JP2004274945A - モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体 - Google Patents

モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体 Download PDF

Info

Publication number
JP2004274945A
JP2004274945A JP2003065360A JP2003065360A JP2004274945A JP 2004274945 A JP2004274945 A JP 2004274945A JP 2003065360 A JP2003065360 A JP 2003065360A JP 2003065360 A JP2003065360 A JP 2003065360A JP 2004274945 A JP2004274945 A JP 2004274945A
Authority
JP
Japan
Prior art keywords
voltage
signal
motor
converter
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003065360A
Other languages
English (en)
Other versions
JP3661689B2 (ja
Inventor
Eiji Sato
栄次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003065360A priority Critical patent/JP3661689B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to KR1020057016944A priority patent/KR100708923B1/ko
Priority to CNB038260700A priority patent/CN1333521C/zh
Priority to EP03816253.3A priority patent/EP1603224B1/en
Priority to US10/530,514 priority patent/US7099756B2/en
Priority to PCT/JP2003/008810 priority patent/WO2004082122A1/ja
Publication of JP2004274945A publication Critical patent/JP2004274945A/ja
Application granted granted Critical
Publication of JP3661689B2 publication Critical patent/JP3661689B2/ja
Priority to HK06105296A priority patent/HK1085309A1/xx
Priority to US11/477,595 priority patent/US7212891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/05Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using AC supply for both the rotor and the stator circuits, the frequency of supply to at least one circuit being variable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】直流電源の故障時、電圧変換を行なう電圧変換器の一次側に接続された電気負荷に過電圧が印加されるのを防止するモータ駆動装置を提供する。
【解決手段】制御装置30は、電圧センサー10Aからの電圧Vbまたは温度センサー10Bからの温度Tbに基づいて直流電源Bの故障を検出すると、交流モータM1,M2が零の出力トルクを出力するようにインバータ14,31を制御し、信号STP1,2を生成してそれぞれ昇圧コンバータ12およびDC/DCコンバータ20へ出力する。そして、制御装置30は、Lレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2を遮断する。その後、制御装置30は、信号PWMDLを生成して昇圧コンバータ12へ出力し、昇圧コンバータ12の制御を降圧制御に切換える。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、モータを駆動するモータ駆動装置、それを用いたハイブリッド車駆動装置およびモータ駆動装置の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体に関するものである。
【0002】
【従来の技術】
最近、環境に配慮した自動車としてハイブリッド自動車(Hybrid Vehicle)が大きな注目を集めている。そして、ハイブリッド自動車は、一部、実用化されている。
【0003】
このハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。つまり、エンジンを駆動することにより動力源を得るとともに、直流電源からの直流電圧をインバータによって交流電圧に変換し、その変換した交流電圧によりモータを回転することによって動力源を得るものである。
【0004】
このようなハイブリッド自動車においては、直流電源からの直流電圧を昇圧コンバータによって昇圧し、その昇圧した直流電圧が2つのモータをそれぞれ駆動する2つのインバータに供給されることも検討されている。
【0005】
すなわち、ハイブリッド自動車は、図10に示すモータ駆動装置を搭載している。図10を参照して、モータ駆動装置300は、直流電源Bと、システムリレーSR1,SR2と、コンデンサC1,C2と、双方向コンバータ310と、電圧センサー320と、インバータ330,340とを備える。
【0006】
直流電源Bは、直流電圧を出力する。システムリレーSR1,SR2は、制御装置(図示せず)によってオンされると、直流電源Bからの直流電圧をコンデンサC1に供給する。コンデンサC1は、直流電源BからシステムリレーSR1,SR2を介して供給された直流電圧を平滑化し、その平滑化した直流電圧を双方向コンバータ310へ供給する。
【0007】
双方向コンバータ310は、リアクトル311と、NPNトランジスタ312,313と、ダイオード314,315とを含む。リアクトル311の一方端は直流電源Bの電源ラインに接続され、他方端はNPNトランジスタ312とNPNトランジスタ313との中間点、すなわち、NPNトランジスタ312のエミッタとNPNトランジスタ313のコレクタとの間に接続される。NPNトランジスタ312,313は、電源ラインとアースラインとの間に直列に接続される。そして、NPNトランジスタ312のコレクタは電源ラインに接続され、NPNトランジスタ313のエミッタはアースラインに接続される。また、各NPNトランジスタ312,313のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオード314,315がそれぞれ配置されている。
【0008】
双方向コンバータ310は、制御装置(図示せず)によってNPNトランジスタ312,313がオン/オフされ、コンデンサC1から供給された直流電圧を昇圧して出力電圧をコンデンサC2に供給する。また、双方向コンバータ310は、モータ駆動装置300が搭載されたハイブリッド自動車の回生制動時、交流モータM1またはM2によって発電され、インバータ330または340によって変換された直流電圧を降圧してコンデンサC1へ供給する。
【0009】
コンデンサC2は、双方向コンバータ310から供給された直流電圧を平滑化し、その平滑化した直流電圧をインバータ330,340へ供給する。電圧センサー320は、コンデンサC2の両側の電圧、すなわち、双方向コンバータ310の出力電圧Vmを検出する。
【0010】
インバータ330は、コンデンサC2から直流電圧が供給されると制御装置(図示せず)からの制御に基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値によって指定されたトルクを発生するように駆動される。インバータ340は、コンデンサC2から直流電圧が供給されると制御装置(図示せず)からの制御に基づいて直流電圧を交流電圧に変換して交流モータM2を駆動する。これにより、交流モータM2は、トルク指令値によって指定されたトルクを発生するように駆動される。
【0011】
また、モータ駆動装置300が搭載されたハイブリッド自動車の回生制動時、インバータ330は、交流モータM1が発電した交流電圧を制御装置からの制御に基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して双方向コンバータ310へ供給する。ハイブリッド自動車の回生制動時、インバータ340は、交流モータM2が発電した交流電圧を制御装置からの制御に基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して双方向コンバータ310へ供給する。
【0012】
一方、電池とモータと発電機とを備えたシステムが特開平7−87614号公報に開示されている。このシステムは、ハイブリッド自動車に適用される。このシステムにおいて、モータおよび発電機は電池と接続され、モータは、電池からの電池電圧によって駆動され、発電機は、発電した電力をモータを駆動するインバータおよび電池に供給する。そして、電池の容量が減少してモータが要求トルクを出力することができない等の電池異常時、モータおよび発電機と電池との接続が切離され、モータは発電機が発電した電力によって駆動される。
【0013】
【特許文献1】
特開平7−87614号公報
【0014】
【特許文献2】
特開平7−193989号公報
【0015】
【発明が解決しようとする課題】
しかし、モータ駆動装置300において直流電源Bが故障したとき、特開平7−87614号公報に開示された技術を適用した場合、システムリレーSR1,SR2と双方向コンバータ310との間に接続されたDC/DCコンバータに過電圧が印加され、好ましくない事態に陥る。この場合、DC/DCコンバータの耐圧を上げると、コストアップに繋がる。また、双方向コンバータ310がスイッチング動作をしているときにシステムリレーSR1,SR2を遮断すると、リプル電流によりシステムリレーSR1,SR2の接点が溶断する可能性もある。
【0016】
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、直流電源の故障時、電圧変換を行なう電圧変換器の一次側に接続された電気負荷に過電圧が印加されるのを防止するモータ駆動装置を提供することである。
【0017】
また、この発明の別の目的は、直流電源の故障時に溶断を防止してリレーを遮断するモータ駆動装置を提供することである。
【0018】
さらに、この発明の別の目的は、直流電源の故障時、電圧変換を行なう電圧変換器の一次側に接続された電気負荷に過電圧が印加されるのを防止するハイブリッド車駆動装置を提供することである。
【0019】
さらに、この発明の別の目的は、直流電源の故障時に溶断を防止してリレーを遮断するハイブリッド車駆動装置を提供することである。
【0020】
さらに、この発明の別の目的は、直流電源の故障時、電圧変換を行なう電圧変換器の一次側に接続された電気負荷に過電圧が印加されるのを防止するようにモータ駆動装置の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体を提供することである。
【0021】
さらに、この発明の別の目的は、直流電源の故障時に溶断を防止してリレーを遮断するようにモータ駆動装置の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体を提供することである。
【0022】
【課題を解決するための手段および発明の効果】
この発明によれば、モータ駆動装置は、第1および第2のインバータと、直流電源と、電圧変換器と、リレーと、電気負荷と、制御装置とを備える。第1のインバータは、第1のモータを駆動する。第2のインバータは、第2のモータを駆動する。直流電源は、直流電圧を出力する。電圧変換器は、直流電源からの直流電圧を昇圧して第1および第2のインバータへ供給し、第1または第2のインバータからの直流電圧を降圧して直流電源側に供給する。リレーは、直流電源と電圧変換器との間に接続される。電気負荷は、リレーと電圧変換器との間に接続される。制御装置は、直流電源の故障検出に応じて、リレーを遮断し、電圧変換器の制御を降圧制御に切換える。
【0023】
好ましくは、制御装置は、第1のモータにおける第1のエネルギーと第2のモータにおける第2のエネルギーとの総和が零になるように第1および第2のインバータを制御し、かつ、電気負荷および電圧変換器が停止すると、リレーを遮断する。
【0024】
好ましくは、制御装置は、第1および第2のエネルギーが零になるように第1および第2のインバータを制御する。
【0025】
好ましくは、制御装置は、電圧変換器の直流電源側の電圧である一次電圧が上限値以下になるデューティー比を設定して電圧変換器の制御を降圧制御に切換える。
【0026】
好ましくは、上限値は、電気負荷の部品耐圧である。
好ましくは、制御装置は、一次電圧が電気負荷の動作電圧の範囲になるデューティー比を設定して電圧変換器の制御を降圧制御に切換える。
【0027】
好ましくは、動作電圧の範囲は、下限値と上限値とから成る。制御装置は、一次電圧が下限値よりも低下したとき、第1のエネルギーと第2のエネルギーとの総和が回生エネルギーになるように第1および第2のインバータを制御する。
【0028】
好ましくは、電気負荷は、直流電源からの直流電圧を変換して補機バッテリに供給するDC/DCコンバータである。
【0029】
また、この発明によれば、ハイブリッド車駆動装置は、ハイブリッド車を駆動するハイブリッド車駆動装置であって、内燃機関と、第1および第2のモータと、モータ駆動装置とを備える。第1のモータは、内燃機関に接続される。モータ駆動装置は、請求項1から請求項8のいずれか1項に記載のモータ駆動装置である。そして、モータ駆動装置は、第1および第2のモータを駆動する。制御装置は、ハイブリッド車の走行モードに応じて、第1のモータが発電した電力によって第2のモータを駆動するように第1および第2のインバータを駆動する。
【0030】
さらに、この発明によれば、コンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体は、直流電源の故障時におけるモータ駆動装置の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体である。モータ駆動装置は、第1のモータを駆動する第1のインバータと、第2のモータを駆動する第2のインバータと、直流電圧を出力する直流電源と、直流電源からの直流電圧を昇圧して第1および第2のインバータへ供給し、第1または第2のインバータからの直流電圧を降圧して直流電源側に供給する電圧変換器と、直流電源と電圧変換器との間に接続されたリレーと、リレーと電圧変換器との間に接続された電気負荷とを含む。
【0031】
プログラムは、直流電源の故障を検出する第1のステップと、直流電源の故障検出に応じて、リレーを遮断する第2のステップと、リレーの遮断に応じて、電圧変換器の制御を降圧制御に切換える第3のステップとをコンピュータに実行させる。
【0032】
好ましくは、第2のステップは、第1のモータにおける第1のエネルギーと第2のモータにおける第2のエネルギーとの総和が零になるように第1および第2のインバータを制御する第1のサブステップと、電圧変換器を停止させる第2のサブステップと、電気負荷を停止させる第3のサブステップと、第1、第2および第3のサブステップが完了した後、リレーを遮断する第4のサブステップとを含む。
【0033】
好ましくは、第1のサブステップは、第1および第2のエネルギーを零にする。
【0034】
好ましくは、第3のステップは、電圧変換器の直流電源側の電圧である一次電圧を上限値以下に設定するためのデューティー比を演算する第5のサブステップと、演算されたデューティー比に基づいて、電圧変換器を制御する第6のサブステップとを含む。
【0035】
好ましくは、第5のサブステップは、一次電圧を電気負荷の動作電圧の範囲になるデューティー比を演算する。
【0036】
好ましくは、動作電圧の範囲は、下限値と上限値とから成る。第3のステップは、一次電圧が下限値以下であるか否かを判定する第7のサブステップと、一次電圧が下限値以下のとき、第1および第2のエネルギーの総和が回生エネルギーになるように第1および第2のインバータを制御する第8のサブステップとをさらに含む。
【0037】
この発明においては、直流電源の故障が検出されると、リレーが遮断され、電圧変換器の制御が降圧制御に切換えられる。また、リレーは、直流電源と電圧変換器との間に直流電流が流れない状態で遮断される。
【0038】
したがって、この発明によれば、電圧変換器の一次側に接続された電気負荷に過電圧が印加されるのを防止できる。また、リレーの接点が溶着または劣化するのを防止できる。
【0039】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
【0040】
図1を参照して、この発明の実施の形態によるモータ駆動装置を備えたハイブリッド車駆動装置100は、直流電源Bと、電圧センサー10A,11,13と、温度センサー10Bと、システムリレーSR1,SR2と、コンデンサC1,C2と、昇圧コンバータ12と、インバータ14,31と、電流センサー18,24,28と、DC/DCコンバータ20と、補機バッテリ21と、制御装置30と、エンジン60と、交流モータM1,M2とを備える。
【0041】
交流モータM1は、ハイブリッド自動車の駆動輪を駆動するためのトルクを発生するための駆動モータである。交流モータM2は、エンジンにて駆動される発電機の機能を持つように、そして、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなモータである。
【0042】
昇圧コンバータ12は、リアクトルL1と、NPNトランジスタQ1,Q2と、ダイオードD1,D2とを含む。リアクトルL1の一方端は直流電源Bの電源ラインに接続され、他方端はNPNトランジスタQ1とNPNトランジスタQ2との中間点、すなわち、NPNトランジスタQ1のエミッタとNPNトランジスタQ2のコレクタとの間に接続される。NPNトランジスタQ1,Q2は、電源ラインとアースラインとの間に直列に接続される。そして、NPNトランジスタQ1のコレクタは電源ラインに接続され、NPNトランジスタQ2のエミッタはアースラインに接続される。また、各NPNトランジスタQ1,Q2のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD1,D2がそれぞれ配置されている。
【0043】
インバータ14は、U相アーム15と、V相アーム16と、W相アーム17とから成る。U相アーム15、V相アーム16、およびW相アーム17は、電源ラインとアースラインとの間に並列に設けられる。
【0044】
U相アーム15は、直列接続されたNPNトランジスタQ3,Q4から成り、V相アーム16は、直列接続されたNPNトランジスタQ5,Q6から成り、W相アーム17は、直列接続されたNPNトランジスタQ7,Q8から成る。また、各NPNトランジスタQ3〜Q8のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD3〜D8がそれぞれ接続されている。
【0045】
各相アームの中間点は、交流モータM1の各相コイルの各相端に接続されている。すなわち、交流モータM1は、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中点に共通接続されて構成され、U相コイルの他端がNPNトランジスタQ3,Q4の中間点に、V相コイルの他端がNPNトランジスタQ5,Q6の中間点に、W相コイルの他端がNPNトランジスタQ7,Q8の中間点にそれぞれ接続されている。
【0046】
インバータ31は、インバータ14と同じ構成からなる。そして、インバータ31の各相アームの中間点は、交流モータM2の各相コイルの各相端に接続されている。すなわち、交流モータM2も、交流モータM1と同じように、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中点に共通接続されて構成され、U相コイルの他端がインバータ31のNPNトランジスタQ3,Q4の中間点に、V相コイルの他端がインバータ31のNPNトランジスタQ5,Q6の中間点に、W相コイルの他端がインバータ31のNPNトランジスタQ7,Q8の中間点にそれぞれ接続されている。
【0047】
DC/DCコンバータ20は、システムリレーSR1,SR2と昇圧コンバータ12との間にコンデンサC1および昇圧コンバータ12と並列に接続される。
【0048】
直流電源Bは、ニッケル水素またはリチウムイオン等の二次電池から成る。電圧センサー10Aは、直流電源Bから出力される電圧Vbを検出し、その検出した電圧Vbを制御装置30へ出力する。温度センサー10Bは、直流電源Bの温度Tbを検出し、その検出した温度Tbを制御装置30へ出力する。システムリレーSR1,SR2は、制御装置30からの信号SEによりオン/オフされる。より具体的には、システムリレーSR1,SR2は、制御装置30からのH(論理ハイ)レベルの信号SEによりオンされ、制御装置30からのL(論理ロー)レベルの信号SEによりオフされる。
【0049】
コンデンサC1は、直流電源Bから供給された直流電圧を平滑化し、その平滑化した直流電圧を昇圧コンバータ12およびDC/DCコンバータ20へ供給する。電圧センサー11は、コンデンサC1の両端の電圧Vcを検出し、その検出した電圧Vcを制御装置30へ出力する。
【0050】
昇圧コンバータ12は、コンデンサC1から供給された直流電圧を昇圧してコンデンサC2へ供給する。より具体的には、昇圧コンバータ12は、制御装置30から信号PWMUを受けると、信号PWMUによってNPNトランジスタQ2がオンされた期間に応じて直流電圧を昇圧してコンデンサC2に供給する。この場合、NPNトランジスタQ1は、信号PWMUによってオフされている。
【0051】
また、昇圧コンバータ12は、制御装置30から信号PWMDを受けると、コンデンサC2を介してインバータ14(または31)から供給された直流電圧を降圧して直流電源BおよびDC/DCコンバータ20へ供給する。
【0052】
さらに、昇圧コンバータ12は、制御装置30からの信号STP1によって昇圧動作および降圧動作を停止する。
【0053】
コンデンサC2は、昇圧コンバータ12からの直流電圧をノードN1,N2を介して受ける。そして、コンデンサC2は、受けた直流電圧を平滑化し、その平滑化した直流電圧をインバータ14,31へ供給する。電圧センサー13は、コンデンサC2の両端の電圧Vm(すなわち、昇圧コンバータ12の出力電圧=インバータ14,31への入力電圧に相当する。以下同じ。)を検出し、その検出した電圧Vmを制御装置30へ出力する。
【0054】
インバータ14は、コンデンサC2から直流電圧が供給されると制御装置30からの信号PWMI1に基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値TR1によって指定されたトルクを発生するように駆動される。また、インバータ14は、ハイブリッド車駆動装置100が搭載されたハイブリッド自動車の回生制動時、交流モータM1が発電した交流電圧を制御装置30からの信号PWMC1に基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。
【0055】
インバータ31は、コンデンサC2から直流電圧が供給されると制御装置30からの信号PWMI2に基づいて直流電圧を交流電圧に変換して交流モータM2を駆動する。これにより、交流モータM2は、トルク指令値TR2によって指定されたトルクを発生するように駆動される。また、インバータ31は、ハイブリッド車駆動装置100が搭載されたハイブリッド自動車の回生制動時、交流モータM2が発電した交流電圧を制御装置30からの信号PWMC2に基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。
【0056】
なお、ここで言う回生制動とは、ハイブリッド自動車を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
【0057】
電流センサー18は、直流電源Bを充放電するときの電流BCRTを検出し、その検出した電流BCRTを制御装置30へ出力する。
【0058】
DC/DCコンバータ20は、制御装置30からの信号DRVによって駆動され、直流電源Bからの直流電圧を変換して補機バッテリ21を充電する。また、DC/DCコンバータ20は、制御装置30からの信号STP2によって停止される。補機バッテリ21は、DC/DCコンバータ20から供給される電力を蓄積する。
【0059】
電流センサー24は、交流モータM1に流れるモータ電流MCRT1を検出し、その検出したモータ電流MCRT1を制御装置30へ出力する。また、電流センサー28は、交流モータM2に流れるモータ電流MCRT2を検出し、その検出したモータ電流MCRT2を制御装置30へ出力する。
【0060】
制御装置30は、外部に設けられたECU(Electrical Control Unit)からトルク指令値TR1,TR2、モータ回転数MRN1,MRN2および信号MDE,RGEを受け、電圧センサー10Aから電圧Vbを受け、電圧センサー11から電圧Vcを受け、電圧センサー13から電圧Vmを受け、電流センサー24からモータ電流MCRT1を受け、電流センサー28からモータ電流MCRT2を受ける。そして、制御装置30は、電圧Vm、モータ電流MCRT1およびトルク指令値TR1に基づいて、後述する方法によりインバータ14が交流モータM1を駆動するときにインバータ14のNPNトランジスタQ3〜Q8をスイッチング制御するための信号PWMI1を生成し、その生成した信号PWMI1をインバータ14へ出力する。
【0061】
また、制御装置30は、電圧Vm、モータ電流MCRT2およびトルク指令値TR2に基づいて、後述する方法によりインバータ31が交流モータM2を駆動するときにインバータ31のNPNトランジスタQ3〜Q8をスイッチング制御するための信号PWMI2を生成し、その生成した信号PWMI2をインバータ31へ出力する。
【0062】
さらに、制御装置30は、インバータ14(または31)が交流モータM1(またはM2)を駆動するとき、電圧Vb,Vm、トルク指令値TR1(またはTR2)およびモータ回転数MRN1(またはMRN2)に基づいて、後述する方法により昇圧コンバータ12のNPNトランジスタQ1,Q2をスイッチング制御するための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。
【0063】
さらに、制御装置30は、電圧Vb(電圧Vbおよび電流BCRTの両方が用いられる場合もある。以下、同じ。)または温度Tbに基づいて直流電源Bが故障しているか否かを判定し、直流電源Bが故障しているとき、後述する方法によって、システムリレーSR1,SR2を遮断し、DC/DCコンバータ20に過電圧が印加されないように昇圧コンバータ12の制御を降圧制御に切換える。この場合、制御装置30は、降圧制御への切換において外部ECUからの信号MDEを用いる。降圧制御への切換の詳細については後述する。
【0064】
さらに、制御装置30は、ハイブリッド車駆動措置100が搭載されたハイブリッド自動車の回生制動時、ハイブリッド自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM1またはM2で発電された交流電圧を直流電圧に変換するための信号PWMC1,2を生成し、その生成した信号PWMC1をインバータ14へ出力し、生成した信号PWMC2をインバータ31へ出力する。この場合、インバータ14,31のNPNトランジスタQ3〜Q8は信号PWMC1,2によってスイッチング制御される。これにより、インバータ14は、交流モータM1で発電された交流電圧を直流電圧に変換して昇圧コンバータ12へ供給し、インバータ31は、交流モータM2で発電された交流電圧を直流電圧に変換して昇圧コンバータ12へ供給する。
【0065】
さらに、制御装置30は、信号RGEを外部ECUから受けると、インバータ14から供給された直流電圧を降圧するための信号PWMDを生成し、その生成した信号PWMDを昇圧コンバータ12へ出力する。これにより、交流モータM1またはM2が発電した交流電圧は、直流電圧に変換され、降圧されて直流電源BおよびDC/DCコンバータ20に供給される。
【0066】
エンジン60は、交流モータM2と接続されている。そして、エンジン60は、交流モータM2によって始動されるとともに、交流モータM2のロータ(図示せず)を回転させる。
【0067】
図2は、図1に示す制御装置30の機能ブロック図である。図2を参照して、制御装置30は、インバータ制御手段301と、故障処理手段302と、コンバータ制御手段303とを含む。
【0068】
インバータ制御手段301は、トルク指令値TR1,2、モータ電流MCRT1,2および昇圧コンバータ12の出力電圧Vmに基づいて、交流モータM1またはM2の駆動時、後述する方法によりインバータ14のNPNトランジスタQ3〜Q8をオン/オフするための信号PWMI1と、インバータ31のNPNトランジスタQ3〜Q8をオン/オフするための信号PWMI2とを生成し、その生成した信号PWMI1をインバータ14へ出力し、生成した信号PWMI2をインバータ31へ出力する。
【0069】
また、インバータ処理手段301は、故障処理手段302から信号EMG1を受けると、トルク指令値TR1,2に代えてトルク指令値TRL0〜2に基づいて信号PWMI1,2を生成してそれぞれインバータ14,31へ出力する。なお、トルク指令値TRL0は、交流モータM1およびM2の出力トルクを零にするためのトルク指令値である。トルク指令値TRL1は、交流モータM1におけるエネルギーと交流モータM2におけるエネルギーとの総和が回生エネルギーになるように交流モータM1,M2を駆動するときに、交流モータM1を駆動モータとして駆動するためのトルク指令値である。トルク指令値TRL2は、交流モータM1におけるエネルギーと交流モータM2におけるエネルギーとの総和が回生エネルギーになるように交流モータM1,M2を駆動するときに、交流モータM2を駆動モータとして駆動するためのトルク指令値である。
【0070】
さらに、インバータ制御手段301は、故障処理手段302から信号RGEL1(またはRGEL2)を受けると、信号PWMC1(またはPWMC2)を生成してインバータ14(または31)へ出力する。
【0071】
さらに、インバータ制御手段301は、故障処理手段302から信号RENを受けると、トルク指令値TRL0〜2に代えてトルク指令値TR1,2に基づいて信号PWMI1,2を生成してそれぞれインバータ14,31へ出力する。
【0072】
さらに、インバータ制御手段301は、ハイブリッド自動車の回生制動時、外部ECUから信号RGEを受け、その受けた信号RGEに応じて、交流モータM1,M2が発電した交流電圧を直流電圧に変換するための信号PWMC1,2を生成してそれぞれインバータ14,31へ出力する。
【0073】
故障処理手段302は、電圧センサー10Aから電圧Vbを受け、電圧センサー11から電圧Vcを受け、温度センサー10Bから温度Tbを受け、電流センサー18から電流BCRTを受け、外部ECUから信号MDEを受ける。そして、故障処理手段302は、電圧Vbまたは温度Tbに基づいて直流電源Bが故障しているか否かを判定する。
【0074】
より具体的には、故障処理手段302は、電圧Vbを基準値と比較し、電圧Vbが基準値よりも低下しているとき直流電源Bが故障していると判定する。また、故障処理手段302は、電圧Vbおよび電流BCRTに基づいて直流電源Bの内部抵抗を演算する。そして、故障処理手段302は、演算した内部抵抗を基準値と比較し、内部抵抗が基準値よりも大きいとき、直流電源Bが故障していると判定する。さらに、故障処理手段302は、温度Tbを基準値と比較し、温度Tbが基準値よりも高いとき、直流電源Bが故障していると判定する。
【0075】
故障処理手段302は、上述した3つの方法のうちのいずれか1つの方法により直流電源Bが故障しているか否かを判定する。そして、故障処理手段302は、直流電源Bが故障しているとき、信号EMG1,STP2およびトルク指令値TRL0を生成し、その生成した信号EMG1およびトルク指令値TRL0をインバータ制御手段301へ出力し、信号EMG1をコンバータ制御手段303へ出力し、信号STP2をDC/DCコンバータ20へ出力する。
【0076】
また、故障処理手段302は、信号EMG1,STP2およびトルク指令値TRL0を出力した後、Lレベルの信号SEを生成してシステムリレーSR1,SR2へ出力する。
【0077】
さらに、故障処理手段302は、Lレベルの信号SEをシステムリレーSR1,SR2へ出力した後、電圧センサー11からの電圧VcがDC/DCコンバータ20の動作電圧範囲の下限値以下であるか否かを判定する。そして、故障処理手段302は、電圧Vcが下限値よりも高いとき信号EMG2および信号DRVを生成してそれぞれコンバータ制御手段303およびDC/DCコンバータ20へ出力する。そして、故障処理手段302は、信号EMG2および信号DRVを出力した後、信号RENを生成し、その生成した信号RENをインバータ制御手段301およびコンバータ制御手段303へ出力する。
【0078】
一方、電圧Vcが下限値以下であるとき、故障処理手段302は、外部ECUからの信号MDEに基づいて交流モータM1,M2の駆動状態を検出し、その検出した駆動状態に適合して交流モータM1,M2におけるエネルギーの総和が回生エネルギーになるように交流モータM1,M2を駆動するためのトルク指令値TRL1および信号RGEL2(またはトルク指令値TRL2および信号RGEL1)を生成する。この場合、故障処理手段302は、交流モータM1が駆動モードにあり、交流モータM2が回生モードにある場合、交流モータM1における消費量が交流モータM2における発電量よりも少なくなるようにトルク指令値TRL1を生成する。また、故障処理手段302は、交流モータM1、M2の両方が駆動モードにある場合、交流モータM1(または交流モータM2)を回生モードで駆動し、交流モータM2(または交流モータM1)を駆動モードで駆動するためのトルク指令値TRL2および信号RGEL1(またはトルク指令値TRL1および信号RGEL2)を生成する。
【0079】
そして、故障処理手段302は、生成したトルク指令値TRL1(またはTRL2)および信号RGEL2(またはRGEL1)をインバータ制御手段301へ出力し、生成した信号RGEL2(またはRGEL1)をコンバータ制御手段303へ出力する。
【0080】
コンバータ制御手段303は、外部ECUからのトルク指令値TR1,2、直流電源Bから出力される電圧Vb、モータ回転数MRN1,2および昇圧コンバータ12の出力電圧Vmに基づいて、交流モータM1またはM2の駆動時、後述する方法により昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。
【0081】
また、コンバータ制御手段303は、故障処理手段302から信号EMG1を受けると、信号STP1を生成して昇圧コンバータ12へ出力する。
【0082】
さらに、コンバータ制御手段303は、外部ECUからの信号RGEおよび故障処理手段302からの信号EMG2,RGEL1,RGEL2のいずれかに応じて、インバータ14および/またはインバータ31からの直流電圧を降圧するための信号PWMDを生成し、その生成した信号PWMDを昇圧コンバータ12へ出力する。
【0083】
このように、昇圧コンバータ12は、直流電圧を降圧するための信号PWMDにより電圧を降下させることもできるので、双方向コンバータの機能を有するものである。
【0084】
信号PWMDを生成する場合、コンバータ制御手段303は、信号RGEに応じて、インバータ入力電圧指令Vdc_com_ivを演算し、その演算したインバータ入力電圧指令Vdc_com_ivと電圧Vb(「バッテリ電圧Vb」とも言う。)とに基づいてNPNトランジスタQ1,Q2をオン/オフするためのデューティー比を演算する(「演算方式1」と言う。)。また、コンバータ制御手段303は、EMG2,RGE1,RGE2のいずれかに応じて、バッテリ側電圧指令Vdc_com_bvを演算し、その演算したバッテリ側電圧指令Vdc_com_bvとインバータ入力電圧Vm(=出力電圧Vm)とに基づいてNPNトランジスタQ1,Q2をオン/オフするためのデューティー比を演算する(「演算方式2」と言う。)。
【0085】
そして、コンバータ制御手段303は、故障処理手段302から信号EMG1を受けると、信号EMG2,RGEL1,RGEL2のいずれかに応じて演算方式2によりデューティー比を演算する。また、コンバータ制御手段303は、故障処理手段302から信号RENを受けると、信号RGEに応じて、演算方式1によりデューティー比を演算する。
【0086】
図3は、インバータ制御手段301の機能ブロック図である。図3を参照して、インバータ制御手段301は、モータ制御用相電圧演算部40と、インバータ用PWM信号変換部42と、回生信号生成回路44とを含む。
【0087】
モータ制御用相電圧演算部40は、昇圧コンバータ12の出力電圧Vm、すなわち、インバータ14,31への入力電圧を電圧センサー13から受け、交流モータM1,M2の各相に流れるモータ電流MCRT1,2をそれぞれ電流センサー24,28から受け、トルク指令値TR1,2を外部ECUから受け、信号EMG1およびトルク指令値TRL0〜2を故障処理手段302から受ける。そして、モータ制御用相電圧演算部40は、トルク指令値TR1,2(またはTRL0〜2)、モータ電流MCRT1,2および出力電圧Vmに基づいて、交流モータM1,M2の各相のコイルに印加する電圧を計算し、その計算した結果をインバータ用PWM信号変換部42へ供給する。
【0088】
この場合、モータ制御用相電圧演算部40は、故障処理手段302から信号EMG1を受けると、トルク指令値TRL0〜2を用いて交流モータM1,M2の各相のコイルに印加する電圧を計算する。
【0089】
つまり、モータ制御用相電圧演算部40は、一旦、信号EMG1を受けると、トルク指令値TRL0〜2を故障処理手段302から受ける前に外部ECUからトルク指令値TR1,2を受けても、トルク指令値TR1,2を用いて交流モータM1,M2の各相のコイルに印加する電圧を計算することはなく、トルク指令値TRL0〜2が入力されるのを待ってトルク指令値TRL0〜2を用いて交流モータM1,M2の各相のコイルに印加する電圧を計算する。
【0090】
また、モータ制御用相電圧演算部40は、故障処理手段302から信号RENを受けると、トルク指令値TRL0〜2に代えてトルク指令値TR1,2を用いて交流モータM1,M2の各相のコイルに印加する電圧を計算する。
【0091】
モータ制御用相電圧演算部40は、トルク指令値TRL0に基づいて計算結果RET1を生成してインバータ用PWM信号変換部42へ出力する。また、モータ制御用相電圧演算部40は、トルク指令値TRL1に基づいて計算結果RET2を生成してインバータ用PWM信号変換部42へ出力する。さらに、モータ制御用相電圧演算部40は、トルク指令値TRL2に基づいて計算結果RET3を生成してインバータ用PWM信号変換部42へ出力する。さらに、モータ制御用相電圧演算部40は、トルク指令値TR1に基づいて計算結果RET4を生成してインバータ用PWM信号変換部42へ出力する。さらに、モータ制御用相電圧演算部40は、トルク指令値TR2に基づいて計算結果RET5を生成してインバータ用PWM信号変換部42へ出力する。
【0092】
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40から受けた計算結果に基づいて、実際にインバータ14,31の各NPNトランジスタQ3〜Q8をオン/オフする信号PWMI1,2を生成し、その生成した信号PWMI1,2をそれぞれインバータ14,31の各NPNトランジスタQ3〜Q8へ出力する。
【0093】
この場合、インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40からの計算結果RET1に応じて、信号PWMI10(信号PWMI1の一種)および信号PWMI20(信号PWMI2の一種)を生成し、その生成した信号PWMI10をインバータ14へ出力し、生成した信号PWMI20をインバータ31へ出力する。
【0094】
また、インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40からの計算結果RET2に応じて、信号PWMIL1(信号PWMI1の一種)を生成し、その生成した信号PWMIL1をインバータ14へ出力する。
【0095】
さらに、インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40からの計算結果RET3に応じて、信号PWMIL2(信号PWMI2の一種)を生成し、その生成した信号PWMIL2をインバータ31へ出力する。
【0096】
さらに、インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40からの計算結果RET4に応じて、信号PWMI11(信号PWMI1の一種)を生成し、その生成した信号PWMI11をインバータ14へ出力する。
【0097】
さらに、インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40からの計算結果RET5に応じて、信号PWMI21(信号PWMI2の一種)を生成し、その生成した信号PWMI21をインバータ31へ出力する。
【0098】
これにより、インバータ14,31の各NPNトランジスタQ3〜Q8は、スイッチング制御され、交流モータM1,M2が指令されたトルクを出力するように交流モータM1,M2の各相に流す電流を制御する。このようにして、モータ駆動電流が制御され、トルク指令値TR1,TR2,TRL0〜2に応じたモータトルクが出力される。
【0099】
回生信号生成回路44は、外部ECUからの信号RGEに応じて信号PWMC1またはPWMC2を生成してインバータ14または31へ出力する。また、回生信号生成回路44は、故障処理手段302からの信号RGEL1またはRGEL2に応じて、信号PWMCL1またはPWMCL2を生成してインバータ14または31へ出力する。
【0100】
この場合、回生信号生成回路44は、信号RGEに応じて、信号PWMC11またはPWMC21(それぞれ信号PWMC1,PWMC2の一種)を生成してインバータ14または31へ出力する。
【0101】
図4は、図2に示す故障処理手段302の機能ブロック図である。図4を参照して、故障処理手段302は、判定部71と、制御部72とを含む。判定部71は、電圧センサー10Aからの電圧Vbと、電圧センサー11からの電圧Vcと、温度センサー10Bからの温度Tbと、電流センサー18からの電流BCRTと、制御部72からの信号CPLとを受ける。
【0102】
そして、判定部71は、電圧Vbまたは温度Tbに基づいて直流電源Bが故障しているか否かを判定する。より具体的には、判定部71は、電圧Vbを基準値と比較し、電圧Vbが基準値よりも低下しているとき直流電源Bが故障していると判定する。また、判定部71は、電圧Vbおよび電流BCRTに基づいて直流電源Bの内部抵抗を演算する。そして、判定部71は、演算した内部抵抗を基準値と比較し、内部抵抗が基準値よりも大きいとき、直流電源Bが故障していると判定する。さらに、判定部71は、温度Tbを基準値と比較し、温度Tbが基準値よりも高いとき、直流電源Bが故障していると判定する。
【0103】
判定部71は、上述した3つの方法のうちのいずれか1つの方法により直流電源Bが故障しているか否かを判定し、直流電源Bが故障していると判定したとき、信号EMG0を生成して制御部72へ出力する。
【0104】
また、判定部71は、制御部72から信号CPLを受けると、電圧VcがDC/DCコンバータ20の動作電圧範囲の下限値以下であるか否かを判定し、電圧Vcが下限値以下であるとき信号LVCを生成して制御部72へ出力し、電圧Vcが下限値よりも高いとき信号HVCを生成して制御部72へ出力する。
【0105】
制御部72は、判定部71から信号EMG0を受けると、トルク指令値TRL0、信号STP2および信号EMG1を生成する。そして、制御部72は、生成した信号EMG1およびトルク指令値TRL0をインバータ制御手段301へ出力し、生成した信号EMG1をコンバータ制御手段303へ出力し、生成した信号STP2をDC/DCコンバータ20へ出力する。そして、制御部72は、信号EMG1,STP2およびトルク指令値TRL0の出力が完了すると、Lレベルの信号SEを生成してシステムリレーSR1,SR2へ出力する。これにより、システムリレーSR1,SR2は遮断される。そして、制御部72は、その後、Lレベルの信号SEを出力したことを示す信号CPLを生成して判定部71へ出力する。
【0106】
また、制御部72は、判定部71から信号LVCを受けると、外部ECUからの信号MDEに基づいて、交流モータM1,M2の駆動状態を検出する。そして、制御部72は、検出した駆動状態に適合して交流モータM1,M2におけるエネルギーの総和が回生エネルギーになるトルク指令値TRL1および信号RGEL2(またはトルク指令値TRL2および信号REGL1)を生成し、その生成したトルク指令値TRL1(またはTRL2)をインバータ制御手段301へ出力し、信号RGEL2(またはRGEL1)をインバータ制御手段301およびコンバータ制御手段303へ出力する。
【0107】
さらに、制御部72は、判定部71から信号HVCを受けると、信号EMG2および信号DRVを生成してそれぞれコンバータ制御手段303およびDC/DCコンバータ20へ出力する。
【0108】
さらに、制御部72は、信号EMG2および信号DRVの出力を完了すると、信号RENを生成してインバータ制御手段301およびコンバータ制御手段303へ出力する。
【0109】
図5は、図2に示すコンバータ制御手段303の機能ブロック図である。図5を参照して、コンバータ制御手段303は、電圧指令演算部50と、コンバータ用デューティー比演算部52と、コンバータ用PWM信号変換部54とを含む。
【0110】
電圧指令演算部50は、外部ECUから受けたトルク指令値TR1,2およびモータ回転数MRN1,2に基づいてインバータ入力電圧Vmの最適値(目標値)、すなわち、電圧指令Vdc_com_ivを演算し、その演算した電圧指令Vdc_com_ivをコンバータ用デューティー比演算部52へ出力する。
【0111】
また、電圧指令演算部50は、外部ECUからの信号RGEに応じて、信号RGEを受ける前に演算した電圧指令Vdc_com_ivをコンバータ用デューティー比演算部52へ出力する。
【0112】
さらに、電圧指令演算部50は、故障処理手段302からの信号RGEL1,RGEL2,EMG2のいずれかに応じて、昇圧コンバータ12の一次電圧の目標値であるバッテリ側電圧指令Vdc_com_bvを演算し、その演算したバッテリ側電圧指令Vdc_com_bvをコンバータ用デューティー比演算部52へ出力する。
【0113】
さらに、電圧指令演算部50は、信号RGEL1,RGEL2,EMG2に応じてバッテリ側電圧指令Vdc_com_bvを演算した後、故障処理手段302からの信号RENを受けると、トルク指令値TR1,2およびモータ回転数MRN1,2に基づいて電圧指令Vdc_com_ivを演算する。
【0114】
コンバータ用デューティー比演算部52は、電圧センサー10Aから電圧Vbを受け、電圧センサー11から電圧Vcを受け、電圧指令演算部50から電圧指令Vdc_com_ivまたはVdc_com_bvを受け、電圧センサー13から出力電圧Vmを受ける。そして、コンバータ用デューティー比演算部52は、電圧指令演算部50から電圧指令Vdc_com_ivを受けると、バッテリ電圧Vbに基づいて、インバータ入力電圧Vmを電圧指令演算部50から出力される電圧指令Vdc_com_ivに設定するためのデューティー比を演算し、その演算したデューティー比をコンバータ用PWM信号変換部54へ出力する。
【0115】
また、コンバータ用デューティー比演算部52は、電圧指令演算部50から電圧指令Vdc_com_bvを受けると、インバータ入力電圧Vmに基づいて、昇圧コンバータ12の一次電圧である電圧Vcを電圧指令演算部50から出力される電圧指令Vdc_com_bvに設定するためのデューティー比を演算し、その演算したデューティー比をコンバータ用PWM信号変換部54へ出力する。
【0116】
この場合、コンバータ用デューティー比演算部52は、電圧指令Vdc_com_ivを受けると、デューティー比DRUまたはDRDを生成してコンバータ用PWM信号変換部54へ出力し、電圧指令Vdc_com_bvを受けると、デューティー比DRDDを生成してコンバータ用PWM信号変換部54へ出力する。
【0117】
コンバータ用PWM信号変換部54は、コンバータ用デューティー比演算部52からのデューティー比DRUに基づいて昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。
【0118】
また、コンバータ用PWM信号変換部54は、コンバータ用デューティー比演算部52からのデューティー比DRDに基づいて昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWMDを生成して昇圧コンバータ12へ出力する。
【0119】
さらに、コンバータ用PWM信号変換部54は、コンバータ用デューティー比演算部52からのデューティー比DRDDに基づいて昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWMDLを生成して昇圧コンバータ12へ出力する。
【0120】
さらに、コンバータ用PWM信号変換部54は、故障処理手段302から信号EMG1を受けると、コンバータ用デューティー比演算部52からのデューティー比DRU,DRD,DRDDに拘わらず、昇圧コンバータ12のスイッチング動作を停止するための信号STP1を生成して昇圧コンバータ12へ出力する。
【0121】
なお、昇圧コンバータ12の下側のNPNトランジスタQ2のオンデューティーを大きくすることによりリアクトルL1における電力蓄積が大きくなるため、より高電圧の出力を得ることができる。一方、上側のNPNトランジスタQ1のオンデューティーを大きくすることにより電源ラインの電圧が下がる。そこで、NPNトランジスタQ1,Q2のデューティー比を制御することで、電源ラインの電圧を直流電源Bの出力電圧以上の任意の電圧に制御可能である。
【0122】
上述したように、この発明においては、直流電源Bの故障が検出されたとき、交流モータM1およびM2の出力トルクを零に設定して交流モータM1,M2におけるエネルギーの総和が零になるように交流モータM1,M2を駆動する。また、システムリレーSR1,SR2を遮断した時に電圧VcがDC/DCコンバータ20の動作電圧範囲の下限値以下である場合、交流モータM1,M2におけるエネルギーの総和を回生エネルギーに設定して電圧Vcが下限値よりも高くなってから昇圧コンバータ12の制御を降圧制御に切換える。
【0123】
表1は、交流モータM1,M2の出力トルクを零に設定する場合および電圧Vcを下限値よりも高くする場合の交流モータM1,M2のトルク指令値TR1,TR2と、昇圧コンバータ12およびインバータ14,31の制御信号との関係を示す。
【0124】
【表1】
Figure 2004274945
【0125】
すなわち、交流モータM1およびM2の出力トルクを零に設定する場合、交流モータM1,M2のトルク指令値TR1,TR2はトルク指令値TRL0に設定され、信号PWMI10および信号PWMI20がそれぞれインバータ14および31へ出力される。そして、インバータ14は、信号PWMI10に応じて出力トルクが零になるように交流モータM1を駆動し、インバータ31は、信号PWMI20に応じて出力トルクが零になるように交流モータM2を駆動する。
【0126】
また、電圧Vcを下限値よりも高くする場合、交流モータM1,M2をそれぞれ駆動モードおよび回生モードで駆動し、または交流モータM1,M2をそれぞれ回生モードおよび駆動モードで駆動する。
【0127】
交流モータM1,M2をそれぞれ駆動モードおよび回生モードで駆動するとき、交流モータM1のトルク指令値TR1がトルク指令値TRL1に設定され、交流モータM2のトルク指令値TR2は回生トルク(信号RGEL2)に設定される。そして、信号PWMDL1(信号PWMDLの一種)が昇圧コンバータ12へ出力され、信号PWMIL1がインバータ14へ出力され、信号PWMCL2がインバータ31へ出力される。
【0128】
そうすると、インバータ31は、信号PWMCL2に応じて交流モータM2を回生モードで駆動し、交流モータM2が発電した交流電圧を直流電圧に変換して昇圧コンバータ12およびインバータ14へ供給する。また、インバータ14は、信号PWMIL1に応じて、インバータ31から供給された直流電圧を交流電圧に変換して交流モータM1を駆動モードで駆動する。昇圧コンバータ12は、信号PWMDL1に応じて、電圧Vcが電圧指令Vdc_com_bv1(電圧指令Vdc_com_bvの一種)になるようにインバータ31から供給された直流電圧を降圧してDC/DCコンバータ20側に供給する。
【0129】
また、交流モータM1,M2をそれぞれ回生モードおよび駆動モードで駆動するとき、交流モータM1のトルク指令値TR1が回生トルク(信号RGEL1)に設定され、交流モータM2のトルク指令値TR2はトルク指令値TRL2に設定される。そして、信号PWMDL2(信号PWMDLの一種)が昇圧コンバータ12へ出力され、信号PWMCL1がインバータ14へ出力され、信号PWMIL2がインバータ31へ出力される。
【0130】
そうすると、インバータ14は、信号PWMCL1に応じて交流モータM1を回生モードで駆動し、交流モータM1が発電した交流電圧を直流電圧に変換して昇圧コンバータ12およびインバータ31へ供給する。また、インバータ31は、信号PWMIL2に応じて、インバータ14から供給された直流電圧を交流電圧に変換して交流モータM2を駆動モードで駆動する。昇圧コンバータ12は、信号PWMDL2に応じて、電圧Vcが電圧指令Vdc_com_bv1になるようにインバータ14から供給された直流電圧を降圧してDC/DCコンバータ20側に供給する。
【0131】
なお、表1においては、交流モータM1,M2のいずれか一方を駆動モードで駆動し、いずれか他方を回生モードで駆動する場合を示すが、交流モータM1,M2の両方を回生モードで駆動して電圧VcがDC/DCコンバータ20の動作電圧範囲の下限値よりも高くなるようにしてもよい。
【0132】
図6は、コンバータ制御手段303が生成する信号PWMUおよび信号PWMDのタイミングチャートである。図6を参照して、信号PWMUは、信号PWMU01と信号PWMU02とから成る。また、信号PWMD(信号PWMDLを含む。)は、信号PWMD01と信号PWMD02とから成る。そして、信号PWMU01,PWMD01は、NPNトランジスタQ1へ出力され、信号PWMU02,PWMD02は、NPNトランジスタQ2へ出力される。
【0133】
昇圧コンバータ12が直流電源Bからの直流電圧を昇圧するとき、NPNトランジスタQ1は、常時、オフされているので、信号PWMU01はLレベルの信号から成る。また、昇圧コンバータ12が直流電源Bからの直流電圧を昇圧するとき、NPNトランジスタQ2は、所定のデューティー比DRUでオン/オフされるので、信号PWMU02は、LレベルとHレベルとの間で周期的に変化する信号から成る。
【0134】
そして、Hレベルである期間T1は、昇圧比(=Vdc_com_iv/Vb)に応じて決定される。NPNトランジスタQ2のオン期間が長いとき、リアクトルL1に蓄積される電力が多くなって電圧Vmが高くなり、NPNトランジスタQ2のオン期間が短いとき、リアクトルL1に蓄積される電力が少なくなって電圧Vmが低くなり、電圧Vmが電圧指令Vdc_com_ivに近づくからである。
【0135】
昇圧コンバータ12がインバータ14(または31)からの直流電圧を降圧するとき、NPNトランジスタQ2は、常時、オフされているので、信号PWMD02はLレベルの信号から成る。また、昇圧コンバータ12がインバータ14(または31)からの直流電圧を降圧するとき、NPNトランジスタQ1は、所定のデューティー比DRD,DRDDでオン/オフされるので、信号PWMD01は、LレベルとHレベルとの間で周期的に変化する信号から成る。
【0136】
そして、Hレベルである期間T2は、降圧比(=Vdc_com_bv/Vm)に応じて決定される。NPNトランジスタQ1のオン期間が長いとき、NPNトランジスタQ1を介してインバータ14,31側から直流電源B側に流れる電流が増加して電圧Vcが高くなり、NPNトランジスタQ1のオン期間が短いとき、NPNトランジスタQ1を介してインバータ14,31側から直流電源B側に流れる電流が減少して電圧Vcが低くなり、電圧Vcが電圧Vbまたは電圧指令Vdc_com_bvに近づくからである。
【0137】
昇圧コンバータ12が直流電源Bからの直流電圧を昇圧する場合、NPNトランジスタQ1は、信号PWMUによって、常時、オフされ、NPNトランジスタQ2は、信号PWMUによって所定のデューティー比でオン/オフされる。そして、インバータ入力電圧Vmが電圧指令Vdc_com_ivよりも高くなると、コンバータ用デューティー比演算部52は、インバータ14,31側から直流電源B側へエネルギーを移動させるためのデューティー比DRDを演算してコンバータ用PWM信号変換部54へ出力する。コンバータ用PWM信号変換部54は、コンバータ用デューティー比演算部52からのデューティー比DRDに応じて信号PWMDを生成して昇圧コンバータ12へ出力する。これにより、エネルギーがインバータ14,31側から直流電源B側へ移動し、インバータ入力電圧Vmの電圧レベルが低下する。
【0138】
その後、インバータ入力電圧Vmが電圧指令Vdc_com_ivよりも低くなると、コンバータ用デューティー比演算部52は、直流電源Bからインバータ14,31側へエネルギーを移動させるためのデューティー比DRUを演算してコンバータ用PWM信号変換部54へ出力する。コンバータ用PWM信号変換部54は、コンバータ用デューティー比演算部52からのデューティー比DRUに応じて信号PWMUを生成して昇圧コンバータ12へ出力する。これにより、エネルギーが直流電源Bからインバータ14,31側へ移動し、インバータ入力電圧Vmの電圧レベルが上昇する。
【0139】
このように、昇圧動作および降圧動作を行なうように昇圧コンバータ12を制御し、インバータ入力電圧Vmは、電圧指令Vdc_com_ivに一致するように制御される。
【0140】
昇圧コンバータ12がインバータ14,31からの直流電圧を降圧するとき、NPNトランジスタQ2は、常時、オフされ、NPNトランジスタQ1は、信号PWMDまたは信号PWMDLによって所定のデューティー比でオン/オフされる。そして、昇圧コンバータ12の一次電圧である電圧Vcが電圧指令Vdc_com_bvよりも低くなると、コンバータ用デューティー比演算部52は、NPNトランジスタQ1のオンデューティー(期間T2)を長くしたデューティー比を演算してコンバータ用PWM信号変換部54へ出力する。これにより、インバータ14,31側から直流電源B側へ流れる電流が多くなり、電圧Vcは上昇する。
【0141】
そして、電圧Vcが電圧指令Vdc_com_bvよりも高くなると、コンバータ用デューティー比演算部52は、NPNトランジスタQ1のオンデューティー(期間T2)を短くしたデューティー比を演算してコンバータ用PWM信号変換部54へ出力する。これにより、インバータ14,31側から直流電源B側へ流れる電流が少なくなり、電圧Vcは低下する。
【0142】
このように、インバータ14,31側から直流電源B側へ流れる電流を調整するように昇圧コンバータ12を制御し、電圧Vcは、電圧指令Vdc_com_bvに一致するように制御される。
【0143】
図7は、直流電源Bが故障したときのハイブリッド車駆動装置100における動作を説明するためのフローチャートである。なお、図7に示すフローチャートは一定時間ごとに実行される。図7を参照して、一連の動作が開始されると、故障処理手段302は、電圧Vbまたは温度Tbに基づいて、上述した方法によって直流電源Bが正常か否かを判定する(ステップS1)。そして、直流電源Bが正常であると判定されたとき、通常の制御が行なわれる(ステップS2)。
【0144】
一方、ステップS1において、直流電源Bが正常でないと判定されたとき、故障処理手段302は、信号EMG1,STP2およびトルク指令値TRL0を生成し、信号EMG1およびトルク指令値TRL0をインバータ制御手段301へ出力し、信号EMG1をコンバータ制御手段303へ出力し、信号STP2をDC/DCコンバータ20へ出力する。
【0145】
なお、ステップS1において、直流電源Bが正常でないと判定されることは、直流電源Bの故障を検出することに相当する。
【0146】
インバータ制御手段301のモータ制御用相電圧演算部40は、故障処理手段302からの信号EMG1に応じて、トルク指令値TR1,2に代えて故障処理手段302からのトルク指令値TRL0に基づいて、交流モータM1,M2の出力トルクを零にするために交流モータM1,M2の各相に印加する電圧を計算し、計算結果RET1をインバータ用PWM信号変換部42へ出力する。インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40からの計算結果RET1に基づいて、信号PWMI10および信号PWMI20を生成し、その生成した信号PWMI10および信号PWMI20をそれぞれインバータ14,31へ出力する。
【0147】
インバータ14は、インバータ制御手段301からの信号PWMI10に基づいて、出力トルクが零になるように交流モータM1を駆動する(ステップS3)。また、インバータ31は、インバータ制御手段301からの信号PWMI20に基づいて、出力トルクが零になるように交流モータM2を駆動する(ステップS4)。これにより、交流モータM1におけるエネルギーと交流モータM2におけるエネルギーとの総和が零になる。そして、DC/DCコンバータ20は、故障処理手段302からの信号STP2によって停止される(ステップS5)。
【0148】
一方、コンバータ制御手段303のコンバータ用PWM信号変換部54は、故障処理手段302からの信号EMG1に応じて信号STP1を生成して昇圧コンバータ12へ出力する。これにより、昇圧コンバータ12のスイッチング動作が停止される(ステップS6)。
【0149】
そうすると、故障処理手段302は、Lレベルの信号SEを生成してシステムリレーSR1,SR2へ出力する。これにより、システムリレーSR1,SR2が遮断される(ステップS7)。
【0150】
このように、交流モータM1におけるエネルギーと交流モータM2におけるエネルギーとの総和が零になること(ステップS3,S4参照)、DC/DCコンバータ20が停止されること(ステップS5参照)、および昇圧コンバータ12が停止されること(ステップS6参照)の全てが実現された時点で、システムリレーSR1,SR2が遮断される(ステップS7参照)。
【0151】
システムリレーSR1,SR2を遮断するタイミングを上述したタイミングにしたのは次の理由による。交流モータM1におけるエネルギーと交流モータM2におけるエネルギーとの総和が零でないとき、直流電源B側からインバータ14,31側へ直流電流が流れているか、インバータ14,31側から直流電源B側へ直流電流が流れているかのいずれかである。つまり、この場合、昇圧コンバータ12におけるNPNトランジスタQ1,Q2のいずれかがオン/オフされている。
【0152】
そして、昇圧コンバータ12においてスイッチング動作が行なわれていると、直流電源Bと昇圧コンバータ12との間の電流のスイッチング動作に同期したリプル電流が流れる。したがって、通電状態でシステムリレーSR1,SR2を遮断すると、接点間に高温のアークが発生して接点が溶ける。その結果、接点が溶着または劣化する。そして、DC/DCコンバータ20が動作しているとき、直流電源Bからの直流電流はDC/DCコンバータ20へも供給されるので、この傾向は、さらに顕著になる。
【0153】
そこで、直流電源Bと昇圧コンバータ12との間に直流電流が流れていない状態でシステムリレーSR1,SR2を遮断することとしたものである。
【0154】
ステップS7の後、故障処理手段302は、電圧センサー11からの電圧VcがDC/DCコンバータ20の動作電圧範囲の下限値以下であるか否かを判定する(ステップS8)。そして、電圧Vcが下限値以下であるとき、故障処理手段302は、外部ECUからの信号MDEに基づいて交流モータM1,M2の駆動状態を検出し、その検出した駆動状態に適合して交流モータM1におけるエネルギーと交流モータM2におけるエネルギーとの総和が回生エネルギーになるようにトルク指令値TRL1(またはTRL2)を演算し、信号RGEL2(またはRGEL1)を生成する。その後、故障処理手段302は、トルク指令値TRL1(またはTRL2)をインバータ制御手段301へ出力し、信号RGEL2(またはRGEL1)をインバータ制御手段301およびコンバータ制御手段303へ出力する。
【0155】
インバータ制御手段301のモータ制御用相電圧演算部40は、故障処理手段302からのトルク指令値TRL1(またはTRL2)、電流センサー24(または28)からのモータ電流MCRT1(またはMCRT2)および電圧センサー13からの電圧Vmに基づいて、交流モータM1(またはM2)がトルク指令値TRL1(またはTRL2)によって指定されたトルクを出力するために交流モータM1(またはM2)の各相に印加する電圧を計算する。そして、モータ制御用相電圧演算部40は、計算結果RET2(またはRET3)をインバータ用PWM信号変換部42へ出力する。
【0156】
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40からの計算結果RET2(またはRET3)に基づいて信号PWMIL1(またはPWMIL2)を生成してインバータ14(または31)へ出力する。インバータ14(または31)は、信号PWMIL1(またはPWMIL2)に基づいて、トルク指令値TRL1(またはTRL2)を出力するように交流モータM1(またはM2)を駆動する。
【0157】
また、回生信号生成回路44は、故障処理手段302からの信号RGEL2(またはRGEL1)に基づいて信号PWMCL2(またはPWMCL1)を生成してインバータ31(または14)へ出力する。
【0158】
そうすると、インバータ31(または14)は、信号PWMCL2(またはPWMCL1)に基づいて交流モータM2(またはM1)が発電した交流電圧を直流電圧に変換してコンデンサC2に供給する。
【0159】
これにより、交流モータM1(またはM2)は駆動モータとして動作し、交流モータM2(またはM1)は発電機として動作する。そして、交流モータM2(またはM1)が発電した電力は、一部が交流モータM1(またはM2)の駆動に用いられ、残りは昇圧コンバータ12へ供給される。
【0160】
一方、コンバータ制御手段303の電圧指令演算部50は、故障処理手段302からの信号RGEL2(またはRGEL1)に応じて、電圧VcをDC/DCコンバータ20の動作電圧範囲内に設定するための電圧指令Vdc_com_bvを演算し、その演算した電圧指令Vdc_com_bv1をコンバータ用デューティー比演算部52へ出力する。コンバータ用デューティー比演算部52は、電圧指令演算部50からの電圧指令Vdc_com_bv1および電圧センサー13からの電圧Vmに基づいてデューティー比DRDD1(デューティー比DRDDの一種)を演算してコンバータ用PWM信号変換部54へ出力する。コンバータ用PWM信号変換部54は、コンバータ用デューティー比演算部52からのデューティー比DRDD1に基づいて信号PWMDL1(信号PWMDLの一種)を生成して昇圧コンバータ12へ出力する。昇圧コンバータ12は、信号PWMDL1に応じて、インバータ31(または14)から供給された直流電圧を降圧してDC/DCコンバータ20側へ供給し、モータ回生量が上昇する(ステップS9)。その結果、電圧Vcが下限値よりも高くなる。
【0161】
ステップS9の後、ステップS8へ移行し、ステップS8が再度実行される。つまり、ステップS8,S9は、ステップS8において、電圧Vcが下限値よりも高いと判定されるまで、繰返し実行される。
【0162】
そして、ステップS8において、電圧Vcが下限値以下でないと判定されると、故障処理手段302は、信号EMG2を生成してコンバータ制御手段303へ出力する。コンバータ制御手段303の電圧指令演算部50は、故障処理手段302からの信号EMG2に応じて、DC/DCコンバータ20の動作電圧範囲内に入る電圧指令Vdc_com_vb2(Vdc_com_vbの一種)を演算し、その演算した電圧指令Vdc_com_vb2をコンバータ用デューティー比演算部52へ出力する。コンバータ用デューティー比演算部52は、電圧指令演算部50からの電圧指令Vdc_com_vb2およびインバータ入力電圧Vmに基づいてデューティー比DRDD2(=Vdc_com_vb2/Vm)を演算し、その演算したデューティー比DRDD2をコンバータ用PWM信号変換部54へ出力する(ステップS10)。
【0163】
コンバータ用PWM信号変換部54は、コンバータ用デューティー比演算部52からのデューティー比DRDD2に基づいて、信号PWMDL2(信号PWMDLの一種)を生成して昇圧コンバータ12へ出力する。
【0164】
昇圧コンバータ12は、信号PWMDL2に応じて、インバータ14,31から供給された直流電圧を降圧してDC/DCコンバータ20側へ供給し、降圧動作を再開する(ステップS11)。また、故障処理手段302は、信号DRVを生成してDC/DCコンバータ20へ出力し、DC/DCコンバータ20は、信号DRVに応じて動作を再開する(ステップS12)。
【0165】
そして、ステップS2またはステップS12の後、一連の動作は終了する。
なお、図7に示すフローチャートにおいては、直流電源Bが故障しているとき、交流モータM1およびM2の出力トルクを零に設定することによって、交流モータM1におけるエネルギーと交流モータM2におけるエネルギーとの総和が零になるように交流モータM1,M2を制御する(ステップS3,S4参照)と説明したが、この発明においては、これに限らず、交流モータM1,M2のうち、一方の交流モータM1(またはM2)は、他方の交流モータM2(またはM1)が発電した電力によって駆動されるように、交流モータM1,M2を制御してもよい。つまり、システムリレーSR1,SR2を遮断するとき、交流モータM1におけるエネルギーと交流モータM2におけるエネルギーとの総和が零、すなわち、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態が実現されるように、交流モータM1,M2が制御されていればよい。そして、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態とは、直流電流が零の場合に限らず、システムリレーSR1,SR2の接点の溶着または劣化が生じない範囲の直流電流を含む。
【0166】
また、図7に示すフローチャートのステップS8,S9において、昇圧コンバータ12の一次電圧である電圧VcがDC/DCコンバータ20の動作電圧範囲の下限値以下であるとき、電圧Vcが下限値よりも高くなるように2つの交流モータM1,M2のエネルギー収支を回生エネルギーに設定し、コンデンサC2側への回生量を上昇させるのは、コンデンサC2の両端の電圧Vmは、必ず、電圧Vcよりも高いので、電圧Vcを上昇させるには電圧Vmを上昇させる必要があるからである。
【0167】
上述したように、この発明は、直流電源Bの故障が検出されたとき(図7のステップS1において「No」と判定されたとき)、システムリレーSR1,SR2を遮断し、昇圧コンバータ12の制御を降圧制御に切換えることを特徴とする(図7のステップS11参照)。そして、この降圧制御は、昇圧コンバータ12の一次電圧VcがDC/DCコンバータ20の動作電圧範囲内の電圧指令Vdc_com_bvになるように電圧Vmを降圧する制御である。したがって、昇圧コンバータ12は、降圧動作中、電圧VcがDC/DCコンバータ20の動作電圧範囲内になるように電圧Vmを降圧する。また、DC/DCコンバータ20は、昇圧コンバータ12の降圧動作の開始とともに動作を再開し(図7のステップS12参照)、コンデンサC1側に供給された直流電圧を変換して補機バッテリ21を充電する。その結果、DC/DCコンバータ20に過電圧が印加されるのを防止できる。
【0168】
また、この発明は、交流モータM1,M2のエネルギー収支が零(図7のステップS3,S4参照)、DC/DCコンバータ20の停止(図7のステップS5参照)および昇圧コンバータ12の停止(図7のステップS6参照)が完了した後にシステムリレーSR1,SR2を遮断することを特徴とする。交流モータM1,M2のエネルギー収支が零であり、昇圧コンバータ12およびDC/DCコンバータ20が停止していれば、直流電源Bと昇圧コンバータ12との間に直流電流が流れていないので、システムリレーSR1,SR2を遮断しても、接点が溶着または劣化することがない。
【0169】
再び、図1を参照して、ハイブリッド車駆動装置100における全体動作について説明する。全体の動作が開始されると、制御装置30は、Hレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2がオンされる。直流電源Bは直流電圧をシステムリレーSR1,SR2を介して昇圧コンバータ12およびDC/DCコンバータ20へ出力する。
【0170】
電圧センサー10Aは、直流電源Bから出力される電圧Vbを検出し、その検出した電圧Vbを制御装置30へ出力する。また、電圧センサー13は、コンデンサC2の両端の電圧Vmを検出し、その検出した電圧Vmを制御装置30へ出力する。さらに、電流センサー18は、直流電源Bから流出または流入する電流BCRTを検出して制御装置30へ出力し、温度センサー10Bは直流電源Bの温度Tbを検出して制御装置30へ出力し、電圧センサー11は電圧Vcを検出して制御装置30へ出力する。さらに、電流センサー24は、交流モータM1に流れるモータ電流MCRT1を検出して制御装置30へ出力し、電流センサー28は、交流モータM2に流れるモータ電流MCRT2を検出して制御装置30へ出力する。そして、制御装置30は、外部ECUからトルク指令値TR1,TR2およびモータ回転数MRN1,2を受ける。
【0171】
そうすると、制御装置30は、電圧Vm、モータ電流MCRT1およびトルク指令値TR1に基づいて、上述した方法により信号PWMI1を生成し、その生成した信号PWMI1をインバータ14へ出力する。また、制御装置30は、電圧Vm、モータ電流MCRT2およびトルク指令値TR2に基づいて、上述した方法により信号PWMI2を生成し、その生成した信号PWMI2をインバータ31へ出力する。さらに、制御装置30は、インバータ14(または31)が交流モータM1(またはM2)を駆動するとき、電圧Vm,Vb、トルク指令値TR1(またはTR2)およびモータ回転数MRN1(またはMRN2)に基づいて、上述した方法により昇圧コンバータ12のNPNトランジスタQ1,Q2をスイッチング制御するための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。
【0172】
そうすると、昇圧コンバータ12は、信号PWMUに応じて、直流電源Bからの直流電圧を昇圧し、その昇圧した直流電圧をノードN1,N2を介してコンデンサC2に供給する。そして、インバータ14は、コンデンサC2によって平滑化された直流電圧を制御装置30からの信号PWMI1によって交流電圧に変換して交流モータM1を駆動する。また、インバータ31は、コンデンサC2によって平滑化された直流電圧を制御装置30からの信号PWMI2によって交流電圧に変換して交流モータM2を駆動する。これによって、交流モータM1は、トルク指令値TR1によって指定されたトルクを発生し、交流モータM2は、トルク指令値TR2によって指定されたトルクを発生する。
【0173】
また、ハイブリッド車駆動装置100が搭載されたハイブリッド自動車の回生制動時、制御装置30は、外部ECUから信号RGEを受け、その受けた信号RGEに応じて、信号PWMC1,2を生成してそれぞれインバータ14,31へ出力し、信号PWMDを生成して昇圧コンバータ12へ出力する。
【0174】
そうすると、インバータ14は、交流モータM1が発電した交流電圧を信号PWMC1に応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。また、インバータ31は、交流モータM2が発電した交流電圧を信号PWMC2に応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。そして、昇圧コンバータ12は、コンデンサC2からの直流電圧をノードN1,N2を介して受け、その受けた直流電圧を信号PWMDによって降圧し、その降圧した直流電圧を直流電源BおよびDC/DCコンバータ20に供給する。
【0175】
DC/DCコンバータ20は、直流電源Bまたは昇圧コンバータ12から供給された直流電圧を変換して補機バッテリ21を充電する。これにより、補機バッテリ21は、ハイブリッド自動車の照明を点灯したり、制御装置30等に電源電圧を供給したりすることができる。
【0176】
ハイブリッド車駆動装置100が搭載されたハイブリッド自動車の通常動作時および回生制動時、制御装置30は、電圧センサー10Aからの電圧Vbまたは温度センサー10Bからの温度Tbに基づいて直流電源Bが故障したか否かを判定し、直流電源Bが故障しているとき、交流モータM1,M2のエネルギー収支を零に設定し、昇圧コンバータ12およびDC/DCコンバータ20を停止した後にシステムリレーSR1,SR2を遮断する。そして、制御装置30は、昇圧コンバータ12の一次電圧である電圧Vcの電圧指令Vdc_com_bvを設定して電圧Vmを電圧Vcに降圧するように昇圧コンバータ12を制御する。そして、制御装置30は、DC/DCコンバータ20の動作を再開させる。
【0177】
したがって、直流電源Bの故障時にシステムリレーSR1,SR2を遮断してもDC/DCコンバータ20に過電圧が印加されるのを防止できる。また、システムリレーSR1,SR2は、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態で遮断されるので、システムリレーSR1,SR2の接点が溶着または劣化するのを防止できる。
【0178】
なお、上記においては、交流モータM1は、ハイブリッド自動車の駆動輪を駆動するモータであり、交流モータM2は、エンジンにて駆動される発電機の機能を持つように、そして、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなモータであると説明したが、この発明においては、交流モータM1を、エンジンにて駆動される発電機の機能を持つように、そして、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなモータとして動作させ、交流モータM2を、ハイブリッド自動車の駆動輪を駆動するモータとして動作させてもよい。
【0179】
また、交流モータM1,M2は、シリーズハイブリッドおよびパラレルハイブリッド用のモータとして用いられてもよい。
【0180】
さらに、交流モータM1は、エンジンに対して発電機/電動機として動作するモータまたは前輪を駆動する駆動モータとして用いられ、交流モータM2は、後輪駆動用の駆動モータとして用いられてもよい。
【0181】
図8は、ハイブリッド車駆動装置100を搭載したハイブリッド自動車のより具体的な駆動システムの一例を示す概略ブロック図である。図8を参照して、駆動システム200は、ハイブリッド車駆動装置100と、動力分割機構210と、ディファレンシャルギア(DG:Differential Gear)220と、前輪230とを備える。
【0182】
駆動システム200においては、交流モータM1およびM2はフロントモータに相当する。また、インバータ14,31は、フロント用IPM35を構成する。
【0183】
交流モータM1は、動力分割機構210を介してエンジン60と連結される。そして、交流モータM1は、エンジン60を始動し、またはエンジン60の回転力によって発電する。
【0184】
また、交流モータM2は、動力分割機構210を介して前輪230を駆動する。
【0185】
図9は、図8に示す動力分割機構210の模式図を示す。図9を参照して、動力分割機構210は、リングギア211と、キャリアギア212と、サンギア213とから成る。エンジン60のシャフト251は、プラネタリキャリア253を介してキャリアギア212に接続され、交流モータM1のシャフト252は、サンギア213に接続され、交流モータM2のシャフト254は、リングギア211に接続されている。なお、交流モータM2のシャフト254は、DG220を介して前輪230の駆動軸に連結される。
【0186】
交流モータM1は、シャフト252、サンギア213、キャリアギア212およびプラネタリキャリア253を介してシャフト251を回転し、エンジン60を始動する。また、交流モータM1は、シャフト251、プラネタリキャリア253、キャリアギア212、サンギア213およびシャフト252を介してエンジン60の回転力を受け、その受けた回転力によって発電する。
【0187】
再び、図8を参照して、駆動システム200が搭載されたハイブリッド自動車の始動時、発進時、軽負荷走行モード、中速低負荷走行モード、加速・急加速モード、低μ路走行モードおよび減速・制動モードにおける駆動システム200の動作について説明する。なお、始動時、発進時、軽負荷走行モード、中速低負荷走行モード、加速・急加速モード、低μ路走行モードおよび減速・制動モードにおける交流モータM1,M2のトルク指令値TR1,TR2、信号MDE、および信号PWMU,PWMD,PWMI1,PWMI2,PWMC1,PWMC2を表2に示す。
【0188】
【表2】
Figure 2004274945
【0189】
表2に示すハイブリッド自動車の各状態において、第1段は、直流電源Bが正常であるときのトルク指令値TR1,TR2および信号PWMU等を示し、第2段から第4段は、直流電源Bが故障したときのトルク指令値TRL0〜TRL2および信号PWMU等を示す。
【0190】
まず、ハイブリッド自動車のエンジン始動時における駆動システム200の動作について説明する。一連の動作が開始されると、制御装置30は、外部ECUからトルク指令値TR11(トルク指令値TR1の一種)およびモータ回転数MRN1を受ける。そして、制御装置30は、電圧センサー10Aからのバッテリ電圧Vbと、電圧センサー13からの出力電圧Vmと、外部ECUからのトルク指令値TR11およびモータ回転数MRN1とに基づいて、上述した方法によって信号PWMU11(信号PWMUの一種)を生成し、その生成した信号PWMU11を昇圧コンバータ12へ出力する。また、制御装置30は、電圧センサー13からの出力電圧Vmと、電流センサー24からのモータ電流MCRT1と、外部ECUからのトルク指令値TR11とに基づいて、上述した方法によって信号PWMI11(信号PWMI1の一種)を生成し、その生成した信号PWMI11をインバータ14へ出力する。
【0191】
そうすると、昇圧コンバータ12のNPNトランジスタQ1,Q2は、信号PWMU11によってオン/オフされ、昇圧コンバータ12は、NPNトランジスタQ2がオンされた期間に応じてバッテリ電圧Vbを昇圧して出力電圧VmをコンデンサC2を介してインバータ14へ供給する。インバータ14は、昇圧コンバータ12からの直流電圧を信号PWMI11に応じて交流電圧に変換し、トルク指令値TR11によって指定されたトルクを出力するように交流モータM1を駆動する。
【0192】
これによって、交流モータM1は、動力分割機構210を介してエンジン60のクランクシャフトを回転数MRN1で回転し、エンジン60を始動する。
【0193】
そして、エンジン60の始動時に直流電源Bの故障が検出されると、制御装置30は、交流モータM1がトルク指令値TRL0によって指定された出力トルク=零を出力するように信号PWMI10を生成してインバータ14へ出力する。インバータ14は、信号PWMI10に応じて、出力トルクが零になるように交流モータM1を駆動する。この場合、出力トルクを零にして交流モータM2を駆動しないのは、エンジン始動時において交流モータM2は停止されているからである。
【0194】
また、制御装置30は、信号STP1,STP2を生成し、その生成した信号STP1,STP2をそれぞれ昇圧コンバータ12およびDC/DCコンバータ20へ出力する。これにより、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態となる。そして、制御装置30は、Lレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2は遮断される。
【0195】
その後、制御装置30は、電圧センサー11からの電圧VcがDC/DCコンバータ20の動作電圧範囲の下限値以下であるか否かを判定する。そして、電圧Vcが下限値以下であるとき、制御装置30の故障処理手段302は、信号MDE1に基づいて、エンジン始動時に交流モータM1が駆動モードにあり、交流モータM2が停止されていることを検出する。そして、故障処理手段302は、交流モータM1,M2の駆動状態に適合して交流モータM1,M2におけるエネルギーの総和を回生エネルギーに設定するための信号RGEL11(信号RGEL1の一種)を生成してインバータ制御手段301およびコンバータ制御手段303へ出力する。インバータ制御手段301は、信号RGEL11に応じて、信号PWMCL11(信号PWMCL1の一種)を生成してインバータ14へ出力する。また、コンバータ制御手段303は、信号RGEL11に応じて、電圧Vcを下限値よりも高い電圧に設定するための信号PWMDL11(信号PWMDLの一種)を生成して昇圧コンバータ12へ出力する。
【0196】
そうすると、インバータ14は、信号PWMCL11に応じて、交流モータM1を回生モードで駆動し、交流モータM1が発電した交流電圧を直流電圧に変換して昇圧コンバータ12に供給する。昇圧コンバータ12は、信号PWMDL11に応じて、インバータ14からの直流電圧を降圧してDC/DCコンバータ20側に供給する。これにより、電圧Vcが下限値よりも高くなる。なお、この場合、交流モータM1のみによってDC/DCコンバータ20側へエネルギーを回生させるのは、交流モータM1によってエンジン60が回転し始めており、そのエンジン60の回転力によって発電した方がエネルギー効率が良いからである。
【0197】
交流モータM1の出力トルクが零になった後、または電圧Vcが下限値よりも高くなった後、制御装置30は、信号PWMDL12を生成して昇圧コンバータ12へ出力し、昇圧コンバータ12は、信号PWMDL12に応じて電圧VcがDC/DCコンバータ20の動作電圧範囲に入るように電圧Vmを降圧してDC/DCコンバータ20側へ供給する。また、制御装置30は、信号DRVを生成してDC/DCコンバータ20へ出力する。そして、DC/DCコンバータ20は、信号DRVに応じて動作を再開し、昇圧コンバータ12から供給された直流電圧を変換して補機バッテリ21を充電する。これにより、エンジン始動時に直流電源Bが故障してもDC/DCコンバータ20に過電圧が印加されるのを防止できる。また、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態でシステムリレーSR1,SR2を遮断するので、システムリレーSR1,SR2の接点が溶断または劣化するのを防止できる。
【0198】
以上の動作によって、ハイブリッド自動車のエンジン始動時における駆動システム200の動作が終了する。
【0199】
次に、ハイブリッド自動車の発進時における駆動システム200の動作について説明する。一連の動作が開始されると、制御装置30は、信号MDE2(信号MDEの一種)と、トルク指令値TR21と、モータ回転数MRN2と、始動後のエンジン60の回転力によって交流モータM1を発電機として機能させるための信号RGE11(信号RGEの一種)とを外部ECUから受ける。この場合、トルク指令値TR21は、交流モータM2を発進用に用いるためのトルク指令値である。
【0200】
制御装置30は、電圧センサー10Aからのバッテリ電圧Vbと、電圧センサー13からの出力電圧Vmと、外部ECUからのトルク指令値TR21およびモータ回転数MRN2とに基づいて、上述した方法によって信号PWMU21を生成し、その生成した信号PWMU21を昇圧コンバータ12へ出力する。また、制御装置30は、電圧センサー13からの出力電圧Vmと、電流センサー28からのモータ電流MCRT2と、外部ECUからのトルク指令値TR21とに基づいて、上述した方法によって信号PWMI21を生成し、その生成した信号PWMI21をインバータ31へ出力する。さらに、制御装置30は、外部ECUからの信号RGE11に応じて信号PWMC11(信号PWMC1の一種)を生成してインバータ14へ出力する。
【0201】
そうすると、昇圧コンバータ12のNPNトランジスタQ1,Q2は、信号PWMU21によってオン/オフされ、昇圧コンバータ12は、NPNトランジスタQ2がオンされた期間に応じてバッテリ電圧Vbを昇圧して出力電圧VmをコンデンサC2を介してインバータ31へ供給する。また、インバータ14は、交流モータM1がエンジン60の回転力により発電した交流電圧を信号PWMC11によって直流電圧に変換し、その変換した直流電圧をインバータ31に供給する。インバータ31は、昇圧コンバータ12からの直流電圧とインバータ14からの直流電圧とを受け、その受けた直流電圧を信号PWMI21に応じて交流電圧に変換し、トルク指令値TR21によって指定されたトルクを出力するように交流モータM2を駆動する。そして、交流モータM2は、動力分割機構210およびディファレンシャルギア220を介して前輪230を駆動する。
【0202】
そして、ハイブリッド自動車の発進時に直流電源Bの故障が検出されると、制御装置30は、交流モータM1およびM2がトルク指令値TRL0によって指定された出力トルク=零を出力するように信号PWMI10,PWMI20を生成してそれぞれインバータ14,31へ出力する。インバータ14は、信号PWMI10に応じて、出力トルクが零になるように交流モータM1を駆動し、インバータ31は、信号PWMI20に応じて、出力トルクが零になるように交流モータM2を駆動する。
【0203】
また、制御装置30は、信号STP1,STP2を生成し、その生成した信号STP1,STP2をそれぞれ昇圧コンバータ12およびDC/DCコンバータ20へ出力する。これにより、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態となる。そして、制御装置30は、Lレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2は遮断される。
【0204】
その後、制御装置30は、電圧センサー11からの電圧VcがDC/DCコンバータ20の動作電圧範囲の下限値以下であるか否かを判定する。そして、電圧Vcが下限値以下であるとき、制御装置30の故障処理手段302は、信号MDE2に基づいて、発進時において交流モータM1が回生モードにあり、交流モータM2が駆動モードにあることを検出する。そして、故障処理手段302は、交流モータM1,M2の駆動状態に適合して交流モータM1,M2におけるエネルギーの総和を回生エネルギーに設定するための信号RGEL12(信号RGEL1の一種)およびトルク指令値TRL21(トルク指令値TRL2の一種)を生成し、その生成した信号RGEL12をインバータ制御手段301およびコンバータ制御手段303へ出力し、生成したトルク指令値TRL21をインバータ制御手段301へ出力する。
【0205】
インバータ制御手段301は、トルク指令値TRL21に基づいて信号PWMIL21を生成してインバータ31へ出力し、信号RGEL12に応じて、信号PWMCL12(信号PWMCL1の一種)を生成してインバータ14へ出力する。また、コンバータ制御手段303は、信号RGEL12に応じて、電圧Vcを下限値よりも高い電圧に設定するための信号PWMDL21(信号PWMDLの一種)を生成して昇圧コンバータ12へ出力する。
【0206】
そうすると、インバータ14は、信号PWMCL12に応じて、交流モータM1を回生モードで駆動し、交流モータM1が発電した交流電圧を直流電圧に変換して昇圧コンバータ12およびインバータ31に供給する。インバータ31は、信号PWMIL21に応じて、インバータ14から供給された直流電圧を交流電圧に変換して交流モータM2を駆動する。また、昇圧コンバータ12は、信号PWMDL11に応じて、インバータ14からの直流電圧を降圧してDC/DCコンバータ20側に供給する。これにより、電圧Vcが下限値よりも高くなる。
【0207】
交流モータM1およびM2の出力トルクが零になった後、または電圧Vcが下限値よりも高くなった後、制御装置30は、信号PWMDL22を生成して昇圧コンバータ12へ出力し、昇圧コンバータ12は、信号PWMDL22に応じて電圧VcがDC/DCコンバータ20の動作電圧範囲に入るように電圧Vmを降圧してDC/DCコンバータ20側へ供給する。また、制御装置30は、信号DRVを生成してDC/DCコンバータ20へ出力する。そして、DC/DCコンバータ20は、信号DRVに応じて動作を再開し、昇圧コンバータ12から供給された直流電圧を変換して補機バッテリ21を充電する。これにより、ハイブリッド自動車の発進時に直流電源Bが故障してもDC/DCコンバータ20に過電圧が印加されるのを防止できる。また、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態でシステムリレーSR1,SR2を遮断するので、システムリレーSR1,SR2の接点が溶断または劣化するのを防止できる。
【0208】
以上の動作により、ハイブリッド自動車の発進時における駆動システム200の動作が終了する。
【0209】
次に、ハイブリッド自動車が軽負荷走行モードにある場合の駆動システム200の動作について説明する。一連の動作が開始されると、制御装置30は、信号MDE3(信号MDEの一種)、トルク指令値TR22(トルク指令値TR2の一種)およびモータ回転数MRN2を外部ECUから受ける。なお、トルク指令値TR22は、ハイブリッド自動車の前輪230を交流モータM2のみで駆動するためのトルク指令値である。
【0210】
制御装置30は、電圧センサー10Aからのバッテリ電圧Vbと、電圧センサー13からの出力電圧Vmと、外部ECUからのトルク指令値TR22およびモータ回転数MRN2とに基づいて、上述した方法によって信号PWMU22(信号PWMUの一種)を生成し、その生成した信号PWMU22を昇圧コンバータ12へ出力する。また、制御装置30は、電圧センサー13からの出力電圧Vmと、電流センサー28からのモータ電流MCRT2と、外部ECUからのトルク指令値TR22とに基づいて、上述した方法によって信号PWMI22(信号PWMU2の一種)を生成し、その生成した信号PWMI22をインバータ31へ出力する。
【0211】
そうすると、昇圧コンバータ12のNPNトランジスタQ1,Q2は、信号PWMU22によってオン/オフされ、昇圧コンバータ12は、NPNトランジスタQ2がオンされた期間に応じてバッテリ電圧Vbを昇圧して出力電圧VmをコンデンサC2を介してインバータ31へ供給する。インバータ31は、昇圧コンバータ12からの直流電圧を信号PWMI22に応じて交流電圧に変換し、トルク指令値TR22によって指定されたトルクを出力するように交流モータM2を駆動する。そして、交流モータM2は、動力分割機構210およびディファレンシャルギア220を介して前輪230を駆動し、ハイブリッド自動車は、交流モータM2によって軽負荷走行を行なう。
【0212】
ハイブリッド自動車が軽負荷走行モードにある時に直流電源Bの故障が検出されると、制御装置30は、交流モータM2がトルク指令値TRL0によって指定された出力トルク=零を出力するように信号PWMI20を生成してインバータ31へ出力する。インバータ31は、信号PWMI20に応じて、出力トルクが零になるように交流モータM2を駆動する。この場合、出力トルクを零にして交流モータM1を駆動しないのは、軽負荷走行モードにおいて交流モータM1は停止されているからである。
【0213】
また、制御装置30は、信号STP1,STP2を生成し、その生成した信号STP1,STP2をそれぞれ昇圧コンバータ12およびDC/DCコンバータ20へ出力する。これにより、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態となる。そして、制御装置30は、Lレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2は遮断される。
【0214】
その後、制御装置30は、電圧センサー11からの電圧VcがDC/DCコンバータ20の動作電圧範囲の下限値以下であるか否かを判定する。そして、電圧Vcが下限値以下であるとき、制御装置30の故障処理手段302は、信号MDE3に基づいて、軽負荷走行モードにおいて交流モータM1が停止されており、交流モータM2が駆動モードにあることを検出する。そして、故障処理手段302は、交流モータM1,M2の駆動状態に適合して交流モータM1,M2におけるエネルギーの総和を回生エネルギーに設定するための信号RGEL21(信号RGEL2の一種)を生成し、その生成した信号RGEL21をインバータ制御手段301およびコンバータ制御手段303へ出力する。
【0215】
インバータ制御手段301は、信号RGEL21に応じて、信号PWMCL21(信号PWMCL2の一種)を生成してインバータ31へ出力する。また、コンバータ制御手段303は、信号RGEL21に応じて、電圧Vcを下限値よりも高い電圧に設定するための信号PWMDL31(信号PWMDLの一種)を生成して昇圧コンバータ12へ出力する。
【0216】
そうすると、インバータ31は、信号PWMCL21に応じて、交流モータM2を回生モードで駆動し、交流モータM2が発電した交流電圧を直流電圧に変換して昇圧コンバータ12に供給する。昇圧コンバータ12は、信号PWMDL31に応じて、インバータ31からの直流電圧を降圧してDC/DCコンバータ20側に供給する。これにより、電圧Vcが下限値よりも高くなる。
【0217】
交流モータM2の出力トルクが零になった後、または電圧Vcが下限値よりも高くなった後、制御装置30は、信号PWMDL32を生成して昇圧コンバータ12へ出力し、昇圧コンバータ12は、信号PWMDL32に応じて電圧VcがDC/DCコンバータ20の動作電圧範囲に入るように電圧Vmを降圧してDC/DCコンバータ20側へ供給する。また、制御装置30は、信号DRVを生成してDC/DCコンバータ20へ出力する。そして、DC/DCコンバータ20は、信号DRVに応じて動作を再開し、昇圧コンバータ12から供給された直流電圧を変換して補機バッテリ21を充電する。これにより、ハイブリッド自動車の軽負荷走行モードにおいて直流電源Bが故障してもDC/DCコンバータ20に過電圧が印加されるのを防止できる。また、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態でシステムリレーSR1,SR2を遮断するので、システムリレーSR1,SR2の接点が溶断または劣化するのを防止できる。
【0218】
以上の動作により、ハイブリッド自動車の軽負荷走行モードにおける駆動システム200の動作が終了する。
【0219】
次に、ハイブリッド自動車が中速低負荷走行モードにある場合の駆動システム200の動作について説明する。この場合の駆動システム200の動作は、上述したハイブリッド自動車のエンジン60の始動時における駆動システム200の動作と同じである。そして、交流モータM1は、エンジン60を始動し、ハイブリッド自動車はエンジン60の駆動力によって走行する。なお、制御装置30は、中速低負荷走行モードにおいて信号MDE4(信号MDEの一種)を外部ECUから受け、その受けた信号MDE4に基づいて、中速低負荷走行モードにおいて交流モータM1が駆動モードにあり、交流モータM2が停止されていることを検出する。
【0220】
次に、ハイブリッド自動車が加速・急加速モードにある場合の駆動システム200の動作について説明する。一連の動作が開始されると、制御装置30は、信号MDE5(信号MDEの一種)と、トルク指令値TR23と、モータ回転数MRN2と、交流モータM1を発電機として機能させるための信号RGE12(信号RGEの一種)とを外部ECUから受ける。なお、トルク指令値TR23は、交流モータM2を加速・急加速用に用いるためのトルク指令値である。
【0221】
制御装置30は、電圧センサー10Aからのバッテリ電圧Vbと、電圧センサー13からの出力電圧Vmと、外部ECUからのトルク指令値TR23およびモータ回転数MRN2とに基づいて、上述した方法によって信号PWMU23を生成し、その生成した信号PWMU23を昇圧コンバータ12へ出力する。また、制御装置30は、電圧センサー13からの出力電圧Vmと、電流センサー28からのモータ電流MCRT2と、外部ECUからのトルク指令値TR23とに基づいて、上述した方法によって信号PWMI23を生成し、その生成した信号PWMI23をインバータ31へ出力する。さらに、制御装置30は、外部ECUからの信号RGE12に応じて信号PWMC12(信号PWMC1の一種)を生成してインバータ14へ出力する。
【0222】
そうすると、昇圧コンバータ12のNPNトランジスタQ1,Q2は、信号PWMU23によってオン/オフされ、昇圧コンバータ12は、NPNトランジスタQ2がオンされた期間に応じてバッテリ電圧Vbを昇圧して出力電圧VmをコンデンサC2を介してインバータ31へ供給する。また、インバータ14は、交流モータM1がエンジン60の回転力(エンジン60の回転数は加速前よりも高くなっている。)により発電した交流電圧を信号PWMC12によって直流電圧に変換し、その変換した直流電圧をインバータ31に供給する。インバータ31は、昇圧コンバータ12からの直流電圧とインバータ14からの直流電圧とを受け、その受けた直流電圧を信号PWMI23に応じて交流電圧に変換し、トルク指令値TR23によって指定されたトルクを出力するように交流モータM2を駆動する。
【0223】
また、加速・急加速時には、エンジン60の出力が上昇される。そして、エンジン60および交流モータM2は、動力分割機構210およびディファレンシャルギア220を介して前輪230を駆動し、ハイブリッド自動車は加速または急加速する。
【0224】
ハイブリッド自動車が軽負荷走行モードにある時に直流電源Bの故障が検出されると、制御装置30は、交流モータM1,M2がトルク指令値TRL0によって指定された出力トルク=零を出力するように信号PWMI10およびPWMI20を生成してそれぞれインバータ14,31へ出力する。インバータ14は、信号PWMI10に応じて、出力トルクが零になるように交流モータM1を駆動する。また、インバータ31は、信号PWMI20に応じて、出力トルクが零になるように交流モータM2を駆動する。
【0225】
また、制御装置30は、信号STP1,STP2を生成し、その生成した信号STP1,STP2をそれぞれ昇圧コンバータ12およびDC/DCコンバータ20へ出力する。これにより、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態となる。そして、制御装置30は、Lレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2は遮断される。
【0226】
その後、制御装置30は、電圧センサー11からの電圧VcがDC/DCコンバータ20の動作電圧範囲の下限値以下であるか否かを判定する。そして、電圧Vcが下限値以下であるとき、制御装置30の故障処理手段302は、信号MDE5に基づいて、加速・急加速モードにおいて交流モータM1が回生モードにあり、交流モータM2が駆動モードにあることを検出する。そして、故障処理手段302は、交流モータM1,M2の駆動状態に適合して交流モータM1,M2におけるエネルギーの総和を回生エネルギーに設定するための信号RGEL13(信号RGEL1の一種)およびトルク指令値TRL23(トルク指令値TRL2の一種)を生成し、その生成した信号RGEL23をインバータ制御手段301およびコンバータ制御手段303へ出力し、トルク指令値TRL23をインバータ制御手段301へ出力する。
【0227】
インバータ制御手段301は、信号RGEL13に応じて信号PWMCL13(信号PWMCL1の一種)を生成してインバータ14へ出力し、トルク指令値TRL23に基づいて信号PWMI23(信号PWMI2の一種)を生成してインバータ31へ出力する。また、コンバータ制御手段303は、信号RGEL13に応じて、電圧Vcを下限値よりも高い電圧に設定するための信号PWMDL41(信号PWMDLの一種)を生成して昇圧コンバータ12へ出力する。
【0228】
そうすると、インバータ14は、信号PWMCL13に応じて、交流モータM1を回生モードで駆動し、交流モータM1が発電した交流電圧を直流電圧に変換して昇圧コンバータ12およびインバータ31に供給する。インバータ31は、信号PWMI23に応じて、インバータ14からの直流電圧を交流電圧に変換してトルク指令値TRL23によって指定されたトルクを出力するように交流モータM2を駆動する。また、昇圧コンバータ12は、信号PWMDL41に応じて、インバータ14からの直流電圧を降圧してDC/DCコンバータ20側に供給する。これにより、電圧Vcが下限値よりも高くなる。
【0229】
交流モータM1,M2の出力トルクが零になった後、または電圧Vcが下限値よりも高くなった後、制御装置30は、信号PWMDL42を生成して昇圧コンバータ12へ出力し、昇圧コンバータ12は、信号PWMDL42に応じて電圧VcがDC/DCコンバータ20の動作電圧範囲に入るように電圧Vmを降圧してDC/DCコンバータ20側へ供給する。また、制御装置30は、信号DRVを生成してDC/DCコンバータ20へ出力する。そして、DC/DCコンバータ20は、信号DRVに応じて動作を再開し、昇圧コンバータ12から供給された直流電圧を変換して補機バッテリ21を充電する。これにより、ハイブリッド自動車の加速・急加速モードにおいて直流電源Bが故障してもDC/DCコンバータ20に過電圧が印加されるのを防止できる。また、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態でシステムリレーSR1,SR2を遮断するので、システムリレーSR1,SR2の接点が溶断または劣化するのを防止できる。
【0230】
以上の動作により、ハイブリッド自動車の加速・急加速モードにおける駆動システム200の動作が終了する。
【0231】
次に、ハイブリッド自動車が低μ路走行モードにある場合の駆動システム200の動作について説明する。一連の動作が開始されると、制御装置30は、信号MDE6(信号MDEの一種)および信号RGE21(信号RGEの一種)を外部ECUから受ける。なお、信号RGE21は、交流モータM2を回生モードで駆動するための信号である。
【0232】
制御装置30は、外部ECUからの信号RGE21に応じて信号PWMD21(信号PWMDの一種)を生成して昇圧コンバータ12へ出力する。また、制御装置30は、外部ECUからの信号RGE21に応じて信号PWMC21(信号PWMC2の一種)を生成してインバータ31へ出力する。
【0233】
この低μ路走行モードにおいては、エンジン60は前輪230を駆動しており、前輪230の駆動力の一部が交流モータM2に伝達される。
【0234】
そうすると、インバータ31は、信号PWMC21に応じて、交流モータM2を回生モードで駆動し、前輪230の駆動力の一部を受けて交流モータM2が発電した交流電圧を直流電圧に変換して昇圧コンバータ12へ供給する。昇圧コンバータ12は、インバータ31からの直流電圧を信号PWMD21によって降圧して直流電源B側に供給する。
【0235】
ハイブリッド自動車が低μ路走行モードにある時に直流電源Bの故障が検出されると、制御装置30は、交流モータM2がトルク指令値TRL0によって指定された出力トルク=零を出力するように信号PWMI20を生成してインバータ31へ出力する。インバータ31は、信号PWMI20に応じて、出力トルクが零になるように交流モータM2を駆動する。この場合、出力トルクを零にして交流モータM1を駆動しないのは、低μ路走行モードにおいて交流モータM1は停止されているからである。
【0236】
また、制御装置30は、信号STP1,STP2を生成し、その生成した信号STP1,STP2をそれぞれ昇圧コンバータ12およびDC/DCコンバータ20へ出力する。これにより、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態となる。そして、制御装置30は、Lレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2は遮断される。
【0237】
その後、制御装置30は、電圧センサー11からの電圧VcがDC/DCコンバータ20の動作電圧範囲の下限値以下であるか否かを判定する。そして、電圧Vcが下限値以下であるとき、制御装置30の故障処理手段302は、信号MDE6に基づいて低μ路走行モードにおいて交流モータM1が停止されており、交流モータM2が駆動モードにあることを検出する。そして、故障処理手段302は、交流モータM1,M2の駆動状態に適合して交流モータM1,M2におけるエネルギーの総和を回生エネルギーに設定するための信号RGEL22(信号RGEL2の一種)を生成し、その生成した信号RGEL22をインバータ制御手段301およびコンバータ制御手段303へ出力する。
【0238】
インバータ制御手段301は、信号RGEL22に応じて、信号PWMCL22(信号PWMCL2の一種)を生成してインバータ31へ出力する。また、コンバータ制御手段303は、信号RGEL22に応じて、電圧Vcを下限値よりも高い電圧に設定するための信号PWMDL51(信号PWMDLの一種)を生成して昇圧コンバータ12へ出力する。
【0239】
そうすると、インバータ31は、信号PWMCL22に応じて、交流モータM2を回生モードで駆動し、交流モータM2が発電した交流電圧を直流電圧に変換して昇圧コンバータ12に供給する。昇圧コンバータ12は、信号PWMDL51に応じて、インバータ31からの直流電圧を降圧してDC/DCコンバータ20側に供給する。これにより、電圧Vcが下限値よりも高くなる。
【0240】
交流モータM2の出力トルクが零になった後、または電圧Vcが下限値よりも高くなった後、制御装置30は、信号PWMDL52を生成して昇圧コンバータ12へ出力し、昇圧コンバータ12は、信号PWMDL52に応じて電圧VcがDC/DCコンバータ20の動作電圧範囲に入るように電圧Vmを降圧してDC/DCコンバータ20側へ供給する。また、制御装置30は、信号DRVを生成してDC/DCコンバータ20へ出力する。そして、DC/DCコンバータ20は、信号DRVに応じて動作を再開し、昇圧コンバータ12から供給された直流電圧を変換して補機バッテリ21を充電する。これにより、ハイブリッド自動車の低μ路走行モードにおいて直流電源Bが故障してもDC/DCコンバータ20に過電圧が印加されるのを防止できる。また、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態でシステムリレーSR1,SR2を遮断するので、システムリレーSR1,SR2の接点が溶断または劣化するのを防止できる。
【0241】
以上の動作により、ハイブリッド自動車の低μ路走行モードにおける駆動システム200の動作が終了する。
【0242】
最後に、ハイブリッド自動車が減速・制動モードにある場合の駆動システム200の動作について説明する。一連の動作が開始されると、制御装置30は、外部ECUから信号RGE22(信号RGEの一種)および信号MDE7(信号MDEの一種)を受ける。そして、制御装置30は、信号RGE22に応じて信号PWMC22を生成し、その生成した信号PWMC22をインバータ31へ出力する。また、制御装置30は、信号RGE22に応じて信号PWMD22(信号PWMDの一種)を生成して昇圧コンバータ12へ出力する。
【0243】
インバータ31は、信号PWMC22に応じて交流モータM2を回生モードで駆動し、交流モータM2が発電した交流電圧を直流電圧に変換して昇圧コンバータ12へ供給する。昇圧コンバータ12は、信号PWMD22に応じて、インバータ31からの直流電圧を降圧して直流電源B側に供給する。これにより、ハイブリッド自動車は、交流モータM2の回生ブレーキによって減速・制動を行なう。
【0244】
ハイブリッド自動車が減速・制動モードにある時に直流電源Bの故障が検出されると、制御装置30は、交流モータM2がトルク指令値TRL0によって指定された出力トルク=零を出力するように信号PWMI20を生成してインバータ31へ出力する。インバータ31は、信号PWMI20に応じて、出力トルクが零になるように交流モータM2を駆動する。この場合、出力トルクを零にして交流モータM1を駆動しないのは、減速・制動モードにおいて交流モータM1は停止されているからである。
【0245】
また、制御装置30は、信号STP1,STP2を生成し、その生成した信号STP1,STP2をそれぞれ昇圧コンバータ12およびDC/DCコンバータ20へ出力する。これにより、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態となる。そして、制御装置30は、Lレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2は遮断される。
【0246】
その後、制御装置30は、電圧センサー11からの電圧VcがDC/DCコンバータ20の動作電圧範囲の下限値以下であるか否かを判定する。そして、電圧Vcが下限値以下であるとき、制御装置30の故障処理手段302は、信号MDE7に基づいて減速・制動モードにおいて交流モータM1が停止されており、交流モータM2が回生モードにあることを検出する。そして、故障処理手段302は、交流モータM1,M2の駆動状態に適合して交流モータM1,M2におけるエネルギーの総和を回生エネルギーに設定するための信号RGEL23(信号RGEL2の一種)を生成し、その生成した信号RGEL23をインバータ制御手段301およびコンバータ制御手段303へ出力する。
【0247】
インバータ制御手段301は、信号RGEL23に応じて、信号PWMCL23(信号PWMCL2の一種)を生成してインバータ31へ出力する。また、コンバータ制御手段303は、信号RGEL23に応じて、電圧Vcを下限値よりも高い電圧に設定するための信号PWMDL61(信号PWMDLの一種)を生成して昇圧コンバータ12へ出力する。
【0248】
そうすると、インバータ31は、信号PWMCL23に応じて、交流モータM2を回生モードで駆動し、交流モータM2が発電した交流電圧を直流電圧に変換して昇圧コンバータ12に供給する。昇圧コンバータ12は、信号PWMDL61に応じて、インバータ31からの直流電圧を降圧してDC/DCコンバータ20側に供給する。これにより、電圧Vcが下限値よりも高くなる。
【0249】
交流モータM2の出力トルクが零になった後、または電圧Vcが下限値よりも高くなった後、制御装置30は、信号PWMDL62を生成して昇圧コンバータ12へ出力し、昇圧コンバータ12は、信号PWMDL62に応じて電圧VcがDC/DCコンバータ20の動作電圧範囲に入るように電圧Vmを降圧してDC/DCコンバータ20側へ供給する。また、制御装置30は、信号DRVを生成してDC/DCコンバータ20へ出力する。そして、DC/DCコンバータ20は、信号DRVに応じて動作を再開し、昇圧コンバータ12から供給された直流電圧を変換して補機バッテリ21を充電する。これにより、ハイブリッド自動車の減速・制動モードにおいて直流電源Bが故障してもDC/DCコンバータ20に過電圧が印加されるのを防止できる。また、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態でシステムリレーSR1,SR2を遮断するので、システムリレーSR1,SR2の接点が溶断または劣化するのを防止できる。
【0250】
以上の動作により、ハイブリッド自動車の減速・制動モードにおける駆動システム200の動作が終了する。
【0251】
このように、ハイブリッド自動車の各状態において直流電源Bの故障が検出されると、システムリレーSR1,SR2が遮断され、昇圧コンバータ12の制御が降圧制御に切換えられる。また、直流電源Bと昇圧コンバータ12との間に直流電流が流れない状態でシステムリレーSR1,SR2が遮断される。
【0252】
したがって、ハイブリッド自動車の各状態において直流電源Bが故障してもDC/DCコンバータ20に過電圧が印加されるのを防止できる。また、システムリレーSR1,SR2の接点の溶着または劣化を防止できる。
【0253】
なお、ハイブリッド車駆動装置100のうち、直流電源B、電圧センサー10A,11,13、温度センサー10B、システムリレーSR1,SR2、コンデンサC1,C2、昇圧コンバータ12、インバータ14,31、電流センサー18,24,28、DC/DCコンバータ20、補機バッテリ21および制御装置30は、「モータ駆動装置」を構成する。
【0254】
また、上記においては、直流電源Bと昇圧コンバータ12との間に接続されるのは、DC/DCコンバータ20であると説明したが、この発明においては、これに限らず、電気負荷が直流電源Bと昇圧コンバータ12との間に接続されていればよい。そして、上述した上限値は、電気負荷の部品耐圧に設定される。
【0255】
さらに、この発明においては、直流電源Bが故障したときのハイブリッド車駆動装置100の制御は、実際にはCPU(Central Processing Unit)によって行なわれ、CPUは、図7に示すフローチャートの各ステップを備えるプログラムをROM(Read Only Memory)から読出し、その読出したプログラムを実行して図7に示すフローチャートに従って、直流電源Bが故障したときのハイブリッド車駆動装置100の制御を行なう。したがって、ROMは、図7に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。
【0256】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】この発明の実施の形態によるハイブリッド車駆動装置の概略ブロック図である。
【図2】図1に示す制御装置の機能ブロック図である。
【図3】図2に示すインバータ制御手段の機能ブロック図である。
【図4】図2に示す故障処理手段の機能ブロック図である。
【図5】図2に示すコンバータ制御手段の機能ブロック図である。
【図6】図2に示すコンバータ制御手段が生成する信号のタイミングチャートである。
【図7】直流電源が故障したときのハイブリッド車駆動装置における動作を説明するためのフローチャートである。
【図8】図1に示すハイブリッド車駆動装置を搭載したハイブリッド自動車のより具体的な駆動システムの一例を示す概略ブロック図である。
【図9】図8に示す動力分割機構の模式図である。
【図10】従来のモータ駆動装置の概略ブロック図である。
【符号の説明】
10A,11,13,320 電圧センサー、10B 温度センサー、12 昇圧コンバータ、14,31,330,340 インバータ、15 U相アーム、16 V相アーム、17 W相アーム、18,24,28 電流センサー、20 DC/DCコンバータ、21 補機バッテリ、30 制御装置、35 フロント用IPM、40 モータ制御用相電圧演算部、42 インバータ用PWM信号変換部、44 回生信号生成回路、50 電圧指令演算部、52 コンバータ用デューティー比演算部、54 コンバータ用PWM信号変換部、60 エンジン、71 判定部、72 制御部、100 ハイブリッド車駆動装置、200 駆動システム、210 動力分割機構、211 リングギア、212 キャリアギア、213 サンギア、220 ディファレンシャルギア、230 前輪、251,252,254 シャフト、253 プラネタリキャリア、300 モータ駆動装置、301 インバータ制御手段、302 故障処理手段、303 コンバータ制御手段、310 双方向コンバータ、B 直流電源、SR1,SR2システムリレー、C1,C2 コンデンサ、L1,311 リアクトル、Q1〜Q8,312,313 NPNトランジスタ、D1〜D8,314,315 ダイオード、M1,M2 交流モータ。

Claims (15)

  1. 第1のモータを駆動する第1のインバータと、
    第2のモータを駆動する第2のインバータと、
    直流電圧を出力する直流電源と、
    前記直流電源からの直流電圧を昇圧して前記第1および第2のインバータへ供給し、前記第1または第2のインバータからの直流電圧を降圧して前記直流電源側に供給する電圧変換器と、
    前記直流電源と前記電圧変換器との間に接続されたリレーと、
    前記リレーと前記電圧変換器との間に接続された電気負荷と、
    前記直流電源の故障検出に応じて、前記リレーを遮断し、前記電圧変換器の制御を降圧制御に切換える制御装置とを備えるモータ駆動装置。
  2. 前記制御装置は、前記第1のモータにおける第1のエネルギーと前記第2のモータにおける第2のエネルギーとの総和が零になるように前記第1および第2のインバータを制御し、かつ、前記電気負荷および前記電圧変換器が停止すると、前記リレーを遮断する、請求項1に記載のモータ駆動装置。
  3. 前記制御装置は、前記第1および第2のエネルギーが零になるように前記第1および第2のインバータを制御する、請求項2に記載のモータ駆動装置。
  4. 前記制御装置は、前記電圧変換器の前記直流電源側の電圧である一次電圧が上限値以下になるデューティー比を設定して前記電圧変換器の制御を降圧制御に切換える、請求項2または請求項3に記載のモータ駆動装置。
  5. 前記上限値は、前記電気負荷の部品耐圧である、請求項4に記載のモータ駆動装置。
  6. 前記制御装置は、前記一次電圧が前記電気負荷の動作電圧の範囲になるデューティー比を設定して前記電圧変換器の制御を降圧制御に切換える、請求項4または請求項5に記載のモータ駆動装置。
  7. 前記動作電圧の範囲は、下限値と前記上限値とから成り、
    前記制御装置は、前記一次電圧が前記下限値よりも低下したとき、前記第1のエネルギーと前記第2のエネルギーとの総和が回生エネルギーになるように前記第1および第2のインバータを制御する、請求項2から請求項6のいずれか1項に記載のモータ駆動装置。
  8. 前記電気負荷は、前記直流電源からの直流電圧を変換して補機バッテリに供給するDC/DCコンバータである、請求項1から請求項7のいずれか1項に記載のモータ駆動装置。
  9. ハイブリッド車を駆動するハイブリッド車駆動装置であって、
    内燃機関と、
    前記内燃機関に接続された第1のモータと、
    第2のモータと、
    前記第1および第2のモータを駆動する請求項1から請求項8のいずれか1項に記載のモータ駆動装置とを備え、
    前記制御装置は、前記ハイブリッド車の走行モードに応じて、前記第1のモータが発電した電力によって前記第2のモータを駆動するように前記第1および第2のインバータを駆動する、ハイブリッド車駆動装置。
  10. 直流電源の故障時におけるモータ駆動装置の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体であって、
    前記モータ駆動装置は、
    第1のモータを駆動する第1のインバータと、
    第2のモータを駆動する第2のインバータと、
    直流電圧を出力する前記直流電源と、
    前記直流電源からの直流電圧を昇圧して前記第1および第2のインバータへ供給し、前記第1または第2のインバータからの直流電圧を降圧して前記直流電源側に供給する電圧変換器と、
    前記直流電源と前記電圧変換器との間に接続されたリレーと、
    前記リレーと前記電圧変換器との間に接続された電気負荷とを含み、
    前記プログラムは、
    前記直流電源の故障を検出する第1のステップと、
    前記直流電源の故障検出に応じて、前記リレーを遮断する第2のステップと、前記リレーの遮断に応じて、前記電圧変換器の制御を降圧制御に切換える第3のステップとをコンピュータに実行させる、コンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
  11. 前記第2のステップは、
    前記第1のモータにおける第1のエネルギーと前記第2のモータにおける第2のエネルギーとの総和が零になるように前記第1および第2のインバータを制御する第1のサブステップと、
    前記電圧変換器を停止させる第2のサブステップと、
    前記電気負荷を停止させる第3のサブステップと、
    前記第1、第2および第3のサブステップが完了した後、前記リレーを遮断する第4のサブステップとを含む、請求項10に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
  12. 前記第1のサブステップは、前記第1および第2のエネルギーを零にする、請求項11に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
  13. 前記第3のステップは、
    前記電圧変換器の前記直流電源側の電圧である一次電圧を上限値以下に設定するためのデューティー比を演算する第5のサブステップと、
    前記演算されたデューティー比に基づいて、前記電圧変換器を制御する第6のサブステップとを含む、請求項10から請求項12のいずれか1項に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
  14. 前記第5のサブステップは、前記一次電圧を前記電気負荷の動作電圧の範囲になるデューティー比を演算する、請求項13に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
  15. 前記動作電圧の範囲は、下限値と前記上限値とから成り、
    前記第3のステップは、
    前記一次電圧が前記下限値以下であるか否かを判定する第7のサブステップと、
    前記一次電圧が前記下限値以下のとき、前記第1および第2のエネルギーの総和が回生エネルギーになるように前記第1および第2のインバータを制御する第8のサブステップとをさらに含む、請求項13または請求項14に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
JP2003065360A 2003-03-11 2003-03-11 モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体 Expired - Lifetime JP3661689B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003065360A JP3661689B2 (ja) 2003-03-11 2003-03-11 モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
CNB038260700A CN1333521C (zh) 2003-03-11 2003-07-10 电机驱动设备、使用该设备的混合动力车驱动设备
EP03816253.3A EP1603224B1 (en) 2003-03-11 2003-07-10 Motor drive device, hybrid automobile drive device using the same, and computer-readable recording medium containing program for causing computer to execute control of motor drive device
US10/530,514 US7099756B2 (en) 2003-03-11 2003-07-10 Motor drive apparatus, hybrid vehicle drive apparatus using the same, and computer readable recording medium recorded with program for causing computer to perform control of motor drive apparatus
KR1020057016944A KR100708923B1 (ko) 2003-03-11 2003-07-10 모터 구동 장치, 이를 이용하는 하이브리드 차량 구동 장치및 컴퓨터가 모터 구동 장치의 제어를 수행하게 하도록프로그램이 기록된 컴퓨터 판독 가능 기록 매체
PCT/JP2003/008810 WO2004082122A1 (ja) 2003-03-11 2003-07-10 モータ駆動装置、それを備えるハイブリッド車駆動装置およびモータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
HK06105296A HK1085309A1 (en) 2003-03-11 2006-05-04 Motor drive device, hybrid automobile drive using the same
US11/477,595 US7212891B2 (en) 2003-03-11 2006-06-30 Motor drive apparatus, hybrid vehicle drive apparatus using the same, and computer readable recording medium recorded with program for causing computer to perform control of motor drive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003065360A JP3661689B2 (ja) 2003-03-11 2003-03-11 モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体

Publications (2)

Publication Number Publication Date
JP2004274945A true JP2004274945A (ja) 2004-09-30
JP3661689B2 JP3661689B2 (ja) 2005-06-15

Family

ID=32984492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065360A Expired - Lifetime JP3661689B2 (ja) 2003-03-11 2003-03-11 モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体

Country Status (7)

Country Link
US (2) US7099756B2 (ja)
EP (1) EP1603224B1 (ja)
JP (1) JP3661689B2 (ja)
KR (1) KR100708923B1 (ja)
CN (1) CN1333521C (ja)
HK (1) HK1085309A1 (ja)
WO (1) WO2004082122A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018223A1 (ja) * 2005-08-08 2007-02-15 Toyota Jidosha Kabushiki Kaisha 車両の電源装置
EP1790520A2 (en) 2005-11-29 2007-05-30 Denso Corporation Control apparatus and method for electric vehicles
JP2007202384A (ja) * 2005-12-26 2007-08-09 Denso Corp 電気自動車の制御装置
JP2007259631A (ja) * 2006-03-24 2007-10-04 Toyota Motor Corp 電動機駆動制御システム
JP2007306781A (ja) * 2006-04-14 2007-11-22 Denso Corp 電気自動車の制御装置
WO2008010281A1 (en) * 2006-07-20 2008-01-24 Mitsubishi Electric Corporation Controller of electric vehicle
WO2008081983A1 (ja) * 2007-01-04 2008-07-10 Toyota Jidosha Kabushiki Kaisha 車両の電源装置および車両
JP2008271649A (ja) * 2007-04-17 2008-11-06 Denso Corp 電気自動車の制御装置
JP2009227078A (ja) * 2008-03-21 2009-10-08 Toyota Motor Corp 動力システムおよびその制御方法並びに車両
JP2010130877A (ja) * 2008-12-01 2010-06-10 Hitachi Automotive Systems Ltd 車両用バッテリー制御装置、車両用バッテリーシステム、および車両用バッテリー制御方法
RU2397089C1 (ru) * 2006-09-20 2010-08-20 Тойота Дзидося Кабусики Кайся Устройство и способ управления подачей электрической мощности для гибридного транспортного средства
DE112009000040T5 (de) 2008-03-25 2010-08-26 Aisin AW Co., Ltd., Anjo-shi Steuerungssystem für eine elektrisch drehende Maschine und Fahrzeugantriebssystem, das das Steuerungssystem für die elektrisch drehende Maschine enthält
WO2010100736A1 (ja) * 2009-03-05 2010-09-10 トヨタ自動車株式会社 ハイブリッド車両の充放電制御システムおよびその制御方法
JP2010213479A (ja) * 2009-03-11 2010-09-24 Panasonic Corp 分散型電源装置
JP2010215106A (ja) * 2009-03-17 2010-09-30 Toyota Motor Corp ハイブリッド車両の制御システム
US7821214B2 (en) 2006-04-24 2010-10-26 Toyota Jidosha Kabushiki Kaisha Load driving apparatus, vehicle incorporating the same, and control method for load driving apparatus
RU2420849C1 (ru) * 2007-09-13 2011-06-10 Тойота Дзидося Кабусики Кайся Устройство управления зарядкой для транспортного средства и транспортное средство
JP2011217579A (ja) * 2010-04-02 2011-10-27 Hitachi Automotive Systems Ltd モータ制御装置およびモータ制御方法
CN102582459A (zh) * 2011-01-14 2012-07-18 通用汽车环球科技运作有限责任公司 用于车辆中的电功率管理的方法和设备
CN103648829A (zh) * 2011-07-21 2014-03-19 罗伯特·博世有限公司 用于运行电网的方法以及用于控制电网的装置
JP2015524362A (ja) * 2012-07-04 2015-08-24 ボルボ トラック コーポレイション ハイブリッド車両電気装置を制御するための方法
JP2016159772A (ja) * 2015-03-02 2016-09-05 本田技研工業株式会社 ハイブリッド自動車
KR20170040489A (ko) * 2015-10-05 2017-04-13 삼성전자주식회사 모터 구동 장치, 모터 구동 장치의 제어 방법, 인버터 장치 및 전원 장치

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593973B2 (ja) * 2004-05-26 2010-12-08 トヨタ自動車株式会社 モータ駆動装置
JP4254693B2 (ja) * 2004-11-08 2009-04-15 トヨタ自動車株式会社 駆動装置およびこれを搭載する自動車
JP4222297B2 (ja) * 2004-11-24 2009-02-12 トヨタ自動車株式会社 車両の制御装置
JP4679891B2 (ja) * 2004-11-30 2011-05-11 トヨタ自動車株式会社 交流電圧発生装置および動力出力装置
JP2006219082A (ja) * 2005-02-14 2006-08-24 Hitachi Ltd 車両用回転電機システム
JP2006280193A (ja) * 2005-03-03 2006-10-12 Toyota Motor Corp 駆動回路の異常判定装置およびこれを備える駆動装置並びに駆動回路の異常判定方法
CN101309810B (zh) * 2005-09-23 2012-07-04 Afs三一电力公司 插电式混合动力车辆系统及其电子装置的控制方法
US7456602B2 (en) * 2005-11-18 2008-11-25 Continental Automotive Systems Us, Inc. System and method of commonly controlling power converters
EP1796262B1 (en) 2005-12-07 2009-11-04 Denso Corporation Control apparatus for electric vehicles
JP4538850B2 (ja) * 2005-12-07 2010-09-08 株式会社デンソー 電気自動車の制御装置
EP1800934A3 (en) 2005-12-26 2018-01-10 Denso Corporation Control apparatus for electric vehicles
US7653466B2 (en) 2005-12-26 2010-01-26 Denso Corporation Control apparatus for electric vehicles
JP4892991B2 (ja) * 2006-01-27 2012-03-07 トヨタ自動車株式会社 電動機駆動装置およびそれを備えた車両
JP4622884B2 (ja) * 2006-02-06 2011-02-02 トヨタ自動車株式会社 電動機駆動装置およびそれを備えたハイブリッド自動車ならびに電力変換装置の停止制御方法
JP4381408B2 (ja) 2006-02-17 2009-12-09 株式会社デンソー 電気自動車の制御装置
JP4479919B2 (ja) 2006-03-29 2010-06-09 株式会社デンソー 電気自動車の制御装置
JP4552904B2 (ja) * 2006-06-23 2010-09-29 トヨタ自動車株式会社 車両の電源装置およびそれを搭載する車両
JP2008017609A (ja) * 2006-07-05 2008-01-24 Toshiba Corp 電気車制御装置
JP4479920B2 (ja) 2006-07-13 2010-06-09 株式会社デンソー 電気自動車の制御装置
JP4356715B2 (ja) * 2006-08-02 2009-11-04 トヨタ自動車株式会社 電源装置、および電源装置を備える車両
US20080060370A1 (en) * 2006-09-13 2008-03-13 Cummins Power Generation Inc. Method of cooling a hybrid power system
BRPI0718370B1 (pt) * 2006-09-29 2018-11-06 Toyota Motor Co Ltd dispositivo de fonte de energia carregado por uma fonte de energia elétrica externa e veículo
JP4972377B2 (ja) * 2006-10-23 2012-07-11 日立オートモティブシステムズ株式会社 電動ブレーキ制御装置、及び電動ブレーキ装置
JP4479922B2 (ja) * 2006-12-14 2010-06-09 株式会社デンソー 電気自動車の制御装置
JP2008162491A (ja) * 2006-12-28 2008-07-17 Toyota Motor Corp 車両およびその制御方法
JP4264843B2 (ja) * 2007-03-30 2009-05-20 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US7579792B2 (en) * 2007-04-23 2009-08-25 Gm Global Technology Operations, Inc. Hybrid motor boost system and methods
JP4844753B2 (ja) * 2007-05-09 2011-12-28 株式会社デンソー 電気自動車の制御装置
JP4971039B2 (ja) * 2007-06-07 2012-07-11 本田技研工業株式会社 モータ制御装置
JP4245069B2 (ja) * 2007-06-27 2009-03-25 トヨタ自動車株式会社 車両用制御装置及び車両駆動制御方法
JP4965363B2 (ja) * 2007-07-12 2012-07-04 トヨタ自動車株式会社 車両およびその制御方法並びに駆動装置
JP4349447B2 (ja) * 2007-07-19 2009-10-21 トヨタ自動車株式会社 インバータ制御装置および車両
JP5118913B2 (ja) * 2007-07-24 2013-01-16 トヨタ自動車株式会社 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
US7990098B2 (en) * 2007-07-30 2011-08-02 GM Global Technology Operations LLC Series-coupled two-motor drive using double-ended inverter system
US7956563B2 (en) * 2007-07-30 2011-06-07 GM Global Technology Operations LLC System for using a multi-phase motor with a double-ended inverter system
US8058830B2 (en) * 2007-07-30 2011-11-15 GM Global Technology Operations LLC Charging energy sources with a rectifier using double-ended inverter system
US8267837B2 (en) * 2007-11-07 2012-09-18 GM Global Technology Operations LLC Method and apparatus to control engine temperature for a hybrid powertrain
JP2009148073A (ja) * 2007-12-14 2009-07-02 Mazda Motor Corp バッテリの充電方法および充電装置
DE102008043943A1 (de) * 2007-12-27 2009-07-02 Robert Bosch Gmbh Verfahren zum Betreiben eines elektrischen Netzwerks, insbesondere eines Kraftfahrzeugs
JP5029915B2 (ja) * 2008-07-31 2012-09-19 アイシン・エィ・ダブリュ株式会社 回転電機制御システム及び車両駆動システム
US7795825B2 (en) * 2008-09-15 2010-09-14 Caterpillar Inc Over-voltage and under-voltage management for electric drive system
JP4968630B2 (ja) * 2008-11-27 2012-07-04 株式会社デンソー 電気自動車の制御装置
KR101034084B1 (ko) * 2008-12-05 2011-05-13 현대자동차주식회사 하이브리드 차량의 2차 소손 방지 장치 및 방지 방법
EP2468563A1 (en) * 2009-08-17 2012-06-27 Mitsubishi Electric Corporation Electric vehicle and power conversion device
KR20110045426A (ko) * 2009-10-27 2011-05-04 현대자동차주식회사 Dc/dc 컨버터 고장시 차량 운전 유지를 위한 비상 동작 장치 및 방법
JP5189607B2 (ja) * 2010-02-04 2013-04-24 トヨタ自動車株式会社 車両用電源装置
WO2011106767A2 (en) * 2010-02-26 2011-09-01 Segway Inc. Apparatus and methods for control of a vehicle
US8875819B2 (en) * 2010-03-01 2014-11-04 Bae Systems Controls Inc. Hybrid drive system for hybrid electric vehicles
KR101141770B1 (ko) 2010-10-12 2012-05-11 호남대학교 산학협력단 전기차량의 회생제동장치의 에너지 충방전 제어 장치 및 방법
US8706346B2 (en) * 2010-11-01 2014-04-22 GM Global Technology Operations LLC Robust motor torque performance diagnostics algorithm for electric drive systems in hybrid vehicles
JP5149410B2 (ja) * 2011-02-10 2013-02-20 ファナック株式会社 交流電源の電源特性に応じてモータの出力を制限するモータ駆動制御装置
US8456115B2 (en) 2011-02-23 2013-06-04 Deere & Company Method and system for controlling an electric motor with variable switching frequency at variable operating speeds
US8547045B2 (en) 2011-02-23 2013-10-01 Deere & Company Method and system controlling an electrical motor with temperature compensation
US8471606B2 (en) 2011-02-23 2013-06-25 Deere & Company Driver circuit for a semiconductor power switch
US8723460B2 (en) 2011-02-23 2014-05-13 Deere & Company Method and system for controlling an electric motor with compensation for time delay in position determination
US8796983B2 (en) 2011-02-24 2014-08-05 Deere & Company Method and system for determining a position of a rotor of an electric motor with noise reduction
US8624531B2 (en) 2011-02-24 2014-01-07 Deere & Company Method and system for evaluating electrical connections between a motor controller and motor
US8810189B2 (en) 2011-02-25 2014-08-19 Deere & Company Machine systems including pre-power diagnostics
US8410737B2 (en) 2011-02-28 2013-04-02 Deere & Company Device and method for generating an initial controller lookup table for an IPM machine
US8648555B2 (en) 2011-02-28 2014-02-11 Deere & Company Method and system for controlling an electric motor at or near stall conditions
US8744794B2 (en) 2011-02-28 2014-06-03 Deere & Company Method and apparatus for characterizing an interior permanent magnet machine
US8853979B2 (en) 2011-02-28 2014-10-07 Deere & Company Method and system for calibrating rotor position offset of an electric motor
US8450962B2 (en) 2011-02-28 2013-05-28 Deere & Company System for controlling a motor
US8531141B2 (en) 2011-02-28 2013-09-10 Deere & Company System for calibrating an electrical control system
US8575482B2 (en) 2011-02-28 2013-11-05 Deere & Company Interface for an enclosure for housing an electrical or electronic device
US8880250B2 (en) 2011-02-28 2014-11-04 Deere & Company DC bus voltage control
US8552673B2 (en) 2011-02-28 2013-10-08 Deere & Company Interior permanent magnet machine systems and methods for controlling interior permanent magnet machines
US8781764B2 (en) * 2011-03-16 2014-07-15 Deere & Company System for detecting a short circuit associated with a direct current bus
US8648559B2 (en) 2011-03-16 2014-02-11 Deere & Company System for controlling rotary electric machines to reduce current ripple on a direct current bus
US9121913B2 (en) 2011-03-21 2015-09-01 Deere & Company System for detecting a failure associated with an inverter or associated machine
US8432118B2 (en) * 2011-05-02 2013-04-30 Deere & Company Inverter and a method for controlling an electric machine
DE102011083010A1 (de) 2011-09-20 2013-03-21 Robert Bosch Gmbh Steuervorrichtung für einen Gleichspannungswandler eines elektrischen Antriebssystems und Verfahren zum Betreiben eines Gleichspannungswandlers
JP5845827B2 (ja) * 2011-11-07 2016-01-20 トヨタ自動車株式会社 ハイブリッド車両
JP5982901B2 (ja) * 2012-03-14 2016-08-31 日産自動車株式会社 電動機の制御装置及び電動機の制御方法
US8872455B2 (en) 2012-05-22 2014-10-28 Deere & Company Method and controller for an electric motor with fault detection
AU2012385593B2 (en) * 2012-07-20 2016-02-25 Mitsubishi Electric Corporation Hybrid vehicle control device
WO2014042004A1 (ja) * 2012-09-11 2014-03-20 中西金属工業株式会社 垂直搬送機を含む駆動系の駆動制御装置
CN104813579A (zh) * 2012-11-30 2015-07-29 丰田自动车株式会社 发电机的发电控制装置和发电控制方法
KR101361354B1 (ko) * 2012-12-24 2014-02-10 현대자동차주식회사 부스트 컨버터의 승압 제어 방법
JP5742879B2 (ja) * 2013-05-21 2015-07-01 トヨタ自動車株式会社 車両用の回転電機の制御装置
EP2852044B1 (de) * 2013-09-23 2019-03-06 SMA Solar Technology AG Bidirektionaler wandler mit vorzugsrichtung und blindleistungsfähige wechselrichter mit diesem wandler
KR102181650B1 (ko) * 2013-10-04 2020-11-23 엘지전자 주식회사 복수 개의 압축기를 구동하기 위한 인버터 모듈
JP6392653B2 (ja) * 2014-12-05 2018-09-19 トヨタ自動車株式会社 ハイブリッド自動車
KR101875996B1 (ko) * 2015-06-17 2018-07-06 현대자동차주식회사 친환경 차량용 양방향 컨버터 제어 장치 및 방법
JP6410695B2 (ja) * 2015-09-11 2018-10-24 日立オートモティブシステムズ株式会社 インバータ駆動装置、電動ブレーキ装置、及び電動パワーステアリング装置
JP6354723B2 (ja) * 2015-10-01 2018-07-11 トヨタ自動車株式会社 ハイブリッド車両
DE102015120271A1 (de) * 2015-11-23 2017-05-24 Beckhoff Automation Gmbh Ausgabemodul eines Antriebssteuersystems
KR101766094B1 (ko) * 2015-12-15 2017-08-24 현대자동차주식회사 하이브리드 차량의 출력 제어 시스템
JP2017118775A (ja) * 2015-12-25 2017-06-29 株式会社デンソー 電源システム
JP6331228B2 (ja) * 2016-02-10 2018-05-30 株式会社安川電機 モータ制御装置、電力変換装置、補助電源装置、及び補助電源制御方法
JP6458762B2 (ja) * 2016-04-28 2019-01-30 トヨタ自動車株式会社 自動車
FR3055434B1 (fr) 2016-08-30 2020-09-04 Continental Automotive France Procede et dispositif de commande d'equipements electriques d'un vehicule automobile
GB2557678B (en) * 2016-12-15 2019-12-04 Jaguar Land Rover Ltd Apparatus and method for controlling a high voltage circuit
KR20180085327A (ko) * 2017-01-18 2018-07-26 현대모비스 주식회사 3상 모터 구동 회로
JP6888511B2 (ja) * 2017-10-13 2021-06-16 トヨタ自動車株式会社 ハイブリッド自動車
JP6888512B2 (ja) * 2017-10-16 2021-06-16 トヨタ自動車株式会社 ハイブリッド自動車
KR102614137B1 (ko) 2018-04-13 2023-12-14 현대자동차주식회사 차량용 인버터 시스템 및 그 제어방법
KR102588932B1 (ko) * 2018-04-18 2023-10-16 현대자동차주식회사 차량용 인버터 시스템
KR20200020363A (ko) 2018-08-17 2020-02-26 현대자동차주식회사 차량용 인버터 시스템
KR102659245B1 (ko) * 2018-11-02 2024-04-22 현대자동차주식회사 차량용 인버터 시스템
KR20210077065A (ko) * 2019-12-16 2021-06-25 현대자동차주식회사 차량용 pra 열화 제어 시스템 및 그의 pra 열화 제어 방법

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373195A (en) 1992-12-23 1994-12-13 General Electric Company Technique for decoupling the energy storage system voltage from the DC link voltage in AC electric drive systems
JP2919219B2 (ja) 1993-03-05 1999-07-12 日野自動車工業株式会社 内燃機関の制動および補助動力装置
JP3170969B2 (ja) 1993-09-16 2001-05-28 トヨタ自動車株式会社 ハイブリッド車のモータ電圧制御装置
JPH07193989A (ja) 1993-12-28 1995-07-28 Hino Motors Ltd 過電圧抑圧回路
JP3597591B2 (ja) 1994-12-05 2004-12-08 関西電力株式会社 モータの駆動装置
JP3245334B2 (ja) 1995-08-03 2002-01-15 本田技研工業株式会社 電動車両の電源制御装置
JPH10271603A (ja) * 1997-03-28 1998-10-09 Mitsubishi Motors Corp 電気自動車
JP3718962B2 (ja) * 1997-06-10 2005-11-24 株式会社エクォス・リサーチ ハイブリッド車両
JP2000324857A (ja) * 1999-03-11 2000-11-24 Toyota Motor Corp 多種電源装置、この電源装置を備えた機器およびモータ駆動装置並びにハイブリッド車両
JP3961721B2 (ja) * 1999-07-05 2007-08-22 株式会社デンソー ハイブリッド車の駆動装置
WO2001021431A1 (fr) 1999-09-20 2001-03-29 Hitachi, Ltd. Dynamoteur de vehicule hybride et procede de commande dudit moteur
CA2320003C (en) * 1999-09-22 2006-03-21 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for hybrid vehicles
JP3534010B2 (ja) 1999-09-24 2004-06-07 株式会社日立製作所 自動車の電源装置
JP3456467B2 (ja) * 1999-11-02 2003-10-14 トヨタ自動車株式会社 エバポパージシステムの故障診断装置
JP3568448B2 (ja) 2000-03-16 2004-09-22 日産ディーゼル工業株式会社 電気自動車の電源システム
JP3381708B2 (ja) 2000-05-02 2003-03-04 トヨタ自動車株式会社 車両、電源系制御装置、電源系を制御する方法および車両の始動時制御方法
JP3702749B2 (ja) * 2000-05-24 2005-10-05 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US6518736B2 (en) * 2000-06-26 2003-02-11 Toyota Jidosha Kabushiki Kaisha Mechanical power outputting apparatus and inverter apparatus
JP4218202B2 (ja) * 2000-10-04 2009-02-04 トヨタ自動車株式会社 燃料電池を有する直流電源
EP1286459B1 (en) * 2001-02-14 2005-10-05 Toyota Jidosha Kabushiki Kaisha Drive device and control method, storing medium and program for the drive device
JP3625789B2 (ja) 2001-08-10 2005-03-02 本田技研工業株式会社 車両の電源装置
JP3692993B2 (ja) 2001-10-04 2005-09-07 トヨタ自動車株式会社 駆動装置および動力出力装置
US6674180B2 (en) * 2001-10-12 2004-01-06 Ford Global Technologies, Llc Power supply for a hybrid electric vehicle
JP3661630B2 (ja) * 2001-10-25 2005-06-15 トヨタ自動車株式会社 ハイブリッド車の駆動装置及びその制御方法
US6917179B2 (en) 2001-10-25 2005-07-12 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
US6608396B2 (en) * 2001-12-06 2003-08-19 General Motors Corporation Electrical motor power management system
WO2003056694A1 (en) 2001-12-26 2003-07-10 Toyota Jidosha Kabushiki Kaisha Electrical load apparatus, electrical load control method, and computer-readable record medium with recorded program for enabling computer to control electrical load
US6889126B2 (en) * 2003-04-22 2005-05-03 Nissan Motor Co., Ltd. Drive force control for hybrid electric vehicle
JP4067463B2 (ja) * 2003-07-18 2008-03-26 トヨタ自動車株式会社 ハイブリッド車輌の制御装置

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682740B2 (ja) * 2005-08-08 2011-05-11 トヨタ自動車株式会社 車両の電源装置
JP2007045244A (ja) * 2005-08-08 2007-02-22 Toyota Motor Corp 車両の電源装置
WO2007018223A1 (ja) * 2005-08-08 2007-02-15 Toyota Jidosha Kabushiki Kaisha 車両の電源装置
EP1790520A2 (en) 2005-11-29 2007-05-30 Denso Corporation Control apparatus and method for electric vehicles
JP2007202384A (ja) * 2005-12-26 2007-08-09 Denso Corp 電気自動車の制御装置
KR101038753B1 (ko) * 2006-03-24 2011-06-03 도요타 지도샤(주) 모터 구동 제어 시스템 및 그 제어 방법
WO2007111286A1 (ja) * 2006-03-24 2007-10-04 Toyota Jidosha Kabushiki Kaisha 電動機駆動制御システムおよびその制御方法
JP4665809B2 (ja) * 2006-03-24 2011-04-06 トヨタ自動車株式会社 電動機駆動制御システム
JP2007259631A (ja) * 2006-03-24 2007-10-04 Toyota Motor Corp 電動機駆動制御システム
US8040083B2 (en) 2006-03-24 2011-10-18 Toyota Jidosha Kabushiki Kaisha Motor drive control system and method for controlling the same
JP2007306781A (ja) * 2006-04-14 2007-11-22 Denso Corp 電気自動車の制御装置
JP4636443B2 (ja) * 2006-04-14 2011-02-23 株式会社デンソー 電気自動車の制御装置
US7821214B2 (en) 2006-04-24 2010-10-26 Toyota Jidosha Kabushiki Kaisha Load driving apparatus, vehicle incorporating the same, and control method for load driving apparatus
RU2402444C2 (ru) * 2006-04-24 2010-10-27 Тойота Дзидося Кабусики Кайся Устройство приведения в движение нагрузки, транспортное средство, включающее в себя его, и способ управления для устройства приведения в движение нагрузки
WO2008010281A1 (en) * 2006-07-20 2008-01-24 Mitsubishi Electric Corporation Controller of electric vehicle
US8427004B2 (en) 2006-07-20 2013-04-23 Mitsubishi Electric Corporation Electric-vehicle controller and power storage unit shutoff switch
RU2397089C1 (ru) * 2006-09-20 2010-08-20 Тойота Дзидося Кабусики Кайся Устройство и способ управления подачей электрической мощности для гибридного транспортного средства
US8039976B2 (en) 2006-09-20 2011-10-18 Toyota Jidosha Kabushiki Kaisha Power supply control apparatus and method for hybrid vehicle
US8004109B2 (en) 2007-01-04 2011-08-23 Toyota Jidosha Kabushiki Kaisha Vehicle power supply apparatus, and vehicle
JP4513812B2 (ja) * 2007-01-04 2010-07-28 トヨタ自動車株式会社 車両の電源装置および車両
JP2008167620A (ja) * 2007-01-04 2008-07-17 Toyota Motor Corp 車両の電源装置および車両
WO2008081983A1 (ja) * 2007-01-04 2008-07-10 Toyota Jidosha Kabushiki Kaisha 車両の電源装置および車両
JP2008271649A (ja) * 2007-04-17 2008-11-06 Denso Corp 電気自動車の制御装置
RU2420849C1 (ru) * 2007-09-13 2011-06-10 Тойота Дзидося Кабусики Кайся Устройство управления зарядкой для транспортного средства и транспортное средство
US8618767B2 (en) 2007-09-13 2013-12-31 Toyota Jidosha Kabushiki Kaisha Charging control apparatus for vehicle and vehicle
JP2009227078A (ja) * 2008-03-21 2009-10-08 Toyota Motor Corp 動力システムおよびその制御方法並びに車両
US8253359B2 (en) 2008-03-25 2012-08-28 Aisin Aw Co., Ltd. Electric rotating machine control system and vehicle driving system including the electric rotating machine control system
DE112009000040T5 (de) 2008-03-25 2010-08-26 Aisin AW Co., Ltd., Anjo-shi Steuerungssystem für eine elektrisch drehende Maschine und Fahrzeugantriebssystem, das das Steuerungssystem für die elektrisch drehende Maschine enthält
JP2010130877A (ja) * 2008-12-01 2010-06-10 Hitachi Automotive Systems Ltd 車両用バッテリー制御装置、車両用バッテリーシステム、および車両用バッテリー制御方法
JP4868088B2 (ja) * 2009-03-05 2012-02-01 トヨタ自動車株式会社 ハイブリッド車両の充放電制御システムおよびその制御方法
US8229616B2 (en) 2009-03-05 2012-07-24 Toyota Jidosha Kabushiki Kaisha Charging/discharging control system for hybrid vehicle and method for controlling same
WO2010100736A1 (ja) * 2009-03-05 2010-09-10 トヨタ自動車株式会社 ハイブリッド車両の充放電制御システムおよびその制御方法
JP2010213479A (ja) * 2009-03-11 2010-09-24 Panasonic Corp 分散型電源装置
JP2010215106A (ja) * 2009-03-17 2010-09-30 Toyota Motor Corp ハイブリッド車両の制御システム
JP2011217579A (ja) * 2010-04-02 2011-10-27 Hitachi Automotive Systems Ltd モータ制御装置およびモータ制御方法
CN102582459A (zh) * 2011-01-14 2012-07-18 通用汽车环球科技运作有限责任公司 用于车辆中的电功率管理的方法和设备
CN103648829A (zh) * 2011-07-21 2014-03-19 罗伯特·博世有限公司 用于运行电网的方法以及用于控制电网的装置
CN103648829B (zh) * 2011-07-21 2017-03-15 罗伯特·博世有限公司 用于运行电网的方法以及用于控制电网的装置
JP2015524362A (ja) * 2012-07-04 2015-08-24 ボルボ トラック コーポレイション ハイブリッド車両電気装置を制御するための方法
US9428060B2 (en) 2012-07-04 2016-08-30 Volvo Lastvagnar Ab Method for controlling a hybrid vehicle electrical system
JP2016159772A (ja) * 2015-03-02 2016-09-05 本田技研工業株式会社 ハイブリッド自動車
KR20170040489A (ko) * 2015-10-05 2017-04-13 삼성전자주식회사 모터 구동 장치, 모터 구동 장치의 제어 방법, 인버터 장치 및 전원 장치
WO2017061693A1 (ko) * 2015-10-05 2017-04-13 삼성전자주식회사 모터 구동 장치, 모터 구동 장치의 제어 방법, 인버터 장치 및 전원 장치
US10536058B2 (en) 2015-10-05 2020-01-14 Samsung Electronics Co., Ltd. Motor driving apparatus, method for controlling motor driving apparatus, inverter apparatus, and power apparatus
KR102499259B1 (ko) * 2015-10-05 2023-02-14 삼성전자주식회사 모터 구동 장치, 모터 구동 장치의 제어 방법, 인버터 장치 및 전원 장치

Also Published As

Publication number Publication date
US20060052915A1 (en) 2006-03-09
CN1748359A (zh) 2006-03-15
HK1085309A1 (en) 2006-08-18
EP1603224A4 (en) 2014-07-16
KR20050111762A (ko) 2005-11-28
US7212891B2 (en) 2007-05-01
EP1603224B1 (en) 2018-11-14
KR100708923B1 (ko) 2007-04-17
US20060247829A1 (en) 2006-11-02
JP3661689B2 (ja) 2005-06-15
WO2004082122A1 (ja) 2004-09-23
US7099756B2 (en) 2006-08-29
EP1603224A1 (en) 2005-12-07
CN1333521C (zh) 2007-08-22

Similar Documents

Publication Publication Date Title
JP3661689B2 (ja) モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP3928559B2 (ja) 電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法
JP3582523B2 (ja) 電気負荷装置、異常処理方法、および電気負荷の異常処理をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4682766B2 (ja) 車両用電源装置
EP1967406B1 (en) Vehicle controller, vehicle and vehicle control method
JP5011940B2 (ja) 電源装置、および車両
JP4678374B2 (ja) 負荷装置の制御装置、および車両
US8415825B2 (en) Power conversion device, method of controlling power conversion device, and vehicle with the same mounted thereon
JP4839780B2 (ja) モータ制御装置および車両
WO2007142165A1 (ja) 車両駆動システムおよびそれを備える車両
JP4120310B2 (ja) 電気負荷駆動装置、電気負荷駆動方法、電気負荷の駆動をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP4432463B2 (ja) 負荷駆動装置およびその動作をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP3879528B2 (ja) 電圧変換装置
JP2007282357A (ja) 車両駆動用電源システム
JP2004194475A (ja) インバータ装置
JP2010215106A (ja) ハイブリッド車両の制御システム
JP2004260904A (ja) 前後輪駆動装置、それにおけるモータ駆動方法およびモータの駆動をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4735045B2 (ja) 電動機制御装置
JP2007089264A (ja) モータ駆動装置
JP2006033966A (ja) 電動機駆動装置
JP4019953B2 (ja) 電圧変換装置、電圧変換方法、電力供給方法および電力供給の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP3931734B2 (ja) 電気負荷駆動装置
JP2008022640A (ja) 車両駆動装置、車両駆動装置の制御方法、車両駆動装置の制御方法をコンピュータに実行させるためのプログラム、およびそのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2004201400A (ja) リアクトル装置
JP2006280129A (ja) 電源制御装置および電源制御装置の制御方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Ref document number: 3661689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

EXPY Cancellation because of completion of term