ES2337497T3 - Evaluacion de caracteristicas de la imagen de una estructura anatomica en imagenes de tomografia de coherencia optica. - Google Patents

Evaluacion de caracteristicas de la imagen de una estructura anatomica en imagenes de tomografia de coherencia optica. Download PDF

Info

Publication number
ES2337497T3
ES2337497T3 ES06758869T ES06758869T ES2337497T3 ES 2337497 T3 ES2337497 T3 ES 2337497T3 ES 06758869 T ES06758869 T ES 06758869T ES 06758869 T ES06758869 T ES 06758869T ES 2337497 T3 ES2337497 T3 ES 2337497T3
Authority
ES
Spain
Prior art keywords
information
processing
image
provision according
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES06758869T
Other languages
English (en)
Inventor
Guillermo J. Tearney
Brett Eugene Bouma
John A. Evans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Hospital Corp filed Critical General Hospital Corp
Application granted granted Critical
Publication of ES2337497T3 publication Critical patent/ES2337497T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B2010/0003Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements including means for analysis by an unskilled person
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00818Treatment of the gastro-intestinal system
    • A61B2017/00827Treatment of gastro-esophageal reflux
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • G16H70/60ICT specially adapted for the handling or processing of medical references relating to pathologies

Abstract

Una disposición de procesado para procesar al menos una nueva imagen de biopsia asociada con al menos una porción de una estructura anatómica, estando la disposición de procesado adaptada para realizar las etapas de: recibir primera información asociada con la al menos una porción de la estructura anatómica, en la que la primera información se obtiene mediante un sistema de tomografía de coherencia óptica y corresponde a las características de la imagen; recibir segunda información asociada con la al menos una porción de la estructura anatómica, en la que la segunda información se obtiene mediante un sistema de microscopía y corresponde a las características de la imagen de una imagen histopatológica; generar tercera información correspondiente a una relación identificada entre la primera información y la segunda información; y aplicar la tercera información con criterios de puntuación histopatológicos predeterminados a al menos una nueva imagen de biopsia óptica.

Description

Evaluación de características de la imagen de una estructura anatómica en imágenes de tomografía de coherencia óptica.
La presente invención se refiere a sistemas, procedimientos y disposiciones de software para evaluar información asociada con una estructura anatómica evaluando información de variación de coherencia óptica mediante una técnica de variación de coherencia óptica y, por ejemplo, para interpretar imágenes microscópicas obtenidas de sujetos vivos.
Antecedentes
Se han descrito y desarrollado diversas técnicas de biopsia óptica diferentes para un diagnóstico no invasivo de enfermedades en pacientes humanos vivos. Aunque estos dispositivos convencionales pueden proporcionar información que está relacionada con la enfermedad, hay diferencias entre los procedimientos de la técnica y los estándares médicos de tratamiento para el diagnóstico.
Los patólogos generalmente hacen un diagnóstico de tejidos en base a la visualización microscópica de muestras con tinción de hematoxilina-eosina (H&E) y una interpretación morfológica de las mismas. Los patólogos pueden usar sistemas o técnicas de puntuación, en las que se observan y forman diversas características para presentar un diagnóstico. Estos sistemas o técnicas de puntuación se pueden estandarizar y proporcionar una base cuantitativa o semi-cuantitativa para un diagnóstico. Ejemplos de tales sistemas y técnicas de puntuación incluyen la clasificación de Gleason para el adenocarcinoma de próstata, los criterios de Haggitt para displasia en caso de esófago de Barrett, el sistema de puntuación para aloinjertos renales de Banif y el sistema de puntuación de Nash para enfermedades del hígado graso de origen no alcohólico. Existen otros sistemas y técnicas de puntuación para tales diagnósticos.
Preferiblemente, se puede establecer una relación única entre la información de biopsia óptica y las técnicas y sistemas de puntuación para la base del estándar de tratamiento. A su vez, se pueden usar los mismos criterios usados generalmente para presentar el diagnóstico para el estándar de tratamiento, de forma modificada, en la información de diagnóstico de biopsia óptica. A su vez, se puede implementar un sistema o técnica de puntuación modificados en base a las características identificadas en las imágenes de biopsia óptica para realizar un diagnóstico del tejido de forma consecuente con el estándar histopatológico de tratamiento.
A continuación se proporcionan ejemplos de situaciones del tubo digestivo alto que pueden guardar relación con el esófago de Barrett, en las que las imágenes de biopsia óptica se pueden usar para presentar un diagnóstico.
Diagnóstico de metaplasia especializada en la unión gastroesofágica
La incidencia del reflujo gastroesofágico (GERD) está aumentando y es un factor de riesgo conocido para el desarrollo de metaplasia intestinal esofágica especializada (SIM), comúnmente conocida como esófago de Barrett (BE), como se describe en R.J. Loffeld y col. "Rising incidence of reflux oesophagitis in patients undergoing upper gastrointestinal endoscopy" Digestión, 2003, pág. 141-4. Se ha estimado que la prevalencia de la SIM es tan elevada como del 10-15% en pacientes con GERD crónico, como se analiza en C. Winters, Jr. y col., "Barrett's esophagus. A prevalent occult complication of gastroesophageal reflux disease. Gastroenterology", 1987, Vol. 92(1), pág. 118-24. Para un paciente con síntomas graves y recurrentes de GERD, el cociente de posibilidades ajustado para el desarrollo de un adenocarcinoma durante un periodo de 20 años es del 7,7 y el 43,5, respectivamente, como se describe en J. Lagergren y col., ``Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma, N Engl J Med, 1999, Vol. 340(11), pág. 825-31. Además, la incidencia de adenocarcinoma esofágico y cáncer del estómago proximal (cardias gástrico) ha aumentado rápidamente en los últimos 30 años, como se analiza en W.J. Blot y col., "Rising incidence of adenocarcinoma of the esophagus and gastric cardia", Jama, 1991, Vol. 265(10), pág. 1287-9; P. Bytzer y col:, "Adenocarcinoma of the esophagus and Barrett's esophagus; a population-based study", Am J Gastroenterol, 1999, Vol. 94(1), pág. 86-91; y S.S. Devesa y col., "Changing patterns in the incidence of esophageal and gastric carcinoma in the United States", Cáncer, 1998, Vol. 83(10), pág. 2049-53.
Debido al reconocimiento del GERD como posiblemente un factor de riesgo para el desarrollo de cáncer esofágico, se puede recomendar un reconocimiento sistemático mediante endoscopia superior, por ejemplo, a pacientes varones blancos mayores de 50 años que hayan presentado síntomas crónicos de GERD durante más de 5 años, como se analiza en S.J. Spechler, "Screening and surveillance for complications related to gastroesophageal reflux disease", Am J Med, 2001, Vol. 111 Suppl 8A, pág. 1308-1368. Como resultado de la creciente prevalencia del GERD y el reconocimiento por parte del colectivo médico de la SIM como un factor de riesgo para el cáncer esofágico, es probable que el uso de la endoscopia como estrategia de reconocimiento sistemático para la SIM aumente en un futuro cercano. Tal aumento puede suponer costes significativos para el sistema sanitario y para el paciente individual. Otros procedimientos de reconocimiento sistemático que podrían abarcar más áreas que la biopsia convencional pueden reducir el riesgo y los inconvenientes de múltiples procedimientos endoscópicos. Además, determinados procedimientos que no usan endoscopia se pueden realizar potencialmente con menores costes, aliviano parcialmente la carga económica de una detección sistemática completa para el sistema sanitario.
Identificación de displasia en pacientes con esófago de Barrett
Cuando se diagnostica el BE, es recomendable un examen endoscópico periódico para detectar una HGD. Estas recomendaciones pueden proceder de observaciones que apuntan la alta incidencia (el 25% en 46 meses) de adenocarcinoma en pacientes con HGD, como se describe en P. Sharma y col., "A critical review of the diagnosis and management of Barrett's esophagus: the AGA Chicago Workshop", Gastroenterology 2004, Vol. 127(1), pág. 310-30. Las directrices actuales para la vigilancia de la HGD incluyen biopsias de cuatro cuadrantes cada dos centímetros a lo largo de la longitud axial del segmento de Barrett, como se analiza en D.S. Levine y col., "An endoscopio biopsy protocol can differentiate high-grade dysplasia from early adenocarcinoma in Barrett's esophagus", Gastroenterology, 1993, Vol. 105(1), pág. 40-50. La precisión de la endoscopia de vigilancia, sin embargo, puede estar limitada por un error de muestreo, como se analiza en G.S. Dulai, "Surveying the case for surveillance", Gastroenterology, 2002, Vol. 122(3), pág. 820-823; G.W. Falk y col., "Surveillance of patients with Barrett's esophagus for dysplasia and cáncer with balloon cytology", Gastroenterology, 1997, Vol. 112(6), pág. 1787-1797; y J.M Streitg y col., "Endoscopio surveillance of Barrett's esophagus. Does it help?" Journal of Thoracic and Cardiovascular Surgery, 1993, Vol. 105, pág. 383-388. Se analizan estrategias óptimas para el BE, pero muchos análisis rentables se centran en la frecuencia y los costes de la endoscopia como factores determinantes clave, como se describe en J.W. van Sandick y col., "Impact of endoscopic biopsy surveillance of Barrett's oesophagus on pathological stage and clinical outcome of Barrett's carcinoma", Gut, 1998, Vol. 43(2), pág. 216-22; J.M. Inadomi y col.; "Screening and surveillance for-Barrett esophagus in high-risk groups: a cost-utility analysis", Ann Intern Med, 2003, Vol. 138(3), pág. 176-86; D. Provenzale y col., "Barrett's esophagus: a new look at surveillance based on emerging estimates of cáncer risk", Am J Gastroenterol, 1999, Vol. 94(8), pág. 2043-53; y A. Sonnenberg y col., ''Medical decisión analysis of endoscopio surveillance of Barrett's oesophagus to prevent oesophageal adenocarcinoma, Aliment Pharmacol Ther, 2002, Vol. 16(1), pág.
41-50.
Debido a la creciente prevalencia del GERD y el reconocimiento por parte del colectivo médico del BE como un factor de riesgo para el cáncer esofágico, el uso de la endoscopia como estrategia de reconocimiento sistemático y vigilancia para el BE aumentará en un futuro cercano. Tal aumento puede suponer costes significativos para el sistema sanitario y para el paciente individual. Estrategias de vigilancia de potencial bajo coste pueden incluir tecnologías endoscópicas tales como formación de imágenes de banda estrecha, cromoendoscopia o endoscopia de fluorescencia. Las modalidades de formación de imágenes no endoscópicas también pueden tener un papel en el control del BE. Procedimientos para dirigir las biopsias a regiones del esófago que contienen tejido displásico podrían mejorar la eficacia y eficiencia de la vigilancia en pacientes con BE, aumentando los intervalos de vigilancia, permitiendo el uso de técnicas quirúrgicas mínimamente invasivas en las etapas iniciales de progresión de la enfermedad o evitando procedimientos de intervenciones innecesarios.
A continuación se proporciona un ejemplo de una de tales técnicas de biopsia que se pueden utilizar para obtener información de pacientes humanos vivos.
Tomografía de coherencia óptica
La tomografía de coherencia óptica (OCT) es una modalidad óptica de formación de imágenes que puede usar, por ejemplo, luz del infrarrojo cercano para producir imágenes transversales de la mucosa gastrointestinal. Las imágenes se pueden construir en base a la reflectividad de la luz en relación con las propiedades del sustrato que se está visualizando. Las técnicas de OCT se pueden usar para identificar estructuras a escala microscópica, incluyendo capas mucosas, la morfología de "fosita y glándula" y la estructura glandular, como se describe en S. Brand y col., "Optical coherence tomography in the gastrointestinal tract", Endoscopy, 2000, Vol. 32(10), pág. 796-803. Por ejemplo, las técnicas de OCT pueden distinguir una SIM de una mucosa de fondo escamosa sinusal, pero pueden identificar falsamente el cardias gástrico como una SIM, como se analiza en J.M. Poneros y col., "Diagnosis of specialized intestinal metaplasia by optical coherence tomography", Gastroenterology, 2001, Vol. 120(1), pág. 7-12.
Para que las técnicas de OCT sean, por ejemplo, un instrumento rentable y de sensibilidad fiable, la caracterización de la arquitectura epitelial de la zona de unión escamoso-columnar (SCJ) debe ser suficientemente fiable como para distinguir tejido precanceroso (SIM) de tejido benigno y para identificar una SIM en la SCJ. Son necesarios algoritmos y procedimientos para lograr distinguir una SIM del cardias en la SCJ y tejido displásico del no metaplásico en la zona de unión gastroesofágica.
A continuación se describe un ejemplo de los criterios y técnicas de Haggitt para diagnosticar y clasificar la displasia en SIM a partir de muestras con tinción de hematoxilina-eosina de biopsias esofágicas. Los criterios de Haggitt se pueden usar para ayudar a presentar un diagnóstico cualitativo o formular como un sistema de puntuación para un diagnóstico semicuantitativo o cuantitativo.
La displasia está caracterizada histológicamente por, por ejemplo, diversos grados y combinaciones de alteraciones citológicas y desorganización de la arquitectura (como se describe en R.C. Haggit, "Barrett's esophagus, dysplasia, and adenocarcinoma", Human Pathology, 1994, Vol. 25, pp. 982-93, y E. Montgomery y col. "Reproducibility of the diagnosis of dysplasia of Barrett esophagus: a reaffirmation", Human Pathology, 2001, Vol. 32, pág. 368-378) para un diagnóstico histológico de la displasia en la SIM esofágica. Un conjunto ejemplar de criterios que los patólogos pueden observar y usar para presentar un diagnóstico del grado de displasia es conocido como criterios de Haggitt. Estos criterios se pueden usar como parte de un sistema de puntuación o se pueden usar en un algoritmo cualitativo para un diagnóstico más coherente del grado de displasia. A continuación se enumeran cada una de las cuatro características de Haggitt, como se describe en Montgomery y col., "Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation", Human Pathology. 2001, Vol. 32, pág. 368-378.
A) Arquitectura glandular
Las glándulas de la SIM displásica pueden haber proliferado, estar distorsionadas y tener un contorno irregular con pliegues de gemación, ramificados o luminales. Hay más probabilidad de identificar glándulas cribiformes, dilatación quistica y residuos necróticos en displasias graves.
B) Maduración superficial en comparación con las glándulas subyacentes
La SIM no displásica puede tener el mayor grado de maduración superficial, mientras que la HGD puede tener la mínima maduración superficial. Un alto grado de maduración superficial implica una proporción núcleo-citoplasma baja en la superficie, mientras que una un bajo grado de maduración superficial indica una proporción superficial núcleo-citoplasma alta.
3) Alteración nuclear
Las células de los epitelios displásicos generalmente tienen núcleos agrandados hipercromáticos con membranas nucleares irregulares, cromatina (heterogénea) vesicular y una pérdida de la polaridad nuclear.
4) Inflamación
La inflamación es un factor de confusión en el diagnóstico de la displasia, puesto que puede dar lugar independientemente a una arquitectura glandular distorsionada y a alteraciones nucleares. Los casos en que las alteraciones nuclear y de la arquitectura pueden ser el resultado de una inflamación se denominan displasia indefinida (IND). El acuerdo entre observadores para este diagnóstico mediante histología es bajo (k = 0,14) (como se describe en Montgomery y col., "Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation", Human Pathology, 2001, Vol. 32, pág. 368-378) puesto que a menudo se reserva para los casos en los que los artefactos ocultan las características necesarias para presentar un diagnóstico definitivo o cuando hay presentes simultáneamente criterios múltiples de diferentes extremos del espectro de la enfermedad.
El documento PONEROS JOHN M: "Diagnosis of Barrett's esophagus using optical coherence tomography". GASTROINTESTINAL ENDOSCOPY CLINICS OF NORTH AMERICA. JUL 2004, vol. 14, nº 3, Julio 2004 (2004-07), pág. 573-588, XP009071946 ISSN: 1052-5157, enseña el establecimiento de una primera puntuación de diagnóstico a partir de características de las imágenes que se encuentran en imágenes de tomografía OCT y una segunda puntuación de diagnóstico correspondiente a una muestra histopatológica. Las dos puntuaciones están relacionadas entre si para llegar a una decisión final sobre la fiabilidad de diagnóstico de la puntuación usada para evaluar las imágenes de OCT.
El documento ESCOBAR PF Y COL: "Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cáncer of uterine cervix and vulva", INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER: OFFICIAL JOURNAL OF THE INTERNATIONAL GYNECOLOGICAL CANCER SOCIETY, 2004 MAY-JUN, vol. 14, nº 3, Mayo 2004 (2004-05), pages 470-474, XP002397750 ISSN: 1048-891X enseña la correlación entre micro-estructuras de imágenes de OCT e histopatología.
Objetos y Resumen de la invención
El objeto de la presente invención es superar las deficiencias e inconvenientes de los sistemas de la técnica anterior anteriormente descritos y proporcionar un sistema ejemplar y una disposición de software para interpretar las imágenes ópticas de biopsias para proporcionar diagnósticos comparables con los estándares de histopatología de tratamiento. La invención se define mediante las reivindicaciones adjuntas.
Está concebida para determinar una relación entre las características de las imágenes de las imágenes de biopsias óptica y las imágenes/datos utilizados en la práctica de la medicina y patología para proporcionar un diagnóstico. Por ejemplo, la resolución de las imágenes de OCT puede ser similar a la resolución obtenida por una vista microscópica a bajos aumentos. Por tanto, las características ejemplares de la arquitectura visualizadas mediante los sistemas y procedimientos de OCT se pueden comparar con las características observadas mediante la histopatología convencional. El contraste de las imágenes de OCT puede ser análogo o similar al de las tinciones histopatológicas de H&E porque la elevada dispersión, que se puede producir en regiones de alto contenido nuclear, puede ser similar o análoga a la tinción basófila de la hematoxilina. Además, el colágeno puede producir una elevada dispersión cuando se observa mediante sistemas y procedimientos de OCT, lo que se puede relacionar con la tinción eosinófila lineal de la lamina propia y la submucosa observada en histopatología. Estas características ejemplares de las técnicas, sistemas y procedimientos de OCT ayudan a la determinación de una analogía entre las estructuras arquitecturales observadas mediante esta técnica óptica de biopsia y mediante una vista a bajos aumentos típicamente observadas mediante los patólogos.
\newpage
Según una realización ejemplar de la presente invención, cuando se establece una relación entre las imágenes de biopsia óptica y las imágenes de histopatología, se pueden modificar los procedimientos y criterios usados por los patólogos para interpretar muestras con tinción de H&E en base a la comparación entre los rasgos distintivos y características de las imágenes. Los sistemas y técnicas de puntuación basados en estos criterios y procedimientos se pueden modificar entonces y aplicar a las propias imágenes biopsia óptica. De este modo, se puede obtener un diagnóstico a partir de las imágenes de biopsia óptica que están relacionadas con los diagnósticos histopatológicos. Ventajas de estar realización ejemplar del sistema, procedimiento, disposición de software y técnica pueden incluir la capacidad de usar información anterior obtenida a partir de correlaciones histopatológicas entre morfología y resultado. Además, puesto que las correlaciones histopatológicas se han formado durante décadas, los criterios de biopsia óptica pueden ser igualmente fiables para predecir el resultado del paciente. Esto puede dar lugar un diagnóstico del tejido a partir de estos procedimientos no invasivos o mínimamente invasivos.
En una realización ejemplar de la presente invención, se proporcionan sistemas, disposiciones y procedimientos de software para evaluar una imagen, asociada con al menos una porción de una estructura anatómica. Por ejemplo, se puede recibir una primera información asociada con la al menos una porción de la segunda información de la estructura anatómica asociada con la al menos una porción de la estructura anatómica. Se puede generar una tercera información determinando una relación entre la primera información y la segunda información. Además, la imagen se puede evaluar usando criterios de puntuación patológicos predeterminados y la tercera información.
Según otra realización ejemplar de la presente invención, la primera información y/o la segunda información se pueden asociar con una luz enviada desde la porción de la estructura anatómica. La luz se puede reflejar de dicha porción y la luz puede ser fluorescente. Esta porción se puede proporcionar a un sujeto vivo y/o se puede situar en una muestra de microscopio. La muestra se puede teñir con al menos una de entre las tinciones de hematoxilina-eosina, tricrómico de Masson, de Papanicolaou, de Diff-Quik o del ácido periódico de Shiff.
En otra realización ejemplar más de la presente invención, la primera información y la segunda información se pueden proporcionar para aproximadamente la misma ubicación de tal porción de la estructura anatómica. La tercera información se puede obtener en base a las estructuras físicas y químicas asociadas con la primera información y la segunda información. Por ejemplo, los criterios de puntuación patológicos predeterminados pueden ser los criterios de Haggitt. La imagen se puede asociar con una luz enviada desde dicha porción de la estructura anatómica. La luz se puede reflejar de dicha porción y la luz puede ser fluorescente.
Según una realización ejemplar adicional de la presente invención, la primera información y/o la segunda información se pueden obtener mediante un sistema de tomografía de coherencia óptica, un sistema de microscopía confocal espectralmente codificado, un sistema de microscopía confocal de reflectancia y/o un sistema de fomación de imágenes de dominio de frecuencias. Por ejemplo, la estructura anatómica puede estar bajo la piel. Además, la muestra se puede teñir con un anticuerpo.
Estos y otros objetos, características y ventajas de la presente invención serán evidentes tras la lectura de la siguiente descripción de realizaciones de la invención, cuando se considera en conjunción con las reivindicaciones adjuntas.
Breve descripción de los dibujos
Objetos, características y ventajas adicionales de la presente invención serán evidentes a partir de la siguiente descripción detallada considerada en conjunción con las figuras adjuntas que muestran realizaciones ilustrativas de la invención, en las que:
la fig. 1 es un diagrama de flujo de una realización ejemplar de un procedimiento para generar un sistema de puntuación para imágenes de biopsia óptica mediante la determinación de relaciones entre los datos de biopsia óptica y la histopatología según la presente invención;
la fig. 2 es un diagrama de flujo de otra realización ejemplar del procedimiento para generar el sistema de puntuación para las imágenes de biopsia óptica en base a relaciones predeterminadas entre la histopatología y los datos de biopsia óptica según la presente invención;
la fig. 3 es un diagrama de flujo de un ejemplo que no forma parte de la invención;
la fig. 4 es un diagrama de flujo de una realización ejemplar de un procedimiento para generar un diagnóstico de tejidos en base a las puntuaciones de criterios individuales, generar una combinación lineal de dichas puntuaciones individuales y aplicar un umbral según la presente invención;
la fig. 5A es una imagen de OCT de un epitelio escamoso no metaplásico que muestra una arquitectura horizontalmente estratificada de un epitelio no metaplásico;
la fig. 5B es una imagen de OCT del cardias gástrico que muestra una arquitectura de "fosita y glándula" vertical y regular, una superficie epitelial con una gran dispersión y una penetración de imagen relativamente pobre. Barra de escala, 500 \mum;
la fig. 6A es una imagen de OCT de una metaplasia intestinal especializada (SIM) con una arquitectura estratificada horizontal A. En esta imagen de OCT se puede visualizar una arquitectura estratificada horizontal de la SIM;
la fig. 6B es una imagen de OCT de una metaplasia intestinal especializada (SIM) con una arquitectura estratificada y que proporciona la correspondiente histología;
la fig. 7A es una imagen de OCT de una SIM sin una arquitectura de "fosita y glándula" estratificada o regular, una baja reflectividad epitelial superficial y con una gran dispersión y una penetración de imagen relativamente buena, que son características de una SIM en una zona de unión escamoso-columnar (SCJ);
la fig. 7B es una imagen de una SIM sin la arquitectura estratificada y que proporciona una histología correspondiente;
la fig. 8 es un diagrama de flujo de una realización ejemplar del procedimiento para diferenciar una SIM en la SCJ según la presente invención;
la fig. 9A es una imagen de OCT de una SIM sin displasia que muestra una arquitectura glandular con una reflectividad relativamente baja;
la fig. 9B es una imagen de OCT de una SIM sin displasia que muestra una arquitectura de glandular con una reflectividad relativamente baja y que proporciona una histología correspondiente respecto a la imagen de la figura 9A con una inserción que muestra una proporción núcleo-citoplasma baja en el epitelio superficial;
la fig. 9C es una imagen de OCT de IMC/HGD que permite una visualización de glándulas dilatadas grandes e irregulares;
la fig. 9D es una imagen de OCT de glándulas dilatadas irregulares que también se muestran en la correspondiente histología de la figura 9C;
la fig. 9E es una imagen de OCT de IMC/HGD que muestra una arquitectura desorganizada y una mayor reflectividad superficial; y
la fig. 9F es una imagen de OCT de una SIM y que proporciona una histología correspondiente para la imagen de la figura 9E que muestra una arquitectura anormal y una mayor relación núcleo-citoplasma.
A lo largo de las figuras, se usan los mismos números y caracteres de referencia, a menos que se indique lo contrario para denotar características, elementos, componentes o porciones similares de las realizaciones ilustradas. Además, aunque la presente invención se describirá ahora con detalle haciendo referencia a las figuras y ello se hace en relación con las realizaciones ilustrativas.
Descripción detallada de las realizaciones ejemplares
La figura 1 muestra una realización ejemplar de un procedimiento para generar un sistema/procedimiento de puntuación de biopsia óptica para presentar un diagnóstico a partir de las imágenes de biopsia óptica según la presente invención. Este procedimiento ejemplar mostrado en la figura 1 incluye tomar un conjunto de imágenes de biopsia óptica en la etapa 100 y obtener muestras de histopatología con tinción para biopsia excisional o imágenes de las mismas en la etapa 110 y determinar características comunes a ambas (etapa 120). Las características pueden ser características morfológicas determinadas correlacionando los dos conjuntos de imágenes. Las características pueden comprender estructuras, patrones, intensidades individuales que se pueden identificar tanto en las imágenes de biopsia óptica como en la histopatología o, alternativamente, una interpretación de la estructura de las imágenes de biopsia óptica en base a las estructuras histopatológicas correspondientes. Ejemplos de características pueden incluir la arquitectura epitelial, capas epiteliales, glándulas, forma de las glándulas, características irregulares de las glándulas, maduración epitelial, densidad de los núcleos o similares.
Las relaciones entre las características de la biopsia óptica y las características de la histopatología se determinan y/o identifican entonces en la etapa 130. Una vez que las relaciones se han determinado/identificado, entonces (en la etapa 135) se puede obtener al menos uno de los criterios histopatológicos, algoritmos, procedimientos o sistemas de puntuación y, en la etapa 140, se puede aplicar a las nuevas imágenes de biopsia obtenidas en base a las relaciones obtenidas en la etapa 130. De este modo, los sistemas de puntuación histopatológicos se pueden usar para presentar un diagnóstico de tejido en la etapa 150 en base a las nuevas imágenes de biopsia óptica.
La figura 2 representa un procedimiento de flujo para determinar las relaciones entre imágenes de biopsia óptica y los diagnósticos médicos/de patólogos convencionales para obtener un sistema de puntuación de biopsia óptica según la presente invención. En esta realización, las relaciones entre la histopatología y las imágenes de biopsia óptica se pueden determinar en base a una comprensión física predeterminada de los procedimientos de contraste, resoluciones y/o características que generan las imágenes (etapa 200) . Este conocimiento puede estar basado en principios físicos conocidos en la técnica o determinados mediante modelado y/o experimentación. Por ejemplo, se sabe que los núcleos tienen una gran señal tanto en las imágenes de OCT como en las de microscopía confocal. Por tanto, se puede establecer una relación predeterminada entre señales intensas de OCT y confocales y la densidad nuclear. Las imágenes histopatológicas que muestran una elevada proporción núcleo-citoplasma, indicativa de displasia, por ejemplo, deberían por tanto tener una elevada intensidad de señal tanto de OCT como confocal. Otras relaciones conocidas en la técnica incluyen una señal de dispersión elevada de a) colágeno, macrófagos tisulares, b) melanina, c) zonas de mayor densidad celular y una baja señal de dispersión de 1) la matriz extracelular, d) el citoplasma, e) el interior de las glándulas y similares.
Con la determinación de estas relaciones predeterminadas entre la histopatología y el contenido de la señal de biopsia óptica en la etapa 200, se pueden determinar relaciones entre las características de la biopsia óptica y las características de la histopatología en la etapa 210. Una vez que las relaciones se han determinado, entonces se pueden proporcionar criterios histopatológicos, algoritmos y/o sistemas de puntuación en la etapa 220 y aplicar a las nuevas imágenes de biopsia óptica en base a las relaciones predeterminadas en la etapa 230 usando las relaciones obtenidas en la etapa 220. De este modo, los sistemas de puntuación histopatológicos se pueden usar para presentar un diagnóstico de tejido en base a las nuevas imágenes de biopsia óptica en la etapa 240.
La figura 3 muestra un ejemplo que no forma parte de la invención. En este ejemplo, se puede obtener un conjunto de imágenes de biopsia óptica junto con las correspondientes imágenes histopatológicas de muestras que se pueden obtener, por ejemplo, en la misma ubicación (etapa 300). En la etapa 310, se pueden identificar las relaciones entre las imágenes de biopsia óptica y las imágenes de la histopatología Se pueden comparar los conjuntos de datos de imágenes y se pueden desarrollar los criterios en la etapa 320 en base a las relaciones, incluyendo las estructurales, de patrones, intensidad, entre los dos conjuntos de datos. En la etapa 330, los sistemas de puntuación histopatológicos se pueden usar entonces, junto con estos criterios, para desarrollar un sistema de puntuación de biopsia óptica. Alternativamente, se pueden generar nuevos parámetros del sistema de puntuación de biopsia óptica que sean independientes del sistema de puntuación histopatológico. El sistema de puntuación de biopsia óptica se puede aplicar entonces a las nuevas imágenes de biopsia óptica para presentar un diagnóstico de tejido en la etapa 350.
La figura 4 muestra un diagrama de flujo de una realización ejemplar de un procedimiento para generar un diagnóstico de tejido en base a las puntuaciones según la presente invención. Para los sistemas de puntuación, se puede generar una puntuación total o final en la etapa 420 sumando las puntuaciones individuales de la etapa 400 para las características y/o criterios individuales. Las puntuaciones se pueden sumar linealmente y/o pueden ser una combinación lineal de las puntuaciones ponderadas obtenidas en la etapa 410. Se puede colocar o aplicar un umbral en la puntuación en la etapa 430 para definir un determinado diagnóstico de tejido en la etapa 440.
Alternativamente, además de las puntuaciones numéricas, estos procedimientos ejemplares se pueden usar también para generar un diagrama de flujo para un diagnóstico cualitativo o para ayudar al especialista en imágenes de biopsia óptica a presentar un diagnóstico cualitativo.
\vskip1.000000\baselineskip
Ejemplos Ejemplo 1 Determinación de SIM en una SCJ a partir de imágenes de OCT i. Diseño ejemplar
Un estudio ejemplar para las realizaciones ejemplares de la presente invención fue un ensayo prospectivo ciego. Su objetivo principal fue identificar las características de imágenes de OCT para diferenciar una metaplasia intestinal en la SCJ. Se pidió a los pacientes que se sometieron a una endoscopia superior rutinaria como pacientes externos que participaran en el estudio. Las imágenes de OCT de la SCJ se obtuvieron durante el procedimiento endoscópico. Dos patólogos examinaron cada muestra de biopsia y observaron la presencia de los siguientes tipos de tejido: cardias gástrico u oxíntico, mucosa escamosa, metaplasia pancreática. La existencia de metaplasia intestinal se observó por la presencia de células caliciformes. Las características de la metaplasia intestinal se determinaron creando y examinado un "conjunto de formación" de un atlas de OCT, que contenía imágenes de biopsia correlacionadas de tipos de tejido conocidos. Estas características se aplicaron entonces de forma eventual a un "conjunto de validación" de tipos de tejido conocidos.
Se determinó la sensibilidad, especificidad y reproducibilidad de los criterios de las imágenes para el diagnóstico de la metaplasia.
ii. Sistema de OCT ejemplar
El dispositivo de OCT ejemplar que se puede utilizar para la realización ejemplar de la presente invención y usado en el estudio se describe en J.M. Poneros y col., "Diagnosis of specialized intestinal metaplasia by optical coherence tomography", Gastroenterology, 2001, Vol. 120(1), pág. 7-12, y en J.M. Poneros y col., "Optical coherence tomography of the biliary tree during ERCP", Gastrointest Endose, 2002, Vol 55(1), pág. 84-8. Por ejemplo, la longitud de onda central de la fuente de luz se proporcionó a 1300 nm y la potencia óptica que incide sobre el tejido fue de 5,0 mW. La anchura de banda espectral de la fuente fue de 70 nm, proporcionando una resolución axial de 10 \mum. El diámetro del catéter fue de 2,5 mm. Las imágenes se adquirieron en un plano lineal longitudinalmente con unas dimensiones de 5,5 mm (1000 píxeles) de longitud y 2,5 mm (500 píxeles) de profundidad. Durante la adquisición de imágenes los fotogramas se grabaron a una velocidad de 2 por segundo y se numeraron secuencialmente para tener una referencia. Un láser visible dirigido, coincidente con el haz de formación de imágenes, permitió al endoscopista localizar el lugar de la mucosa sobre el que se realiza la adquisición de la imagen, facilitando la correlación de la biopsia del lugar del que se toma la imagen.
Endoscopia y reclutamiento de sujetos
Los sujetos reclutados incluían pacientes que se sometieron a una endoscopia superior rutinaria y pacientes con una metaplasia intestinal de un segmento corto (< 1 cm) conocida en la zona de unión gastroesofágica. Se utilizó un gastroscopio estándar (Pentax, modelo EG 3470K, Tokio, Japón) con un canal del instrumento de 3,8 mm.
Formación de imágenes de OCT ejemplares
Antes del procedimiento se obtuvo consentimiento informado por escrito. Después de lograr una sedación y una anestesia orofaringea adecuadas, se realizó la endoscopia superior. El endoscopista identificó la SCJ en la zona de unción gastroesofágica o segmento de Barrett. Una sonda de catéter para OCT se introdujo a través del canal del instrumento del endoscopio y se hizo avanzar hacia la SCJ. Se adquirieron y grabaron imágenes de OCT inmediatamente distales a la SCJ en el lugar de la mucosa marcado por el haz visible dirigido, en el que se obtuvo una biopsia con pinza jumbo. Los fotogramas de OCT correspondientes al lugar del que se tomó la imagen se documentaron. Se obtuvieron dos imágenes correlacionadas de biopsia por paciente.
Histopatología
Las muestras de biopsia se colocaron en formalina al 10% embebida en parafina, se procesaron de forma rutinaria y se tiñeron con hemotoxilina y eosina.
Descripción del examen patológico
Dos patólogos examinaron cada muestra de biopsia y determinaron la presencia de los siguientes tipos de epitelio: cardias gástrico u oxíntico, mucosa escamosa, metaplasia pancreática serosa y metaplasia intestinal especializada. Para los fines de este estudio ejemplar la mucosa del cardias y la mucosa del cardias oxíntico se agruparon unto con el cardias gástrico.
Análisis de formación de imágenes de OCT ejemplar
Se creó un "conjunto de formación" de un atlas de imágenes constituido por veinte imágenes de SIM correlacionadas de biopsia seleccionadas aleatoriamente y veinte imágenes de otros tipos de tejido correlacionadas de biopsia seleccionadas aleatoriamente. Se examinó el atlas de imágenes del conjunto de formación y se determinaron los criterios para la SIM. Estos criterios aplicaron entonces de forma eventual a un "conjunto de validación" que comprendía el resto del conjunto de datos. Se extrajo la información identificativa de todas las imágenes del conjunto de validación y se mezclaron entre si aleatoriamente.
Resultados i. Conjunto de formación
El epitelio escamoso se distinguía por un epitelio estratificado sin glándulas. La figura 5A muestra una imagen de OCT ejemplar de un epitelio escamoso que muestra una arquitectura horizontalmente estratificada. La figura 5B es una imagen de OCT ejemplar del cardias gástrico que muestra una arquitectura de "cripta y glándula" vertical y regular, una superficie epitelial con una gran dispersión y una penetración de imagen relativamente pobre. Barra de escala, 500 \mum. El cardias gástrico (mostrado en la figura 5B) estaba caracterizado por la presencia de una morfología de "fosita y glándula", una arquitectura superficial regular la presencia de una superficie epitelial con una gran dispersión o una penetración de imagen pobre.
Las figuras 6A y 6B muestran una imagen ejemplar adicional generada por el sistema y procedimiento de OCT ejemplar según la presente invención. Por ejemplo, la figura 6A muestra la OCT con una arquitectura estratificada horizontal. Las glándulas están presentes en la capa superficial (mostrada mediante flechas 600) que diferencian este tejido del epitelio escamoso. La figura 6B muestra dicha imagen de OCT ejemplar con una arquitectura estratificada y que proporciona una histología correspondiente (H&E, 100x). Barra de escala, 500 \mum.
En concreto, la SIM se distinguía por la presencia de glándulas epiteliales en la arquitectura estratificada. En casos sin arquitectura estratificada o morfología de "fosita y glándula", arquitectura superficial irregular, falta de una superficie o buena penetración de la luz diferenciaron adicionalmente la SIM del epitelio columnar del cardias gástrico y páncreas ectópico. La figura 7A represente una imagen de OCT de una SIM sin una arquitectura de "fosita y glándula" estratificada o regular, una baja reflectividad epitelial superficial y con una penetración de imagen relativamente buena, que son características de una SIM en una zona de unión escamoso-columnar (SCJ). La figura 7B muestra una imagen de OTC de una SIM sin la arquitectura estratificada y que proporciona una histología correspondiente (H&E, 40x). Barra de escala, 500 \mum.
Una realización ejemplar de un procedimiento de diagnóstico para la identificación de SIM en la SCJ que Se puede proporcionar usando los criterios de imágenes anteriormente descritos es un diagrama de flujo mostrado en la figura 8. Por ejemplo, en la etapa 810 se determina si hay arquitectura estratificada. Si ese es el caso, a continuación se determina (en la etapa 820) si las glándulas son epitelio. Si es así, a continuación la determinación es que es SIM (etapa 840); si no, la determinación es escamosa (etapa 830). Si en la etapa 810 se ha determinado que no hay estructura estratificada, entonces se establece si hay criptas y glándulas en la superficie (etapa 850). Si es así, la determinación es que es SIM (etapa 840). Si en la etapa 850 se ha determinado que no hay criptas y glándulas en la superficie, entonces se establece si hay arquitectura regular amplia y linea nítida oscura en el epitelio (etapa 860). Si es así, la determinación es que es SIM (etapa 840); si no, la determinación es escamosa (etapa 830). Si, en la etapa 850, se determina que es posible que haya fositas y criptas en la superficie, entonces la determinación es que es SIM (etapa 840); si no, la determinación es escamosa (etapa 830).
Cuando la realización ejemplar descrita anteriormente con referencia a la figura 8 se aplicó de forma eventual al conjunto de formación, fue un 85% de sensible (95% IC, 75%-95%) y un 95% especifica (95% IC, 88%-100%) para diferencia SIM de tejido no metaplásico en la SCJ.
Conjunto de validación
De las 156 imágenes correlacionadas de biopsias que comprendía el conjunto de validación, 36 se retiraron debido a la pobre calidad de la imagen, dejando un total de 120 lugares para un análisis prospectivo. La tabla 1 detalla el conjunto de validación.
\vskip1.000000\baselineskip
TABLA 1 Histopatología del conjunto de validación
1
\vskip1.000000\baselineskip
Cuando dos especialistas en OCT ciegos aplicaron el diagrama de flujo (Fig. 8) al conjunto de valoración, se halló que el algoritmo fue el 81% (95% IC, 58%-95%) y el 86% (95% IC, 65%-97%) sensible y el 60% (95% IC, 49%-71%) y 58% (95% IC, 48%-68%) específico para un diagnóstico de SIM en la SCJ. La concordancia entre los dos especialistas fue buena (\kappa = 0,63). La tabla 2 muestra la variabilidad y resultados de los diagnósticos de los especialistas tras la aplicación del algoritmo de diagnóstico del conjunto de validación.
TABLA 2 Resultados según especialista
2
Ejemplo 2 Identificación de carcinoma intramucoso en imágenes de OCT de SIM i. Diseño ejemplar del estudio
El estudio ejemplar realizado fue un ensayo prospectivo ciego. Los sujetos reclutados eran pacientes con BE que se sometían a vigilancia endoscópica rutinaria o biopsias de confirmación para IMC o HGD. Las imágenes del epitelio de Barrett se obtuvieron durante la endoscopia. Las imágenes de OCT correlacionadas de biopsias del esófago fueron observadas y puntuadas por un especialista ciego respecto al diagnóstico de tejido. Para cada imagen, la puntuación para la maduración de la superficie y la arquitectura de las glándulas se sumaron para establecer un "Indice de displasia". Cada muestra de biopsia se examinó independientemente y se presentó un diagnóstico consensuado.
ii. Sistema de OCT ejemplar
El dispositivo de OCT ejemplar que se puede utilizar para la realización ejemplar de la presente invención y usado en el estudio se describe en J.M. Poneros y col., "Diagnosis of specialized intestinal metaplasia by optical coherence tomography", Gastroenterology, 2001, Vol. 120(1), pág. 7-12, y en J.M. Poneros y col., "Optical coherence tomography of the biliary tree during ERCP", Gastrointest Endose, 2002, Vol 55(1), pág. 84-8. Por ejemplo, la longitud de onda central de la fuente de luz fue de 1300 nm y la potencia óptica que incide sobre el tejido fue de 5,0 mW. La anchura de banda espectral de la fuente fue de 70 nm, proporcionando una resolución axial de 10 \mum. El diámetro del catéter fue de 2,5 mm. Las imágenes se adquirieron en un plano lineal longitudinalmente con unas dimensiones de 5,5 mm (1000 píxeles) de longitud y 2,5 mm (500 píxeles) de profundidad. Durante la adquisición de imágenes los fotogramas se grabaron a una velocidad de 4 por segundo y se numeraron secuencialmente para tener una referencia. Un láser visible dirigido, coincidente con el haz de formación de imágenes, permitió al endoscopista localizar el lugar de la mucosa sobre el que se realiza la adquisición de la imagen, facilitando la correlación de la biopsia del lugar del que se toma la imagen.
iii. Endoscopia y reclutamiento de sujetos
Antes del procedimiento del sujeto se obtuvo su consentimiento informado. Se reclutaron pacientes con BE que se sometían a vigilancia endoscópica y sujetos con diagnósticos de HGD o IMG evaluados para terapia fotodinámica. Los sujetos recibieron sedación consciente y anestesia orofaringea rutinarias. Se utilizó un endoscopio estándar (Pentax, modelo EG 3470K, Tokio, Japón) con un canal del instrumento de 3,8 mm.
iv. Formación de imágenes de OCT ejemplares
Después de lograr una sedación y una anestesia orofaringea adecuadas, se realizó la endoscopia superior. Cuando el endoscopista identificó la zona de unión gastroesofágica y el segmento de Barrett se introdujo una sonda de catéter para OCT a través del canal del instrumento del endoscopio y se hizo avanzar hacia la mucosa de Barrett. Se adquirieron y grabaron imágenes de OCT en el lugar de la mucosa marcado por el haz enfocado. Los fotogramas de OCT correspondientes al lugar del que se tomó la imagen se documentaron. Se realizó una biopsia con pinzas jumbo en cada lugar del que se tomaba una imagen.
v. Histopatología
Las muestras de biopsia se colocaron en formalina al 10% embebida en parafina, se procesaron de forma rutinaria y se tiñeron con hemotoxilina y eosina.
Descripción del sistema de puntuación de las imágenes vi. Definición de maduración de la superficie
La OCT mide la intensidad de la luz devuelta de una muestra. Las muestras que tenían una mayor heterogeneidad del índice óptico de refracción exhiben una dispersión óptica más intensa y, por tanto, una señal de OCT más intensa. La investigación anterior realizada para medir las propiedades ópticas del tejido humano ha mostrado que el Indice de refracción de la cromatina es significativamente diferente que el del citoplasma [23]. Estos datos indican que la señal de OCT aumentará con el aumento del tamaño y densidad nucleares. Histológicamente, la maduración de la superficie está caracterizada en parte por una disminución en la proporción núcleo-citoplasma del epitelio en la superficie. Una maduración de la superficie incompleta, indicativa de displasia, puede, por tanto, observarse como una señal de OCT intensa de la superficie en comparación con la señal sub-superficial como se muestra en las figuras 9 A-F.
Por ejemplo, la figura 9A muestra una imagen de OTC de una SIM sin displasia que muestra una arquitectura glandular con una reflectividad relativamente baja. La figura 9B muestra una imagen de OCT de una SIM sin displasia que muestra una arquitectura glandular con una reflectividad relativamente baja y que proporciona una histología correspondiente respecto a la imagen de la figura 9A con una inserción que muestra una proporción núcleo-citoplasma baja en el epitelio superficial. La figura 9C muestra una imagen de OCT de IMC/HGD que permite una visualización de glándulas 910 dilatadas grandes e irregulares. La figura 9D muestra una imagen de OCT de glándulas 920 dilatadas irregulares que también se muestran en la correspondiente histología de la figura 9C. La figura 9E muestra una imagen de OCT de IMC/HGD que muestra una arquitectura desorganizada y una mayor reflectividad 930 de la superficie. La figura 9F representa una imagen de OCT de una SIM y que proporciona una histología correspondiente para la imagen de la figura 9E que muestra una arquitectura glandular anormal y una mayor relación núcleo-citoplasma.
vii. Definición de arquitectura glandular
Las glándulas de las imágenes de OCT se identifican corno estructuras lineales con señales de OCT alternas bajas (citoplasma) y señales altas (núcleos y lamina propia), como se muestra en las figuras 9A-9F. Las glándulas dilatadas se observan como huecos de mala dispersión dentro de mucosa en estas figuras. La irregularidad de las glándulas mediante OCT puede estar caracterizada por un tamaño, forma y distribución irregulares de estas estructuras arquitecturales, como se muestra en el presente documento.
viii. Sistema de puntuación
Por ejemplo, se extrajo la información identificativa de las imágenes de OTC y se mezclaron entre si aleatoriamente para crear una base de datos de imágenes. Con este fin, las imágenes de biopsias coherentes con IMC se incluyeron como casos de HGD. Sin el examen de los diagnósticos histopatológicos, cada imagen de OCT se examinó y puntuó en las siguientes categorías:
A) Maduración de la superficie: 0 = señal de OCT de la superficie más débil que la señal de OCT sub-superficial 1 = señal de OCT de la superficie equivalente a la señal de OCT sub-superficial, 2 = señal de OCT de la superficie más intensa que la señal de OCT sub-superficial.
B) Arquitectura glandular (0 = no hay irregularidades, arquitectura glandular de apariencia normal; número mínimo de glándulas lisas dilatadas; 1 = irregularidades leves, glándulas más pequeñas y más densamente empaquetadas o con forma grande e irregular; glándulas dilatadas más frecuentes y menos distanciadas; 2 = irregularidades moderadas/graves, glándulas ramificadas y en gemación; glándulas muy asimétricas o con residuos dentro del lumen de la glándula.
Para cada imagen, las puntuaciones para la maduración de la superficie y la arquitectura de las glándulas se sumaron para establecer un Indice de displasia.
ix. Análisis estadísticos ejemplares
Se calculó el coeficiente de correlación de Spearman (r) para comparar las puntuaciones de cada característica histopatológica determinada por OCT (maduración superficial, arquitectura de las glándulas e índice de displasia) con los diagnósticos de IMC/HGD y con la displasia (IMC/HGD, LGD, IGD). Se calculó la sensibilidad y especificidad del idice de displasia para el diagnóstico de IMC/HGD y displasia (IMC/HGD, LGD, IGD). Los estadísticos usaron un software SAS (Sistema de Análisis Estadístico, SAS Institute Inc.) versión 8.0. Se consideró estadísticamente significativo un valor de p \leq 0,05.
Resultados
El conjunto de datos estaba formado por 242 imágenes correlacionadas de biopsias de 58 pacientes. Antes del análisis estadístico, se retiraron 65 imágenes debido a una calidad de imagen inadecuada. De las 177 imágenes restantes, 49 correspondían a un diagnóstico de IMC/HGD, 15 a LGD, 8 a IGD, 100 a SIM y 5 a mucosa gástrica. De las 65 imágenes descartadas, 20 correspondían a un diagnóstico de IMC/HGD, 13 a LGD, 2 a IGD, 29 a SIM y 1 a mucosa gástrica. La tabla 3 resumen la distribución de los diagnósticos histológicos que comprenden el conjunto de datos y muestra las puntuaciones de OCT medias de maduración superficial, arquitectura de las glándulas e Indice de displasia.
i. Distinción de IMC/HGD de las otras (LGD, IGD y SIM)
La tabla 4 muestra los coeficientes de correlación de Spearman entre cada característica de las imágenes de OCT y un diagnóstico de IMC/HGD. Hubo una correlación positiva entre cada característica y un diagnóstico de IMC/HGD: [maduración superficial (r = 0,41, p <0,0001), arquitectura de las glándulas (r = 0,49, p <0,0001) e Indice de displasia (r = 0,50, p < 0,0001)]. De las tres características, el Índice de displasia se correlacionó más con IMC/HGD.
La tabla 5 muestra que una puntuación del índice de displasia > 2 es el 83,3% (95% IC, 70%-93%) sensible y el 75,0% (95% IC, 68%-84%) especifica para un diagnóstico de IMC/HGD. La figura 1 (última página) muestra ejemplos de IMC/HGD.
ii. Distinción de displasia ((IMC/HGD, IGD, LGD) de SIM
La tabla 4 muestra los coeficientes de correlación de Spearman entre cada característica de las imágenes de OCT determinada y un diagnóstico de displasia. Hubo una correlación positiva entre cada característica y un diagnóstico de displasia [maduración superficial (r = 0,47, p <0,0001), arquitectura de las glándulas (r = 0,44, p <0,0001) e índice de displasia (r = 0,50, p < 0,0001)]. La característica de las imágenes con la mayor correlación con displasia fue el índice de displasia. La tabla 6 muestra que una puntuación del Indice de displasia \geq 2 es el 72,0% (95% IC, 58%-80%) sensible y el 81,0% (95% IC, 72%-88%) especifica para un diagnóstico de displasia.
TABLA 3 Puntuaciones de OCT medias por histopatología
3
De los 49 diagnósticos de "HGD", 17 eran realmente IMC de interpretaciones consensuadas.
[maduración superficial (r = 14, p <17), arquitectura de las glándulas (r = 2, p <2,53) e índice de displasia (r = 0,50, p < 0,0001)].
26/32 de los casos de HGD verdadera tuvieron puntuaciones >/= 2 y una puntuación del índice de displasia media de 2,40
\vskip1.000000\baselineskip
TABLA 4 Correlación entre puntuaciones de OCT e histología (Coeficiente de correlación de Spearman, r)
4
TABLA 5 Tabla de verdad para un diagnóstico de HGD usando un índice de displasia
5
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
TABLA 6 Tabla de verdad para un diagnóstico de displasia usando el Indice de displasia
6
Lo anterior únicamente ilustra los principios de la invención. Serán evidentes diversas modificaciones y alteraciones de las realizaciones descritas para los expertos en la materia en vista de las enseñanzas del presente documento. De hecho, las disposiciones, sistemas y procedimientos según las realizaciones ejemplares de la presente invención se pueden usar con cualquier sistema de OCT, sistema OFDI, sistema SD-OCT u otro sistema de formación de imágenes y, por ejemplo, con los descritos en la solicitud internacional de patente PCT/US2004/029148, depositada el 8 de Septiembre de 2004, la solicitud de patente estadounidense Nº 13/266.779, depositada el 2 de Noviembre de 2005, y la solicitud de patente estadounidense nº 10/501.276, depositada el 9 de Julio de 2004. El alcance de la invención está limitado solo por las reivindicaciones adjuntas.

Claims (21)

1. Una disposición de procesado para procesar al menos una nueva imagen de biopsia asociada con al menos una porción de una estructura anatómica, estando la disposición de procesado adaptada para realizar las etapas de:
recibir primera información asociada con la al menos una porción de la estructura anatómica, en la que la primera información se obtiene mediante un sistema de tomografía de coherencia óptica y corresponde a las características de la imagen;
recibir segunda información asociada con la al menos una porción de la estructura anatómica, en la que la segunda información se obtiene mediante un sistema de microscopía y corresponde a las características de la imagen de una imagen histopatológica;
generar tercera información correspondiente a una relación identificada entre la primera información y la segunda información; y
aplicar la tercera información con criterios de puntuación histopatológicos predeterminados a al menos una nueva imagen de biopsia óptica.
2. La disposición de procesado según la reivindicación 1, en la que al menos una de la primera información o de la segunda información está asociada con una luz enviada desde la al menos una porción.
3. La disposición de procesado según la reivindicación 2, en la que la luz se refleja desde la al menos una porción.
4. La disposición de procesado según la reivindicación 2, en la que la luz es fluorescencia.
5. La disposición de procesado según la reivindicación 1, en la que al menos una porción se proporciona en un sujeto vivo.
6. La disposición de procesado según la reivindicación 1, en la que al menos una porción de la estructura anatómica está situada en una muestra para microscopio.
7. La disposición de procesado según la reivindicación 6, en la que la muestra está teñida con al menos una de tinción de hematoxilina-eosina, tricrómico de Masson, de Papanicolaou, de Diff-Quik o del ácido periódico de Shiff.
8. La disposición de procesado según la reivindicación 1, en la que la primera información y la segunda información se proporcionan para aproximadamente la misma ubicación de la al menos una porción de la estructura anatómica.
9. La disposición de procesado según la reivindicación 1, en la que la tercera información se obtiene en base a las estructuras físicas y químicas asociadas con la primera información y la segunda información.
10. La disposición de procesado según la reivindicación 9, en la que los criterios de puntuación patológicos predeterminados son los criterios de Haggitt.
11. La disposición de procesado según la reivindicación I, en la que la imagen está asociada con una luz enviada desde la al menos una porción.
12. La disposición de procesado según la reivindicación II, en la que la luz se refleja desde la al menos una porción.
13. La disposición de procesado según la reivindicación 11, en la que la luz es fluorescencia.
14. La disposición de procesado según la reivindicación 11, en la que al menos una porción se proporciona en un sujeto vivo.
15. La disposición de procesado según la reivindicación 1, en la que la segunda información se obtiene mediante un sistema de microscopía confocal espectralmente codificado.
16. La disposición de procesado según la reivindicación 1, en la que la estructura anatómica está bajo la piel.
17. La disposición de procesado según la reivindicación 16, en la que la segunda información se obtiene mediante un sistema de microscopía confocal.
18. La disposición de procesado según la reivindicación 16, en la que la segunda información se obtiene mediante un sistema de microscopía confocal de reflectancia.
19. La disposición de procesado según la reivindicación 1, en la que al menos una de la primera información o la segunda información se obtiene mediante un sistema de formación de imágenes del dominio de frecuencia óptica.
20. La disposición de procesado según la reivindicación 6, en la que la muestra está teñida con un anticuerpo.
21. Un sistema de software para procesar al menos una nueva imagen de biopsia asociada con al menos una porción de una estructura anatómica, incluyendo el sistema de software un código que produce que una disposición de procesado realice las etapas siguientes:
recibir una primera información asociada con la al menos una porción de la estructura anatómica, en la que la primera información se obtiene mediante un sistema de tomografía de coherencia óptica y corresponde a las características de la imagen;
recibir una segunda información asociada con la al menos una porción de la estructura anatómica, en la que la segunda información se obtiene mediante un sistema de microscopía y corresponde a las características de la imagen de una imagen histopatológica;
generar una tercera información correspondiente a una relación identificada entre la primera información y la segunda información; y
aplicar la tercera información con criterios de puntuación histopatológicos predeterminados a al menos una nueva imagen de biopsia óptica.
ES06758869T 2005-04-28 2006-04-28 Evaluacion de caracteristicas de la imagen de una estructura anatomica en imagenes de tomografia de coherencia optica. Active ES2337497T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67636205P 2005-04-28 2005-04-28
US676362P 2005-04-28

Publications (1)

Publication Number Publication Date
ES2337497T3 true ES2337497T3 (es) 2010-04-26

Family

ID=36917328

Family Applications (1)

Application Number Title Priority Date Filing Date
ES06758869T Active ES2337497T3 (es) 2005-04-28 2006-04-28 Evaluacion de caracteristicas de la imagen de una estructura anatomica en imagenes de tomografia de coherencia optica.

Country Status (8)

Country Link
US (3) US8351665B2 (es)
EP (3) EP1875436B1 (es)
JP (1) JP5684452B2 (es)
KR (1) KR101410867B1 (es)
AT (1) ATE451669T1 (es)
DE (1) DE602006010993D1 (es)
ES (1) ES2337497T3 (es)
WO (1) WO2006116769A1 (es)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1889039B1 (de) * 2005-05-31 2015-04-22 W.O.M. World of Medicine AG Verfahren und vorrichtung zur optischen charakterisierung von gewebe
US7668342B2 (en) 2005-09-09 2010-02-23 Carl Zeiss Meditec, Inc. Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
US7768652B2 (en) * 2006-03-16 2010-08-03 Carl Zeiss Meditec, Inc. Methods for mapping tissue with optical coherence tomography data
US8023714B2 (en) * 2007-06-06 2011-09-20 Aperio Technologies, Inc. System and method for assessing image interpretability in anatomic pathology
WO2010041423A1 (ja) * 2008-10-09 2010-04-15 日本電気株式会社 病理組織診断支援システム、病理組織診断支援プログラム、病理組織診断支援方法
JP4810562B2 (ja) * 2008-10-17 2011-11-09 キヤノン株式会社 画像処理装置、画像処理方法
JP2010179042A (ja) * 2009-02-09 2010-08-19 Fujifilm Corp 光構造観察装置及びその構造情報処理方法、光構造観察装置を備えた内視鏡システム
ES2377303B1 (es) * 2009-06-05 2013-02-01 Vodafone España S.A.U. Método y sistema para recomendar fotografías.
US11105686B2 (en) 2010-05-10 2021-08-31 University of Pittshurgh-Of the Commonwealth System of Higher Education Spatial-domain low-coherence quantitative phase microscopy
US9767550B2 (en) * 2010-12-13 2017-09-19 Koninklijke Philips N.V. Method and device for analysing a region of interest in an object using x-rays
US9226654B2 (en) 2011-04-29 2016-01-05 Carl Zeiss Meditec, Inc. Systems and methods for automated classification of abnormalities in optical coherence tomography images of the eye
US9023016B2 (en) 2011-12-19 2015-05-05 Alcon Lensx, Inc. Image processor for intra-surgical optical coherence tomographic imaging of laser cataract procedures
US9066784B2 (en) * 2011-12-19 2015-06-30 Alcon Lensx, Inc. Intra-surgical optical coherence tomographic imaging of cataract procedures
TWI554244B (zh) * 2011-12-19 2016-10-21 愛爾康眼科手術激光股份有限公司 用於雷射白內障程序之手術內光學同調斷層掃描成像的影像處理器
US8885766B2 (en) * 2012-09-11 2014-11-11 Inphi Corporation Optical communication interface utilizing N-dimensional double square quadrature amplitude modulation
EP2929327B1 (en) 2012-12-05 2019-08-14 Perimeter Medical Imaging, Inc. System and method for wide field oct imaging
TWI481392B (zh) * 2013-02-21 2015-04-21 Univ Nat Yang Ming 一種牙結石成像方法
US9351698B2 (en) 2013-03-12 2016-05-31 Lightlab Imaging, Inc. Vascular data processing and image registration systems, methods, and apparatuses
WO2015187489A1 (en) * 2014-06-04 2015-12-10 University Of Massachusetts Medical School Hyperspectral imaging for prediction of skin injury after exposure to thermal energy or ionizing radiation
WO2016016125A1 (en) * 2014-07-28 2016-02-04 Ventana Medical Systems, Inc. Automatic glandular and tubule detection in histological grading of breast cancer
US10499813B2 (en) 2014-09-12 2019-12-10 Lightlab Imaging, Inc. Methods, systems and apparatus for temporal calibration of an intravascular imaging system
JP6467221B2 (ja) * 2014-12-22 2019-02-06 キヤノン株式会社 画像処理装置および方法
US10105107B2 (en) 2015-01-08 2018-10-23 St. Jude Medical International Holding S.À R.L. Medical system having combined and synergized data output from multiple independent inputs
US11278206B2 (en) 2015-04-16 2022-03-22 Gentuity, Llc Micro-optic probes for neurology
US10109058B2 (en) 2015-05-17 2018-10-23 Lightlab Imaging, Inc. Intravascular imaging system interfaces and stent detection methods
US10222956B2 (en) 2015-05-17 2019-03-05 Lightlab Imaging, Inc. Intravascular imaging user interface systems and methods
US9996921B2 (en) 2015-05-17 2018-06-12 LIGHTLAB IMAGING, lNC. Detection of metal stent struts
US10646198B2 (en) 2015-05-17 2020-05-12 Lightlab Imaging, Inc. Intravascular imaging and guide catheter detection methods and systems
US10542961B2 (en) 2015-06-15 2020-01-28 The Research Foundation For The State University Of New York System and method for infrasonic cardiac monitoring
EP3315594B1 (en) * 2015-06-24 2020-02-26 Hitachi, Ltd. Inspection system
CN112315427A (zh) 2015-07-25 2021-02-05 光学实验室成像公司 血管内数据可视化方法
WO2017040484A1 (en) 2015-08-31 2017-03-09 Gentuity, Llc Imaging system includes imaging probe and delivery devices
CN115830332A (zh) 2015-11-18 2023-03-21 光学实验室成像公司 x射线图像特征检测和配准系统和方法
EP3381014B1 (en) 2015-11-23 2020-12-16 Lightlab Imaging, Inc. Detection of and validation of shadows in intravascular images
EP3443536B1 (en) 2016-04-14 2021-12-15 Lightlab Imaging, Inc. Identification of branches of a blood vessel
US10631754B2 (en) 2016-05-16 2020-04-28 Lightlab Imaging, Inc. Intravascular absorbable stent detection and diagnostic methods and systems
US10687766B2 (en) * 2016-12-14 2020-06-23 Siemens Healthcare Gmbh System to detect features using multiple reconstructions
EP3558091A4 (en) 2016-12-21 2020-12-02 Acucela, Inc. MINIATURIZED AFFORDABLE OPTICAL COHERENCE TOMOGRAPHY SYSTEM FOR OPHTHALMIC APPLICATIONS IN THE HOME
WO2019014767A1 (en) 2017-07-18 2019-01-24 Perimeter Medical Imaging, Inc. SAMPLE CONTAINER FOR STABILIZING AND ALIGNING EXCISED ORGANIC TISSUE SAMPLES FOR EX VIVO ANALYSIS
JP7160935B2 (ja) 2017-11-28 2022-10-25 ジェンテュイティ・リミテッド・ライアビリティ・カンパニー 撮像システム
US10861156B2 (en) * 2018-02-28 2020-12-08 Case Western Reserve University Quality control for digital pathology slides
US10952616B2 (en) 2018-03-30 2021-03-23 Canon U.S.A., Inc. Fluorescence imaging apparatus
WO2019246412A1 (en) 2018-06-20 2019-12-26 Acucela Inc. Miniaturized mobile, low cost optical coherence tomography system for home based ophthalmic applications
US10743749B2 (en) 2018-09-14 2020-08-18 Canon U.S.A., Inc. System and method for detecting optical probe connection
US10769784B2 (en) * 2018-12-21 2020-09-08 Metal Industries Research & Development Centre Image analyzing method and electrical device
CN111105402A (zh) * 2019-12-24 2020-05-05 福州大学 一种基于信息熵的sevi调节因子优化方法
WO2021134087A1 (en) 2019-12-26 2021-07-01 Acucela Inc. Optical coherence tomography patient alignment system for home based ophthalmic applications
US10959613B1 (en) 2020-08-04 2021-03-30 Acucela Inc. Scan pattern and signal processing for optical coherence tomography
US11393094B2 (en) 2020-09-11 2022-07-19 Acucela Inc. Artificial intelligence for evaluation of optical coherence tomography images
WO2022072644A1 (en) 2020-09-30 2022-04-07 Acucela Inc. Myopia prediction, diagnosis, planning, and monitoring device
US20220285032A1 (en) * 2021-03-08 2022-09-08 Castle Biosciences, Inc. Determining Prognosis and Treatment based on Clinical-Pathologic Factors and Continuous Multigene-Expression Profile Scores
WO2022204622A1 (en) 2021-03-24 2022-09-29 Acucela Inc. Axial length measurement monitor
WO2023106738A1 (ko) * 2021-12-06 2023-06-15 재단법인 아산사회복지재단 호산구성 질병의 진단 방법 및 시스템

Family Cites Families (650)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339754A (en) * 1941-03-04 1944-01-25 Westinghouse Electric & Mfg Co Supervisory apparatus
US3090753A (en) 1960-08-02 1963-05-21 Exxon Research Engineering Co Ester oil compositions containing acid anhydride
US3082105A (en) * 1960-09-29 1963-03-19 Bethlehem Steel Corp Chrome silica brick
US3120137A (en) * 1961-01-03 1964-02-04 Ingersoll Rand Canada Apparatus for forming varying shaped bores in hollow members
GB1257778A (es) 1967-12-07 1971-12-22
US3601480A (en) 1968-07-10 1971-08-24 Physics Int Co Optical tunnel high-speed camera system
JPS4932484U (es) 1972-06-19 1974-03-20
US3872407A (en) 1972-09-01 1975-03-18 Us Navy Rapidly tunable laser
JPS584481Y2 (ja) 1973-06-23 1983-01-26 オリンパス光学工業株式会社 ナイシキヨウシヤヘンカンコウガクケイ
FR2253410A5 (es) 1973-12-03 1975-06-27 Inst Nat Sante Rech Med
US4002650A (en) * 1973-12-10 1977-01-11 The Standard Oil Company (Ohio) Preparation of maleic anhydride from n-butane
US3941121A (en) 1974-12-20 1976-03-02 The University Of Cincinnati Focusing fiber-optic needle endoscope
US3983507A (en) 1975-01-06 1976-09-28 Research Corporation Tunable laser systems and method
US3973219A (en) 1975-04-24 1976-08-03 Cornell Research Foundation, Inc. Very rapidly tuned cw dye laser
US4030831A (en) 1976-03-22 1977-06-21 The United States Of America As Represented By The Secretary Of The Navy Phase detector for optical figure sensing
US4141362A (en) 1977-05-23 1979-02-27 Richard Wolf Gmbh Laser endoscope
US4224929A (en) 1977-11-08 1980-09-30 Olympus Optical Co., Ltd. Endoscope with expansible cuff member and operation section
GB2047894B (en) 1978-03-09 1982-11-03 Nat Res Dev Speckle interferometric measurement of small oscillatory movements
GB2030313A (en) 1978-06-29 1980-04-02 Wolf Gmbh Richard Endoscopes
FR2448728A1 (fr) 1979-02-07 1980-09-05 Thomson Csf Dispositif joint tournant pour liaison par conducteurs optiques et systeme comportant un tel dispositif
US4300816A (en) 1979-08-30 1981-11-17 United Technologies Corporation Wide band multicore optical fiber
US4295738A (en) 1979-08-30 1981-10-20 United Technologies Corporation Fiber optic strain sensor
US4428643A (en) * 1981-04-08 1984-01-31 Xerox Corporation Optical scanning system with wavelength shift correction
US5065331A (en) 1981-05-18 1991-11-12 Vachon Reginald I Apparatus and method for determining the stress and strain in pipes, pressure vessels, structural members and other deformable bodies
GB2106736B (en) 1981-09-03 1985-06-12 Standard Telephones Cables Ltd Optical transmission system
US4479499A (en) 1982-01-29 1984-10-30 Alfano Robert R Method and apparatus for detecting the presence of caries in teeth using visible light
US5302025A (en) 1982-08-06 1994-04-12 Kleinerman Marcos Y Optical systems for sensing temperature and other physical parameters
US4601036A (en) 1982-09-30 1986-07-15 Honeywell Inc. Rapidly tunable laser
HU187188B (en) 1982-11-25 1985-11-28 Koezponti Elelmiszeripari Device for generating radiation of controllable spectral structure
CH663466A5 (fr) 1983-09-12 1987-12-15 Battelle Memorial Institute Procede et dispositif pour determiner la position d'un objet par rapport a une reference.
US4639999A (en) * 1984-11-02 1987-02-03 Xerox Corporation High resolution, high efficiency I.R. LED printing array fabrication method
US4763977A (en) 1985-01-09 1988-08-16 Canadian Patents And Development Limited-Societe Optical fiber coupler with tunable coupling ratio and method of making
EP0590268B1 (en) 1985-03-22 1998-07-01 Massachusetts Institute Of Technology Fiber Optic Probe System for Spectrally Diagnosing Tissue
US5318024A (en) 1985-03-22 1994-06-07 Massachusetts Institute Of Technology Laser endoscope for spectroscopic imaging
US4734578A (en) * 1985-03-27 1988-03-29 Olympus Optical Co., Ltd. Two-dimensional scanning photo-electric microscope
US4607622A (en) 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
US4631498A (en) 1985-04-26 1986-12-23 Hewlett-Packard Company CW Laser wavemeter/frequency locking technique
US4650327A (en) 1985-10-28 1987-03-17 Oximetrix, Inc. Optical catheter calibrating assembly
JPS62188001U (es) 1986-05-20 1987-11-30
US5040889A (en) 1986-05-30 1991-08-20 Pacific Scientific Company Spectrometer with combined visible and ultraviolet sample illumination
CA1290019C (en) 1986-06-20 1991-10-01 Hideo Kuwahara Dual balanced optical signal receiver
US4770492A (en) 1986-10-28 1988-09-13 Spectran Corporation Pressure or strain sensitive optical fiber
JPH0824665B2 (ja) 1986-11-28 1996-03-13 オリンパス光学工業株式会社 内視鏡装置
US4744656A (en) 1986-12-08 1988-05-17 Spectramed, Inc. Disposable calibration boot for optical-type cardiovascular catheter
JPS63158363A (ja) 1986-12-22 1988-07-01 Daikin Mfg Co Ltd エア回転継手のシ−ル装置
US4751706A (en) 1986-12-31 1988-06-14 The United States Of America As Represented By The Secretary Of The Army Laser for providing rapid sequence of different wavelengths
US4834111A (en) 1987-01-12 1989-05-30 The Trustees Of Columbia University In The City Of New York Heterodyne interferometer
GB2209221B (en) 1987-09-01 1991-10-23 Litton Systems Inc Hydrophone demodulator circuit and method
US5202931A (en) * 1987-10-06 1993-04-13 Cell Analysis Systems, Inc. Methods and apparatus for the quantitation of nuclear protein
US4909631A (en) 1987-12-18 1990-03-20 Tan Raul Y Method for film thickness and refractive index determination
US4890901A (en) 1987-12-22 1990-01-02 Hughes Aircraft Company Color corrector for embedded prisms
US4892406A (en) * 1988-01-11 1990-01-09 United Technologies Corporation Method of and arrangement for measuring vibrations
FR2626367B1 (fr) 1988-01-25 1990-05-11 Thomson Csf Capteur de temperature multipoints a fibre optique
FR2626383B1 (fr) 1988-01-27 1991-10-25 Commissariat Energie Atomique Procede de microscopie optique confocale a balayage et en profondeur de champ etendue et dispositifs pour la mise en oeuvre du procede
US4925302A (en) 1988-04-13 1990-05-15 Hewlett-Packard Company Frequency locking device
US5730731A (en) * 1988-04-28 1998-03-24 Thomas J. Fogarty Pressure-based irrigation accumulator
US4998972A (en) * 1988-04-28 1991-03-12 Thomas J. Fogarty Real time angioscopy imaging system
US4905169A (en) * 1988-06-02 1990-02-27 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation
US5242437A (en) 1988-06-10 1993-09-07 Trimedyne Laser Systems, Inc. Medical device applying localized high intensity light and heat, particularly for destruction of the endometrium
DE02012428T1 (de) 1988-07-13 2005-12-15 Optiscan Pty. Ltd., Toorak Konfokales Rastermikroskop
GB8817672D0 (en) 1988-07-25 1988-09-01 Sira Ltd Optical apparatus
US5214538A (en) 1988-07-25 1993-05-25 Keymed (Medical And Industrial Equipment) Limited Optical apparatus
US4868834A (en) 1988-09-14 1989-09-19 The United States Of America As Represented By The Secretary Of The Army System for rapidly tuning a low pressure pulsed laser
DE3833602A1 (de) * 1988-10-03 1990-02-15 Krupp Gmbh Spektrometer zur gleichzeitigen intensitaetsmessung in verschiedenen spektralbereichen
US4940328A (en) 1988-11-04 1990-07-10 Georgia Tech Research Corporation Optical sensing apparatus and method
US4966589A (en) 1988-11-14 1990-10-30 Hemedix International, Inc. Intravenous catheter placement device
DE68925586T2 (de) 1988-12-21 1996-10-24 Massachusetts Inst Technology Verfahren für laserinduzierte fluoreszenz von gewebe
US5046501A (en) 1989-01-18 1991-09-10 Wayne State University Atherosclerotic identification
US5085496A (en) 1989-03-31 1992-02-04 Sharp Kabushiki Kaisha Optical element and optical pickup device comprising it
US5317389A (en) 1989-06-12 1994-05-31 California Institute Of Technology Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography
US4965599A (en) 1989-11-13 1990-10-23 Eastman Kodak Company Scanning apparatus for halftone image screen writing
US5133035A (en) 1989-11-14 1992-07-21 Hicks John W Multifiber endoscope with multiple scanning modes to produce an image free of fixed pattern noise
US4984888A (en) * 1989-12-13 1991-01-15 Imo Industries, Inc. Two-dimensional spectrometer
KR930003307B1 (ko) 1989-12-14 1993-04-24 주식회사 금성사 입체용 프로젝터
US5251009A (en) 1990-01-22 1993-10-05 Ciba-Geigy Corporation Interferometric measuring arrangement for refractive index measurements in capillary tubes
DD293205B5 (de) 1990-03-05 1995-06-29 Zeiss Carl Jena Gmbh Lichtleiterfuehrung fuer ein medizinisches Beobachtungsgeraet
US5039193A (en) 1990-04-03 1991-08-13 Focal Technologies Incorporated Fibre optic single mode rotary joint
US5262644A (en) 1990-06-29 1993-11-16 Southwest Research Institute Remote spectroscopy for raman and brillouin scattering
US5197470A (en) * 1990-07-16 1993-03-30 Eastman Kodak Company Near infrared diagnostic method and instrument
GB9015793D0 (en) 1990-07-18 1990-09-05 Medical Res Council Confocal scanning optical microscope
US5127730A (en) 1990-08-10 1992-07-07 Regents Of The University Of Minnesota Multi-color laser scanning confocal imaging system
US5845639A (en) 1990-08-10 1998-12-08 Board Of Regents Of The University Of Washington Optical imaging methods
US5305759A (en) 1990-09-26 1994-04-26 Olympus Optical Co., Ltd. Examined body interior information observing apparatus by using photo-pulses controlling gains for depths
US5241364A (en) 1990-10-19 1993-08-31 Fuji Photo Film Co., Ltd. Confocal scanning type of phase contrast microscope and scanning microscope
US5250186A (en) 1990-10-23 1993-10-05 Cetus Corporation HPLC light scattering detector for biopolymers
US5202745A (en) 1990-11-07 1993-04-13 Hewlett-Packard Company Polarization independent optical coherence-domain reflectometry
US5275594A (en) * 1990-11-09 1994-01-04 C. R. Bard, Inc. Angioplasty system having means for identification of atherosclerotic plaque
JP3035336B2 (ja) * 1990-11-27 2000-04-24 興和株式会社 血流測定装置
US5228001A (en) 1991-01-23 1993-07-13 Syracuse University Optical random access memory
US5784162A (en) * 1993-08-18 1998-07-21 Applied Spectral Imaging Ltd. Spectral bio-imaging methods for biological research, medical diagnostics and therapy
US6198532B1 (en) 1991-02-22 2001-03-06 Applied Spectral Imaging Ltd. Spectral bio-imaging of the eye
US5293872A (en) * 1991-04-03 1994-03-15 Alfano Robert R Method for distinguishing between calcified atherosclerotic tissue and fibrous atherosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy
US5748598A (en) 1995-12-22 1998-05-05 Massachusetts Institute Of Technology Apparatus and methods for reading multilayer storage media using short coherence length sources
US6564087B1 (en) 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US6501551B1 (en) 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US5465147A (en) 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
EP0581871B2 (en) 1991-04-29 2009-08-12 Massachusetts Institute Of Technology Apparatus for optical imaging and measurement
US5956355A (en) 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US6111645A (en) 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US6485413B1 (en) 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US5441053A (en) 1991-05-03 1995-08-15 University Of Kentucky Research Foundation Apparatus and method for multiple wavelength of tissue
US5281811A (en) * 1991-06-17 1994-01-25 Litton Systems, Inc. Digital wavelength division multiplex optical transducer having an improved decoder
US5208651A (en) 1991-07-16 1993-05-04 The Regents Of The University Of California Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes
WO1993003672A1 (en) 1991-08-20 1993-03-04 Redd Douglas C B Optical histochemical analysis, in vivo detection and real-time guidance for ablation of abnormal tissues using a raman spectroscopic detection system
DE4128744C1 (es) * 1991-08-29 1993-04-22 Siemens Ag, 8000 Muenchen, De
US5177488A (en) 1991-10-08 1993-01-05 Hughes Aircraft Company Programmable fiber optic delay line, and radar target simulation system incorporating the same
EP0550929B1 (en) 1991-12-30 1997-03-19 Koninklijke Philips Electronics N.V. Optical device and apparatus for scanning an information plane, comprising such an optical device
US5353790A (en) 1992-01-17 1994-10-11 Board Of Regents, The University Of Texas System Method and apparatus for optical measurement of bilirubin in tissue
US5212667A (en) 1992-02-03 1993-05-18 General Electric Company Light imaging in a scattering medium, using ultrasonic probing and speckle image differencing
US5217456A (en) 1992-02-24 1993-06-08 Pdt Cardiovascular, Inc. Device and method for intra-vascular optical radial imaging
US5248876A (en) 1992-04-21 1993-09-28 International Business Machines Corporation Tandem linear scanning confocal imaging system with focal volumes at different heights
US5283795A (en) * 1992-04-21 1994-02-01 Hughes Aircraft Company Diffraction grating driven linear frequency chirped laser
US5486701A (en) * 1992-06-16 1996-01-23 Prometrix Corporation Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
US5411025A (en) 1992-06-30 1995-05-02 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array
US5716324A (en) * 1992-08-25 1998-02-10 Fuji Photo Film Co., Ltd. Endoscope with surface and deep portion imaging systems
US5348003A (en) 1992-09-03 1994-09-20 Sirraya, Inc. Method and apparatus for chemical analysis
EP0587514A1 (en) 1992-09-11 1994-03-16 Welch Allyn, Inc. Processor module for video inspection probe
US5772597A (en) 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
US5698397A (en) 1995-06-07 1997-12-16 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
DE69327147T2 (de) 1992-09-21 2000-06-15 Inst Nat Sante Rech Med Sonde und Verfahren zur genauen Bestimmung der Geschwindigkeit oder des Durchflusses einer Flüssigkeit
US5383467A (en) * 1992-11-18 1995-01-24 Spectrascience, Inc. Guidewire catheter and apparatus for diagnostic imaging
ATE151615T1 (de) 1992-11-18 1997-05-15 Spectrascience Inc Diagnosebildgerät
US5785663A (en) 1992-12-21 1998-07-28 Artann Corporation Method and device for mechanical imaging of prostate
US5400771A (en) 1993-01-21 1995-03-28 Pirak; Leon Endotracheal intubation assembly and related method
JPH06222242A (ja) 1993-01-27 1994-08-12 Shin Etsu Chem Co Ltd 光ファイバカプラおよびその製造方法
US5987346A (en) 1993-02-26 1999-11-16 Benaron; David A. Device and method for classification of tissue
US5414509A (en) 1993-03-08 1995-05-09 Associated Universities, Inc. Optical pressure/density measuring means
JP3112595B2 (ja) * 1993-03-17 2000-11-27 安藤電気株式会社 光周波数シフタを用いる光ファイバ歪位置測定装置
FI93781C (fi) 1993-03-18 1995-05-26 Wallac Oy Biospesifinen multiparametrinen määritysmenetelmä
DE4309056B4 (de) 1993-03-20 2006-05-24 Häusler, Gerd, Prof. Dr. Verfahren und Vorrichtung zur Ermittlung der Entfernung und Streuintensität von streuenden Punkten
DE4310209C2 (de) * 1993-03-29 1996-05-30 Bruker Medizintech Optische stationäre Bildgebung in stark streuenden Medien
US5485079A (en) 1993-03-29 1996-01-16 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
US5424827A (en) 1993-04-30 1995-06-13 Litton Systems, Inc. Optical system and method for eliminating overlap of diffraction spectra
DE4314189C1 (de) 1993-04-30 1994-11-03 Bodenseewerk Geraetetech Vorrichtung zur Untersuchung von Lichtleitfasern aus Glas mittels Heterodyn-Brillouin-Spektroskopie
SE501932C2 (sv) 1993-04-30 1995-06-26 Ericsson Telefon Ab L M Anordning och förfarande för dispersionskompensering i ett fiberoptiskt transmissionssystem
US5454807A (en) 1993-05-14 1995-10-03 Boston Scientific Corporation Medical treatment of deeply seated tissue using optical radiation
DE69418248T2 (de) 1993-06-03 1999-10-14 Hamamatsu Photonics Kk Optisches Laser-Abtastsystem mit Axikon
JP3234353B2 (ja) 1993-06-15 2001-12-04 富士写真フイルム株式会社 断層情報読取装置
US5840031A (en) 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US5995645A (en) 1993-08-18 1999-11-30 Applied Spectral Imaging Ltd. Method of cancer cell detection
US5803082A (en) 1993-11-09 1998-09-08 Staplevision Inc. Omnispectramammography
US5983125A (en) 1993-12-13 1999-11-09 The Research Foundation Of City College Of New York Method and apparatus for in vivo examination of subcutaneous tissues inside an organ of a body using optical spectroscopy
US5450203A (en) 1993-12-22 1995-09-12 Electroglas, Inc. Method and apparatus for determining an objects position, topography and for imaging
US5411016A (en) 1994-02-22 1995-05-02 Scimed Life Systems, Inc. Intravascular balloon catheter for use in combination with an angioscope
US5590660A (en) * 1994-03-28 1997-01-07 Xillix Technologies Corp. Apparatus and method for imaging diseased tissue using integrated autofluorescence
DE4411017C2 (de) 1994-03-30 1995-06-08 Alexander Dr Knuettel Optische stationäre spektroskopische Bildgebung in stark streuenden Objekten durch spezielle Lichtfokussierung und Signal-Detektion von Licht unterschiedlicher Wellenlängen
TW275570B (es) * 1994-05-05 1996-05-11 Boehringer Mannheim Gmbh
WO1996002184A1 (en) 1994-07-14 1996-02-01 Washington Research Foundation Method and apparatus for detecting barrett's metaplasia of the esophagus
US5459325A (en) 1994-07-19 1995-10-17 Molecular Dynamics, Inc. High-speed fluorescence scanner
US6159445A (en) 1994-07-20 2000-12-12 Nycomed Imaging As Light imaging contrast agents
WO1996004839A1 (en) 1994-08-08 1996-02-22 Computed Anatomy, Incorporated Processing of keratoscopic images using local spatial phase
EP1231496B1 (en) 1994-08-18 2004-12-29 Carl Zeiss AG Optical coherence tomography assisted surgical apparatus
US5491524A (en) * 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US5817144A (en) 1994-10-25 1998-10-06 Latis, Inc. Method for contemporaneous application OF laser energy and localized pharmacologic therapy
US6033721A (en) * 1994-10-26 2000-03-07 Revise, Inc. Image-based three-axis positioner for laser direct write microchemical reaction
JPH08136345A (ja) 1994-11-10 1996-05-31 Anritsu Corp 複単色計
JPH08160129A (ja) 1994-12-05 1996-06-21 Uniden Corp 速度検出装置
US5566267A (en) 1994-12-15 1996-10-15 Ceram Optec Industries Inc. Flat surfaced optical fibers and diode laser medical delivery devices
US5600486A (en) * 1995-01-30 1997-02-04 Lockheed Missiles And Space Company, Inc. Color separation microlens
US5648848A (en) 1995-02-01 1997-07-15 Nikon Precision, Inc. Beam delivery apparatus and method for interferometry using rotatable polarization chucks
DE19506484C2 (de) 1995-02-24 1999-09-16 Stiftung Fuer Lasertechnologie Verfahren und Vorrichtung zur selektiven nichtinvasiven Lasermyographie (LMG)
RU2100787C1 (ru) * 1995-03-01 1997-12-27 Геликонов Валентин Михайлович Оптоволоконный интерферометр и оптоволоконный пьезоэлектрический преобразователь
US5868731A (en) 1996-03-04 1999-02-09 Innotech Usa, Inc. Laser surgical device and method of its use
WO1996028212A1 (en) 1995-03-09 1996-09-19 Innotech Usa, Inc. Laser surgical device and method of its use
US5526338A (en) 1995-03-10 1996-06-11 Yeda Research & Development Co. Ltd. Method and apparatus for storage and retrieval with multilayer optical disks
US5697373A (en) 1995-03-14 1997-12-16 Board Of Regents, The University Of Texas System Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies
US5735276A (en) 1995-03-21 1998-04-07 Lemelson; Jerome Method and apparatus for scanning and evaluating matter
CA2215975A1 (en) 1995-03-24 1996-10-03 Optiscan Pty. Ltd. Optical fibre confocal imager with variable near-confocal control
US5565983A (en) 1995-05-26 1996-10-15 The Perkin-Elmer Corporation Optical spectrometer for detecting spectra in separate ranges
US5621830A (en) 1995-06-07 1997-04-15 Smith & Nephew Dyonics Inc. Rotatable fiber optic joint
US5785651A (en) 1995-06-07 1998-07-28 Keravision, Inc. Distance measuring confocal microscope
WO1997001167A1 (en) 1995-06-21 1997-01-09 Massachusetts Institute Of Technology Apparatus and method for accessing data on multilayered optical media
ATA107495A (de) 1995-06-23 1996-06-15 Fercher Adolf Friedrich Dr Kohärenz-biometrie und -tomographie mit dynamischem kohärentem fokus
US5829439A (en) 1995-06-28 1998-11-03 Hitachi Medical Corporation Needle-like ultrasonic probe for ultrasonic diagnosis apparatus, method of producing same, and ultrasonic diagnosis apparatus using same
JP3654309B2 (ja) 1995-06-28 2005-06-02 株式会社日立メディコ 針状超音波探触子
US6104945A (en) 1995-08-01 2000-08-15 Medispectra, Inc. Spectral volume microprobe arrays
WO1997008538A1 (en) * 1995-08-24 1997-03-06 Purdue Research Foundation Fluorescence lifetime-based imaging and spectroscopy in tissues and other random media
US6016197A (en) * 1995-08-25 2000-01-18 Ceramoptec Industries Inc. Compact, all-optical spectrum analyzer for chemical and biological fiber optic sensors
FR2738343B1 (fr) 1995-08-30 1997-10-24 Cohen Sabban Joseph Dispositif de microstratigraphie optique
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US6763261B2 (en) 1995-09-20 2004-07-13 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
JP2000511786A (ja) 1995-09-20 2000-09-12 テキサス・ハート・インスティチュート 管壁における温度差の検出
US5742419A (en) 1995-11-07 1998-04-21 The Board Of Trustees Of The Leland Stanford Junior Universtiy Miniature scanning confocal microscope
DE19542955C2 (de) 1995-11-17 1999-02-18 Schwind Gmbh & Co Kg Herbert Endoskop
US5719399A (en) * 1995-12-18 1998-02-17 The Research Foundation Of City College Of New York Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough
JP3699761B2 (ja) * 1995-12-26 2005-09-28 オリンパス株式会社 落射蛍光顕微鏡
US5748318A (en) 1996-01-23 1998-05-05 Brown University Research Foundation Optical stress generator and detector
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
US5642194A (en) 1996-02-05 1997-06-24 The Regents Of The University Of California White light velocity interferometer
US5862273A (en) 1996-02-23 1999-01-19 Kaiser Optical Systems, Inc. Fiber optic probe with integral optical filtering
US5843000A (en) 1996-05-07 1998-12-01 The General Hospital Corporation Optical biopsy forceps and method of diagnosing tissue
ATA84696A (de) * 1996-05-14 1998-03-15 Adolf Friedrich Dr Fercher Verfahren und anordnungen zur kontrastanhebung in der optischen kohärenztomographie
US6020963A (en) 1996-06-04 2000-02-01 Northeastern University Optical quadrature Interferometer
US5795295A (en) 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
US5842995A (en) 1996-06-28 1998-12-01 Board Of Regents, The Univerisity Of Texas System Spectroscopic probe for in vivo measurement of raman signals
US6296608B1 (en) 1996-07-08 2001-10-02 Boston Scientific Corporation Diagnosing and performing interventional procedures on tissue in vivo
US6245026B1 (en) 1996-07-29 2001-06-12 Farallon Medsystems, Inc. Thermography catheter
US5840075A (en) 1996-08-23 1998-11-24 Eclipse Surgical Technologies, Inc. Dual laser device for transmyocardial revascularization procedures
US6396941B1 (en) 1996-08-23 2002-05-28 Bacus Research Laboratories, Inc. Method and apparatus for internet, intranet, and local viewing of virtual microscope slides
US6544193B2 (en) * 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
JPH1090603A (ja) 1996-09-18 1998-04-10 Olympus Optical Co Ltd 内視鏡光学系
US5801831A (en) 1996-09-20 1998-09-01 Institute For Space And Terrestrial Science Fabry-Perot spectrometer for detecting a spatially varying spectral signature of an extended source
RU2108122C1 (ru) 1996-09-24 1998-04-10 Владимир Павлович Жаров Способ и устройство для физиотерапевтического облучения светом
WO1998013715A1 (fr) 1996-09-27 1998-04-02 Vincent Lauer Microscope generant une representation tridimensionnelle d'un objet
DE19640495C2 (de) 1996-10-01 1999-12-16 Leica Microsystems Vorrichtung zur konfokalen Oberflächenvermessung
US5843052A (en) 1996-10-04 1998-12-01 Benja-Athon; Anuthep Irrigation kit for application of fluids and chemicals for cleansing and sterilizing wounds
US5752518A (en) 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US5904651A (en) 1996-10-28 1999-05-18 Ep Technologies, Inc. Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
US6044288A (en) * 1996-11-08 2000-03-28 Imaging Diagnostics Systems, Inc. Apparatus and method for determining the perimeter of the surface of an object being scanned
US5872879A (en) 1996-11-25 1999-02-16 Boston Scientific Corporation Rotatable connecting optical fibers
US6517532B1 (en) * 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6437867B2 (en) 1996-12-04 2002-08-20 The Research Foundation Of The City University Of New York Performing selected optical measurements with optical coherence domain reflectometry
US6249630B1 (en) 1996-12-13 2001-06-19 Imra America, Inc. Apparatus and method for delivery of dispersion-compensated ultrashort optical pulses with high peak power
US5906759A (en) 1996-12-26 1999-05-25 Medinol Ltd. Stent forming apparatus with stent deforming blades
US5871449A (en) * 1996-12-27 1999-02-16 Brown; David Lloyd Device and method for locating inflamed plaque in an artery
US5991697A (en) 1996-12-31 1999-11-23 The Regents Of The University Of California Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media
EP1018045A4 (en) 1996-12-31 2001-01-31 Corning Inc OPTICAL COUPLERS WITH MULTI-LAYER FIBERS
US5760901A (en) 1997-01-28 1998-06-02 Zetetic Institute Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation
JP3213250B2 (ja) 1997-01-29 2001-10-02 株式会社生体光情報研究所 光計測装置
US5801826A (en) 1997-02-18 1998-09-01 Williams Family Trust B Spectrometric device and method for recognizing atomic and molecular signatures
US5836877A (en) * 1997-02-24 1998-11-17 Lucid Inc System for facilitating pathological examination of a lesion in tissue
US6010449A (en) * 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US5968064A (en) 1997-02-28 1999-10-19 Lumend, Inc. Catheter system for treating a vascular occlusion
US6120516A (en) 1997-02-28 2000-09-19 Lumend, Inc. Method for treating vascular occlusion
EP0971626A1 (en) 1997-03-06 2000-01-19 Massachusetts Institute Of Technology Instrument for optically scanning of living tissue
US6201989B1 (en) * 1997-03-13 2001-03-13 Biomax Technologies Inc. Methods and apparatus for detecting the rejection of transplanted tissue
US6078047A (en) 1997-03-14 2000-06-20 Lucent Technologies Inc. Method and apparatus for terahertz tomographic imaging
US5994690A (en) 1997-03-17 1999-11-30 Kulkarni; Manish D. Image enhancement in optical coherence tomography using deconvolution
JPH10267631A (ja) 1997-03-26 1998-10-09 Kowa Co 光学測定装置
JPH10267830A (ja) 1997-03-26 1998-10-09 Kowa Co 光学測定装置
GB9707414D0 (en) 1997-04-11 1997-05-28 Imperial College Anatomical probe
WO1998048846A1 (en) 1997-04-29 1998-11-05 Nycomed Imaging As Light imaging contrast agents
WO1998048838A1 (en) 1997-04-29 1998-11-05 Nycomed Imaging As Compounds
US6117128A (en) 1997-04-30 2000-09-12 Kenton W. Gregory Energy delivery catheter and method for the use thereof
US5887009A (en) * 1997-05-22 1999-03-23 Optical Biopsy Technologies, Inc. Confocal optical scanning system employing a fiber laser
US6002480A (en) 1997-06-02 1999-12-14 Izatt; Joseph A. Depth-resolved spectroscopic optical coherence tomography
EP1007901B1 (en) 1997-06-02 2009-04-29 Joseph A. Izatt Doppler flow imaging using optical coherence tomography
US6208415B1 (en) * 1997-06-12 2001-03-27 The Regents Of The University Of California Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
WO1998058588A1 (en) 1997-06-23 1998-12-30 Focus Surgery, Inc. Methods and devices for providing acoustic hemostasis
US5920390A (en) 1997-06-26 1999-07-06 University Of North Carolina Fiberoptic interferometer and associated method for analyzing tissue
US6048349A (en) 1997-07-09 2000-04-11 Intraluminal Therapeutics, Inc. Systems and methods for guiding a medical instrument through a body
US6058352A (en) 1997-07-25 2000-05-02 Physical Optics Corporation Accurate tissue injury assessment using hybrid neural network analysis
US5921926A (en) 1997-07-28 1999-07-13 University Of Central Florida Three dimensional optical imaging colposcopy
US5892583A (en) 1997-08-21 1999-04-06 Li; Ming-Chiang High speed inspection of a sample using superbroad radiation coherent interferometer
US6014214A (en) 1997-08-21 2000-01-11 Li; Ming-Chiang High speed inspection of a sample using coherence processing of scattered superbroad radiation
US6069698A (en) 1997-08-28 2000-05-30 Olympus Optical Co., Ltd. Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object
US6297018B1 (en) 1998-04-17 2001-10-02 Ljl Biosystems, Inc. Methods and apparatus for detecting nucleic acid polymorphisms
US5920373A (en) 1997-09-24 1999-07-06 Heidelberg Engineering Optische Messysteme Gmbh Method and apparatus for determining optical characteristics of a cornea
US5951482A (en) 1997-10-03 1999-09-14 Intraluminal Therapeutics, Inc. Assemblies and methods for advancing a guide wire through body tissue
US6193676B1 (en) * 1997-10-03 2001-02-27 Intraluminal Therapeutics, Inc. Guide wire assembly
US6091984A (en) 1997-10-10 2000-07-18 Massachusetts Institute Of Technology Measuring tissue morphology
US5955737A (en) 1997-10-27 1999-09-21 Systems & Processes Engineering Corporation Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture
US6052186A (en) 1997-11-05 2000-04-18 Excel Precision, Inc. Dual laser system for extended heterodyne interferometry
US6134010A (en) 1997-11-07 2000-10-17 Lucid, Inc. Imaging system using polarization effects to enhance image quality
US6037579A (en) * 1997-11-13 2000-03-14 Biophotonics Information Laboratories, Ltd. Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media
US6107048A (en) * 1997-11-20 2000-08-22 Medical College Of Georgia Research Institute, Inc. Method of detecting and grading dysplasia in epithelial tissue
AU2242099A (en) 1998-01-28 1999-08-16 Ht Medical Systems, Inc. Interface device and method for interfacing instruments to medical procedure simulation system
US6165170A (en) 1998-01-29 2000-12-26 International Business Machines Corporation Laser dermablator and dermablation
US6134033A (en) 1998-02-26 2000-10-17 Tyco Submarine Systems Ltd. Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems
US6048742A (en) 1998-02-26 2000-04-11 The United States Of America As Represented By The Secretary Of The Air Force Process for measuring the thickness and composition of thin semiconductor films deposited on semiconductor wafers
US6831781B2 (en) 1998-02-26 2004-12-14 The General Hospital Corporation Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
EP1057063A4 (en) * 1998-02-26 2004-10-06 Gen Hospital Corp CONFOCAL MICROSCOPY WITH MULTISPECTRAL CODING
RU2148378C1 (ru) 1998-03-06 2000-05-10 Геликонов Валентин Михайлович Устройство для оптической когерентной томографии, оптоволоконное сканирующее устройство и способ диагностики биоткани in vivo
US6066102A (en) 1998-03-09 2000-05-23 Spectrascience, Inc. Optical biopsy forceps system and method of diagnosing tissue
US6174291B1 (en) * 1998-03-09 2001-01-16 Spectrascience, Inc. Optical biopsy system and methods for tissue diagnosis
US6151522A (en) 1998-03-16 2000-11-21 The Research Foundation Of Cuny Method and system for examining biological materials using low power CW excitation raman spectroscopy
US6175669B1 (en) * 1998-03-30 2001-01-16 The Regents Of The Universtiy Of California Optical coherence domain reflectometry guidewire
DE19814057B4 (de) 1998-03-30 2009-01-02 Carl Zeiss Meditec Ag Anordnung zur optischen Kohärenztomographie und Kohärenztopographie
US6384915B1 (en) 1998-03-30 2002-05-07 The Regents Of The University Of California Catheter guided by optical coherence domain reflectometry
US5975699A (en) 1998-04-29 1999-11-02 Carl Zeiss, Inc. Method and apparatus for simultaneously measuring the length and refractive error of an eye
WO1999057507A1 (en) 1998-05-01 1999-11-11 Board Of Regents, The University Of Texas System Method and apparatus for subsurface imaging
US6996549B2 (en) * 1998-05-01 2006-02-07 Health Discovery Corporation Computer-aided image analysis
AU754722B2 (en) * 1998-05-09 2002-11-21 Ikonisys Inc. Method and apparatus for computer controlled rare cell, including fetal cell, based diagnosis
JPH11326826A (ja) 1998-05-13 1999-11-26 Sony Corp 照明方法及び照明装置
US6053613A (en) 1998-05-15 2000-04-25 Carl Zeiss, Inc. Optical coherence tomography with new interferometer
FR2778838A1 (fr) 1998-05-19 1999-11-26 Koninkl Philips Electronics Nv Procede de detection de variations d'elasticite et appareil echographique pour mettre en oeuvre ce procede
JPH11352409A (ja) 1998-06-05 1999-12-24 Olympus Optical Co Ltd 蛍光検出装置
US6549801B1 (en) 1998-06-11 2003-04-15 The Regents Of The University Of California Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity
EP1100392B1 (en) 1998-07-15 2009-02-25 Corazon Technologies, Inc. devices for reducing the mineral content of vascular calcified lesions
US6166373A (en) 1998-07-21 2000-12-26 The Institute For Technology Development Focal plane scanner with reciprocating spatial window
JP2000046729A (ja) 1998-07-31 2000-02-18 Takahisa Mitsui 波長分散を用いた高速光断層像計測装置および計測方法
US6741884B1 (en) 1998-09-03 2004-05-25 Hypermed, Inc. Infrared endoscopic balloon probes
US8024027B2 (en) 1998-09-03 2011-09-20 Hyperspectral Imaging, Inc. Infrared endoscopic balloon probes
JP4474050B2 (ja) 1998-09-11 2010-06-02 スペクトルックス・インコーポレイテッド マルチモード光学組織診断システム
JP2000131222A (ja) 1998-10-22 2000-05-12 Olympus Optical Co Ltd 光断層画像装置
AU6417599A (en) 1998-10-08 2000-04-26 University Of Kentucky Research Foundation, The Methods and apparatus for (in vivo) identification and characterization of vulnerable atherosclerotic plaques
JP2000121961A (ja) 1998-10-13 2000-04-28 Olympus Optical Co Ltd 共焦点光走査プローブシステム
US6274871B1 (en) 1998-10-22 2001-08-14 Vysis, Inc. Method and system for performing infrared study on a biological sample
US6324419B1 (en) 1998-10-27 2001-11-27 Nejat Guzelsu Apparatus and method for non-invasive measurement of stretch
JP2000126116A (ja) 1998-10-28 2000-05-09 Olympus Optical Co Ltd 光診断システム
US6524249B2 (en) 1998-11-11 2003-02-25 Spentech, Inc. Doppler ultrasound method and apparatus for monitoring blood flow and detecting emboli
AU1524700A (en) * 1998-11-13 2000-06-05 Research And Development Institute, Inc. Programmable frequency reference for laser frequency stabilization, and arbitrary optical clock generator, using persistent spectral hole burning
EP1002497B1 (en) 1998-11-20 2006-07-26 Fuji Photo Film Co., Ltd. Blood vessel imaging system
US5975697A (en) 1998-11-25 1999-11-02 Oti Ophthalmic Technologies, Inc. Optical mapping apparatus with adjustable depth resolution
US6352502B1 (en) 1998-12-03 2002-03-05 Lightouch Medical, Inc. Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities
RU2149464C1 (ru) 1999-01-19 2000-05-20 Таганрогский государственный радиотехнический университет Динамическое запоминающее устройство радиосигналов
US6191862B1 (en) * 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems
US6272376B1 (en) 1999-01-22 2001-08-07 Cedars-Sinai Medical Center Time-resolved, laser-induced fluorescence for the characterization of organic material
US6445944B1 (en) 1999-02-01 2002-09-03 Scimed Life Systems Medical scanning system and related method of scanning
US6615072B1 (en) 1999-02-04 2003-09-02 Olympus Optical Co., Ltd. Optical imaging device
US6185271B1 (en) * 1999-02-16 2001-02-06 Richard Estyn Kinsinger Helical computed tomography with feedback scan control
DE19908883A1 (de) 1999-03-02 2000-09-07 Rainer Heintzmann Verfahren zur Erhöhung der Auflösung optischer Abbildung
US20070048818A1 (en) 1999-03-12 2007-03-01 Human Genome Sciences, Inc. Human secreted proteins
US6263133B1 (en) 1999-03-29 2001-07-17 Scimed Life Systems, Inc. Optical focusing, collimating and coupling systems for use with single mode optical fiber
US6859275B2 (en) 1999-04-09 2005-02-22 Plain Sight Systems, Inc. System and method for encoded spatio-spectral information processing
US6264610B1 (en) 1999-05-05 2001-07-24 The University Of Connecticut Combined ultrasound and near infrared diffused light imaging system
US6353693B1 (en) * 1999-05-31 2002-03-05 Sanyo Electric Co., Ltd. Optical communication device and slip ring unit for an electronic component-mounting apparatus
US6993170B2 (en) * 1999-06-23 2006-01-31 Icoria, Inc. Method for quantitative analysis of blood vessel structure
JP2001004447A (ja) 1999-06-23 2001-01-12 Yokogawa Electric Corp 分光器
US6611833B1 (en) * 1999-06-23 2003-08-26 Tissueinformatics, Inc. Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population
US6208887B1 (en) * 1999-06-24 2001-03-27 Richard H. Clarke Catheter-delivered low resolution Raman scattering analyzing system for detecting lesions
US7426409B2 (en) 1999-06-25 2008-09-16 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
GB9915082D0 (en) * 1999-06-28 1999-08-25 Univ London Optical fibre probe
JP2001070229A (ja) * 1999-07-02 2001-03-21 Asahi Optical Co Ltd 内視鏡装置
US6359692B1 (en) * 1999-07-09 2002-03-19 Zygo Corporation Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry
AU6093400A (en) 1999-07-13 2001-01-30 Chromavision Medical Systems, Inc. Automated detection of objects in a biological sample
EP1284672B1 (en) 1999-07-30 2006-12-27 CeramOptec GmbH Dual wavelength medical diode laser system
ATE296578T1 (de) 1999-07-30 2005-06-15 Boston Scient Ltd Katheter mit antrieb und kupplung zur dreh- und längsverschiebung
JP2001046321A (ja) 1999-08-09 2001-02-20 Asahi Optical Co Ltd 内視鏡装置
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US6725073B1 (en) 1999-08-17 2004-04-20 Board Of Regents, The University Of Texas System Methods for noninvasive analyte sensing
JP3869589B2 (ja) 1999-09-02 2007-01-17 ペンタックス株式会社 ファイババンドル及び内視鏡装置
US6687010B1 (en) * 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
JP4464519B2 (ja) 2000-03-21 2010-05-19 オリンパス株式会社 光イメージング装置
US6198956B1 (en) * 1999-09-30 2001-03-06 Oti Ophthalmic Technologies Inc. High speed sector scanning apparatus having digital electronic control
JP2001174744A (ja) 1999-10-06 2001-06-29 Olympus Optical Co Ltd 光走査プローブ装置
JP4363719B2 (ja) 1999-10-08 2009-11-11 オリンパス株式会社 超音波ガイド下穿刺システム装置
US6393312B1 (en) 1999-10-13 2002-05-21 C. R. Bard, Inc. Connector for coupling an optical fiber tissue localization device to a light source
US6308092B1 (en) 1999-10-13 2001-10-23 C. R. Bard Inc. Optical fiber tissue localization device
WO2001027679A1 (en) 1999-10-15 2001-04-19 Cellavision Ab Microscope and method for manufacturing a composite image with a high resolution
US6538817B1 (en) 1999-10-25 2003-03-25 Aculight Corporation Method and apparatus for optical coherence tomography with a multispectral laser source
JP2001125009A (ja) * 1999-10-28 2001-05-11 Asahi Optical Co Ltd 内視鏡装置
IL132687A0 (en) 1999-11-01 2001-03-19 Keren Mechkarim Ichilov Pnimit System and method for evaluating body fluid samples
CA2392228A1 (en) 1999-11-19 2001-05-25 Ming Xiao Compact spectrofluorometer
US7236637B2 (en) 1999-11-24 2007-06-26 Ge Medical Systems Information Technologies, Inc. Method and apparatus for transmission and display of a compressed digitized image
AU1377601A (en) 1999-11-24 2001-06-04 Haag-Streit Ag Method and device for measuring the optical properties of at least two regions located at a distance from one another in a transparent and/or diffuse object
WO2001042735A1 (en) 1999-12-09 2001-06-14 Oti Ophthalmic Technologies Inc. Optical mapping apparatus with adjustable depth resolution
JP2001174404A (ja) 1999-12-15 2001-06-29 Takahisa Mitsui 光断層像計測装置および計測方法
US6738144B1 (en) 1999-12-17 2004-05-18 University Of Central Florida Non-invasive method and low-coherence apparatus system analysis and process control
US6680780B1 (en) * 1999-12-23 2004-01-20 Agere Systems, Inc. Interferometric probe stabilization relative to subject movement
US6445485B1 (en) 2000-01-21 2002-09-03 At&T Corp. Micro-machine polarization-state controller
CA2398278C (en) 2000-01-27 2012-05-15 National Research Council Of Canada Visible-near infrared spectroscopy in burn injury assessment
JP3660185B2 (ja) * 2000-02-07 2005-06-15 独立行政法人科学技術振興機構 断層像形成方法及びそのための装置
US6475210B1 (en) 2000-02-11 2002-11-05 Medventure Technology Corp Light treatment of vulnerable atherosclerosis plaque
US6556305B1 (en) 2000-02-17 2003-04-29 Veeco Instruments, Inc. Pulsed source scanning interferometer
US6618143B2 (en) 2000-02-18 2003-09-09 Idexx Laboratories, Inc. High numerical aperture flow cytometer and method of using same
US6751490B2 (en) 2000-03-01 2004-06-15 The Board Of Regents Of The University Of Texas System Continuous optoacoustic monitoring of hemoglobin concentration and hematocrit
WO2001072215A1 (en) * 2000-03-28 2001-10-04 Board Of Regents, The University Of Texas System Enhancing contrast in biological imaging
US6687013B2 (en) 2000-03-28 2004-02-03 Hitachi, Ltd. Laser interferometer displacement measuring system, exposure apparatus, and electron beam lithography apparatus
US6567585B2 (en) 2000-04-04 2003-05-20 Optiscan Pty Ltd Z sharpening for fibre confocal microscopes
US6692430B2 (en) 2000-04-10 2004-02-17 C2Cure Inc. Intra vascular imaging apparatus
EP1299057A2 (en) 2000-04-27 2003-04-09 Iridex Corporation Method and apparatus for real-time detection, control and recording of sub-clinical therapeutic laser lesions during ocular laser photocoagulation
WO2001082786A2 (en) 2000-05-03 2001-11-08 Flock Stephen T Optical imaging of subsurface anatomical structures and biomolecules
US6711283B1 (en) 2000-05-03 2004-03-23 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
US6441959B1 (en) 2000-05-19 2002-08-27 Avanex Corporation Method and system for testing a tunable chromatic dispersion, dispersion slope, and polarization mode dispersion compensator utilizing a virtually imaged phased array
US6301048B1 (en) 2000-05-19 2001-10-09 Avanex Corporation Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array
US6560259B1 (en) 2000-05-31 2003-05-06 Applied Optoelectronics, Inc. Spatially coherent surface-emitting, grating coupled quantum cascade laser with unstable resonance cavity
US6975898B2 (en) 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
JP4460117B2 (ja) 2000-06-29 2010-05-12 独立行政法人理化学研究所 グリズム
JP2002035005A (ja) 2000-07-21 2002-02-05 Olympus Optical Co Ltd 治療装置
US6757467B1 (en) 2000-07-25 2004-06-29 Optical Air Data Systems, Lp Optical fiber system
US6441356B1 (en) * 2000-07-28 2002-08-27 Optical Biopsy Technologies Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes
US6882432B2 (en) 2000-08-08 2005-04-19 Zygo Corporation Frequency transform phase shifting interferometry
AU2001279603A1 (en) 2000-08-11 2002-02-25 Crystal Fibre A/S Optical wavelength converter
US7625335B2 (en) 2000-08-25 2009-12-01 3Shape Aps Method and apparatus for three-dimensional optical scanning of interior surfaces
DE10042840A1 (de) * 2000-08-30 2002-03-14 Leica Microsystems Vorrichtung und Verfahren zur Anregung von Fluoreszenzmikroskopmarkern bei der Mehrphotonen-Rastermikroskopie
US6459487B1 (en) 2000-09-05 2002-10-01 Gang Paul Chen System and method for fabricating components of precise optical path length
JP2002095663A (ja) 2000-09-26 2002-04-02 Fuji Photo Film Co Ltd センチネルリンパ節光断層画像取得方法および装置
JP2002113017A (ja) 2000-10-05 2002-04-16 Fuji Photo Film Co Ltd レーザ治療装置
ATE454845T1 (de) 2000-10-30 2010-01-15 Gen Hospital Corp Optische systeme zur gewebeanalyse
AU2002212105B2 (en) 2000-10-31 2006-06-08 Danmarks Tekniske Universitet Optical amplification in coherent optical frequency modulated continuous wave reflectometry
JP3842101B2 (ja) 2000-10-31 2006-11-08 富士写真フイルム株式会社 内視鏡装置
US6687036B2 (en) * 2000-11-03 2004-02-03 Nuonics, Inc. Multiplexed optical scanner technology
JP2002148185A (ja) 2000-11-08 2002-05-22 Fuji Photo Film Co Ltd Oct装置
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
WO2002038806A2 (de) 2000-11-13 2002-05-16 Gnothis Holding Sa Nachweis von nukleinsäure-polymorphismen
US6665075B2 (en) 2000-11-14 2003-12-16 Wm. Marshurice University Interferometric imaging system and method
DE10057539B4 (de) 2000-11-20 2008-06-12 Robert Bosch Gmbh Interferometrische Messvorrichtung
US6558324B1 (en) 2000-11-22 2003-05-06 Siemens Medical Solutions, Inc., Usa System and method for strain image display
US6856712B2 (en) 2000-11-27 2005-02-15 University Of Washington Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
US7027633B2 (en) * 2000-11-30 2006-04-11 Foran David J Collaborative diagnostic systems
JP4786027B2 (ja) 2000-12-08 2011-10-05 オリンパス株式会社 光学系及び光学装置
US6501878B2 (en) 2000-12-14 2002-12-31 Nortel Networks Limited Optical fiber termination
US6687007B1 (en) * 2000-12-14 2004-02-03 Kestrel Corporation Common path interferometer for spectral image generation
US7230708B2 (en) 2000-12-28 2007-06-12 Dmitri Olegovich Lapotko Method and device for photothermal examination of microinhomogeneities
US6515752B2 (en) 2000-12-28 2003-02-04 Coretek, Inc. Wavelength monitoring system
CN101194855B (zh) 2000-12-28 2013-02-27 帕洛玛医疗技术有限公司 用于皮肤的emr治疗处理的方法和装置
EP1221581A1 (en) 2001-01-04 2002-07-10 Universität Stuttgart Interferometer
JP2002205434A (ja) 2001-01-10 2002-07-23 Seiko Epson Corp 画像出力装置及びプリンティングシステム
JP2004536620A (ja) 2001-01-11 2004-12-09 ザ ジョンズ ホプキンズ ユニバーシティ レーザー超音波を使用した歯構造の診断
US7177491B2 (en) 2001-01-12 2007-02-13 Board Of Regents The University Of Texas System Fiber-based optical low coherence tomography
JP3628615B2 (ja) 2001-01-16 2005-03-16 独立行政法人科学技術振興機構 ヘテロダインビート画像同期測定装置
US6697652B2 (en) * 2001-01-19 2004-02-24 Massachusetts Institute Of Technology Fluorescence, reflectance and light scattering spectroscopy for measuring tissue
US7826059B2 (en) 2001-01-22 2010-11-02 Roth Jonathan E Method and apparatus for polarization-sensitive optical coherence tomography
US7973936B2 (en) 2001-01-30 2011-07-05 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US20020140942A1 (en) 2001-02-17 2002-10-03 Fee Michale Sean Acousto-optic monitoring and imaging in a depth sensitive manner
GB0104378D0 (en) 2001-02-22 2001-04-11 Expro North Sea Ltd Improved tubing coupling
US6654127B2 (en) 2001-03-01 2003-11-25 Carl Zeiss Ophthalmic Systems, Inc. Optical delay line
US6721094B1 (en) 2001-03-05 2004-04-13 Sandia Corporation Long working distance interference microscope
US7244232B2 (en) 2001-03-07 2007-07-17 Biomed Solutions, Llc Process for identifying cancerous and/or metastatic cells of a living organism
IL142773A (en) 2001-03-08 2007-10-31 Xtellus Inc Fiber optic damper
JP2002263055A (ja) 2001-03-12 2002-09-17 Olympus Optical Co Ltd 内視鏡先端フード
US20030199685A1 (en) * 2001-03-12 2003-10-23 Monogen, Inc. Cell-based detection and differentiation of disease states
US6563995B2 (en) 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
US6552796B2 (en) 2001-04-06 2003-04-22 Lightlab Imaging, Llc Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
US8046057B2 (en) 2001-04-11 2011-10-25 Clarke Dana S Tissue structure identification in advance of instrument
US7139598B2 (en) * 2002-04-04 2006-11-21 Veralight, Inc. Determination of a measure of a glycation end-product or disease state using tissue fluorescence
US20020158211A1 (en) 2001-04-16 2002-10-31 Dakota Technologies, Inc. Multi-dimensional fluorescence apparatus and method for rapid and highly sensitive quantitative analysis of mixtures
DE10118760A1 (de) 2001-04-17 2002-10-31 Med Laserzentrum Luebeck Gmbh Verfahren zur Ermittlung der Laufzeitverteilung und Anordnung
EP2333523B1 (en) 2001-04-30 2020-04-08 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US7616986B2 (en) 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
US6615062B2 (en) 2001-05-31 2003-09-02 Infraredx, Inc. Referencing optical catheters
US6701181B2 (en) 2001-05-31 2004-03-02 Infraredx, Inc. Multi-path optical catheter
DE60219627T2 (de) 2001-06-04 2008-02-07 The General Hospital Corp., Boston Nachweis und therapie von empfindlichem plaque mit photodynamischen verbindungen
US6879851B2 (en) 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
DE60100064T2 (de) 2001-06-07 2003-04-17 Agilent Technologies Inc Bestimmung der Eigenschaften eines optischen Gerätes
DE10129651B4 (de) * 2001-06-15 2010-07-08 Carl Zeiss Jena Gmbh Verfahren zur Kompensation der Dispersion in Signalen von Kurzkohärenz- und/oder OCT-Interferometern
US6702744B2 (en) 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US6685885B2 (en) * 2001-06-22 2004-02-03 Purdue Research Foundation Bio-optical compact dist system
US20040166593A1 (en) 2001-06-22 2004-08-26 Nolte David D. Adaptive interferometric multi-analyte high-speed biosensor
AU2002316500A1 (en) 2001-07-02 2003-01-21 Palomar Medical Technologies, Inc. Laser device for medical/cosmetic procedures
US6795199B2 (en) 2001-07-18 2004-09-21 Avraham Suhami Method and apparatus for dispersion compensated reflected time-of-flight tomography
DE10137530A1 (de) 2001-08-01 2003-02-13 Presens Prec Sensing Gmbh Anordnung und Verfahren zur Mehrfach-Fluoreszenzmessung
AU2002324605A1 (en) 2001-08-03 2003-02-17 Joseph A Izatt Real-time imaging system and method
US7061622B2 (en) 2001-08-03 2006-06-13 Case Western Reserve University Aspects of basic OCT engine technologies for high speed optical coherence tomography and light source and other improvements in optical coherence tomography
US20030030816A1 (en) 2001-08-11 2003-02-13 Eom Tae Bong Nonlinearity error correcting method and phase angle measuring method for displacement measurement in two-freqency laser interferometer and displacement measurement system using the same
US6900899B2 (en) 2001-08-20 2005-05-31 Agilent Technologies, Inc. Interferometers with coated polarizing beam splitters that are rotated to optimize extinction ratios
US20030045798A1 (en) 2001-09-04 2003-03-06 Richard Hular Multisensor probe for tissue identification
EP1293925A1 (en) * 2001-09-18 2003-03-19 Agfa-Gevaert Radiographic scoring method
US6961123B1 (en) 2001-09-28 2005-11-01 The Texas A&M University System Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography
JP2003102672A (ja) 2001-10-01 2003-04-08 Japan Science & Technology Corp 病変等の対象部位を自動的に検知かつ治療または採取する方法およびその装置
DE10150934A1 (de) 2001-10-09 2003-04-10 Zeiss Carl Jena Gmbh Verfahren und Anordnung zur tiefenaufgelösten Erfassung von Proben
US7822470B2 (en) 2001-10-11 2010-10-26 Osypka Medical Gmbh Method for determining the left-ventricular ejection time TLVE of a heart of a subject
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
US6658278B2 (en) 2001-10-17 2003-12-02 Terumo Cardiovascular Systems Corporation Steerable infrared imaging catheter having steering fins
US7006231B2 (en) * 2001-10-18 2006-02-28 Scimed Life Systems, Inc. Diffraction grating based interferometric systems and methods
US6749344B2 (en) 2001-10-24 2004-06-15 Scimed Life Systems, Inc. Connection apparatus for optical coherence tomography catheters
US6661513B1 (en) 2001-11-21 2003-12-09 Roygbiv, Llc Refractive-diffractive spectrometer
CA2469773A1 (en) 2001-12-11 2003-07-03 C2Cure Inc. Apparatus, method and system for intravascular photographic imaging
US20030216719A1 (en) 2001-12-12 2003-11-20 Len Debenedictis Method and apparatus for treating skin using patterns of optical energy
JP4068566B2 (ja) 2001-12-14 2008-03-26 アジレント・テクノロジーズ・インク 特に波長可変レーザのための再帰反射デバイス
US7736301B1 (en) 2001-12-18 2010-06-15 Advanced Cardiovascular Systems, Inc. Rotatable ferrules and interfaces for use with an optical guidewire
US7365858B2 (en) 2001-12-18 2008-04-29 Massachusetts Institute Of Technology Systems and methods for phase measurements
US6947787B2 (en) 2001-12-21 2005-09-20 Advanced Cardiovascular Systems, Inc. System and methods for imaging within a body lumen
US6975891B2 (en) 2001-12-21 2005-12-13 Nir Diagnostics Inc. Raman spectroscopic system with integrating cavity
EP1324051A1 (en) 2001-12-26 2003-07-02 Kevin R. Forrester Motion measuring device
KR100458290B1 (ko) * 2001-12-27 2004-12-03 고속도로관리공단 이미지 프로세싱을 이용한 구조물의 변위량 측정방법
US20080154090A1 (en) 2005-01-04 2008-06-26 Dune Medical Devices Ltd. Endoscopic System for In-Vivo Procedures
EP2327954A1 (en) 2002-01-11 2011-06-01 The General Hospital Corporation Apparatus for OCT imaging with axial line focus for improved resolution and depth of field
US7072045B2 (en) 2002-01-16 2006-07-04 The Regents Of The University Of California High resolution optical coherence tomography with an improved depth range using an axicon lens
JP2005516187A (ja) 2002-01-24 2005-06-02 ザ ジェネラル ホスピタル コーポレーション スペクトル帯域の並列検出による測距並びに低コヒーレンス干渉法(lci)及び光学コヒーレンス断層撮影法(oct)信号の雑音低減のための装置及び方法
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
WO2003069272A1 (fr) 2002-02-14 2003-08-21 Imalux Corporation Procede d'examen d'objet et interferometre optique permettant la mise en oeuvre dudit procede
US20030165263A1 (en) * 2002-02-19 2003-09-04 Hamer Michael J. Histological assessment
US7116887B2 (en) 2002-03-19 2006-10-03 Nufern Optical fiber
US7006232B2 (en) * 2002-04-05 2006-02-28 Case Western Reserve University Phase-referenced doppler optical coherence tomography
US6704590B2 (en) 2002-04-05 2004-03-09 Cardiac Pacemakers, Inc. Doppler guiding catheter using sensed blood turbulence levels
US7113818B2 (en) 2002-04-08 2006-09-26 Oti Ophthalmic Technologies Inc. Apparatus for high resolution imaging of moving organs
US7016048B2 (en) 2002-04-09 2006-03-21 The Regents Of The University Of California Phase-resolved functional optical coherence tomography: simultaneous imaging of the stokes vectors, structure, blood flow velocity, standard deviation and birefringence in biological samples
US20030236443A1 (en) 2002-04-19 2003-12-25 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
JP4135551B2 (ja) 2002-05-07 2008-08-20 松下電工株式会社 ポジションセンサ
JP3834789B2 (ja) * 2002-05-17 2006-10-18 独立行政法人科学技術振興機構 自律型超短光パルス圧縮・位相補償・波形整形装置
RU2242710C2 (ru) 2002-06-07 2004-12-20 Геликонов Григорий Валентинович Способ получения изображения объекта, устройство для его осуществления и устройство доставки низкокогерентного оптического излучения
AU2003245458A1 (en) 2002-06-12 2003-12-31 Advanced Research And Technology Institute, Inc. Method and apparatus for improving both lateral and axial resolution in ophthalmoscopy
US7272252B2 (en) * 2002-06-12 2007-09-18 Clarient, Inc. Automated system for combining bright field and fluorescent microscopy
JP4045140B2 (ja) 2002-06-21 2008-02-13 国立大学法人 筑波大学 偏光感受型光スペクトル干渉コヒーレンストモグラフィー装置及び該装置による試料内部の偏光情報の測定方法
RU2213421C1 (ru) 2002-06-21 2003-09-27 Южно-Российский государственный университет экономики и сервиса Динамическое запоминающее устройство радиосигналов
US20040039252A1 (en) 2002-06-27 2004-02-26 Koch Kenneth Elmon Self-navigating endotracheal tube
JP3621693B2 (ja) 2002-07-01 2005-02-16 フジノン株式会社 干渉計装置
WO2004006751A2 (en) 2002-07-12 2004-01-22 Volker Westphal Method and device for quantitative image correction for optical coherence tomography
JP3950378B2 (ja) 2002-07-19 2007-08-01 新日本製鐵株式会社 同期機
JP4258015B2 (ja) 2002-07-31 2009-04-30 毅 椎名 超音波診断システム、歪み分布表示方法及び弾性係数分布表示方法
JP4373651B2 (ja) 2002-09-03 2009-11-25 Hoya株式会社 診断光照射装置
JP2004113780A (ja) 2002-09-06 2004-04-15 Pentax Corp 内視鏡、および光断層内視鏡装置
US7283247B2 (en) 2002-09-25 2007-10-16 Olympus Corporation Optical probe system
US20040110206A1 (en) 2002-09-26 2004-06-10 Bio Techplex Corporation Waveform modulated light emitting diode (LED) light source for use in a method of and apparatus for screening to identify drug candidates
US6842254B2 (en) 2002-10-16 2005-01-11 Fiso Technologies Inc. System and method for measuring an optical path difference in a sensing interferometer
AU2003269460A1 (en) 2002-10-18 2004-05-04 Arieh Sher Atherectomy system with imaging guidewire
US20040092829A1 (en) 2002-11-07 2004-05-13 Simon Furnish Spectroscope with modified field-of-view
JP4246986B2 (ja) 2002-11-18 2009-04-02 株式会社町田製作所 振動物体観察システム及び声帯観察用処理装置
US6847449B2 (en) 2002-11-27 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for reducing speckle in optical coherence tomography images
EP1426799A3 (en) 2002-11-29 2005-05-18 Matsushita Electric Industrial Co., Ltd. Optical demultiplexer, optical multi-/demultiplexer, and optical device
DE10260256B9 (de) 2002-12-20 2007-03-01 Carl Zeiss Interferometersystem und Meß-/Bearbeitungswerkzeug
GB0229734D0 (en) * 2002-12-23 2003-01-29 Qinetiq Ltd Grading oestrogen and progesterone receptors expression
JP4148771B2 (ja) 2002-12-27 2008-09-10 株式会社トプコン 医療機械のレーザ装置
US7123363B2 (en) 2003-01-03 2006-10-17 Rose-Hulman Institute Of Technology Speckle pattern analysis method and system
US8054468B2 (en) 2003-01-24 2011-11-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7075658B2 (en) * 2003-01-24 2006-07-11 Duke University Method for optical coherence tomography imaging with molecular contrast
US7761139B2 (en) * 2003-01-24 2010-07-20 The General Hospital Corporation System and method for identifying tissue using low-coherence interferometry
US6943892B2 (en) 2003-01-29 2005-09-13 Sarnoff Corporation Instrument having a multi-mode optical element and method
US7474407B2 (en) 2003-02-20 2009-01-06 Applied Science Innovations Optical coherence tomography with 3d coherence scanning
JP4338412B2 (ja) 2003-02-24 2009-10-07 Hoya株式会社 共焦点プローブおよび共焦点顕微鏡
US7271918B2 (en) 2003-03-06 2007-09-18 Zygo Corporation Profiling complex surface structures using scanning interferometry
JP4805142B2 (ja) 2003-03-31 2011-11-02 ザ ジェネラル ホスピタル コーポレイション 光路長が変更された異なる角度の光の合成により光学的に干渉する断層撮影におけるスペックルの減少
JP4135550B2 (ja) 2003-04-18 2008-08-20 日立電線株式会社 半導体発光デバイス
US7110109B2 (en) 2003-04-18 2006-09-19 Ahura Corporation Raman spectroscopy system and method and specimen holder therefor
JP2004317437A (ja) 2003-04-18 2004-11-11 Olympus Corp 光イメージング装置
US7347548B2 (en) * 2003-05-01 2008-03-25 The Cleveland Clinic Foundation Method and apparatus for measuring a retinal sublayer characteristic
WO2004100068A2 (en) 2003-05-05 2004-11-18 D3D, L.P. Optical coherence tomography imaging
CN100522043C (zh) 2003-05-12 2009-08-05 富士能株式会社 气囊式内窥镜
SE527164C2 (sv) 2003-05-14 2006-01-10 Spectracure Ab Anordning och metod för terapi och diagnostik innefattande optiska komponenter för distribution av strålning
US7376455B2 (en) 2003-05-22 2008-05-20 Scimed Life Systems, Inc. Systems and methods for dynamic optical imaging
WO2004111929A2 (en) 2003-05-28 2004-12-23 Duke University Improved system for fourier domain optical coherence tomography
JP2007501447A (ja) * 2003-05-29 2007-01-25 ミシガン大学リージェンツ ダブルクラッドファイバー走査型顕微鏡
WO2004111661A2 (en) 2003-05-30 2004-12-23 Duke University System and method for low coherence broadband quadrature interferometry
US6943881B2 (en) 2003-06-04 2005-09-13 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
US7263394B2 (en) 2003-06-04 2007-08-28 Tomophase Corporation Coherence-gated optical glucose monitor
KR20130138867A (ko) 2003-06-06 2013-12-19 더 제너럴 하스피탈 코포레이션 파장 동조 소스용 방법 및 장치
US7458683B2 (en) * 2003-06-16 2008-12-02 Amo Manufacturing Usa, Llc Methods and devices for registering optical measurement datasets of an optical system
US7170913B2 (en) 2003-06-19 2007-01-30 Multiwave Photonics, Sa Laser source with configurable output beam characteristics
US20040260182A1 (en) 2003-06-23 2004-12-23 Zuluaga Andres F. Intraluminal spectroscope with wall contacting probe
JP4677208B2 (ja) 2003-07-29 2011-04-27 オリンパス株式会社 共焦点顕微鏡
US20050038322A1 (en) 2003-08-11 2005-02-17 Scimed Life Systems Imaging endoscope
US7307734B2 (en) 2003-08-14 2007-12-11 University Of Central Florida Interferometric sensor for characterizing materials
US7539530B2 (en) 2003-08-22 2009-05-26 Infraredx, Inc. Method and system for spectral examination of vascular walls through blood during cardiac motion
US20050083534A1 (en) 2003-08-28 2005-04-21 Riza Nabeel A. Agile high sensitivity optical sensor
JP4590171B2 (ja) 2003-08-29 2010-12-01 オリンパス株式会社 カプセル型医療装置および当該カプセル型医療装置備えた医療装置
JP2005077964A (ja) 2003-09-03 2005-03-24 Fujitsu Ltd 分光装置
US20050059894A1 (en) * 2003-09-16 2005-03-17 Haishan Zeng Automated endoscopy device, diagnostic method, and uses
US20050057680A1 (en) 2003-09-16 2005-03-17 Agan Martin J. Method and apparatus for controlling integration time in imagers
US7935055B2 (en) * 2003-09-19 2011-05-03 Siemens Medical Solutions Usa, Inc. System and method of measuring disease severity of a patient before, during and after treatment
US6949072B2 (en) 2003-09-22 2005-09-27 Infraredx, Inc. Devices for vulnerable plaque detection
US8172747B2 (en) 2003-09-25 2012-05-08 Hansen Medical, Inc. Balloon visualization for traversing a tissue wall
JP3796550B2 (ja) 2003-09-26 2006-07-12 日本電信電話株式会社 光干渉トモグラフィ装置
EP1677095A1 (en) 2003-09-26 2006-07-05 The Kitasato Gakuen Foundation Variable-wavelength light generator and light interference tomograph
US7142835B2 (en) 2003-09-29 2006-11-28 Silicon Laboratories, Inc. Apparatus and method for digital image correction in a receiver
US7292792B2 (en) 2003-09-30 2007-11-06 Lucent Technologies Inc. High speed modulation of optical subcarriers
DE10349230A1 (de) 2003-10-23 2005-07-07 Carl Zeiss Meditec Ag Gerät zur interferometrischen Augenlängenmessung mit erhöhter Empfindlichkeit
KR101321413B1 (ko) 2003-10-27 2013-10-22 더 제너럴 하스피탈 코포레이션 주파수 영역 간섭법을 이용하여 광 영상화를 수행하는 방법및 장치
DE10351319B4 (de) 2003-10-31 2005-10-20 Med Laserzentrum Luebeck Gmbh Interferometer für die optische Kohärenztomographie
US7130320B2 (en) 2003-11-13 2006-10-31 Mitutoyo Corporation External cavity laser with rotary tuning element
US7551293B2 (en) 2003-11-28 2009-06-23 The General Hospital Corporation Method and apparatus for three-dimensional spectrally encoded imaging
US7359062B2 (en) 2003-12-09 2008-04-15 The Regents Of The University Of California High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
DE10358735B4 (de) 2003-12-15 2011-04-21 Siemens Ag Kathetereinrichtung umfassend einen Katheter, insbesondere einen intravaskulären Katheter
JP4414771B2 (ja) 2004-01-08 2010-02-10 オリンパス株式会社 共焦点顕微分光装置
RU2255426C1 (ru) 2004-02-19 2005-06-27 Южно-Российский государственный университет экономики и сервиса Динамическое запоминающее устройство радиосигналов с последовательной бинарной волоконно-оптической структурой
JP4462959B2 (ja) 2004-02-25 2010-05-12 富士通株式会社 顕微鏡画像撮影システム及び方法
WO2005082225A1 (en) 2004-02-27 2005-09-09 Optiscan Pty Ltd Optical element
US7190464B2 (en) 2004-05-14 2007-03-13 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US20050254059A1 (en) 2004-05-14 2005-11-17 Alphonse Gerard A Low coherence interferometric system for optical metrology
US7242480B2 (en) 2004-05-14 2007-07-10 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
AU2004320269B2 (en) 2004-05-29 2011-07-21 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (OCT) imaging
JP4995720B2 (ja) 2004-07-02 2012-08-08 ザ ジェネラル ホスピタル コーポレイション ダブルクラッドファイバを有する内視鏡撮像プローブ
DE102004035269A1 (de) 2004-07-21 2006-02-16 Rowiak Gmbh Laryngoskop mit OCT
US8081316B2 (en) * 2004-08-06 2011-12-20 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
WO2006020605A2 (en) 2004-08-10 2006-02-23 The Regents Of The University Of California Device and method for the delivery and/or elimination of compounds in tissue
JP5215664B2 (ja) 2004-09-10 2013-06-19 ザ ジェネラル ホスピタル コーポレイション 光学コヒーレンス撮像のシステムおよび方法
EP1804638B1 (en) 2004-09-29 2012-12-19 The General Hospital Corporation System and method for optical coherence imaging
US7113625B2 (en) * 2004-10-01 2006-09-26 U.S. Pathology Labs, Inc. System and method for image analysis of slides
SE0402435L (sv) 2004-10-08 2006-04-09 Trajan Badju Förfarande och system för alstring av tredimensionella bilder
WO2006042369A1 (en) 2004-10-22 2006-04-27 Fermiscan Australia Pty Limited Analytical method and apparatus
EP1819270B1 (en) * 2004-10-29 2012-12-19 The General Hospital Corporation Polarization-sensitive optical coherence tomography
JP5623692B2 (ja) 2004-11-02 2014-11-12 ザ ジェネラル ホスピタル コーポレイション 試料の画像形成のための光ファイバ回転装置、光学システム及び方法
US7417740B2 (en) 2004-11-12 2008-08-26 Medeikon Corporation Single trace multi-channel low coherence interferometric sensor
DE102005045071A1 (de) 2005-09-21 2007-04-12 Siemens Ag Kathetervorrichtung mit einem Positionssensorsystem zur Behandlung eines teilweisen und/oder vollständigen Gefäßverschlusses unter Bildüberwachung
US8617152B2 (en) 2004-11-15 2013-12-31 Medtronic Ablation Frontiers Llc Ablation system with feedback
GB0425419D0 (en) 2004-11-18 2004-12-22 Sira Ltd Interference apparatus and method and probe
WO2006058187A2 (en) 2004-11-23 2006-06-01 Robert Eric Betzig Optical lattice microscopy
GB0426609D0 (en) 2004-12-03 2005-01-05 Ic Innovations Ltd Analysis
JP2006162366A (ja) 2004-12-06 2006-06-22 Fujinon Corp 光断層映像装置
US7450242B2 (en) 2004-12-10 2008-11-11 Fujifilm Corporation Optical tomography apparatus
US8315282B2 (en) 2005-01-20 2012-11-20 Massachusetts Institute Of Technology Fourier domain mode locking: method and apparatus for control and improved performance
US7336366B2 (en) 2005-01-20 2008-02-26 Duke University Methods and systems for reducing complex conjugate ambiguity in interferometric data
US7330270B2 (en) * 2005-01-21 2008-02-12 Carl Zeiss Meditec, Inc. Method to suppress artifacts in frequency-domain optical coherence tomography
US7342659B2 (en) 2005-01-21 2008-03-11 Carl Zeiss Meditec, Inc. Cross-dispersed spectrometer in a spectral domain optical coherence tomography system
HU227859B1 (en) 2005-01-27 2012-05-02 E Szilveszter Vizi Real-time 3d nonlinear microscope measuring system and its application
US7267494B2 (en) 2005-02-01 2007-09-11 Finisar Corporation Fiber stub for cladding mode coupling reduction
US7664300B2 (en) * 2005-02-03 2010-02-16 Sti Medical Systems, Llc Uterine cervical cancer computer-aided-diagnosis (CAD)
DE102005007574B3 (de) 2005-02-18 2006-08-31 Siemens Ag Kathetereinrichtung
US7649160B2 (en) * 2005-02-23 2010-01-19 Lyncee Tec S.A. Wave front sensing method and apparatus
JP4628820B2 (ja) 2005-02-25 2011-02-09 サンテック株式会社 波長走査型ファイバレーザ光源
US7530948B2 (en) * 2005-02-28 2009-05-12 University Of Washington Tethered capsule endoscope for Barrett's Esophagus screening
DE102005010790A1 (de) 2005-03-09 2006-09-14 Basf Ag Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial
US20060224053A1 (en) 2005-03-30 2006-10-05 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of venous oxygen saturation and pH levels
EP1872109A1 (en) * 2005-04-22 2008-01-02 The General Hospital Corporation Arrangements, systems and methods capable of providing spectral-domain polarization-sensitive optical coherence tomography
US9599611B2 (en) * 2005-04-25 2017-03-21 Trustees Of Boston University Structured substrates for optical surface profiling
WO2006124860A1 (en) 2005-05-13 2006-11-23 The General Hospital Corporation Arrangements, systems and methods capable of providing spectral-domain optical coherence reflectometry for a sensitive detection of chemical and biological sample
WO2006127692A2 (en) 2005-05-23 2006-11-30 Hess Harald F Optical microscopy with phototransformable optical labels
US7859679B2 (en) 2005-05-31 2010-12-28 The General Hospital Corporation System, method and arrangement which can use spectral encoding heterodyne interferometry techniques for imaging
JP5702049B2 (ja) 2005-06-01 2015-04-15 ザ ジェネラル ホスピタル コーポレイション 位相分解光学周波数領域画像化を行うための装置、方法及びシステム
EP1903933A2 (en) 2005-06-07 2008-04-02 Philips Intellectual Property & Standards GmbH Laser optical feedback tomography sensor and method
US20080218696A1 (en) 2005-07-01 2008-09-11 Jose Mir Non-Invasive Monitoring System
US7391520B2 (en) 2005-07-01 2008-06-24 Carl Zeiss Meditec, Inc. Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
DE102005034443A1 (de) 2005-07-22 2007-02-22 Carl Zeiss Jena Gmbh Auflösungsgesteigerte Lumineszenz-Mikroskopie
US7292347B2 (en) 2005-08-01 2007-11-06 Mitutoyo Corporation Dual laser high precision interferometer
CN101238347B (zh) 2005-08-09 2011-05-25 通用医疗公司 执行光学相干层析术中的基于偏振的正交解调的设备、方法和存储介质
US7668342B2 (en) 2005-09-09 2010-02-23 Carl Zeiss Meditec, Inc. Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
WO2007030835A2 (en) 2005-09-10 2007-03-15 Baer Stephen C High resolution microscopy using an optically switchable fluorophore
JP4708937B2 (ja) 2005-09-15 2011-06-22 Hoya株式会社 Oct観察器具、固定器具、及び、octシステム
US8114581B2 (en) 2005-09-15 2012-02-14 The Regents Of The University Of California Methods and compositions for detecting neoplastic cells
KR100743591B1 (ko) 2005-09-23 2007-07-27 한국과학기술원 사이드 로브가 제거된 공초점 자가 간섭 현미경
CN101360447B (zh) 2005-09-29 2012-12-05 通用医疗公司 通过光谱编码进行光学成像的方法和装置
US7450241B2 (en) * 2005-09-30 2008-11-11 Infraredx, Inc. Detecting vulnerable plaque
US7400410B2 (en) 2005-10-05 2008-07-15 Carl Zeiss Meditec, Inc. Optical coherence tomography for eye-length measurement
WO2007044612A2 (en) 2005-10-07 2007-04-19 Bioptigen, Inc. Imaging systems using unpolarized light and related methods and controllers
PT2444783E (pt) 2005-10-11 2015-06-17 Univ Duke Sistemas e método para interferometria endoscópica de angulo resolvido de baixa coerência
WO2007044786A2 (en) 2005-10-11 2007-04-19 Zygo Corporation Interferometry method and system including spectral decomposition
US7408649B2 (en) 2005-10-26 2008-08-05 Kla-Tencor Technologies Corporation Method and apparatus for optically analyzing a surface
WO2007084995A2 (en) * 2006-01-19 2007-07-26 The General Hospital Corporation Methods and systems for optical imaging of epithelial luminal organs by beam scanning thereof
US20070223006A1 (en) 2006-01-19 2007-09-27 The General Hospital Corporation Systems and methods for performing rapid fluorescence lifetime, excitation and emission spectral measurements
WO2007084903A2 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and method for producing one or more optical arrangements
GB0601183D0 (en) 2006-01-20 2006-03-01 Perkinelmer Ltd Improvements in and relating to imaging
US7787129B2 (en) 2006-01-31 2010-08-31 The Board Of Trustees Of The University Of Illinois Method and apparatus for measurement of optical properties in tissue
EP1988825B1 (en) 2006-02-08 2016-12-21 The General Hospital Corporation Arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US8184367B2 (en) 2006-02-15 2012-05-22 University Of Central Florida Research Foundation Dynamically focused optical instrument
DE102006008990B4 (de) 2006-02-23 2008-05-21 Atmos Medizintechnik Gmbh & Co. Kg Verfahren und Anordnung zur Erzeugung eines dem Öffnungszustand der Stimmlippen des Kehlkopfes entsprechenden Signals
TWI414543B (zh) 2006-02-24 2013-11-11 Toray Industries 纖維強化熱可塑性樹脂成形體、成形材料及其製法
JP2007271761A (ja) 2006-03-30 2007-10-18 Fujitsu Ltd 分光装置および波長分散制御装置
EP2004041B1 (en) 2006-04-05 2013-11-06 The General Hospital Corporation Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
US20070253901A1 (en) 2006-04-27 2007-11-01 David Deng Atherosclerosis genes and related reagents and methods of use thereof
WO2007127395A2 (en) 2006-04-28 2007-11-08 Bioptigen, Inc. Methods, systems and computer program products for optical coherence tomography (oct) using automatic dispersion compensation
US7782464B2 (en) 2006-05-12 2010-08-24 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
US7460248B2 (en) 2006-05-15 2008-12-02 Carestream Health, Inc. Tissue imaging system
EP1859727A1 (en) 2006-05-26 2007-11-28 Stichting voor de Technische Wetenschappen optical triggering system for stroboscopy and a stroboscopic system
US7599074B2 (en) * 2006-06-19 2009-10-06 The Board Of Trustees Of The Leland Stanford Junior University Grating angle magnification enhanced angular sensor and scanner
US20070291277A1 (en) 2006-06-20 2007-12-20 Everett Matthew J Spectral domain optical coherence tomography system
US7496220B2 (en) * 2006-08-28 2009-02-24 Thermo Electron Scientific Instruments Llc Spectroscopic microscopy with image-driven analysis
US8838213B2 (en) 2006-10-19 2014-09-16 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
WO2008052155A2 (en) 2006-10-26 2008-05-02 Cornell Research Foundation, Inc. System for producing optical pulses of a desired wavelength using cherenkov radiation
JP2010508056A (ja) 2006-10-30 2010-03-18 エルフィ−テック リミテッド 生物学的パラメータの体内での測定のためのシステム及び方法
DE102006054556A1 (de) 2006-11-20 2008-05-21 Zimmer Medizinsysteme Gmbh Vorrichtung und Verfahren zum nicht-invasiven, optischen Erfassen von chemischen und physikalischen Blutwerten und Körperinhaltsstoffen
US20080204762A1 (en) 2007-01-17 2008-08-28 Duke University Methods, systems, and computer program products for removing undesired artifacts in fourier domain optical coherence tomography (FDOCT) systems using integrating buckets
JP5507258B2 (ja) 2007-01-19 2014-05-28 ザ ジェネラル ホスピタル コーポレイション 光周波数領域イメージングにおける測定深度を制御するための装置及び方法
US20080226029A1 (en) 2007-03-12 2008-09-18 Weir Michael P Medical device including scanned beam unit for imaging and therapy
JP5227525B2 (ja) 2007-03-23 2013-07-03 株式会社日立製作所 生体光計測装置
ES2401724T3 (es) 2007-03-26 2013-04-24 National University Corporation Tokyo University Of Marine Science And Technology Marcador de células germinales que utiliza el gen Vasa de peces
JP5683946B2 (ja) * 2007-04-10 2015-03-11 ユニヴァーシティー オブ サザン カリフォルニア ドップラー光コヒーレンス・トモグラフィを用いた血流測定のための方法とシステム
WO2008137637A2 (en) 2007-05-04 2008-11-13 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using brillouin microscopy
US7799558B1 (en) 2007-05-22 2010-09-21 Dultz Shane C Ligand binding assays on microarrays in closed multiwell plates
US8166967B2 (en) 2007-08-15 2012-05-01 Chunyuan Qiu Systems and methods for intubation
US20090219544A1 (en) 2007-09-05 2009-09-03 The General Hospital Corporation Systems, methods and computer-accessible medium for providing spectral-domain optical coherence phase microscopy for cell and deep tissue imaging
EP2207469A4 (en) 2007-10-12 2012-07-11 Gen Hospital Corp SYSTEMS AND METHODS FOR OPTICAL IMAGING OF LUMINOUS ANATOMICAL STRUCTURES
US9332942B2 (en) 2008-01-28 2016-05-10 The General Hospital Corporation Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
JP5192247B2 (ja) 2008-01-29 2013-05-08 並木精密宝石株式会社 Octプローブ
US7898656B2 (en) 2008-04-30 2011-03-01 The General Hospital Corporation Apparatus and method for cross axis parallel spectroscopy
US8184298B2 (en) 2008-05-21 2012-05-22 The Board Of Trustees Of The University Of Illinois Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization
JP2011521747A (ja) 2008-06-02 2011-07-28 ライトラブ イメージング, インコーポレイテッド 光コヒーレンストモグラフィ画像から組織特徴を取得する定量的方法
JP5324839B2 (ja) 2008-06-19 2013-10-23 株式会社トプコン 光画像計測装置
JP5546112B2 (ja) 2008-07-07 2014-07-09 キヤノン株式会社 眼科撮像装置および眼科撮像方法
US8133127B1 (en) 2008-07-21 2012-03-13 Synder Terrance W Sports training device and methods of use
JP5371315B2 (ja) 2008-07-30 2013-12-18 キヤノン株式会社 光干渉断層撮像方法および光干渉断層撮像装置
US20110160681A1 (en) 2008-12-04 2011-06-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods including catheters having light removable coatings based on a sensed condition
CN101744601B (zh) 2008-12-05 2013-04-24 德昌电机(深圳)有限公司 胶囊式成像装置和体内图像获取系统
US8864669B2 (en) 2008-12-29 2014-10-21 Perseus-Biomed Inc. Method and system for tissue imaging and analysis
US8457715B2 (en) 2009-04-08 2013-06-04 Covidien Lp System and method for determining placement of a tracheal tube
US9089331B2 (en) 2009-07-31 2015-07-28 Case Western Reserve University Characterizing ablation lesions using optical coherence tomography (OCT)
US20120228523A1 (en) 2009-11-09 2012-09-13 Tata Institute Of Fundamental Research Biological laser plasma x-ray point source
HUE052561T2 (hu) 2010-03-05 2021-05-28 Massachusetts Gen Hospital Készülék elektromágneses sugárzás biztosítására egy mintához

Also Published As

Publication number Publication date
ATE451669T1 (de) 2009-12-15
US20160225149A1 (en) 2016-08-04
EP2085929A1 (en) 2009-08-05
KR101410867B1 (ko) 2014-06-23
US20070012886A1 (en) 2007-01-18
US8351665B2 (en) 2013-01-08
WO2006116769A1 (en) 2006-11-02
JP5684452B2 (ja) 2015-03-11
EP1875436B1 (en) 2009-12-09
EP1875436A1 (en) 2008-01-09
JP2008541018A (ja) 2008-11-20
US20130188850A1 (en) 2013-07-25
DE602006010993D1 (de) 2010-01-21
US9326682B2 (en) 2016-05-03
KR20080016583A (ko) 2008-02-21
EP2325803A1 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
ES2337497T3 (es) Evaluacion de caracteristicas de la imagen de una estructura anatomica en imagenes de tomografia de coherencia optica.
Ikematsu et al. Detectability of colorectal neoplastic lesions using a novel endoscopic system with blue laser imaging: a multicenter randomized controlled trial
JP6657480B2 (ja) 画像診断支援装置、画像診断支援装置の作動方法および画像診断支援プログラム
Evans et al. Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus
Sharma et al. Real-time increased detection of neoplastic tissue in Barrett's esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial
Muldoon et al. Noninvasive imaging of oral neoplasia with a high‐resolution fiber‐optic microendoscope
Suter et al. Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging
Curvers et al. Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in Barrett's esophagus
Roblyer et al. Objective detection and delineation of oral neoplasia using autofluorescence imaging
WO2020105699A9 (ja) 消化器官の内視鏡画像による疾患の診断支援方法、診断支援システム、診断支援プログラム及びこの診断支援プログラムを記憶したコンピュータ読み取り可能な記録媒体
Sunny et al. Intra-operative point-of-procedure delineation of oral cancer margins using optical coherence tomography
Abbaci et al. Confocal laser endomicroscopy for non-invasive head and neck cancer imaging: a comprehensive review
Diao et al. Diagnostic ability of blue laser imaging combined with magnifying endoscopy for early esophageal cancer
Yip et al. Endoscopic diagnosis and management of early squamous cell carcinoma of esophagus
Rodriguez-Diaz et al. Integrated optical tools for minimally invasive diagnosis and treatment at gastrointestinal endoscopy
Shin et al. Quantitative analysis of high-resolution microendoscopic images for diagnosis of neoplasia in patients with Barrett’s esophagus
Trovato et al. Confocal laser endomicroscopy for in vivo diagnosis of Barrett's oesophagus and associated neoplasia: a pilot study conducted in a single Italian centre
Upile et al. Elastic scattering spectroscopy in assessing skin lesions: an “in vivo” study
Sievert et al. Systematic classification of confocal laser endomicroscopy for the diagnosis of oral cavity carcinoma
Thekkek et al. Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia
RU2645929C1 (ru) Способ визуализации патологических состояний слизистой оболочки верхних дыхательных путей
Singh et al. Endoscopic imaging in Barrett’s esophagus
Perisetti et al. Tips for improving the identification of neoplastic visible lesions in Barrett’s esophagus
Dowthwaite et al. Contact endoscopy as a novel technique in the detection and diagnosis of oral cavity and oropharyngeal mucosal lesions in the head and neck
WO2010025122A1 (en) Method for measuring disease probability