  • the oncolytic viral vector comprises a DNA virus or a RNA virus.
  • the viral vector is from a viral family selected from the group consisting of.
  • Adenoviridae e.g., Adenovirus
  • Arenaviridae e.g., lymphocytic choriomeningitis mammarenavirus, Cali mammarenavirus (a.k.a., Pichinde mammarenavirus), Poxviridae (e.g., Vaccinia virus), Herpesviridae (e.g., Herpesvirus, e.g., HSV-1), Parvoviridae (e.g., Parvovirus H1), Reoviridae (e.g., Reovirus), Picornaviridae (e.g., Coxsackievirus, Seneca Valley Virus, Poliovirus), Paramyxoviridae (e.g., Measles virus, Newcastle disease virus (NDV)), Rhabdoviridae (e.g., Vesicular stomatitis virus (VSV)), Togaviridae (e.g., Alphavirus
  • the one or more additional therapeutic agents comprises an immunotherapy, an immunostimulatory therapy, a cytokine therapy, a chemokine therapy, a cellular therapy, a gene therapy, and combinations thereof.
  • the immunotherapy comprises co-administering one or more antibodies or antigen-binding antibody fragments thereof, or antibody-drug conjugates thereof, CD3-targeting multi-specific molecules, CD16-targeting multi-specific molecules, or non-immunoglobulin antigen-binding domains or antibody mimetic proteins directed against one or more targets or tumor associated antigens (TAAs) selected from the group consisting of: CD19, MS4A1 (CD20), CD22, IL2RA (CD25), CD27, TNFRSF8 (CD30), CD33, CD37, CD38, CD40, CD44, CD48, CD52, CD70, NT5E (CD73), ENTPD1 (CD39), CD74, CD79b, CD80, CD86, IL3RA (CD
  • TAAs tumor associated
  • the one or more antibodies or antigen-binding antibody fragments thereof, or antibody-drug conjugates thereof, CD3-targeting multi-specific molecules, CD16-targeting multi-specific molecules, or non-immunoglobulin antigen-binding domains or antibody mimetic proteins binds to an epitope of a target or tumor associated antigen (TAA) presented in a major histocompatibility complex (MHC) molecule (e.g., a neoantigen).
  • TAA tumor associated antigen
  • MHC major histocompatibility complex
  • the TAA is a cancer testis antigen.
  • the cancer testis antigen is selected from the group consisting of acrosin binding protein (ACRBP, CT23, OY-TES-1, SP32), alpha fetoprotein (AFP, AFPD, FETA, HPAFP); A-kinase anchoring protein 4 (AKAP4, AKAP 82, AKAP-4, AKAP82, CT99, FSC1, HI, PRKA4, hAKAP82, p82), ATPase family AAA domain containing 2 (ATAD2, ANCCA, CT137, PRO2000), kinetochore scaffold 1 (KNL1, AF15Q14, CASC5, CT29, D40, MCPH4, PPP1R55, Spc7, hKNL-1, hSpc105), centrosomal protein 55 (CEP55, C10orf3, CT111, MARCH, URCC6), cancer/testis antigen 1A (CTAG1A, ESO1, CT6.1, LAGE-2, LAGE2A, NY-ESO
  • the non-immunoglobulin antigen-binding domains or antibody mimetic proteins are selected from the group consisting of adnectins, affibody molecules, affilins, affimers, affitins, alphabodies, anticalins, peptide aptamers, armadillo repeat proteins (ARMs), atrimers, avimers, designed ankyrin repeat proteins (DARPins®), fynomers, knottins, Kunitz domain peptides, monobodies, and nanoCLAMPs.
  • adnectins affibody molecules
  • affilins affimers
  • affitins alphabodies
  • anticalins peptide aptamers
  • ARMs armadillo repeat proteins
  • atrimers avimers
  • DARPins® designed ankyrin repeat proteins
  • fynomers knottins
  • Kunitz domain peptides monobodies, and nanoCLAMPs.
  • the immunotherapy comprises co-administering one or more antagonists or inhibitors of an inhibitory immune checkpoint protein or receptor and/or one or more activators or agonists of a stimulatory immune checkpoint protein or receptor.
  • the one or more immune checkpoint proteins or receptors are selected from the group consisting of: CD27, CD70; CD40, CD40LG; CD47, CD48 (SLAMF2), transmembrane and immunoglobulin domain containing 2 (TMIGD2, CD28H), CD84 (LY9B, SLAMF5), CD96, CD160, MS4A1 (CD20), CD244 (SLAMF4); CD276 (B7H3); V-set domain containing T cell activation inhibitor 1 (VTCN1, B7H4); V-set immunoregulatory receptor (VSIR, B7H5, VISTA); immunoglobulin superfamily member 11 (IGSF11, VSIG3); natural killer cell cytotoxicity receptor 3 ligand 1 (NCR3LG1, B7H6);
  • the immunotherapy comprises co-administering one or more blockers or inhibitors of one or more T-cell inhibitory immune checkpoint proteins or receptors.
  • the T-cell inhibitory immune checkpoint proteins or receptors are selected from the group consisting of CD274 (CD274, PDL1, PD-L1); programmed cell death 1 ligand 2 (PDCDLG2, PD-L2, CD273); programmed cell death 1 (PDCD1, PD1, PD-1); cytotoxic T-lymphocyte associated protein 4 (CTLA4, CD152); CD276 (B7H3); V-set domain containing T cell activation inhibitor 1 (VTCN1, B7H4); V-set immunoregulatory receptor (VSIR, B7H5, VISTA); immunoglobulin superfamily member 11 (IGSF11, VSIG3); TNFRSF14 (HVEM, CD270), TNFSF14 (HVEML); CD272 (B and T lymphocyte associated (BTLA)); PVR related immunoglobulin domain containing (
  • the immunotherapy comprises co-administering one or more agonists or activators of one or more T-cell stimulatory immune checkpoint proteins or receptors.
  • the T-cell stimulatory immune checkpoint proteins or receptors are selected from the group consisting of CD27, CD70; CD40, CD40LG; inducible T cell costimulator (ICOS, CD278); inducible T cell costimulator ligand (ICOSLG, B7H2); TNF receptor superfamily member 4 (TNFRSF4, OX40); TNF superfamily member 4 (TNFSF4, OX40L); TNFRSF9 (CD137), TNFSF9 (CD137L); TNFRSF18 (GITR), TNFSF18 (GITRL); CD80 (B7-1), CD28; nectin cell adhesion molecule 2 (NECTIN2, CD112); CD226 (DNAM-1); Poliovirus receptor (PVR) cell adhesion molecule (PVR, CD155).
  • the immunotherapy comprises co-administering one or more blockers or inhibitors of one or more NK-cell inhibitory immune checkpoint proteins or receptors.
  • the NK-cell inhibitory immune checkpoint proteins or receptors are selected from the group consisting of killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 1 (KIR, CD158E1); killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 1 (KIR2DL1); killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 2 (KIR2DL2); killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 3 (KIR2DL3); killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 1 (KIR3DL1); killer cell lectin like receptor C1 (KLRC1, NKG2A, CD159A); killer cell lectin like receptor D1 (KLRD1, CD94);
  • the immunotherapy comprises co-administering one or more agonists or activators of one or more NK-cell stimulatory immune checkpoint proteins or receptors.
  • the NK-cell stimulatory immune checkpoint proteins or receptors include without limitation CD16, CD226 (DNAM-1); killer cell lectin like receptor K1 (KLRK1, NKG2D, CD314); and SLAM family member 7 (SLAMF7).
  • the one or more immune checkpoint inhibitors comprises a proteinaceous inhibitor (e.g., an antibody or antigen binding fragment thereof, or a non-immunoglobulin antibody mimetic protein) of PD-L1 (CD274), PD-1 (PDCD1) or CTLA4.
  • the proteinaceous inhibitor of CTLA4 is selected from the group consisting of ipilimumab, tremelimumab, BMS-986218, AGEN1181, AGEN1884 (zalifrelimab), BMS-986249, MK-1308, REGN-4659, ADU-1604, CS-1002, BCD-145, APL-509, JS-007, BA-3071, ONC-392, AGEN-2041, JHL-1155, KN-044, CG-0161, ATOR-1144, PBI-5D3H5, FPT-155 (CTLA4/PD-L1/CD28), PF-06936308 (PD-1/CTLA4), MGD-019 (PD-1/CTLA4), KN-046 (PD-1/CTLA4), MEDI-5752 (CTLA4/PD-1), XmAb-20717 (PD-1/CTLA4) and AK-104 (CTLA4/PD-1).
  • the proteinaceous inhibitor of PD-L1 (CD274) or PD-1 (PDCD1) is selected from the group consisting of pembrolizumab, nivolumab, cemiplimab, pidilizumab, AMP-224, MEDI680 (AMP-514), spartalizumab, atezolizumab, avelumab, durvalumab, BMS-936559, CK-301, PF-06801591, BGB-A317 (tislelizumab), GLS-010 (WBP-3055), AK-103 (HX-008), AK-105, CS-1003, HLX-10, MGA-012, BI-754091, AGEN-2034, JS-001 (toripalimab), JNJ-63723283, genolimzumab (CBT-501), LZM-009, BCD-100, LY-3300054, SHR-1201, SHR-1210 (
  • the one or more immune checkpoint inhibitors comprises a small molecule inhibitor of CD274 (PDL1, PD-L1), programmed cell death 1 (PDCD1, PD1, PD-1) or CTLA4.
  • the small molecule inhibitor of CD274 or PDCD1 is selected from the group consisting of GS-4224, GS-4416, INCB086550 and MAX10181.
  • the small molecule inhibitor of CTLA4 comprises BPI-002.
  • the immunotherapy comprises co-administering one or more cellular therapies selected from the group consisting of: natural killer (NK) cells, NK-T cells, T cells, cytokine-induced killer (CIK) cells, macrophage (MAC) cells, tumor infiltrating lymphocytes (TILs) and dendritic cells (DCs).
  • the one or more cellular therapies comprise a T cell therapy selected from the group consisting of: alpha/beta TCR T cells, gamma/delta TCR T cells, regulatory T (Treg) cells and TRuCTM T cells.
  • the one or more cellular therapies comprise a NK cell therapy comprising NK-92 cells.
  • the one or more cellular therapies comprise cells that are autologous, syngeneic or allogeneic to the subject.
  • the one or more cellular therapies comprise cells comprising chimeric antigen receptors (CARs).
  • the cells in the cellular therapy bind to a target or tumor associated antigen (TAA) (e.g., via a chimeric antigen receptor (CAR)) selected from the group consisting of selected from the group consisting of: CD19, MS4A1 (CD20), CD22, IL2RA (CD25), CD27, TNFRSF8 (CD30), CD33, CD37, CD38, CD40, CD44, CD48, CD52, CD70, NT5E (CD73), ENTPD1 (CD39), CD74, CD79b, CD80, CD86, IL3RA (CD123), PROM1 (CD133), CD137, SDC1 (CD138), alpha fetoprotein (AFP), c-Met; c-Kit
  • TAA tumor associated antigen
  • the cells in the cellular therapy bind to an epitope of a target or tumor associated antigen (TAA) presented in a major histocompatibility complex (MHC) molecule (e.g., a neoantigen).
  • TAA tumor associated antigen
  • MHC major histocompatibility complex
  • the TAA is a cancer testis antigen.
  • the cancer testis antigen is selected from the group consisting of acrosin binding protein (ACRBP, CT23, OY-TES-1, SP32), alpha fetoprotein (AFP, AFPD, FETA, HPAFP); A-kinase anchoring protein 4 (AKAP4, AKAP 82, AKAP-4, AKAP82, CT99, FSC1, HI, PRKA4, hAKAP82, p82), ATPase family AAA domain containing 2 (ATAD2, ANCCA, CT137, PRO2000), kinetochore scaffold 1 (KNL1, AF15Q14, CASC5, CT29, D40, MCPH4, PPP1R55, Spc7, hKNL-1, hSpc105), centrosomal protein 55 (CEP55, COorf3, CT111, MARCH, URCC6), cancer/testis antigen 1A (CTAG1A, ESO1, CT6.1, LAGE-2, LAGE2A, NY-ESO-1
  • the cytokine or chemokine therapy comprises co-administering one or more immunostimulatory cytokines or chemokines that promote or increase the proliferation or activation of T cells (including alpha/beta TCR T cells and gamma/delta TCR T cells), NK-T cells, NK cells, and/or dendritic cells.
  • the one or more immunostimulatory cytokines or chemokines are selected from the group consisting of: IL 2, IL-12, IL-15, IL-18, IL-21, interferon (IFN)- ⁇ , IFN- ⁇ , IFN- ⁇ , CXCL9/Mig (monokine induced by interferon-y), CXCL10/IP10 (interferon-y-inducible 10 kDa protein) and CXCL11/I-TAC (interferon-inducible T cell a-chemoattractant), CXCL4/PF4 (platelet factor 4), monocyte chemoattractant protein 2 (MCP-2), macrophage inflammatory protein 1 alpha (MIP-1 ⁇ ), macrophage inflammatory protein 1 beta (MIP-10) and regulated on activation normal T expressed and secreted protein (RANTES).
  • IFN interferon
  • CXCL10/IP10 interferon-y-inducible 10 kDa protein
  • the one or more additional therapeutic agents comprises an activator or agonist of: a toll-like receptor (TLR); a stimulator of interferon genes (STING) receptor; inducible T cell costimulator (ICOS, CD278); and/or a TNF receptor superfamily (TNFRSF) member.
  • TLR toll-like receptor
  • STING stimulator of interferon genes
  • INF receptor superfamily TNFRSF
  • the TNF receptor superfamily (TNFRSF) member is selected from the group consisting of: TNFRSF1A, TNFRSF1B, TNFRSF4 (OX40), TNFRSF5 (CD40), TNFRSF6 (FAS), TNFRSF7 (CD27), TNFRSF8 (CD30), TNFRSF9 (4-1BB, CD137), TNFRSF10A (CD261, DR4, TRAILR1), TNFRSF10B (CD262, DR5, TRAILR2), TNFRSF10C (CD263, TRAILR3), TNFRSF10D (CD264, TRAILR4), TNFRSF11A (CD265, RANK), TNFRSF11B, TNFRSF12A (CD266), TNFRSF13B (CD267), TNFRSF13C (CD268), TNFRSF16 (NGFR, CD271), TNFRSF17 (BCMA, CD269), TNFRSF18 (GI)
  • the TNFRSF4 (OX40 or CD134) activator or agonist comprises INCAGN1949, tavolimab (MEDI0562), pogalizumab (MOXR0916/RG7888), MED16469, BMS 986178, PF-04518600, GSK3174998, IBI101, ATOR-1015, ABBV-368 or SL-279252.
  • the TNFRSF9 (4-1BB or CD137) activator or agonist comprises urelumab, BMS-663513, utomilumab (PF-05082566), CTX-471, MP-0310, ADG-106, ATOR-1017 or AGEN2373.
  • the TNFRSF18 (GITR or CD357) activator or agonist comprises GWN323, MEDI1873, MK-1248, MK-4166, TRX518, INCAGN1876, BMS-986156, BMS-986256, AMG-228, ASP1951 (PTZ 522), FPA-154 or OMP-336B11.
  • the one or more additional therapeutic agents comprises a molecule that concurrently binds to TNF receptor superfamily member 4 (TNFRSF4, OX40 or CD134) and TNF receptor superfamily member 18 (TNFRSF18, GITR or CD357).
  • the TLR agonist or activator is selected from the group consisting of a TLR2 agonist, a TLR3 agonist, a TLR4 agonist, a TLR5 agonist, a TLR7 agonist, a TLR8 agonist and a TLR9 agonist.
  • the TLR7 agonist is selected from the group consisting of GS 9620, DS-0509, LHC-165 and TMX-101 (imiquimod), and/or wherein the TLR8 agonist is selected from the group consisting of GS-9688 and NKTR-262 (dual TLR7/TLR8 agonist).
  • the STING receptor agonist or activator is selected from the group consisting of ADU-S100 (MIW-815), SB-11285, MK-1454, SR-8291, AdVCA0848, GSK-532, SYN-STING, MSA-1, SR-8291, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), cyclic-GAMP (cGAMP) and cyclic-di-AMP.
  • the one or more additional therapeutic agents comprises an anti-CD47 antibody.
  • the anti-CD47 antibody is magrolimab.
  • the one or more additional therapeutic agents comprises an inhibitor of SIRPalpha.
  • the SIRPalpha inhibitor is selected from the group consisting of AL-008, RRx-001, CTX-5861, FSI-189 (GS-0189), ES-004, BI765063, ADU1805, and CC-95251.
  • the one or more additional therapeutic agents comprises an inhibitor or antagonist of.
  • PIK3CA catalytic subunit alpha
  • PIK3CB catalytic subunit beta
  • PIK3CG catalytic subunit gamma
  • PIK3CD diacylglycerol kinase alpha
  • DGKA diacylglycerol kinase alpha
  • N5E 5′-nucleotidase ecto
  • the inhibitor comprises an antibody or an antigen-binding fragment thereof, or antibody-drug conjugate thereof, CD3-targeting multi-specific molecule, CD16-targeting multi-specific molecule, non-immunoglobulin antigen binding molecule or antibody mimetic protein.
  • the inhibitor comprises an inhibitory nucleic acid (e.g., an siRNA).
  • the inhibitor comprises a small organic molecule.
  • the inhibitor of 5′-nucleotidase ecto is selected from the group consisting of MEDI9447 (oleclumab), CPI-006, BMS-986179, IPH5301, TJ4309 (TJD5), NZV-930, AB-680, PSB-12379, PSB-12441, PSB-12425, CB-708, GS-1423 (AGEN1423) and PBF-1662.
  • the inhibitor of CCR2 and/or CCR5 is selected from the group consisting of BMS-813160, PF-04136309 and CCX-872.
  • the inhibitor of MCL1 is selected from the group consisting of AMG-176, AMG-397, S-64315, AZD-5991, 483-LM, A 1210477, UMI-77 and JKY-5-037.
  • the inhibitor of PTPN11 or SHP2 is selected from the group consisting of TNO155 (SHP-099), RMC-4550, JAB-3068 and RMC-4630.
  • the inhibitor of Janus kinase 1 (JAK1) is selected from the group consisting of filgotinib, tofacitinib, baricitinib and ABT-494.
  • the one or more additional therapeutic agents comprises a regulatory T cell (Treg) inhibitor.
  • the subject further receives radiation therapy.
  • the radiation therapy comprises stereotactic body radiation therapy (SBRT).
  • the one or more additional therapeutic agents comprises one or more anti-neoplastic or chemotherapeutic agents.
  • the one or more anti-neoplastic or chemotherapeutic agents are selected from the group consisting of a nucleoside analog (e.g., 5-fluorouracil, gemcitabine, cytarabine, cladribine, pentostatin, fludarabine), a taxane (e.g., paclitaxel, nab-paclitaxel, docetaxel, cabazitaxel), a platinum coordination complex (cisplatin, carboplatin, oxaliplatin, nedaplatin, triplatin tetranitrate, phenanthriplatin, picoplatin, satraplatin, dicycloplatin, eptaplatin, lobaplatin, miriplatin), a dihydrofolate reductase (DHFR) inhibitor (e.g., methotrexate, trimetrexate, pemetrexed), a topoisomerase inhibitor (e.g., doxorubic
  • the one or more additional therapeutic agents comprises a FOLFOX regimen, a FOLFIRI regimen, a FOLFOXIRI regimen or a FOLFIRINOX regimen.
  • the one or more additional therapeutic agents comprises an antiviral therapy.
  • the antiviral therapy comprises co-administering a hepatitis B virus (HBV) therapeutic agent.
  • HBV hepatitis B virus
  • the HBV therapeutic agent is selected from an HBV vaccine, HBV polymerase inhibitor, immunomodulator, interferon alpha receptor ligand, hyaluronidase inhibitor, Hepatitis B Surface Antigen (HBsAg) inhibitor, cyclophilin inhibitor, antisense oligonucleotide, short interfering RNA (siRNA), or DNA-directed RNA interference (ddRNAi) targeting HBV viral mRNA, endonuclease modulator (e.g., PGN-514), ribonucleotide reductase inhibitor (e.g., Trimidox), HBV replication inhibitor, non-canonical RNA polymerase PAPD5 and PAPD7 inhibitor (e.g., siRNA), covalently closed circular DNA inhibitor (cccDNA), caspase 9 stimulator (e.g., ENOB-B-01), CD3 modulator (e.g., IMC-I109V), Ffar2 and Ffar3 agonist (e.g., SIG-G9
  • the HBV vaccine is selected from the group consisting of HBsAG-HBIG complex, ARB-1598, Bio-Hep-B, NASVAC, abi-HB (intravenous), ABX-203, Tetrabhay, GX-110E, GS-4774, peptide vaccine (epsilonPA-44), Hepatrol-07, NASVAC (NASTERAP), MP-321, BEVAC, Revac B mcf, Revac B+, MGN-1333, KW-2, CVI-HBV-002, AltraHepB, VGX-6200, FP-02, FP-02.2 (HepTeell), NU-500, HBVax, im/TriGrid/antigen vaccine, Mega-CD40L-adjuvanted vaccine, HepB-v, RG7944 (INO-1800), recombinant VLP-based therapeutic vaccine (HBV infection, VLP Biotech), hepatitis B therapeutic DNA vaccine, AdTG-17909,
  • the HBV polymerase inhibitor is selected from the group consisting of adefovir (HEPSERA®), emtricitabine (EMTRIVA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, tenofovir dipivoxil, tenofovir dipivoxil fumarate, tenofovir octadecyloxyethyl ester, CMX-157, tenofovir exalidex, besifovir, entecavir (BARACLUDE®), entecavir maleate, telbivudine (TYZEKA®), filocilovir, pradefovir, clevudine, ribavirin, lamivudine
  • the immunomodulator is selected from the group consisting of rintatolimod, imidol hydrochloride, ingaron, dermaVir, plaquenil (hydroxychloroquine), proleukin, hydroxyurea, mycophenolate mofetil (MPA) and its ester derivative mycophenolate mofetil (MMF), JNJ-440, WF-10, AB-452, ribavirin, IL-12, INO-9112, polymer polyethyleneimine (PEI), Gepon, VGV-1, MOR-22, CRV-431, JNJ-0535, TG-1050, ABI-H2158, BMS-936559, GS-9688, RO-7011785, RG-7854, RO-6871765, AIC-649, and IR-103.
  • rintatolimod imidol hydrochloride
  • ingaron dermaVir
  • plaquenil hydroxychloroquine
  • MMF mycophenolate mofetil
  • the interferon alpha receptor ligand is selected from the group consisting of interferon alpha-2b (INTRON A®), pegylated interferon alpha-2a (PEGASYS®), PEGylated interferon alpha-1b, interferon alpha 1b (HAPGEN®), Veldona, Infradure, Roferon-A, YPEG-interferon alfa-2a (YPEG-rhIFNalpha-2a), P-1101, Algeron, Alfarona, Ingaron (interferon gamma), rSIFN-co (recombinant super compound interferon), Ypeginterferon alfa-2b (YPEG-rhIFNalpha-2b), MOR-22, peginterferon alfa-2b (PEG-INTRON®), Bioferon, Novaferon, Inmutag (Inferon), MULTIFERON®, interferon alfa-n1(HUMOFERON), interferon
  • the hyaluronidase inhibitor is astodrimer.
  • the Hepatitis B Surface Antigen (HBsAg) inhibitor is selected from the group consisting of AK-074, HBF-0259, PBHBV-001, PBHBV-2-15, PBHBV-2-1, REP-9AC, REP-9C, REP-9, REP-2139, REP-2139-Ca, REP-2055, REP-2163, REP-2165, REP-2053, REP-2031, REP-006, and REP-9AC′.
  • the HBsAg inhibitor is an HBsAg secretion inhibitor selected from the group consisting of BM601, GST-HG-131, and AB-452.
  • the cyclophilin inhibitor is selected from the group consisting of CPI-431-32, EDP-494, OCB-030, SCY-635, NVP-015, NVP-018, NVP-019, and STG-175.
  • the antisense oligonucleotide targeting viral mRNA is selected from the group consisting of ISIS-HBVRx, IONIS-HBVRx, IONIS-HBV-LRx, IONIS-GSK6-LRx, GSK-3389404, and RG-6004.
  • the short interfering RNA (siRNA) or DNA-directed RNA interference (ddRNAi) is selected from the group consisting of TKM-HBV (TKM-HepB), ALN-HBV (e.g., ALN-HBV02), SR-008, HepB-nRNA, ARC-520, ARC-521, ARB-1740, ARB-1467, AB-729, DCR-HBVS, RG-6084 (PD-L1), RG-6217, ALN-HBV-02, JNJ-3989 (ARO-HBV), STSG-0002, ALG-010133, ALG-ASO, LUNAR-HBV and DCR-HBVS (DCR-219).
  • TKM-HBV TKM-HBV
  • ALN-HBV e.g., ALN-HBV02
  • SR-008 HepB-nRNA
  • ARC-520 ARC-521
  • ARB-1740 ARB-1740
  • ARB-1467 AB-729
  • the ddRNAi is BB-HB-331.
  • the HBV replication inhibitor is selected from the group consisting of GP-31502, isothiafludine, IQP-HBV, RM-5038, and Xingantie.
  • the cccDNA is selected from the group consisting of BSBI-25, ccc-R08, and CHR-101.
  • the additional HBV antibody targets a surface antigen of hepatitis B virus.
  • the additional HBV antibody is selected from lenvervimab (GC-1102), XTL-17, XTL-19, KN-003, IV Hepabulin SN, VIR-3434, Omri-Hep-B, Nabi-HB, Hepatect CP, HepaGam B, igantibe, Niuliva, CT-P24, Fovepta (BT-088), and HBC-34.
  • the FXR agonist is selected from the group consisting of EYP-001, GS-9674, EDP-305, MET-409, Tropifexor, AKN-083, RDX-023, BWD-100, LMB-763, INV-3, NTX-023-1, EP-024297 and GS-8670.
  • the thymosine antagonist is selected from Thymalfasin, recombinant thymosin alpha 1 (GeneScience), NL-004 and PEGylated thymosin alpha-1.
  • the nucleoprotein modulator is selected from GS-4882, AB-423, AB-836, AT-130, ALG-001075, ALG-001024, ALG-000184, EDP-514, GLS4, NVR-1221, NVR-3778, AL-3778, BAY 41-4109, morphothiadine mesilate, ARB-168786, ARB-880, ARB-1820, GST-HG-141, JNJ-379, JNJ-632, RG-7907, GST-HG-141, HEC-72702, KL-060332, AB-506, ABI-H0731, ABI-H3733, JNJ-440, ABI-H2158, CB-HBV-001, AK-0605, SOC-10, SOC-11 and DVR-23.
  • the retinoic acid-inducible gene stimulator 1 is selected from the group consisting of inarigivir soproxil (SB-9200), SB-40, SB-44, ORI-7246, ORI-9350, ORI-7537, ORI-9020, ORI-9198, ORI-7170, and RGT-100.
  • the arginase inhibitor is selected from the group consisting of CB-1158, C-201, and resminostat.
  • the CAR-T cell therapy directed to HBV therapy includes a population of immune effector cells engineered to express a chimeric antigen receptor (CAR), wherein the CAR includes an HBV antigen-binding domain (e.g., HbsAg-CART).
  • the TCR-T cell therapy includes T cells expressing HBV-specific T cell receptors (e.g., (HBsAg)-specific TCR).
  • the HBV therapeutic agent is selected from alpha-hydroxytropolones, amdoxovir, antroquinonol, beta-hydroxycytosine nucleosides, ARB-199, CCC-0975, ccc-R08, elvucitabine, ezetimibe, cyclosporin A, gentiopicrin (gentiopicroside), HH-003, hepalatide, JNJ-56136379, nitazoxanide, birinapant, NJK14047, NOV-205 (molixan, BAM-205), oligotide, mivotilate, feron, GST-HG-131, levamisole, Ka Shu Ning, alloferon, WS-007, Y-101 (Ti Fen Tai), rSIFN-co, PEG-IIFNm, KW-3, BP-Inter-014, oleanolic acid, HepB-nRNA, cTP-5 (
  • the antiviral therapy comprises co-administering a hepatitis C virus (HCV) therapeutic agent.
  • HCV hepatitis C virus
  • the HCV therapeutic agent is selected from daclatasvir, ledipasvir, ombitasvir, elbasvir, sofosbuvir, dasabuvir, ribavirin, asunaprevir, simeprevir, paritaprevir, ritonavir, elbasvir, and grazoprevir.
  • the antiviral therapy comprises co-administering a human immunodeficiency virus (HIV) therapeutic agent.
  • the HIV therapeutic agent comprises an HIV protease inhibitor, HIV ribonuclease H inhibitor, HIV Nef inhibitor, HIV reverse transcriptase inhibitor, HIV integrase inhibitor, HIV entry inhibitor, HIV maturation inhibitor, a latency reversing agent, HIV capsid inhibitor, HIV targeting antibody, HIV vaccine, or a birth control or contraceptive regimen.
  • the HIV protease inhibitor is selected from the group consisting of amprenavir, atazanavir, brecanavir, darunavir, fosamprenavir, fosamprenavir calcium, indinavir, indinavir sulfate, lopinavir, nelfinavir, nelfinavir mesylate, ritonavir, saquinavir, saquinavir mesylate, tipranavir, AEBL-2, DG-17, GS-1156, TMB-657 (PPL-100), T-169, BL-008, MK-8122, TMB-607, GRL-02031, and TMC-310911.
  • the HIV ribonuclease H inhibitor is NSC-727447.
  • the HIV Nef inhibitor is FP-1.
  • the HIV reverse transcriptase inhibitor is a non-nucleoside/non-nucleotide reverse transcriptase inhibitor.
  • the non-nucleoside/non-nucleotide inhibitor is select from the group consisting of dapivirine, delavirdine, delavirdine mesylate, doravirine, efavirenz, etravirine, lentinan, nevirapine, rilpivirine, ACC-007, ACC-008, AIC-292, F-18, KM-023, PC-1005, VM-1500A-LAI, PF-3450074, elsulfavirine (sustained release oral, HIV infection), elsulfavirine (long-acting injectable nanosuspension, HIV infection), and elsulfavirine (VM-1500).
  • the HIV reverse transcriptase inhibitor is a nucleoside or nucleotide inhibitor.
  • the nucleoside or nucleotide inhibitor is selected from the group consisting of adefovir, adefovir dipivoxil, azvudine, emtricitabine, tenofovir, tenofovir alafenamide, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir octadecyloxyethyl ester (AGX-1009), tenofovir disoproxil hemifumarate, VIDEX® and VIDEX EC® (didanosine, ddl), abacavir, abacavir sulfate, alovudine, apricitabine, cen
  • the HIV integrase inhibitor is selected from the group consisting of elvitegravir, elvitegravir (extended-release microcapsules), curcumin, derivatives of curcumin, chicoric acid, derivatives of chicoric acid, 3,5-dicaffeoylquinic acid, derivatives of 3,5-dicaffeoylquinic acid, aurintricarboxylic acid, derivatives of aurintricarboxylic acid, caffeic acid phenethyl ester, derivatives of caffeic acid phenethyl ester, tyrphostin, derivatives of tyrphostin, quercetin, derivatives of quercetin, derivatives of quercetin, raltegravir, PEGylated raltegravir, dolutegravir, JTK-351, bictegravir, AVX-15567, cabotegravir (long-acting injectable), diketo quinolin-4-1 derivatives, integr
  • the HIV integrase inhibitor is an HIV non-catalytic site, or allosteric, integrase inhibitor (NCINI).
  • the NCINI is selected from the group consisting of CX-05045, CX-05168, and CX-14442.
  • the HIV an entry inhibitor is AAR-501, LBT-5001, cenicriviroc, a CCR5 inhibitor, a gp41 inhibitor, a CD4 attachment inhibitor, a gpl20 inhibitor, a gp160 inhibitor a, and a CXCR4 inhibitor.
  • the CCR5 inhibitor is selected from the group consisting of aplaviroc, vicriviroc, maraviroc, maraviroc (long-acting injectable nanoemulsion), cenicriviroc, leronlimab (PRO-140), adaptavir (RAP-101), nifeviroc (TD-0232), anti-GP120/CD4 or CCR5 bispecific antibodies, B-07, MB-66, polypeptide C25P, TD-0680, thioraviroc and vMIP (Haimipu).
  • the gp41 inhibitor is selected from the group consisting of albuvirtide, enfuvirtide, birithsin (gp41/gp120/gp160 inhibitor), BMS-986197, enfuvirtide biobetter, enfuvirtide biosimilar, HIV-1 fusion inhibitors (P26-Bapc), ITV-1, ITV-2, ITV-3, ITV-4, CPT-31, Cl3hmAb, PIE-12 trimer and sifuvirtide.
  • the a CD4 attachment inhibitor is ibalizumab or a CADA analog.
  • the gp120 inhibitor selected from the group consisting of anti-HIV microbicide, Radha-108 (receptol) 3B3-PE38, BanLec, bentonite-based nanomedicine, fostemsavir tromethamine, IQP-0831, VVX-004, and BMS-663068.
  • gp160 inhibitor is fangchinoline.
  • the CXCR4 inhibitor selected from the group consisting of plerixafor, ALT-1188, N15 peptide, and vMIP (Haimipu).
  • the HIV entry inhibitor is selected from docosanol, enfuvirtide, maraviroc, palivizumab, respiratory syncytial virus immune globulin, intravenous [RSV-IGIV], varicella-zoster immunoglobulin [VariZIG], and varicella-zoster immune globulin [VZIG]).
  • the HIV maturation inhibitor is selected from the group consisting of BMS-955176, GSK-3640254 and GSK-2838232.
  • the latency reversing agent is selected from the group consisting of toll-like receptor (TLR) agonists (including TLR7 agonists, e.g., GS-9620 (vesatolimod), vesatolimod analogs), histone deacetylase (HDAC) inhibitors, proteasome inhibitors (e.g., velcade), protein kinase C (PKC) activators (e.g., indolactam, prostratin, ingenol B, DAG-lactones), Smyd2 inhibitors, BET-bromodomain 4 (BRD4) inhibitors, ionomycin, IAP antagonists (inhibitor of apoptosis proteins; e.g., APG-1387, LBW-242), SMAC mimetics (including TL32711, LCL161, GDC-0917, HGS1029, AT-406, Debio-1143), PMA, SAHA (suberanilohydroxamic acid), acetate
  • the HIV capsid inhibitor is selected from the group consisting of capsid polymerization inhibitors, capsid disrupting compounds, HIV nucleocapsid p7 (NCp7) inhibitors (e.g., azodicarbonamide), and HIV p24 capsid protein inhibitors (e.g., GS-6207, GS-CA1, AVI-621, AVI-101, AVI-201, AVI-301, AVI-CAN1-15 series, and PF-3450074).
  • NCp7 HIV nucleocapsid p7
  • HIV p24 capsid protein inhibitors e.g., GS-6207, GS-CA1, AVI-621, AVI-101, AVI-201, AVI-301, AVI-CAN1-15 series, and PF-3450074.
  • the HIV targeting antibody is selected from bNAbs (broadly neutralizing HIV-1 antibodies), TMB-360, antibodies targeting HIV gp120 or gp41, antibody-recruiting molecules targeting HIV, anti-CD63 monoclonal antibodies, anti-GB virus C antibodies, anti-GP120/CD4, gp120 bispecific monoclonal antibodies, CCR5 bispecific antibodies, anti-Nef single domain antibodies, anti-Rev antibody, camelid derived anti-CD18 antibodies, camelid-derived anti-ICAM-1 antibodies, DCVax-001, gp140 targeted antibodies, gp41-based HIV therapeutic antibodies, human recombinant mAbs (PGT-121), PGT121.414.LS, ibalizumab, Immuglo, MB-66, and VRC-HIVMAB091-00-AB.
  • bNAbs broadly neutralizing HIV-1 antibodies
  • TMB-360 TMB-360
  • antibodies targeting HIV gp120 or gp41 antibodies targeting HIV gp120 or
  • the HIV targeting antibody is selected from the group consisting of UB-421, BF520.1, CHO1, CH59, C2F5, C4E10, C2F5+C2G12+C4E10, 3BNC117, 3BNC117-LS, 3BNC60, DH270.1, DH270.6, D1D2, 10-1074-LS, Cl3hmAb, GS-9722 (elipovimab), DH411-2, BG18, GS-9721, PGT145, PGT121, PGT-121.60, PGT-121.66, PGT122, PGT-123, PGT-124, PGT-125, PGT-126, PGT-151, PGT-130, PGT-133, PGT-134, PGT-135, PGT-128, PGT-136, PGT-137, PGT-138, PGT-139, MDXO10 (ipilimumab), DH511, DH511-2, N6, N6LS, N49P6, N49P
  • the HIV targeting antibody is a bispecific or trispecific antibody selected from the group consisting of MGD014, B12BiTe, BiIA-SG, TMB-bispecific, SAR-441236, VRC-01/PGDM-1400/10E8v4, 10E8.4/iMab, and 10E8v4/PGT121-VRCO1.
  • the HIV targeting antibody is an in vivo delivered bNAbs (e.g., AAV8-VRC07; mRNA encoding anti-HIV antibody VRCO1; or engineered B-cells encoding 3BNC117).
  • the HIV vaccine is selected from the group consisting of peptide vaccines, recombinant subunit protein vaccines, live vector vaccines, DNA vaccines, HIV MAG DNA vaccine, CD4-derived peptide vaccines, vaccine combinations, adenoviral vector vaccines (an adenoviral vector such as Ad5, Ad26 or Ad35), simian adenovirus (chimpanzee, gorilla, rhesus i.e., rhAd), adeno-associated virus vector vaccines, chimpanzee adenoviral vaccines (e.g., ChAdOXI, ChAd68, ChAd3, ChAd63, ChAd83, ChAd155, ChAd157, Pan5, Pan6, Pan7, Pan9), Coxsackieviruses based vaccines, enteric virus based vaccines, Gorilla adenovirus vaccines, lentiviral vector based vaccine, arenavirus vaccines (e.g., LCMV, Pichinde),
  • the HIV vaccine is selected from the group consisting of anti-CD40.Env-gp140 vaccine, Ad4-EnvC150, BG505 SOSIP.664 gp140 adjuvanted vaccine, BG505 SOSIP.GT1.1 gp140 adjuvanted vaccine, Chimigen HIV vaccine, ConM SOSIP.v7 gp140, rgpl20 (AIDSVAX), ALVAC HIV (vCP1521)/AIDSVAX B/E (gp120) (RV144), monomeric gp120 HIV-1 subtype C vaccine, MPER-656 liposome subunit vaccine, Remune, ITV-1, Contre Vir, Ad5-ENVA-48, DCVax-001 (CDX-2401), Vacc-4x, Vacc-C5, VAC-3S, multiclade DNA recombinant adenovirus-5 (rAd5), rAd5 gag-pol env A/B/C vaccine, Pennvax-G, Pennvax-GP,
  • the birth control or contraceptive regimen is selected from the group consisting of cyproterone acetate, desogestrel, dienogest, drospirenone, estradiol valerate, ethinyl estradiol, ethynodiol, etonogestrel, levomefolate, levonorgestrel, lynestrenol, medroxyprogesterone acetate, mestranol, mifepristone, misoprostol, nomegestrol acetate, norelgestromin, norethindrone, noretynodrel, norgestimate, ormeloxifene, segestersone acetate, ulipristal acetate, and any combinations thereof.
  • the antiviral therapy comprises co-administering an influenza therapeutic agent.
  • the influenza therapeutic agent is selected from a matrix 2 inhibitor (e.g., amantadine, rimantadine), neuraminidase inhibitor (e.g., zanamivir, oseltamivir, peramivir, laninamivir octanoate), and polymerase inhibitor (e.g., ribavirin, favipiravir).
  • a matrix 2 inhibitor e.g., amantadine, rimantadine
  • neuraminidase inhibitor e.g., zanamivir, oseltamivir, peramivir, laninamivir octanoate
  • polymerase inhibitor e.g., ribavirin, favipiravir
  • influenza virus inhibitor is selected from amantadine, rimantadine, arbidol (umifenovir), baloxavir marboxil, oseltamivir, peramivir, ingavirin, laninamivir octanoate, zanamivir, favipiravir, ribavirin, and combinations thereof.
  • influenza virus inhibitor is selected from amantadine, rimantadine, zanamivir, oseltamivir, peramivir, laninamivir octanoate, ribavirin, and favipiravir.
  • the antiviral therapy comprises co-administering a respiratory syncytial virus (RSV) therapeutic agent.
  • RSV respiratory syncytial virus
  • the RSV therapeutic agent is selected from ribavirin, ALS-8112, and presatovir.
  • the antiviral therapy comprises co-administering a picornavirus therapeutic agent.
  • the picorna therapeutic agent is selected from hydantoin, guanidine hydrochloride, L-buthionine sulfoximine, Py-11, and rupintrivir.
  • the antiviral therapy comprises co-administering an Ebola virus therapeutic agent.
  • the Ebola virus therapeutic agent is selected from ribavirin, palivizumab, motavizumab, RSV-IGIV (RespiGam®), MEDI-557, A-60444, MDT-637, BMS-433771, amiodarone, dronedarone, verapamil, Ebola Convalescent Plasma (ECP), TKM-100201, BCX4430 ((2S,3S,4R,5R)-2-(4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)-5-(hydroxymethyl)pyrrolidine-3,4-diol), favipiravir (also known as T-705 or Avigan), T-705 monophosphate, T-705 diphosphate, T-705 triphosphate, FGI-106 (1-N,7-N-bis[3-(dimethylamino)propyl]-3,9-dimethylquinolino[8,7-h]quinolone-1,7-diamine
  • the Ebola virus therapeutic agent is selected from ZMapp, mAB114, and REGEN-EB3.
  • the antiviral therapy comprises co-administering a coronavirus therapeutic agent.
  • the coronavirus is a Severe Acute Respiratory Syndrome (SARS)-associated coronavirus.
  • the coronavirus is a Middle-East Respiratory Syndrome (MERS)-associated coronavirus.
  • the coronavirus is SARS-CoV-2.
  • the SARS-CoV-2 (COVID-19) therapeutic agent is a RNA polymerase inhibitor (e.g., remdesivir, galidesivir).
  • the SARS-CoV-2 (COVID-19) therapeutic agent is remdesivir (GS-5734).
  • the SARS-CoV-2 (COVID-19) therapeutic agent is an anti-SARS-CoV-2 hyperimmune globulin therapy (plasma from convalescent COVID-19 patients, e.g., processed into a hyperimmune globulin) (e.g., TAK-888).
  • the SARS-CoV-2 (COVID-19) therapeutic agent is selected from a COVID-19 vaccine (e.g., BN162, Ad5-nCoV, INO-4800, mRN1273), anti-IL6 receptor antibody (e.g., tocilizumab, sarilumab, TZLS-501), an anti-IL6 antibody (e.g., siltuximab), RNA dependent RNA polymerase (RdRp) inhibitor (e.g., favipravir, remdesivir), anti-CCR5 antibody (e.g., leronlimab (PRO 140)), broadly neutralizing antibody (e.g., an anti-ACE2 receptor antibody, SAB-185, COVID-HIG, COVID-EIG), ACE2 (angiotensin-converting enzyme 2)-Fc fusion protein (COVIDTRAP) or recombinant human ACE2 protein (APN1), ACE-MABTM bi-specific
  • the COVID-19 vaccine is an mRNA vaccine (e.g., BN162), including a lipoplex (e.g., lipid-nanoparticle (LNP)) encapsulated vaccine (e.g., mRNA1273).
  • the COVID-19 vaccine is a DNA vaccine (e.g., INO-4800).
  • the COVID-19 vaccine encodes for a prefusion stabilized form of the Spike (S) protein (e.g., mRNA1273).
  • the COVID-19 vaccine is a recombinant protein-based vaccine consisting of the receptor binding domain (RBI) of the spike protein of the coronavirus.
  • the COVID-19 vaccine uses a Ligand Antigen Epitope Presentation System (LEAPS) peptide including conserved regions of coronavirus proteins to stimulate protective cell mediated T cell responses and reduce viral load.
  • the COVID-19 vaccine is a microneedle array (MNA)-delivered vaccine.
  • the vaccine is based on a flu vector expressing the surface antigen of SARS-CoV-2.
  • the COVID-19 vaccine is an intranasal vaccine (e.g., AdCOVID).
  • the COVID-19 vaccine is NVX-CoV2373, NO4800, or BNT-162.
  • the SARS-CoV-2 (COVID-19) therapeutic agent is selected from a PIKfyve kinase inhibitor (e.g., apilimod), immunomodulator (e.g., rintatolimod), T-cell immunotherapy, recombinant sialidase (e.g., DAS181), CRAC channel inhibitor (e.g., CM-4620-IE), cardiac cell therapy using allogeneic cardiosphere-derived cells (e.g., CAP-1002), cardioprotective drug (e.g., aspirin, plavix, lipitor, opremazole), SiP receptor antagonist (e.g., fingolimod), a cyclooxygenase-2 (COX-2) inhibitor (e.g., celecoxib), phosphodiesterase-5 (PDE5) inhibitor (e.g., sildenafil citrate), serine protease TMPRSS2 inhibitor (camostat mesylate), anti-human complement
  • the subject has cancer. In some embodiments, the subject is in cancer remission. In some embodiment, the subject has a hematological cancer, e.g., a leukemia (e.g., Acute Myelogenous Leukemia (AML), Acute Lymphoblastic Leukemia (ALL), B-cell ALL, Myelodysplastic Syndrome (MDS), myeloproliferative disease (MPD), Chronic Myelogenous Leukemia (CML), Chronic Lymphocytic Leukemia (CLL), undifferentiated leukemia), a lymphoma (e.g., small lymphocytic lymphoma (SLL), mantle cell lymphoma (MCL), follicular lymphoma (FL), T-cell lymphoma, B-cell lymphoma, diffuse large B-cell lymphoma (DLBCL), marginal zone lymphoma (MZL), Waldestrom's macroglobulinemia (WM)) and/or a myelogenous
  • the subject has a solid tumor.
  • the tumor or cancer is malignant or metastatic.
  • the subject has a tumor infiltrated with conventional dendritic cells (cDC1).
  • the tumor infiltrating dendritic cells express C-C motif chemokine receptor 5 (CCR5, CD195) and/or X-C motif chemokine receptor 1 (XCR1) on their cell surface.
  • the tumor infiltrating dendritic cells express one or more cell surface proteins selected from the group consisting of XCR1, cell adhesion molecule 1 (CADM1), C-type lectin domain containing 9A (CLEC9A, CD370), and thrombomodulin (THBD).
  • the tumor infiltrating dendritic cells express one or more cell surface proteins selected from the group consisting of CD1A, CD1C, CD1E, signal regulatory protein alpha (SIRPA; CD172A), CD207 and Fc fragment of IgE receptor Ia (FCERIA).
  • the tumor infiltrating dendritic cells express one or more proteins selected from the group consisting of basic leucine zipper ATF-like transcription factor 3 (BATF3) and interferon regulatory factor 8 (IRF8).
  • BATF3 basic leucine zipper ATF-like transcription factor 3
  • IRF8 interferon regulatory factor 8
  • the tumor infiltrating dendritic cells express one or more proteins selected from the group consisting of BATF3, IRF8, THBD, CLEC9A and XCR1.
  • the subject has a cancer that detectably expresses or overexpresses one or more cell surface immune checkpoint receptors.
  • the one or more cell surface immune checkpoint receptors are selected from the group consisting of: CD27, CD70; CD40, CD40LG; CD47, CD48 (SLAMF2), transmembrane and immunoglobulin domain containing 2 (TMIGD2, CD28H), CD84 (LY9B, SLAMF5), CD96, CD160, MS4A1 (CD20), CD244 (SLAMF4); CD276 (B7H3); V-set domain containing T cell activation inhibitor 1 (VTCN1, B7H4); V-set immunoregulatory receptor (VSIR, B7H5, VISTA); immunoglobulin superfamily member 11 (IGSF11, VSIG3); natural killer cell cytotoxicity receptor 3 ligand 1 (NCR3LG1, B7H6); HERV-H LTR-associating 2 (HHLA2, B7H7); in
  • greater than about 50% of the cancer or tumor cells detectably express one or more cell surface immune checkpoint receptor proteins (e.g., PD1 or PD-L1; a so-called “hot” cancer or tumor). In some embodiments, greater than about 1% and less than about 50% of the cancer or tumor cells detectably express one or more cell surface immune checkpoint receptor proteins (e.g., PD1 or PD-L; a so called “warm” cancer or tumor). In some embodiments, less than about 1% of the cancer cells detectably express one or more cell surface immune checkpoint receptor proteins (e.g., PD1 or PD-L; a so called “cold” cancer or tumor).
  • the subject has a cancer or tumor selected from the group consisting of an epithelial tumor (e.g., a carcinoma, a squamous cell carcinoma, a basal cell carcinoma, a squamous intraepithelial neoplasia), a glandular tumor (e.g., an adenocarcinoma, an adenoma, an adenomyoma), a mesenchymal or soft tissue tumor (e.g., a sarcoma, a rhabdomyosarcoma, a leiomyosarcoma, a liposarcoma, a fibrosarcoma, a dermatofibrosarcoma, a neurofibrosarcoma, a fibrous histiocytoma, an angiosarcoma, an angiomyxoma, a leiomyoma, a chondroma, a chondrosarcoma, an epithelial
  • the subject has a solid tumor in or arising from a tissue or organ selected from the group consisting of. bone (e.g., adamantinoma, aneurysmal bone cysts, angiosarcoma, chondroblastoma, chondroma, chondromyxoid fibroma, chondrosarcoma, chordoma, dedifferentiated chondrosarcoma, enchondroma, epithelioid hemangioendothelioma, fibrous dysplasia of the bone, giant cell tumour of bone, haemangiomas and related lesions, osteoblastoma, osteochondroma, osteosarcoma, osteoid osteoma, osteoma, periosteal chondroma, Desmoid tumor, Ewing sarcoma); lips and oral cavity (e.g., odontogenic ameloblastoma, oral leukoplakia, oral squamous cell
  • the subject has a cancer selected from the group consisting of a lung cancer, a colorectal cancer, a breast cancer, a prostate cancer, a cervical cancer and a head and neck cancer.
  • the subject has neutropenia or lymphopenia.
  • the subject has received a lymphodepleting chemotherapy regimen.
  • the subject is na ⁇ ve to or has not received chemotherapy.
  • the subject has bone marrow cells, or is not depleted of bone marrow cells.
  • the subject does not have a mutation in the gene encoding the FLT3 receptor that causes or results in or is associated with cancer.
  • the subject has a viral infection.
  • the subject is at risk of contracting a viral infection.
  • the subject may have not previously received antiviral treatment (treatment na ⁇ ve).
  • the subject may have previously received antiviral treatment (treatment experienced).
  • the viral infection is an HBV infection.
  • the viral infection is an HIV infection.
  • the viral infection is a coronavirus infection.
  • the coronavirus is a MERS-associated virus.
  • the coronavirus is a SARS-associated virus.
  • the coronavirus is a COVID-19-associated virus (SARS-CoV-2).
  • the subject may have previously received antiviral treatment and developed resistance to the previously received antiviral treatment.
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP) and/or the pharmaceutical composition are administered systemically or locally.
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition are administered intravenously, intratumorally, subcutaneously, intradermally, intramuscularly, intraperitoneally, intravesically, intracranially, intrathecally, intracavitary or intraventricularly.
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition and the one or more additional therapeutic agents are administered by the same routes or by different routes of administration.
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition and the one or more additional therapeutic agents are administered concurrently or sequentially.
  • the FLT3L-Fc fusion protein has a serum half-life of at least about 7 days, e.g., at least about 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 days, or longer.
  • the methods entail multiple administrations of the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition, optionally with one or more additional therapeutic agents, at predetermined intervals.
  • the fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is administered once weekly (i.e., QW), once bi-weekly (i.e., once every other week, or once every two weeks or Q2W), once thrice-weekly (i.e., once every three weeks or Q3W), once monthly (i.e., QM) or once bi-monthly dosing (i.e., once every other month, or once every two months or Q2M), or less often.
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition and the one or more additional therapeutic agents are co-administered according to the same schedule (e.g., co-administered at the same time intervals).
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition and the one or more additional therapeutic agents are co-administered according to different schedules (e.g., co-administered at different time intervals).
  • the FLT3L fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is administered at a dose in the range of about 0.5 ⁇ g/kg to about 5000 ⁇ g/kg, e.g., at least about 0.5 ⁇ g/kg per dose and up to about 1 ⁇ g/kg, 2 ⁇ g/kg, 3 ⁇ g/kg, 4 g/kg, 5 ⁇ g/kg, 6 ⁇ g/kg, 7 ⁇ g/kg, 8 ⁇ g/kg, 9 ⁇ g/kg, 10 ⁇ g/kg, 15 ⁇ g/kg, 20 ⁇ g/kg, 30 ⁇ g/kg, 50 g/kg, 100 ⁇ g/kg, 150 ⁇ g/kg, 300 ⁇ g/kg, 400 ⁇ g/kg, 500 ⁇ g/kg, 600 ⁇ g/kg, 700 ⁇ g/kg, 800
  • the FLT3L fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP and/or the pharmaceutical composition is administered at a dose in the range of about 1 g/kg to about 100 ⁇ g/kg, e.g., at least about 1 ⁇ g/kg per dose and up to about 100 ⁇ g/kg per dose.
  • the FLT3L fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is administered at a dose of 1 ⁇ g/kg per dose, 3 ⁇ g/kg per dose, 10 jg/kg per dose, 30 jg/kg per dose, 60 jg/kg per dose, or 100 jg/kg per dose.
  • the FLT3L fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is administered at a dose of 1 ⁇ g/kg per dose. In some embodiments, the FLT3L fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is administered at a dose of 3 ⁇ g/kg per dose.
  • the FLT3L fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is administered at a dose of 10 ⁇ g/kg per dose. In some embodiments, the FLT3L fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is administered at a dose of 30 ⁇ g/kg per dose.
  • the FLT3L fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is administered at a dose of 60 g/kg per dose. In some embodiments, the FLT3L fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is administered at a dose of 100 ⁇ g/kg per dose.
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is administered at a dose in the range of about 0.5 mg to about 50 mg, e.g., at least about 0.5 mg per dose and up to about 1 mg, 2 mg, 3, mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg or 50 mg per dose.
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is administered at a dose of 10 mg per dose.
  • the FLT3-expressing cells are expanded by at least about 10-fold, 20-fold, 50-fold, 100-fold, 200-fold, 300-fold, 400-fold, 500-fold, or more, within 3 weeks of a single administration of the fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition.
  • the FLT3-expressing cells are expanded in the bone marrow and/or in a solid tumor in the subject.
  • kits comprise one or more unitary doses of the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the expression cassette, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition, as described above and herein.
  • the one or more unitary doses are in a single container.
  • the one or more unitary doses are in two or more separate containers.
  • the one or more containers can comprise vials, ampules, pre-loaded syringes and combinations thereof.
  • kits comprise one or more containers comprising the FLT3L-Fc fusion protein, the homodimer, the heterodimer, or the conjugate in an aqueous solution.
  • the aqueous solution comprises the FLT3L-Fc fusion protein, the homodimer, the heterodimer, or the conjugate at a concentration in the range of about 1-20 mg/ml, e.g., from about 1 mg/ml to about 2 mg/ml, 3 mg/ml, 4 mg/ml, 5 mg/ml, 6 mg/ml, 7 mg/ml, 8 mg/ml, 9 mg/ml, 10 mg/ml, 11 mg/ml, 12 mg/ml, 13 mg/ml, 14 mg/ml, 15 mg/ml, 16 mg/ml, 17 mg/ml, 18 mg/ml, 19 mg/ml or 20 mg/ml.
  • the aqueous solution comprises the FLT3L-Fc fusion protein, the homodimer, the heterodimer, or the conjugate at a concentration of about 2 mg/ml.
  • the one or more unitary doses can be the same or different.
  • each unitary dose is in the range of about 0.5 mg to about 50 mg, e.g., at least about 0.5 mg per dose and up to about 1 mg, 2 mg, 3, mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg or 50 mg per dose. In some embodiments, each unitary dose is about 10 mg per dose. In some embodiments, the kits further comprise one or more unitary doses of one or more additional therapeutic agents.
  • kits further comprise one or more unitary doses of one or more therapeutic agents selected from the group consisting of AGEN1884 (zalifrelimab), AGEN1181, AGEN2034 (balstilimab), AGEN1307, AGEN2373, AGEN1223 and GS-1423 (AGEN1423; see WO2019/173692).
  • the kits further comprise one or more oncolytic viral vectors.
  • the viral vector is from a viral family selected from the group consisting of: Adenoviridae (e.g., Adenovirus), Arenaviridae (e.g., lymphocytic choriomeningitis mammarenavirus, Cali mammarenavirus (a.k.a., Pichinde mammarenavirus), Poxviridae (e.g., Vaccinia virus), Herpesviridae (e.g., Herpesvirus, e.g., HSV-1), Parvoviridae (e.g., Parvovirus H1), Reoviridae (e.g., Reovirus), Picornaviridae (e.g., Coxsackievirus, Seneca Valley Virus, Poliovirus), Paramyxoviridae (e.g., Measles virus, Newcastle disease virus (NDV)), Rhabdoviridae (e.g., Vesicular stomatitis
  • kits comprise one or more antibodies or antigen-binding antibody fragments thereof, or antibody-drug conjugates thereof, CD3-targeting multi-specific molecules, CD16-targeting multi-specific molecules, or non-immunoglobulin antigen-binding domains or antibody mimetic proteins, or population of immune cells comprising a chimeric antigen receptor directed against one or more targets selected from the group consisting of: CD19, MS4A1 (CD20), CD22, IL2RA (CD25), CD27, TNFRSF8 (CD30), CD33, CD37, CD38, CD40, CD44, CD48, CD52, CD70, NT5E (CD73), ENTPD1 (CD39), CD74, CD79b, CD80, CD86, IL3RA (CD123), PROM1 (CD133), CD137, SDC1 (CD138), alpha fetoprotein (AFP), c-Met; c-Kit; C-type lectin domain family 12 member A (CLEC12A,
  • kits further comprise one or more antagonists or inhibitors of an inhibitory immune checkpoint protein or receptor and/or one or more activators or agonists of a stimulatory immune checkpoint protein or receptor.
  • the one or more immune checkpoint proteins or receptors are selected from the group consisting of.
  • kits further comprise one or more blockers or inhibitors of one or more T-cell inhibitory immune checkpoint proteins or receptors.
  • the T-cell inhibitory immune checkpoint proteins or receptors are selected from the group consisting of CD274 (CD274, PDL1, PD-L1); programmed cell death 1 ligand 2 (PDCDILG2, PD-L2, CD273); programmed cell death 1 (PDCD1, PD1, PD-1); cytotoxic T-lymphocyte associated protein 4 (CTLA4, CD152); CD276 (B7H3); V-set domain containing T cell activation inhibitor 1 (VTCN1, B7H4); V-set immunoregulatory receptor (VSIR, B7H5, VISTA); immunoglobulin superfamily member 11 (IGSF11, VSIG3); TNFRSF14 (HVEM, CD270), TNFSF14 (HVEML); CD272 (B and T lymphocyte associated (BTLA)); PVR related immunoglobulin domain containing (PVRIG, CD
  • kits further comprise one or more agonists or activators of one or more T-cell stimulatory immune checkpoint proteins or receptors.
  • the T-cell stimulatory immune checkpoint proteins or receptors are selected from the group consisting of CD27, CD70; CD40, CD40LG; inducible T cell costimulator (ICOS, CD278); inducible T cell costimulator ligand (ICOSLG, B7H2); TNF receptor superfamily member 4 (TNFRSF4, OX40); TNF superfamily member 4 (TNFSF4, OX40L); TNFRSF9 (CD137), TNFSF9 (CD137L); TNFRSF18 (GITR), TNFSF18 (GITRL); CD80 (B7-1), CD28; nectin cell adhesion molecule 2 (NECTIN2, CD112); CD226 (DNAM-1); Poliovirus receptor (PVR) cell adhesion molecule (PVR, CD155).
  • kits further comprise one or more blockers or inhibitors of one or more NK-cell inhibitory immune checkpoint proteins or receptors.
  • the NK-cell inhibitory immune checkpoint proteins or receptors are selected from the group consisting of killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 1 (KIR, CD158E1); killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 1 (KIR2DL1); killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 2 (KIR2DL2); killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 3 (KIR2DL3); killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 1 (KIR3DL1); killer cell lectin like receptor C1 (KLRC1, NKG2A, CD159A); killer cell lectin like receptor D1 (KLRD1, CD94); killer cell lectin like
  • kits further comprise one or more agonists or activators of one or more NK-cell stimulatory immune checkpoint proteins or receptors.
  • the NK-cell stimulatory immune checkpoint proteins or receptors include without limitation CD16, CD226 (DNAM-1); killer cell lectin like receptor K1 (KLRK1, NKG2D, CD314); and SLAM family member 7 (SLAMF7).
  • the kits further comprise one or more inhibitors of CD274, PDCD1 or CTLA4.
  • kits further comprise one or more inhibitors of CD274, PDCD1 or CTLA4 selected from the group consisting of ipilimumab, tremelimumab, BMS-986218, AGEN1181, AGEN1884 (zalifrelimab), BMS-986249, MK-1308, REGN-4659, ADU-1604, CS-1002, BCD-145, APL-509, JS-007, BA-3071, ONC-392, AGEN-2041, JHL-1155, KN-044, CG-0161, ATOR-1144, PBI-5D3H5, FPT-155 (CTLA4/PD-L1/CD28), PF-06936308 (PD-1/CTLA4), MGD-019 (PD-1/CTLA4), KN-046 (PD-1/CTLA4), MEDI-5752 (CTLA4/PD-1), XmAb-20717 (PD-1/CTLA4), AK-104 (CTLA4/PD-1), peripherallocate
  • kits further comprise one or more containers comprising one or more populations of immune cells selected from the group consisting of: natural killer (NK) cells, NK-T cells, T cells, cytokine-induced killer (CIK) cells, macrophage (MAC) cells, tumor infiltrating lymphocytes (TILs) and dendritic cell (DCs).
  • the population of T cells is selected from the group consisting of: alpha/beta TCR T cells, gamma/delta TCR T cells, regulatory T (Treg) cells and TRuCTM T cells.
  • the kits further comprise a population of NK-92 cells.
  • the one or more populations of immune cells comprise one or more chimeric antigen receptors (CARs).
  • the cells are allogeneic to an intended recipient.
  • the kits further comprises one or more cytokines or chemokines selected from the group consisting of: IL 2, IL-12, IL-15, IL-18, IL-21, interferon (IFN)-a, IFN—P, IFN- ⁇ , CXCL9/Mig (monokine induced by interferon-y), CXCL10/IP10 (interferon-y-inducible 10 kDa protein) and CXCL11/I-TAC (interferon-inducible T cell a-chemoattractant), CXCL4/PF4 (platelet factor 4), monocyte chemoattractant protein 2 (MCP-2), macrophage inflammatory protein 1 alpha (MIP-la), macrophage inflammatory protein 1 beta (MIP-10) and regulated on activation normal T expressed and secret
  • IFN interferon
  • kits further comprise one or more activators or agonists of: a toll-like receptor (TLR); a stimulator of interferon genes (STING) receptor; inducible T cell costimulator (ICOS, CD278); and/or a TNF receptor superfamily (TNFRSF) member.
  • TLR toll-like receptor
  • STING stimulator of interferon genes
  • ICOS inducible T cell costimulator
  • TNFRSF TNF receptor superfamily
  • the TNF receptor superfamily (TNFRSF) member is selected from the group consisting of: TNFRSFlA, TNFRSFlB, TNFRSF4 (OX40), TNFRSF5 (CD40), TNFRSF6 (FAS), TNFRSF7 (CD27), TNFRSF8 (CD30), TNFRSF9 (4-1n, CD137), TNFRSF10A (CD261, DR4, TRAILR1), TNFRSF10B (CD262, DR5, TRALR2), TNFRSF10C (CD263, TRALR3), TNFRSF10D (CD264, TRATLR4), TNFRSF11A (CD265, RANK), TNFRSF11B, TNFRSF12A (CD266), TNFRSF13B (CD267), TNFRSF13C (CD268), TNFRSF16 (NGFR, CD271), TNFRSF17 (BCMA, CD269), TNFRSF18 (GITR, CD
  • the TNFRSF4 activator or agonist comprises INCAGN1949, tavolimab (MEDI0562), pogalizumab (MOXR0916/RG7888), MEDI6469, BMS 986178, PF-04518600, GSK3174998, IBI101, ATOR-1015, ABBV-368 or SL-279252.
  • the TNFRSF9 (4-1BB or CD137) activator or agonist comprises urelumab, BMS-663513, utomilumab (PF-05082566), CTX-471, MP-0310, ADG-106, ATOR-1017 or AGEN2373.
  • the TNFRSF18 (GITR or CD357) agonist comprises GWN323, MEDI1873, MK-1248, MK-4166, TRX518, INCAGN1876, BMS-986156, BMS-986256, AMG-228, ASP1951 (PTZ 522), FPA-154 or OMP-336B11.
  • the kits comprise a molecule that concurrently binds to TNF receptor superfamily member 4 (TNFRSF4, OX40 or CD134) and TNF receptor superfamily member 18 (TNFRSF18, GITR or CD357).
  • the TLR agonist or activator is selected from the group consisting of a TLR2 agonist, a TLR3 agonist, a TLR4 agonist, a TLR5 agonist, a TLR7 agonist, a TLR8 agonist and a TLR9 agonist.
  • the TLR7 activator or agonist is selected from the group consisting of GS 9620, DS-0509, LHC-165, and TMX-101 (imiquimod), and/or wherein the TLR8 agonist is selected from the group consisting of GS-9688 and NKTR-262 (dual TLR7/TLR8 agonist).
  • the STING receptor activator or agonist or activator is selected from the group consisting of ADU-S100 (MIW-815), SB-11285, MK-1454, SR-8291, AdVCA0848, GSK-532, SYN-STING, MSA-1, SR-8291, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), cyclic-GAMP (cGAMP) and cyclic-di-AMP.
  • the kit comprises an anti-CD47 antibody.
  • the anti-CD47 antibody is magrolimab.
  • the kit comprises a SIRPalpha inhibitor.
  • the SIRPalpha inhibitor is selected from the group consisting of AL-008, RRx-001, CTX-5861, FSI-189 (GS-0189), ES-004, BI765063, ADU1805, and CC-95251.
  • kits comprise one or more inhibitors or antagonists of: protein tyrosine phosphatase, non-receptor type 11 (PTPN11 or SHP2), myeloid cell leukemia sequence 1 (MCL1) apoptosis regulator, mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) (also called Hematopoietic Progenitor Kinase 1 (HPK1)), phosphatidylinositol-4,5-bisphosphate 3-kinase, including catalytic subunit alpha (PIK3CA), catalytic subunit beta (PIK3CB), catalytic subunit gamma (PIK3CG) and catalytic subunit delta (PIK3CD), diacylglycerol kinase alpha (DGKA, DAGK, DAGK1 or DGK-alpha), 5′-nucleotidase ecto (NT5E or
  • the activator/agonist or the blocker/inhibitor comprises an antibody or an antigen-binding fragment thereof, or antibody-drug conjugate thereof, CD3-targeting multi-specific molecule, CD16-targeting multi-specific molecule, non-immunoglobulin antigen binding molecule or antibody mimetic protein. In some embodiments, the activator/agonist or the blocker/inhibitor comprises a small organic molecule.
  • the inhibitor of 5′-nucleotidase ecto is selected from the group consisting of MEDI9447 (oleclumab), CPI-006, BMS-986179, IPH5301, TJ4309 (TJD5), NZV-930, AB-680, PSB-12379, PSB-12441, PSB-12425, CB-708, GS-1423 (AGEN1423) and PBF-1662.
  • the inhibitor of CCR2 and/or CCR5 is selected from the group consisting of BMS-813160, PF-04136309 and CCX-872.
  • the inhibitor of MCL1 is selected from the group consisting of AMG-176, AMG-397, S-64315, AZD-5991, 483-LM, A 1210477, UMI-77 and JKY-5-037.
  • the inhibitor of PTPN11 or SHP2 is selected from the group consisting of TNO155 (SHP-099), RMC-4550, JAB-3068 and RMC-4630.
  • the kits further comprise an inhibitor or antagonist of a regulatory T cell (Treg).
  • the kits further comprise one or more anti-neoplastic or chemotherapeutic agents.
  • the one or more anti-neoplastic or chemotherapeutic agents are selected from the group consisting of a nucleoside analog (e.g., 5-fluorouracil, gemcitabine, cytarabine, cladribine, pentostatin, fludarabine), a taxane (e.g., paclitaxel, nab-paclitaxel, docetaxel, cabazitaxel), a platinum coordination complex (cisplatin, carboplatin, oxaliplatin, nedaplatin, triplatin tetranitrate, phenanthriplatin, picoplatin, satraplatin, dicycloplatin, eptaplatin, lobaplatin, miriplatin), a dihydrofolate reductase (DHFR) inhibitor (e.g., methotrexate, trimetrexate, pemetrexed), a topoisomerase inhibitor (e.g., doxorubic
  • FIG. 1 illustrates induction of mouse IL-6 in a mouse FLT3-expressing M1 cell line by a titration (50-0.00005 nM) of recombinant human FLT3-ligand (Recombinant huFLT3L, closed circle), recombinant human FLT3-ligand human IgG1 fusion protein (Recombinant huFLT3L-Fc, open triangle), anti-mouse FLT3 agonist antibody (Comparator 1, closed triangle) or human IgG1 isotype antibody (Isotype negative control, open square).
  • the x-axis shows the protein concentration (nM) and the y-axis shows mouse IL-6 concentration (pg/mL).
  • the cross symbol indicates the IL-6 baseline level in untreated cells.
  • Graph is a combination of two independent experiments. Experiments were performed in duplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 1.
  • FIG. 2 illustrates proliferation of a human FLT3-expressing AML5 cell line in response to a titration (100-0.0025 nM) of recombinant human FLT3-ligand (Recombinant huFLT3L, open square), human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand human IgG1 fusion protein (SEQ ID NO:21, open circle) or human IgG1 isotype antibody (hIgG1 Isotype, cross).
  • the x-axis shows the protein concentration (nM) and the y-axis shows the relative luminescence units (RLU).
  • Graph is a result of one experiment. Experiments were performed in triplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 2.
  • FIG. 3 illustrates proliferation of a human FLT3-expressing AML5 cell line induced by a titration (5-0.00008 nM) of human wildtype FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand (H8Y) human hingeless IgG1 fusion protein (SEQ ID NO:22, open circle), human FLT3-ligand (K84E) human hingeless IgG1 fusion protein (SEQ ID NO:23, open square), human FLT3-ligand (H8Y+K84E) human hingeless IgG1 fusion protein (SEQ ID NO:24, closed circle), or human IgG1 isotype antibody (hIgG1 Isotype, cross).
  • human wildtype FLT3-ligand human hingeless IgG1 fusion protein SEQ ID NO:1, open triangle
  • human FLT3-ligand (H8Y) human hingeless IgG1 fusion protein SEQ ID NO:22, open
  • the x-axis shows the protein concentration (nM) and the y-axis shows the relative luminescence units (RLU).
  • Graph is a combination of two independent experiments. Experiments were performed in triplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 3.
  • FIG. 4 illustrates proliferation of a human FLT3-expressing AML5 cell line induced by a titration (10-0.0004 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), mouse FLT3-ligand mouse IgG2a (LALA-PG) fusion protein (SEQ ID NO:19, open circle), mouse FLT3-ligand mouse IgG2a (C136S LALA-PG) fusion protein (SEQ ID NO:20, open square), or human IgG1 isotype antibody (hIgG1 Isotype, cross).
  • the x-axis shows the protein concentration (nM) and the y-axis shows the relative luminescence units (RLU).
  • Graph is a result of one experiment of Experiment was performed in triplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 4.
  • FIG. 5 illustrates proliferation of a human FLT3-expressing AML5 cell line induced by a titration (10-0.0004 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand (A5 amino acid) human hingeless IgG1 fusion protein (SEQ ID NO:2, closed triangle), human FLT3-ligand human IgG4 (S228P/L235E) fusion protein (SEQ ID NO:3, open circle), human FLT3-ligand human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:4, closed circle), human FLT3-ligand (S128A/S151A) human hingeless IgG1 fusion protein (SEQ ID NO:5, open square), human FLT3-ligand (A5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, closed
  • the x-axis shows the protein concentration (nM) and the y-axis shows the relative luminescence units (RLU).
  • Graph is a combination of two independent experiments. Experiment was performed in triplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 5.
  • FIG. 6 illustrates binding to recombinant human FLT3 of a titration (35-0.0001 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand (A5 amino acid) human hingeless IgG1 fusion protein (SEQ ID NO:2, closed triangle), human FLT3-ligand human IgG4 (S228P/L235E) fusion protein (SEQ ID NO:3, open circle), human FLT3-ligand human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:4, closed circle), human FLT3-ligand (S128A/S151A) human hingeless IgG1 fusion protein (SEQ ID NO:5, open square), human FLT3-ligand (A5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, closed square), human FLT
  • FIG. 7 illustrates binding of recombinant human FcRn with a dose titration (235-0.035 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand (A5 amino acid) human hingeless IgG1 fusion protein (SEQ ID NO:2, closed triangle), human FLT3-ligand human IgG4 (S228P/L235E) fusion protein (SEQ ID NO:3, open circle), human FLT3-ligand human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:4, closed circle), human FLT3-ligand (S128A/S151A) human hingeless IgG1 fusion protein (SEQ ID NO:5, open square), human FLT3-ligand (A5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, closed square), human
  • the x-axis shows the protein concentration (nM) and the y-axis shows the optical density (OD) at 450-650 nm.
  • Graph is a result of one experiment. Experiment was performed in duplicate. Error bars represent standard deviation of the mean values. Estimated EC50 values are shown in Table 7.
  • FIG. 8 illustrates binding of human IgG to recombinant human Fc ⁇ RI competed with a titration (294-0.48 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand (A5 amino acid) human hingeless IgG1 fusion protein (SEQ ID NO:2, closed triangle), human FLT3-ligand human IgG4 (S228P/L235E) fusion protein (SEQ ID NO:3, open circle), human FLT3-ligand human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:4, closed circle), human FLT3-ligand (S128A/S151A) human hingeless IgG1 fusion protein (SEQ ID NO:5, open square), human FLT3-ligand (A5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO
  • the x-axis shows the protein concentration (nM) and the y-axis shows the relative fluorescence units (RFU).
  • Graph is a result of one experiment. Experiment was performed in duplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 8.
  • FIG. 9 illustrates binding of human IgG to recombinant human Fc ⁇ RIIIa (V-variant) competed with a dose titration (1176-1.92 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand (A5 amino acid) human hingeless IgG1 fusion protein (SEQ ID NO:2, closed triangle), human FLT3-ligand human IgG4 (S228P/L235E) fusion protein (SEQ ID NO:3, open circle), human FLT3-ligand human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:4, closed circle), human FLT3-ligand (S128A/S151A) human hingeless IgG1 fusion protein (SEQ ID NO:5, open square), human FLT3-ligand (A5 amino acid) human IgG4 (S228P/F234A/L235A
  • the x-axis shows the protein concentration (nM) and the y-axis shows the relative fluorescence units (RFU).
  • Graph is a result of one experiment. Experiment was performed in duplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 9.
  • FIG. 10 illustrates binding of recombinant human C1q to a titration (94-0.74 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand (A5 amino acid) human hingeless IgG1 fusion protein (SEQ ID NO:2, closed triangle), human FLT3-ligand human IgG4 (S228P/L235E) fusion protein (SEQ ID NO:3, open circle), human FLT3-ligand human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:4, closed circle), human FLT3-ligand (S128A/S151A) human hingeless IgG1 fusion protein (SEQ ID NO:5, open square), human FLT3-ligand (A5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, closed square),), human FLT
  • the x-axis shows the protein concentration (nM) and the y-axis shows the optical density (OD) at 450-650 nm.
  • Graph is a result of one experiment. Experiment was performed in duplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 10.
  • FIGS. 11A-11B illustrate a mouse serum concentration-time profile following 5 mg/kg intraperitoneal dosing of 8 FLT3-ligand fusion proteins relative to recombinant FLT3-ligand.
  • Panel A linear scale
  • Panel B Log 10 scale after a single dose intravenous administration (5 mg/kg) of human FLT3-ligand human hingeless IgG1 fusion protein produced in Expi293 expression system (SEQ ID NO:1 Expi293, open triangle), human FLT3-ligand human hingeless IgG1 fusion protein produced in ExpiCHO expression system (SEQ ID NO:1 ExpiCHO, closed triangle), human FLT3-ligand (A5 amino acid) human hingeless IgG1 fusion protein (SEQ ID NO:2, open circle), human FLT3-ligand human IgG4 (S228P/L235E) fusion protein (SEQ ID NO:3, closed circle), human FLT3-ligand human IgG4 (S228P/F234A/L
  • Graph is a result of one experiment.
  • the x-axis shows days post injection and the y-axis shows protein concentration in serum (pg/mL).
  • Each data point represents the mean value of 4 animals.
  • Error bars represent standard deviation (SD) of the mean values.
  • Mean pharmacokinetic values SD are shown in Table 11.
  • FIG. 12 illustrates day 11 frequency of conventional dendritic cell subtype 1 (cDC1) in spleens of C57BL/6 mice administrated intravenously with 5 mg/kg of human FLT3-ligand human hingeless IgG1 fusion protein produced in Expi293 expression system (SEQ ID NO:1 Expi293, open triangle), human FLT3-ligand human hingeless IgG1 fusion protein produced in ExpiCHO expression system (SEQ ID NO:1 ExpiCHO, closed triangle), human FLT3-ligand (A5 amino acid) human hingeless IgG1 fusion protein (SEQ ID NO:2, open circle), human FLT3-ligand human IgG4 (S228P/L235E) fusion protein (SEQ ID NO:3, closed circle), human FLT3-ligand human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:4, open square), human FLT3-ligand (S128A/S151A) human hinge
  • Baseline cDC1 frequency is indicated (closed star).
  • the x-axis shows the percentage of splenic cDC1 in total mononuclear cells (MNCs).
  • Graph is a result of one experiment. Each individual symbol represents the data point of a single mouse. Horizontal bars represent the mean values and the error bars represent standard deviation of the mean values. Mean frequency of each group is shown in Table 12.
  • FIG. 13 illustrates proliferation of a human FLT3-expressing AML5 cell line stimulated by a dose titration (10-0.0004 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand (A5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, open circle), human FLT3-ligand human hingeless IgG1 (M252Y/S254T/T256E) fusion protein (SEQ ID NO:9, open square), or human FLT3-ligand (A5 amino acid) human IgG4 (S228P/F234A/L235A/M252Y/S254T/T256E) fusion protein (SEQ ID NO:14, cross).
  • human FLT3-ligand human hingeless IgG1 fusion protein SEQ ID NO:1, open triangle
  • the x-axis shows the protein concentration (nM) and the y-axis shows the relative luminescence units (RLU).
  • Graph is a result of one experiment. Experiment was performed in duplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 13.
  • FIG. 14 illustrates differentiation of conventional dendritic cell subtype 1 (cDC1) cells from human bone marrow CD34+ stem cells by a dose titration (10-0.002 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand (A5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, open circle), human FLT3-ligand human hingeless IgG1 (M252Y/S254T/T256E) fusion protein (SEQ ID NO:9, open square), or human FLT3-ligand (A5 amino acid) human IgG4 (S228P/F234A/L235A/M252Y/S254T/T256E) fusion protein (SEQ ID NO:14, cross).
  • human FLT3-ligand human hingeless IgG1 fusion protein SEQ ID NO:1, open triangle
  • the x-axis shows the protein concentration (nM) and the y-axis shows percentage of cDC1 in total mononuclear cells (MNCs).
  • Graph is a summary of 13 bone marrow donors. Error bars represent standard error mean of the mean values. EC50 values are shown in Table 14.
  • FIG. 15 illustrates a dose titration (10-0.002 nM) potency of enhancing survival of PBMC-derived conventional dendritic cell subtype 1 (cDC1) cells by human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand (A5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, open circle), human FLT3-ligand human hingeless IgG1 (M252Y/S254T/T256E) fusion protein (SEQ ID NO:9, open square), or human FLT3-ligand (A5 amino acid) human IgG4 (S228P/F234A/L235A/M252Y/S254T/T256E) fusion protein (SEQ ID NO:14, cross).
  • human FLT3-ligand human hingeless IgG1 fusion protein SEQ ID NO:1, open triangle
  • the x-axis shows the protein concentration (nM) and the y-axis shows percentage of cDC1 in total mononuclear cells (MNCs).
  • Graph is a summary of 16 PBMC donors. Error bars represent standard error mean of the mean values. EC50 values are shown in Table 15.
  • FIG. 16 illustrates binding of recombinant human FLT3 to a titration (15-0.007 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand ( ⁇ 5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, open circle), human FLT3-ligand human hingeless IgG1 (M252Y/S254T/T256E) fusion protein (SEQ ID NO:9, open square), or human FLT3-ligand ( ⁇ 5 amino acid) human IgG4 (S228P/F234A/L235A/M252Y/S254T/T256E) fusion protein (SEQ ID NO:14, cross).
  • human FLT3-ligand human hingeless IgG1 fusion protein SEQ ID NO:1, open triangle
  • the x-axis shows the protein concentration (nM) and the y-axis shows optical density (OD) at 450 nm.
  • Graph is a result of one experiment. Experiment was performed in duplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 16.
  • FIG. 17 illustrates binding of recombinant human FcRn to a dose titration (3529-0.55 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand ( ⁇ 5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, open circle), human FLT3-ligand human hingeless IgG1 (M252Y/S254T/T256E) fusion protein (SEQ ID NO:9, open square), or human FLT3-ligand ( ⁇ 5 amino acid) human IgG4 (S228P/F234A/L235A/M252Y/S254T/T256E) fusion protein (SEQ ID NO:14, cross).
  • human FLT3-ligand human hingeless IgG1 fusion protein SEQ ID NO:1, open triangle
  • the x-axis shows the protein concentration (nM) and the y-axis shows optical density (OD) at 450-650 nm.
  • Graph is a result of one experiment. Experiment was performed in duplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 17.
  • FIG. 18 illustrates binding of human IgG to recombinant human Fc ⁇ RI competed with a titration (294-0.48 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand ( ⁇ 5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, open circle), human FLT3-ligand human hingeless IgG1 (M252Y/S254T/T256E) fusion protein (SEQ ID NO:9, open square), human FLT3-ligand ( ⁇ 5 amino acid) human IgG4 (S228P/F234A/L235A/M252Y/S254T/T256E) fusion protein (SEQ ID NO:14, cross), human IgG1 isotype antibody (open diamond), or human IgG4 isotype antibody (open star).
  • the x-axis shows the protein concentration (nM) and the y-axis shows the relative fluorescence units (RFU).
  • Graph is a result of one experiment. Experiment was performed in duplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 18.
  • FIG. 19 illustrates binding of human IgG to recombinant human Fc ⁇ RIIIa (V-variant) competed by a dose titration (1176-1.92 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand ( ⁇ 5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, open circle), human FLT3-ligand human hingeless IgG1 (M252Y/S254T/T256E) fusion protein (SEQ ID NO:9, open square), human FLT3-ligand ( ⁇ 5 amino acid) human IgG4 (S228P/F234A/L235A/M252Y/S254T/T256E) fusion protein (SEQ ID NO:14, cross), human IgG1 isotype antibody (open diamond), or human IgG4 isotype antibody (open star).
  • the x-axis shows the protein concentration (nM) and the y-axis shows the relative fluorescence units (RFU).
  • Graph is a result of one experiment. Experiment was performed in duplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 19.
  • FIG. 20 illustrates binding of recombinant human C1q to a titration (94-0.74 nM) of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand ( ⁇ 5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, open circle), human FLT3-ligand human hingeless IgG1 (M252Y/S254T/T256E) fusion protein (SEQ ID NO:9, open square), human FLT3-ligand ( ⁇ 5 amino acid) human IgG4 (S228P/F234A/L235A/M252Y/S254T/T256E) fusion protein (SEQ ID NO:14, cross), human IgG1 isotype antibody (open diamond), or human IgG4 isotype antibody (open star).
  • human FLT3-ligand human hingeless IgG1 fusion protein
  • the x-axis shows the protein concentration (nM) and the y-axis shows optical density (OD) at 450-650 nm.
  • Graph is a result of one experiment. Experiment was performed in duplicate. Error bars represent standard deviation of the mean values. EC50 values are shown in Table 20.
  • FIGS. 21A-21B illustrate Cynomolgus macaque serum concentration-time profile following 500 ⁇ g/kg intravenous and subcutaneous dosing of 4 FLT3-ligand fusion proteins relative to recombinant FLT3-ligand.
  • the x-axis shows days post injection and the y-axis shows protein concentration in serum (pg/mL). Each data point represents the mean value of 3 animals. Error bars represent standard deviation of the mean values. Mean pharmacokinetic values are shown in Table 21.
  • FIGS. 22A-22B illustrate kinetics of conventional dendritic cell subtype 1 (cDC1) fold-change in peripheral blood of Cynomolgus macaque administrated intravenously (Panel A) or subcutaneously (Panel B) with 500 pg/kg of human FLT3-ligand human hingeless IgG1 fusion protein (SEQ ID NO:1, open triangle), human FLT3-ligand ( ⁇ 5 amino acid) human IgG4 (S228P/F234A/L235A) fusion protein (SEQ ID NO:6, open circle), human FLT3-ligand human hingeless IgG1 (M252Y/S254T/T256E) fusion protein (SEQ ID NO:9, open square), human FLT3-ligand ( ⁇ 5 amino acid) human IgG4 (S228P/F234A/L235A/M252Y/S254T/T256E) fusion protein (SEQ ID NO:14, cross) at day 0.
  • FIG. 23 illustrates tumor growth kinetics of MC38 tumor-bearing C57BL/6 mice administrated intravenously with 3750 pg/kg (open triangle), 750 pg/kg (open circle), 150 pg/kg (open square), 30 pg/kg (cross) mouse FLT3-Ligand mouse IgG2a (C136S, LALA-PG), or 3753 pg/kg mouse IgG2a isotype (open star) at day 0 when tumor volume reached 50 mm 3 .
  • the x-axis is days post dosing.
  • the y-axis is tumor volume in mm 3 .
  • Graph is representative of two independent experiments. Each data point represents the mean value of 7 animals. Error bars represent standard deviation of the mean values.
  • Statistical differences in tumor growth rate of each dose group compared to the isotype group were determined by repeated mixed ANOVA mode. Data was fitted with a linear mixed effect model.
  • FIGS. 24A-24B illustrate day 7 quantification of conventional dendritic cell subtype 1 (cDC1) numbers in tumors (Panel A) or spleens (Panel B) of MC38 tumor-bearing C57BL/6 mice administrated intravenously with 3750 pg/kg (open triangle), 750 pg/kg (open circle), 150 pg/kg (open square), 30 pg/kg (cross) mouse FLT3-Ligand mouse IgG2a (C136S, LALA-PG), or 3753 pg/kg mouse IgG2a isotype (open star) at day 0 when tumor volume reached 50 mm 3 .
  • the x-axis indicates dose groups.
  • the y-axis shows the cDC1 number per gram of tumor (Panel A) or cDC1 number per spleen (Panel B).
  • Graph is a result of one experiment. Each individual symbol represents the data point of a single mouse. Horizontal bars represent the mean values and the error bars represent standard deviation of the mean values. Statistical differences were determined one-way ANOVA with Dunnett's post-test. **** p-value ⁇ 0.0001; *** p-value ⁇ 0.001; ** p-value ⁇ 0.01.
  • FIG. 25 illustrates tumor growth kinetics of MC38 tumor-bearing C57BL/6 mice administrated intravenously with QWx2 dose of 3.75 pg/kg (open circle) mouse FLT3-Ligand mouse IgG2a (C136S, LALA-PG), Q3W dose of 3 mg/kg (open triangle) anti-mouse PD-1 (clone RMP1-14), combination of the two reagents (closed circle) or QWx2 dose of 10 mg/kg mouse IgG2a isotype control (open star) at day 0 when tumor volume reached 50 mm 3 .
  • Each data point represents the mean value of 10 animals. Error bars represent standard deviation of the mean values.
  • FIG. 26 illustrates tumor growth kinetics of CT26 tumor-bearing BALB/c mice administrated intravenously with QWx2 dose of 3.75 pg/kg (open circle) mouse FLT3-Ligand mouse IgG2a (C136S, LALA-PG), Q3W dose of 3 mg/kg (open triangle) anti-mouse CTLA4 (clone 9D9), combination of the two reagents (closed circle) or Q3W dose of 10 mg/kg mouse IgG2a isotype control (open star) at day 0 when tumor volume reached 65 mm 3 .
  • Each data point represents the mean value of 10 animals. Error bars represent standard deviation of the mean values.
  • FIG. 27 diagrams an immunogenicity study in C57BL/6 mice that were transduced with an Adeno-Associated Virus (AAV) vector encoding a 1.2 ⁇ length hepatitis B virus (HBV) genome (AAV-HBV mice).
  • AAV-HBV mice were administered 3 doses of an HBV vaccine and treated with saline, mouse FLT3L, anti-mouse inhibitory PD-1, anti-mouse inhibitory CTLA-4 or anti-mouse stimulatory CD137 antibodies.
  • a control group of mice received the HBV vaccine alone but no AAV-HBV.
  • HBV-specific IFN- ⁇ ELISPOT was performed using spleens of all animals at day 105 post first vaccination.
  • FIGS. 28A-C illustrates IFN- ⁇ ELISPOT responses of AAV-HBV mice specific for HBsAg ( FIG. 28A ), HBV core ( FIG. 28B ) and HBV polymerase ( FIG. 28C ) observed at the end of the immunogenicity study diagrammed in FIG. 27 for indicated treatment and control groups.
  • FLT3L extracellular domain-immunoglobulin fragment crystallizable region
  • Fc region extracellular domain-immunoglobulin fragment crystallizable region
  • the FLT3L-Fc fusion proteins demonstrate favorable expression yields in in vitro culture, have structural properties that allow for efficient large-scale purification and long-term storage.
  • the FLT3L-Fc fusion proteins described herein have an increased serum half-life in comparison to soluble FLT3L. Whereas soluble FLT3L must be administered on a daily basis, the herein described FLT3L-Fc fusion proteins can be administered about once every 1 to 8 weeks, or longer intervals.
  • the FLT3L-Fc fusion proteins described herein are differentiated from commercially available FLT3L-Fc fusion proteins (e.g., available from BioXCell or described in Kreiter, et al., Cancer Research (2011) 71(19):6132-42) by several structural modifications that result in improved functionality and the feasibility for administration to and functional efficacy in mammalian subjects.
  • the FLT3L-Fc fusion proteins described herein have been engineered and formulated for an improved glycosylation profile, allowing for a predictable and consistent serum half-life or pharmacokinetics (PK).
  • PK pharmacokinetics
  • the IgG hinge region is truncated or eliminated.
  • the N-terminal five amino acid residues of the IgG4 hinge i.e., ESKYG (SEQ ID NO:97) are truncated or removed.
  • mutations have been incorporated to stabilize retained amino acids in a whole or truncated hinge region (e.g., S228P in a human IgG4 hinge), thereby eliminating Fab arm exchange or IgG half chain exchange, and allowing favorable chemical manufacturing controls.
  • FcR ⁇ Fc gamma receptor
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • CDC complement-dependent cytotoxicity
  • the FLT3L-Fc fusion proteins described herein are not in an antibody format, and therefore only bind to the Flt3 and FcRn receptors.
  • the FLT3L-Fc fusion proteins described herein are structurally differentiated from WO 2005/001048 and WO 2006/060021, describing FLT3L fused to HER2, CD20, TRAL, CD3 or SM5-1.
  • the lack of antigen directed binding allows systemic exposure of FLT3L-Fc which results in a systemic increase in cDC1 cells allowing the pharmacodynamics of the FLT3L-Fc to be monitored by liquid biopsy.
  • fusion proteins comprising a fms related tyrosine kinase 3 ligand (FLT3L) extracellular domain operably linked to an immunoglobulin fragment crystallizable region (Fc region), wherein at least 5 amino acids are truncated from the C-terminus of the FLT3L extracellular domain; and/or wherein the Fc region does not comprise a hinge region.
  • FLT3L fms related tyrosine kinase 3 ligand
  • Fc region immunoglobulin fragment crystallizable region
  • the FLT3L fusion proteins provided herein are capable of binding to human fms related tyrosine kinase 3 ligand (FLT3).
  • Human fms related tyrosine kinase 3 is identified as NCBI Gene ID 2322 and is also known as human CD135, FLK-2, FLK2, or STK1. Binding of FLT3L fusion proteins to FLT3L can be analyzed, for example, by FACS, SPR, ELISA, immunoprecipitation-western blot, and other assay formats known in the art.
  • the FLT3L extracellular domain comprises or is derived from a human FLT3L sequence.
  • Human fms related tyrosine kinase 3 ligand is identified as NCBI Gene ID 2323 and the alternative symbols of FLT3LG, FLT3L, FL and FLG3L. NCBI identifies two isoforms and five transcriptional variants.
  • Exemplary polynucleotide and polypeptide sequences of FLT3L include Ref Seq Nos.
  • NM_001204502.1 ⁇ NP_001191431.1 isoform 1, transcript variant 1
  • NM_001204503.1 ⁇ NP_001191432.1 isoform 1, transcript variant 2
  • NM_001459.4 ⁇ NP_001450.2 isoform 1, transcript variant 3
  • NM_001278637.1 ⁇ NP_001265566.1 isoform 2, transcript variant 4
  • NM_001278638.1 ⁇ NP_001265567.1 isoform 2, transcript variant 5).
  • the FLT3L extracellular domain comprises an amino acid sequence having at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to an amino acid sequence of NP_001191431.1, NP_001191432.1, NP_001450.2, NP_001265566.1 or NP_001265567.1, wherein the FLT3L extracellular domain binds to and activates signaling through fms related tyrosine kinase 3 (FLT3, CD135, FLK2, STK1).
  • the FLT3L extracellular domain comprises or is derived from human FLT3L isoform 1.
  • the FLT3L extracellular domain comprises or is derived from human FLT3L isoform 2.
  • the FLT3L portion of the fusion protein comprises an amino acid sequence having at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to an amino acid sequence of
  • one or more FLT3L domain amino acid residues N100, 5102, N123 and S125 are substituted, e.g., to remove the N—X-S/T motifs, and potential N-linked and/or O-linked glycosylation sites, e.g., to an amino acid residue selected from the group consisting of glycine (G), alanine (A), or valine (V), wherein the amino acid residue positions are with reference to SEQ ID NOs: 1-18, 21-27 or 71-81.
  • G glycine
  • A alanine
  • V valine
  • one or both of the serine residues at positions 102 and 125 are substituted to alanine (A), wherein the amino acid residue positions are with reference to SEQ ID NOs: 1-18, 21-27 or 71-81.
  • the FLT3L extracellular domain comprises one or more amino acid substitutions at the following positions: H8, K84, S102 and/or S125, wherein the amino acid residue positions are with reference to SEQ ID NOs: 1-18, 21-27 or 71-81.
  • the FLT3L extracellular domain comprises one or more of the following amino acid substitutions: H8Y, K84E; S102A; and/or S125A; wherein the amino acid residue positions are with reference to SEQ ID NOs: 1-18, 21-27 or 71-81.
  • Modifications may be made in the structure of the FLT3L-Fc polynucleotides and polypeptides described herein and still obtain a functional molecule that encodes a variant or derivative polypeptide with desirable characteristics.
  • a functional molecule that encodes a variant or derivative polypeptide with desirable characteristics.
  • amino acids may be substituted for other amino acids in a protein structure without appreciable loss of its ability to bind other polypeptides (e.g., antigens) or cells. Since it is the binding capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence, and, of course, its underlying DNA coding sequence, and nevertheless obtain a protein with like properties. It is thus contemplated that various changes may be made in the polypeptide sequences of the disclosed antibodies and antigen-binding fragments thereof, or corresponding DNA sequences that encode said polypeptides without appreciable loss of their biological utility or activity.
  • a polypeptide variant will contain one or more conservative substitutions.
  • a “conservative substitution” is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged.
  • two sequences are said to be “identical” if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence, as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity.
  • a “comparison window” as used herein refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, or over the full length of a sequence, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.
  • Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, Wis.), using default parameters.
  • This program embodies several alignment schemes described in the following references: Dayhoff, M. O. (1978) A model of evolutionary change in proteins—Matrices for detecting distant relationships. In Dayhoff, M. O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington D.C. Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol.
  • optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981) Add. APL. Math 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity methods of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. USA 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis.), or by inspection.
  • BLAST and BLAST 2.0 are described in Altschul et al. (1977) Nucl. Acids Res. 25:3389-3402 and Altschul et al. (1990) J. Mol. Biol. 215:403-410, respectively.
  • BLAST and BLAST 2.0 can be used, for example with the parameters described herein, to determine percent sequence identity for the polynucleotides and polypeptides described herein.
  • Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (blast.ncbi.nlm.nih.gov/Blast.cgi).
  • cumulative scores can be calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always ⁇ 0). Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
  • the BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment.
  • a scoring matrix can be used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
  • the BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment.
  • the “percentage of sequence identity” is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences.
  • the percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residues occur in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e., the window size) and multiplying the results by 100 to yield the percentage of sequence identity.
  • the FLT3L extracellular domain does not comprise a signal peptide.
  • the FLT3L extracellular domain comprises an N-terminal signal peptide.
  • the signal peptide can be an endogenous signal peptide (e.g., from a native or wild-type FLT3L protein), or from a heterologous polypeptide.
  • the heterologous signal peptide is from a secreted protein, e.g., a serum protein, an immunoglobulin or a cytokine.
  • the signal peptide is from a serum albumin signal peptide (e.g., having the amino acid sequence KWVTFISLLFLFSSAYS (SEQ ID NO:82).
  • the signal peptide is from a FLT3L protein (e.g., having the amino acid sequence MTVLAPAWSPTTYLLLLLLLSSGLSG (SEQ ID NO:83) or MTVLAPAWSPNSSLLLLLLSPCLRG (SEQ ID NO:84).
  • the signal peptide can be designed to be cleaved off, e.g., after secretion from the cell, to form a mature fusion protein.
  • a modified human serum albumin signal peptide to secrete proteins in cells that can find use in expressing the present fusion proteins is described, e.g., in Attallah, et al., Protein Expr Purf (2017) 132:27-33. Additional signal peptide sequences for use in expressing the herein described fusion proteins are described, e.g., in Kober, et al., Biotechnol Bioeng. (2013) 110(4):1164-73.
  • At least five amino acids are truncated from the C-terminus of the FLT3L extracellular domain.
  • at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues are truncated or removed from the C-terminus of the FLT3L extracellular domain.
  • the FLT3L extracellular domain in the fusion protein is no longer than 147, 148, 149, 150, 151, 152, 153, 154, 155, 156 or 157 amino acid residues in length.
  • the FLT3L extracellular domain does not comprise the amino acid sequence PTAPQ (SEQ ID NO:85), APTAPQ (SEQ ID NO:86), TAPTAPQ (SEQ ID NO:87), ATAPTAPQ (SEQ ID NO:88), EATAPTAPQ (SEQ ID NO:89), or LEATAPTAPQ (SEQ ID NO:90).
  • the FLT3L extracellular domain does not comprise the amino acid sequence PTAPQPP (SEQ ID NO:91), APTAPQPP (SEQ ID NO:92), TAPTAPQPP (SEQ ID NO:93), ATAPTAPQPP (SEQ ID NO:94), EATAPTAPQPP (SEQ ID NO:95), or LEATAPTAPQPP (SEQ ID NO:96).
  • the FLT3L extracellular domain comprises or is derived from a mouse or murine FLT3L sequence.
  • Mus musculus fms related tyrosine kinase 3 ligand is identified as NCBI Gene ID 14256 and the alternative symbols of Flt31, Ly72L and Flt3lg.
  • NCBI identifies one validated isoform and three unvalidated isoforms (X1, X2 and X3).
  • Exemplary polynucleotide and polypeptide sequences of FLT3L include Ref Seq Nos.
  • NM_013520.3 ⁇ NP_038548.3 (validated isoform 1); XM_006540607.3 ⁇ XP_006540670.1 (isoform X1); XM_006540608.3 ⁇ XP_006540671.1 (isoform X1); XM_006540606.2 ⁇ XP_006540669.1 (isoform X1); XM_011250793.1 ⁇ XP_011249095.1 (isoform X1); XM_006540609.3 ⁇ XP_006540672.1 (isoform X2); XM_006540610.3 ⁇ XP_006540673.1 (isoform X2); XM_006540612.3 ⁇ XP_006540675.1 (isoform X3); and XM_011250794.2 ⁇ XP_011249096.1 (isoform X3).
  • the FLT3L extracellular domain comprises an amino acid sequence having at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to an amino acid sequence of NP_038548.3, XP 006540670.1, XP 006540671.1, XP 006540669.1, XP_011249095.1, XP_006540672.1, XP_006540673.1, XP 006540675.1, XP_011249096.1, wherein the FLT3L extracellular domain binds to and activates signaling through fms related tyrosine kinase 3 (FLT3, CD135, FLK2, STK1), and promotes or increases the proliferation of cells expressing FLT3 on their cell surface.
  • FLT3L extracellular domain binds to
  • the FLT3L extracellular domain comprises or is derived from murine FLT3L isoforms 1, X1, X2 or X3.
  • at least five amino acids are truncated from the C-terminus of the mouse FLT3L extracellular domain.
  • at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues are truncated or removed from the C-terminus of the mouse FLT3L extracellular domain.
  • the FLT3L extracellular domain in the fusion protein is no longer than 149, 150, 151, 152, 153, 154, 155, 156, 157, 158 or 159 amino acid residues in length.
  • the mouse FLT3L portion of the fusion protein comprises an amino acid sequence having at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to an amino acid sequence of:
  • cysteine at position 109 is substituted to an amino acid residue selected from the group consisting of glycine (G), alanine (A), serine (S), threonine (T) or valine (V), wherein the amino acid residue positions are with reference to SEQ ID NOs: 19, 20 and 42.
  • the FLT3L extracellular domain comprises or is derived from a macaque or macaca FLT3L sequence.
  • Macaca mulatta (Rhesus monkey) fms related tyrosine kinase 3 ligand is identified as NCBI Gene ID 719239 and the alternative symbols of FLT3L and FLT3LG.
  • NCBI identifies five unvalidated isoforms (X1, X2, X3, X4, X5).
  • Exemplary polynucleotide and polypeptide sequences of FLT3L include Ref Seq Nos.
  • XM_015124576.1 ⁇ XP_014980062.1 isoform X1
  • XM_015124578.1 ⁇ XP_014980064.1 isoform X2
  • XM_015124579.1 ⁇ XP_014980065.1 isoform X3
  • XM_015124580.1 ⁇ XP_014980066.1 isoform X4
  • XM_015124581.1 ⁇ XP_014980067.1 isoform X5
  • the FLT3L extracellular domain comprises an amino acid sequence having at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to an amino acid sequence of XP_014980062.1, XP_014980064.1, XP_014980065.1, XP_014980066.1 or XP_014980067.1, wherein the FLT3L extracellular domain binds to and activates signaling through fms related tyrosine kinase 3 (FLT3, CD135, FLK2, STK1), and promotes or increases the proliferation of cells expressing FLT3 on their cell surface.
  • FLT3, CD135, FLK2, STK1 fms related tyrosine kinase 3
  • the FLT3L extracellular domain comprises or is derived from macaque FLT3L isoforms X1, X2, X3, X4 or X5.
  • at least five amino acids are truncated from the C-terminus of the macaque FLT3L extracellular domain.
  • at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues are truncated or removed from the C-terminus of the macaque FLT3L extracellular domain.
  • the FLT3L extracellular domain in the fusion protein is no longer than 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164 or 165 amino acid residues in length.
  • the FLT3L extracellular domain is comprised of or derived from a canine or a feline FLT3L extracellular domain.
  • the dog or Canis lupus FLT3L portion of the fusion protein comprises an amino acid sequence having at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to an amino acid sequence of.
  • NP_001003350.1, XP_005615795.1 or XP_022273164.1 is derived from a canine or a feline FLT3L extracellular domain.
  • the cat or Felis catus FLT3L portion of the fusion protein comprises an amino acid sequence having at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to an amino acid sequence of: NP_001009842.1 or XP_011287950.1.
  • polypeptide variant is a polypeptide that typically differs from a polypeptide specifically disclosed herein in one or more substitutions, deletions, additions and/or insertions. Such variants may be naturally occurring or may be synthetically generated, for example, by modifying one or more of the above polypeptide sequences described herein and evaluating one or more biological activities of the polypeptide as described herein and/or using any of a number of techniques well known in the art.
  • variants may also refer to any naturally occurring or engineered molecule comprising one or more nucleotide or amino acid mutations.
  • the multi-specific antigen binding molecule is a bispecific antigen binding molecule.
  • the multi-specific antigen binding molecule is a bispecific antibody.
  • somatic variants may encompass all related naturally occurring antibodies that are part of or derived from the same B-cell lineage.
  • Engineered variants may encompass all single mutations or combinatorial mutations made to an antibody.
  • the FLT3L extracellular domain, or truncated fragment thereof is operably linked to an Fe domain.
  • the Fe domain is comprised of or derived from the same species as the FLT3L extracellular domain (e.g., human, dog, cat, mouse or monkey).
  • the FLT3L extracellular domain, or truncated fragment thereof is directly linked or contiguously linked or abutted to the Fc domain.
  • the FLT3L extracellular domain, or truncated fragment thereof is operably linked to the Fc domain via a linker.
  • the linker can be a flexible linker, e.g., a sequence comprising 3 or 4 repeats of a GGGGS motif or “G-S linker” (SEQ ID NO:99) (Desplancq et al. 1994 , Protein Engineering 7:1027-1033).
  • the Fc region is from a human IgG1, IgG2, IgG3 or IgG4. In some embodiments, the Fc region is from a human IgG1 or IgG4.
  • the FLT3L extracellular domain, or truncated fragment thereof is directly linked to, or linked via an intervening amino acid sequence (e.g., a G-S linker), to a human IgG1 (e.g., mutant IgG1m3 sequence), IgG2, IgG3 or IgG4 with 1 to 10 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) amino acid substitutions.
  • the Fc modifications can promote one or more of increased serum half-life or decreased antibody effector function of the molecule. In other embodiments, certain of these modifications, decrease antibody effector function and increase half-life of the antibody.
  • the FLT3L-Fc fusion proteins described herein comprise two or more, three or more, four or more, five or more, six or more, six or fewer, five or fewer, four or fewer, three or fewer, two or fewer, or one modified Fc amino acid residue(s). Exemplary amino acid substitutions are described below.
  • the Fc domain of the fusion protein does not comprise a hinge region; it is truncated or deleted, in whole or in part.
  • the structural hinge region of human IgG1, IgG2 and IgG4 antibodies is a peptide linker of about 19 to 23 amino acids containing two to four cysteine residues, is genetically encoded on the hinge exon together with the 5′-end of the CH2 exon, and allows for disulfide bridges between first and second Fc domains (Roux, et al., J. Immunol. (1998) 161:4083).
  • the structural hinge region is comprised of amino acid residue positions 216-238 (EU numbering) or 226-251 (Kabat numbering) (identified on imgt.org).
  • the Fc region comprises or is derived from a human IgG4 isotype and does not comprise the amino acid sequence ESKYGPPCPPCP (SEQ ID NO:100). In some embodiments, the Fc region comprises or is derived from a human IgG1 isotype and does not comprise the amino acid sequence EPKSCDKTHTCPPCP (SEQ ID NO:101) or EPKSCDKTHTCPPCPAPELL (SEQ ID NO:110).
  • the Fc region comprises amino acid modifications that promote an increased serum half-life of the fusion protein. Mutations that increase the half-life of an antibody have been described.
  • the constant region of a FLT3L-Fc fusion proteins described herein comprise a methionine to tyrosine substitution at position 252 (EU numbering), a serine to threonine substitution at position 254 (EU numbering), and a threonine to glutamic acid substitution at position 256 (EU numbering). See, e.g., U.S. Pat. No. 7,658,921.
  • the FLT3L-Fc fusion proteins described herein comprise an IgG constant domain comprising one, two, three or more amino acid substitutions of amino acid residues at positions 251-257, 285-290, 308-314, 385-389, and 428-436 (EU numbering).
  • M428L and N434S (“LS”) substitutions can increase the pharmacokinetic half-life of the fusion protein.
  • the FLT3L-Fc fusion proteins described herein comprise a M428L and N434S substitution (EU numbering).
  • the FLT3L-Fc fusion proteins described herein comprise T250Q and M428L (EU numbering) mutations.
  • the FLT3L-Fc fusion proteins described herein comprise H433K and N434F (EU numbering) mutations.
  • the FLT3L-Fc fusion proteins described herein can have an Fc domain with amino acid substitutions that reduce or eliminate Fc effector function (including, e.g., antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC)).
  • Fc effector function including, e.g., antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC)).
  • the Fc region is altered by replacing at least one amino acid residue with a different amino acid residue to reduce or eliminate effector function(s) of the antibody.
  • one or more amino acids selected from amino acid residues 234, 235, 236, 237, 297, 318, 320 and 322 (EU numbering) can be replaced with a different amino acid residue such that the fusion protein has decreased affinity for an effector ligand.
  • the effector ligand to which affinity is altered can be, for example, an Fc receptor (e.g., at residue positions 234, 235, 236, 237, 297 (EU numbering)) or the C1 component of complement (e.g., at residue positions 297, 318, 320, 322 (EU numbering)).
  • an Fc receptor e.g., at residue positions 234, 235, 236, 237, 297 (EU numbering)
  • the C1 component of complement e.g., at residue positions 297, 318, 320, 322 (EU numbering)
  • Fc modifications reducing or eliminating effector function include substitutions, insertions, and deletions, e.g., at one or more positions including 234, 235, 236, 237, 267, 269, 325, and 328, e.g., 234G, 235G, 236R, 237K, 267R, 269R, 325L, and 328R (EU numbering). Further, an Fc variant may comprise 236R/328R.
  • Effector functions can be reduced, while maintaining neonatal FcR binding (maintaining half-life), by mutating IgG residues at one or more of positions 233-236 and 327-331, such as E233P, L234V, L235A, optionally G236A, A327G, A330S and P331S in IgG1; E233P, F234V, L235A, optionally G236A, in IgG4; and A330S and P331S in IgG2 (EU numbering). See Armour et al. (1999) Eur. J. Immunol. 29:2613; WO 99/58572.
  • ADCC activity may be reduced by modifying the Fc region.
  • sites that affect binding to Fc receptors may be removed, e.g., sites other than salvage receptor binding sites.
  • an Fc region may be modified to remove an ADCC site.
  • Exemplary ADCC sites have been described with respect to ADCC sites in IgG1 (Sarmay, et al, (1992) Molec. Immunol. 29 (5): 633-9).
  • the G236R and L328R variant of human IgG1 effectively eliminates Fc ⁇ R binding (Horton, et al. (2011) J. Immunol. 186:4223 and Chu, et al. (2008) Mol. Immunol. 45:3926).
  • the Fc having reduced binding to Fc ⁇ Rs comprises the amino acid substitutions L234A, L235E and G237A.
  • Modifications in the IgG Fc region to decrease binding to Fc ⁇ RI to decrease ADCC e.g., 234A; 235E; 236A; G237A
  • ADCC e.g., 234A; 235E; 236A; G237A
  • WO 88/007089 can be used in the present fusion proteins. See also Duncan & Winter (1988) Nature 332:563; Chappel et al. (1991) Proc. Nat'l Acad. Sci. (USA) 88:9036; and Sondermann et al. (2000) Nature 406:267 (discussing the effects of these mutations on Fc ⁇ RIII binding).
  • CDC activity may also be reduced by modifying the Fc region. Mutations at IgG1 positions D270, K322, P329 and P331, specifically alanine mutations D270A, K322A, P329A and P331A, significantly reduce the ability of the corresponding antibody to bind C1q and activate complement (Idusogie et al. (2000) J. Immunol. 164:4178; WO 99/51642. Modification of position 331 of IgG1 (e.g., P331S) has been shown to reduce complement binding (Tao et al. (1993) J. Exp. Med. 178:661; Xu Y, et al. J Biol Chem. 1994.
  • one or more amino acid residues within amino acid positions 231 to 239 are altered to thereby reduce the ability of the antibody to fix complement (WO 94/29351).
  • Modifications in the IgG Fc region identified in WO 88/007089 that reduce or eliminate binding to complement component C1q, and therefore reduce or eliminate CDC can be used in the present fusion proteins.
  • the Fc with reduced complement fixation has the amino acid substitutions A330S and P331S. Gross et al. (2001) Immunity 15:289.
  • Fc variants having reduced ADCC and/or CDC are disclosed at Glaesner et al. (2010) Diabetes Metab. Res. Rev. 26:287 (F234A and L235A to decrease ADCC and ADCP in an IgG4); Hutchins et al. (1995) Proc. Nat'l Acad. Sci. (USA) 92:11980 (F234A, G237A and E318A in an IgG4); An et al. (2009) MAbs 1:572 and U.S. Pat. App. Pub. 2007/0148167 (H268Q, V309L, A330S and P331S in an IgG2); McEarchern et al.
  • the fusion protein has an Fc having essentially no effector function, e.g., the Fc has reduced or eliminated binding to Fc ⁇ Rs and reduced or eliminated complement fixation, e.g., is effectorless.
  • An exemplary IgG1 Fc that is effectorless comprises the following five mutations: L234A, L235E, G237A, A330S and P331S (EU numbering) (Gross et al. (2001) Immunity 15:289). These five substitutions may be combined with N297A to eliminate glycosylation as well.
  • the Fc region comprises or is derived from a human IgG1.
  • the antibody has a chimeric heavy chain constant region (e.g., having the CH1, hinge, CH2 regions of IgG4 and CH3 region of IgG1).
  • the FLT3L-Fc fusion proteins described herein include an IgG1 heavy chain having an allotype of G1m1; nG1m2; G1m3; G1m17,1; G1m17,1,2; G1m3,1; or G1m17.
  • Each of these allotypes or isoallotypes is characterized by the following amino acid residues at the indicated positions within the IgG1 heavy chain constant region (Fc) (EU numbering):
  • G1m1 D356, L358;
  • nG1m1 E356, M358;
  • G1m3 R214, E356, M358, A431;
  • G1m17,1 K214, D356, L358, A431;
  • G1m17,1,2 K214, D356, L358, G431;
  • G1m3,1 R214, D356, L358, A431;
  • G1m17 K214, E356, M358, A431.
  • the FLT3L extracellular domain, or truncated fragment thereof is directly linked to, or linked via an intervening amino acid sequence (e.g., a G-S linker), to a wild type IgG1m3 sequence, or fragment thereof, provided below.
  • an intervening amino acid sequence e.g., a G-S linker
  • the FLT3L-Fc fusion protein has an IgG1 isotype. In some embodiments, the FLT3L-Fc fusion protein contains a human IgG1 constant region. In some embodiments, the human IgG1 Fc region contains one or more modifications. For example, in some embodiments, the Fc region contains one or more amino acid substitutions (e.g., relative to a wild-type Fc region of the same isotype). In some embodiments, the one or more amino acid substitutions are selected from N297A, N297Q (Bolt S et al.
  • the Fc region further includes an amino acid deletion at a position corresponding to glycine 236 according to the EU numbering convention.
  • numbering of a given amino acid polymer or nucleic acid polymer “corresponds to”, is “corresponding to” or is “relative to” the numbering of a selected or reference amino acid polymer or nucleic acid polymer when the position of any given polymer component (e.g., amino acid, nucleotide, also referred to generically as a “residue”) is designated by reference to the same or to an equivalent position (e.g., based on an optimal alignment or a consensus sequence) in the selected amino acid or nucleic acid polymer, rather than by the actual numerical position of the component in the given polymer.
  • any given polymer component e.g., amino acid, nucleotide, also referred to generically as a “residue”
  • the FLT3L-Fc fusion protein has an IgG1 isotype with a heavy chain constant region that contains a C220S amino acid substitution according to the EU numbering convention.
  • the Fc region comprises a human IgG1 isotype and comprises one or more amino acid substitutions in the Fc region at a residue position selected from the group consisting of. N297A, N297G, N297Q, N297G, D265A, L234A, L235A, C226S, C229S, P238S, E233P, L234V, P238A, A327Q, A327G, P329A, P329G, K322A, L234F, L235E, P331S, T394D, A330L, M252Y, S254T, T256E, M428L, N434S, T366W, T366S, L368A, Y407V and any combination thereof, wherein the numbering of the residues is according to EU numbering.
  • the Fc region comprises a human IgG1 isotype and comprises one or more amino acid substitutions in the Fc region at a residue position selected from the group consisting of: L234A, L234V, L234F, L235A, L235E, A330L, P331S, and any combination thereof, wherein the numbering of the residues is according to EU numbering.
  • IgG4 antibodies may be used, or antibodies or fragments lacking the Fc region or a substantial portion thereof can be devised, or the Fc may be mutated to eliminate glycosylation altogether (e.g., N297A).
  • a hybrid construct of human IgG2 (CHI domain and hinge region) and human IgG4 (CH2 and CH3 domains) has been generated that is devoid of effector function, lacking the ability to bind the Fc ⁇ Rs (like IgG2) and unable to activate complement (like IgG4).
  • the Fc region comprises or is derived from a human IgG4.
  • the FLT3L-Fc fusion protein has an IgG4 isotype.
  • the FLT3L-Fc fusion protein contains a human IgG4 constant region.
  • the human IgG4 constant region includes an Fc region.
  • the Fc region contains one or more modifications. For example, in some embodiments, the Fc region contains one or more amino acid substitutions (e.g., relative to a wild-type Fc region of the same isotype).
  • the one or more amino acid substitutions are selected from E233P, F234V, F234A, L235A, G237A, E318A, S228P, L235E, T394D, M252Y, S254T, T256E, N297A, N297G, N297Q, T366W, T366S, L368A, Y407V, M428L, N434S, and any combination thereof, where the amino acid position is according to the EU numbering convention. See, e.g., Hutchins et al.
  • the Fc region comprises a human IgG4 isotype and comprises one or more amino acid substitutions in the Fc region at a residue position selected from the group consisting of: F234V, F234A, L235A, L235E, S228P, and any combination thereof, wherein the numbering of the residues is according to EU numbering.
  • an IgG4 variant of the present disclosure may be combined with an S228P mutation according to the EU numbering convention (Angal et al., (1993) Mol Immunol, 30:105-108) and/or with one or more mutations described in Peters et al., (2012) J Biol Chem. 13; 287(29):24525-33) to enhance antibody stabilization.
  • the FLT3L-Fc fusion protein has an IgG2 isotype.
  • the FLT3L-Fc fusion protein contains a human IgG2 constant region.
  • the human IgG2 constant region includes an Fc region.
  • the Fc region contains one or more modifications.
  • the Fc region contains one or more amino acid substitutions (e.g., relative to a wild-type Fc region of the same isotype).
  • the one or more amino acid substitutions are selected from P238S, V234A, G237A, H268A, H268Q, H268E, V309L, N297A, N297G, N297Q, V309L, A330S, P331 S, C232S, C233S, M252Y, S254T, and/or T256E, where the amino acid position is according to the EU numbering convention (Vafa, et al., (2014) Methods 65:114-126).
  • the FLT3L-Fc fusion proteins described herein comprise the L234F, L235E, D265A mutations, which are collectively referred to as “FEA.”
  • the FEA mutations decrease or abrogate effector function.
  • the FLT3L-Fc fusion proteins described herein comprise the L234F, L235E, D265A, and F405L mutations, which are collectively referred to as “FEAL.”
  • the FLT3L-Fc fusion proteins described herein comprise the L234F, L235E, D265A, and a mutation selected from the group consisting of F405L, F405A, F405D, F405E, F405H, F405I, F405K, F405M, F405N, F405Q, F405S, F405T, F405V, F405W, and F405Y.
  • the FLT3L-Fc fusion proteins described herein comprise the L234F, L235E, D265A, and K409R mutations, which are collectively referred to as “FEAR.”
  • FEAR FEAL and FEAR are comprised in a fusion protein described herein.
  • the FLT3L-Fc fusion proteins described herein additionally comprise the M428L and N434S mutations, which are collectively referred to as LS.
  • the FLT3L-Fc fusion proteins described herein comprise the L234F, L235E, D265A, F405L, M428L, and N434S mutations, which are collectively referred to as “FEALLS.”
  • the FLT3L-Fc fusion proteins described herein comprise the L234F, L235E, D265A, M428L, and N434S mutations along with one further mutation selected from the group consisting of F405L, F405A, F405D, F405E, F405H, F405I, F405K, F405M, F405N, F405Q, F405S, F405T, F405V, F405W, and F405Y.
  • the FLT3L-Fc fusion proteins described herein comprise the L234F, L235E, D265A, K409R, M428L, and N434S mutations which are collectively referred to as “FEARLS.”
  • FEARLS FLT3L-Fc fusion proteins
  • FEALLS and FEARLS are comprised in a fusion protein described herein.
  • the one or more modifications are selected from the following Fc amino acid substitutions (EU numbering) or combinations thereof.
  • the one or more modifications is selected from the group consisting of: D265A, L234F, L235E, N297A, N297G, N297Q, and P331S. In certain embodiments, the one or more modifications are selected from N297A and D265A. In certain embodiments, the one or more modifications are selected from L234F and L235E. In certain embodiments, the one or more modifications are selected from L234F, L234E, and D265A. In certain embodiments, the one or more modifications are selected from L234F, L234E, and N297Q. In certain embodiments, the one or more modifications are selected from L234F, L235E, and P331S.
  • the one or more modifications are selected from D265A and N297Q. In certain embodiments, the one or more modifications are selected from L234F, L235E, D265A, N297A, N297G, N297Q, and P331S.
  • Mutations that reduce Fc-receptor binding and find use in the herein described fusion proteins include, for example, N297A; N297G; N297Q; D265A; L234F/L235E; L234F/L235E/N297Q; L234F/L235E/P331S; D265A/N297Q; and L234F/L235E/D265A/N297Q/P331S (all EU numbering).
  • the FLT3L-Fc fusion proteins described herein described herein comprise L234F and L235E mutations.
  • the FLT3L-Fc fusion proteins described herein described herein comprise L234F, L235E, and D265A mutations. In certain embodiments the FLT3L-Fc fusion proteins described herein described herein comprise L234F, L235E, and N297Q mutations. In certain embodiments the FLT3L-Fc fusion proteins described herein described herein comprise an N297A or N297Q mutation. In certain embodiments the FLT3L-Fc fusion proteins described herein described herein comprise an N297A, N297G or N297Q mutation as well as L234F, L235E, and D265A mutations.
  • one, two, three, four, or more amino acid substitutions are introduced into a Fc region to alter the effector function of the antigen binding molecule.
  • these substitutions are located at positions selected from the group consisting of amino acid residues 234, 235, 236, 237, 265, 297, 318, 320, and 322, (according to EU numbering). These positions can be replaced with a different amino acid residue such that the antigen binding molecule has an altered (e.g., reduced) affinity for an effector ligand (e.g., an Fc receptor or the C1 component of complement), but retains the antigen binding ability of the parent antibody.
  • an effector ligand e.g., an Fc receptor or the C1 component of complement
  • the FLT3L-Fc fusion proteins described herein described herein comprise E233P, L234V, L235A, and/or G236A mutations (EU numbering). In some embodiments, the FLT3L-Fc fusion proteins described herein comprise A327G, A330S, and/or P331S mutations (EU numbering). In some embodiments, the FLT3L-Fc fusion proteins described herein comprise K322A mutations (EU numbering). In some embodiments the FLT3L-Fc fusion proteins described herein comprise E318A, K320A, and K322A (EU numbering) mutations. In certain embodiments, the FLT3L-Fc fusion proteins described herein comprise a L235E (EU numbering) mutation.
  • the Fc portion of the fusion protein comprises an amino acid sequence having at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to an amino acid sequence of
  • FLT3-Fc fusion protein comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-18 and 21-27.
  • FLT3-Fc fusion protein comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-18 and 21-27.
  • FLT3-Fc fusion protein comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 19-20.
  • FLT3-Fc fusion protein comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 19-20.
  • the FLT3L-Fc fusion proteins may be glycosylated or aglycosylated. In certain embodiments where the FLT3L-Fc fusion protein is glycosylated, at least 50%, at least 60%, at least 70%, least 80%, at least 85%, at least 90%, or more, N-linked and/or O-linked glycosylation sites in the fusion protein are sialylated.
  • the sialylated N-linked and/or O-linked glycosylation sites in the fusion protein comprise from 2 to 7 sialic acid residues, e.g., from 3 to 6 sialic acid residues, e.g., from 4 to 5 sialic acid residues.
  • the FLT3L-Fc fusion proteins have a serum half-life of at least about 7 days, e.g., in a mammal, e.g., in a human, monkey, mouse, cat or dog. In some embodiments, the FLT3L-Fc fusion proteins have a serum half-life of at least about 7 days, e.g., at least about 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 days, or longer, e.g., in a mammal, e.g., in a human, monkey, mouse, cat or dog. Generally, a shorter serum half-life is observed with relatively lower doses. A longer serum half-life is observed with relatively higher doses.
  • the FLT3L-Fc fusion proteins described herein induce, promote and/or increase the growth, proliferation and/or expansion of cells or populations of cells that express or overexpress FLT3 on their cell surface.
  • Illustrative cells or populations of cells that express or overexpress FLT3 include dendritic cells (e.g., cDC1 cells and/or cDC2 cells), monocyte-derived dendritic cells (moDCs), and/or progenitor cells thereof.
  • the cell or population of cells that express FLT3 comprise hematopoietic progenitor cells, e.g., Common Lymphoid Progenitors (CLPs), Early Progenitors with Lymphoid and Myeloid potential (EPLMs), granulocyte-monocyte (GM) progenitors (GMP), monocyte-derived dendritic cells (moDCs) progenitors, and early multi-potent progenitors (MPP) within the Lineage-kit+Sca1 (LSK) compartment.
  • CLPs Common Lymphoid Progenitors
  • EPLMs Early Progenitors with Lymphoid and Myeloid potential
  • GM granulocyte-monocyte
  • miDCs monocyte-derived dendritic cells
  • MPP early multi-potent progenitors
  • FLT3L-Fc fusion proteins PROTEIN NO: SEQ ID NO: Features Polypeptide Sequence (Fc domain is underlined) 1 FLT3L ECD- hingeless TQDCSFQHSPISSDFAVKIRELSDYLLQDYPVTVASNLQDEELCGGLWRLVLAQRWMERLKTVAG hG1 SKMQGLLERVNTEIHFVTKCAFQPPPSCLRFVQTNISRLLQETSEQLVALKPWITRQNFSRCLEL QCQPDSSTLPPPWSPRPLEATAPTAPQ GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRW
  • fusion proteins comprising (i) a FLT3L-Fc fusion protein described herein, e.g., having an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 19-20, and (ii) a second polypeptide.
  • the second polypeptide comprises a targeting moiety or domain, a growth factor, a cytokine, a chemokine or a TNF superfamily (TNFSF) member.
  • the second polypeptide is N-terminal to the FLT3L extracellular domain. In some embodiments, the second polypeptide is C-terminal to the Fc region. In some embodiments, the second polypeptide is between the FLT3L extracellular domain and the Fc region. In various embodiments, the targeting moiety binds to a protein target in Table B.
  • heterodimeric molecules comprising (i) a FLT3L-Fc fusion protein described herein, e.g., having an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 19-20, and (ii) a second polypeptide fused to a second Fc region.
  • a FLT3L-Fc fusion protein described herein e.g., having an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, identical to an amino acid sequence selected from the group consisting of SEQ ID NOs
  • the first and second Fc regions of the heterodimeric molecules are different, e.g., having complementary “knob (W)-and-hole (S)” amino acid substitutions at position 366 (EU numbering).
  • the second polypeptide comprises a targeting moiety or domain, a growth factor, a cytokine, a chemokine or a TNF superfamily (TNFSF) member.
  • the targeting moiety binds to a protein target in Table B.
  • the targeting moiety or domain comprises an antibody fragment (e.g., scFv, sc(Fv) 2 , Fab, F(ab) 2 , Fab′, F(ab′) 2 , Facb, and Fv).
  • the antibody fragment comprises a Fab or a single-chain variable fragment (scFv).
  • both the first Fc region and the second Fc region do not comprise a hinge region.
  • the heterodimer is stabilized by an interaction between the first Fc region and the second Fc region. Illustrative interactions that can stabilize the heterodimer through the Fc region include without limitation disulfide bonds and complementary amino acid substitutions in the first and second Fc regions (e.g., knob-in-hole mutations).
  • the targeting moiety or domain comprises a non-immunoglobulin or antibody mimetic protein.
  • non-immunoglobulin or antibody mimetic protein targeting moieties or domains include without limitation adnectins, affibody molecules, affilins, affimers, affitins, alphabodies, anticalins, peptide aptamers, armadillo repeat proteins (ARMs), atrimers, avimers, designed ankyrin repeat proteins (DARPins®), fynomers, knottins, Kunitz domain peptides, monobodies, and nanoCLAMPs.
  • Non-immunoglobulin or antibody mimetic protein targeting moieties or domains of use in the herein described FLT3L-Fc fusion protein heterodimers are described, e.g., in Zhang, et al., Methods Mol Biol. 2017; 1575:3-13; Ta, et al., Future Med Chem. 2017 August; 9(12):1301-1304; Yu, et al., Annu Rev Anal Chem (Palo Alto Calif). 2017 Jun. 12; 10(1):293-320; Baloch, et al., Crit Rev Biotechnol. 2016; 36(2):268-75; and Bruce, et al., Chembiochem. 2016 Oct. 17; 17(20):1892-1899.
  • the targeting moiety or domain has T-cell receptor (TCR)-like binding properties, and binds to the epitope of a target or tumor-associated antigen (TAA) presented in a major histocompatibility complex (MHC) molecule.
  • TCR T-cell receptor
  • TAA tumor-associated antigen
  • MHC major histocompatibility complex
  • the targeting moiety or domain comprises a binding partner domain, e.g., a soluble or extracellular domain of the binding partner or ligand of the protein target or antigen.
  • the targeting moiety or domain comprises a binding partner or ligand of any of the protein or antigen targets listed in Table B.
  • the targeting moiety or domain comprises the extracellular domain of a TGFB1 receptor (e.g., a “TGF beta trap”).
  • the dimeric molecule comprises first and second Fc domains.
  • amino acid substitutions may be in one or both of the first and second Fc domains.
  • the one or both of the first and second Fc domains have one or more (1, 2, 3, 4, or 5) of the following mutations (EU numbering).
  • Fc region heterodimerization of the two different immunoadhesins (Fc fusion proteins) can be facilitated by so-called ‘knobs-into-holes’ mutations (Atwell et al. 1997. JMB 270:26-35).
  • the ‘hole’ mutations (T366S, L368A and Y407V) are incorporated into one Fc-containing chain, the T366W ‘knob’ mutation is incorporated into the other chain.
  • Knob-and-hole amino acid substitutions can be incorporated into human IgG1 or human IgG4 Fc domains.
  • a C220S mutation can be incorporated into an IgG1 hinge region of a scFv-containing arm to eliminate a free cysteine that otherwise forms a disulfide bond with a corresponding cysteine in the light chain in a wild-type IgG1. Co-transfection of such constructs leads to preferential formation of a heterodimeric Fc, with low levels of homodimer contaminants.
  • incorporating a S354C mutation can be incorporated into the Fc containing the ‘knob’ mutations and a Y349C mutation into the Fc containing the ‘hole’ mutations can optionally be used to generate a covalent bond between the two halves of the heterodimeric Fc if additional thermodynamic stability is desired (Merchant et al. 1998. Nat. Biotechnol. 16: 677-81).
  • R409D, K370E mutations are introduced in the “knobs chain” and D399K, E357K mutations in the “hole chain.”
  • Y349C, T366W mutations are introduced in one of the chains and E356C, T366S, L368A, Y407V mutations in the counterpart chain.
  • Y349C, T366W mutations are introduced in one chain and S354C, T366S, L368A, Y407V mutations in the counterpart chain.
  • Y349C, T366W mutations are introduced in one chain and S354C, T366S, L368A, Y407V mutations in the counterpart chain. In yet other embodiments, Y349C, T366W mutations are introduced in one chain and S354C, T366S, L368A, Y407V mutations in the counterpart chain (all EU numbering).
  • the H435R or H435R+Y436F mutations to reduce or eliminate protein A binding can be introduced into one but not both of the Fc-containing chains (Jendeberg, L. et al. 1997 J. Immunol. Methods 201:25-34). This reduces or eliminates protein A binding of the homodimer contaminant containing these mutations, and greatly simplifies purification of the desired heterodimer away from remaining homodimer contaminant via additional chromatography steps (e.g., ion exchange).
  • this VH region can also include amino acid substitutions, as described herein, to reduce or eliminate Protein A binding of the entire heavy chain.
  • Triomab® Trifunctional Hybrid Antibodies platform
  • This platform employs a chimeric construction made up of half of two full-length antibodies of different isotypes, mouse IgG2a and rat IgG2b. This technology relies on species-preferential heavy/light chain pairing associations. See, Lindhofer et al., J Immunol., 155:219-225 (1995).
  • CrossMab are chimeric antibodies constituted by the halves of two full-length antibodies. For correct chain pairing, it combines two technologies: (i) the knob-into-hole which favors a correct pairing between the two heavy chains; and (ii) an exchange between the heavy and light chains of one of the two Fabs to introduce an asymmetry which avoids light-chain mispairing. See, Ridgway et al., Protein Eng., 9:617-621 (1996); Schaefer et al., PNAS, 108:11187-11192 (2011).
  • CrossMabs can combine two or more antigen binding domains for targeting two or more targets or for introducing bivalency towards one target such as the 2:1 format.
  • the targeting moiety or domain targets or binds to an effector cell, e.g., engaging or activating a T-cell or an NK cell. In certain embodiments, the targeting moiety or domains binds to CD3. In some embodiments, the targeting moiety binds to CD16.
  • Illustrative proteins and antigens, including tumor-associated antigens, immune checkpoint proteins and dendritic cell surface proteins, that can be targeted or bound by the targeting moiety or domain include without limitation those listed in Table B. Target names, symbols (official and alternative) and Gene IDs identified in Table B are from ncbi.nlm.nih.gov/gene.
  • the target antigen comprises a tumor-associated carbohydrate antigen (TACA).
  • TACA tumor-associated carbohydrate antigen
  • Illustrative carbohydrate antigen targets include, e.g., mucin TACAs, including truncated glycans Thomsen-nouveau (Tn) (GaNAc ⁇ 1-Ser/Thr) and STn (Neu5Ac ⁇ 2,6GalNAc ⁇ 1-Ser/Thr), RM2 antigen hexasaccharide, carbasugars, C-glycosides, gangliosides GM2, GD2 and GD3; globo-H, sialyl Lewis(a), sialyl Lewis(x) and sialyl Lewis(y) antigens.
  • TACAs are described, e.g., in Sadraei, et al., Adv Carbohydr Chem Biochem. (2017) 74:137-237; Sletmoen, et al., Glycobiology. (2016) 28(7):437-442; Chuang, et al., J Am Chem Soc. (2013) 135(30):11140-50; Ragupathi, Cancer Immunol Immunother. (1996) 43(3):152-7; Ugorski, et al., Acta Biochim Pol. 2002; 49(2):303-11; Takada, et al., Cancer Res. 1993 Jan. 15; 53(2):354-61.
  • the target antigen comprises a neoantigen presented within a major histocompatibility complex (MHC) class I or class II molecule.
  • MHC major histocompatibility complex
  • FLT3L-Fc fusion proteins which are bound to various molecules (e.g., labels) including without limitation macromolecular substances such as polymers (e.g., polyethylene glycol (PEG), polyethylenimine (PEI) modified with PEG (PEI-PEG), polyglutamic acid (PGA) (N-(2-Hydroxypropyl) methacrylamide (HPMA) copolymers), hyaluronic acid, radioactive materials (e.g., 90 Y, 131 I, 125 I, 35 S, 3 H, 121 In, 99 Tc), fluorescent substances (e.g., fluorescein and rhodamine), fluorescent proteins, luminescent substances (e.g., luminol), Qdots, haptens, enzymes (e.g., glucose oxidase), metal chelates, biotin
  • conjugated FLT3L-Fc fusion proteins can be prepared according to known methods, e.g., performing chemical modifications on the FLT3L-Fc fusion proteins described herein.
  • the labelling moiety or therapeutic moiety is conjugated to the Fc portion of the fusion protein.
  • Methods for modifying antibody Fc regions are well known in the art (e.g., U.S. Pat. Nos. 5,057,313 and 5,156,840).
  • the FLT3L-Fc fusion protein, or homodimer or heterodimer thereof is conjugated to a drug or therapeutic agent.
  • the drug is a small organic compound or an inhibitory nucleic acid, e.g., a short-inhibitory RNA (siRNA), a microRNA (miRNA).
  • the drug or therapeutic agent is an anti-neoplastic agent or a chemotherapeutic agent, as known in the art and described herein.
  • the drug or therapeutic agent is selected from the group consisting of monomethyl auristatin E (MMAE), monomethyl auristatin F (MMAF), a calicheamicin, ansamitocin, maytansine or an analog thereof (e.g., mertansine/emtansine (DM1), ravtansine/soravtansine (DM4)), an anthracyline (e.g., doxorubicin, daunorubicin, epirubicin, idarubicin), pyrrolobenzodiazepine (PBD) DNA cross-linking agent SC-DR002 (D6.5), duocarmycin, a microtubule inhibitors (MTI) (e.g., a taxane, a vinca alkaloid, an epothilone), a pyrrolobenzodiazepine (PBD) or dimer thereof, and a duocarmycin (A, B, B2, C1, C2, D, SA
  • MMAE
  • polynucleotides encoding the FLT3L-Fc fusion proteins described herein, vectors comprising such polynucleotides, and host cells (e.g., human cells, mammalian cells, yeast cells, plant cells, insect cells, bacterial cells, e.g., E. coli ) comprising such polynucleotides or expression vectors.
  • host cells e.g., human cells, mammalian cells, yeast cells, plant cells, insect cells, bacterial cells, e.g., E. coli
  • polynucleotides comprising nucleotide sequence(s) encoding any of the FLT3L-Fc fusion proteins provided herein, as well as expression cassettes and vector(s) comprising such polynucleotide sequences, e.g., expression vectors for their efficient expression in host cells, e.g., mammalian cells.
  • the polynucleotide is a DNA, a cDNA, or an mRNA.
  • nucleic acid molecule refers to a polymeric form of nucleotides and includes both sense and anti-sense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above.
  • nucleic acid molecule may be interchangeable with the term polynucleotide.
  • a nucleotide refers to a ribonucleotide, deoxynucleotide or a modified form of either type of nucleotide, and combinations thereof. The terms also include without limitation, single- and double-stranded forms of DNA.
  • a polynucleotide e.g., a cDNA or mRNA
  • a polynucleotide may include either or both naturally occurring and modified nucleotides linked together by naturally occurring and/or non-naturally occurring nucleotide linkages.
  • the nucleic acid molecules may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art.
  • Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analogue, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen, etc.), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids, etc.).
  • uncharged linkages e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.
  • charged linkages e.g., phosphorothioates, phosphorodithioates, etc.
  • a reference to a nucleic acid sequence encompasses its complement unless otherwise specified.
  • a reference to a nucleic acid molecule having a particular sequence should be understood to encompass its complementary strand, with its complementary sequence.
  • the term also includes codon-biased polynucleotides for improved expression in a desired host cell.
  • substitution denotes the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.
  • nucleic acid refers to a nucleic acid molecule that has been separated from a component of its natural environment.
  • An isolated nucleic acid includes a nucleic acid molecule contained in cells that ordinarily contain the nucleic acid molecule, but the nucleic acid molecule is present extrachromosomally or at a chromosomal location that is different from its natural chromosomal location.
  • isolated nucleic acid encoding an FLT3L-Fc fusion protein refers to one or more nucleic acid molecules encoding first antigen binding domain, and optionally second antigen binding domain, antibody heavy and light chains (or fragments thereof), including such nucleic acid molecule(s) in a single vector or separate vectors, and such nucleic acid molecule(s) present at one or more locations in a host cell.
  • an “isolated” polypeptide such as an isolated FLT3L-Fc fusion protein provided herein, is one that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes.
  • the isolated polypeptide will be purified (1) to greater than 95% by weight of polypeptide as determined by the Lowry method, for example, more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or silver stain.
  • Isolated polypeptide includes the polypeptide in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.
  • polynucleotide variant is a polynucleotide that typically differs from a polynucleotide specifically disclosed herein in one or more substitutions, deletions, additions and/or insertions. Such variants may be naturally occurring or may be synthetically generated, for example, by modifying one or more of the polynucleotide sequences described herein and evaluating one or more biological activities of the encoded polypeptide as described herein and/or using any of a number of techniques well known in the art.
  • the nucleic acid molecule is codon-biased to enhance expression in a desired host cell, e.g., in human cells, mammalian cells, yeast cells, plant cells, insect cells, or bacterial cells, e.g., E. coli cells.
  • a desired host cell e.g., in human cells, mammalian cells, yeast cells, plant cells, insect cells, or bacterial cells, e.g., E. coli cells.
  • polynucleotides encoding a FLT3L-Fc fusion protein wherein the polynucleotides are codon-biased comprise replacement heterologous signal sequences, and/or have mRNA instability elements eliminated.
  • Methods to generate codon-biased nucleic acids can be carried out by adapting the methods described in, e.g., U.S. Pat. Nos.
  • Preferred codon usage for expression of the FLT3L-Fc fusion proteins in desired host cells is provided, e.g., at kazusa.or.jp/codon/; and genscript.com/tools/codon-frequency-table.
  • the polynucleotide encoding a FLT3L-Fc fusion protein has at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% identical, or 100% identical to an nucleic acid sequence selected from the group consisting of SEQ ID NOs: 28-70, as provided in Table C.
  • the 3′-end of the polynucleotide encoding the FLT3L-Fc fusion protein comprises multiple tandem stop codons, e.g., two or more tandem TAG (“amber”), TAA (“ochre”) or TGA (“opal” or “umber”) stop codons.
  • the multiple tandem stop codons can be the same or different.
  • vectors comprising one or more polynucleotides encoding one or more of the FLT3L-Fc fusion proteins, described herein.
  • a vector can be of any type, for example, a recombinant vector such as an expression vector.
  • Vectors include without limitation, plasmids, cosmids, bacterial artificial chromosomes (BAC) and yeast artificial chromosomes (YAC) and vectors derived from bacteriophages or plant or animal (including human) viruses.
  • Vectors can comprise an origin of replication recognized by the proposed host cell and in the case of expression vectors, promoter and other regulatory regions recognized by the host cell.
  • a vector comprises a polynucleotide encoding an antibody of the disclosure operably linked to a promoter and optionally additional regulatory elements.
  • Certain vectors are capable of autonomous replication in a host into which they are introduced (e.g., vectors having a bacterial origin of replication can replicate in bacteria). Other vectors can be integrated into the genome of a host upon introduction into the host, and thereby are replicated along with the host genome. Vectors include without limitation, those suitable for recombinant production of the antibodies disclosed herein.
  • vectors The choice of the vector is dependent on the recombinant procedures followed and the host used. Introduction of vectors into host cells can be affected by inter alia calcium phosphate transfection, virus infection, DEAE-dextran-mediated transfection, lipofectamine transfection or electroporation. Vectors may be autonomously replicating or may replicate together with the chromosome into which they have been integrated. In certain embodiments, the vectors contain one or more selection markers. The choice of the markers may depend on the host cells of choice.
  • Vectors comprising one or more nucleic acid molecules encoding the FLT3L-Fc fusion proteins described herein, operably linked to one or more nucleic acid molecules encoding proteins or peptides that can be used to isolate the FLT3L-Fc fusion proteins, are also covered by the disclosure.
  • proteins or peptides include without limitation, glutathione-S-transferase, maltose binding protein, metal-binding polyhistidine, green fluorescent protein, luciferase and beta-galactosidase.
  • the vector that is used is pcDNATM3.1+(ThermoFisher, MA).
  • the viral vector comprises an oncolytic viral vector.
  • the oncolytic viral vector can be a DNA virus or a RNA virus.
  • the viral vector is from a viral family selected from the group consisting of: Adenoviridae (e.g., Adenovirus), Arenaviridae (e.g., lymphocytic choriomeningitis mammarenavirus, Cali mammarenavirus (a.k.a., Pichinde mammarenavirus), Poxviridae (e.g., Vaccinia virus), Herpesviridae (e.g., Herpesvirus, e.g., HSV-1), Parvoviridae (e.g., Parvovirus H1), Reoviridae (e.g., Reovirus), Picornaviridae (e.g., Coxsackievirus, Seneca Valley Virus, Poliovirus), Paramyxoviridae (e.g.
  • Adenoviridae
  • a host cell comprising a nucleic acid or a vector described herein. Any of a variety of host cells can be used.
  • a host cell is a prokaryotic cell, for example, E. coli .
  • a host cell is a eukaryotic cell, for example, a yeast cell, a plant cell, an insect cell, a mammalian cell, such as a Chinese Hamster Ovary (CHO)-based or CHO-origin cell line (e.g., CHO-S, CHO DG44, ExpiCHOTM, CHOZN® ZFN-modified GS ⁇ / ⁇ CHO cell line, CHO-K1, CHO-K1a), COS cells, BHK cells, NSO cells or Bowes melanoma cells.
  • CHO Chinese Hamster Ovary
  • CHO-origin cell line e.g., CHO-S, CHO DG44, ExpiCHOTM, CHOZN® ZFN-modified GS ⁇
  • human host cells are, inter alia, HeLa, 911, AT1080, A549 and HEK293 (e.g., HEK293E, HEK293T, Expi293TM).
  • the FLT3L-Fc fusion proteins can be expressed in a yeast cell such as Pichia (see, e.g., Powers et al., J Immunol Methods. 251:123-35 (2001)), Hanseula , or Saccharomyces.
  • the host cell predominantly sialylates N-linked glycosylation sites of the fusion protein.
  • the polynucleotides encoding a FLT3L-Fc fusion protein, as described herein are expressed in a host cell that sialylates at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, or more, N-linked glycosylation sites in the expressed FLT3L-Fc fusion proteins.
  • vector refers to a nucleic acid molecule capable of propagating another nucleic acid to which it is linked.
  • the term includes the vector as a self-replicating nucleic acid structure as well as the vector incorporated into the genome of a host cell into which it has been introduced.
  • Some vectors are suitable for delivering the nucleic acid molecule or polynucleotide of the present application.
  • Certain vectors are capable of directing the expression of nucleic acids to which they are operatively linked. Such vectors are referred to herein as expression vectors.
  • operably linked refers to two or more nucleic acid sequence or polypeptide elements that are usually physically linked and are in a functional relationship with each other.
  • a promoter is operably linked to a coding sequence if the promoter is able to initiate or regulate the transcription or expression of a coding sequence, in which case, the coding sequence should be understood as being “under the control of” the promoter.
  • host cell refers to cells into which exogenous nucleic acid has been introduced, including the progeny of such cells.
  • Host cells include “transformants” and “transformed cells,” which include the primary transformed cell and progeny derived therefrom without regard to the number of passages. Progeny may not be completely identical in nucleic acid content to a parent cell, but may contain mutations. Mutant progeny that have the same function or biological activity as screened or selected for in the originally transformed cell are included herein.
  • the host cells can be stably or transiently transfected with a polynucleotide encoding a FLT3L-Fc fusion protein, as described herein.
  • the FLT3L-Fc fusion proteins described herein can be produced by any method known in the art for the synthesis of fusion proteins, for example, by chemical synthesis or by recombinant expression techniques.
  • Methods of recombinant expression of fusion proteins are known and can be applied to the recombinant production and isolation/purification of the FLT3L-Fc fusion proteins.
  • Methods of recombinantly expressing proteins, including fusion proteins are described, for example, in Green and Sambrook, “Molecular Cloning: A Laboratory Manual,” 4 th Edition, 2012, Cold Spring Harbor Laboratory Press; Current Protocols in Protein Science, Wiley, 1995-2109 (currentprotocols.onlinelibrary.wiley.com/journal/19343663/); and Current Protocols in Molecular Biology, Wiley, 1987-2019 (currentprotocols.onlinelibrary.wiley.com/journal/19343647/).
  • the FLT3L-Fc fusion proteins described herein may be produced in bacterial or eukaryotic cells.
  • the FLT3L-Fc fusion proteins can also be produced in eukaryotic cells such as transformed cell lines (e.g., CHO, CHO-S, CHO DG44, ExpiCHOTM, CHOZN®, CHO-K1, CHO-K1a, 293E, 293T, COS, NIH3T3).
  • the FLT3L-Fc fusion proteins described herein can be expressed in a yeast cell such as Pichia (see, e.g., Powers et al., J Immunol Methods.
  • the FLT3L-Fc fusion proteins described herein are produced in a CHO cell line, e.g., a CHO-S, CHO DG44, ExpiCHOTM, CHOZN®, CHO-K1, CHO-K1a cell line, or a HEK293 (e.g., HEK293E, HEK293T, Expi293TM) cell line.
  • a CHO cell line e.g., a CHO-S, CHO DG44, ExpiCHOTM, CHOZN®, CHO-K1, CHO-K1a cell line, or a HEK293 (e.g., HEK293E, HEK293T, Expi293TM) cell line.
  • one or more polynucleotides encoding the FLT3L-Fc fusion proteins is constructed, introduced into an expression vector, and then expressed in one or more suitable host cells.
  • three polynucleotides encoding a FLT3L-Fc fusion, a Fab heavy chain and a Fab light chain comprising a second antigen binding domain are co-expressed in a single host cell. Standard molecular biology techniques are used to prepare the recombinant expression vector, transfect the host cells, select for transformants, culture the host cells, and recover the FLT3L-Fc fusion proteins.
  • the host cell predominantly sialylates N-linked glycosylation sites of the fusion protein.
  • the polynucleotides encoding a FLT3L-Fc fusion protein, as described herein are expressed in a host cell that sialylates at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, or more, N-linked glycosylation sites in the expressed FLT3L-Fc fusion proteins.
  • the expression vector should have characteristics that permit amplification of the vector in the bacterial cells. Additionally, when E. coli such as JM109, DH5a, 113101, or XL1-Blue is used as a host, the vector must have a promoter, for example, a lacZ promoter (Ward et al., 341:544-546 (1989), araB promoter (Better et al., Science, 240:1041-1043 (1988)), or T7 promoter that can allow efficient expression in E. coli .
  • a promoter for example, a lacZ promoter (Ward et al., 341:544-546 (1989), araB promoter (Better et al., Science, 240:1041-1043 (1988)
  • T7 promoter that can allow efficient expression in E. coli .
  • Such vectors include, for example, M13-series vectors, pUC-series vectors, pBR322, pBluescript, pCR-Script, pGEX-5X-1 (Pharmacia), “QIAexpress system” (QIAGEN), pEGFP, and pET (when this expression vector is used, the host is preferably BL21 expressing T7 RNA polymerase).
  • the expression vector may contain a signal sequence for secretion of the FLT3L-Fc fusion proteins. For production into the periplasm of E. coli , the pelB signal sequence (Lei et al., J.
  • Bacteriol., 169: 4379 (1987)) may be used as the signal sequence for secretion of the FLT3L-Fc fusion proteins.
  • calcium chloride methods or electroporation methods may be used to introduce the expression vector into the bacterial cell.
  • the expression vector includes a promoter to promote expression in these cells, for example, an SV40 promoter (Mulligan et al., Nature, 277:108 (1979)), MMLV-LTR promoter, EF1 ⁇ promoter (Mizushima et al., Nucleic Acids Res., 18:5322 (1990)), or CMV promoter.
  • a promoter to promote expression in these cells, for example, an SV40 promoter (Mulligan et al., Nature, 277:108 (1979)), MMLV-LTR promoter, EF1 ⁇ promoter (Mizushima et al., Nucleic Acids Res., 18:5322 (1990)), or CMV promoter.
  • the recombinant expression vectors may carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes.
  • the selectable marker gene facilitates selection of host cells into which the vector has been introduced (see e.g., U.S. Pat. Nos. 4,399,216, 4,634,665 and 5,179,017).
  • the selectable marker gene confers resistance to drugs, such as G418, hygromycin, or methotrexate, on a host cell into which the vector has been introduced.
  • vectors with selectable markers include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13.
  • the FLT3L-Fc fusion proteins are produced in mammalian cells.
  • exemplary mammalian host cells for expressing FLT3L-Fc fusion proteins include Chinese Hamster Ovary (e.g., CHO, CHO-S, CHO DG44, ExpiCHOTM, CHOZN®, CHO-K1, CHO-K1a) (including dhfr-CHO cells, described in Urlaub and Chasin (1980) Proc. Natl. Acad. Sci. USA 77: 4216-4220, used with a DHFR selectable marker, e.g., as described in Kaufman and Sharp (1982) Mol. Biol.
  • the cell is a mammary epithelial cell.
  • recombinant expression vectors encoding the FLT3L-Fc fusion protein are introduced into dhfr-CHO cells by calcium phosphate-mediated transfection.
  • the dhfr-CHO cells are cells of the DG44 cell line, such as DG44i (see, e.g., Derouaz et al., Biochem Biophys Res Commun., 340(4):1069-77 (2006)).
  • the polynucleotide encoding the FLT3L-Fc fusion protein, and optionally a second polynucleotide encoding a second Fc fusion protein for forming a heterodimer are operatively linked to enhancer/promoter regulatory elements (e.g., derived from SV40, CMV, adenovirus and the like, such as a CMV enhancer/AdMLP promoter regulatory element or an SV40 enhancer/AdMLP promoter regulatory element) to drive high levels of transcription of the genes.
  • enhancer/promoter regulatory elements e.g., derived from SV40, CMV, adenovirus and the like, such as a CMV enhancer/AdMLP promoter regulatory element or an SV40 enhancer/AdMLP promoter regulatory element
  • the recombinant expression vectors also carry a DHFR gene, which allows for selection of CHO cells that have been transfected with the vector using methotrexate selection/amplification.
  • the selected transformant host cells are cultured to allow for expression and secretion of the FLT3L-Fc fusion protein, and the fusion protein is recovered from the culture medium.
  • the FLT3L-Fc fusion proteins can also be produced by a transgenic animal.
  • U.S. Pat. No. 5,849,992 describes a method of expressing an antibody in the mammary gland of a transgenic mammal.
  • a transgene is constructed that includes a milk-specific promoter and one or more polynucleotides encoding the FLT3L-Fc fusion protein of interest and a signal sequence for secretion.
  • the milk produced by females of such transgenic mammals includes, secreted-therein, the FLT3L-Fc fusion protein of interest.
  • the FLT3L-Fc fusion protein can be purified from the milk, or for some applications, used directly. Animals are also provided comprising one or more of the FLT3L-Fc-encoding nucleic acids described herein.
  • the FLT3L-Fc fusion proteins can be isolated from inside or outside (such as medium) of the host cell and purified as substantially pure and homogenous, non-aggregated FLT3L-Fc fusion proteins (e.g, including monomeric, homodimeric and/or heterodimeric bispecific FLT3L-Fc fusion proteins).
  • Methods for isolation and purification commonly used for protein purification, including antibody purification may be used for the isolation and purification of herein described FLT3L-Fc fusion proteins, and are not limited to any particular method.
  • the FLT3L-Fc fusion proteins may be isolated and purified by appropriately selecting and combining, for example, column chromatography, filtration, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, and recrystallization.
  • Chromatography includes, for example, affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse-phase chromatography, and adsorption chromatography (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996).
  • Chromatography can be carried out using liquid phase chromatography such as HPLC and FPLC.
  • Columns used for affinity chromatography include protein A column and protein G column. Examples of columns using protein A column include Hyper D, POROS, and Sepharose FF (GE Healthcare Biosciences).
  • the present disclosure also includes FLT3L-Fc fusion proteins that are highly purified using these purification methods.
  • compositions comprising a FLT3L-Fc fusion protein, as described herein, or a polynucleotide encoding a FLT3L-Fc fusion protein, as described herein, and a pharmaceutically acceptable diluent, carrier or excipient.
  • the pharmaceutical composition comprises a therapeutically effective amount of the FLT3L-Fc fusion protein, or polynucleotide encoding such FLT3L-Fc fusion protein.
  • compositions Various pharmaceutically acceptable diluents, carriers, and excipients, and techniques for the preparation and use of pharmaceutical compositions will be known to those of skill in the art in light of the present disclosure. Illustrative pharmaceutical compositions and pharmaceutically acceptable diluents, carriers, and excipients are also described in, e.g., Loyd V.
  • each carrier, diluent or excipient is “acceptable” in the sense of being compatible with the other ingredients of the pharmaceutical composition and not injurious to the subject.
  • the pharmaceutically acceptable carrier is an aqueous pH-buffered solution.
  • Some examples of materials which can serve as pharmaceutically-acceptable carriers, diluents or excipients include: water; buffers, e.g., phosphate-buffered saline; sugars, such as lactose, trehalose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; a
  • wetting agents such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
  • compositions will generally be adapted according to the site and the disease to be treated.
  • exemplary formulations include without limitation, those suitable for parenteral administration, e.g., intratumoral, intravenous, intra-arterial, intramuscular, or subcutaneous administration, including formulations encapsulated in micelles, liposomes or drug-release capsules (active agents incorporated within a biocompatible coating designed for slow-release); ingestible formulations; formulations for topical use, such as creams, ointments and gels; and other formulations such as inhalants, aerosols and sprays.
  • the pharmaceutical compositions are formulated for parenteral, e.g., intravenous, subcutaneous, or oral administration.
  • the pharmaceutical compositions are formulated for intratumoral administration.
  • pharmaceutical compositions are sterile.
  • the pharmaceutical composition has a pH in the range of 4.5 to 8.5, 4.5 to 6.5, 6.5 to 8.5, or a pH of about 5.0, about 5.5, about 6.0, about 6.5, about 7.0, about 7.5, about 8.0 or about 8.5.
  • the pharmaceutical composition has a pH of 5.9.
  • the pharmaceutical composition has an osmolarity in the range of 240-260 or 250-330 mOsmol/L.
  • the pharmaceutical composition is isotonic or near isotonic.
  • the pharmaceutical compositions are liquids or solids.
  • the pharmaceutical composition comprises an aqueous solution, e.g., at a concentration in the range of about 1 mg/ml to about 2 mg/ml, 3 mg/ml, 4 mg/ml, 5 mg/ml, 6 mg/ml, 7 mg/ml, 8 mg/ml, 9 mg/ml, 10 mg/ml, 11 mg/ml, 12 mg/ml, 13 mg/ml, 14 mg/ml, 15 mg/ml, 16 mg/ml, 17 mg/ml, 18 mg/ml, 19 mg/ml or 20 mg/ml.
  • the pharmaceutical composition comprises an aqueous solution of FLT3L-Fc fusion protein at a concentration of about 2 mg/ml. In some embodiments, the pharmaceutical composition comprises an aqueous solution of FLT3L-Fc fusion protein at a concentration of 2 mg/ml. In some embodiments, the pharmaceutical composition is lyophilized. In certain embodiments, the pharmaceutical composition is formulated for intravenous administration and has a concentration of FLT3L-Fc fusion protein of about 1-100 mg/ml, 1-10 mg/ml, 2-20 mg/ml or about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 mg/ml.
  • the pharmaceutical composition is formulated for intravenous administration and has a concentration of FLT3L-Fc fusion protein of about 2 mg/ml. In certain embodiments, the pharmaceutical composition is formulated for intravenous administration and has a concentration of FLT3L-Fc fusion protein of 2 mg/ml. In some embodiments, the pharmaceutical composition is formulated for subcutaneous injection and has a concentration of FLT3L-Fc fusion protein of 1-100 mg/ml, 1-10 mg/ml, 2-20 mg/ml or about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 mg/ml, and a viscosity less than 50 cP, less than 30 cP, less than 20 cP, or about 10 cP.
  • the pharmaceutical composition is an aqueous solution containing 2 mg/mL FLT3L-Fc fusion protein in 20 mM histidine, 90 g/L sucrose, 0.2 g/L polysorbate 80, pH 5.9.
  • the pharmaceutical composition further comprises one or more additional therapeutic agents, e.g., a second therapeutic agent, or second and third therapeutic agents.
  • the FLT3L-Fc fusion proteins described herein find use for treating cancer or another proliferative disorder.
  • the methods entail administering a FLT3L-Fc fusion protein, homodimer or heterodimer comprising such fusion protein, polynucleotide encoding such fusion protein, or pharmaceutical composition comprising such fusion protein or polynucleotide, to a patient with cancer or another proliferative disorder.
  • the method of treating cancer or another proliferative disorder comprises administering a provided compound or composition thereof to a mammal.
  • kits for inducing the immune system in a subject in need thereof comprising administering an FLT3L-Fc fusion protein or lipoplex, such as an LNP, provided herein or a polynucleotide or vector encoding an FLT3L-Fc fusion protein provided herein to the subject.
  • an FLT3L-Fc fusion protein or lipoplex such as an LNP, provided herein or a polynucleotide or vector encoding an FLT3L-Fc fusion protein provided herein to the subject.
  • compounds for use in treating cancer comprising an FLT3L-Fc fusion protein provided herein, or a polynucleotide or vector encoding an FLT3L-Fc fusion protein provided herein.
  • the FLT3L-Fc fusion proteins described herein find use for treating or preventing a viral infection.
  • the viral infection is an infection caused by HIV.
  • the viral infection is an infection caused by HBV.
  • the viral infection is caused by a coronavirus.
  • the coronavirus infection is caused by the SARS virus, the MERS virus, or the 2019-nCoV (COVID-19) virus.
  • the methods entail administering a FLT3L-Fc fusion protein, homodimer or heterodimer comprising such fusion protein, polynucleotide encoding such fusion protein, or pharmaceutical composition comprising such fusion protein or polynucleotide, to a patient having or at risk of having an infection caused by a virus.
  • the patient has or is at risk of having an infection caused by HIV, HBV, or coronavirus (e.g., SARS virus, MERS, virus, or COVID-19 virus).
  • the method of treating or preventing a viral infection comprises administering a provided compound or composition thereof to a mammal.
  • a viral infection such as an infection caused by a virus such as HIV, HBV, or coronavirus (e.g., SARS virus, MERS, virus, or COVID-19 virus)
  • the terms “inhibition of cancer” and “inhibition of cancer cell proliferation” refer to the inhibition of the growth, division, maturation or viability of cancer cells, and/or causing the death of cancer cells, individually or in aggregate with other cancer cells, by cytotoxicity, nutrient depletion, or the induction of apoptosis.
  • treatment refers to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease or disorder, or one or more symptoms thereof, as described herein.
  • treatment may be administered after one or more symptoms have developed.
  • treatment may be administered in the absence of symptoms.
  • treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example to prevent or delay their recurrence.
  • “delaying” development of a disease or disorder, or one or more symptoms thereof means to defer, hinder, slow, retard, stabilize and/or postpone development of the disease, disorder, or symptom thereof. This delay can be of varying lengths of time, depending on the history of the disease and/or subject being treated. As is evident to one skilled in the art, a sufficient or significant delay can, in effect, encompass prevention, in that the subject does not develop the disease, disorder, or symptom thereof.
  • a method that “delays” development of AIDS is a method that reduces the probability of disease development in a given time frame and/or reduces extent of the disease in a given time frame, when compared to not using the method.
  • Such comparisons may be based on clinical studies, using a statistically significant number of subjects.
  • the development of AIDS can be detected using known methods, such as confirming a subject's HIV + status and assessing the subject's T-cell count or other indication of AIDS development, such as extreme fatigue, weight loss, persistent diarrhea, high fever, swollen lymph nodes in the neck, armpits or groin, or presence of an opportunistic condition that is known to be associated with AIDS (e.g., a condition that is generally not present in subjects with functioning immune systems but does occur in AIDS patients). Development may also refer to disease progression that may be initially undetectable and includes occurrence, recurrence and onset.
  • prevention refers to a regimen that protects against the onset of the disease or disorder such that the clinical symptoms of the disease do not develop.
  • prevention relates to administration of a therapy (e.g., administration of a therapeutic substance) to a subject before signs of the disease are detectable in the subject (e.g., administration of a therapeutic substance to a subject in the absence of detectable infectious agent (e.g., virus) in the subject).
  • the subject may be an individual at risk of developing the disease or disorder, such as an individual who has one or more risk factors known to be associated with development or onset of the disease or disorder.
  • the term “preventing HIV infection” refers to administering to a subject who does not have a detectable HIV infection an anti-HIV therapeutic substance. It is understood that the subject for anti-HIV preventative therapy may be an individual at risk of contracting the HIV virus. Further, it is understood that prevention may not result in complete protection against onset of the disease or disorder. In some instances, prevention includes reducing the risk of developing the disease or disorder. The reduction of the risk may not result in complete elimination of the risk of developing the disease or disorder.
  • the methods of treatment provided herein may be used to treat a subject (e.g., human, monkey, dog, cat, mouse) who has been diagnosed with or is suspected of having cancer.
  • the methods of treatment provided herein can be used to treat a subject (e.g., human, monkey, dog, cat, mouse) who has been diagnosed with or is suspected of having a viral infection.
  • a subject refers to a mammal, including, for example, a human.
  • the subject may be a human who exhibits one or more symptoms associated with cancer or hyperproliferative disease (e.g., a tumor). In some embodiments, the subject may be a human who exhibits one or more symptoms associated with cancer. Any of the methods of cancer treatment provided herein may be used to treat cancer at various stages.
  • the cancer stage includes but is not limited to early, advanced, locally advanced, remission, refractory, reoccurred after remission and progressive.
  • the subject is at an early stage of a cancer. In other embodiments, the subject is at an advanced stage of cancer.
  • the subject has a stage I, stage II, stage III or stage IV cancer.
  • One or more administrations of the FLT3L-Fc fusion protein can promote reduction or retraction of a tumor, decrease or inhibit tumor growth or cancer cell proliferation, and/or induce, increase or promote tumor cell killing.
  • the subject is in cancer remission.
  • One or more administrations of the FLT3L-Fc fusion protein, optionally with one or more additional therapeutic agents can prevent or delay metastasis or recurrence of cancer.
  • the subject may be a human who exhibits one or more symptoms associated with a viral infection (e.g., a detectable viral titer). In some embodiments, the subject may be a human who exhibits one or more symptoms associated with a viral infection. Any of the methods of antiviral treatment provided herein may be used to treat a viral infection at various stages. In some embodiments, the subject is at an early stage of a viral infection. In other embodiments, the subject is at an advanced stage of a viral infection. In some embodiments, one or more administrations of the FLT3L-Fc fusion protein, optionally with one or more additional therapeutic agents, can promote the reduction of a viral titer in a subject.
  • the subject may be a human who is at risk, or genetically or otherwise predisposed (e.g., risk factor) to developing cancer or hyperproliferative disease who has or has not been diagnosed.
  • the subject may be a human who is at risk, or genetically or otherwise predisposed (e.g., risk factor) to a disease, disorder, or symptoms thereof, caused by a viral infection who has or has not been diagnosed.
  • an “at risk” individual is an individual who is at risk of developing a condition to be treated.
  • an “at risk” subject is a subject who is at risk of developing cancer.
  • an“at risk” subject may or may not have detectable disease, and may or may not have displayed detectable disease prior to the treatment methods described herein.
  • “At risk” denotes that an individual has one or more so-called risk factors, which are measurable parameters that correlate with development of a disease or condition and are known in the art.
  • an at risk subject may have one or more risk factors, which are measurable parameters that correlate with development of cancer, which are described herein. A subject having one or more of these risk factors has a higher probability of developing cancer than an individual without these risk factor(s).
  • risk factors may include, for example, age, sex, race, diet, history of previous disease, presence of precursor disease, genetic (e.g., hereditary) considerations, and environmental exposure.
  • the subjects at risk for cancer include, for example, those having relatives who have experienced the disease, and those whose risk is determined by analysis of genetic or biochemical markers.
  • the at risk subject is at risk of developing symptoms of a viral infection. For example, individuals at risk for AIDS are those infected with HIV.
  • the subject may be a human who is undergoing one or more standard therapies, such as chemotherapy, radiotherapy, immunotherapy, surgery, or combination thereof.
  • one or more kinase inhibitors may be administered before, during, or after administration of chemotherapy, radiotherapy, immunotherapy, surgery or combination thereof.
  • the subject may be a human who is (i) substantially refractory to at least one chemotherapy treatment, or (ii) is in relapse after treatment with chemotherapy, or both (i) and (ii). In some of embodiments, the subject is refractory to at least two, at least three, or at least four chemotherapy treatments (including standard or experimental chemotherapies).
  • the FLT3L-Fc fusion proteins described herein find use as a vaccine adjuvant, promoting, increasing, supplementing and/or boosting the immune response induced by the vaccine.
  • the vaccine can be an anticancer vaccine, antiviral vaccine, or antibacterial vaccine.
  • the anticancer vaccine is a neoantigen vaccine, wherein a neoantigen refers to a class of HLA-bound peptides that arise from tumor-specific mutations.
  • Illustrative neoantigen anticancer vaccines are described, e.g., in Ott, et al., Nature. 2017 Jul. 13; 547(7662):217-221; Li, et al., Ann Oncol. 2017 Dec.
  • the vaccine comprises an antiviral vaccine against a virus selected from the group consisting of hepatitis A virus (HAV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), cytomegalovirus (CMV), a herpes simplex virus (HSV), Epstein-Barr virus (EBV), human orthopneumovirus or human respiratory syncytial virus (RSV), human papillomavirus (HPV), varicella-zoster virus, measles virus, mumps virus, poliovirus vaccine, influenza virus, paramyxovirus, rotavirus, Zika virus, Dengue virus and Ebola virus.
  • HAV hepatitis A virus
  • HBV hepatitis B virus
  • HCV human immunodeficiency virus
  • CMV cytomegalovirus
  • HSV herpes simplex virus
  • EBV Epstein-Barr virus
  • RSV human orthopneumovirus or human respiratory syncytial virus
  • the vaccine comprises an antibacterial vaccine against a bacterium selected from the group consisting of Mycobacterium tuberculosis , pertussis, tetanus, diphtheria, meningococcus, pneumococcus, Haemophilus influenza, cholera, typhoid, and anthrax.
  • a bacterium selected from the group consisting of Mycobacterium tuberculosis , pertussis, tetanus, diphtheria, meningococcus, pneumococcus, Haemophilus influenza, cholera, typhoid, and anthrax.
  • Illustrative anticancer vaccines include without limitation Bacillus Calmettle-Guerin (TheraCys®)—a live attenuated strain of Mycobacterium bovis for non-muscle invasive bladder carcinoma; Sipuleucel-T (Provenge®)—a dendritic cell (DC) vaccine for metastatic castration resistant prostate cancer (mCRPC); talimogene laherparepvec (T-VEC or Imlygic®)—an oncolytic viral-based vaccine for advanced melanoma; and recombinant viral prostate cancer vaccine PROSTVAC®-VF/TRICOMTM.
  • the anticancer vaccine is an antiviral vaccine.
  • the anticancer vaccine is an HPV vaccine.
  • the HPV vaccine is PRGN-2009 (Precigen; PGEN Therapeutics). In some embodiments the HPV vaccine is Gardasil or Gardasil-9 (Merck&Co). In some embodiments, the HPV vaccine is Cervarix (GaxoSmithKline Biologicals). In some embodiments the HSV vaccine is HSV529 (Sanofi Pasteur).
  • kits for promoting, inducing and/or increasing the expansion and/or proliferation of a cell or a population of cells that express fms related tyrosine kinase 3 comprise contacting the cell or population of cells with an effective amount of a FLT3L-Fc fusion protein, as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as a lipid nanoparticle (LNP), comprising such polynucleotide, or pharmaceutical composition comprising such fusion protein or polynucleotide.
  • a FLT3L-Fc fusion protein as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as a lipid nanoparticle (LNP), comprising such polynucleotide, or pharmaceutical composition comprising
  • a “lipoplex” refers to cationic liposomes that are nonviral (synthetic) lipid carriers of DNA.
  • the lipoplex is a lipid nanoparticle (LNP).
  • LNP lipid nanoparticle
  • the term “lipid nanoparticle” refers to one or more spherical nanoparticles with an average diameter of between about 10 to about 1000 nanometers, and which comprise a solid lipid core matrix that can solubilize lipophilic molecules.
  • the lipid core is stabilized by surfactants (e.g., emulsifiers), and can comprise one or more of triglycerides (e.g., tristearin), diglycerides (e.g., glycerol bahenate), monoglycerides (e.g., glycerol monostearate), fatty acids (e.g., stearic acid), steroids (e.g., cholesterol), and waxes (e.g., cetyl palmitate), including combinations thereof.
  • surfactants e.g., emulsifiers
  • triglycerides e.g., tristearin
  • diglycerides e.g., glycerol bahenate
  • monoglycerides e.g., glycerol monostearate
  • fatty acids e.g., stearic acid
  • steroids e.g., cholesterol
  • waxes e.g., cetyl palmitate
  • the cell or population of cells that express FLT3 comprise dendritic cells (e.g., cDC1 cells and/or cDC2 cells), monocyte-derived dendritic cells (moDCs), and/or progenitor cells thereof.
  • the cell or population of cells that express FLT3 comprise hematopoietic progenitor cells.
  • the hematopoietic progenitor cells comprise Common Lymphoid Progenitors (CLPs), Early Progenitors with Lymphoid and Myeloid potential (EPLMs), granulocyte-monocyte (GM) progenitors (GMP), monocyte-derived dendritic cells (moDCs) progenitors, and/or early multi-potent progenitors (MPP) within the Lineage-kit+Sca1 (LSK) compartment.
  • CLPs Common Lymphoid Progenitors
  • EPLMs Early Progenitors with Lymphoid and Myeloid potential
  • GM granulocyte-monocyte
  • miDCs monocyte-derived dendritic cells
  • MPP early multi-potent progenitors
  • the cell can be contacted in vitro or in vivo.
  • conventional dendritic cells e.g., cDC1 and/or cDC2 are expanded.
  • cDC1 dendritic cells e.g., positive for surface expression of X-C motif chemokine receptor 1 (XCR1), thrombomodulin (THBD, CD141), and C-type lectin domain containing 9A (CLEC9A)
  • XCR1 dendritic cells e.g., positive for surface expression of X-C motif chemokine receptor 1 (XCR1), thrombomodulin (THBD, CD141), and C-type lectin domain containing 9A (CLEC9A)
  • cDC2 dendritic cells e.g., positive for surface expression of CDlc molecule (BDCA1)
  • dendritic cells positive for surface expression of BDCA1 (cDC1), BDCA2 (CLEC4c), BDCA3 (THBD) and/or BDCA4 (NRP1) are expanded or induced to proliferate.
  • the FLT3-expressing cells are expanded by at least about 10-fold, 20-fold, 50-fold, 100-fold, 200-fold, 300-fold, 400-fold, 500-fold, or more, e.g., in the tumor, in the lymph nodes, within 3 weeks of a single administration of the fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex (e.g., LNP) and/or the pharmaceutical composition.
  • the fusion protein e.g., the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex (e.g., LNP) and/or the pharmaceutical composition.
  • HSCs hematopoietic stem cells
  • MSPCs mesenchymal lineage precursor or stem cells
  • a FLT3L-Fc fusion protein as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, or a vector or lipoplex, such as an lipid nanoparticle (LNP), comprising such polynucleotide such that HSCs having the phenotype CD34+ are expanded.
  • LNP lipid nanoparticle
  • the HSC are derived from bone marrow, umbilical cord, peripheral blood, liver, thymus, lymph, or spleen.
  • the HSCs are further cultured in the presence of one or more histone deacetylase inhibitors (HDACi), such as valproic acid (VPA), trichostatin A (TSA), DLS3, MS275, or SAHA.
  • HDACi histone deacetylase inhibitors
  • the HSCs have the phenotype CD34+, CD90+ or CD34+, CD45RA ⁇ , CD49f+.
  • the HSC are expanded at least 5-fold, at least 10-fold, at least 20-fold, or at least 40-fold.
  • the HSCs are further cultured in the presence of one or more factors selected from the group consisting of stem cell factor (SCF), thrombopoietin (TPO), interleukin 3 (IL3), and interleukin 6 (IL6).
  • the methods further comprise isolating cells having the phenotype the phenotype CD34+, CD90+ or CD34+, CD45RA ⁇ , CD49f+ to provide an enriched population of cells having the phenotype CD34+, CD90+ or CD34+, CD45RA ⁇ , CD49f+.
  • compositions comprising HSCs having of the phenotype CD34+, CD90+ or CD34+, CD45RA ⁇ , CD49f+ obtained using a method described herein.
  • Illustrative examples of methods of HSC ex vivo expansion in which a FLT3L-Fc fusion protein described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, or a vector or lipoplex, such as a lipid nanoparticle (LNP), comprising such polynucleotide could be applied are described for example, without limitation, in WO 2020/089411.
  • the methods entail administering to the subject an effective amount of a FLT3L-Fc fusion protein, as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as a lipid nanoparticle (LNP), comprising such polynucleotide, or pharmaceutical composition comprising such fusion protein or polynucleotide.
  • LNP lipid nanoparticle
  • a virus infection comprising administering to a subject in need thereof an effective amount of a FLT3L-Fc fusion protein, as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as an lipid nanoparticle (LNP), comprising such polynucleotide.
  • a FLT3L-Fc fusion protein as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as an lipid nanoparticle (LNP), comprising such polynucleotide.
  • LNP lipid nanoparticle
  • a FLT3L-Fc fusion protein as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as a lipid nanoparticle (LNP), comprising such polynucleotide.
  • the virus infection is a human hepatitis B virus (HBV) infection.
  • the virus infection is a human immunodeficiency virus (HIV) infection.
  • the virus infection is a coronavirus infection.
  • the coronavirus is a Severe Acute Respiratory Syndrome (SARS)-associated virus.
  • the coronavirus is a MERS-associated virus.
  • the coronavirus is a COVID-19-associated virus (e.g., SARS-CoV-2).
  • HBV refers to a virus described by NCBI Taxonomy ID: NCBI:txid10407.
  • HIV refers to a virus described by NCBI Taxonomy ID: NCBI:txid11676.
  • SARS SARS-associated virus refers to a virus described by NCBI Taxonomy ID: NCBI:txid694009.
  • MERS-associated virus refers to a virus described by NCBI Taxonomy ID: NCBI:txid1335626.
  • COVID-19-associated virus or “SARS-CoV-2” refers to a virus described by NCBI Taxonomy ID: NCB:txid2697049.
  • kits for treating or preventing a human hepatitis B virus (HBV) infection comprising administering to a subject in need thereof an effective amount of a FLT3L-Fc fusion protein, as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as an lipid nanoparticle (LNP), comprising such polynucleotide.
  • HBV hepatitis B virus
  • kits for treating an HBV infection comprising administering to a subject in need thereof an effective amount of a FLT3L-Fc fusion protein, as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as a lipid nanoparticle (LNP), comprising such polynucleotide.
  • a FLT3L-Fc fusion protein as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as a lipid nanoparticle (LNP), comprising such polynucleotide.
  • LNP lipid nanoparticle
  • the method comprises administering a FLT3L-Fc fusion protein, as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as a lipid nanoparticle (LNP), comprising such polynucleotide, in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents.
  • the subject is at risk of contracting the HBV virus, such as a subject who has one or more risk factors known to be associated with contracting the HBV virus.
  • the subject may have not previously received antiviral treatment (treatment na ⁇ ve).
  • the subject may have previously received antiviral treatment (treatment experienced). In certain embodiments, the subject may have previously received antiviral treatment and developed resistance to the previously received antiviral treatment.
  • a method for inhibiting the replication of the HBV virus, treating an HBV infection or delaying the onset of symptoms of an HBV infection in a subject comprising administering an effective amount of a FLT3L-Fc fusion protein, as described herein to the subject is disclosed.
  • a human immunodeficiency virus (HIV) infection comprising administering to a subject in need thereof an effective amount of a FLT3L-Fc fusion protein, as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as an lipid nanoparticle (LNP), comprising such polynucleotide.
  • HAV human immunodeficiency virus
  • kits for treating an HIV infection comprising administering to a subject in need thereof an effective amount of a FLT3L-Fc fusion protein, as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as a lipid nanoparticle (LNP), comprising such polynucleotide.
  • a FLT3L-Fc fusion protein as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as a lipid nanoparticle (LNP), comprising such polynucleotide.
  • LNP lipid nanoparticle
  • the method comprises administering a FLT3L-Fc fusion protein, as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as a lipid nanoparticle (LNP), comprising such polynucleotide, in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents.
  • the subject is at risk of contracting the HIV virus, such as a subject who has one or more risk factors known to be associated with contracting the HIV virus.
  • the subject may have not previously received antiviral treatment (treatment na ⁇ ve).
  • the subject may have previously received antiviral treatment (treatment experienced). In certain embodiments, the subject may have previously received antiviral treatment and developed resistance to the previously received antiviral treatment.
  • a method for inhibiting the replication of the HIV virus, treating AIDS or delaying the onset of AIDS in a subject comprising administering an effective amount of a FLT3L-Fc fusion protein, as described herein, to the subject is disclosed.
  • a coronavirus infection comprising administering to a subject in need thereof an effective amount of a FLT3L-Fc fusion protein, as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as an lipid nanoparticle (LNP), comprising such polynucleotide.
  • a FLT3L-Fc fusion protein as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as an lipid nanoparticle (LNP), comprising such polynucleotide.
  • LNP lipid nanoparticle
  • kits for treating a coronavirus infection comprising administering to a subject in need thereof an effective amount of a FLT3L-Fc fusion protein, as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as a lipid nanoparticle (LNP) comprising such polynucleotide.
  • the method comprises administering a compound disclosed herein, or a pharmaceutically acceptable salt thereof, in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents.
  • the subject is at risk of contracting the coronavirus.
  • the subject may have not previously received antiviral treatment (treatment na ⁇ ve).
  • the subject may have previously received antiviral treatment (treatment experienced).
  • the subject may have previously received antiviral treatment and developed resistance to the previously received antiviral treatment.
  • a method for inhibiting the replication of a coronavirus, treating a coronavirus or delaying the onset of symptoms of a coronavirus infection in a subject comprising administering an effective amount of a FLT3L-Fc fusion protein, as described herein, to the subject is disclosed.
  • the coronavirus infection is an infection caused by the SARS virus, the MERS virus, or the 2019-nCoV (COVID-19) virus. In certain embodiments, the coronavirus infection is an infection caused by the SARS virus. In certain embodiments, the coronavirus infection is an infection caused by the MERS virus. In certain embodiments, the coronavirus infection is an infection caused by the 2019-nCoV (COVID-19) virus.
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition are administered systemically or locally.
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition can be administered intravenously, intratumorally, subcutaneously, intradermally, intramuscularly, intraperitoneally, intravesically, intracranially, intrathecally, intracavitary or intraventricularly.
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition and the one or more additional therapeutic agents can be administered by the same or different routes of administration.
  • administration is via injection or infusion.
  • a therapeutically effective amount of FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is administered to the subject.
  • a “therapeutically effective amount” means an amount sufficient to induce, promote and/or increase expansion and/or proliferation of FLT3+ cells, and thereby treat a subject (such as a human) suffering an indication, or to alleviate the existing symptoms of the indication (e.g., cancer, viral infection, bacterial infection). Determination of a therapeutically effective amount is within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.
  • a therapeutically effective amount of a FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein, optionally, with one or more additional therapeutic agents, as described herein, can (i) reduce the number of diseased cells; (ii) reduce tumor size; (iii) inhibit, retard, slow to some extent, and preferably stop the diseased cell infiltration into peripheral organs; (iv) inhibit (e.g., slow to some extent and preferably stop) tumor metastasis; (v) inhibit tumor growth; (vi) prevent or delay occurrence and/or recurrence of a tumor; and/or (vii) relieve to some extent one or more of the symptoms associated with cancer or myeloproliferative disease.
  • a therapeutically effective amount of a FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein, optionally, with one or more additional therapeutic agents, as described herein, can (i) reduce the number of cancer cells; (ii) reduce tumor size; (iii) inhibit, retard, slow to some extent, and preferably stop cancer cell infiltration into peripheral organs; (iv) inhibit (e.g., slow to some extent and preferably stop) tumor metastasis; (v) inhibit tumor growth; (vi) prevent or delay occurrence and/or recurrence of a tumor; and/or (vii) relieve to some extent one or more of the symptoms associated with the cancer.
  • the amount is sufficient to ameliorate, palliate, lessen, and/or delay one or more of symptoms of cancer.
  • a therapeutically effective amount of a FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein, optionally, with one or more additional therapeutic agents, as described herein, can inhibit the proliferation of a virus in a subject and/or delay to some extent one or more of the symptoms associated with viral infection (e.g., AIDS, SARS, MERS, liver disease caused by HBV). In various embodiments, the amount is sufficient to ameliorate, palliate, lessen, and/or delay one or more of symptoms of a viral infection.
  • an “increased” or “enhanced” amount refers to an increase that is 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, or 50 or more times (e.g., 100, 500, 1000 times) (including all integers and decimal points in between and above 1, e.g., 2.1, 2.2, 2.3, 2.4, etc.) an amount or level described herein.
  • It may also include an increase of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, at least 150%, at least 200%, at least 500%, or at least 1000% of an amount or level described herein.
  • a “decreased” or “reduced” or “lesser” amount refers to a decrease that is about 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 1.7, 1.8, 1.9, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, or 50 or more times (e.g., 100, 500, 1000 times) (including all integers and decimal points in between and above 1, e.g., 1.5, 1.6, 1.7. 1.8, etc.) an amount or level described herein.
  • It may also include a decrease of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%, at least 100%, at least 150%, at least 200%, at least 500%, or at least 1000% of an amount or level described herein.
  • the FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein is administered at a dose in the range of about 0.5 ⁇ g/kg to about 5000 ⁇ g/kg, e.g., at least about 0.5 ⁇ g/kg per dose and up to about 1 ⁇ g/kg, 2 ⁇ g/kg, 3 ⁇ g/kg, 4 ⁇ g/kg, 5 ⁇ g/kg, 6 ⁇ g/kg, 7 ⁇ g/kg, 8 ⁇ g/kg, 9 ⁇ g/kg, 10 ⁇ g/kg, 15 ⁇ g/kg, 20 ⁇ g/kg, 30 ⁇ g/kg, 50 ⁇ g/kg, 100 ⁇ g/kg, 150 ⁇ g/kg, 300 ⁇ g/kg, 400 ⁇ g/kg, 500 ⁇ g/kg, 600 ⁇ g/kg, 700 ⁇ g
  • the FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein is administered at a dose in the range of about 1 ⁇ g/kg to about 100 ⁇ g/kg, per dose. In some embodiments, the FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein, is administered at a dose of 1 ⁇ g/kg, per dose.
  • the FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein is administered at a dose of 3 ⁇ g/kg, per dose. In some embodiments, the FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein, is administered at a dose of 10 ⁇ g/kg, per dose.
  • the FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein is administered at a dose of 30 ⁇ g/kg, per dose. In some embodiments, the FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein, is administered at a dose of 60 ⁇ g/kg, per dose.
  • the FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein is administered at a dose of 100 ⁇ g/kg, per dose.
  • the FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein is administered at a dose in the range of about 0.5 mg to about 50 mg, e.g., at least about 0.5 mg per dose and up to about 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg or 50 mg per dose.
  • the FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein is administered at a dose of dose about 10 mg, per dose. In some embodiments, the FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein, is administered at a dose that saturates FLT3 receptors in the tumor.
  • the FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein is administered at a dose that saturates FLT3 receptors in the subject.
  • the methods comprise administering multiple administrations or doses of the fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition, optionally with one or more additional therapeutic agents, at predetermined intervals.
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition can be administered once weekly (i.e., QW), once bi-weekly (i.e., once every other week, or once every two weeks or Q2W), once thrice-weekly (i.e., once every three weeks or Q3W), once monthly (i.e., QM) or once bi-monthly dosing (i.e., once every other month, or once every two months or Q2M), or less often.
  • QW once bi-weekly
  • thrice-weekly i.e., once every three weeks or Q3W
  • QM once monthly
  • bi-monthly dosing i.e., once every other month, or once every two months or Q2M
  • the fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition and the one or more additional therapeutic agents can be co-administered according to the same schedule (e.g., co-administered at the same time intervals) or different schedules (e.g., co-administered at different time intervals).
  • the FLT3L-Fc fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition can be administered first, followed by administration of the one or more additional therapeutic agents, e.g., 1, 2 or 3 weeks later, e.g., after detectable or sufficient expansion of FLT3-expressing cells, e.g., cDC1 dendritic cells.
  • tissues containing cancerous cells whose proliferation is inhibited by the FLT3L-Fc fusion proteins described herein and against which the methods described herein are useful include but are not limited to breast, prostate, brain, blood, bone marrow, liver, pancreas, skin, kidney, colon, ovary, lung, testicle, penis, thyroid, parathyroid, pituitary, thymus, retina, uvea, conjunctiva, spleen, head, neck, trachea, gall bladder, rectum, salivary gland, adrenal gland, throat, esophagus, lymph nodes, sweat glands, sebaceous glands, muscle, heart, and stomach.
  • the subject has a solid tumor.
  • the cancer or tumor is malignant and/or a metastatic.
  • the subject has a cancer selected from the group consisting of an epithelial tumor (e.g., a carcinoma, a squamous cell carcinoma, a basal cell carcinoma, a squamous intraepithelial neoplasia), a glandular tumor (e.g., an adenocarcinoma, an adenoma, an adenomyoma), a mesenchymal or soft tissue tumor (e.g., a sarcoma, a rhabdomyosarcoma, a leiomyosarcoma, a liposarcoma, a fibrosarcoma, a dermatofibrosarcoma, a neurofibrosarcoma, a fibrous histiocytoma, an angiosarcoma, an angiomyxo
  • an epithelial tumor e
  • the subject has a solid tumor in or arising from a tissue or organ selected from the group consisting of:
  • the subject has a hematological cancer, e.g., a leukemia (e.g., Acute Myelogenous Leukemia (AML), Acute Lymphoblastic Leukemia (ALL), B-cell ALL, Myelodysplastic Syndrome (MDS), myeloproliferative disease (MPD), Chronic Myelogenous Leukemia (CML), Chronic Lymphocytic Leukemia (CLL), undifferentiated leukemia), a lymphoma (e.g., small lymphocytic lymphoma (SLL), mantle cell lymphoma (MCL), follicular lymphoma (FL), T-cell lymphoma, B-cell lymphoma, diffuse large B-cell lymphoma (DLBCL), marginal zone lymphoma (MZL), Waldestrom's macroglobulinemia (WM)) and/or a myeloma (e.g., multiple myeloma (MM)).
  • the subject has a tumor that is infiltrated with conventional dendritic cells (cDCs).
  • the tumor infiltrating dendritic cells express C-C motif chemokine receptor 5 (CCR5, CD195) and/or X-C motif chemokine receptor 1 (XCR1) on their cell surface and/or produce CXCL9/10.
  • CCR5, CD195 C-C motif chemokine receptor 5
  • XCR1 X-C motif chemokine receptor 1
  • cDC1 ability to produce CXCL9/10 promotes local recruitment of effector and memory CTLs expressing CXCR3.
  • the tumor infiltrating dendritic cells express one or more cell surface proteins selected from the group consisting of XCR1, interferon regulatory factor 8 (IRF8), cell adhesion molecule 1 (CADM1), C-type lectin domain containing 9A (CLEC9A, CD370), and thrombomodulin (THBD), which identify a cDC1 subtype.
  • IRF8 interferon regulatory factor 8
  • CAM1 cell adhesion molecule 1
  • CLEC9A C-type lectin domain containing 9A
  • THBD thrombomodulin
  • the tumor infiltrating dendritic cells express one or more proteins selected from the group consisting of XCR1, IRF8, CADM1, CLEC9A, THBD, copine 3 (CPNE3), carboxypeptidase vitellogenic like (CPVL), N-acylethanolamine acid amidase (NAAA), cystatin C (CST3), WDFY family member 4 (WDFY4) and galectin 2 (LGALS2), which identify a cDC 1 subtype.
  • cDC 1 cells are efficient antigen cross-presenters to CD8+ T cells.
  • the tumor infiltrating dendritic cells express one or more cell surface proteins selected from the group consisting of CD1A, CD1C, CD1E, signal regulatory protein alpha (SIRPA; CD172A), CD207 and Fc fragment of IgE receptor Ia (FCER1A), which identify a cDC 2 subtype.
  • cell surface proteins selected from the group consisting of CD1A, CD1C, CD1E, signal regulatory protein alpha (SIRPA; CD172A), CD207 and Fc fragment of IgE receptor Ia (FCER1A), which identify a cDC 2 subtype.
  • the tumor infiltrating dendritic cells express one or more cell surface proteins selected from the group consisting of CD1A, CD1C, CD1E, SIRPA, FCER1A, CD207, HLA-DQA2, HLA-DQB2, Fc fragment of IgG binding protein (FCGBP), S100 calcium binding protein B (S100B), NDRG family member 2 (NDRG2), interleukin 22 receptor subunit alpha 2 (IL22RA2), and chondroadherin (CHAD), which identify a cDC2 subtype.
  • cDC 2 cells preferentially interact with CD4+ T cells.
  • the tumor infiltrating dendritic cells expresses one or more proteins selected from the group consisting of basic leucine zipper ATF-like transcription factor 3 (BATF3) and interferon regulatory factor 8 (RF8), identifying an “activated” DC phenotype or hDC 3 subtype.
  • BATF3 basic leucine zipper ATF-like transcription factor 3
  • RF8 interferon regulatory factor 8
  • the tumor infiltrating dendritic cells expresses one or more proteins selected from the group consisting of BATF3, IRF8, C-C motif chemokine ligand 22 (CCL22), lymphocyte antigen 75 (LY75), C-C motif chemokine receptor 7 (CCR7), protein O-glucosyltransferase 1 (POGLUTI), lysine demethylase 2B (KDM2B), INSM transcriptional repressor 1 (INSM1), and UV radiation resistance associated (UVRAG), identifying an “activated” DC phenotype or hDC 3 subtype.
  • the tumor infiltrating dendritic cells express one or more cell surface proteins selected from the group consisting of XCR1, BATF3, RF8, CLEC9A and THBD.
  • Administration of the FLT3L-Fc proteins described herein can promote or increase expansion and/or infiltration of myeloid cells (e.g., T-cells, NK cells and dendritic cells) into a tumor. Further, administration of the FLT3L-Fc proteins described herein can improve, increase, enhance and/or promote the antitumor effects or efficacy of an immune checkpoint inhibitor.
  • the subject has a cancer that detectably expresses or overexpresses one or more cell surface immune checkpoint receptors.
  • greater than about 50% of the cells within the tumor detectably express one or more cell surface immune checkpoint proteins (e.g., the subject has a so-called “hot” cancer or tumor).
  • greater than about 1% and less than about 50% of the cells within the tumor detectably express one or more cell surface immune checkpoint proteins (e.g., the subject has a so called “warm” cancer or tumor).
  • the one or more cell surface immune checkpoint receptors are selected from the group consisting of.
  • the FLT3L-Fc variants described herein can be used to promote or accelerate the recovery from or reverse the effects of lymphopenia or neutropenia.
  • the subject has neutropenia or lymphopenia, e.g., as a result of having received or undergone a lymphodepleting chemotherapy regimen, e.g., an alkylating agent such as chlorambucil or cyclophosphamide, or a nucleoside analog, including pyrimidine nucleosides such as cytarabine and purine nucleosides such as cladribine, pentostatin and fludarabine. See, e.g., Lowe, et al., Gene Therapy (2016) 25:176-191.
  • the methods comprise (a) subjecting a patient to a lymphodepleting chemotherapy regimen; (b) administering a FLT3L-Fc fusion protein, homodimer, heterodimer, conjugate, polynucleotide, vector, lipoplex, such as an LNP, and/or pharmaceutical composition, as described herein; and (c) administering to the patient a cellular therapy, as described herein.
  • a lymphodepleting chemotherapy regimens along with correlative beneficial biomarkers, are described in WO 2016/191756 and WO 2019/079564, incorporated herein by reference in their entireties for all purposes.
  • the lymphodepleting chemotherapy regimen comprises administering to the patient doses of cyclophosphamide (between 200 mg/m 2 /day and 2000 mg/m 2 /day) and doses of fludarabine (between 20 mg/m 2 /day and 900 mg/m 2 /day).
  • doses of cyclophosphamide between 200 mg/m 2 /day and 2000 mg/m 2 /day
  • fludarabine between 20 mg/m 2 /day and 900 mg/m 2 /day.
  • One such dose regimen involves treating a patient comprising administering daily to the patient about 500 mg/m 2 /day of cyclophosphamide and about 60 mg/m 2 /day of fludarabine for three days, e.g., prior to administration of a therapeutically effective amount of a cellular therapy (e.g., an effector cell having a chimeric antigen receptor) to the patient.
  • a cellular therapy e.g., an effector cell having a
  • a cellular therapy e.g., an effector cell having a chimeric antigen receptor
  • the subject is na ⁇ ve to or has not received chemotherapy.
  • the subject has bone marrow cells (e.g., is not depleted of bone marrow cells).
  • the subject does not have a mutation in the gene encoding the FLT3 receptor that causes or results in or is associated with cancer, e.g., FLT3 mutations associated with constitutive signaling of the FLT3 receptor, e.g., FLT3 mutations associated with Acute Myeloid Leukemia (AML).
  • the subject does not have internal tandem duplication (ITD) of the FMS-related tyrosine kinase 3 (FLT3) gene, which occurs in exons 14 and 15, and is one of the most prevalent somatic mutations in adult acute myeloid leukemia (AML).
  • ITD internal tandem duplication
  • FLT3 FMS-related tyrosine kinase 3
  • the subject does not have a mutation in the FLT3 gene in exon 20 that affects codon 835, encoding the tyrosine kinase domain (TKD) mutation, which occurs relatively frequently in adult AML.
  • the subject does not have point mutations affecting amino acid positions D835 (e.g., resulting in D835Y, D835V, and D835H amino acid substitutions) and/or 1836 in the TKD.
  • point mutations affecting amino acid positions D835 e.g., resulting in D835Y, D835V, and D835H amino acid substitutions
  • TKD tyrosine kinase domain
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplex, such as an LNPs, and/or pharmaceutical compositions, as described herein are combined with one or more additional therapeutic agents, e.g., an inhibitory immune checkpoint blocker or inhibitor, a stimulatory immune checkpoint stimulator, agonist or activator, a chemotherapeutic agent, an anticancer agent, an antiviral agent, a radiotherapeutic agent, an anti-neoplastic agent, an anti-proliferation agent, an anti-angiogenic agent, an anti-inflammatory agent, an immunotherapeutic agent, a therapeutic antigen-binding molecule (mono- and multi-specific antibodies and fragments thereof in any format (e.g., including without limitation DARTs®, Duobodies®, BiTEs®, BiKEs, TriKEs, XmAbs®, TandAbs®, scFvs, Fabs, Fab derivatives, Fabs
  • the one or more additional therapeutic agents include, without limitation, an inhibitor, agonist, antagonist, ligand, modulator, stimulator, blocker, activator or suppressor of a target (e.g., polypeptide or polynucleotide) including without limitation: Abelson murine leukemia viral oncogene homolog 1 gene (ABL, such as ABL1), Acetyl-CoA carboxylase (such as ACC1/2), activated CDC kinase (ACK, such as ACK1), Adenosine deaminase, adenosine receptor (such as A2B, A2a, A3), Adenylate cyclase, ADP ribosyl cyclase-1, adrenocorticotropic hormone receptor (ACTH), Aerolysin, AKT1 gene, Alk-5 protein kinase, Alkaline phosphatase, Alpha 1 adrenoceptor, Alpha 2 adrenoceptor, Alpha-
  • ABL
  • the one or more additional therapeutic agents include without limitation an HBV DNA polymerase inhibitor, immunomodulator, TLR modulator, HBsAg inhibitor, HBsAg secretion or assembly inhibitor, HBV therapeutic vaccine, HBV antibody, such as HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, DUOBODIES, BITES®, XmAbs®, TandAbs®, Fab derivatives, or TCR-like antibodies), cyclophilin inhibitor, stimulator of retinoic acid-inducible gene 1, stimulator of RIG-I like receptor, PD-1 inhibitor, PD-L1 inhibitor, arginase inhibitor, PI3K inhibitor, IDO inhibitor, stimulator of NOD2, HBV viral entry inhibitors, NTCP inhibitor, HBx inhibitor, cccDNA inhibitor, HBV antibody targeting the surface antigens of the hepatitis B virus, siRNA, miRNA gene therapy agents,
  • HBV antibody
  • the one or more additional therapeutic agents include without limitation an HBV DNA polymerase inhibitor, immunomodulator, TLR modulator, HBsAg inhibitor, HBV therapeutic vaccine, HBV antibody, such as an HBV antibody targeting a surface antigens of the hepatitis B virus, bispecific antibody and “antibody-like” therapeutic protein (such as DARPins®, anti-pMHC TCR-like antibodies, DARTs®, DUOBODIES®, BITES®, XmAbs®, TandAbs®, Fab derivatives, or TCR-like antibodies), cyclophilin inhibitor, stimulator of retinoic acid-inducible gene 1, stimulator of RIG-I like receptor, PD-1 inhibitor, PD-L1 inhibitor, arginase inhibitor, PI3K inhibitor, IDO inhibitor, and stimulator of NOD2.
  • HBV DNA polymerase inhibitor such as an HBV antibody targeting a surface antigens of the hepatitis B virus, bispecific antibody and “antibody-like” therapeutic protein (such as
  • the one or more additional therapeutic agents include without limitation an HBV DNA polymerase inhibitor, HBV viral entry inhibitor, NTCP inhibitor, HBx inhibitor, cccDNA inhibitor, an HBV antibody targeting a surface antigen of the hepatitis B virus, siRNA, miRNA gene therapy agent, sshRNA, KDM5 inhibitor, and nucleoprotein modulator (HBV core or capsid protein inhibitors).
  • the one or more additional therapeutic agents include without limitation an inhibitor of certain HCV nonstructural proteins, such as a NS5A inhibitor, a NS5B inhibitor, a NS3 inhibitor, or combinations thereof.
  • the one or more additional therapeutic agents include without limitation a combination drug for HIV, another drug for treating HIV, HIV protease inhibitor, HIV non-nucleoside or non-nucleotide inhibitor of reverse transcriptase, HIV nucleoside or nucleotide inhibitor of reverse transcriptase, HIV integrase inhibitor, HIV non-catalytic site (or allosteric) integrase inhibitor, HIV entry inhibitor, HIV maturation inhibitor, immunomodulator, immunotherapeutic agent, antibody-drug conjugate, gene modifier, gene editor (such as CRISPR/Cas9, zinc finger nuclease, homing nuclease, synthetic nuclease, TALEN), cell therapy (such as chimeric antigen receptor T-cell, CAR-T, and engineered T cell receptor, TCR-T, autologous T cell therapy), latency reversing agent, compound that targets the HIV capsid, immune-based therapy, phosphatidylinositol 3-kinase
  • the one or more additional therapeutic agents are selected from the group consisting of HIV protease inhibiting compounds, HIV non-nucleoside inhibitors of reverse transcriptase, HIV non-nucleotide inhibitors of reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, gp41 inhibitors, CXCR4 inhibitors, gpl20 inhibitors, CCR5 inhibitors, capsid polymerization inhibitors, pharmacokinetic enhancers, and other drugs for treating HIV, or any combinations thereof.
  • the one or more additional therapeutic agents do not include a pharmacokinetic enhancer.
  • the one or more additional therapeutic agents include without limitation an HIV protease inhibitor, HIV reverse transcriptase inhibitor, HIV integrase inhibitor, HIV non-catalytic site (or allosteric) integrase inhibitor, HIV entry (fusion) inhibitor, HIV maturation inhibitor, HIV latency reversing agent, HIV capsid inhibitor, anti-HIV antibody, or combination thereof.
  • the one or more additional therapeutic agents include an HIV nucleoside or nucleotide inhibitor of reverse transcriptase and an HIV non-nucleoside inhibitor of reverse transcriptase. In some embodiments, the one or more additional therapeutic agents include an HIV nucleoside or nucleotide inhibitor of reverse transcriptase, and an HIV protease inhibiting compound. In some embodiments, the one or more additional therapeutic agents include an HIV nucleoside or nucleotide inhibitor of reverse transcriptase, an HIV non-nucleoside inhibitor of reverse transcriptase, and a pharmacokinetic enhancer.
  • the one or more additional therapeutic agents include at least one HIV nucleoside inhibitor of reverse transcriptase, an integrase inhibitor, and a pharmacokinetic enhancer. In some embodiments, the one or more additional therapeutic agents include two HIV nucleoside or nucleotide inhibitors of reverse transcriptase.
  • the one or more additional therapeutic agents include one or more antiviral agents. Any suitable antiviral agent can be used in the methods described herein.
  • the one or more antiviral agents include without limitation a 5-substituted 2′-deoxyuridine analogue, a nucleoside analogue, a pyrophosphate analogue, a nucleoside reverse transcriptase inhibitor, a non-nucleoside reverse transcriptase inhibitor, a protease inhibitor, an integrase inhibitor, an entry inhibitor, an acyclic guanosine analogue, an acyclic nucleoside phosphonate analogue, a HCV NS5A/NS5B inhibitor, an influenza virus inhibitors, an interferon, an immunostimulator, an oligonucleotide, an antimitotic inhibitor, and combinations thereof.
  • the one or more therapeutic agents include an RNA polymerase inhibitor.
  • the one or more additional therapeutic agents may be categorized by their mechanism of action into, for example, the following groups:
  • the fusion protein, the homodimer, the heterodimer, the conjugate, the polynucleotide, the vector, the lipoplex, such as an LNP, and/or the pharmaceutical composition is co-administered with one or more additional therapeutic agents comprising an inhibitor or antagonist of: protein tyrosine phosphatase, non-receptor type 11 (PTPN11 or SHP2; NCBI Gene ID: 5781); myeloid cell leukemia sequence 1 (MCL1) apoptosis regulator (NCBI Gene ID: 4170); mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) (also called Hematopoietic Progenitor Kinase 1 (HPK1), NCBI Gene ID: 11184); phosphatidylinositol-4,5-bisphosphate 3-kinase, including catalytic subunit alpha (PIK3CA; NCBI Gene ID: 5290), cata
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with one or more blockers or inhibitors of inhibitory immune checkpoint proteins or receptors and/or with one or more stimulators, activators or agonists of one or more stimulatory immune checkpoint proteins or receptors.
  • Blockade or inhibition of inhibitory immune checkpoints can positively regulate T-cell or NK cell activation and prevent immune escape of cancer cells within the tumor microenvironment.
  • Activation or stimulation of stimulatory immune check points can augment the effect of immune checkpoint inhibitors in cancer therapeutics.
  • the immune checkpoint proteins or receptors regulate T cell responses (e.g., reviewed in Xu, et al., J Exp Clin Cancer Res. (2016) 37:110). In various embodiments, the immune checkpoint proteins or receptors regulate NK cell responses (e.g., reviewed in Davis, et al., Semin Immunol. (2017) 31:64-75 and Chiossone, et al., Nat Rev Immunol. (2016) 18(11):671-688).
  • immune checkpoint proteins or receptors include without limitation CD27 (NCBI Gene ID: 939), CD70 (NCBI Gene ID: 970); CD40 (NCBI Gene ID: 958), CD40LG (NCBI Gene ID: 959); CD47 (NCBI Gene ID: 961), SIRPA (NCBI Gene ID: 140885); CD48 (SLAMF2; NCBI Gene ID: 962), transmembrane and immunoglobulin domain containing 2 (TMIGD2, CD28H; NCBI Gene ID: 126259), CD84 (LY9B, SLAMF5; NCBI Gene ID: 8832), CD96 (NCBI Gene ID: 10225), CD160 (NCBI Gene ID: 11126), MS4A1 (CD20; NCBI Gene ID: 931), CD244 (SLAMF4; NCBI Gene ID: 51744); CD276 (B7H3; NCBI Gene ID: 80381); V-set domain containing T cell activation inhibitor 1 (VTCN1, B7H4); V-set immunoregulatory receptor (
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with one or more blockers or inhibitors of one or more T-cell inhibitory immune checkpoint proteins or receptors.
  • T-cell inhibitory immune checkpoint proteins or receptors include without limitation CD274 (CD274, PDL1, PD-L1); programmed cell death 1 ligand 2 (PDCDILG2, PD-L2, CD273); programmed cell death 1 (PDCD1, PD1, PD-1); cytotoxic T-lymphocyte associated protein 4 (CTLA4, CD152); CD276 (B7H3); V-set domain containing T cell activation inhibitor 1 (VTCN1, B7H4); V-set immunoregulatory receptor (VSIR, B7H5, VISTA); immunoglobulin superfamily member 11 (IGSF11, VSIG3); TNFRSF14 (HVEM, CD270), TNFSF14 (HVEML); CD272 (B and T lymphocyte associated (BTLA)); PVR related immunoglobulin domain containing (PVRIG, CD112R); T cell immunoreceptor with Ig and ITIM domains (TIGIT); lymphocyte activating 3 (LAG3, CD223); hepatitis
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with one or more agonist or activators of one or more T-cell stimulatory immune checkpoint proteins or receptors.
  • T-cell stimulatory immune checkpoint proteins or receptors include without limitation CD27, CD70; CD40, CD40LG; inducible T cell costimulator (ICOS, CD278); inducible T cell costimulator ligand (ICOSLG, B7H2); TNF receptor superfamily member 4 (TNFRSF4, OX40); TNF superfamily member 4 (TNFSF4, OX40L); TNFRSF9 (CD137), TNFSF9 (CD137L); TNFRSF18 (GITR), TNFSF18 (GITRL); CD80 (B7-1), CD28; nectin cell adhesion molecule 2 (NECTIN2, CD112); CD226 (DNAM-1); CD244 (2B4, SLAMF4), Poliovirus receptor (PVR) cell adhesion molecule (PVR, CD155). See, e.g., Xu, et al., J Exp Clin Cancer Res. (2016) 37:110.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with one or more blockers or inhibitors of one or more NK-cell inhibitory immune checkpoint proteins or receptors.
  • Illustrative NK-cell inhibitory immune checkpoint proteins or receptors include without limitation killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 1 (KIR, CD158E1); killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 1 (KIR2DL1); killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 2 (KIR2DL2); killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 3 (KIR2DL3); killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 1 (KIR3DL1); killer cell lectin like receptor C1 (KLRC1, NKG2A, CD159A); killer cell lectin like receptor D1 (KLRD1, CD94), killer cell lectin like receptor G1 (KLRG1; CLEC15A, MAFA, 2F1); sialic acid binding Ig like lectin 7 (SIGLEC7); and
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with one or more agonist or activators of one or more NK-cell stimulatory immune checkpoint proteins or receptors.
  • NK-cell stimulatory immune checkpoint proteins or receptors include without limitation CD16, CD226 (DNAM-1); CD244 (2B4, SLAMF4); killer cell lectin like receptor K1 (KLRK1, NKG2D, CD314); SLAM family member 7 (SLAMF7). See, e.g., Davis, et al., Semin Immunol. (2017) 31:64-75; Fang, et al., Semin Immunol. (2017) 31:37-54; and Chiossone, et al., Nat Rev Immunol. (2016) 18(11):671-688.
  • the one or more immune checkpoint inhibitors comprises a proteinaceous (e.g., antibody or fragment thereof, or antibody mimetic) inhibitor of PD-L1 (CD274), PD-1 (PDCD1) or CTLA4. In some embodiments, the one or more immune checkpoint inhibitors comprises a small organic molecule inhibitor of PD-L1 (CD274), PD-1 (PDCD1) or CTLA4.
  • inhibitors of CTLA4 include without limitation ipilimumab, tremelimumab, BMS-986218, AGEN1181, AGEN1884 (zalifrelimab), BMS-986249, MK-1308, REGN-4659, ADU-1604, CS-1002, BCD-145, APL-509, JS-007, BA-3071, ONC-392, AGEN-2041, JHL-1155, KN-044, CG-0161, ATOR-1144, PBI-5D3H5, BPI-002, as well as multi-specific inhibitors FPT-155 (CTLA4/PD-L1/CD28), PF-06936308 (PD-1/CTLA4), MGD-019 (PD-1/CTLA4), KN-046 (PD-1/CTLA4), MEDI-5752 (CTLA4/PD-1), XmAb-20717 (PD-1/CTLA4), and AK-104 (CTLA4/PD-
  • inhibitors of PD-L1 (CD274) or PD-1 (PDCD1) include without limitation pembrolizumab, nivolumab, cemiplimab, pidilizumab, AMP-224, MEDI0680 (AMP-514), spartalizumab, atezolizumab, avelumab, durvalumab, BMS-936559, CK-301, PF-06801591, BGB-A317 (tislelizumab), GLS-010 (WBP-3055), AK-103 (HX-008), AK-105, CS-1003, HLX-10, MGA-012, BI-754091, AGEN-2034, JS-001 (toripalimab), JNJ-63723283, genolimzumab (CBT-501), LZM-009, BCD-100, LY-3300054, SHR-1201, SHR-1210 (cam
  • TNF Receptor Superfamily (TNFRSF) Member Agonists or Activators
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an agonist of one or more TNF receptor superfamily (TNFRSF) members, e.g., an agonist of one or more of TNFRSFlA (NCBI Gene ID: 7132), TNFRSFlB (NCBI Gene ID: 7133), TNFRSF4 (OX40, CD134; NCBI Gene ID: 7293), TNFRSF5 (CD40; NCBI Gene ID: 958), TNFRSF6 (FAS, NCBI Gene ID: 355), TNFRSF7 (CD27, NCBI Gene ID: 939), TNFRSF8 (CD30, NCBI Gene ID: 943), TNFRSF9 (4-1BB, CD137, NCBI Gene ID: 3604), TNFRSF10A (CD261, DR4, TRAILR
  • Example anti-TNFRSF4 (OX40) antibodies that can be co-administered include without limitation, MEDI6469, MEDI6383, MEDI0562 (tavolixizumab), MOXR0916, PF-04518600, RG-7888, GSK-3174998, INCAGN1949, BMS-986178, GBR-8383, ABBV-368, and those described in WO2016179517, WO2017096179, WO2017096182, WO2017096281, and WO2018089628.
  • Example anti-TNFRSF5 (CD40) antibodies that can be co-administered include without limitation RG7876, SEA-CD40, APX-005M and ABBV-428.
  • the anti-TNFRSF7 (CD27) antibody varlilumab (CDX-1127) is co-administered.
  • Example anti-TNFRSF9 (4-1iB, CD137) antibodies that can be co-administered include without limitation urelumab, utomilumab (PF-05082566), AGEN2373 and ADG-106.
  • the anti-TNFRSF17 (BCMA) antibody GSK-2857916 is co-administered.
  • Example anti-TNFRSF18 (GITR) antibodies that can be co-administered include without limitation, MEDI1873, FPA-154, INCAGN-1876, TRX-518, BMS-986156, MK-1248, GWN-323, and those described in WO2017096179, WO2017096276, WO2017096189, and WO2018089628.
  • an antibody, or fragment thereof, co-targeting TNFRSF4 (OX40) and TNFRSF18 (GITR) is co-administered.
  • Such antibodies are described, e.g., in WO2017096179 and WO2018089628.
  • Bi-specific antibodies targeting TNFRSF family members include without limitation PRS-343 (CD-137/HER2), AFM26 (BCMA/CD16A), AFM-13 (CD16/CD30), REGN-1979 (CD20/CD3), AMG-420 (BCMA/CD3), INHIBRX-105 (4-1BB/PDL1), FAP-4-IBBL (4-1BB/FAP), XmAb-13676 (CD3/CD20), RG-7828 (CD20/CD3), CC-93269 (CD3/BCMA), REGN-5458 (CD3/BCMA), and IMM-0306 (CD47/CD20).
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a bi-specific T-cell engager (e.g., not having an Fc) or an anti-CD3 bi-specific antibody (e.g., having an Fc).
  • a bi-specific T-cell engager e.g., not having an Fc
  • an anti-CD3 bi-specific antibody e.g., having an Fc
  • Illustrative anti-CD3 bi-specific antibodies or BiTEs that can be co-administered include JNJ-64052781 (CD19/CD3), AMG-211 (CEA/CD3), RG7802 (CEA/CD3), ERY-974 (CD3/GPC3), PF-06671008 (Cadherins/CD3), APV0436 (CD123/CD3), flotetuzumab (CD123/CD3), REGN-1979 (CD20/CD3), MCLA-117 (CD3/CLEC12A), JNJ-0819, JNJ-7564 (CD3/heme), AMG-757 (DLL3-CD3), AMG-330 (CD33/CD3), AMG-420 (BCMA/CD3), JNJ-63709178 (CD123/CD3), MGD-007 (CD3/gpA33), MGD-009 (CD3/B7H3), IMCgp100 (CD3/gp100), XmAb-
  • the anti-CD3 binding bi-specific molecules may or may not have an Fc.
  • Illustrative bi-specific T-cell engagers that can be co-administered target CD3 and a tumor-associated antigen as described herein, including, e.g., CD19 (e.g., blinatumomab); CD33 (e.g., AMG330); CEA (e.g., MEDI-565); receptor tyrosine kinase-like orphan receptor 1 (ROR1) (Gohil, et al., Oncoimmunology. (2017) May 17; 6(7):e1326437); PD-L1 (Horn, et al., Oncotarget. 2017 Aug. 3; 8(35):57964-57980); and EGFRvIII (Yang, et al., Cancer Lett. 2017 Sep. 10; 403:224-230).
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a bi-specific NK-cell engager (BiKE) or a tri-specific NK-cell engager (TriKE) (e.g., not having an Fc) or bi-specific antibody (e.g., having an Fc) against an NK cell activating receptor, e.g., CD16A, C-type lectin receptors (CD94/NKG2C, NKG2D, NKG2E/H and NKG2F), natural cytotoxicity receptors (NKp30, NKp44 and NKp46), killer cell C-type lectin-like receptor (NKp65, NKp80), Fc receptor Fc ⁇ R (which mediates antibody-dependent cell cytotoxicity), SLAM family receptors (e.g., 2B4,
  • Illustrative anti-CD16 bi-specific antibodies, BiKEs or TriKEs that can be co-administered include AFM26 (BCMA/CD16A) and AFM-13 (CD16/CD30). As appropriate, the anti-CD16 binding bi-specific molecules may or may not have an Fc.
  • BiKEs and TriKEs are described, e.g., in Felices, et al., Methods Mol Biol. (2016) 1441:333-346; Fang, et al., Semin Immunol. (2017) 31:37-54.
  • MCL1 Apoptosis Regulator, BCL2 Family Member (MCL1) Inhibitors
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an inhibitor of MCL1 apoptosis regulator, BCL2 family member (MCL1, TM; EAT; MCL1L; MCL1S; Mcl-1; BCL2L3; MCL1-ES; bc2-L-3; mcll/EAT; NCBI Gene ID: 4170).
  • MCL1 apoptosis regulator BCL2 family member
  • MCL1 inhibitors examples include AMG-176, AMG-397, -64315, and AZD-5991, 483-LM, A-1210477, UMI-77, JKY-5-037, and those described in WO2018183418, WO2016033486, and WO2017147410.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an inhibitor of protein tyrosine phosphatase non-receptor type 11 (PTPN11; BPTP3, CFC, JMML, METCDS, NS1, PTP-1D, PTP2C, SH-PTP2, SH-PTP3, SHP2; NCBI Gene ID: 5781).
  • SHP2 inhibitors include TNO155 (SHP-099), RMC-4550, JAB-3068, RMC-4630, and those described in WO2018172984 and WO2017211303.
  • HPK1 Hematopoietic Progenitor Kinase 1
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an inhibitor of mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1, HPK1; NCBI Gene ID: 11184).
  • mitogen-activated protein kinase kinase kinase kinase 1 MA4K1, HPK1; NCBI Gene ID: 11184
  • Hematopoietic Progenitor Kinase 1 (HPK1) inhibitors include without limitation, those described in WO-2018183956, WO-2018183964, WO-2018167147, WO-2018183964, WO-2016205942, WO-2018049214, WO-2018049200, WO-2018049191, WO-2018102366, WO-2018049152 and WO-2016090300;
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an inhibitor of an ASK inhibitor, e.g., mitogen-activated protein kinase kinase kinase 5 (MAP3K5; ASK1, MAPKKK5, MEKK5; NCBI Gene ID: 4217).
  • ASK inhibitors include without limitation, those described in WO 2011/008709 (Gilead Sciences) and WO 2013/112741 (Gilead Sciences).
  • BTK Bruton Tyrosine Kinase
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplex, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an inhibitor of Bruton tyrosine kinase (BTK, AGMX1, AT, ATK, BPK, IGHD3, IMD1, PSCTK1, XLA; NCBI Gene ID: 695).
  • BTK Bruton tyrosine kinase
  • BTK inhibitors include without limitation, (S)-6-amino-9-(1-(but-2-ynoyl)pyrrolidin-3-yl)-7-(4-phenoxyphenyl)-7H-purin-8(9H)-one, acalabrutinib (ACP-196), BGB-3111, CB988, HM71224, ibrutinib, M-2951 (evobrutinib), M7583, tirabrutinib (ONO-4059), PRN-1008, spebrutinib (CC-292), TAK-020, vecabrutinib, ARQ-531, SHR-1459, DTRMWXHS-12, TAS-5315.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplex, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an inhibitor of CD47 (IAP, MER6, OA3; NCBI Gene ID: 961).
  • CD47 inhibitors include without limitation anti-CD47 mAbs (Vx-1004), anti-human CD47 mAbs (CNTO-7108), CC-90002, CC-90002-ST-001, humanized anti-CD47 antibody (Hu5F9-G4), NI-1701, NI-1801, RCT-1938, and TTI-621.
  • the CD47 inhibitor is magrolimab.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a SIRP ⁇ targeting agent (NCBI Gene ID: 140885; UniProt P78324).
  • SIRP ⁇ targeting agents include without limitation SIRP ⁇ inhibitors, such as AL-008, RRx-001, and CTX-5861, and anti-SIRP ⁇ antibodies, such as FSI-189 (GS-0189), ES-004, BI765063, ADU1805, and CC-95251.
  • SIRPa-targeting agents of use are described, for example, in W200140307, W2002092784, WO2007133811, WO2009046541, WO2010083253, WO2011076781, WO2013056352, WO2015138600, WO2016179399, WO2016205042, WO2017178653, WO2018026600, WO2018057669, WO2018107058, WO2018190719, WO2018210793, WO2019023347, WO2019042470, WO2019175218, WO2019183266, WO2020013170 and WO2020068752.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an inhibitor of cyclin dependent kinase 1 (CDK1, CDC2; CDC28A; P34CDC2; NCBI Gene ID: 983); cyclin dependent kinase 2 (CDK2, CDKN2; p33(CDK2); NCBI Gene ID: 1017); cyclin dependent kinase 3 (CDK3, NCBI Gene ID: 1018); cyclin dependent kinase 4 (CDK4, CMM3; PSK-J3; NCBI Gene ID: 1019); cyclin dependent kinase 6 (CDK6, MCPH12; PLSTIRE; NCBI Gene ID: 1021); cyclin dependent kinase 7 (CDK7, CAK; CAK1; HCAK; MO15; ST
  • Inhibitors of CDK 1, 2, 3, 4, 6, 7 and/or 9 include without limitation abemaciclib, alvocidib (HMR-1275, flavopiridol), AT-7519, dinaciclib, ibrance, FLX-925, LEE001, palbociclib, ribociclib, rigosertib, selinexor, UCN-01, SY1365, CT-7001, SY-1365, G1T38, milciclib, trilaciclib, and TG-02.
  • DDR Discoidin Domain Receptor
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an inhibitor of discoidin domain receptor tyrosine kinase 1 (DDR1, CAK, CD167, DDR, EDDR1, HGK2, MCK10, NEP, NTRK4, PTK3, PTK3A, RTK6, TRKE; NCBI Gene ID: 780); and/or discoidin domain receptor tyrosine kinase 2 (DDR2, MIG20a, NTRKR3, TKT, TYRO10, WRCN; NCBI Gene ID: 4921).
  • DDR1, CAK, CD167, DDR, EDDR1, HGK2, MCK10, NEP, NTRK4, PTK3, PTK3A, RTK6, TRKE NCBI Gene ID: 780
  • DDR inhibitors include without limitation, dasatinib and those disclosed in WO2014/047624 (Gilead Sciences), US 2009-0142345 (Takeda Pharmaceutical), US 2011-0287011 (Oncomed Pharmaceuticals), WO 2013/027802 (Chugai Pharmaceutical), and WO2013/034933 (Imperial Innovations).
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a targeted E3 ligase ligand conjugate.
  • Such conjugates have a target protein binding moiety and an E3 ligase binding moiety (e.g., an inhibitor of apoptosis protein (lAP) (e.g., XIAP, c-IAP1, c-IAP2, NIL-IAP, Bruce, and surviving) E3 ubiquitin ligase binding moiety, Von Hippel-Lindau E3 ubiquitin ligase (VHL) binding moiety, a cereblon E3 ubiquitin ligase binding moiety, mouse double minute 2 homolog (MDM2) E3 ubiquitin ligase binding moiety), and can be used to promote or increase the degradation of targeted proteins, e.g., via the ubiquitin pathway.
  • E3 ligase binding moiety e.g., an inhibitor of apoptosis protein (lAP) (e.g., XIAP, c-IAP1, c-IAP2, NIL-IAP, Bruce, and surviving)
  • the targeted E3 ligase ligand conjugates comprise a targeting or binding moiety that targets or binds a protein identified in Table B, and an E3 ligase ligand or binding moiety.
  • the targeted E3 ligase ligand conjugates comprise a targeting or binding moiety that targets or binds a protein selected from Cbl proto-oncogene B (CBLB; Cbl-b, Nbla00127, RNF56; NCBI Gene ID: 868) and hypoxia inducible factor 1 subunit alpha (HIF1A; NCBI Gene ID: 3091).
  • the targeted E3 ligase ligand conjugates comprise a kinase inhibitor (e.g., a small molecule kinase inhibitor, e.g., of BTK and an E3 ligase ligand or binding moiety. See, e.g., WO2018098280.
  • a kinase inhibitor e.g., a small molecule kinase inhibitor, e.g., of BTK and an E3 ligase ligand or binding moiety. See, e.g., WO2018098280.
  • the targeted E3 ligase ligand conjugates comprise a binding moiety targeting or binding to Interleukin-1 (IL-1) Receptor-Associated Kinase-4 (IRAK-4); Rapidly Accelerated Fibrosarcoma (RAF, such as c-RAF, A-RAF and/or B-RAF), c-Met/p38, or a BRD protein; and an E3 ligase ligand or binding moiety.
  • IL-1 Interleukin-1
  • IRAK-4 Rapidly Accelerated Fibrosarcoma
  • RAF such as c-RAF, A-RAF and/or B-RAF
  • c-Met/p38 c-Met/p38
  • BRD protein e.g., WO2019099926, WO2018226542, WO2018119448, WO2018223909, WO2019079701.
  • E3 ligase ligand conjugates that can be co-administered are described, e.g., in WO2018237026, WO2019084026, WO2019084030, WO2019067733, WO2019043217, WO2019043208 and WO2018144649.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an inhibitor of a histone deacetylase, e.g., histone deacetylase 9 (HDAC9, HD7, HD7b, HD9, HDAC, HDAC7, HDAC7B, HDAC9B, HDAC9FL, HDRP, MITR; Gene ID: 9734).
  • histone deacetylase 9 histone deacetylase 9
  • HDAC inhibitors include without limitation, abexinostat, ACY-241, AR-42, BEBT-908, belinostat, CKD-581, CS-055 (HBI-8000), CUDC-907 (fimepinostat), entinostat, givinostat, mocetinostat, panobinostat, pracinostat, quisinostat (JNJ-26481585), resminostat, ricolinostat, SHP-141, valproic acid (VAL-001), vorinostat, tinostamustine, remetinostat, entinostat.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO; NCBI Gene ID: 3620).
  • IDO indoleamine 2,3-dioxygenase 1
  • IDO1 inhibitors include without limitation, BLV-0801, epacadostat, F-001287, GBV-1012, GBV-1028, GDC-0919, indoximod, NKTR-218, NLG-919-based vaccine, PF-06840003, pyranonaphthoquinone derivatives (SN-35837), resminostat, SBLK-200802, BMS-986205, and shIDO-ST, EOS-200271, KHK-2455, LY-3381916.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an inhibitor of Janus kinase 1 (JAK1, JAK1A, JAK1B, JTK3; NCBI Gene ID: 3716); Janus kinase 2 (JAK2, JTK10, THCYT3; NCBI Gene ID: 3717); and/or Janus kinase 3 (JAK3, JAK-3, JAK3_HUMAN, JAKL, L-JAK, LJAK; NCBI Gene ID: 3718).
  • Janus kinase 1 JAK1, JAK1A, JAK1B, JTK3; NCBI Gene ID: 3716
  • Janus kinase 2 JAK2, JTK10, THCYT3; NCBI Gene ID: 3717
  • Janus kinase 3 JAK3, JAK-3,
  • JAK inhibitors include without limitation, AT9283, AZD1480, baricitinib, BMS-911543, fedratinib, filgotinib (GLPG0634), gandotinib (LY2784544), INCB039110 (itacitinib), lestaurtinib, momelotinib (CYT0387), NS-018, pacritinib (SB1518), peficitinib (ASP015K), ruxolitinib, tofacitinib (formerly tasocitinib), INCB052793, and XL019.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an inhibitor of a LOXL protein, e.g., LOXL1 (NCBI Gene ID: 4016), LOXL2 (NCBI Gene ID: 4017), LOXL3 (NCBI Gene ID: 84695), LOXL4 (NCBI Gene ID: 84171), and/or LOX (NCBI Gene ID: 4015).
  • LOXL inhibitors include without limitation, the antibodies described in WO 2009/017833 (Arresto Biosciences).
  • LOXL2 inhibitors include without limitation, the antibodies described in WO 2009/017833 (Arresto Biosciences), WO 2009/035791 (Arresto Biosciences), and WO 2011/097513 (Gilead Biologics).
  • MMP Matrix Metalloprotease
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an inhibitor of a matrix metallopeptidase (MMP), e.g., an inhibitor of MMP1 (NCBI Gene ID: 4312), MMP2 (NCBI Gene ID: 4313), MMP3 (NCBI Gene ID: 4314), MMP7 (NCBI Gene ID: 4316), MMP8 (NCBI Gene ID: 4317), MMP9 (NCBI Gene ID: 4318); MMP10 (NCBI Gene ID: 4319); MMP11 (NCBI Gene ID: 4320); MMP12 (NCBI Gene ID: 4321), MMP13 (NCBI Gene ID: 4322), MMP14 (NCBI Gene ID: 4323), MMP15 (NCBI Gene ID: 4324), MMP16 (NCBI Gene ID: 4325), MMP17 (NCBI Gene ID
  • MMP1
  • MMP9 inhibitors include without limitation, marimastat (BB-2516), cipemastat (Ro 32-3555), GS-5745 (andecaliximab) and those described in WO 2012/027721 (Gilead Biologics).
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an inhibitor of KRAS proto-oncogene, GTPase (KRAS; a.k.a., NS; NS3; CFC2; RALD; K-Ras; KRAS1; KRAS2; RASK2; KI-RAS; C—K-RAS; K-RAS2A; K-RAS2B; K-RAS4A; K-RAS4B; c-Ki-ras2; NCBI Gene ID: 3845); NRAS proto-oncogene, GTPase (NRAS; a.k.a., NS6; CMNS; NCMS; ALPS4; N-ras; NRAS1; NCBI Gene ID: 4893); HRa KRAS proto-
  • the Ras inhibitors can inhibit Ras at either the polynucleotide (e.g., transcriptional inhibitor) or polypeptide (e.g., GTPase enzyme inhibitor) level.
  • the inhibitors target one or more proteins in the Ras pathway, e.g., inhibit one or more of EGFR, Ras, Raf (A-Raf, B-Raf, C-Raf), MEK (MEK1, MEK2), ERK, PI3K, AKT and mTOR.
  • K-Ras inhibitors that can be co-administered include ARS-1620 (G12C), SML-8-73-1 (G12C), Compound 3144 (G12D), Kobe0065/2602 (Ras GTP), RT11, MRTX-849 (G12C) and K-Ras(G12D)-selective inhibitory peptides, including KRpep-2 (Ac-RRCPLYISYDPVCRR-NH 2 ) (SEQ ID NO:108) and KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH 2 ) (SEQ ID NO:109).
  • Illustrative KRAS mRNA inhibitors include anti-KRAS U1 adaptor, AZD-4785, siG12D-LODERTM, and siG12D exosomes.
  • Illustrative MEK inhibitors that can be co-administered include binimetinib, cobimetinib, PD-0325901, pimasertib, RG-7304, selumetinib, trametinib, and those described below and herein.
  • Illustrative Raf dimer inhibitors that can be co-administered BGB-283, HM-95573, LXH-254, LY-3009120, RG7304 and TAK-580.
  • Illustrative ERK inhibitors that can be co-administered include LTT-462, LY-3214996, MK-8353, ravoxertinib and ulixertinib.
  • Illustrative Ras GTPase inhibitors that can be co-administered include rigosertib.
  • Illustrative PI3K inhibitors that can be co-administered include idelalisib (Zydelig®), alpelisib, buparlisib, pictilisib, and those described below and herein.
  • Ras-driven cancers e.g., NSCLC
  • the MEK inhibitor selumetinib and the CDK4/6 inhibitor palbociclib can be inhibited by co-administration of the MEK inhibitor selumetinib and the CDK4/6 inhibitor palbociclib.
  • K-RAS and mutant N-RAS can be reduced by the irreversible ERBB1/2/4 inhibitor neratinib. See, e.g., Booth, et al., Cancer Biol Ther. 2018 Feb. 1; 19(2):132-137.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an inhibitor of mitogen-activated protein kinase kinase 7 (MAP2K7, JNKK2, MAPKK7, MEK, MEK 7, MKK7, PRKMK7, SAPKK-4, SAPKK4; NCBI Gene ID: 5609).
  • mitogen-activated protein kinase kinase 7 MAP2K7, JNKK2, MAPKK7, MEK, MEK 7, MKK7, PRKMK7, SAPKK-4, SAPKK4; NCBI Gene ID: 5609.
  • MEK inhibitors include antroquinonol, binimetinib, cobimetinib (GDC-0973, XL-518), MT-144, selumetinib (AZD6244), sorafenib, trametinib (GSK1120212), uprosertib+trametinib, PD-0325901, pimasertib, LTT462, AS703988, CC-90003, refametinib.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as an LNPs, and/or pharmaceutical compositions, as described herein are combined with an inhibitor of a phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit, e.g., phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA, CLAPO, CLOVE, CWS5, MCAP, MCM, MCMTC, PI3K, PI3K-alpha, p110-alpha; NCBI Gene ID: 5290); phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB, PIOBETA, PI3K, PI3KBETA, PIK3C1; NCBI Gene ID: 5291);
  • the PI3K inhibitor is a pan-PI3K inhibitor.
  • PI3K inhibitors include without limitation, ACP-319, AEZA-129, AMG-319, AS252424, AZD8186, BAY 10824391, BEZ235, buparlisib (BKM120), BYL719 (alpelisib), CH5132799, copanlisib (BAY 80-6946), duvelisib, GDC-0032, GDC-0077, GDC-0941, GDC-0980, GSK2636771, GSK2269557, idelalisib (Zydelig®), INCB50465, IPI-145, IPI-443, IPI-549, KAR4141, LY294002, LY3023414, MLN1117, OXY111A, PA799, PX-866, RG7604, rigosertib, RP5090, RP6530, SRX31
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an inhibitor of spleen associated tyrosine kinase (SYK, p72-Syk, Gene ID: 6850).
  • SYK spleen associated tyrosine kinase
  • SYK inhibitors include without limitation, 6-(1H-indazol-6-yl)-N-(4-morpholinophenyl)imidazo[1,2-a]pyrazin-8-amine, BAY-61-3606, cerdulatinib (PRT-062607), entospletinib, fostamatinib (R788), HIMPL-523, NVP-QAB 205 AA, R112, R343, tamatinib (R406), and those described in U.S. Pat. No. 8,450,321 (Gilead Connecticut) and those described in U.S. 2015/0175616.
  • TLR Toll-Like Receptor
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an agonist of a toll-like receptor (TLR), e.g., an agonist of TLR1 (NCBI Gene ID: 7096), TLR2 (NCBI Gene ID: 7097), TLR3 (NCBI Gene ID: 7098), TLR4 (NCBI Gene ID: 7099), TLR5 (NCBI Gene ID: 7100), TLR6 (NCBI Gene ID: 10333), TLR7 (NCBI Gene ID: 51284), TLR8 (NCBI Gene ID: 51311), TLR9 (NCBI Gene ID: 54106), and/or TLR10 (NCBI Gene ID: 81793).
  • TLR toll-like receptor
  • Example TLR7 agonists that can be co-administered include without limitation DS-0509, GS-9620 (vesatolimod), vesatolimod analogs, LHC-165, TMX-101 (imiquimod), GSK-2245035, resiquimod, DSR-6434, DSP-3025, IMO-4200, MCT-465, MEDI-9197, 3M-051, SB-9922, 3M-052, Limtop, TMX-30X, TMX-202, RG-7863, RG-7795, and the compounds disclosed in US20100143301 (Gilead Sciences), US20110098248 (Gilead Sciences), and US20090047249 (Gilead Sciences), US20140045849 (Janssen), US20140073642 (Janssen), WO2014/056953 (Janssen), WO2014/076221 (Janssen), WO2014/128189 (Janssen), US20140350031 (Janssen),
  • TLR7/TLR8 agonist that can be co-administered is NKTR-262.
  • Example TLR8 agonists that can be co-administered include without limitation E-6887, IMO-4200, IMO-8400, IMO-9200, MCT-465, MEDI-9197, motolimod, resiquimod, GS-9688, VTX-1463, VTX-763, 3M-051, 3M-052, and the compounds disclosed in US20140045849 (Janssen), US20140073642 (Janssen), WO2014/056953 (Janssen), WO2014/076221 (Janssen), WO2014/128189 (Janssen), US20140350031 (Janssen), WO2014/023813 (Janssen), US20080234251 (Array Biopharma), US20080306050 (Array Biopharma), US20100029585 (Ventirx Pharma), US20110092485 (Ventirx Pharma), US2011
  • Example TLR9 agonists that can be co-administered include without limitation AST-008, CMP-001, IMO-2055, IMO-2125, litenimod, MGN-1601, BB-001, BB-006, IMO-3100, IMO-8400, IR-103, IMO-9200, agatolimod, DIMS-9054, DV-1079, DV-1179, AZD-1419, leftolimod (MGN-1703), CYT-003, CYT-003-QbG10 and PUL-042.
  • TLR3 agonist include rintatolimod, poly-ICLC, RIBOXXON®, Apoxxim, RIBOXXIM®, IPH-33, MCT-465, MCT-475, and ND-1.1.
  • TKIs Tyrosine-Kinase Inhibitors
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a tyrosine kinase inhibitor (TKI).
  • TKIs may target epidermal growth factor receptors (EGFRs) and receptors for fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF).
  • EGFRs epidermal growth factor receptors
  • FGF fibroblast growth factor
  • PDGF platelet-derived growth factor
  • VEGF vascular endothelial growth factor
  • TKIs include without limitation, afatinib, ARQ-087 (derazantinib), asp5878, AZD3759, AZD4547, bosutinib, brigatinib, cabozantinib, cediranib, crenolanib, dacomitinib, dasatinib, dovitinib, E-6201, erdafitinib, erlotinib, gefitinib, gilteritinib (ASP-2215), FP-1039, HM61713, icotinib, imatinib, KX2-391 (Src), lapatinib, lestaurtinib, lenvatinib, midostaurin, nintedanib, ODM-203, osimertinib (AZD-9291), ponatinib, poziotinib, quizartinib, radotinib
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a chemotherapeutic agent or anti-neoplastic agent.
  • chemotherapeutic agent or “chemotherapeutic” (or “chemotherapy” in the case of treatment with a chemotherapeutic agent) is meant to encompass any non-proteinaceous (e.g., non-peptidic) chemical compound useful in the treatment of cancer.
  • chemotherapeutic agents include but not limited to: alkylating agents such as thiotepa and cyclophosphamide (CYTOXAN®); alkyl sulfonates such as busulfan, improsulfan, and piposulfan; aziridines such as benzodepa, carboquone, meturedepa, and uredepa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide, and trimemylolomelamine; acetogenins, e.g., bullatacin and bullatacinone; a camptothecin, including synthetic analog topotecan; bryostatin, callystatin; CC-1065, including its adozelesin, carzelesin, and bizelesin synthetic analogs; cryptophycins, particularly cryptophycin 1 and cryptophycin 8; dolastatin;
  • chemotherapeutic agent are anti-hormonal agents such as anti-estrogens and selective estrogen receptor modulators (SERMs), inhibitors of the enzyme aromatase, anti-androgens, and pharmaceutically acceptable salts, acids or derivatives of any of the above that act to regulate or inhibit hormone action on tumors.
  • SERMs selective estrogen receptor modulators
  • anti-estrogens and SERMs include, for example, tamoxifen (including NOLVADEXTM), raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (FARESTON®).
  • Inhibitors of the enzyme aromatase regulate estrogen production in the adrenal glands include 4(5)-imidazoles, aminoglutethimide, megestrol acetate (MEGACE®), exemestane, formestane, fadrozole, vorozole (RIVISOR®), letrozole (FEMARA®), and anastrozole (ARIMIDEX®).
  • anti-androgens examples include apalutamide, abiraterone, enzalutamide, flutamide, galeterone, nilutamide, bicalutamide, leuprolide, goserelin, ODM-201, APC-100, ODM-204.
  • An example progesterone receptor antagonist includes onapristone.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an anti-angiogenic agent.
  • Anti-angiogenic agents that can be co-administered include, but are not limited to, retinoid acid and derivatives thereof, 2-methoxyestradiol, ANGIOSTATIN®, ENDOSTATIN®, regorafenib, necuparanib, suramin, squalamine, tissue inhibitor of metalloproteinase-1, tissue inhibitor of metalloproteinase-2, plasminogen activator inhibitor-1, plasminogen activator inbibitor-2, cartilage-derived inhibitor, paclitaxel (nab-paclitaxel), platelet factor 4, protamine sulphate (clupeine), sulphated chitin derivatives (prepared from queen crab shells), sulphated polysaccharide peptidoglycan complex (sp-pg), staurosporine, modulators of matrix metabolism including proline analogs such as 1-azetidine-2-carboxylic acid (LACA), cishydroxyproline, d,I-3,4-de
  • anti-angiogenesis agents include antibodies, preferably monoclonal antibodies against these angiogenic growth factors: beta-FGF, alpha-FGF, FGF-5, VEGF isoforms, VEGF-C, HGF/SF, and Ang-1/Ang-2.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an anti-fibrotic agent.
  • Anti-fibrotic agents that can be co-administered include, but are not limited to, the compounds such as beta-aminoproprionitrile (BAPN), as well as the compounds disclosed in U.S. Pat. No. 4,965,288 relating to inhibitors of lysyl oxidase and their use in the treatment of diseases and conditions associated with the abnormal deposition of collagen and U.S. Pat. No.
  • Exemplary anti-fibrotic agents also include the primary amines reacting with the carbonyl group of the active site of the lysyl oxidases, and more particularly those which produce, after binding with the carbonyl, a product stabilized by resonance, such as the following primary amines: emylenemamine, hydrazine, phenylhydrazine, and their derivatives; semicarbazide and urea derivatives; aminonitriles such as BAPN or 2-nitroethylamine; unsaturated or saturated haloamines such as 2-bromo-ethylamine, 2-chloroethylamine, 2-trifluoroethylamine, 3-bromopropylamine, and p-halobenzylamines; and selenohomocysteine lactone.
  • primary amines reacting with the carbonyl group of the active site of the lysyl oxidases, and more particularly those which produce, after binding with the carbonyl, a product
  • anti-fibrotic agents are copper chelating agents penetrating or not penetrating the cells.
  • Exemplary compounds include indirect inhibitors which block the aldehyde derivatives originating from the oxidative deamination of the lysyl and hydroxylysyl residues by the lysyl oxidases.
  • Examples include the thiolamines, particularly D-penicillamine, and its analogs such as 2-amino-5-mercapto-5-methylhexanoic acid, D-2-amino-3-methyl-3-((2-acetamidoethyl)dithio)butanoic acid, p-2-amino-3-methyl-3-((2-aminoethyl)dithio)butanoic acid, sodium-4-((p-1-dimethyl-2-amino-2-carboxyethyl)dithio)butane sulphurate, 2-acetamidoethyl-2-acetamidoethanethiol sulphanate, and sodium-4-mercaptobutanesulphinate trihydrate.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an anti-inflammatory agent.
  • Example anti-inflammatory agents include without limitation inhibitors of one or more of arginase (ARG1 (NCBI Gene ID: 383), ARG2 (NCBI Gene ID: 384)), carbonic anhydrase (CA1 (NCBI Gene ID: 759), CA2 (NCBI Gene ID: 760), CA3 (NCBI Gene ID: 761), CA4 (NCBI Gene ID: 762), CA5A (NCBI Gene ID: 763), CA5B (NCBI Gene ID: 11238), CA6 (NCBI Gene ID: 765), CA7 (NCBI Gene ID: 766), CA8 (NCBI Gene ID: 767), CA9 (NCBI Gene ID: 768), CA10 (NCBI Gene ID: 56934), CA11 (NCBI Gene ID: 770), CA12 (NCBI Gene ID: 771), CA13 (NCBI Gene ID: 377677), CA14 (NCBI Gene ID: 23632)), prostaglandin-endoperoxide synthase 1 (PTGS1, COX-1; NCBI Gene ID: 57
  • inhibitors of prostaglandin-endoperoxide synthase 1 include without limitation mofezolac, GLY-230, and TRK-700.
  • inhibitors of prostaglandin-endoperoxide synthase 2 include without limitation diclofenac, meloxicam, parecoxib, etoricoxib, AP-101, celecoxib, AXS-06, diclofenac potassium, DRGT-46, AAT-076, meisuoshuli, lumiracoxib, meloxicam, valdecoxib, zaltoprofen, nimesulide, Anitrazafen, Apricoxib, Cimicoxib, Deracoxib, Flumizole, Firocoxib, Mavacoxib, NS-398, Pamicogrel, Parecoxib, Robenacoxib, Rofecoxib, Rutecarpine, Tilmacoxib, and Zaltoprofen.
  • Examples of dual COX1/COX2 inhibitors that can be co-administered include without limitation, HP-5000, lornoxicam, ketorolac tromethamine, bromfenac sodium, ATB-346, HP-5000.
  • Examples of dual COX-2/carbonic anhydrase (CA) inhibitors that can be co-administered include without limitation polmacoxib and imrecoxib.
  • inhibitors of secreted phospholipase A2, prostaglandin E synthase include without limitation LY3023703, GRC 27864, and compounds described in WO2015158204, WO2013024898, WO2006063466, WO2007059610, WO2007124589, WO2010100249, WO2010034796, WO2010034797, WO2012022793, WO2012076673, WO2012076672, WO2010034798, WO2010034799, WO2012022792, WO2009103778, WO2011048004, WO2012087771, WO2012161965, WO2013118071, WO2013072825, WO2014167444, WO2009138376, WO2011023812, WO2012110860, WO2013153535, WO2009130242, WO2009146696, WO2013186692, WO2015
  • Metformin has further been found to repress the COX2/PGE2/STAT3 axis, and can be co-administered. See, e.g., Tong, et al., Cancer Lett . (2017) 389:23-32; and Liu, et al., Oncotarget . (2016) 7(19):28235-46.
  • inhibitors of carbonic anhydrase include without limitation acetazolamide, methazolamide, dorzolamide, zonisamide, brinzolamide and dichlorphenamide.
  • a dual COX-2/CA1/CA2 inhibitor that can be co-administered include without limitation acetazolamide, methazolamide, dorzolamide, zonisamide, brinzolamide and dichlorphenamide.
  • inhibitors of arachidonate 5-lipoxygenase include without limitation meclofenamate sodium, zileuton.
  • inhibitors of soluble epoxide hydrolase 2 (EPHX2, SEH; NCBI Gene ID: 2053) that can be co-administered include without limitation compounds described in WO2015148954.
  • Dual inhibitors of COX-2/SEH that can be co-administered include compounds described in WO2012082647.
  • Dual inhibitors of SEH and fatty acid amide hydrolase (FAAH; NCBI Gene ID: 2166) that can be co-administered include compounds described in WO2017160861.
  • inhibitors of mitogen-activated protein kinase kinase kinase 8 include without limitation GS-4875, GS-5290, BHM-078 and those described, e.g., in WO2006124944, WO2006124692, WO2014064215, WO2018005435, Teli, et al., JEnzyme Inhib Med Chem. (2012) 27(4):558-70; Gangwall, et al., Curr Top Med Chem. (2013) 13(9):1015-35; Wu, et al., Bioorg Med Chem Lett.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an agent that promotes or increases tumor oxygenation or reoxygenation, or prevents or reduces tumor hypoxia.
  • Illustrative agents that can be co-administered include, e.g., Hypoxia inducible factor-1 alpha (HIF-1a) inhibitors, such as PT-2977, PT-2385; VEGF inhibitors, such as bevasizumab, IMC-3C5, GNR-011, tanibirumab, LYN-00101, ABT-165; and/or an oxygen carrier protein (e.g., a heme nitric oxide and/or oxygen binding protein (HNOX)), such as OMX-302 and HNOX proteins described in WO 2007/137767, WO 2007/139791, WO 2014/107171, and WO 2016/149562.
  • HNF-1a Hypoxia inducible factor-1 alpha
  • HNF-1a Hypoxia inducible factor-1 alpha
  • VEGF inhibitors such as bevasizumab, IMC-3C5, GNR-011, tanibirumab, LYN-00101, ABT-165
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an immunotherapeutic agent.
  • Example immunotherapeutic agents that can be co-administered include without limitation abagovomab, ABP-980, adecatumumab, afutuzumab, alemtuzumab, altumomab, amatuximab, anatumomab, arcitumomab, bavituximab, bectumomab, bevacizumab, bivatuzumab, blinatumomab, brentuximab, cantuzumab, catumaxomab, CC49, cetuximab, citatuzumab, cixutumumab, clivatuzumab, conatumumab, dacetuzumab, dalotuzumab, daratumumab, detumomab, dinutuximab, drozitumab, duligotumab, dusigitumab,
  • the exemplified therapeutic antibodies may be further labeled or combined with a radioisotope particle such as indium-111, yttrium-90 (90Y-clivatuzumab), or iodine-131.
  • a radioisotope particle such as indium-111, yttrium-90 (90Y-clivatuzumab), or iodine-131.
  • the immunotherapeutic agent is an antibody-drug conjugate (ADC).
  • ADCs that can be co-administered include without limitation drug-conjugated antibodies, fragments thereof, or antibody mimetics targeting the proteins or antigens listed above and herein (e.g., in Table B).
  • Example ADCs that can be co-administered include without limitation gemtuzumab, brentuximab, trastuzumab, inotuzumab, glembatumumab, anetumab, mirvetuximab, depatuxizumab, rovalpituzumab, vadastuximab, labetuzumab, sacituzumab, lifastuzumab, indusatumab, polatzumab, pinatuzumab, coltuximab, indatuximab, milatuzumab, rovalpituzumab, ABBV-399, AGS-16C3F, ASG-22ME, AGS67E, AMG172, AMG575, BAY1129980, BAY1187982, BAY94-9343, GSK2857916, Humax-TF-ADC, 1MGN289, IMGN529, I1MGN85
  • ADCs that can be co-administered are described, e.g., in Lambert, et al., Adv Ther (2017) 34:1015-1035 and in de Goeij, Current Opinion in Immunology (2016) 40:14-23.
  • Illustrative therapeutic agents that can be conjugated to the drug-conjugated antibodies, fragments thereof, or antibody mimetics include without limitation monomethyl auristatin E (MMAE), monomethyl auristatin F (MMAF), a calicheamicin, ansamitocin, maytansine or an analog thereof (e.g., mertansine/emtansine (DM1), ravtansine/soravtansine (DM4)), an anthracyline (e.g., doxorubicin, daunorubicin, epirubicin, idarubicin), pyrrolobenzodiazepine (PBD) DNA cross-linking agent SC-DR002 (D6.5), duocarmycin, a microtubule inhibitors (MTI) (e.g., a taxane, a vinca alkaloid, an epothilone), a pyrrolobenzodiazepine
  • MMI microtubule inhibitors
  • the therapeutic agents that can be conjugated to the drug-conjugated antibodies, fragments thereof, or antibody mimetics include an immune checkpoint inhibitor.
  • the conjugated immune checkpoint inhibitor is a conjugated small molecule inhibitor of CD274 (PDL1, PD-L1), programmed cell death 1 (PDCD1, PD1, PD-1) or CTLA4.
  • the conjugated small molecule inhibitor of CD274 or PDCD1 is selected from the group consisting of GS-4224, GS-4416, INCB086550 and MAX10181.
  • the conjugated small molecule inhibitor of CTLA4 comprises BPI-002.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a cancer gene therapy and cell therapy.
  • Cancer gene therapies and cell therapies include the insertion of a normal gene into cancer cells to replace a mutated or altered gene; genetic modification to silence a mutated gene; genetic approaches to directly kill the cancer cells; including the infusion of immune cells designed to replace most of the patient's own immune system to enhance the immune response to cancer cells, or activate the patient's own immune system (T cells or Natural Killer cells) to kill cancer cells, or find and kill the cancer cells; genetic approaches to modify cellular activity to further alter endogenous immune responsiveness against cancer.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with one or more cellular therapies.
  • Illustrative cellular therapies include without limitation co-administration of one or more of a population of natural killer (NK) cells, NK-T cells, T cells, cytokine-induced killer (CIK) cells, macrophage (MAC) cells, tumor infiltrating lymphocytes (TILs) and/or dendritic cells (DCs).
  • the cellular therapy entails a T cell therapy, e.g., co-administering a population of alpha/beta TCR T cells, gamma/delta TCR T cells, regulatory T (Treg) cells and/or TRuCTM T cells.
  • the cellular therapy entails a NK cell therapy, e.g., co-administering NK-92 cells.
  • a cellular therapy can entail the co-administration of cells that are autologous, syngeneic or allogeneic to the subject.
  • the cellular therapy entails co-administering cells comprising chimeric antigen receptors (CARs).
  • CARs chimeric antigen receptors
  • a population of immune effector cells engineered to express a CAR, wherein the CAR comprises a tumor antigen-binding domain.
  • T cell therapies the T cell receptors (TCRs) are engineered to target tumor derived peptides presented on the surface of tumor cells.
  • the CAR comprises an antigen binding domain, a transmembrane domain, and an intracellular signaling domain.
  • the intracellular domain comprises a primary signaling domain, a costimulatory domain, or both of a primary signaling domain and a costimulatory domain.
  • the primary signaling domain comprises a functional signaling domain of one or more proteins selected from the group consisting of CD3 zeta, CD3 gamma, CD3 delta, CD3 epsilon, common FcR gamma (FCERIG), FcR beta (Fc Epsilon Rlb), CD79a, CD79b, Fcgamma RIIa, DAP10, and DAP12.
  • a functional signaling domain of one or more proteins selected from the group consisting of CD3 zeta, CD3 gamma, CD3 delta, CD3 epsilon, common FcR gamma (FCERIG), FcR beta (Fc Epsilon Rlb), CD79a, CD79b, Fcgamma RIIa, DAP10, and DAP12.
  • the costimulatory domain comprises a functional domain of one or more proteins selected from the group consisting of CD27, CD28, 4-1BB(CD137), OX40, CD30, CD40, PD-1, ICOS, CD2, CD7, LIGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83, CDS, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRFI), CD160, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, ITGAE, CD103, ITGAL, CD1A (NCBI Gene ID: 909), CD1B (NCBI Gene ID: 910), CD1C (NCBI Gene ID: 911), CD1D (NC) (NCBI
  • the transmembrane domain comprises a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154, KIRDS2, OX40, CD2, CD27, ICOS (CD278), 4-1BB(CD137), GITR, CD40, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD160, CD19, IL2R beta, IL2R gamma, IL7R, ITGA1, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD1A, CD1B, CD1C, CD1D, CDE, ITGAE, CD103, ITGAD, CD1
  • the TCR or CAR antigen binding domain or the immunotherapeutic agent described herein binds a tumor-associated antigen (TAA).
  • TAA tumor-associated antigen
  • the tumor-associated antigen is selected from the group consisting of: CD19; CD123; CD22; CD30; CD171; CS-1 (also referred to as CD2 subset 1, CRACC, SLAMF7, CD319, and 19A24); C-type lectin-like molecule-1 (CLL-1 or CLECLI); CD33; epidermal growth factor receptor variant III (EGFRvlll); ganglioside G2 (GD2); ganglioside GD3 (aNeuSAc(2-8)aNeuSAc(2-3)PDGaip(1-4)bDGIcp(1-1)Cer); ganglioside GM3 (aNeuSAc(2-3)PDGalp(1-4)PDGlcp(1-1)Cer); TNF receptor superfamily member 17 (TNFRSF17, BCMA); Tn antigen ((Tn Ag) or (GaINAcu-Ser/Thr)); prostate-specific membrane antigen (PSMA); Receptor tyrosine kina
  • the tumor antigen is selected from CD150, 5T4, ActRIIA, B7, TNF receptor superfamily member 17 (TNFRSF17, BCMA), CA-125, CCNA1, CD123, CD126, CD138, CD14, CD148, CD15, CD19, CD20, CD200, CD21, CD22, CD23, CD24, CD25, CD26, CD261, CD262, CD30, CD33, CD362, CD37, CD38, CD4, CD40, CD40L, CD44, CD46, CD5, CD52, CD53, CD54, CD56, CD66a-d, CD74, CD8, CD80, CD92, CE7, CS-1, CSPG4, ED-B fibronectin, EGFR, EGFRvIII, EGP-2, EGP-4, EPHa2, ErbB2, ErbB3, ErbB4, FBP, HER1-HER2 in combination, HER2-HER3 in combination, HERV—K, HIV-1 envelope glycoprotein gp120, HIV-1 envelope
  • the antigen binding domain binds to an epitope of a target or tumor associated antigen (TAA) presented in a major histocompatibility complex (MHC) molecule.
  • TAA tumor associated antigen
  • MHC major histocompatibility complex
  • the TAA is a cancer testis antigen.
  • the cancer testis antigen is selected from the group consisting of acrosin binding protein (ACRBP; CT23, OY-TES-1, SP32; NCBI Gene ID: 84519), alpha fetoprotein (AFP; AFPD, FETA, HPAFP; NCBI Gene ID: 174); A-kinase anchoring protein 4 (AKAP4; AKAP 82, AKAP-4, AKAP82, CT99, FSC1, HI, PRKA4, hAKAP82, p82; NCBI Gene ID: 8852), ATPase family AAA domain containing 2 (ATAD2; ANCCA, CT137, PR02000; NCBI Gene ID: 29028), kinetochore scaffold 1 (KNL1; AF15Q14, CASC5, CT29, D40, MCPH4, PPP1R55, Spc7, hKNL-1, hSpc105; NCBI Gene ID: 57082), centrosomal protein 55 (CEP55; C10
  • T cell receptors TCRs
  • MHC major histocompatibility complex
  • TCRs and TCR-like antibodies that bind to an epitope of NY-ESO-1 presented in an MHC are described, e.g., in Stewart-Jones, et al., Proc Natl Acad Sci USA. 2009 Apr. 7; 106(14):5784-8; WO2005113595, WO2006031221, WO2010106431, WO2016177339, WO2016210365, WO2017044661, WO2017076308, WO2017109496, WO2018132739, WO2019084538, WO2019162043, WO2020086158 and WO2020086647.
  • TCRs and TCR-like antibodies that bind to an epitope of PRAME presented in an MHC are described, e.g., in WO2011062634, WO2016142783, W2016191246, WO2018172533, W2018234319 and W2019109821.
  • TCRs and TCR-like antibodies that bind to an epitope of a MAGE variant presented in an MHC are described, e.g., in WO2007032255, WO2012054825, WO2013039889, WO2013041865, WO2014118236, WO2016055785, WO2017174822, WO2017174823, WO2017174824, WO2017175006, WO2018097951, WO2018170338, WO2018225732 and WO2019204683.
  • Illustrative TCRs and TCR-like antibodies that bind to an epitope of alpha fetoprotein (AFP) presented in an MHC are described, e.g., in WO2015011450.
  • TCRs and TCR-like antibodies that bind to an epitope of SSX2 presented in an MHC are described, e.g., in W2020063488.
  • Illustrative TCRs and TCR-like antibodies that bind to an epitope of KK-LC-1 (CT83) presented in an MHC are described, e.g., in WO2017189254.
  • cell therapies include without limitation: Algenpantucel-L, Sipuleucel-T, (BPX-501) rivogenlecleucel U.S. Pat. No. 9,089,520, WO2016100236, AU-105, ACTR-087, activated allogeneic natural killer cells CNDO-109-AANK, MG-4101, AU-101, BPX-601, FATE-NK100, LFU-835 hematopoietic stem cells, Imilecleucel-T, baltaleucel-T, PNK-007, UCARTCS1, ET-1504, ET-1501, ET-1502, ET-190, CD19-ARTEMIS, ProHema, FT-1050-treated bone marrow stem cell therapy, CD4CARNK-92 cells, CryoStim, AlloStim, lentiviral transduced huCART-meso cells, CART-22 cells, EGFRt/19-28z/4-1BBL CAR T cells, autologous 4H11
  • Additional agents for targeting tumors include without limitation:
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a gene or cell therapy regimen that can target a cell infected with a virus (e.g., HIV).
  • a virus e.g., HIV
  • a gene or cell therapy that can be combined with an agent disclosed herein includes without limitation the genetic modification to silence a gene; genetic approaches to directly kill the infected cells; the infusion of immune cells designed to replace most of the patient's own immune system to enhance the immune response to infected cells, or activate the patient's own immune system to kill infected cells, or find and kill the infected cells; genetic approaches to modify cellular activity to further alter endogenous immune responsiveness against the infection.
  • Illustrative examples of a cell therapy that can be combined with an agent disclosed herein include LB-1903, ENOB-HV-01, GOVX-B01, and SupT1 cell-based therapy.
  • Illustrative examples of a dendritic cell therapy that can be combined with an agent disclosed herein include AGS-004.
  • An illustrative example of a CCR5 gene editing agent that can be used in combination with an agent disclosed herein is SB-728T.
  • An illustrative example of a CCR5 gene inhibitor that can be used in combination with an agent disclosed herein is Cal-1.
  • C34-CCR5/C34-CXCR4 expressing CD4-positive T-cells are co-administered with an agent disclosed herein.
  • the agents described herein are co-administered with AGT-103-transduced autologous T-cell therapy or AAV-eCD4-Ig gene therapy.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein can be co-administered with a population of immune effector cells engineered to express a chimeric antigen receptor (CAR), wherein the CAR comprises an HIV antigen binding domain.
  • CAR chimeric antigen receptor
  • the HIV antigen include an HIV envelope protein or a portion thereof, gp120 or a portion thereof, a CD4 binding site on gp120, the CD4-induced binding site on gpl20, N glycan on gpl20, the V2 of gpl20, the membrane proximal region on gp41.
  • the immune effector cell is a T-cell or an NK cell.
  • the T-cell is a CD4+ T-cell, a CD8+ T-cell, or a combination thereof.
  • Cells can be autologous or allogeneic.
  • HIV CAR-T examples include convertibleCAR-T, VC-CAR-T, CMV-N6-CART, anti-CD4 CART-cell therapy, CD4 CAR+C34-CXCR4+CCR5 ZFN T-cells, autologous hematopoietic stem cells genetically engineered to express a CD4 CAR and the C46 peptide.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a population of TCR-T-cells.
  • TCR-T-cells are engineered to target HIV derived peptides present on the surface of virus-infected cells, for example ImmTAV.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a population of B cells genetically modified to express broadly neutralizing antibodies, such as 3BNC117 (Hartweger et al., J. Exp. Med. 2019, 1301; Moffett et al., Sci. Immunol. 4, eaax0644 (2019) 17 May 2019).
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with gene editor.
  • Illustrative gene editing system that can be co-administered include without limitation a CRISPR/Cas9 system, a zinc finger nuclease system, a TALEN system, a homing endonucleases system (e.g., an ARCUS), and a homing meganuclease system.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein described herein are combined with an HIV targeted gene editor.
  • An illustrative HIV targeted gene editor includes without limitation the CRISPR/Cas9 system EBT-101.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an HIV therapeutic agent.
  • the HIV therapeutic agents that can be combined with an agent disclosed herein include an HIV protease inhibitor.
  • HIV protease inhibitors that can be co-administered include without limitation amprenavir, atazanavir, brecanavir, darunavir, fosamprenavir, fosamprenavir calcium, indinavir, indinavir sulfate, lopinavir, nelfinavir, nelfinavir mesylate, ritonavir, saquinavir, saquinavir mesylate, tipranavir, AEBL-2, DG-17, GS-1156, TMB-657 (PPL-100), T-169, BL-008, MK-8122, TMB-607, GRL-02031, and TMC-310911.
  • the HIV therapeutic agents that can be combined with an agent disclosed herein include an HIV ribonuclease H inhibitor.
  • HIV ribonuclease H inhibitors that can be combined with an agent of this disclosure include NSC-727447.
  • the HIV therapeutic agents that can be combined with an agent disclosed herein include an HIV Nef inhibitor.
  • HIV Nef inhibitors that can be combined with an agent of this disclosure include FP-1.
  • the HIV therapeutic agents that can be combined with an agent disclosed herein include a reverse transcriptase inhibitor.
  • the reverse transcriptase inhibitor is a non-nucleoside/non-nucleotide inhibitor.
  • Illustrative examples of non-nucleoside/non-nucleotide inhibitors that can be co-administered include without limitation dapivirine, delavirdine, delavirdine mesylate, doravirine, efavirenz, etravirine, lentinan, nevirapine, rilpivirine, ACC-007, ACC-008, AIC-292, F-18, KM-023, PC-1005, VM-1500A-LAI, PF-3450074, elsulfavirine (sustained release oral, HIV infection), elsulfavirine (long-acting injectable nanosuspension, HIV infection), and elsulfavirine (VM-1500).
  • the non-nucleoside/non-nucleotide inhibitor is selected from nevirapine, delavirdine, efavirenz, etravirine, and rilpivirine.
  • the reverse transcriptase inhibitor that can be combined with an agent of this disclosure is a nucleoside or nucleotide inhibitor.
  • nucleoside or nucleotide inhibitors of reverse transcriptase inhibitor that can be co-administered include without limitation adefovir, adefovir dipivoxil, azvudine, emtricitabine, tenofovir, tenofovir alafenamide, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir octadecyloxyethyl ester (AGX-1009), tenofovir disoproxil hemifumarate, VIDEX® and VIDEX EC® (didanosine, ddl), abacavir, abacavir sulfate, alovudine, apricitabine, censavudine, didanosine, e
  • nucleoside or nucleotide inhibitors of reverse transcriptase inhibitor is selected from zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir, and emtricitabine.
  • the HIV therapeutic agents that can be combined with an agent disclosed herein include an HIV integrase inhibitor.
  • the HIV integrase inhibitor that can be combined with an agent of this disclosure is selected from the group consisting of. elvitegravir, elvitegravir (extended-release microcapsules), curcumin, derivatives of curcumin, chicoric acid, derivatives of chicoric acid, 3,5-dicaffeoylquinic acid, derivatives of 3,5-dicaffeoylquinic acid, aurintricarboxylic acid, derivatives of aurintricarboxylic acid, caffeic acid phenethyl ester, derivatives of caffeic acid phenethyl ester, tyrphostin, derivatives of tyrphostin, quercetin, derivatives of quercetin, raltegravir, PEGylated raltegravir, dolutegravir, JTK-351, bictegra
  • the HIV integrase inhibitor that can be combined with an agent of this disclosure is an HIV non-catalytic site, or allosteric, integrase inhibitor (NCINI).
  • HIV non-catalytic site, or allosteric, integrase inhibitors (NCINI) include CX-05045, CX-05168, and CX-14442.
  • the HIV therapeutic agents that can be combined with an agent disclosed herein include HIV an entry inhibitor.
  • the entry inhibitor is an HBV entry inhibitor (e.g., Myrcludex B).
  • HBV entry inhibitor e.g., Myrcludex B
  • entry inhibitors include without limitation AAR-501, LBT-5001, cenicriviroc, a CCR5 inhibitor, a gp41 inhibitor, a CD4 attachment inhibitor, a gpl20 inhibitor, a gp160 inhibitor a, and a CXCR4 inhibitor.
  • the entry inhibitor that can be combined with an agent of this disclosure is a CCR5 inhibitor selected from the group consisting of. aplaviroc, vicriviroc, maraviroc, maraviroc (long-acting injectable nanoemulsion), cenicriviroc, leronlimab (PRO-140), adaptavir (RAP-101), nifeviroc (TD-0232), anti-GP120/CD4 or CCR5 bispecific antibodies, B-07, MB-66, polypeptide C25P, TD-0680, thioraviroc and vMIP (Haimipu).
  • aplaviroc vicriviroc, maraviroc, maraviroc (long-acting injectable nanoemulsion), cenicriviroc, leronlimab (PRO-140), adaptavir (RAP-101), nifeviroc (TD-0232), anti-GP120/CD4 or CCR5 bispecific antibodies, B-07, MB-66, polypeptide C25P, TD-
  • the entry inhibitor that can be combined with an agent of this disclosure is a gp41 inhibitor selected from the group consisting of. albuvirtide, enfuvirtide, birithsin (gp41/gpl20/gpl60 inhibitor), BMS-986197, enfuvirtide biobetter, enfuvirtide biosimilar, HIV-1 fusion inhibitors (P26-Bapc), ITV-1, ITV-2, ITV-3, ITV-4, CPT-31, Cl3hmAb, PIE-12 trimer and sifuvirtide.
  • gp41 inhibitor selected from the group consisting of. albuvirtide, enfuvirtide, birithsin (gp41/gpl20/gpl60 inhibitor), BMS-986197, enfuvirtide biobetter, enfuvirtide biosimilar, HIV-1 fusion inhibitors (P26-Bapc), ITV-1, ITV-2, ITV-3, I
  • the entry inhibitor that can be combined with an agent of this disclosure is a CD4 attachment inhibitor selected from ibalizumab and a CADA analog.
  • the entry inhibitor that can be combined with an agent of this disclosure is a gpl20 inhibitor selected from anti-HIV microbicide, Radha-108 (receptol) 3B3-PE38, BanLec, bentonite-based nanomedicine, fostemsavir tromethamine, IQP-0831, VVX-004, and BMS-663068.
  • the entry inhibitor that can be co-administered is a gp160 inhibitor such as fangchinoline.
  • the entry inhibitor that can be combined with an agent of this disclosure is a CXCR4 inhibitor selected from plerixafor, ALT-1188, N15 peptide, and vMIP (Haimipu).
  • the entry inhibitor that can be combined with an agent of this disclosure is selected from docosanol, enfuvirtide, maraviroc, palivizumab, respiratory syncytial virus immune globulin, intravenous [RSV-IGIV], varicella-zoster immunoglobulin [VariZIG], and varicella-zoster immune globulin [VZIG]).
  • the HIV therapeutic agents that can be combined with an agent disclosed herein include an HIV maturation inhibitor.
  • the HIV maturation inhibitor that can be co-administered is selected from BMS-955176, GSK-3640254 and GSK-2838232.
  • the HIV therapeutic agents that can be combined with an agent disclosed herein include a latency reversing agent.
  • a latency reversing agent include without limitation toll-like receptor (TLR) agonists (including TLR7 agonists, e.g., GS-9620 (vesatolimod), vesatolimod analogs), histone deacetylase (HDAC) inhibitors, proteasome inhibitors such as velcade, protein kinase C (PKC) activators, Smyd2 inhibitors, BET-bromodomain 4 (BRD4) inhibitors, ionomycin, IAP antagonists (inhibitor of apoptosis proteins, such as APG-1387, LBW-242), SMAC mimetics (including TL32711, LCL161, GDC-0917, HGS1029, AT-406, Debio-1143), PMA, SAHA (suberanilohydroxamic acid, or
  • the HIV therapeutic agents that can be combined with an agent disclosed herein include a capsid inhibitor.
  • capsid inhibitors that can be combined with an agent of this disclosure include without limitation capsid polymerization inhibitors, capsid disrupting compounds, HIV nucleocapsid p7 (NCp7) inhibitors (e.g., azodicarbonamide), HIV p24 capsid protein inhibitors (e.g., GS-6207, GS-CA1, AVI-621, AVI-101, AVI-201, AVI-301, AVI-CAN1-15 series, and PF-3450074), and compounds described in the International Patent Publication No. WO2019/087016.
  • NCp7 HIV nucleocapsid p7
  • HIV p24 capsid protein inhibitors e.g., GS-6207, GS-CA1, AVI-621, AVI-101, AVI-201, AVI-301, AVI-CAN1-15 series, and PF-3450074
  • the HIV therapeutic agents that can be combined with an agent disclosed herein include an HIV targeting antibody.
  • HIV targeting antibodies that can be combined with an agent of this disclosure include bispecific antibodies, trispecific antibodies, and “antibody-like” therapeutic proteins.
  • the HIV targeting antibodies that can be co-administered with an agent of this disclosrue are selected from DARTs®, DUOBODIES, BITES®, XmAbs®, TandAbs®, Fab derivatives, bNAbs (broadly neutralizing HIV-1 antibodies), TMB-360, antibodies targeting HIV gp120 or gp41, antibody-recruiting molecules targeting HIV, anti-CD63 monoclonal antibodies, anti-GB virus C antibodies, anti-GP120/CD4, gpl20 bispecific monoclonal antibodies, CCR5 bispecific antibodies, anti-Nef single domain antibodies, anti-Rev antibody, camelid derived anti-CD18 antibodies, camelid-derived anti-ICAM-1 antibodies, DCVax-001, g
  • the HIV targeting antibody that can be combined with an agent of this disclosure is a bNAb, including without limitation those described in U.S. Pat. Nos. 8,673,307, 9,493,549, and 9,783,594, and in International Patent Publication Nos. WO2014/063059, WO2012/158948, WO2015/117008, WO/2017/014484, and WO2017/09622.
  • the bNAb that can be combined with an agent of this disclosure is selected from 12A12, 12A21, NI145-46, bANC131, 8ANC134, IB2530, INC9, 8ANC195.
  • bNAbs that can be co-administered with an agent of this disclosure include those described in Klein et al., Nature, 492(7427): 118-22 (2012), Horwitz et al., Proc Natl Acad Sci USA, 110(41): 16538-43 (2013), Scheid, et al., Science, 333: 1633-1637 (2011), Scheid, et al., Nature, 458:636-640 (2009), Eroshkin et al, Nucleic Acids Res., 42 (Database issue):Dl 133-9 (2014), Mascola et al., Immunol Rev., 254(1):225-44 (2013), such as 2F5, 4E10, M66.6, CAP206-CH12, 10E81 (all of which
  • bNAbs that can be co-administered with an agent of this disclosure are described, e.g., in U.S. Pat. Nos. 8,673,307; 9,493,549; 9,783,594; and in International Patent Publication Nos.
  • bNAbs that can be combined with an agent of this disclosure are described, e.g., in Sajadi, et al., Cell. (2016) 173(7):1783-1795; Sajadi, et al., J Infect Dis.
  • the HIV targeting antibody that can be combined with an agent of this disclosure is selected from the group consisting of: UB-421, BF520.1, CHO1, CH59, C2F5, C4E10, C2F5+C2G12+C4E10, 3BNC117, 3BNC117-LS, 3BNC60, DH270.1, DH270.6, D1D2, 10-1074-LS, Cl3hmAb, GS-9722 (elipovimab), DH411-2, BG18, GS-9721, PGT145, PGT121, PGT-121.60, PGT-121.66, PGT122, PGT-123, PGT-124, PGT-125, PGT-126, PGT-151, PGT-130, PGT-133, PGT-134, PGT-135, PGT-128, PGT-136, PGT-137, PGT-138, PGT-139, MDXO10 (ipilimumab), DH511, DH511-2, N6,
  • the HIV targeting antibody that can be co-administered with an agent of this disclosure is a bispecific or trispecific antibody such as MGD014, B12BiTe, BiIA-SG, TMB-bispecific, SAR-441236, VRC-O1/PGDM-1400/10E8v4, 10E8.4/iMab, or 10E8v4/PGT121-VRC01.
  • an agent of this disclosure can be combined with in vivo delivered bNAbs such as AAV8-VRC07; mRNA encoding anti-HIV antibody VRC01; or engineered B-cells encoding 3BNC117 (Hartweger et al, J. Exp. Med. 2019, 1301).
  • the HIV therapeutic agents that can be combined with an agent disclosed herein include an HIV vaccine.
  • HIV vaccines that can be combined with an agent of this disclosure include without limitation peptide vaccines, recombinant subunit protein vaccines, live vector vaccines, DNA vaccines, HIV MAG DNA vaccine, CD4-derived peptide vaccines, vaccine combinations, adenoviral vector vaccines (an adenoviral vector such as Ad5, Ad26 or Ad35), simian adenovirus (chimpanzee, gorilla, rhesus i.e., rhAd), adeno-associated virus vector vaccines, Chimpanzee adenoviral vaccines (e.g., ChAdOXI, ChAd68, ChAd3, ChAd63, ChAd83, ChAd155, ChAd157, Pan5, Pan6, Pan7, Pan9), Coxsackieviruses based vaccines, enteric virus based vaccines, Gorilla adenovirus
  • HIV vaccines that can be combined with an agent of this disclosure include without limitation anti-CD40.Env-gp140 vaccine, Ad4-EnvC150, BG505 SOSIP.664 gp140 adjuvanted vaccine, BG505 SOSIP.GT1.1 gp140 adjuvanted vaccine, Chimigen HIV vaccine, ConM SOSIP.v7 gpl40, rgp120 (AIDSVAX), ALVAC HIV (vCP1521)/AIDSVAX B/E (gpl20) (RV144), monomeric gp120 HIV-1 subtype C vaccine, MPER-656 liposome subunit vaccine, Remune, ITV-1, Contre Vir, Ad5-ENVA-48, DCVax-001 (CDX-2401), Vacc-4x, Vacc-C5, VAC-3S, multiclade DNA recombinant adenovirus-5 (rAd5), rAd5 gag-pol env A/B/C vaccine, Pennvax
  • the HIV therapeutic agents that can be combined with an agent disclosed herein include a birth control or contraceptive regimen.
  • birth control or contraceptive regimens that can be combined with an agent of this disclosure include without limitation cyproterone acetate, desogestrel, dienogest, drospirenone, estradiol valerate, ethinyl estradiol, ethynodiol, etonogestrel, levomefolate, levonorgestrel, lynestrenol, medroxyprogesterone acetate, mestranol, mifepristone, misoprostol, nomegestrol acetate, norelgestromin, norethindrone, noretynodrel, norgestimate, ormeloxifene, segestersone acetate, ulipristal acetate, and any combinations thereof.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an HBV therapeutic agent.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein are selected from alpha-hydroxytropolones, amdoxovir, antroquinonol, beta-hydroxycytosine nucleosides, ARB-199, CCC-0975, ccc-R08, elvucitabine, ezetimibe, cyclosporin A, gentiopicrin (gentiopicroside), HH-003, hepalatide, JNJ-56136379, nitazoxanide, birinapant, NJK14047, NOV-205 (molixan, BAM-205), oligotide, mivotilate, feron, GST-HG-131, levamisole, Ka Shu Ning, alloferon, WS-007, Y-101 (Ti Fen Tai), rSIFN-co, PEG-IIFNm, KW-3, BP-Inter-014, oleanolic acid, Hep
  • the HBV therapeutic agents that can be combined with an agent disclosed herein are selected from include an HBV vaccine.
  • the HBV vaccine is selected from HBsAG-HBIG complex, ARB-1598, Bio-Hep-B, NASVAC, abi-HB (intravenous), ABX-203, Tetrabhay, GX-110E, GS-4774, peptide vaccine (epsilonPA-44), Hepatrol-07, NASVAC (NASTERAP), IMP-321, BEVAC, Revac B mcf, Revac B+, MGN-1333, KW-2, CVI-HBV-002, AltraHepB, VGX-6200, FP-02, FP-02.2 (HepTcell), NU-500, HBVax, im/TriGrid/antigen vaccine, Mega-CD40L-adjuvanted vaccine, HepB-v, RG7944 (INO-1800), recombinant VLP-based therapeutic vaccine (HB
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include an HBV polymerase inhibitor.
  • the HBV polymerase inhibitor is selected from adefovir (HEPSERA®), emtricitabine (EMTRIVA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, tenofovir dipivoxil, tenofovir dipivoxil fumarate, tenofovir octadecyloxyethyl ester, CMX-157, tenofovir exalidex, besifovir, entecavir (BARACLUDE®), entecavir maleate, telbivudine (TYZEKA®), filocilovir, prade
  • HEPSERA®
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include an immunomodulator.
  • the immunomodulator is selected from rintatolimod, imidol hydrochloride, ingaron, dermaVir, plaquenil (hydroxychloroquine), proleukin, hydroxyurea, mycophenolate mofetil (MPA) and its ester derivative mycophenolate mofetil (MMF), JNJ-440,WF-10,AB-452, ribavirin, IL-12, INO-9112, polymer polyethyleneimine (PEI), Gepon, VGV-1, MOR-22, CRV-431, JNJ-0535, TG-1050, ABI-H2158, BMS-936559,GS-9688, RO-7011785, RG-7854, RO-6871765, AIC-649, and IR-103.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include an interferon alpha receptor ligand.
  • the interferon alpha receptor ligand is selected from interferon alpha-2b (INTRON A®), pegylated interferon alpha-2a (PEGASYS®), PEGylated interferon alpha-lb, interferon alpha 1b (HAPGEN®), Veldona, Infradure, Roferon-A, YPEG-interferon alfa-2a (YPEG-rhIFNalpha-2a), P-1101, Algeron, Alfarona, Ingaron (interferon gamma), rSIFN-co (recombinant super compound interferon), Ypeginterferon alfa-2b (YPEG-rhIFNalpha-2b), MOR-22, peginterferon alfa-2b (PEG-INTRON®), Bioferon, Novaferon, Inmutag (Inferon A®), peg
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a hyaluronidase inhibitor.
  • the hyaluronidase inhibitor is astodrimer.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a Hepatitis B Surface Antigen (HBsAg) inhibitor.
  • HBsAg Hepatitis B Surface Antigen
  • the HBsAg inhibitor is selected from AK-074, HBF-0259, PBHBV-001, PBHBV-2-15, PBHBV-2-1, REP-9AC, REP-9C, REP-9, REP-2139, REP-2139-Ca, REP-2055, REP-2163, REP-2165, REP-2053, REP-2031, REP-006, and REP-9AC′.
  • the HBsAg inhibitor is an HBsAg secretion inhibitor such as BM601, GST-HG-131, AB-452.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a cyclophilin inhibitor.
  • the cyclophilin inhibitor is selected from CPI-431-32, EDP-494, OCB-030, SCY-635, NVP-015, NVP-018, NVP-019, STG-175, and the compounds disclosed in U.S. Pat. No. 8,513,184 (Gilead Sciences), US20140030221 (Gilead Sciences), US20130344030 (Gilead Sciences), and US20130344029 (Gilead Sciences).
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include an antisense oligonucleotide targeting viral mRNA.
  • the antisense oligonucleotide is selected from ISIS-HBVRx, IONIS-HBVRx, IONIS-HBV-LRx, IONIS-GSK6-LRx, GSK-3389404, and RG-6004.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a short interfering RNA (siRNA) or DNA-directed RNA interference (ddRNAi).
  • the siRNA is selected from TKM-HBV (TKM-HepB), ALN-HBV (e.g., ALN-HBV02), SR-008, HepB-nRNA, ARC-520, ARC-521, ARB-1740, ARB-1467, AB-729, DCR-HBVS, RG-6084 (PD-L1), RG-6217, ALN-HBV-02, JNJ-3989 (ARO-HBV), STSG-0002, ALG-010133, ALG-ASO, LUNAR-HBV and DCR-HBVS (DCR-5219).
  • ddRNAi is BB-HB-331.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include an endonuclease modulator (e.g., PGN-514).
  • an endonuclease modulator e.g., PGN-514
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a ribonucleotide reductase inhibitor (e.g., Trimidox).
  • a ribonucleotide reductase inhibitor e.g., Trimidox
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a non-nucleoside reverse transcriptase inhibitor (NNRTI).
  • NNRTI is selected from the compounds disclosed in WO2018118826 (Merck), WO2018080903 (Merck), WO2018119013 (Merck), WO2017100108 (Idenix), WO2017027434 (Merck), WO2017007701 (Merck), and WO2008005555 (Gilead).
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include an HBV replication inhibitor.
  • the HVB replication inhibitor is selected from GP-31502, isothiafludine, IQP-HBV, RM-5038, and Xingantie.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a non-canonical RNA polymerase PAPD5 and PAPD7 inhibitor.
  • a non-canonical RNA polymerase PAPD5 and PAPD7 inhibitor include PAPD5 and PAPD7 targeting locked nucleic acid antisense oligonucleotides.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a covalently closed circular DNA inhibitor (cccDNA), such as BSBI-25, ccc-R08, and CHR-101.
  • cccDNA covalently closed circular DNA inhibitor
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a caspase 9 stimulator such as ENOB-HB-01.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a CD3 modulator such as IMC-109V.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a Ffar2 and Ffar3 agonist, such as SFA-001.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include an additional HBV antibody.
  • the additional HBV antibody targets a surface antigen of hepatitis B virus.
  • the additional HBV antibody can include monoclonal and polyclonal antibodies.
  • the additional HBV antibody is selected from lenvervimab (GC-1102), XTL-17, XTL-19, KN-003, IV Hepabulin SN, VIR-3434, and fully human monoclonal antibody therapy (hepatitis B virus infection, Humabs BioMed).
  • the additional HBV antibody is selected from Zutectra, Shang Sheng Gan Di, Uman Big (Hepatitis B Hyperimmune), Omri-Hep-B, Nabi-HB, Hepatect CP, HepaGam B, igantibe, Niuliva, CT-P24, hepatitis B immunoglobulin (intravenous, pH4, HBV infection, Shanghai RAAS Blood Products), and Fovepta (BT-088).
  • the additional HBV antibody is a fully human monoclonal antibody such as HBC-34.
  • the additional HBV antibody is an antibody against HBV viral peptide/major histocompatibility complex (MHC) class I (pMHC) complexes, e.g., as are described in Sastry, et al., J Virol. 2011 March; 85(5):1935-42 or in WO2011062562.
  • MHC major histocompatibility complex
  • pMHC major histocompatibility complex
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a CCR2 chemokine antagonist such as propagermanium.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a farnesoid x receptor (FXR) agonists.
  • FXR farnesoid x receptor
  • the FXR agonist is selected from EYP-001, GS-9674, EDP-305, MET-409, Tropifexor, AKN-083, RDX-023, BWD-100, LMB-763, INV-3, NTX-023-1, EP-024297 and GS-8670.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a thymosine antagonist such as Thymalfasin, recombinant thymosin alpha 1 (GeneScience), NL-004 or PEGylated thymosin alpha-1.
  • a thymosine antagonist such as Thymalfasin, recombinant thymosin alpha 1 (GeneScience), NL-004 or PEGylated thymosin alpha-1.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a nucleoprotein modulator.
  • the nucleoprotein modulator is selected from GS-4882, AB-423, AB-836, AT-130, ALG-001075, ALG-001024, ALG-000184, EDP-514, GLS4, NVR-1221, NVR-3778, AL-3778, BAY 41-4109, morphothiadine mesilate, ARB-168786, ARB-880, ARB-1820, GST-HG-141, JNJ-379, JNJ-632, RG-7907, GST-HG-141, HEC-72702, KL-060332, AB-506, ABI-H0731, ABI-H3733, JNJ-440, ABI-H2158, CB-HBV-001, AK-0605, SOC-10, SOC-11 and DVR-23.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a capsid inhibitor.
  • the capsid inhibitor is selected from the compounds disclosed in US20140275167 (Novira Therapeutics), US20130251673 (Novira Therapeutics), US20140343032 (Roche), WO2014037480 (Roche), US20130267517 (Roche), WO2014131847 (Janssen), WO2014033176 (Janssen), WO2014033170 (Janssen), WO2014033167 (Janssen), WO2015/059212 (Janssen), WO2015118057(Janssen), WO2015011281 (Janssen), W2014184365 (Janssen), WO2014184350 (Janssen), WO2014161888 (Janssen), WO2013096744 (Novira), US20150225355 (Novira), US20140178337 (Novira), US20150315159 (Novira), US201501975
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a transcript inhibitor.
  • the transcript inhibitor is selected from the compounds disclosed in WO2017013046 (Roche), WO2017016960 (Roche), WO2017017042 (Roche), WO2017017043 (Roche), WO2017061466 (Toyoma Chemicals), WO2016177655 (Roche), WO2016161268 (Enanta), WO2017001853 (Redex Pharma), WO2017211791 (Roche), WO2017216685 (Novartis), WO2017216686 (Novartis), WO2018019297 (Ginkgo Pharma), WO2018022282 (Newave Pharma), US20180030053 (Novartis), and WO2018045911 (Zhejiang Pharma).
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a retinoic acid-inducible gene stimulator 1.
  • the retinoic acid-inducible gene stimulator 1 is selected from inarigivir soproxil (SB-9200), SB-40, SB-44, ORI-7246, ORI-9350, ORI-7537, ORI-9020, ORI-9198, ORI-7170, and RGT-100.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include an arginase inhibitor.
  • the arginase inhibitor is selected from CB-1158, C-201, and resminostat.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a CAR-T cell therapy.
  • CAR-T cell therapy includes a population of immune effector cells engineered to express a chimeric antigen receptor (CAR), wherein the CAR includes an HBV antigen-binding domain.
  • the antigen-binding domain is a domain disclosed herein.
  • the antigen-binding domain is other than a domain disclosed herein.
  • the antigen is HBsAg (HbsAg-CART).
  • the immune effector cell is a T-cell or an NK cell.
  • the T-cell is a CD4+ T-cell, a CD8+ T-cell, a NK cell or a combination thereof.
  • Cells can be autologous or allogeneic.
  • An example of a CART directed to HBV is described in Cytotherapy. 2018 May; 20(5):697-705. doi: 10.1016/j.jcyt.2018.02.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include a TCR-T cell therapy.
  • TCR-T cell therapy includes T cells expressing HBV-specific T cell receptors. TCR-T cells are engineered to target HBV derived peptides presented on the surface of virus-infected cells. An example of a TCR directed to HBV is described in Wiss Meinn, K. et al. T cell receptor grafting allows virological control of hepatitis B virus infection. JClinInvest. 2019; 129(7):2932-2945.
  • the TCR-T cell therapy includes T-Cells expressing HBV surface antigen (HBsAg)-specific TCR.
  • the TCR-T cell therapy includes TCR-T therapy directed to treatment of HBV, such as LTCR-H2-1.
  • the HBV therapeutic agents that can be combined with an agent disclosed herein include an inhibitor of certain HCV nonstructural proteins, such as a NS5A inhibitor, a NS5B inhibitor, a NS3 inhibitor, or combinations thereof.
  • the NS5A inhibitor is ledipasvir or velpatasvir.
  • the NS5B inhibitor is sofosbuvir or mericitabine.
  • the NS5A inhibitor is ledipasvir and the NS5B inhibitor is sofosbuvir.
  • the NS3 inhibitor is voxilaprevir.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an HCV therapeutic agent such as an HCV NS5A/NS5B inhibitor, HCV NS3/4A protease inhibitor, HCV NS5A protein inhibitor, HCV NS5B polymerase inhibitor of the nucleoside/nucleotide type, or HCV NS5B polymerase inhibitor of the nonnucleoside type.
  • an HCV therapeutic agent such as an HCV NS5A/NS5B inhibitor, HCV NS3/4A protease inhibitor, HCV NS5A protein inhibitor, HCV NS5B polymerase inhibitor of the nucleoside/nucleotide type, or HCV NS5B polymerase inhibitor of the nonnucleoside type.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an additional therapeutic agent selected from the group consisting of daclatasvir, ledipasvir, ombitasvir, elbasvir, sofosbuvir, dasabuvir, ribavirin, asunaprevir, simeprevir, paritaprevir, ritonavir, elbasvir, and grazoprevir.
  • an additional therapeutic agent is selected from the group consisting of daclatasvir, ledipasvir, ombitasvir, elbasvir, sofosbuvir, and dasabuvir.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an influenza virus inhibitor.
  • influenza virus inhibitor that can be combined with an agent of this disclosure includes a matrix 2 inhibitor (e.g., amantadine, rimantadine), a neuraminidase inhibitor (e.g., zanamivir, oseltamivir, peramivir, laninamivir octanoate), or a polymerase inhibitor (e.g., ribavirin, favipiravir), or combinations thereof.
  • a matrix 2 inhibitor e.g., amantadine, rimantadine
  • a neuraminidase inhibitor e.g., zanamivir, oseltamivir, peramivir, laninamivir octano
  • influenza virus inhibitor is selected from amantadine, rimantadine, arbidol (umifenovir), baloxavir marboxil, oseltamivir, peramivir, ingavirin, laninamivir octanoate, zanamivir, favipiravir, ribavirin, and combinations thereof.
  • influenza virus inhibitor is selected from amantadine, rimantadine, zanamivir, oseltamivir, peramivir, laninamivir octanoate, ribavirin, favipiravir, and combinations thereof.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an RSV therapeutic agent, such as ribavirin, ALS-8112, presatovir, or combinations thereof.
  • an RSV therapeutic agent such as ribavirin, ALS-8112, presatovir, or combinations thereof.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a picornavirus therapeutic agent, such as hydantoin, guanidine hydrochloride, L-buthionine sulfoximine, Py-11, rupintrivir, or combinations thereof.
  • a picornavirus therapeutic agent such as hydantoin, guanidine hydrochloride, L-buthionine sulfoximine, Py-11, rupintrivir, or combinations thereof.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an ebola virus therapeutic agent.
  • the ebola virus therapeutic agent that can be combined with an agent of this disclosure is selected from ribavirin, palivizumab, motavizumab, RSV-IGIV (RespiGam®), MEDI-557, A-60444, MDT-637, BMS-433771, amiodarone, dronedarone, verapamil, Ebola Convalescent Plasma (ECP), TKM-100201, BCX4430 ((2S,3S,4R,5R)-2-(4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)-5-(hydroxymethyl)pyrrolidine-3,4-diol), favipiravir (also known as T-705 or Avigan), T-705 monophosphate, T-705 diphosphate, T-705 triphosphate, FGI-106 (1-N,7-N-bis[3-(dimethylamino)propyl]-3,9-dimethylquinolino[8,7-h]
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a coronavirus therapeutic agent.
  • the coronavirus therapeutic agent is a SARS therapeutic agent.
  • the coronavirus therapeutic agent is a MERS therapeutic agent.
  • the coronavirus therapeutic agent is a COVID-19 therapeutic agent.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a COVID-19 therapeutic agent.
  • COVID-19 therapeutic agents that can be combined with an agent disclosed herein include without limitation, an adjuvant, antiangiogenic, antibiotic, antiemetic, antifibrotic, antioxidant, antiparasitic, antiproliferative, antithrombotic, antiviral, convalescent plasma, epigenetic mofifier, immunomodulator, immunostimulant, immunosuppressant, metabolic modifier, mucolytic, neuromodulatory, neutralizing antibody, oxygen delivery, proapoptotic, surfactant, thyromimetic, vaccine, vasoconstrictor, or vasodilator.
  • an adjuvant include without limitation, an adjuvant, antiangiogenic, antibiotic, antiemetic, antifibrotic, antioxidant, antiparasitic, antiproliferative, antithrombotic, antiviral, convalescent plasma, epigenetic mofifier, immunomodulator, immunostimulant, immunosuppressant, metabolic modifier, mucolytic, neuromodulatory, neutralizing antibody, oxygen delivery, proapoptotic, surfactant, th
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an adjuvant.
  • adjuvants include without limitation a TLR9 agonist (e.g., CpG 1018 (Dynavax)), Matrix-M (Novavax), CoVaccine HT (Boston Scientific), 7HP349 (7 Hills Pharma), FirmaVacc (PCI Biotech).
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an antiangiogenic, such as an integrin alpha 4 modulator (e.g., LY3127804 (Eli Lilly)).
  • an integrin alpha 4 modulator e.g., LY3127804 (Eli Lilly)
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an antibiotic.
  • antibiotics include without limitation azithromycin, olumiant baricitinib, chloramphenicol, dactinomycin, linezolid, tigecycline, carrimycin, incyclinide.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an antiemetic, such as a neurokinin 1 receptor (NK1R) modulator (e.g., tradipitant (Vanda Pharmaceuticals)).
  • a neurokinin 1 receptor (NK1R) modulator e.g., tradipitant (Vanda Pharmaceuticals)
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an antifibrotic.
  • antifibrotics that can be combined with an agent disclosed herein include without limitation a platelet derived growth factor receptor (PDGFR) modulator (e.g., nintedanib), tight junction protein 1 modulator (e.g., aCTI), FK506 binding protein 4 (FKBP4) modulator (e.g., RT1840), amphiregulin (AREG) modulator (e.g., amphisiran (siRNAgen Therapeutics), and angiotensin II receptor type 2 (AGTR2) modulator (e.g., VPO1 (Vicore Pharma)).
  • PDGFR platelet derived growth factor receptor
  • aCTI tight junction protein 1 modulator
  • FKBP4 FK506 binding protein 4
  • RT1840 RT1840
  • AVG amphiregulin
  • AGTR2 angiotensin II receptor type 2
  • VPO1 VPO1
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an antifungal, such as inhaled pentamidine or oral amphotericin B (e.g., ICO-019, iCo Therapeutics).
  • an antifungal such as inhaled pentamidine or oral amphotericin B (e.g., ICO-019, iCo Therapeutics).
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an antimicrobial, such as NORS (Nitric Oxide Releasing Solution) or brilacidin (PMX-30063).
  • NORS Nitric Oxide Releasing Solution
  • PMX-30063 brilacidin
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an antioxidant, such as a sirtuin 1 (SIRT1) agonist (e.g., resveratrol, JOTROL (high oral bioavailability resveratrol)), transglutaminase 2 modulator (e.g., TTI-0102 (cysteamine prodrug, Thiogenesis)), or bucillamine (Revive).
  • SIRT1 sirtuin 1
  • JOTROL high oral bioavailability resveratrol
  • TTI-0102 transglutaminase 2 modulator
  • bucillamine Revive
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an antiparasitic.
  • antiparasitics that can be combined with an agent disclosed herein include without limitation chloraquine phosphate, hydroxychloroquine, plasmodium cytochrome bcl modulator (e.g., atovaquone), Glutamate decarboxylase 2 (GAD2; GAD65) modulator (e.g., LAI ivermectin), pyruvate ferredoxin oxidoreductase modulator (e.g., nitazoxanide, NT-300 (nitazoxanide extended-release tablets, Romark Pharmaceuticals)), nicotinic acetylcholine receptor (nAchR) modulator (e.g., levamisole), FW-1022 (oral niclosamide; First Wave), emetine (Acer Therapeutics), or UNI911 (niclosamide) (Union Therapeutics).
  • chloraquine phosphate hydroxychloroquine
  • plasmodium cytochrome bcl modulator
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an antiproliferative.
  • ER1 modulator e.g., toremifene
  • BRAF inhibitor e.g., trafinlar dabrafenib
  • Btk Bruton's tyrosine kinase
  • eukaryotic translation elongation factor 1 alpha 2 (EEF1A2) modulator e.g., aplidin plitidepsin (PharmaMar)
  • NAE NEDD8 activating enzyme
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an antithrombotic.
  • antithrombotics that can be combined with an agent disclosed herein include without limitation plasmin inhibitor (e.g., tranexamic acid), Purinergic receptor P2Y G protein-coupled 12 (P2RY12; P2Y12) inhibitor (e.g., clopidogrel), factor Xa (e.g., rivaroxaban), fibrin inhibitor (e.g., alteplase), cathepsin G inhibitor (e.g., defibrotide), or serine protease inhibitor (e.g., nafamostat).
  • plasmin inhibitor e.g., tranexamic acid
  • Purinergic receptor P2Y G protein-coupled 12 (P2RY12; P2Y12) inhibitor e.g., clopidogrel
  • factor Xa e.g., rivaroxaban
  • fibrin inhibitor e.g., alteplase
  • cathepsin G inhibitor e.g., defibrotide
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an antiviral.
  • HIV protease inhibitor e.g., lopinavir/ritonavir, atazanavir, ritonavir
  • HIV reverse transcriptase inhibitor e.g., Emtricitabine/tenofovir disoproxil
  • neuraminidase inhibitor e.g., oseltamivir
  • HIV protease/cytochrome P450 e.g., darunavir/cobicistat
  • RNA-dependent RNA polymerase inhibitor e.g., ribavirin, galidesivir, remdesivir
  • omega 3 viruxide serine protease inhibitor
  • viral RNA polymerase inhibitor e.g., avigan favipiravir
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with convalescent plasma, including without limitation intravenous immunoglobulin (Grifols) or hyperimmune plasma.
  • convalescent plasma including without limitation intravenous immunoglobulin (Grifols) or hyperimmune plasma.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an epigenetic modifier, such as a BET bromodomain protein inhibitor (e.g., apabetalone, CPI-0610, ABBV-744).
  • an epigenetic modifier such as a BET bromodomain protein inhibitor (e.g., apabetalone, CPI-0610, ABBV-744).
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an immunomodulator.
  • immunomodulators that can be combined with an agent disclosed herein include without limitation BCR-ABL tyrosine kinase (BCR-ABL) inhibitor, stem cell factor (SCF) receptor tyrosine kinase (c-Kit; KIT; CD117) inhibitor (e.g., imatinib, masitinib), spleen tyrosine kinase (SYK) inhibitor (e.g., fostamatinib), Toll-like receptor 3 (TLR3) agonist (e.g., rintatolimod, polyIC), signal transducer and activator of transcription 3 (STAT3) or STAT6 inhibitor 9 (e.g., mosedipimod), neuropilin 2 (NRP2) inhibitor (e.g., ATYR1923 (aTyr Pharma)), natural killer (NK) cell (e.g., ex vivo expanded allogeneic MRx-4DP0004, 4D Pharma), or type I
  • PD-1 Programmed cell death 1
  • PDCD1 PDCD1; CD279 inhibitor
  • GM-CSF granulocyte macrophage colony-stimulating factor
  • CSF2RA granulocyte macrophage colony-stimulating factor receptor
  • CD116 CD116
  • GMCSFR granulocyte macrophage colony-stimulating factor receptor
  • IL-15RA interleukin-15 receptor alpha chain
  • IL-15RA interleukin-15 mutant
  • TLR Toll-like receptor
  • TLR TLR2
  • humanized virus suppressing factor variant 13 e.g., hzVSF-v13 (ImmuneMed)
  • ImmuneMed intercellular adhesion molecule-3
  • ImmuneMed intercellular adhesion molecule-3
  • ImmuneMed intercellular adhesion molecule-3
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a metabolic agent.
  • DPP-4 Dipeptidyl peptidase-4
  • CD26 dipeptidyl peptidase-4
  • SGLT2 sodium-glucose cotransporter 2
  • dapagliflozin H+/K ATPase pump inhibitor
  • AT-100 aldose reductase inhibitor
  • a-glucosidase inhibitor e.g., IHVR-19029
  • PTP-1B protein tyrosine phosphatase 1B
  • PTPN1 protein tyrosine phosphatase 1B
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a vaccine.
  • metabolic agents that can be combined with an agent disclosed herein include without limitation BCG vaccine, MMR vaccine, SARS-CoV-2 spike protein (SARS-CoV-2 S) vaccine (e.g., Ad5-nCoV (CanSino Biologics), ChAdOxI nCoV-19 (e.g., ChAdOxI Consortium), INO-4800 (Inovio Pharmaceuticals), bacTRL-Spike (Symvivo Corporation), mRNA-1273 (Moderna Therapeutics), NVX-CoV2373 (Novavax; Emergent BioSolutions)), SARS-CoV-2 3C-like protease (SARS-CoV-2 3CLpro; SARS-CoV-2 NSP5; SARS-CoV-2 Mpro; SARS-CoV-2 main protease)(e.g., BNT162 (BioNTech; Pfizer; Fosun Pharma)); or new coronavirus inactivated vaccine (Vero cells; Sinopharm), Ad5-n
  • the vaccine is Ad-nCoV (CanSino Biologics). In some embodiments, the vaccine is mRNA-1273 (Moderna Therapeutics). In some embodiments, the vaccine is BNT-162 (CanSino Biologics, Biontech). In some embodiments, the vaccine is AZD-1222 (ChAdOx1 nCoV-19, AstraZeneca). In some embodiments the vaccine is INO-4800 (Inovio Pharmaceuticals). In some embodiments, the vaccine is NVX-CoV2373 (Novavax).
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a vasoconstrictor or vasodilator.
  • vasoconstrictors or vasodilators that can be combined with an agent disclosed herein include without limitation angiotensin II type 1 (AT1) receptor (AGTR1) agonist (e.g., angiotensin II); angiotensin II type 1 (AT1) receptor (AGTR1) antagonist (e.g., valsartan, losartan); cGMP specific phosphodiesterase type 5 (PDE5) inhibitor (e.g., sildenafil), Angiotensin-converting enzyme (ACE) inhibitor (e.g., captopril, lisonopril), endothelin receptor antagonist (e.g., iloprost), calcitonin gene-related peptide (CGRP) receptor antagonist (e.g., vazegepant), or MAS receptor agonist (e.g., angiotensin-(1-7)).
  • AT1 receptor (AGTR1) agonist e.g., angiotensin II
  • AT1 receptor (AGTR1) antagonist
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a 2019-nCoV virus antibody.
  • a 2019-nCoV virus antibody that can be combined with an agent disclosed herein include without limitation LY-CoV555, S309, SAB-185, CB6, STI-1499, JS016, VNAR, VIR-7832, VIR-7831, REGN-COV2, BAT2020, BAT2019, 47D11, or COVI-SHIELD.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a COVID-19 therapeutic agent.
  • the COVID-19 vaccine is an mRNA vaccine (e.g., BN162), including a lipid-nanoparticle (LNP) encapsulated vaccine (e.g., mRNA1273).
  • the COVID-19 vaccine is a DNA vaccine (e.g., INO-4800).
  • the COVID-19 vaccine encodes for a prefusion stabilized form of the Spike (S) protein (e.g., mRNA1273).
  • the COVID-19 vaccine is a recombinant protein-based vaccine consisting of the receptor binding domain (RBD) of the spike protein of the coronavirus.
  • the COVID-19 vaccine uses a Ligand Antigen Epitope Presentation Systern (LEAPS) peptide including conserved regions of coronavirus proteins to stimulate protective cell mediated T cell responses and reduce viral load.
  • the COVID-19 vaccine is a microneedle array (MNA)—delivered recombinant protein subunit delivered vaccine.
  • the vaccine is based on a flu vector expressing the surface antigen of SARS-CoV-2.
  • the COVID-19 vaccine is an intranasal vaccine (e.g., AdCOVID).
  • the COVID-19 vaccine is NVX-CoV2373, IN04800, or BNT-162.
  • COVID-19 therapeutic agents that can be combined with an agent disclosed herein include without limitation a PIKfyve kinase inhibitor (e.g., apilimod), an immunemodulator (e.g., rintatolimod), a T-cell immunotherapy, a recombinant sialidase (e.g., DAS181), a CRAC channel inhibitor (e.g., CM-4620-IE), a cardiac cell therapy using allogeneic cardiosphere-derived cells (e.g., CAP-1002), a cardioprotective drug (e.g., aspirin, plavix, lipitor, opremazole), an SIP receptor antagonist (e.g., fingolimod), a cyclooxygenase-2 (COX-2) inhibitor (e.g., celecoxib), a phosphodiesterase-5 (PDE5) inhibitor (e.g., sildenafil citrate), a serine proteas
  • COVID-19 therapeutic agents that can be combined with an agent disclosed herein include without limitation chloroquine or hydroxychloroquine.
  • the COVID-19 therapeutic agent is selected from ifenprodil (Algernon Therapeutics), recombinant sialidase (DAS-181, Ansun Biopharma), ruxolitinib, angiotensin II, and lenzilumab.
  • the COVID-19 therapeutic agent is tocilizumab (Actemra).
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an anti-SARS-CoV-2 hyperimmune globulin therapy (plasma from convalescent COVID-19 patients, e.g., processed into a hyperimmune globulin) (e.g., TAK-888).
  • an anti-SARS-CoV-2 hyperimmune globulin therapy plasma from convalescent COVID-19 patients, e.g., processed into a hyperimmune globulin
  • TAK-888 hyperimmune globulin
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with and RNA polymerase inhibitor (e.g., remdesivir, galidesivir).
  • RNA polymerase inhibitor e.g., remdesivir, galidesivir.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with remdesivir (GS-5734).
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an antimalarial agent.
  • the antimalarial agent that can be combined with an agent disclosed herein is selected from hydroxychloroquine, chloroquine, artemether, lumefantrine, atovaquone, proguanil, tafenoquine, pyronaridine, artesunate, artenimol, piperaquine, artesunate, amodiaquine, pyronaridine, artesunate, halofantrine, quinine sulfate, mefloquine, solithromycin, pyrimethamine, MMV-390048, ferroquine, artefenomel mesylate, ganaplacide, DSM-265, cipargamin, artemisone, and combinations thereof.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a CDK inhibitor such as VS2-370.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a stimulator of interferon genes (STING) agonist or activator, a RIG-I modulator (e.g., RGT-100), or a NOD2 modulator (e.g., SB-9200, IR-103).
  • STING interferon genes
  • RIG-I modulator e.g., RGT-100
  • NOD2 modulator e.g., SB-9200, IR-103
  • the STING receptor agonist or activator that can be co-administered with an agent of this disclosure is selected from ADU-S100 (MIW-815), SB-11285, MK-1454, SR-8291, AdVCA0848, GSK-532, SYN-STING, MSA-1, SR-8291, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), cyclic-GAMP (cGAMP) and cyclic-di-AMP.
  • the STING agonist is selected from the compounds disclosed in WO 2018065360 (“Biolog Life Science Institute Klaslabor und Biochemica-Vertrieb GmbH, Germany), WO 2018009466 (Aduro Biotech), WO 2017186711 (InvivoGen), WO 2017161349 (Immune Sensor), WO 2017106740 (Aduro Biotech), US 20170158724 (Glaxo Smithkiline), WO 2017075477 (Aduro Biotech), US 20170044206 (Merck), WO 2014179760 (University of California), WO2018098203 (Janssn), WO2018118665 (Merck), WO2018118664 (Merck), WO2018100558 (Takeda), WO2018067423 (Merck), and WO2018060323 (Boehringer).
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a LAG-3 inhibitor or a TIM-3 inhibitor.
  • the LAG-3 inhibitor that can be co-administered with an agent of this disclosure is selected from relatlimab (ONO-4482), LAG-525, MK-4280, REGN-3767, and INCAGN2385.
  • the TIM-3 inhibitor that can be co-administered with an agent of this disclosure is an anti-TIM-3 antibody, such as TSR-022, LY-3321367, MBG-453, or INCAGN-2390.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an interleukin agonist, such as an IL-2, IL-7, IL-15, IL-10, or IL-12 agonist.
  • an interleukin agonist such as an IL-2, IL-7, IL-15, IL-10, or IL-12 agonist.
  • IL-2 agonists that can be combined with an agent of this disclosure include without limitation proleukin (aldesleukin, IL-2); pegylated IL-2 (e.g., NKTR-214); modified variants of IL-2 (e.g., THOR-707), bempegaldesleukin, AIC-284, ALKS-4230, CUI-101, and Neo-2/15.
  • proleukin aldesleukin
  • pegylated IL-2 e.g., NKTR-214
  • modified variants of IL-2 e.g., THOR-707
  • bempegaldesleukin e.g., THOR-707
  • bempegaldesleukin e.g., THOR-707
  • bempegaldesleukin e.g., THOR-707
  • bempegaldesleukin e.g., THOR-707
  • bempegaldesleukin e.g.,
  • Illustrative examples of IL-15 agonists that can be combined with an agent of this disclosure include without limitation ALT-803, NKTR-255, hetIL-15, interleukin-15/Fc fusion protein, AM-0015, NIZ-985, SO-C101, IL-15 Synthorin (pegylated Il-15), P-22339, and IL-15-PD-1 fusion protein N-809.
  • An illustrative example of an IL-7 agonist that can be combined with an agent of this disclosure is CYT-107.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with a pharmacokinetic enhancer such as cobicistat and ritonavir.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a 5-substituted 2′-deoxyuridine analogue.
  • a 5-substituted 2′-deoxyuridine analogue include without limitation idoxuridine, trifluridine, brivudine [BVDU], and combinations thereof.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a nucleoside analogue.
  • nucleoside analogues that can be combined with an agent disclosed herein include without limitation vidarabine, entecavir (ETV), telbivudine, lamivudine, adefovir dipivoxil, tenofovir disoproxil fumarate (TDF), and combinations thereof.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a pyrophosphate analogue.
  • pyrophosphate analogues that can be combined with an agent disclosed herein include without limitation foscarnet or phosphonoacetic acid.
  • the pyrophosphate analogue includes foscarnet.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an acyclic guanosine analogue.
  • acyclic guanosine analogue that can be combined with an agent disclosed herein include without limitation acyclovir, ganciclovir, valacyclovir (also known as valaciclovir), valganciclovir, penciclovir, and famciclovir.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an acyclic nucleoside phosphonate analogue.
  • acyclic nucleoside phosphonate analogue that can be combined with an agent disclosed herein include without limitation cidofovir, adefovir, adefovir dipivoxil, tenofovir, TDF, emtricitabine, efavirenz, rilpivirine, and elvitegravir.
  • the acyclic nucleoside phosphonate analogue is selected from cidofovir, adefovir, adefovir dipivoxil, tenofovir, TDF, emtricitabine, efavirenz, rilpivirine, and elvitegravir.
  • the acyclic nucleoside phosphonate analogue is selected from cidofovir, adefovir, adefovir dipivoxil, tenofovir, TDF.
  • the acyclic nucleoside phosphonate analogue is selected from cidofovir, adefovir dipivoxil, TDF.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an interferon.
  • the interferon that can be combined with an agent of this disclosure is selected from interferon alfacon 1, interferon alfa 1b, interferon alfa 2a, interferon alfa 2b, pegylated interferon alfacon 1, pegylated interferon alfa 1b, pegylated interferon alfa 2a (PegIFNa-2a), and PegIFNa-2b, and combinations thereof.
  • the interferon that can be combined with an agent of this disclosure is selected from interferon alfacon 1, pegylated interferon alfa 2a (PegIFNa-2a), PegIFNa-2b, ribavirin, and combinations thereof. In some embodiments, the interferon that can be combined with an agent of this disclosure is selected from pegylated interferon alfa-2a, pegylated interferon alfa-2b, and combinations thereof.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an immunostimulatory agent, such as an oligonucleotide or an antimitotic inhibitor.
  • an immunostimulatory agent such as an oligonucleotide or an antimitotic inhibitor.
  • the immunostimulatory agent that can be combined with an agent of this disclosure is selected from fomivirsen, podofilox, imiquimod, sinecatechins, and combinations thereof.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an additional therapeutic agent selected from the compounds disclosed in WO 2004/096286 (Gilead Sciences), WO 2006/015261 (Gilead Sciences), WO 2006/110157 (Gilead Sciences), WO 2012/003497 (Gilead Sciences), WO 2012/003498 (Gilead Sciences), WO 2012/145728 (Gilead Sciences), WO 2013/006738 (Gilead Sciences), WO 2013/159064 (Gilead Sciences), WO 2014/100323 (Gilead Sciences), US 2013/0165489 (University of Pennsylvania), US 2014/0221378 (Japan Tobacco), US 2014/0221380 (Japan Tobacco), WO 2009/062285 (Boehringer Ingelheim
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with an additional therapeutic agent selected from besifovir, nitazoxanide, REGN2222, doravirine, sofosbuvir, velpatasvir, daclatasvir, asunaprevir, beclabuvir, FV100, and letermovir, and combinations thereof.
  • an additional therapeutic agent selected from besifovir, nitazoxanide, REGN2222, doravirine, sofosbuvir, velpatasvir, daclatasvir, asunaprevir, beclabuvir, FV100, and letermovir, and combinations thereof.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with an additional therapeutic agent selected from IFX-1, FM-201, CYNK-001, DPP4-Fc, ranpirnase, nafamostat, LB-2, AM-1, anti-viroporins, and combinations thereof.
  • an additional therapeutic agent selected from IFX-1, FM-201, CYNK-001, DPP4-Fc, ranpirnase, nafamostat, LB-2, AM-1, anti-viroporins, and combinations thereof.
  • Some chemotherapy agents are suitable for treating lymphoma or leukemia. These agents include aldesleukin, alvocidib, amifostine trihydrate, aminocamptothecin, antineoplaston A10, antineoplaston AS2-1, anti-thymocyte globulin, arsenic trioxide, Bcl-2 family protein inhibitor ABT-263, beta alethine, BMS-345541, bortezomib (VELCADE®), bortezomib (VELCADE®, PS-341), bryostatin 1, bulsulfan, campath-1H, carboplatin, carfilzomib (Kyprolis®), carmustine, caspofungin acetate, CC-5103, chlorambucil, CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone), cisplatin, cladribine, clofarabine, curcumin, CVP (cyclo
  • radioimmunotherapy wherein a monoclonal antibody is combined with a radioisotope particle, such as indium-111, yttrium-90, and iodine-131.
  • a radioisotope particle such as indium-111, yttrium-90, and iodine-131.
  • combination therapies include, but are not limited to, iodine-131 tositumomab (BEXXAR®), yttrium-90 ibritumomab tiuxetan (ZEVALIN®), and BEXXAR® with CHOP.
  • Therapeutic procedures include peripheral blood stem cell transplantation, autologous hematopoietic stem cell transplantation, autologous bone marrow transplantation, antibody therapy, biological therapy, enzyme inhibitor therapy, total body irradiation, infusion of stem cells, bone marrow ablation with stem cell support, in vitro-treated peripheral blood stem cell transplantation, umbilical cord blood transplantation, immunoenzyme technique, low-LET cobalt-60 gamma ray therapy, bleomycin, conventional surgery, radiation therapy, and nonmyeloablative allogeneic hematopoietic stem cell transplantation.
  • Non-Hodgkin's lymphomas treatments include using monoclonal antibodies, standard chemotherapy approaches (e.g., CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone), CVP (cyclophosphamide, vincristine, and prednisone), FCM (fludarabine, cyclophosphamide, and mitoxantrone), MCP (Mitoxantrone, Chlorambucil, Prednisolone), all optionally including Rituximab® and the like), radioimmunotherapy, and combinations thereof, especially integration of an antibody therapy with chemotherapy.
  • standard chemotherapy approaches e.g., CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone), CVP (cyclophosphamide, vincristine, and prednisone), FCM (fludarabine, cyclophosphamide, and mitoxantrone),
  • unconjugated monoclonal antibodies for the treatment of NHL/B-cell cancers include rituximab, alemtuzumab, human or humanized anti-CD20 antibodies, lumiliximab, anti-TNF-related apoptosis-inducing ligand (anti-TRAIL), bevacizumab, galiximab, epratuzumab, SGN-40, and anti-CD74.
  • Examples of experimental antibody agents used in treatment of NHL/B-cell cancers include ofatumumab, ha20, PRO131921, alemtuzumab, galiximab, SGN-40, CHIR-12.12, epratuzumab, lumiliximab, apolizumab, milatuzumab, and bevacizumab.
  • NHL/B-cell cancers examples include CHOP, FCM, CVP, MCP, R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone), R-FCM, R-CVP, and R MCP.
  • radioimmunotherapy for NHL/B-cell cancers examples include yttrium-90 ibritumomab tiuxetan (ZEVALIN®) and iodine-131 tositumomab (BEXXAR®).
  • MCL mantle cell lymphoma
  • An alternative approach to treating MCL is immunotherapy.
  • One immunotherapy uses monoclonal antibodies like rituximab.
  • a modified approach to treat MCL is radioimmunotherapy, wherein a monoclonal antibody is combined with a radioisotope particle, such as iodine-131 tositumomab (BEXXAR®) and yttrium-90 ibritumomab tiuxetan (ZEVALIN®).
  • a radioisotope particle such as iodine-131 tositumomab (BEXXAR®) and yttrium-90 ibritumomab tiuxetan (ZEVALIN®).
  • BEXXAR® is used in sequential treatment with CHOP.
  • MCL multi-densarcoma
  • proteasome inhibitors such as bortezomib (VELCADE® or PS-341)
  • antiangiogenesis agents such as thalidomide
  • Another treatment approach is administering drugs that lead to the degradation of Bcl-2 protein and increase cancer cell sensitivity to chemotherapy, such as oblimersen, in combination with other chemotherapeutic agents.
  • a further treatment approach includes administering mTOR inhibitors, which can lead to inhibition of cell growth and even cell death.
  • mTOR inhibitors include sirolimus, temsirolimus (TORISEL®, CCI-779), CC-115, CC-223, SF-1126, PQR-309 (bimiralisib), voxtalisib, GSK-2126458, and temsirolimus in combination with RITUXAN®, VELCADE®, or other chemotherapeutic agents.
  • Such examples include flavopiridol, palbociclib (PD0332991), R-roscovitine (selicicilib, CYC202), styryl sulphones, obatoclax (GX15-070), TRAIL, Anti-TRAIL death receptors DR4 and DR5 antibodies, temsirolimus (TORISEL®, CCl-779), everolimus (RAD001), BMS-345541, curcumin, SAHA, thalidomide, lenalidomide (REVLIMID, CC-5013), and geldanamycin (17 AAG).
  • Therapeutic agents used to treat Waldenstrom's Macroglobulinemia include aldesleukin, alemtuzumab, alvocidib, amifostine trihydrate, aminocamptothecin, antineoplaston A10, antineoplaston AS2-1, anti-thymocyte globulin, arsenic trioxide, autologous human tumor-derived HSPPC-96, Bcl-2 family protein inhibitor ABT-263, beta alethine, bortezomib (VELCADE®), bryostatin 1, busulfan, campath-1H, carboplatin, carmustine, caspofungin acetate, CC-5103, cisplatin, clofarabine, cyclophosphamide, cyclosporine, cytarabine, denileukin diftitox, dexamethasone, docetaxel, dolastatin 10, doxorubicin hydrochloride, DT-PACE, enzasta
  • Examples of therapeutic procedures used to treat WM include peripheral blood stem cell transplantation, autologous hematopoietic stem cell transplantation, autologous bone marrow transplantation, antibody therapy, biological therapy, enzyme inhibitor therapy, total body irradiation, infusion of stem cells, bone marrow ablation with stem cell support, in vitro-treated peripheral blood stem cell transplantation, umbilical cord blood transplantation, immunoenzyme techniques, low-LET cobalt-60 gamma ray therapy, bleomycin, conventional surgery, radiation therapy, and nonmyeloablative allogeneic hematopoietic stem cell transplantation.
  • Therapeutic agents used to treat diffuse large B-cell lymphoma include cyclophosphamide, doxorubicin, vincristine, prednisone, anti-CD20 monoclonal antibodies, etoposide, bleomycin, many of the agents listed for WM, and any combination thereof, such as ICE and R ICE.
  • Examples of therapeutic agents used to treat chronic lymphocytic leukemia include chlorambucil, cyclophosphamide, fludarabine, pentostatin, cladribine, doxorubicin, vincristine, prednisone, prednisolone, alemtuzumab, many of the agents listed for WM, and combination chemotherapy and chemoimmunotherapy, including the following common combination regimens: CVP, R-CVP, ICE, R-ICE, FCR, and FR.
  • CLL chronic lymphocytic leukemia
  • Myelofibrosis inhibiting agents include, but are not limited to, hedgehog inhibitors, histone deacetylase (HDAC) inhibitors, and tyrosine kinase inhibitors.
  • hedgehog inhibitors are saridegib and vismodegib.
  • HDAC inhibitors include, but are not limited to, pracinostat and panobinostat.
  • tyrosine kinase inhibitors are lestaurtinib, bosutinib, imatinib, gilteritinib, radotinib, and cabozantinib.
  • Gemcitabine, nab-paclitaxel, and gemcitabine/nab-paclitaxel may be used with a JAK inhibitor and/or PI3K6 inhibitor to treat hyperproliferative disorders.
  • Therapeutic agents used to treat bladder cancer include atezolizumab, carboplatin, cisplatin, docetaxel, doxorubicin, fluorouracil (5-FU), gemcitabine, idosfamide, Interferon alfa-2b, methotrexate, mitomycin, nab-paclitaxel, paclitaxel, pemetrexed, thiotepa, vinblastine, and any combination thereof.
  • Therapeutic agents used to treat breast cancer include albumin-bound paclitaxel, anastrozole, capecitabine, carboplatin, cisplatin, cyclophosphamide, docetaxel, doxorubicin, epirubicin, everolimus, exemestane, fluorouracil, fulvestrant, gemcitabine, Ixabepilone, lapatinib, Letrozole, methotrexate, mitoxantrone, paclitaxel, pegylated liposomal doxorubicin, pertuzumab, tamoxifen, toremifene, trastuzumab, vinorelbine, and any combinations thereof.
  • Therapeutic agents used to treat triple negative breast cancer include cyclophosphamide, docetaxel, doxorubicin, epirubicin, fluorouracil, paclitaxel, and combinations thereof.
  • Therapeutic agents used to treat colorectal cancer include bevacizumab, capecitabine, cetuximab, fluorouracil, irinotecan, leucovorin, oxaliplatin, panitumumab, ziv-aflibercept, and any combinations thereof.
  • Therapeutic agents used to treat castration-resistant prostate cancer include abiraterone, cabazitaxel, docetaxel, enzalutamide, prednisone, sipuleucel-T, and any combinations thereof.
  • Therapeutic agents used to treat esophageal and esophagogastric junction cancer include capecitabine, carboplatin, cisplatin, docetaxel, epirubicin, fluoropyrimidine, fluorouracil, irinotecan, leucovorin, oxaliplatin, paclitaxel, ramucirumab, trastuzumab, and any combinations thereof.
  • Therapeutic agents used to treat gastric cancer include capecitabine, carboplatin, cisplatin, docetaxel, epirubicin, fluoropyrimidine, fluorouracil, Irinotecan, leucovorin, mitomycin, oxaliplatin, paclitaxel, ramucirumab, trastuzumab, and any combinations thereof.
  • Therapeutic agents used to treat head & neck cancer include afatinib, bleomycin, capecitabine, carboplatin, cetuximab, cisplatin, docetaxel, fluorouracil, gemcitabine, hydroxyurea, methotrexate, nivolumab, paclitaxel, pembrolizumab, vinorelbine, and any combinations thereof.
  • Therapeutic agents used to treat hepatobiliary cancer include capecitabine, cisplatin, fluoropyrimidine, 5-fluorourcil, gemecitabine, oxaliplatin, sorafenib, and any combinations thereof.
  • Therapeutic agents used to treat hepatocellular carcinoma include capecitabine, doxorubicin, gemcitabine, sorafenib, and any combinations thereof.
  • Therapeutic agents used to treat non-small cell lung cancer include afatinib, albumin-bound paclitaxel, alectinib, bevacizumab, bevacizumab, cabozantinib, carboplatin, cisplatin, crizotinib, dabrafenib, docetaxel, erlotinib, etoposide, gemcitabine, nivolumab, paclitaxel, pembrolizumab, pemetrexed, ramucirumab, trametinib, trastuzumab, vandetanib, vemurafenib, vinblastine, vinorelbine, and any combinations thereof.
  • NSCLC non-small cell lung cancer
  • Therapeutic agents used to treat small cell lung cancer include bendamustime, carboplatin, cisplatin, cyclophosphamide, docetaxel, doxorubicin, etoposide, gemcitabine, ipillimumab, irinotecan, nivolumab, paclitaxel, temozolomide, topotecan, vincristine, vinorelbine, and any combinations thereof.
  • Therapeutic agents used to treat melanoma cancer include albumin bound paclitaxel, carboplatin, cisplatin, cobiemtinib, dabrafenib, dacrabazine, IL-2, imatinib, interferon alfa-2b, ipilimumab, nitrosourea, nivolumab, paclitaxel, pembrolizumab, pilimumab, temozolomide, trametinib, vemurafenib, vinblastine, and any combinations thereof.
  • Therapeutic agents used to treat ovarian cancer include 5-flourouracil, albumin bound paclitaxel, altretamine, anastrozole, bevacizumab, capecitabine, carboplatin, cisplatin, cyclophosphamide, docetaxel, doxorubicin, etoposide, exemestane, gemcitabine, ifosfamide, irinotecan, letrozole, leuprolide acetate, liposomal doxorubicin, megestrol acetate, melphalan, olaparib, oxaliplatin, paclitaxel, Pazopanib, pemetrexed, tamoxifen, topotecan, vinorelbine, and any combinations thereof.
  • Therapeutic agents used to treat pancreatic cancer include 5-fluorourcil, albumin-bound paclitaxel, capecitabine, cisplatin, docetaxel, erlotinib, fluoropyrimidine, gemcitabine, irinotecan, leucovorin, oxaliplatin, paclitaxel, and any combinations thereof.
  • Therapeutic agents used to treat renal cell carcinoma include axitinib, bevacizumab, cabozantinib, erlotinib, everolimus, levantinib, nivolumab, pazopanib, sorafenib, sunitinib, temsirolimus, and any combinations thereof.
  • Therapeutic agents used to treat an infection caused by HBV include compounds such as those disclosed in U.S. Publication No. 2010/0143301 (Gilead Sciences), U.S. Publication No. 2011/0098248 (Gilead Sciences), U.S. Publication No. 2009/0047249 (Gilead Sciences), U.S. Pat. No. 8,722,054 (Gilead Sciences), U.S. Publication No. 2014/0045849 (Janssen), U.S. Publication No. 2014/0073642 (Janssen), WO2014/056953 (Janssen), WO2014/076221 (Janssen), WO2014/128189 (Janssen), U.S. Publication No.
  • an agent disclosed herein is combined with 5 mg-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide.
  • an agent disclosed herein, or a pharmaceutically acceptable salt thereof is combined with 5 mg-10 mg; 5 mg-15 mg; 5 mg-20 mg; 5 mg-25 mg; 25 mg-30 mg; 20 mg-30 mg; 15 mg-30 mg; or 10 mg-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide.
  • an agent disclosed herein, or a pharmaceutically acceptable salt thereof is combined with 10 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide. In certain embodiments, an agent disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 25 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide.
  • An agent as disclosed herein may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 50 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.
  • an agent disclosed herein is combined with a combination of either ledipasvir or velpatasvir, together with sofosbuvir and voxilaprevir. In certain embodiments, an agent disclosed herein is combined with a combination of either ledipasvir or velpatasvir, together with sofosbuvir and tenofovir.
  • Therapeutic agents used to treat an infection caused by HIV include ATRIPLA® (efavirenz, tenofovir disoproxil fumarate, and emtricitabine); COMPLERA® (EVIPLERA®; rilpivirine, tenofovir disoproxil fumarate, and emtricitabine); STRIBILD® (elvitegravir, cobicistat, tenofovir disoproxil fumarate, and emtricitabine); TRUVADA® (tenofovir disoproxil fumarate and emtricitabine; TDF+FTC); DESCOVY® (tenofovir alafenamide and emtricitabine); ODEFSEY® (tenofovir alafenamide, emtricitabine, and rilpivirine); GENVOYA® (tenofovir alafenamide, emtricitabine, cobicistat, and elvitegravir); BIKTARV
  • therapeutic agents treating an infection caused by HIV include aspernigrin C, acemannan, alisporivir, BanLec, deferiprone, Gamimune, metenkefalin, naltrexone, Prolastin, REP 9, RPI-MN, VSSP, Hlviral, SB-728-T, 1,5-dicaffeoylquinic acid, rHIV7-shl-TAR-CCR5RZ, AAV-eCD4-Ig gene therapy, MazF gene therapy, BlockAide, bevirimat derivatives, ABX-464, AG-1105, APH-0812, bryostatin analogs, BIT-225, CYT-107, CS-TATI-1, fluoro-beta-D-arabinose nucleic acid (FANA)-modified antisense oligonucleotides, FX-101, griffithsin, HGTV-43, HPH-116, HS-10234, hydroxychloroqu
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a an HIV nucleoside or nucleotide inhibitor of reverse transcriptase and an HIV non-nucleoside inhibitor of reverse transcriptase.
  • an agent disclosed herein, or a pharmaceutical composition thereof is combined with an HIV nucleoside or nucleotide inhibitor of reverse transcriptase, and an HIV protease inhibiting compound.
  • an agent disclosed herein, or a pharmaceutical composition thereof is combined with an HIV nucleoside or nucleotide inhibitor of reverse transcriptase, an HIV non-nucleoside inhibitor of reverse transcriptase, and a pharmacokinetic enhancer.
  • an agent disclosed herein, or a pharmaceutical composition thereof is combined with at least one HIV nucleoside inhibitor of reverse transcriptase, an integrase inhibitor, and a pharmacokinetic enhancer.
  • an agent disclosed herein, or a pharmaceutical composition thereof is combined with two HIV nucleoside or nucleotide inhibitors of reverse transcriptase.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with abacavir sulfate, tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, tenofovir alafenamide, or tenofovir alafenamide hemifumarate.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir alafenamide, or tenofovir alafenamide hemifumarate.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a first additional therapeutic agent selected from the group consisting of abacavir sulfate, tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir alafenamide, and tenofovir alafenamide hemifumarate, and a second additional therapeutic agent selected from the group consisting of emtricitabine and lamivudine.
  • a first additional therapeutic agent selected from the group consisting of abacavir sulfate, tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir alafenamide, and tenofovir alafenamide hemifumarate
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a first additional therapeutic agent selected from the group consisting of tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir alafenamide, and tenofovir alafenamide hemifumarate, and a second additional therapeutic agent, wherein the second additional therapeutic agent is emtricitabine.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with a first additional therapeutic agent (a contraceptive) selected from the group consisting of cyproterone acetate, desogestrel, dienogest, drospirenone, estradiol valerate, ethinyl Estradiol, ethynodiol, etonogestrel, levomefolate, levonorgestrel, lynestrenol, medroxyprogesterone acetate, mestranol, mifepristone, misoprostol, nomegestrol acetate, norelgestromin, norethindrone, noretynodrel, norgestimate, ormeloxifene, segesters
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein are combined with one or more additional therapeutic agents selected from compounds such as those disclosed in U.S. Publication No. 2010/0143301 (Gilead Sciences), U.S. Publication No. 2011/0098248 (Gilead Sciences), U.S. Publication No. 2009/0047249 (Gilead Sciences), U.S. Pat. No. 8,722,054 (Gilead Sciences), U.S. Publication No. 2014/0045849 (Janssen), U.S. Publication No.
  • 2012/0082658 (Ventirx Pharma), U.S. Publication No. 2012/0219615 (Ventirx Pharma), U.S. Publication No. 2014/0066432 (Ventirx Pharma), U.S. Publication No. 2014/0088085 (Ventirx Pharma), U.S. Publication No. 2014/0275167 (Novira Therapeutics), U.S. Publication No. 2013/0251673 (Novira Therapeutics), U.S. Pat. No. 8,513,184 (Gilead Sciences), U.S. Publication No. 2014/0030221 (Gilead Sciences), U.S. Publication No. 2013/0344030 (Gilead Sciences), U.S. Publication No.
  • the FLT3L-Fc fusion proteins, homodimers, heterodimers, polynucleotides, vectors, lipoplexes, such as LNPs, and/or pharmaceutical compositions, as described herein, are combined with remdesivir.
  • kits comprising one or more containers comprising one or more unitary doses of a FLT3L-Fc fusion protein, as described herein, a homodimer or heterodimer comprising such fusion protein, a polynucleotide encoding such fusion protein, a vector or lipoplex, such as a lipid nanoparticle (LNP) comprising such polynucleotide, or pharmaceutical composition comprising such fusion protein or polynucleotide.
  • LNP lipid nanoparticle

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Developmental Biology & Embryology (AREA)
US16/909,521 2019-06-25 2020-06-23 FLT3L-Fc FUSION PROTEINS AND METHODS OF USE Pending US20210009718A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/909,521 US20210009718A1 (en) 2019-06-25 2020-06-23 FLT3L-Fc FUSION PROTEINS AND METHODS OF USE
US16/951,458 US11124582B2 (en) 2019-06-25 2020-11-18 FLT3L-FC fusion proteins
US17/405,124 US20220049021A1 (en) 2019-06-25 2021-08-18 FLT3L-Fc FUSION PROTEINS AND METHODS OF USE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962866584P 2019-06-25 2019-06-25
US16/909,521 US20210009718A1 (en) 2019-06-25 2020-06-23 FLT3L-Fc FUSION PROTEINS AND METHODS OF USE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/951,458 Continuation US11124582B2 (en) 2019-06-25 2020-11-18 FLT3L-FC fusion proteins

Publications (1)

Publication Number Publication Date
US20210009718A1 true US20210009718A1 (en) 2021-01-14

Family

ID=71738279

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/909,521 Pending US20210009718A1 (en) 2019-06-25 2020-06-23 FLT3L-Fc FUSION PROTEINS AND METHODS OF USE
US16/951,458 Active US11124582B2 (en) 2019-06-25 2020-11-18 FLT3L-FC fusion proteins
US17/405,124 Pending US20220049021A1 (en) 2019-06-25 2021-08-18 FLT3L-Fc FUSION PROTEINS AND METHODS OF USE

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/951,458 Active US11124582B2 (en) 2019-06-25 2020-11-18 FLT3L-FC fusion proteins
US17/405,124 Pending US20220049021A1 (en) 2019-06-25 2021-08-18 FLT3L-Fc FUSION PROTEINS AND METHODS OF USE

Country Status (17)

Country Link
US (3) US20210009718A1 (de)
EP (1) EP3990476A1 (de)
JP (2) JP7295283B2 (de)
KR (1) KR20220032568A (de)
CN (1) CN114245807A (de)
AR (1) AR119235A1 (de)
AU (1) AU2020301161B2 (de)
BR (1) BR112021026376A2 (de)
CA (1) CA3142513A1 (de)
CL (1) CL2021003457A1 (de)
CO (1) CO2021017741A2 (de)
CR (1) CR20210687A (de)
IL (1) IL288373A (de)
MX (1) MX2021015452A (de)
PE (1) PE20220231A1 (de)
TW (2) TW202241930A (de)
WO (1) WO2020263830A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210338683A1 (en) * 2020-05-01 2021-11-04 AcuraStem, Inc. Treatment of viral infections with combination of pikfyve kinase inhibitors and tmprss-2 inhibitors
WO2022192093A1 (en) * 2021-03-08 2022-09-15 Humanigen, Inc. Methods for treating coronavirus infection and resulting inflammation-induced lung injury
US20220370598A1 (en) * 2021-05-05 2022-11-24 Inovio Pharmaceuticals, Inc. Vaccines Against Coronavirus and Methods of Use
WO2023057571A1 (en) * 2021-10-08 2023-04-13 Genmab A/S Antibodies binding to cd30 and cd3
WO2023183892A1 (en) * 2022-03-24 2023-09-28 Bitterroot Bio, Inc. Sirp-alpha fusion polypeptides with modified fc domains
US11834506B2 (en) 2017-02-08 2023-12-05 Dragonfly Therapeutics, Inc. Multi-specific binding proteins that bind NKG2D, CD16, and a tumor-associated antigen for activation of natural killer cells and therapeutic uses thereof to treat cancer
WO2023235886A3 (en) * 2022-06-03 2024-01-04 The University Of Chicago Antigen tolerance induction through use of flt3l variants
WO2024006414A1 (en) * 2022-06-29 2024-01-04 Cytodigm, Inc. Have been novel lipid nanoparticle compositions and uses thereof
US11884732B2 (en) 2017-02-20 2024-01-30 Dragonfly Therapeutics, Inc. Proteins binding HER2, NKG2D and CD16
US11884733B2 (en) 2018-02-08 2024-01-30 Dragonfly Therapeutics, Inc. Antibody variable domains targeting the NKG2D receptor

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
AU2018346955A1 (en) 2017-10-13 2020-04-30 Harpoon Therapeutics, Inc. B cell maturation antigen binding proteins
JP7425049B2 (ja) 2018-09-25 2024-01-30 ハープーン セラピューティクス,インク. Dll3結合タンパク質および使用方法
US11692038B2 (en) 2020-02-14 2023-07-04 Gilead Sciences, Inc. Antibodies that bind chemokine (C-C motif) receptor 8 (CCR8)
AU2020451285A1 (en) * 2020-06-01 2022-12-22 Avm Biotechnology, Llc Methods of treatment using ICAM-modulating agents
BR112023002123A2 (pt) 2020-08-07 2023-03-07 Genentech Inc Proteína de fusão fc, ácidos nucleicos isolados, método de produção da proteína de fusão fc, formulação farmacêutica, métodos para expandir o número de células dendríticas (dcs) em um indivíduo e para tratar um câncer, proteína fc sem efetora e anticorpo
EP4210741A1 (de) * 2020-09-11 2023-07-19 The University Of British Columbia Impfstoff gegen virale pathogene
WO2022061266A1 (en) * 2020-09-21 2022-03-24 St. Jude Children's Research Hospital, Inc. Methods for treating or modulating an inflammatory response
CN112516143B (zh) * 2020-11-30 2023-03-21 重庆医科大学 双苄四氢异喹啉衍生物在制备抗冠状病毒药物中的应用
MX2023008029A (es) * 2021-01-06 2023-08-25 Palleon Pharmaceuticals Inc Proteinas de fusion de anticuerpo y sialidasa-pd-1 y metodos para utilizarlas.
WO2022173863A1 (en) * 2021-02-09 2022-08-18 Aquavit Pharmaceuticals, Inc. Systems and methods for administering vaccine composition using modular multi-vial microchannel delivery adapter devices
AU2022234959A1 (en) * 2021-03-10 2023-10-05 The Board Of Trustees Of The Leland Stanford Junior University Subunit vaccines with dinucleotide-loaded hydrogel adjuvant
WO2022232614A2 (en) * 2021-04-30 2022-11-03 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for treating individuals who have oncogene-negative cancer
TW202313094A (zh) 2021-05-18 2023-04-01 美商基利科學股份有限公司 使用FLT3L—Fc融合蛋白之方法
US11931424B2 (en) 2021-06-11 2024-03-19 Gilead Sciences, Inc. Combination MCL-1 inhibitors with anti-body drug conjugates
TW202315637A (zh) 2021-06-11 2023-04-16 美商基利科學股份有限公司 Mcl-1抑制劑與抗癌劑之組合
WO2023076983A1 (en) 2021-10-28 2023-05-04 Gilead Sciences, Inc. Pyridizin-3(2h)-one derivatives
WO2023077030A1 (en) 2021-10-29 2023-05-04 Gilead Sciences, Inc. Cd73 compounds
CN115873126A (zh) * 2021-11-26 2023-03-31 深圳科兴药业有限公司 人生长激素融合蛋白及其制备和用途
US20230203202A1 (en) 2021-12-08 2023-06-29 Dragonfly Therapeutics, Inc. Proteins binding nkg2d, cd16 and 5t4
WO2023107954A1 (en) 2021-12-08 2023-06-15 Dragonfly Therapeutics, Inc. Antibodies targeting 5t4 and uses thereof
US20230242508A1 (en) 2021-12-22 2023-08-03 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
US20240124412A1 (en) 2021-12-22 2024-04-18 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023133424A2 (en) * 2022-01-05 2023-07-13 TCR2 Therapeutics Inc. Compositions and methods for tcr reprogramming using fusion proteins and anti-pd-1 fusion peptides
TW202340168A (zh) 2022-01-28 2023-10-16 美商基利科學股份有限公司 Parp7抑制劑
TW202346277A (zh) 2022-03-17 2023-12-01 美商基利科學股份有限公司 Ikaros鋅指家族降解劑及其用途
US20230355796A1 (en) 2022-03-24 2023-11-09 Gilead Sciences, Inc. Combination therapy for treating trop-2 expressing cancers
TW202345901A (zh) 2022-04-05 2023-12-01 美商基利科學股份有限公司 用於治療結腸直腸癌之組合療法
TW202400138A (zh) 2022-04-21 2024-01-01 美商基利科學股份有限公司 Kras g12d調節化合物
WO2023212701A2 (en) * 2022-04-28 2023-11-02 The General Hospital Corporation Interferon for the treatment of brachyury-associated cancers and neoplasms
CN114774554A (zh) * 2022-06-16 2022-07-22 首都医科大学附属北京朝阳医院 上皮样血管内皮瘤分子标志物及其检测试剂盒
US20240116928A1 (en) 2022-07-01 2024-04-11 Gilead Sciences, Inc. Cd73 compounds
WO2024059833A1 (en) * 2022-09-16 2024-03-21 OncoC4, Inc. Use of anti-ctla-4 antibodies for treating adenoid cystic carcinoma
US20240091351A1 (en) 2022-09-21 2024-03-21 Gilead Sciences, Inc. FOCAL IONIZING RADIATION AND CD47/SIRPa DISRUPTION ANTICANCER COMBINATION THERAPY

Family Cites Families (394)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179017A (en) 1980-02-25 1993-01-12 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4634665A (en) 1980-02-25 1987-01-06 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US5156840A (en) 1982-03-09 1992-10-20 Cytogen Corporation Amine-containing porphyrin derivatives
US5057313A (en) 1986-02-25 1991-10-15 The Center For Molecular Medicine And Immunology Diagnostic and therapeutic antibody conjugates
WO1988007089A1 (en) 1987-03-18 1988-09-22 Medical Research Council Altered antibodies
US5021456A (en) 1988-02-25 1991-06-04 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US4965288A (en) 1988-02-25 1990-10-23 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US5252608A (en) 1988-02-25 1993-10-12 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US4943593A (en) 1988-02-25 1990-07-24 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US5059714A (en) 1988-02-25 1991-10-22 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US5182297A (en) 1988-02-25 1993-01-26 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US5120764A (en) 1988-11-01 1992-06-09 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US4997854A (en) 1989-08-25 1991-03-05 Trustees Of Boston University Anti-fibrotic agents and methods for inhibiting the activity of lysyl oxidase in-situ using adjacently positioned diamine analogue substrates
US6319494B1 (en) 1990-12-14 2001-11-20 Cell Genesys, Inc. Chimeric chains for receptor-associated signal transduction pathways
IL104570A0 (en) 1992-03-18 1993-05-13 Yeda Res & Dev Chimeric genes and cells transformed therewith
US6174666B1 (en) 1992-03-27 2001-01-16 The United States Of America As Represented By The Department Of Health And Human Services Method of eliminating inhibitory/instability regions from mRNA
US5554512A (en) 1993-05-24 1996-09-10 Immunex Corporation Ligands for flt3 receptors
EP0714409A1 (de) 1993-06-16 1996-06-05 Celltech Therapeutics Limited Antikoerper
US5827690A (en) 1993-12-20 1998-10-27 Genzyme Transgenics Corporatiion Transgenic production of antibodies in milk
US7294331B2 (en) 1994-03-07 2007-11-13 Immunex Corporation Methods of using flt3-ligand in hematopoietic cell transplantation
US5635388A (en) 1994-04-04 1997-06-03 Genentech, Inc. Agonist antibodies against the flk2/flt3 receptor and uses thereof
US7361330B2 (en) * 1995-10-04 2008-04-22 Immunex Corporation Methods of using flt3-ligand in the treatment of fibrosarcoma
US5834597A (en) 1996-05-20 1998-11-10 Protein Design Labs, Inc. Mutated nonactivating IgG2 domains and anti CD3 antibodies incorporating the same
FR2775435B1 (fr) 1998-02-27 2000-05-26 Bioalliance Pharma Nanoparticules comprenant au moins un polymere et au moins un compose apte a complexer un ou plusieurs principes actifs
IL138608A0 (en) 1998-04-02 2001-10-31 Genentech Inc Antibody variants and fragments thereof
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
US6291661B1 (en) 1998-07-02 2001-09-18 Immunex Corporation flt3-L mutants and method of use
MXPA01000271A (es) 1998-07-13 2002-10-17 Expression Genetics Inc Analogo de poliester de poli-lisina como un portador para el suministro de genes, soluble, biodegradable.
WO2000075323A1 (en) * 1999-06-07 2000-12-14 Immunex Corporation Tek antagonists
EP1244707A1 (de) 1999-11-30 2002-10-02 Eberhard-Karls-Universität Tübingen Universitätsklinikum Antikörper gegen signal-regulator-proteine
US7658921B2 (en) 2000-12-12 2010-02-09 Medimmune, Llc Molecules with extended half-lives, compositions and uses thereof
US7282556B2 (en) 2001-05-15 2007-10-16 Emory University Polynucleotides and polypeptides relating to the modulation of SIRPα-CD47
FR2828206B1 (fr) 2001-08-03 2004-09-24 Centre Nat Rech Scient Utilisation d'inhibiteurs des lysyl oxydases pour la culture cellulaire et le genie tissulaire
US7446190B2 (en) 2002-05-28 2008-11-04 Sloan-Kettering Institute For Cancer Research Nucleic acids encoding chimeric T cell receptors
JP2006500015A (ja) 2002-07-29 2006-01-05 ナノデル テヒノロギーズ ゲーエムベーハー 標的器官へのdna投与のためのナノ粒子の使用
ATE490788T1 (de) 2003-04-25 2010-12-15 Gilead Sciences Inc Antivirale phosphonate analoge
US7727969B2 (en) 2003-06-06 2010-06-01 Massachusetts Institute Of Technology Controlled release nanoparticle having bound oligonucleotide for targeted delivery
US20050232931A1 (en) 2003-06-13 2005-10-20 Oncomax Acquisition Corp. Preparation and application of anti-tumor bifunctional fusion proteins
WO2005001048A2 (en) 2003-06-13 2005-01-06 Oncomax Acquisition Corp. Preparation and application of anti-tumor bifunctional fusion proteins
US20040254108A1 (en) * 2003-06-13 2004-12-16 Jing Ma Preparation and application of anti-tumor bifunctional fusion proteins
CA2566609C (en) 2004-05-13 2012-06-26 Icos Corporation Quinazolinones as inhibitors of human phosphatidylinositol 3-kinase delta
EP1765860B1 (de) 2004-05-19 2008-12-10 MediGene Ltd. Hochaffiner ny-eso-t-zellen-rezeptor
EP1778251B1 (de) 2004-07-27 2011-04-13 Gilead Sciences, Inc. Nukleosid phosphonat konjugate als anti hiv mittel
WO2006031221A1 (en) 2004-09-13 2006-03-23 Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Compositions comprising t cell receptors and methods of use thereof
ES2410905T3 (es) 2004-12-17 2013-07-03 Merck Canada Inc. 2-(Fenil o heterociclo)-1H-fenantro[9,10-d]imidazoles como inhibidores de la MPGES-1
US7442716B2 (en) 2004-12-17 2008-10-28 Merck Frosst Canada Ltd. 2-(phenyl or heterocyclic)-1H-phenantrho[9,10-d]imidazoles as mPGES-1 inhibitors
WO2006079155A1 (en) * 2005-01-25 2006-08-03 Apollo Life Sciences Limited Molecules and chimeric molecules thereof
US7700099B2 (en) 2005-02-14 2010-04-20 Merck & Co., Inc. Non-immunostimulatory antibody and compositions containing the same
US7404969B2 (en) 2005-02-14 2008-07-29 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
US20090142345A1 (en) 2005-03-15 2009-06-04 Takeda Pharmaceutical Company Limited Prophylactic/therapeutic agent for cancer
CN101223143A (zh) 2005-05-18 2008-07-16 惠氏公司 作为tpl2激酶抑制剂的3-氰基喹啉以及其制备和应用方法
BRPI0611521A2 (pt) 2005-05-18 2010-09-14 Wyeth Corp inibidores de 4,6-diamino-[1,7]naftiridina-3-carbonitrila de quìnase tpl2 e métodos de fabricação e uso dos mesmos
TW201402124A (zh) 2005-08-19 2014-01-16 Array Biopharma Inc 作為類鐸受體(toll-like receptor)調節劑之8-經取代苯并氮雜呯
TWI382019B (zh) 2005-08-19 2013-01-11 Array Biopharma Inc 作為類鐸受體(toll-like receptor)調節劑之胺基二氮雜呯
WO2007032255A1 (ja) 2005-09-13 2007-03-22 Mie University T細胞レセプター及び該レセプターをコードする核酸
EP2019675A4 (de) 2006-05-02 2011-03-02 Merck Frosst Canada Ltd Verfahren zur behandlung oder prävention von neoplasien
EP2027151A2 (de) 2006-05-15 2009-02-25 Viral Logic Systems Technology Corp. Zusammensetzungen und verfahren im zusammenhang mit cd47 zur behandlung von immunerkrankungen und -störungen
BRPI0711901A2 (pt) 2006-05-22 2012-03-06 The Regents Of The University Of California Composições e métodos para a liberação de oxigênio
ITMI20061053A1 (it) 2006-05-30 2007-11-30 Manuli Rubber Ind Spa Raccordo per tubi flessibili per applicazioni oleodinamiche,industriali e aria condizionata,avente caratteristiche di tenuta migliorate.
ES2437871T3 (es) 2006-07-07 2014-01-14 Gilead Sciences, Inc. Moduladores del receptor tipo toll 7
DE102006058450A1 (de) 2006-12-12 2008-06-19 Eberhard-Karls-Universität Tübingen Zubereitungen zur Hemmung der Prostaglandin E2 Synthese
US7968544B2 (en) 2007-06-29 2011-06-28 Gilead Sciences, Inc. Modulators of toll-like receptor 7
JP5312459B2 (ja) 2007-08-02 2013-10-09 ジリード バイオロジクス,インク. Loxおよびloxl2阻害剤ならびにこれらの使用
JP2010539245A (ja) 2007-09-14 2010-12-16 日東電工株式会社 薬物担体
WO2009046541A1 (en) 2007-10-11 2009-04-16 University Health Network MODULATION OF SIRPα - CD47 INTERACTION FOR INCREASING HUMAN HEMATOPOIETIC STEM CELL ENGRAFTMENT AND COMPOUNDS THEREFOR
TW200930369A (en) 2007-11-15 2009-07-16 Astrazeneca Ab Bis-(sulfonylamino) derivatives in therapy
TW200930368A (en) 2007-11-15 2009-07-16 Astrazeneca Ab Bis-(sulfonylamino) derivatives in therapy
CN101918365B (zh) 2007-11-16 2013-10-09 吉联亚科学股份有限公司 人类免疫缺陷病毒复制的抑制剂
US20090163586A1 (en) 2007-12-20 2009-06-25 Astrazeneca Ab Bis-(Sulfonylamino) Derivatives in Therapy 205
US20100324086A1 (en) 2008-02-19 2010-12-23 Novasaid Ab Compounds and methods
WO2009117987A2 (de) 2008-03-26 2009-10-01 Universität Tübingen Verwendung von boswelliasäuren und synthetischen boswelliasäurederivaten zur hemmung der mikrosomalen prostaglandin e2 synthase und des cathepsin g
WO2009130242A1 (en) 2008-04-23 2009-10-29 Novasaid Ab Low molecular weight derivatives and use thereof in treatment of prostaglandin e synthase related diseases
EP2119705A1 (de) 2008-05-14 2009-11-18 AZIENDE CHIMICHE RIUNITE ANGELINI FRANCESCO A.C.R.A.F. S.p.A. 3-Aminocarbazol-Verbindung, pharmazeutische Zusammensetzung damit und Herstellungsverfahren dafür
DE102008027331A1 (de) 2008-06-07 2009-12-10 Friedrich-Alexander-Universität Erlangen-Nürnberg Verwendung von Indol-3-carbonsäureestern zur Hemmung der mikrosomalen Prostaglandin E2 Synthase
DE102008015432A1 (de) 2008-06-12 2009-12-17 Eberhard-Karls-Universität Tübingen Verwendung von Pirinixinsäure-Derivaten zur Hemmung der Prostaglandin E2 Synthese
PE20110308A1 (es) 2008-07-08 2011-06-10 Incyte Corp 1,2,5-oxadiazoles como inhibidores de indolamina 2,3-dioxigenasa
CA2732437C (en) 2008-08-01 2017-11-21 Ventirx Pharmaceuticals, Inc. Toll-like receptor agonist formulations and their use
US8652843B2 (en) 2008-08-12 2014-02-18 Oncomed Pharmaceuticals, Inc. DDR1-binding agents and methods of use thereof
UY32138A (es) 2008-09-25 2010-04-30 Boehringer Ingelheim Int Amidas sustituidas del ácido 2-(2,6-dicloro-fenilamino)-6-fluoro-1-metil-1h-bencimidazol-5-carboxílico y sus sales farmacéuticamente aceptables
US8450321B2 (en) 2008-12-08 2013-05-28 Gilead Connecticut, Inc. 6-(1H-indazol-6-yl)-N-[4-(morpholin-4-yl)phenyl]imidazo-[1,2-A]pyrazin-8-amine, or a pharmaceutically acceptable salt thereof, as a SYK inhibitor
ES2623794T3 (es) 2008-12-09 2017-07-12 Gilead Sciences, Inc. Intermedios para la preparación de moduladores de receptores tipo toll
DE102008061522A1 (de) * 2008-12-10 2010-06-17 Biontech Ag Verwendung von Flt3-Ligand zur Verstärkung von Immunreaktionen bei RNA-Immunisierung
WO2010083253A2 (en) 2009-01-14 2010-07-22 Viral Logic Systems Technology Corp. Cd47 related compositions and methods for treating immunological diseases and disorders
UY32470A (es) 2009-03-05 2010-10-29 Boehringer Ingelheim Int Derivados de 2-{2-cloro-5-[(sustituido) metil]fenilamino} -1-metil]fenilamino}-1-metilbencimidazol-5-carboxamidas-n-(sustituidas) y sus sales fisiológicamente aceptables, composiciones conteniéndolos y aplicaciones
US8673307B1 (en) 2009-03-09 2014-03-18 The Rockefeller University HIV-1 anti-core neutralizing antibodies that target a conformational epitope within the ALPHA5-helix of GP120
EP2408819A2 (de) 2009-03-20 2012-01-25 Ludwig Institute for Cancer Research Ltd Hochaffine, t-zellen-rezeptor-ähnliche ny-eso-1-peptidantikörper, verfahren und anwendungen davon
FR2945538B1 (fr) 2009-05-12 2014-12-26 Sanofi Aventis Anticorps humanises specifiques de la forme protofibrillaire du peptide beta-amyloide.
US8338441B2 (en) 2009-05-15 2012-12-25 Gilead Sciences, Inc. Inhibitors of human immunodeficiency virus replication
TWI625121B (zh) 2009-07-13 2018-06-01 基利科學股份有限公司 調節細胞凋亡信號之激酶的抑制劑
AU2010284241B2 (en) 2009-08-18 2016-11-10 Array Biopharma, Inc. Substituted benzoazepines as Toll-like receptor modulators
DK2467377T3 (en) 2009-08-18 2017-04-03 Ventirx Pharmaceuticals Inc SUBSTITUTED BENZOAZEPINS AS MODULATORS OF TOLL-LIKE RECEPTORS
WO2011023812A1 (en) 2009-08-27 2011-03-03 Novasaid Ab Microsomal prostaglandin e synthase-1 (mpges1) inhibitors
NO2491035T3 (de) 2009-10-22 2018-01-27
JP5579862B2 (ja) 2009-10-23 2014-08-27 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ミクロソームプロスタグランジンe2シンターゼ−1のインヒビター
WO2011055888A1 (en) 2009-11-06 2011-05-12 Chung-Ang University Industry-Academy Cooperation Foundtion Nanoparticle-based gene delivery systems
CN102869682B (zh) 2009-11-18 2016-10-19 曼康公司 单克隆抗体及其诊断用途
SG177025A1 (en) 2010-06-21 2012-01-30 Agency Science Tech & Res Hepatitis b virus specific antibody and uses thereof
CA2785139A1 (en) 2009-12-22 2011-06-30 Novartis Ag Tetravalent cd47-antibody constant region fusion protein for use in therapy
SG183174A1 (en) 2010-02-04 2012-09-27 Gilead Biologics Inc Antibodies that bind to lysyl oxidase-like 2 (loxl2) and methods of use therefor
US9186337B2 (en) 2010-02-24 2015-11-17 Oryzon Genomics S.A. Lysine demethylase inhibitors for diseases and disorders associated with Hepadnaviridae
WO2011139637A1 (en) 2010-05-03 2011-11-10 Philadelphia Health & Education Corporation Small-molecule modulators of hiv-1 capsid stability and methods thereof
US9089520B2 (en) 2010-05-21 2015-07-28 Baylor College Of Medicine Methods for inducing selective apoptosis
MX2012013622A (es) 2010-05-31 2013-02-01 Ono Pharmaceutical Co Derivado de purinona.
KR101209266B1 (ko) 2010-06-30 2012-12-06 한국과학기술연구원 생분해성 및 온도 감응성 폴리포스파젠계 자성 고분자, 그의 제조 방법 및 용도
EP2588455B1 (de) 2010-07-02 2018-04-04 Gilead Sciences, Inc. 2-quinolinyl-essigsäure derivate als hiv antivirale verbindungen
MA34397B1 (fr) 2010-07-02 2013-07-03 Gilead Sciences Inc Dérivés d'acide napht-2-ylacétique dans le traitement du sida
US8586604B2 (en) 2010-08-20 2013-11-19 Boehringer Ingelheim International Gmbh Inhibitors of the microsomal prostaglandin E2 synthase-1
US8759537B2 (en) 2010-08-20 2014-06-24 Boehringer Ingelheim International Gmbh 3H-imidazo [4, 5-C] pyridine-6-carboxamides as anti-inflammatory agents
NZ606880A (en) 2010-08-27 2015-01-30 Gilead Biologics Inc Antibodies to matrix metalloproteinase 9
RU2587061C2 (ru) 2010-10-01 2016-06-10 Вентиркс Фармасьютикалз, Инк. Способы лечения аллергических заболеваний
US20120219615A1 (en) 2010-10-01 2012-08-30 The Trustees Of The University Of Pennsylvania Therapeutic Use of a TLR Agonist and Combination Therapy
WO2012054825A1 (en) 2010-10-22 2012-04-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-mage-a3 t cell receptors and related materials and methods of use
EP3305798A1 (de) 2010-12-09 2018-04-11 The Trustees of The University of Pennsylvania Verwendung von durch einen chimären antigenrezeptor modifizierten t-zellen zur behandlung von krebs
US8674113B2 (en) 2010-12-10 2014-03-18 Boehringer Ingelheim International Gmbh Compounds
AR084217A1 (es) 2010-12-10 2013-05-02 Gilead Sciences Inc Inhibidores macrociclicos de virus flaviviridae
US8466186B2 (en) 2010-12-10 2013-06-18 Boehringer Ingelheim International Gmbh Compounds
WO2012082647A2 (en) 2010-12-13 2012-06-21 The Regents Of The University Of California PYRAZOLE INHIBITORS OF COX-2 AND sEH
AR084174A1 (es) 2010-12-21 2013-04-24 Lilly Co Eli Compuestos de imidazol-2-benzamida utiles para el tratamiento de osteoartritis y una composicion farmaceutica
AU2011353233B2 (en) 2010-12-30 2016-02-11 Samyang Holdings Corporation Carrier for negatively charged drugs comprising a cationic lipid and a preparation method thereof
PL2663550T4 (pl) 2011-01-12 2017-07-31 Ventirx Pharmaceuticals, Inc. Podstawione benzoazepiny jako modulatory receptora toll-podobnego
PL2663555T4 (pl) 2011-01-12 2017-08-31 Ventirx Pharmaceuticals, Inc. Podstawione benzoazepiny jako modulatory receptora toll-podobnego
EA028659B1 (ru) 2011-02-12 2017-12-29 Глоубиммьюн, Инк. Терапевтическое средство на основе дрожжей для лечения хронического гепатита b
WO2012110860A1 (en) 2011-02-17 2012-08-23 Glenmark Pharmaceuticals S.A. TRICYCLIC COMPOUNDS AS mPGES-1 INHIBITORS
RS60191B1 (sr) 2011-04-08 2020-06-30 Janssen Sciences Ireland Unlimited Co Derivati pirimidina za tretman virusnih infekcija
UA111841C2 (uk) 2011-04-21 2016-06-24 Гіліад Сайєнсіз, Інк. Сполуки бензотіазолу та їх фармацевтичне застосування
WO2012154312A1 (en) 2011-05-09 2012-11-15 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Neutralizing antibodies to hiv-1 and their use
US8691750B2 (en) 2011-05-17 2014-04-08 Axolabs Gmbh Lipids and compositions for intracellular delivery of biologically active compounds
CN103797029B (zh) 2011-05-17 2016-08-17 洛克菲勒大学 人类免疫缺陷病毒中和抗体及其使用方法
SI2709989T1 (en) 2011-05-18 2018-04-30 Janssen Sciences Ireland Uc Quinazoline derivatives for the treatment of viral infections and other diseases
AR086254A1 (es) 2011-05-26 2013-11-27 Lilly Co Eli Derivados de imidazol utiles para el tratamiento de artritis
PT2729448E (pt) 2011-07-06 2015-12-02 Gilead Sciences Inc Compostos para o tratamento de vih
CN102863512B (zh) 2011-07-07 2016-04-20 上海泓博智源医药技术有限公司 抗病毒化合物
US9493549B2 (en) 2011-07-25 2016-11-15 The Rockefeller University Antibodies directed toward the HIV-1 GP120 CD4 binding site with increased potency and breadth
BR112014003496B1 (pt) 2011-08-18 2022-02-22 Nippon Shinyaku Co., Ltd Derivado heterocíclico, usos do mesmo e composição farmacêutica
US9550835B2 (en) 2011-08-23 2017-01-24 Chugai Seiyaku Kabushiki Kaisha Anti-DDR1 antibody having anti-tumor activity
GB201115529D0 (en) 2011-09-08 2011-10-26 Imp Innovations Ltd Antibodies, uses and methods
ES2689512T3 (es) 2011-09-15 2018-11-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Receptores de células T que reconocen MAGE restringido por HLA-A1 o a HLA-Cw7
WO2013041865A1 (en) 2011-09-22 2013-03-28 Immunocore Limited T cell receptors
WO2013052699A2 (en) 2011-10-04 2013-04-11 Gilead Calistoga Llc Novel quinoxaline inhibitors of pi3k
WO2013056352A1 (en) 2011-10-19 2013-04-25 University Health Network Antibodies and antibody fragments targeting sirp-alpha and their use in treating hematologic cancers
KR101383324B1 (ko) 2011-11-10 2014-04-28 주식회사 종근당 신규한 유전자 전달용 조성물
WO2013072825A1 (en) 2011-11-16 2013-05-23 Glenmark Pharmaceuticals S.A. Phtalazinone derivatives as mpegs -1 inhibitors
HUE031094T2 (en) 2011-11-29 2017-07-28 Ono Pharmaceutical Co Purinone derivative hydrochloride
CN108676091B (zh) 2011-12-08 2022-04-01 美国政府(由卫生和人类服务部的部长所代表) Hiv-1的中和抗体及其用途
US9399645B2 (en) 2011-12-20 2016-07-26 Boehringer Ingelheim International Gmbh Inhibitors of HIV replication
EP2794565B1 (de) 2011-12-21 2017-07-26 Novira Therapeutics Inc. Hepatitis-b-viruzide
UY34573A (es) 2012-01-27 2013-06-28 Gilead Sciences Inc Inhibidor de la quinasa que regula la señal de la apoptosis
WO2013116562A1 (en) 2012-02-03 2013-08-08 Gilead Calistoga Llc Compositions and methods of treating a disease with (s)-4 amino-6-((1-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile
JP6283320B2 (ja) 2012-02-08 2018-02-21 ヤンセン・サイエンシズ・アイルランド・ユーシー ウイルス感染の治療のためのピペリジノ−ピリミジン誘導体
AR089939A1 (es) 2012-02-09 2014-10-01 Glenmark Pharmaceuticals Sa COMPUESTOS BICICLICOS COMO INHIBIDORES DE mPGES-1
US20150044137A1 (en) 2012-03-23 2015-02-12 The United States of America, as represented by the Secretary, Dep. of Health Care Human Services Neutralizing antibodies to hiv-1 and their use
RU2014142598A (ru) 2012-03-31 2016-05-27 Ф. Хоффманн-Ля Рош Аг Новые 4-метилдигидропиримидины для лечения и профилактики инфекции вируса гепатита в
US20130267517A1 (en) 2012-03-31 2013-10-10 Hoffmann-La Roche Inc. Novel 4-methyl-dihydropyrimidines for the treatment and prophylaxis of hepatitis b virus infection
WO2013153535A1 (en) 2012-04-13 2013-10-17 Glenmark Pharmaceuticals S.A. TRICYCLIC COMPOUNDS AS mPGES-1 INHIBITORS
PE20141558A1 (es) 2012-04-20 2014-11-06 Gilead Sciences Inc Derivados de acido benzotiazol-6-il acetico y su uso para tratar una infeccion por vih
JP6209601B2 (ja) 2012-06-08 2017-10-04 ギリアード サイエンシーズ, インコーポレイテッド フラビウイルス科ウイルスの大環状阻害剤
ES2656087T3 (es) 2012-06-08 2018-02-23 Gilead Sciences, Inc. Inhibidores macrocíclicos de virus Flaviviridae
AR091279A1 (es) 2012-06-08 2015-01-21 Gilead Sciences Inc Inhibidores macrociclicos de virus flaviviridae
TWI568722B (zh) 2012-06-15 2017-02-01 葛蘭馬克製藥公司 作爲mPGES-1抑制劑之三唑酮化合物
BR112015002524B1 (pt) 2012-08-10 2021-11-03 Janssen Sciences Ireland Uc Derivados de alquilpirimidina, composição farmacêutica que os compreende e uso dos mesmos
CA2884870C (en) 2012-08-13 2022-03-29 Massachusetts Institute Of Technology Amine-containing lipidoids and uses thereof
NZ704752A (en) 2012-08-28 2018-06-29 Janssen Sciences Ireland Uc Sulfamoyl-arylamides and the use thereof as medicaments for the treatment of hepatitis b
DK2890683T3 (en) 2012-08-28 2017-01-30 Janssen Sciences Ireland Uc MERGED BICYCLIC SULFAMOYL DERIVATIVES AND THEIR USE AS MEDICINES TO TREAT HEPATITIS B
CA2881322A1 (en) 2012-09-10 2014-03-13 F. Hoffmann-La Roche Ag 6-amino acid heteroaryldihydropyrimidines for the treatment and prophylaxis of hepatitis b virus infection
WO2014047624A1 (en) 2012-09-24 2014-03-27 Gilead Sciences, Inc. Anti-ddr1 antibodies
MD20150043A2 (ro) 2012-10-02 2015-08-31 Epitherapeutics Aps Inhibitori ai histon-demetilazelor
TR201807076T4 (tr) 2012-10-10 2018-06-21 Janssen Sciences Ireland Uc Viral enfeksiyonların ve diğer hastalıkların tedavisine yönelik pirolo[3,2-d]pirimidin derivatları.
JP6461804B2 (ja) 2012-10-18 2019-01-30 ザ ロックフェラー ユニバーシティー 広域中和抗hiv抗体
WO2014064215A1 (en) 2012-10-24 2014-05-01 INSERM (Institut National de la Santé et de la Recherche Médicale) TPL2 KINASE INHIBITORS FOR PREVENTING OR TREATING DIABETES AND FOR PROMOTING β-CELL SURVIVAL
KR101268466B1 (ko) 2012-11-12 2013-06-04 유병수 사축형 윈드 터빈
EP2925729B1 (de) 2012-11-16 2017-10-18 Janssen Sciences Ireland UC Heterocyclische substituierte 2-amino-chinazolinderivate zur behandlung von virusinfektionen
CN104955847A (zh) 2012-12-04 2015-09-30 马里兰州大学(巴尔的摩) HIV-1 Env结合抗体、融合蛋白及其使用方法
WO2014089364A1 (en) 2012-12-06 2014-06-12 Quanticel Pharmaceuticals, Inc Histone demethylase inhibitors
DK2934145T3 (en) 2012-12-19 2018-02-05 Celgene Quanticel Res Inc HISTONDEMETHYLASE INHIBITORS
CA2895808A1 (en) 2012-12-21 2014-06-26 Quanticel Pharmaceuticals, Inc. Histone demethylase inhibitors
PT2941426T (pt) 2012-12-21 2018-07-18 Gilead Calistoga Llc Quinazolinonas aminoalquis de pirimidina substituída como inibidores de fosfatidilinositol 3-quinase
DK3067358T3 (da) 2012-12-21 2019-11-04 Gilead Sciences Inc Polycykliske carbamoylpyridon-forbindelser og deres farmaceutiske anvendelse
ES2685568T3 (es) 2012-12-21 2018-10-10 Gilead Calistoga Llc Inhibidores de la isoquinolinona o quinazolinona fosfatidilinositol 3-quinasa
EP2940019B1 (de) 2012-12-27 2018-03-28 Japan Tobacco Inc. Substituiertes spiropyrido[1,2-a]pyrazin-derivat und medizinische verwendung davon als hiv-integrase-hemmer
WO2014107171A1 (en) 2013-01-07 2014-07-10 Omniox, Inc. Polymeric forms of h-nox proteins
SI2951202T1 (sl) 2013-01-29 2020-08-31 Max Delbrueck Centrum fuer Molekulare Medizin (MDC) Berlin-Buch Vezavne molekule z visoko avidnostjo, ki prepoznajo mage-A1
KR102300861B1 (ko) 2013-02-21 2021-09-10 얀센 사이언시즈 아일랜드 언리미티드 컴퍼니 바이러스 감염의 치료를 위한 2-아미노피리미딘 유도체
PE20151667A1 (es) 2013-02-27 2015-11-27 Epitherapeutics Aps Inhibidores de histona desmetilasas
US10125094B2 (en) 2013-02-28 2018-11-13 Janssen Sciences Ireland Uc Sulfamoyl-arylamides and the use thereof as medicaments for the treatment of hepatitis B
WO2014164708A1 (en) 2013-03-12 2014-10-09 Quanticel Pharmaceuticals, Inc. Histone dementhylase inhibitors
WO2014165128A2 (en) 2013-03-12 2014-10-09 Novira Therapeutics, Inc. Hepatitis b antiviral agents
MX2015011898A (es) 2013-03-13 2016-05-05 Genentech Inc Compuestos de pirazolo y usos de los mismos.
JP6276378B2 (ja) 2013-03-14 2018-02-07 セルジーン クオンティセル リサーチ,インク. ヒストンデメチラーゼ阻害剤
WO2014151106A1 (en) 2013-03-15 2014-09-25 Quanticel Pharmaceuticals, Inc. Histone demethylase inhibitors
ES2640063T3 (es) 2013-04-03 2017-10-31 Janssen Sciences Ireland Uc Derivados de n-fenil-carboxamida y su uso como medicamentos para el tratamiento de la hepatitis B
WO2014167444A1 (en) 2013-04-08 2014-10-16 Glenmark Pharmaceuticals S.A. SUBSTITUTED BICYCLIC COMPOUNDS AS mPGES-1 INHIBITORS
WO2014179760A1 (en) 2013-05-03 2014-11-06 The Regents Of The University Of California Cyclic di-nucleotide induction of type i interferon
JO3603B1 (ar) 2013-05-17 2020-07-05 Janssen Sciences Ireland Uc مشتقات سلفامويل بيرولاميد واستخدامها كادوية لمعالجة التهاب الكبد نوع بي
EP2997032B1 (de) 2013-05-17 2018-07-25 F.Hoffmann-La Roche Ag 6-verbrückte heteroaryldihydropyrimidine zur behandlung und prophylaxe von hepatitis-b-virus-infektionen
MX366787B (es) 2013-05-17 2019-07-23 Janssen Sciences Ireland Uc Derivados de sulfamoiltiofenamida y su uso como medicamentos para tratar la hepatitis b.
SI3008053T1 (en) 2013-06-14 2018-06-29 Gilead Calistoga Llc PHOSPHATIDYLINOSITOL 3-KINATE INHIBITORS
SG11201600522UA (en) 2013-07-25 2016-02-26 Janssen Sciences Ireland Uc Glyoxamide substituted pyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis b
GB201313377D0 (en) 2013-07-26 2013-09-11 Adaptimmune Ltd T cell receptors
CA2923090C (en) 2013-09-11 2018-08-21 Poxel Methods and pharmaceutical compositions for the treatment of hepatitis b virus infection
US20160244510A1 (en) 2013-09-27 2016-08-25 Duke University Human monoclonal antibodies
WO2015059618A1 (en) 2013-10-22 2015-04-30 Glenmark Pharmaceuticals S.A. SUBSTITUTED PYRIMIDINE COMPOUNDS AS mPGES-1 INHIBITORS
US9567299B2 (en) 2013-10-23 2017-02-14 Janssen Sciences Ireland Uc Carboxamide derivatives and the use thereof as medicaments for the treatment of hepatitis B
ES2777248T3 (es) 2013-11-14 2020-08-04 Novira Therapeutics Inc Derivados de azepano y métodos de tratar infecciones por hepatitis B
US9290505B2 (en) 2013-12-23 2016-03-22 Gilead Sciences, Inc. Substituted imidazo[1,2-a]pyrazines as Syk inhibitors
WO2015103549A1 (en) 2014-01-03 2015-07-09 The United States Of America, As Represented By The Secretary Department Of Health And Human Services Neutralizing antibodies to hiv-1 env and their use
US9169212B2 (en) 2014-01-16 2015-10-27 Novira Therapeutics, Inc. Azepane derivatives and methods of treating hepatitis B infections
US9181288B2 (en) 2014-01-16 2015-11-10 Novira Therapeutics, Inc. Azepane derivatives and methods of treating hepatitis B infections
EA201691261A1 (ru) 2014-01-30 2016-11-30 Ф. Хоффманн-Ля Рош Аг Новые дигидрохинолизиноны для лечения и профилактики инфекции, вызванной вирусом гепатита b
WO2015117008A2 (en) 2014-01-31 2015-08-06 The Rockefeller University Broadly neutralizing anti-hiv antibodies and epitope therefor
AP2016009257A0 (en) 2014-02-06 2016-06-30 Janssen Sciences Ireland Uc Sulphamoylpyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis b
EA030115B9 (ru) 2014-03-07 2018-09-28 Ф. Хоффманн-Ля Рош Аг Новые 6-конденсированные гетероарилдигидропиримидины для лечения и профилактики заражения вирусом гепатита b
US10081680B2 (en) 2014-03-11 2018-09-25 The Board Of Trustees Of The Leland Stanford Junior University Anti-SIRP-alpha antibodies and bispecific macrophage enhancing antibodies
US9400280B2 (en) 2014-03-27 2016-07-26 Novira Therapeutics, Inc. Piperidine derivatives and methods of treating hepatitis B infections
ES2871027T3 (es) 2014-03-27 2021-10-28 Eicosis Llc Inhibidores potentes de la epóxido hidrolasa soluble
RU2752275C2 (ru) 2014-04-10 2021-07-26 Сиэтл Чилдрен'С Хоспитал (Дба Сиэтл Чилдрен'С Ресёрч Инститьют) Способ и композиции для клеточной иммунотерапии
MX368504B (es) 2014-04-14 2019-10-04 Shanghai hengrui pharmaceutical co ltd Derivados de amidas y sales farmaceuticamente aceptables de los mismos, método de preparación de los mismos y aplicación médica de los mismos.
JP6568106B2 (ja) 2014-05-13 2019-08-28 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft B型肝炎ウイルス感染症の治療及び予防のための新規ジヒドロキノリジノン類
WO2015188085A1 (en) 2014-06-06 2015-12-10 Flexus Biosciences, Inc. Immunoregulatory agents
WO2016014484A1 (en) 2014-07-21 2016-01-28 The Rockefeller University Combination of broadly neutralizing hiv antibodies and viral inducers
WO2016012470A1 (en) 2014-07-25 2016-01-28 F. Hoffmann-La Roche Ag New amorphous and crystalline forms of (3s)-4-[[(4r)-4-(2-chloro-4-fluoro-phenyl)-5-methoxycarbonyl-2-thiazol-2-yl-1, 4-dihydropyrimidin-6-yl]methyl]morpholine-3-carboxylic acid
BR112017002970B1 (pt) 2014-08-14 2023-04-11 F. Hoffmann-La Roche Ag Novas piridazonas e triazinonas para o tratamento e profilaxia da infecção pelo vírus da hepatite b
SG11201701182VA (en) 2014-08-27 2017-03-30 Gilead Sciences Inc Compounds and methods for inhibiting histone demethylases
TWI751102B (zh) 2014-08-28 2022-01-01 美商奇諾治療有限公司 對cd19具專一性之抗體及嵌合抗原受體
JO3474B1 (ar) 2014-08-29 2020-07-05 Amgen Inc مشتقات تيتراهيدرونافثالين التي تثبط بروتين mcl-1
GB201417803D0 (en) 2014-10-08 2014-11-19 Adaptimmune Ltd T cell receptors
WO2016057924A1 (en) 2014-10-10 2016-04-14 Genentech, Inc. Pyrrolidine amide compounds as histone demethylase inhibitors
JO3581B1 (ar) 2014-10-29 2020-07-05 Lilly Co Eli مركبات ميثيل-بيبيريدين جديدة مفيدة لتثبيط إنزيم سينثاز -1 بروستاجلاندين e2 ميكروسومي
AR102361A1 (es) 2014-10-29 2017-02-22 Lilly Co Eli Compuestos de metil-quinolina útiles para inhibir la sintasa-1 de prostaglandina microsomal e2
US9637485B2 (en) 2014-11-03 2017-05-02 Hoffmann-La Roche Inc. 6,7-dihydrobenzo[a]quinolizin-2-one derivatives for the treatment and prophylaxis of hepatitis B virus infection
UY36390A (es) 2014-11-05 2016-06-01 Flexus Biosciences Inc Compuestos moduladores de la enzima indolamina 2,3-dioxigenasa (ido), sus métodos de síntesis y composiciones farmacéuticas que los contienen
CN107206025A (zh) 2014-12-03 2017-09-26 朱诺治疗学股份有限公司 用于过继细胞治疗的方法和组合物
WO2016090300A1 (en) 2014-12-05 2016-06-09 Genentech, Inc. Methods and compositions for treating cancer using pd-1 axis antagonists and hpk1 antagonists
JP6821568B2 (ja) 2014-12-15 2021-01-27 ベリカム ファーマシューティカルズ, インコーポレイテッド 治療用細胞のコントロールされた排除方法
AR103222A1 (es) 2014-12-23 2017-04-26 Hoffmann La Roche Procedimiento para la preparación de análogos de 4-fenil-5-alcoxicarbonil-2-tiazol-2-il-1,4-dihidropirimidina
US9676793B2 (en) 2014-12-23 2017-06-13 Hoffmann-Laroche Inc. Co-crystals of 5-amino-2-oxothiazolo[4,5-d]pyrimidin-3(2H)-yl-5-hydroxymethyl tetrahydrofuran-3-yl acetate and methods for preparing and using the same
WO2016109684A2 (en) 2014-12-30 2016-07-07 Novira Therapeutics, Inc. Derivatives and methods of treating hepatitis b infections
JP6506845B2 (ja) 2014-12-30 2019-04-24 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft B型肝炎ウイルス感染症の治療及び予防のための新規テトラヒドロピリドピリミジン類及びテトラヒドロピリドピリジン類
CN107109497A (zh) 2014-12-31 2017-08-29 豪夫迈·罗氏有限公司 通过实时PCR从细胞裂解物定量HBV cccDNA的高通量新方法
MA41338B1 (fr) 2015-01-16 2019-07-31 Hoffmann La Roche Composés de pyrazine pour le traitement de maladies infectieuses
CN107208102B (zh) 2015-01-27 2021-07-06 豪夫迈·罗氏有限公司 重组hbv cccdna、其产生方法及其用途
CN107207505B (zh) 2015-02-11 2018-12-14 豪夫迈·罗氏有限公司 治疗和预防乙型肝炎病毒感染的 2-氧代-6,7-二氢苯并[a]喹嗪-3-甲酸衍生物
EP4219544A1 (de) 2015-03-10 2023-08-02 Academisch Ziekenhuis Leiden H.O.D.N. Leids Universitair Medisch Centrum T-zell-rezeptoren gegen das bevorzugt exprimierte antigen von melanom und deren verwendungen
BR112017019862A2 (pt) 2015-03-17 2018-05-29 Omniox Inc modulação de imunidade de tumor através de liberaçâo de o2 mediada por proteína
US11071783B2 (en) 2015-03-19 2021-07-27 Duke University HIV-1 neutralizing antibodies and uses thereof
US10562960B2 (en) 2015-03-20 2020-02-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to gp120 and their use
JP6756950B2 (ja) * 2015-03-30 2020-09-16 一般財団法人阪大微生物病研究会 ヒトヘルペスウイルス6b抗原組成物
US10442788B2 (en) 2015-04-01 2019-10-15 Enanta Pharmaceuticals, Inc. Hepatitis B antiviral agents
CA2982811A1 (en) 2015-04-17 2016-10-20 Indiana University Research And Technology Corporation Hepatitis b viral assembly effectors
WO2016177655A1 (en) 2015-05-04 2016-11-10 F. Hoffmann-La Roche Ag Tetrahydropyridopyrimidines and tetrahydropyridopyridines as inhibitors of hbsag (hbv surface antigen) and hbv dna production for the treatment of hepatitis b virus infections
WO2016179399A1 (en) 2015-05-06 2016-11-10 The Board Of Trustees Of The Leland Stanford Junior University High affinity cd47 analogs
CN106188275A (zh) 2015-05-06 2016-12-07 广州市香雪制药股份有限公司 识别ny-eso-1抗原短肽的t细胞受体
MY189692A (en) 2015-05-07 2022-02-26 Memorial Sloan Kettering Cancer Center Anti-ox40 antibodies and methods of use thereof
ES2938525T3 (es) * 2015-05-18 2023-04-12 Pieris Pharmaceuticals Gmbh Polipéptido de fusión anticanceroso
WO2016191246A2 (en) 2015-05-22 2016-12-01 Memorial Sloan-Kettering Cancer Center T cell receptor-like antibodies specific for a prame peptide
JP7197979B2 (ja) 2015-05-28 2022-12-28 カイト ファーマ インコーポレイテッド T細胞療法のために患者をコンディショニングする方法
EP3303586A1 (de) 2015-05-29 2018-04-11 Juno Therapeutics, Inc. Zusammensetzung und verfahren zur regulierung von inhibitorischen wechselwirkungen in gentechnisch veränderten zellen
WO2016195982A2 (en) 2015-06-01 2016-12-08 The Penn State Research Foundation Hepatitis b virus capsid assembly
WO2016196975A1 (en) 2015-06-03 2016-12-08 The United States Of America, As Represented By The Secretary Department Of Health & Human Services Neutralizing antibodies to hiv-1 env and their use
WO2016205042A1 (en) 2015-06-16 2016-12-22 The Board Of Trustees Of The Leland Stanford Junior University SIRPα AGONIST ANTIBODY
AU2016283133A1 (en) 2015-06-24 2018-01-04 Eureka Therapeutics, Inc. Constructs targeting NY-ESO-1 peptide/MHC complexes and uses thereof
KR20240000617A (ko) 2015-06-25 2024-01-02 유니버시티 헬스 네트워크 Hpk1 억제제 및 이의 사용 방법
GB201511477D0 (en) 2015-06-30 2015-08-12 Redx Pharma Plc Antiviral compounds
US10875876B2 (en) 2015-07-02 2020-12-29 Janssen Sciences Ireland Uc Cyclized sulfamoylarylamide derivatives and the use thereof as medicaments for the treatment of hepatitis B
WO2017007701A1 (en) 2015-07-07 2017-01-12 Merck Sharp & Dohme Corp. Antiviral phosphodiamide compounds
MA42901A (fr) 2015-07-10 2018-05-16 De La Rue Int Ltd Substrats de sécurité, dispositifs de sécurité et leurs procédés de fabrication
WO2017013046A1 (en) 2015-07-21 2017-01-26 F. Hoffmann-La Roche Ag Novel tricyclic 4-pyridone-3-carboxylic acid derivatives for the treatment and prophylaxis of hepatitis b virus infection
WO2017016960A1 (en) 2015-07-24 2017-02-02 F. Hoffmann-La Roche Ag Process for the preparation of (6s)-6-alkyl-10-alkoxy-9-(substituted alkoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid analogues
CN107820496B (zh) 2015-07-27 2020-11-03 豪夫迈·罗氏有限公司 用于治疗和预防乙型肝炎病毒感染的新的四环4-氧代-吡啶-3-甲酸衍生物
EP3328858B1 (de) 2015-07-28 2019-05-15 H. Hoffnabb-La Roche Ag Neuartige 6,7-dihydropyrido[2,1-a]phthalazin-2-one zur behandlung und prophylaxe von hepatitis-b-virus-infektion
MY192607A (en) 2015-08-10 2022-08-29 Merck Sharp & Dohme Antiviral beta-amino acid ester phosphodiamide compounds
EP3334745B1 (de) 2015-08-13 2024-05-15 Merck Sharp & Dohme LLC Cyclische di-nukleotid-verbindungen als sting-agonisten
EP3347374A1 (de) 2015-09-09 2018-07-18 Immune Design Corp. Ny-eso-1-spezifische tcrs und verfahren zur verwendung davon
TWI786639B (zh) 2015-09-15 2022-12-11 美商艾森伯利生物科學公司 B型肝炎核心蛋白質調節劑
WO2017049166A1 (en) 2015-09-17 2017-03-23 Novartis Ag Car t cell therapies with enhanced efficacy
EP3360554B1 (de) 2015-10-05 2021-07-28 FUJIFILM Toyama Chemical Co., Ltd. Wirkstoff gegen hepatitis-b-virus
EP3368072A4 (de) 2015-10-28 2019-07-03 Aduro BioTech, Inc. Zusammensetzungen und verfahren zur aktivierung einer vom stimulator des interferon-gens abhängigen signalisierung
SI3371316T1 (sl) 2015-11-04 2023-02-28 Hookipa Biotech Gmbh Cepivo proti virusu hepatitisa B
CN106632660B (zh) 2015-11-04 2021-01-29 广东香雪精准医疗技术有限公司 识别ny-eso-1抗原短肽的tcr
MA43389A (fr) 2015-12-02 2021-05-12 Agenus Inc Anticorps anti-ox40 et leurs procédés d'utilisation
WO2017096221A1 (en) 2015-12-02 2017-06-08 The Rockefeller University Bispecific anti-hiv broadly neutralizing antibodies
MX2018006477A (es) 2015-12-02 2018-09-03 Agenus Inc Anticuerpos y metodos de uso de estos.
WO2017096276A1 (en) 2015-12-02 2017-06-08 Agenus Inc. Anti-gitr antibodies and methods of use thereof
CA3007022A1 (en) 2015-12-02 2017-06-08 Agenus Inc. Anti-gitr antibodies and methods of use thereof
CA3006963A1 (en) 2015-12-03 2017-06-08 Ludwig Institute For Cancer Research Ltd. Anti-ox40 antibodies and methods of use thereof
CN107849084B (zh) 2015-12-03 2021-09-14 葛兰素史密斯克莱知识产权发展有限公司 作为sting调节剂的环状嘌呤二核苷酸
EP3386512B1 (de) 2015-12-10 2023-11-22 Merck Sharp & Dohme LLC Antivirale phosphodiamid-prodrugs von tenofovir
US20180369268A1 (en) 2015-12-16 2018-12-27 Aduro Biotech, Inc. Methods for identifying inhibitors of "stimulator of interferon gene"- dependent interferon production
GB201522592D0 (en) 2015-12-22 2016-02-03 Immunocore Ltd T cell receptors
CN107022027B (zh) 2016-02-02 2022-03-08 中国疾病预防控制中心性病艾滋病预防控制中心 Hiv-1广谱中和抗体及其用途
CN107033241B (zh) 2016-02-03 2022-03-08 中国疾病预防控制中心性病艾滋病预防控制中心 Hiv-1广谱中和抗体及其用途
MX2018010010A (es) 2016-02-19 2018-11-09 Novartis Ag Compuestos tetraciclicos de piridona como antivirales.
US11306107B2 (en) 2016-02-25 2022-04-19 Amgen Inc. Compounds that inhibit MCL-1 protein
WO2017160861A1 (en) 2016-03-15 2017-09-21 The Regents Of The University Of California Inhibitors for soluble epoxide hydrolase (seh) and fatty acid amide hydrolase (faah)
KR102530488B1 (ko) 2016-03-18 2023-05-08 이뮨 센서, 엘엘씨 사이클릭 디-뉴클레오티드 화합물 및 사용 방법
MX2018012318A (es) 2016-04-08 2019-07-04 Immunocore Ltd Receptores de celulas t.
JP7204484B2 (ja) 2016-04-08 2023-01-16 アダプティミューン・リミテッド T細胞受容体
CN110023330B (zh) 2016-04-08 2023-12-12 艾达普特免疫有限公司 T细胞受体
HRP20211493T1 (hr) 2016-04-08 2022-01-21 Adaptimmune Limited Receptori t stanica
AU2017248626B2 (en) 2016-04-14 2024-05-09 Ose Immunotherapeutics New anti-SIRPa antibodies and their therapeutic applications
WO2017186711A1 (en) 2016-04-25 2017-11-02 Invivogen Novel complexes of immunostimulatory compounds, and uses thereof
EP3448882B1 (de) 2016-04-26 2021-11-24 The United States of America, as represented by The Secretary, Department of Health and Human Services Anti-kk-lc-1-t-zellrezeptoren
AU2017266738B2 (en) 2016-05-18 2023-10-12 Hookipa Biotech Gmbh Tri-segmented Pichinde viruses as vaccine vectors
EP3458455B1 (de) 2016-05-20 2021-06-16 F. Hoffmann-La Roche AG Neuartige pyrazinverbindungen mit sauerstoff-, schwefel- und stickstofflinker zur behandlung von infektionskrankheiten
EP3464278B1 (de) 2016-05-26 2021-06-16 F. Hoffmann-La Roche AG Xanthonderivate zur behandlung und prophylaxe von hepatitis-b-viruserkrankungen
KR20230109185A (ko) 2016-06-07 2023-07-19 자코바이오 파마슈티칼스 컴퍼니 리미티드 Shp2 억제제로서 유용한 신규한 헤테로환형 유도체
WO2017211791A1 (en) 2016-06-07 2017-12-14 F. Hoffmann-La Roche Ag Combination therapy of an hbsag inhibitor and a tlr7 agonist
SG11201810834WA (en) 2016-06-10 2018-12-28 Enanta Pharm Inc Hepatitis b antiviral agents
WO2017216686A1 (en) 2016-06-16 2017-12-21 Novartis Ag 8,9-fused 2-oxo-6,7-dihydropyrido-isoquinoline compounds as antivirals
WO2017216685A1 (en) 2016-06-16 2017-12-21 Novartis Ag Pentacyclic pyridone compounds as antivirals
KR20230082055A (ko) * 2016-06-17 2023-06-08 마젠타 테라퓨틱스 인코포레이티드 세포의 고갈을 위한 조성물 및 방법
KR20190033526A (ko) 2016-06-24 2019-03-29 인피니티 파마슈티칼스, 인코포레이티드 병용 요법
JP6742452B2 (ja) 2016-06-29 2020-08-19 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Hbv感染の処置および予防のための新規のテトラヒドロピリドピリミジン
CN109641896B (zh) 2016-06-29 2021-09-21 诺维拉治疗公司 二氮杂酮衍生物及其在治疗乙型肝炎感染中的用途
EP3478686B1 (de) 2016-06-29 2020-04-15 H. Hoffnabb-La Roche Ag Neuartige dihydropyrrolopyrimidine zur behandlung und prophylaxe von hepatitis-b-virus-infektion
CN109843892B (zh) 2016-06-29 2022-01-25 诺维拉治疗公司 噁二氮杂卓酮衍生物及其在治疗乙型肝炎感染中的用途
AU2017289158C1 (en) 2016-06-30 2020-07-23 Gilead Sciences, Inc. 4,6-diaminoquinazolines as Cot modulators and methods of use thereof
WO2018009466A1 (en) 2016-07-05 2018-01-11 Aduro Biotech, Inc. Locked nucleic acid cyclic dinucleotide compounds and uses thereof
CN109476659B (zh) 2016-07-14 2021-07-09 豪夫迈·罗氏有限公司 用于治疗感染性疾病的新的四氢吡唑并吡啶化合物
JP7051804B2 (ja) 2016-07-14 2022-04-11 エフ.ホフマン-ラ ロシュ アーゲー 感染症の治療のための6,7-ジヒドロ-4H-ピラゾロ[1,5-a]ピラジン化合物と6,7-ジヒドロ-4H-トリアゾロ[1,5-a]ピラジン化合物
WO2018011160A1 (en) 2016-07-14 2018-01-18 F. Hoffmann-La Roche Ag 6,7-dihydro-4h-pyrazolo[1,5-a]pyrazine compounds for the treatment of infectious diseases
EP3484885B1 (de) 2016-07-14 2020-03-04 H. Hoffnabb-La Roche Ag Carboxy-6,7-dihydro-4h-pyrazolo[1,5-a]pyrazin-verbindungen zur behandlung von infektionskrankheiten
WO2018019297A1 (zh) 2016-07-29 2018-02-01 银杏树药业(苏州)有限公司 异喹啉酮类化合物及其制备抗病毒药物的应用
CA3031063A1 (en) 2016-07-29 2018-02-01 Newave Pharmaceutical Inc. Benzo-quinolizin-2oxo carboxylic acid derivatives for the treatment of hbv infection
JP7369620B2 (ja) 2016-08-03 2023-10-26 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー マクロファージ上のFc受容体結合の破壊による抗SlRPα抗体療法の効果増強
WO2018024162A1 (en) * 2016-08-03 2018-02-08 Sunshine Lake Pharma Co., Ltd. Glp-1 fusion protein comprising mutated immunoglobulin fc portion
WO2018036941A1 (en) 2016-08-24 2018-03-01 F. Hoffmann-La Roche Ag Combination therapy of an hbv capsid assembly inhibitor and a nucleos(t)ide analogue
WO2018043747A1 (ja) 2016-09-05 2018-03-08 国立大学法人京都大学 抗b型肝炎ウイルス剤
WO2018049191A1 (en) 2016-09-09 2018-03-15 Incyte Corporation Pyrazolopyridone derivatives as hpk1 modulators and uses thereof for the treatment of cancer
CN109803967B (zh) 2016-09-09 2022-05-24 浙江海正药业股份有限公司 二氢嘧啶类化合物及其制备方法和用途
AR109595A1 (es) 2016-09-09 2018-12-26 Incyte Corp Compuestos de pirazolopirimidina y usos de estos como inhibidores de hpk1
US20180072718A1 (en) 2016-09-09 2018-03-15 Incyte Corporation Pyrazolopyridine compounds and uses thereof
AR109596A1 (es) 2016-09-09 2018-12-26 Incyte Corp Compuestos pirazolopiridina y sus usos
JOP20190009A1 (ar) 2016-09-21 2019-01-27 Alx Oncology Inc أجسام مضادة ضد بروتين ألفا منظم للإشارات وطرق استخدامها
US10537590B2 (en) 2016-09-30 2020-01-21 Boehringer Ingelheim International Gmbh Cyclic dinucleotide compounds
CR20190168A (es) 2016-10-04 2019-05-17 Merck Sharp & Dohme Compuestos de benzo[b]tiofeno como agonistas de sting
WO2018065360A1 (de) 2016-10-07 2018-04-12 Biolog Life Science Institute Forschungslabor Und Biochemica-Vertrieb Gmbh Benzimidazolhaltige cyclische dinukleotide, verfahren zu deren herstellung und ihre verwendung zur aktivierung von stimulator von interferongenen (sting)-abhängigen signalwegen
WO2018080903A1 (en) 2016-10-26 2018-05-03 Merck Sharp & Dohme Corp. Antiviral aryl-amide phosphodiamide compounds
AU2017359467A1 (en) 2016-11-09 2019-05-02 Agenus Inc. Anti-OX40 antibodies, anti-GITR antibodies, and methods of use thereof
WO2018097951A1 (en) 2016-11-22 2018-05-31 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-mage-a3/a6 antibodies
WO2018098280A1 (en) 2016-11-22 2018-05-31 Dana-Farber Cancer Institute, Inc. Degradation of protein kinases by conjugation of protein kinase inhibitors with e3 ligase ligand and methods of use
JOP20170188A1 (ar) 2016-11-25 2019-01-30 Janssen Biotech Inc ثنائي النوكليوتيدات الحلقية كمنبهات ستينغ (sting)
US11180482B2 (en) 2016-11-30 2021-11-23 Ariad Pharmaceuticals, Inc. Anilinopyrimidines as haematopoietic progenitor kinase 1 (HPK1) inhibitors
JOP20170192A1 (ar) 2016-12-01 2019-01-30 Takeda Pharmaceuticals Co داي نوكليوتيد حلقي
CN118027200A (zh) 2016-12-09 2024-05-14 艾利妥 抗SIRPα抗体及其使用方法
RU2019122598A (ru) 2016-12-20 2021-01-22 Мерк Шарп И Доум Корп. Циклические динуклеотидные агонисты sting для лечения рака
WO2018118664A1 (en) 2016-12-20 2018-06-28 Merck Sharp & Dohme Corp. Combinations of pd-1 antagonists and cyclic dinucleotide sting agonists for cancer treatment
KR20190100250A (ko) 2016-12-22 2019-08-28 머크 샤프 앤드 돔 코포레이션 테노포비르의 항바이러스 지방족 에스테르 전구약물
MX2019007262A (es) 2016-12-22 2019-09-05 Merck Sharp & Dohme Compuestos antivirales de bencilamina fosfodiamida.
IL294423B2 (en) 2016-12-23 2024-01-01 Univ Yale Compounds and methods for targeted reduction of rapidly accelerated polypeptide fibrosarcoma
MA47265A (fr) 2017-01-13 2019-11-20 Agenus Inc Récepteurs de lymphocytes t qui se lient à ny-eso-1 et méthodes d'utilisation de ces derniers
CN110612294B (zh) 2017-01-31 2024-01-16 阿尔维纳斯运营股份有限公司 人小脑蛋白配体和包含其的双官能化合物
WO2018167147A1 (en) 2017-03-15 2018-09-20 F. Hoffmann-La Roche Ag Azaindoles as inhibitors of hpk1
SG11201908527SA (en) 2017-03-15 2019-10-30 Hutchinson Fred Cancer Res High affinity mage-a1-specific tcrs and uses thereof
JP6878615B2 (ja) 2017-03-23 2021-05-26 ジャコバイオ ファーマスーティカルズ カンパニー リミテッドJacobio Pharmaceuticals Co., Ltd. Shp2阻害剤として有用な新規な複素環式誘導体
DE102017106305A1 (de) 2017-03-23 2018-09-27 Immatics Biotechnologies Gmbh Neue T-Zellrezeptoren und deren Verwendung in Immuntherapien gegen prame-positive Krebsarten
JP6453507B2 (ja) 2017-03-30 2019-01-16 アムジエン・インコーポレーテツド Mcl−1タンパク質を阻害する化合物
KR20190136028A (ko) 2017-03-30 2019-12-09 에프. 호프만-라 로슈 아게 Hpk1 억제제로서의 나프티리딘
JP7129420B6 (ja) 2017-03-30 2024-02-02 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Hpk1阻害剤としてのイソキノリン
AU2018252546A1 (en) 2017-04-13 2019-10-10 Sairopa B.V. Anti-SIRPα antibodies
US11274159B2 (en) 2017-05-16 2022-03-15 Byondis B.V. Anti-SIRPα antibodies
CN108976278B (zh) 2017-06-05 2021-04-06 海创药业股份有限公司 一种嵌合分子及其制备和应用
BR112019025667A2 (pt) 2017-06-05 2020-09-01 Mie University proteína de ligação ao antígeno que reconhece o peptídeo derivado de mage-a4
EP3634960A1 (de) 2017-06-09 2020-04-15 Arvinas Operations, Inc. Proteolysemodulatoren und entsprechende anwendungsverfahren
GB201709866D0 (en) 2017-06-20 2017-08-02 Immunocore Ltd T cell receptors
EP3641762A4 (de) 2017-06-20 2021-03-10 C4 Therapeutics, Inc. N/o-gebundene degrone und degronimere zum proteinabbau
JP7122370B2 (ja) 2017-07-26 2022-08-19 フォーティ セブン, インコーポレイテッド 抗sirp-アルファ抗体及び関連方法
WO2019043217A1 (en) 2017-09-04 2019-03-07 F. Hoffmann-La Roche Ag DIHYDROBENZIMIDAZOLONES
CN111278816B (zh) 2017-09-04 2024-03-15 C4医药公司 二氢喹啉酮
CN109422726B (zh) 2017-09-04 2022-10-28 华东理工大学 CD47/SIRPα的阻断剂及其应用
EP3688012A4 (de) 2017-09-27 2021-06-30 Vividion Therapeutics, Inc. Verbindungen und verfahren zur modulation von proteinabbau
BR112020007493A2 (pt) 2017-10-18 2020-10-27 Kite Pharma, Inc. métodos de administrar imunoterapia com receptor de antígeno quimérico
WO2019079701A1 (en) 2017-10-20 2019-04-25 Dana-Farber Cancer Institute, Inc. HETEROBIFUNCTIONAL COMPOUNDS HAVING IMPROVED SPECIFICITY FOR BRD4 BROMODOMAINE
WO2019084026A1 (en) 2017-10-24 2019-05-02 Genentech, Inc. (4-HYDROXYPYRROLIDIN-2-YL) -HETEROCYCLIC COMPOUNDS AND METHODS OF USE
WO2019084030A1 (en) 2017-10-24 2019-05-02 Genentech, Inc. (4-HYDROXYPYRROLIDIN-2-YL) -HYDROXAMATE COMPOUNDS AND METHODS OF USE
US11866785B2 (en) 2017-10-27 2024-01-09 Board Of Regents, The University Of Texas System Tumor specific antibodies and T-cell receptors and methods of identifying the same
WO2019087016A1 (en) 2017-10-30 2019-05-09 Glaxosmithkline Intellectual Property Development Limited Compounds useful in hiv therapy
US11065231B2 (en) 2017-11-17 2021-07-20 Arvinas Operations, Inc. Compounds and methods for the targeted degradation of interleukin-1 receptor- associated kinase 4 polypeptides
KR102436084B1 (ko) 2017-11-24 2022-08-25 주식회사 젬백스앤카엘 신규 펩티드 및 이를 포함한 조성물
CN109879957B (zh) 2017-12-06 2022-03-18 香雪生命科学技术(广东)有限公司 针对prame的高亲和力t细胞受体
TWI822726B (zh) 2018-02-26 2023-11-21 德商梅迪基因免疫治療公司 Nyeso t細胞受體
BR112020017382A2 (pt) 2018-03-09 2021-01-26 Agenus Inc. anticorpos anti-cd73 e métodos de uso dos mesmos
AU2019233577A1 (en) 2018-03-13 2020-09-03 Ose Immunotherapeutics Use of anti-human SIRPa v1 antibodies and method for producing anti-SIRPa v1 antibodies
US11292850B2 (en) 2018-03-21 2022-04-05 ALX Oncology Inc. Antibodies against signal-regulatory protein α and methods of use
WO2019204683A1 (en) 2018-04-19 2019-10-24 Board Of Regents, The University Of Texas System T cell receptors with mage-b2 specificity and uses thereof
US20190328785A1 (en) 2018-04-30 2019-10-31 The Board Of Regents Of The University Of Oklahoma Flt3-binding chimeric antigen receptors, cells, and uses thereof
CN112673023B (zh) 2018-07-10 2023-09-12 国立大学法人神户大学 抗SIRPα抗体
MX2021002289A (es) * 2018-08-29 2021-05-27 Shattuck Labs Inc Proteinas quimericas basadas en flt3l.
US20210324035A1 (en) 2018-09-05 2021-10-21 The Regents Of The University Of California Composition of ny-eso-1-specific t cell receptors restricted on multiple major histocompatibility complex molecules
CN110950949B (zh) 2018-09-26 2022-04-05 香雪生命科学技术(广东)有限公司 一种识别ssx2抗原的t细胞受体
CN113166245A (zh) 2018-09-27 2021-07-23 细胞基因公司 SIRPα结合蛋白及其使用方法
JP2022505679A (ja) 2018-10-23 2022-01-14 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Ny-eso-1 t細胞受容体およびそれらの使用の方法
BR112021008265A2 (pt) 2018-10-31 2021-08-03 Mesoblast International Sàrl expansão de células-tronco hematopoiéticas
MA54614A (fr) 2018-12-18 2022-03-30 Boehringer Ingelheim Io Canada Inc Anticorps agonistes de flt3 et utilisations associées

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834506B2 (en) 2017-02-08 2023-12-05 Dragonfly Therapeutics, Inc. Multi-specific binding proteins that bind NKG2D, CD16, and a tumor-associated antigen for activation of natural killer cells and therapeutic uses thereof to treat cancer
US11884732B2 (en) 2017-02-20 2024-01-30 Dragonfly Therapeutics, Inc. Proteins binding HER2, NKG2D and CD16
US11884733B2 (en) 2018-02-08 2024-01-30 Dragonfly Therapeutics, Inc. Antibody variable domains targeting the NKG2D receptor
US11939384B1 (en) 2018-02-08 2024-03-26 Dragonfly Therapeutics, Inc. Antibody variable domains targeting the NKG2D receptor
US20210338683A1 (en) * 2020-05-01 2021-11-04 AcuraStem, Inc. Treatment of viral infections with combination of pikfyve kinase inhibitors and tmprss-2 inhibitors
WO2022192093A1 (en) * 2021-03-08 2022-09-15 Humanigen, Inc. Methods for treating coronavirus infection and resulting inflammation-induced lung injury
US20220370598A1 (en) * 2021-05-05 2022-11-24 Inovio Pharmaceuticals, Inc. Vaccines Against Coronavirus and Methods of Use
WO2023057571A1 (en) * 2021-10-08 2023-04-13 Genmab A/S Antibodies binding to cd30 and cd3
US11814437B2 (en) 2021-10-08 2023-11-14 Genmab A/S Antibodies binding to CD30 and CD3
WO2023183892A1 (en) * 2022-03-24 2023-09-28 Bitterroot Bio, Inc. Sirp-alpha fusion polypeptides with modified fc domains
WO2023235886A3 (en) * 2022-06-03 2024-01-04 The University Of Chicago Antigen tolerance induction through use of flt3l variants
WO2024006414A1 (en) * 2022-06-29 2024-01-04 Cytodigm, Inc. Have been novel lipid nanoparticle compositions and uses thereof

Also Published As

Publication number Publication date
CN114245807A (zh) 2022-03-25
AU2020301161A1 (en) 2022-01-06
CR20210687A (es) 2022-03-03
EP3990476A1 (de) 2022-05-04
US20220049021A1 (en) 2022-02-17
CO2021017741A2 (es) 2022-01-17
KR20220032568A (ko) 2022-03-15
US11124582B2 (en) 2021-09-21
JP7295283B2 (ja) 2023-06-20
AR119235A1 (es) 2021-12-01
TW202115128A (zh) 2021-04-16
TWI761868B (zh) 2022-04-21
IL288373A (en) 2022-01-01
JP2023093599A (ja) 2023-07-04
BR112021026376A2 (pt) 2022-05-10
US20210070887A1 (en) 2021-03-11
PE20220231A1 (es) 2022-02-07
MX2021015452A (es) 2022-02-11
WO2020263830A1 (en) 2020-12-30
CL2021003457A1 (es) 2022-10-07
AU2020301161B2 (en) 2023-10-26
JP2022539528A (ja) 2022-09-12
CA3142513A1 (en) 2020-12-30
TW202241930A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US11124582B2 (en) FLT3L-FC fusion proteins
TWI832035B (zh) 結合ccr8之抗體及融合蛋白及其用途
JP2023129543A (ja) 抗cd73抗体およびそれらの使用方法
AU2021365129B2 (en) Interleukin-2-fc fusion proteins and methods of use
JP2022551164A (ja) 骨髄異形成症候群及び急性骨髄性白血病を治療するための併用療法
JP2023112043A (ja) 抗cd47及び抗cd20による血液癌の治療
US20220389394A1 (en) METHODS OF USING FLT3L-Fc FUSION PROTEINS
WO2023183817A1 (en) Combination therapy for treating trop-2 expressing cancers
US20220340679A1 (en) CO-INHIBITION OF CD47/SIRPalpha BINDING AND NEDD8-ACTIVATING ENZYME E1 REGULATORY SUBUNIT FOR THE TREATMENT OF CANCER
EA045919B1 (ru) СЛИТЫЕ БЕЛКИ FLT3L-Fc И СПОСОБЫ ИХ ПРИМЕНЕНИЯ
US11999733B2 (en) Diacylglycerol kinase modulating compounds
CN116529258A (zh) 白介素-2-Fc融合蛋白和使用方法
US20230046340A1 (en) Diacylglyercol kinase modulating compounds

Legal Events

Date Code Title Description
AS Assignment

Owner name: GILEAD SCIENCES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AMBROGELLY, ALEXANDRE;BACA, MANUEL;CARR, BRIAN A.;AND OTHERS;SIGNING DATES FROM 20200529 TO 20200611;REEL/FRAME:053677/0016

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION