EP0948055B1 - Festkörper-Bildaufnahmevorrichtung - Google Patents

Festkörper-Bildaufnahmevorrichtung Download PDF

Info

Publication number
EP0948055B1
EP0948055B1 EP99302092A EP99302092A EP0948055B1 EP 0948055 B1 EP0948055 B1 EP 0948055B1 EP 99302092 A EP99302092 A EP 99302092A EP 99302092 A EP99302092 A EP 99302092A EP 0948055 B1 EP0948055 B1 EP 0948055B1
Authority
EP
European Patent Office
Prior art keywords
interlayer layer
conductors
photoelectric conversion
layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99302092A
Other languages
English (en)
French (fr)
Other versions
EP0948055A3 (de
EP0948055A2 (de
Inventor
Tetsunobu c/o Canon Kabushiki Kaisha Kochi
Isamu C/O Canon Kabushiki Kaisha Ueno
Toru C/O Canon Kabushiki Kaisha Koizumi
Hiroki c/o Canon Kabushiki Kaisha Hiyama
Shigetoshi C/O Canon Kabushiki Kaisha Sugawa
Katsuhisa c/o Canon Kabushiki Kaisha Ogawa
Katsuhito c/o Canon Kabushiki Kaisha Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of EP0948055A2 publication Critical patent/EP0948055A2/de
Publication of EP0948055A3 publication Critical patent/EP0948055A3/de
Application granted granted Critical
Publication of EP0948055B1 publication Critical patent/EP0948055B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14698Post-treatment for the devices, e.g. annealing, impurity-gettering, shor-circuit elimination, recrystallisation

Definitions

  • the present invention relates to a solid-state image pickup device having a photoelectric conversion element for converting light into an electrical signal and a method of manufacturing the same.
  • a photoelectric conversion element 102 is formed on a semiconductor substrate 101, and an insulating layer 103 is formed on the photoelectric conversion element 102 and the remaining surface of the semiconductor substrate 101.
  • a polysilicon transfer electrode 104 for transferring photocharges of the photoelectric conversion element 102 is formed on the insulating layer 103 on the remaining surface of the semiconductor substrate 101, and an aluminium light-shielding portion 105 is formed on top of it.
  • a surface passivation layer 106 is formed on the light-shielding portion 105, and a leveling layer 107 that consists of a transparent polymer resin and levels the element surface is formed thereon. Furthermore, a concave microlens layer 108 composed of a transparent polymer resin or materials such as casein, gelatin, and the like is formed, and an inter-lens layer 109 consisting of a transparent polymer resin is formed thereon. A round, convex microlens layer 110 consisting of a transparent polymer resin or casein, gelatin, and the like is formed on the interlayer 109, and a passivation layer 111 consisting of a transparent polymer resin is formed thereon.
  • the convex microlens layer 110 condenses light, sensitivity can be improved. Also, since the inter-lens layer 109 is interposed between the convex and concave microlens layers 110 and 108, the refractive index of the convex microlens layer 110 and its surface curvature required for focusing light to a size equivalent to that of an aperture portion on the concave microlens layer 108 can be reduced.
  • na, nb, nc, and nd be the refraction indices of the convex microlens layer 110, inter-lens layer 109, concave microlens layer 108, and leveling layer 107, respectively. If na > nb, nc > nb, and nc > nd, i.e., (na, nc) > (nb, nd), light can be condensed most efficiently and can enter the photoelectric conversion element nearly perpendicularly, thereby suppressing production of smear noise, and achieving a high S/N ratio.
  • the leveling layer 107 sends light onto the surface of the photoelectric conversion element nearly perpendicularly and therefore the refractive index of the concave microlens and its surface curvature can be reduced, the device can be easily manufactured.
  • a microlens is used to assure an effective aperture ratio despite a small pixel size of the solid-state image pickup device of a photosensor, and the aperture ratio is improved by combining convex and concave lenses. This complicates the layer structure, resulting in high manufacturing cost and low manufacturing yield. Also, a plurality of alignment processes are required, and the effective aperture ratio cannot be desirably improved.
  • the solid-state image pickup device of the present invention is a device of the kind described in each of the following references: European Patent Application EP-A-0744778; Patent Abstracts of Japan vol. 1997, no. 07, 31 July 1997 and Japanese Patent Application JP-A-09 064 325; and United States Patent US 5,691,548, being a device comprising:
  • light shielding members are provided over CCD transfer gates and the concavities extend in one direction only along the transfer gates.
  • the solid-state image pickup device of the present invention is characterised in that:
  • each respective area of the first interlayer layer that is bounded on respective sides is bounded on all sides, by the respective conductors.
  • FIG. 2 is a schematic sectional view showing the first embodiment of the present invention.
  • a solid-state image pickup device shown in Fig. 2 has a p- or n-type semiconductor substrate 10, and photoelectric conversion elements 11 formed in the semiconductor substrate 10.
  • Each photoelectric conversion element 11 is a region of a conductivity type opposite to that of the substrate 10, and forms a PN diode with the substrate 10.
  • a surface passivation layer 12 is formed on the photoelectric conversion elements 11 and the remaining surface of the semiconductor substrate 10.
  • Conductive lines 13 are formed on the surface passivation layer on the remaining surface of the semiconductor substrate 10 and, for example, transfer photocharges of the photoelectric conversion elements 11.
  • a first interlayer layer 14 is formed on the conductive lines 13 and the surface passivation layer 12.
  • a second interlayer layer 15 forms a downwardly convex lens on the first interlayer layer 14.
  • a resin layer 16 consists of a transparent polymer resin. Convex microlenses 17 are formed on the resin layer 16 at positions above the photoelectric conversion elements 11. In this structure, the respective layers formed above the photoelectric conversion elements 11 are transparent. Light coming from above is condensed to excite electrons and holes in the photoelectric conversion elements 11, and is output to an external circuit as an image signal via the conductive layers 13.
  • Figs. 3A and 3B show examples of the refractive indices of the respective layers of the solid-state image pickup device.
  • N1 be the refractive index of air
  • N2 be that of the convex microlens 17
  • N3 be that of the resin layer 16
  • N4 be that of the second interlayer layer 15
  • N5 be that of the first interlayer layer 14. Then, if these refractive indices are set to satisfy: N ⁇ 1 ⁇ N ⁇ 2 , N ⁇ 3 N ⁇ 3 ⁇ N ⁇ 4 N ⁇ 5 ⁇ N ⁇ 4 light can be condensed on the photoelectric conversion element 11 as a photodiode with a small area, as indicated by a light beam curve in Fig. 3A.
  • the first interlayer layer consists of TEOS (Tetra-Ethyl-Ortho-Silicate)-SiO 2
  • the second interlayer layer consists of SiOF.
  • the initial polishing speed by CMP can be improved, and high-speed processes are attained.
  • the refractive indices of the solid-state image pickup device with the arrangement shown in Fig. 3B are set to satisfy: N ⁇ 1 ⁇ N ⁇ 2 , N ⁇ 3 N ⁇ 3 ⁇ N ⁇ 4 N ⁇ 4 ⁇ N ⁇ 5 light can be condensed on the photoelectric conversion element 11 aside from an obstacle 20 (e.g., the conductive layer 13) present in the first interlayer layer 14.
  • the first interlayer layer is composed of SiOF
  • the second interlayer layer is composed of TEOS (Tetra-Ethyl-Ortho-Silicate)-SiO 2 .
  • both the first and second interlayer layers may be formed of TEOS (Tetra-Ethyl-Ortho-Silicate)-SiO 2 and have different densities.
  • TEOS Tetra-Ethyl-Ortho-Silicate
  • a solid-state image pickup device of this embodiment is manufactured by the following method.
  • a resist mask is formed on a semiconductor substrate 10 except for prospective formation regions of photoelectric conversion elements, and a Group III element such as boron in case of an n-type semiconductor substrate 10 or a Group V element such as phosphorus in case of a p-type semiconductor substrate 10 is ion-implanted to form photoelectric conversion elements 11.
  • a Group III element such as boron in case of an n-type semiconductor substrate 10 or a Group V element such as phosphorus in case of a p-type semiconductor substrate 10 is ion-implanted to form photoelectric conversion elements 11.
  • an impurity such as silicon, phosphorus, boron, or the like is ionized, and is implanted into a wafer of the semiconductor substrate by applying an appropriate acceleration voltage. After implantation, the wafer is annealed at high temperature to electrically activate the impurity.
  • a surface passivation layer 12 as an insulating member is formed on the photoelectric conversion elements 11 and the remaining surface of the semiconductor substrate 10 by LP (Low pressure) CVD, and conductors 13 consisting of a metal such as Al or the like and serving as a light-shield are formed by sputtering or the like.
  • a plurality of conductors 13 may be formed via the surface passivation films 12.
  • a first interlayer layer 14 having roughly a uniform thickness is formed on the entire surface by TEOS-CVD.
  • the first interlayer layer 14 is also formed on the conductors 13 on the surface passivation layer 12 to have a uniform thickness, thus providing a concave surface corresponding to the heights of the conductors 13, which are formed at a predetermined spacing.
  • a second interlayer layer 15 having a refractive index different from that of the first interlayer layer 14 is stacked on the first interlayer layer 14.
  • a second interlayer layer 15 having a uniform thickness is formed on the entire surface, a concave surface is formed in correspondence with the heights of the conductors layers 13, which are formed at a predetermined spacing.
  • a dense TEOS (Tetra-Ethyl-Ortho-Silicate)-SiO 2 layer is formed as the first interlayer layer 14
  • a coarse TEOS (Tetra-Ethyl-Ortho-Silicate)-SiO 2 layer is formed as the second interlayer layer 15, the polishing speed by the next CMP can be improved.
  • the upper surface is leveled by polishing the entire surface by Chemical Mechanical Polishing, "CMP",and the second interlayer layer 15 is polished until downward convex lenses are formed.
  • CMP Chemical Mechanical Polishing
  • a transparent polymer resin layer 16 is formed, and convex microlenses 17 are formed.
  • the transparent polymer resin layer 16 may or may not be formed.
  • a colour -filter layer may be formed under the microlenses 17.
  • a transparent resin layer having a low refractive index may be formed on the convex microlenses 17 so as to level and protect the surface.
  • the manufacturing process can be simplified, thus improving the manufacturing yield.
  • microlenses can be accurately formed above the photoelectric conversion elements, alignment precision of the microlenses can be improved.
  • the downwardly convex microlenses 15 are formed at positions above the photoelectric conversion elements 11 that form an area sensor and between the neighboring conductors 13. Hence, the spacings and heights of the conductors 13 are important parameters upon forming the downwardly convex microlenses 15.
  • Fig. 5 is a plan view showing the photoelectric conversion element and its peripheral circuits.
  • Fig. 5 illustrates the photoelectric conversion element 11 as a photodiode, one vertical select line 131 of the conductors 13, an output signal line 132, a transfer transistor 133, an output signal line 134 in the neighborhood of the output signal line 132, a through hole 135 connected to the source/drain of the transfer transistor 133, and a dummy conductor 136.
  • the downwardly convex microlenses 15 shown in Fig. 4D are formed on low-level photodiode portions bounded by the output signal lines 132 and 134, vertical select line 131, and dummy conductor 136.
  • the dummy conductor 136 is provided to form a step upon forming the downwardly convex microlens 15. If no dummy conductor 136 is formed, no conductor 13 is formed until the next vertical select line, and the convex microlens 15 cannot be formed.
  • a power supply interconnect for the photoelectric conversion element may be formed since the power supply interconnect preferably has constant potential compared to a conductor in a floating state.
  • the four sides that bound the downwardly convex microlens 15 are the conductors 13 formed on the surface passivation layer 12 shown in fig. 4B.
  • the vertical select line 131 is formed under the output signal lines 132 and 134 and sandwiches the surface passivation layer 12 therebetween.
  • Fig. 6 is a plan view showing another example of the photoelectric conversion element 11 and its peripheral circuits.
  • a light-shielding member 3 consisting of a metal such as A1 or the like, and having aperture portions 137, is formed around each photoelectric conversion element (photodiode) 11.
  • the light-shielding member 13 is obtained as shown in fig. 4B where it is formed on the surface passivation layer 12 to have a step, so that it has a height equal to or larger than those of the vertical select line 131 and the output signal lines 132 and 134 as conductive lines around each photoelectric conversion element 11.
  • the apertured light-shielding member 13 may be formed to cover the vertical signal line 131 and output signal lines 132 and 134 to intercept light that becomes incident on a portion other than the photoelectric conversion element 11.
  • the shape of the downwardly convex microlens 15 above the photoelectric conversion element 11 can be clearly distinguished, and the microlens 15 can be formed without any variations in area and height, thus improving the characteristics of the microlens.
  • Fig. 7 is a circuit diagram of a solid-state image pickup device with a microlens.
  • Fig. 7 shows the arrangement of a two-dimensional sensor having 2 ⁇ 2 pixels, but the number of pixels is not limited to four.
  • CMOS area sensor shown in Fig. 7
  • a photodiode 901, transfer switch 911, reset switch 902, pixel amplifier 903, and row select switch 904 are formed in each pixel.
  • the gate of the transfer switch 911 is connected to ⁇ TX(n or n+1) from a vertical scanning circuit 910
  • the gate of the reset switch 902 is connected to ⁇ RES(n or n+1) from the vertical scanning circuit 910
  • the gate of the row select switch 904 is connected to ⁇ SEL(n or n+1) from the vertical scanning circuit 910.
  • Photoelectric conversion is done by the photodiode 901.
  • the transfer switch 911 is kept OFF, and no charge photoelectrically converted by the photodiode 901 is transferred to the gate of a source-follower 903 that constructs the pixel amplifier.
  • the gate of the source-follower 903 that constructs the pixel amplifier is reset to an appropriate voltage since the reset switch 902 is turned on before the beginning of accumulation. That is, this reset level corresponds to dark level.
  • the row select switch 904 when the row select switch 904 is turned on, the source-follower constituted by a load current source 905 and the pixel amplifier 903 is operative, and when the transfer switch 911 is turned on that timing, the charge accumulated on the photodiode 901 is transferred to the gate of the source-follower constructed by the pixel amplifier.
  • the output of the selected row is generated on a vertical output line 906.
  • This output is accumulated in a signal accumulation unit 907 via transfer gates 909a and 909b.
  • the output temporarily stored in the signal accumulation unit 907 is sequentially read out to an output unit VO by a horizontal scanning circuit 908.
  • Fig. 8 is a plan view of the photoelectric conversion element corresponding to Fig. 7.
  • the same reference numerals in Fig. 8 denote the same parts as those in Fig. 7.
  • each photoelectric conversion element is composed of the photodiode 901, transfer switch 911, source-follower 903, its gate, and the like, and the photodiode 901 is bounded by select lines ⁇ SEL(n or n+1) and ⁇ TX(n or n+1), the vertical output line 906, and a power supply line V DD .
  • Fig. 9 is a timing chart showing the operation of the CMOS area sensor shown in Fig. 7.
  • T1 At the timing of an all-pixel reset period T1, ⁇ TX(n) and ⁇ T(n+1) are activated, and the charges on the photodiodes 901 of all pixels are transferred to the gates of the corresponding source-follower 903 via the transfer switches 911, thus resetting the photodiodes 901.
  • the cathode charges of the photodiodes 901 are transferred to those of the source-followers 903 and are averaged.
  • the average level becomes equal to the reset level of the cathode of the photodiode 901.
  • a mechanical shutter 11 (not shown) that guides an optical image to be sensed is open, and all the pixels begin to accumulate charges simultaneously with the end of the period T1.
  • the mechanical shutter 11 is kept open during a period T3, which corresponds to the accumulation period of the photodiodes 901.
  • the mechanical shutter is closed at timing T4, thus ending photocharge accumulation of the photodiodes 901.
  • the photodiodes 901 accumulate charges.
  • a read is started in units of lines. More specifically, the (N-1)-th row is read out, and then the N-th row is read out.
  • ⁇ SEL(n) is activated to turn on the row select switch 904, so that the source-follower circuits constructed by the pixel amplifiers 903 in all pixels connected to the n-th row are rendered operative.
  • the gate of the source-follower constructed by the pixel amplifier 903 is reset since ⁇ RES(n) is activated during a period T2 to turn on the reset switch 902. More specifically, this dark-level signal is output onto the vertical output line 906.
  • ⁇ TN(n) is activated to turn on the transfer gate 909b, thus holding charges in the signal accumulation unit 907.
  • This operation is parallelly executed for all pixels connected to the N-th row.
  • signal charges accumulated on the photodiodes 901 are transferred to the gates of the source-followers comprised of the pixel amplifiers 903 by turning on the transfer switches 911 by activating ⁇ TX(n).
  • the potential of the gate of each source-follower constructed by the pixel amplifier 903 varies from reset level by an amount corresponding to the transferred signal charge, thus determining the signal level.
  • ⁇ TS is activated to turn on the transfer gate 909a, thus holding the signal levels in the signal accumulation unit 907.
  • This operation is parallelly executed for all pixels connected to the N-th row.
  • the signal accumulation unit 907 holds dark levels and signal levels of all pixels connected to the N-th row, and the difference between the dark and signal levels is calculated in units of pixels to cancel fixed pattern noise (FPN) due to variations of threshold voltages Vth of the source-followers and KTC noise produced upon resetting of the reset switches 902, thereby obtaining high S/N signals from which noise components have been removed.
  • FPN fixed pattern noise
  • the solid-state image pickup element of this embodiment can be realized by a CMOS compatible process, and can be formed on one chip together with peripheral circuits, low cost and multiple functions can be realized. Furthermore, as downwardly convex microlens aligned by the output signal line 906, the reset line ⁇ RES as a vertical select line, and the like, can be formed above the photodiode 901, photodetection sensitivity can be greatly improved.
  • a solid-state image pickup device having a function of condensing light on the photoelectric conversion element can be formed by a simple manufacturing method, i.e., by forming downwardly convex microlens in correspondence with the upper convex microlens.
  • microlenses are manufactured by bounding the photoelectric conversion elements using a light-shielding layer, a plurality of microlenses can be accurately aligned and formed, thus providing a high-precision, high-density, high-sensitivity solid-state image pickup device suffering less variations.
  • the microlens can be self-aligned to the photoelectric conversion element as an underlying device, the optical axis can be set to agree with the condensed point, thus improving photoelectric conversion efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Claims (9)

  1. Festkörperbildaufnahmevorrichtung mit:
    einem Halbleitersubstrat (10);
    einer Vielzahl an fotoelektrischen Wandlerelementen (11), die in dem Halbleitersubstrat definiert sind;
    einer Vielzahl an Leitern (13), die sich über das Halbleitersubstrat erstrecken;
    einer ersten Zwischenschicht (14), mit einem ersten Brechungsindex, die über der Vielzahl an Leitern angeordnet ist, wobei eine jeweilige Höhlung über jedem fotoelektrischen Wandlerelement angeordnet ist; und
    einer zweiten Zwischenschicht (15) mit einem zweiten Brechungsindex, der von dem ersten Brechungsindex verschieden ist, welche eine abwärts gerichtete konvexe Mikrolinse in jeder jeweiligen Höhlung definiert;
    dadurch gekennzeichnet, dass
    die Vielzahl an Leitern Leiter umfasst, die sich über das Halbleitersubstrat (10) zwischen den benachbarten fotoelektrischen Wandlerelementen (11) in einer ersten und einer dazu senkrechten zweiten Richtung erstrecken; und
    jede Höhlung über einem jeweiligen Bereich der ersten Zwischenschicht (14) angeordnet ist, der auf jeweiligen Seiten durch jeweilige Leiter (132, 134 & 131, 136; 132, 134 & 131) unter den sich in einer ersten und einer zweiten Richtung erstreckenden Leitern (13) eingegrenzt ist.
  2. Vorrichtung nach Anspruch 1, wobei jede Höhlung über einem jeweiligen Bereich der ersten Zwischenschicht (14) angeordnet ist, der auf allen Seiten durch jeweilige Leiter (132, 134 & 131, 136) unter den sich in einer ersten und zweiten Richtung erstreckenden Leitern (13) eingegrenzt ist.
  3. Vorrichtung nach Anspruch 2, wobei jede Höhlung über einem jeweiligen Bereich der ersten Zwischenschicht (14) angeordnet ist, der auf zwei gegenüberliegenden Seiten durch angrenzende Ausgabesignalleitungen (132, 134) eingegrenzt ist, und der auf seinen anderen beiden gegenüberliegenden Seiten durch eine Auswahlleitung, ΦSEL, zum Auswählen von jeweiligen fotoelektrischen Wandlerelementen (11) sowie durch eine Scheinleitung (136) eingegrenzt ist.
  4. Vorrichtung nach Anspruch 2, wobei jede Höhlung über einem jeweiligen Bereich der ersten Zwischenschicht (14) angeordnet ist, der auf zwei gegenüberliegenden Seiten durch angrenzende Ausgangssignalleitungen (132, 134) eingegrenzt ist, und der auf seinen anderen beiden gegenüberliegenden Seiten durch eine Auswahlleitung (ΦSEL) zum Auswählen von jeweiligen fotoelektrischen Wandlerelementen (11) sowie durch eine Energiezufuhrverbindung eingegrenzt ist.
  5. Vorrichtung nach Anspruch 2, wobei jede Höhlung über einem jeweiligen Bereich der ersten Zwischenschicht (14) angeordnet ist, der auf zwei gegenüberliegenden Seiten durch jeweilige Auswahlleitungen, ΦSEL, ΦTX, eingegrenzt ist, und der auf seinen anderen beiden gegenüberliegenden Seiten durch eine jeweilige Ausgangsleitung (906) und eine jeweilige Energiezufuhrleitung (VDD) eingegrenzt ist.
  6. Vorrichtung nach einem der vorstehenden Patentansprüche, wobei die erste oder die zweite Zwischenschicht (14, 15) aus TEOS, Tetraethylorthosilikat-SiO2, und die andere aus SiOF besteht.
  7. Vorrichtung nach einem der Patentansprüche 1 bis 5, wobei die erste und die zweite Zwischenschicht (14, 15) jeweils aus TEOS, Tetraethylorthosilikat-SiO2, bestehen, und verschiedene Dichten aufweisen.
  8. Verfahren zur Herstellung einer Festkörperbildaufnahmevorrichtung mit den Schritten:
    Ausbilden einer Vielzahl an fotoelektrischen Wandlerelementen (11) in einem Halbleitersubstrat (10);
    Ausbilden einer Vielzahl an Leitern (13), die sich über das Halbleitersubstrat erstrecken;
    Ausbilden einer ersten Zwischenschicht (14) über den fotoelektrischen Wandlerelementen und auf der Vielzahl von Leitern, wobei die erste Zwischenschicht einen ersten Brechungsindex aufweist; und
    Ausbilden einer zweiten Zwischenschicht (15) auf der ersten Zwischenschicht, wobei die zweite Zwischenschicht einen von dem ersten Brechungsindex verschiedenen zweiten Brechungsindex aufweist;
    dadurch gekennzeichnet, dass
    der Schritt zum Ausbilden einer Vielzahl an Leitern (13) ein Schritt zum Ausbilden von Leitern (132, 134 & 131, 136) ist, die sich über dem Substrat (10) zwischen den benachbarten fotoelektrischen Wandlerelementen (11) in einer ersten und einer dazu senkrechten zweiten Richtung erstrecken;
    der Schritt zum Ausbilden der ersten Zwischenschicht (14) die erste Zwischenschicht mit Höhlungen auf ihrer Oberfläche ausbildet, wobei die Höhlungen jeweils über einem entsprechenden Bereich der ersten Zwischenschicht (14) angeordnet sind, der auf jeweiligen Seiten durch jeweilige Leiter (132, 134 & 131, 136) unter den sich in einer ersten und einer zweiten Richtung erstreckenden Leitern (13) eingegrenzt und über dem jeweiligen fotoelektrischen Wandlerelement angeordnet ist; und
    der Schritt zum Ausbilden der zweiten Zwischenschicht eine abwärts gerichtete konvexe Mikrolinse (15) in jeder jeweiligen Höhlung ausbildet.
  9. Verfahren nach Anspruch 8, wobei der Schritt zum Ausbilden der zweiten Zwischenschicht (15) gefolgt wird von den Schritten
    Nivellieren der Oberfläche der zweiten Zwischenschicht (15) durch chemisch unterstütztes mechanisches Polieren "CMP";
    Ausbilden einer transparenten Polymerschicht (16) darauf; und
    Ausbilden einer jeweiligen aufwärts gerichteten konvexen Mikrolinse (17) darauf, die über jeder jeweiligen abwärts gerichteten konvexen Mikrolinse (15) der zweiten Zwischenschicht (15) angeordnet ist, die in den jeweiligen Höhlungen der ersten Zwischenschicht (14) angeordnet sind.
EP99302092A 1998-03-19 1999-03-18 Festkörper-Bildaufnahmevorrichtung Expired - Lifetime EP0948055B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP07053698A JP3571909B2 (ja) 1998-03-19 1998-03-19 固体撮像装置及びその製造方法
JP7053698 1998-03-19

Publications (3)

Publication Number Publication Date
EP0948055A2 EP0948055A2 (de) 1999-10-06
EP0948055A3 EP0948055A3 (de) 2000-09-27
EP0948055B1 true EP0948055B1 (de) 2007-04-11

Family

ID=13434366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99302092A Expired - Lifetime EP0948055B1 (de) 1998-03-19 1999-03-18 Festkörper-Bildaufnahmevorrichtung

Country Status (4)

Country Link
US (2) US6188094B1 (de)
EP (1) EP0948055B1 (de)
JP (1) JP3571909B2 (de)
DE (1) DE69935751D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3776654B1 (de) * 2018-04-10 2022-04-27 Nthdegree Technologies Worldwide Inc. Selbstjustierung von optischen strukturen auf eine zufällige anordnung von gedruckten mikro-leds

Families Citing this family (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620237B2 (ja) * 1997-09-29 2005-02-16 ソニー株式会社 固体撮像素子
US20080128844A1 (en) * 2002-11-18 2008-06-05 Tessera North America Integrated micro-optical systems and cameras including the same
US6426829B1 (en) * 1998-03-26 2002-07-30 Digital Optics Corp. Integrated micro-optical systems
US6083429A (en) * 1998-03-31 2000-07-04 Intel Corporation Microlens formation through focal plane control of a aerial image
JP4200545B2 (ja) * 1998-06-08 2008-12-24 ソニー株式会社 固体撮像素子およびその駆動方法、並びにカメラシステム
US6583438B1 (en) * 1999-04-12 2003-06-24 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device
JP4265038B2 (ja) * 1999-08-02 2009-05-20 ソニー株式会社 画像処理装置
US7324144B1 (en) * 1999-10-05 2008-01-29 Canon Kabushiki Kaisha Solid image pickup device, image pickup system and method of driving solid image pickup device
US7081607B1 (en) * 1999-10-05 2006-07-25 Canon Kabushiki Kaisha Solid state image pickup device and image pickup system
JP3296345B2 (ja) * 1999-11-04 2002-06-24 日本電気株式会社 固体撮像装置及びその製造方法
JP3467013B2 (ja) 1999-12-06 2003-11-17 キヤノン株式会社 固体撮像装置
JP4845247B2 (ja) * 1999-12-27 2011-12-28 キヤノン株式会社 光電変換装置
JP4123667B2 (ja) * 2000-01-26 2008-07-23 凸版印刷株式会社 固体撮像素子の製造方法
JP3840058B2 (ja) 2000-04-07 2006-11-01 キヤノン株式会社 マイクロレンズ、固体撮像装置及びそれらの製造方法
US6960817B2 (en) 2000-04-21 2005-11-01 Canon Kabushiki Kaisha Solid-state imaging device
US6514785B1 (en) * 2000-06-09 2003-02-04 Taiwan Semiconductor Manufacturing Company CMOS image sensor n-type pin-diode structure
US6653617B2 (en) 2000-07-03 2003-11-25 Canon Kabushiki Kaisha Photoelectric conversion device
US6541794B1 (en) * 2000-08-31 2003-04-01 Motorola, Inc. Imaging device and method
KR100477784B1 (ko) * 2000-08-31 2005-03-22 매그나칩 반도체 유한회사 트렌치 내부의 공기로 이루어지는 집광층을 구비하는이미지 센서 및 그 제조 방법
JP2002252338A (ja) * 2000-12-18 2002-09-06 Canon Inc 撮像装置及び撮像システム
US6855937B2 (en) * 2001-05-18 2005-02-15 Canon Kabushiki Kaisha Image pickup apparatus
US6566151B2 (en) * 2001-06-21 2003-05-20 United Microelectronics Corp. Method of forming a color filter
US20020196553A1 (en) * 2001-06-26 2002-12-26 Colandene Thomas M. Off-focal plane micro-optics
JP4224963B2 (ja) * 2001-10-26 2009-02-18 オムロン株式会社 レンズアレイ基板及び液晶表示装置
KR100399971B1 (ko) * 2001-11-06 2003-09-29 주식회사 하이닉스반도체 이미지 센서 및 그 제조방법
US6730914B2 (en) * 2002-02-05 2004-05-04 E-Phocus, Inc. Photoconductor-on-active-pixel (POAP) sensor utilizing equal-potential pixel electrodes
US6798033B2 (en) * 2002-08-27 2004-09-28 E-Phocus, Inc. Photoconductor-on-active-pixel (POAP) sensor utilizing a multi-layered radiation absorbing structure
JP2003229553A (ja) * 2002-02-05 2003-08-15 Sharp Corp 半導体装置及びその製造方法
US7250973B2 (en) * 2002-02-21 2007-07-31 Canon Kabushiki Kaisha Image pickup apparatus for reflecting light at an area between successive refractive areas
EP1341377B1 (de) 2002-02-27 2018-04-11 Canon Kabushiki Kaisha Signalverarbeitungsvorrichtung für Bildaufnahmevorrichtung
EP1367650A1 (de) * 2002-05-27 2003-12-03 STMicroelectronics S.A. Elektronische Vorrichtung mit elektronischen Schaltungen und einer photosensitiven Zone und deren Verfahren zur Herstellung
JP4262446B2 (ja) * 2002-06-21 2009-05-13 富士フイルム株式会社 固体撮像装置
KR100873289B1 (ko) * 2002-07-19 2008-12-11 매그나칩 반도체 유한회사 경사입사광의 영향을 감소시킨 시모스 이미지센서
US8059345B2 (en) * 2002-07-29 2011-11-15 Digitaloptics Corporation East Integrated micro-optical systems
WO2004030101A1 (ja) * 2002-09-27 2004-04-08 Sony Corporation 固体撮像素子及びその製造方法
US6800838B2 (en) * 2002-10-25 2004-10-05 Omnivision International Holding Ltd Image sensor having reduced stress color filters and method of making
US20040082096A1 (en) * 2002-10-25 2004-04-29 Katsumi Yamamoto Method for forming an image sensor having concave-shaped micro-lenses
US6737719B1 (en) * 2002-10-25 2004-05-18 Omnivision International Holding Ltd Image sensor having combination color filter and concave-shaped micro-lenses
US20040080006A1 (en) * 2002-10-25 2004-04-29 Katsumi Yamamoto Image sensor having concave-shaped micro-lenses
US6861280B2 (en) * 2002-10-25 2005-03-01 Omnivision International Holding Ltd Image sensor having micro-lenses with integrated color filter and method of making
US6803250B1 (en) * 2003-04-24 2004-10-12 Taiwan Semiconductor Manufacturing Co., Ltd Image sensor with complementary concave and convex lens layers and method for fabrication thereof
JP4274533B2 (ja) * 2003-07-16 2009-06-10 キヤノン株式会社 固体撮像装置及びその駆動方法
US20050045927A1 (en) * 2003-09-03 2005-03-03 Jin Li Microlenses for imaging devices
US7408195B2 (en) * 2003-09-04 2008-08-05 Cypress Semiconductor Corporation (Belgium) Bvba Semiconductor pixel arrays with reduced sensitivity to defects
US7115853B2 (en) * 2003-09-23 2006-10-03 Micron Technology, Inc. Micro-lens configuration for small lens focusing in digital imaging devices
KR100549589B1 (ko) * 2003-09-29 2006-02-08 매그나칩 반도체 유한회사 이미지센서 및 그 제조 방법
US7227692B2 (en) 2003-10-09 2007-06-05 Micron Technology, Inc Method and apparatus for balancing color response of imagers
US7560295B2 (en) * 2003-10-09 2009-07-14 Aptina Imaging Corporation Methods for creating gapless inner microlenses, arrays of microlenses, and imagers having same
JP4514188B2 (ja) * 2003-11-10 2010-07-28 キヤノン株式会社 光電変換装置及び撮像装置
FR2862426B1 (fr) * 2003-11-17 2006-03-03 St Microelectronics Sa Capteur d'image
JP4508619B2 (ja) * 2003-12-03 2010-07-21 キヤノン株式会社 固体撮像装置の製造方法
JP3793202B2 (ja) * 2004-02-02 2006-07-05 キヤノン株式会社 固体撮像装置
JP3890333B2 (ja) * 2004-02-06 2007-03-07 キヤノン株式会社 固体撮像装置
JP4067054B2 (ja) * 2004-02-13 2008-03-26 キヤノン株式会社 固体撮像装置および撮像システム
JP4553612B2 (ja) * 2004-03-18 2010-09-29 ルネサスエレクトロニクス株式会社 撮像素子およびそれを備えた撮像装置
US7423790B2 (en) * 2004-03-18 2008-09-09 Canon Kabushiki Kaisha Photoelectric conversion apparatus and contact-type image sensor
US7372497B2 (en) * 2004-04-28 2008-05-13 Taiwan Semiconductor Manufacturing Company Effective method to improve sub-micron color filter sensitivity
KR100640972B1 (ko) 2004-07-15 2006-11-02 동부일렉트로닉스 주식회사 씨모스 이미지 센서 및 그의 제조 방법
EP1626442B1 (de) * 2004-08-13 2011-01-12 St Microelectronics S.A. Bildsensor
JP4756839B2 (ja) 2004-09-01 2011-08-24 キヤノン株式会社 固体撮像装置及びカメラ
JP4971586B2 (ja) 2004-09-01 2012-07-11 キヤノン株式会社 固体撮像装置
JP5089017B2 (ja) * 2004-09-01 2012-12-05 キヤノン株式会社 固体撮像装置及び固体撮像システム
US20060057765A1 (en) * 2004-09-13 2006-03-16 Taiwan Semiconductor Manufacturing Company, Ltd. Image sensor including multiple lenses and method of manufacture thereof
US7768088B2 (en) * 2004-09-24 2010-08-03 Fujifilm Corporation Solid-state imaging device that efficiently guides light to a light-receiving part
US20060071149A1 (en) * 2004-09-30 2006-04-06 Stmicroelectronics, Inc. Microlens structure for opto-electric semiconductor device, and method of manufacture
US7389013B2 (en) * 2004-09-30 2008-06-17 Stmicroelectronics, Inc. Method and system for vertical optical coupling on semiconductor substrate
JP4513497B2 (ja) * 2004-10-19 2010-07-28 ソニー株式会社 固体撮像装置
US7420610B2 (en) * 2004-12-15 2008-09-02 Matsushita Electric Industrial Co., Ltd. Solid-state imaging element, solid-state imaging device, and method for fabricating the same
KR100672702B1 (ko) * 2004-12-29 2007-01-22 동부일렉트로닉스 주식회사 씨모스 이미지 센서 및 그 제조방법
JP4416668B2 (ja) 2005-01-14 2010-02-17 キヤノン株式会社 固体撮像装置、その制御方法及びカメラ
JP2006197392A (ja) * 2005-01-14 2006-07-27 Canon Inc 固体撮像装置、カメラ、及び固体撮像装置の駆動方法
JP4459064B2 (ja) * 2005-01-14 2010-04-28 キヤノン株式会社 固体撮像装置、その制御方法及びカメラ
JP4549195B2 (ja) 2005-01-19 2010-09-22 キヤノン株式会社 固体撮像素子およびその製造方法
JP4508891B2 (ja) * 2005-01-28 2010-07-21 キヤノン株式会社 光電変換装置、マルチチップ型イメージセンサ、密着型イメージセンサおよび画像読取装置
JP4434991B2 (ja) * 2005-03-01 2010-03-17 キヤノン株式会社 イメージセンサ
JP4459098B2 (ja) * 2005-03-18 2010-04-28 キヤノン株式会社 固体撮像装置及びカメラ
JP4459099B2 (ja) 2005-03-18 2010-04-28 キヤノン株式会社 固体撮像装置及びカメラ
JP4794877B2 (ja) * 2005-03-18 2011-10-19 キヤノン株式会社 固体撮像装置及びカメラ
JP4677258B2 (ja) 2005-03-18 2011-04-27 キヤノン株式会社 固体撮像装置及びカメラ
US7553689B2 (en) * 2005-07-13 2009-06-30 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with micro-lens and method of making the same
JP4469781B2 (ja) * 2005-07-20 2010-05-26 パナソニック株式会社 固体撮像装置及びその製造方法
US7999291B2 (en) 2005-09-05 2011-08-16 Sony Corporation Method of manufacturing solid state imaging device, solid state imaging device, and camera using solid state imaging device
JP4835080B2 (ja) * 2005-09-22 2011-12-14 ソニー株式会社 固体撮像素子の製造方法、及び、固体撮像素子
JP4967291B2 (ja) * 2005-09-22 2012-07-04 ソニー株式会社 固体撮像装置の製造方法
JP2007201091A (ja) * 2006-01-25 2007-08-09 Fujifilm Corp 固体撮像素子の製造方法
JP2007242697A (ja) * 2006-03-06 2007-09-20 Canon Inc 撮像装置および撮像システム
KR101255334B1 (ko) * 2006-05-08 2013-04-16 페어차일드코리아반도체 주식회사 저 열저항 파워 모듈 및 그 제조방법
KR100795922B1 (ko) * 2006-07-28 2008-01-21 삼성전자주식회사 이미지 픽업 소자 및 이미지 픽업 소자의 제조방법
JP4185949B2 (ja) * 2006-08-08 2008-11-26 キヤノン株式会社 光電変換装置及び撮像装置
JP4928199B2 (ja) * 2006-09-07 2012-05-09 キヤノン株式会社 信号検出装置、信号検出装置の信号読み出し方法及び信号検出装置を用いた撮像システム
US20080191299A1 (en) * 2007-02-12 2008-08-14 Christopher Parks Microlenses for irregular pixels
JP4054839B1 (ja) 2007-03-02 2008-03-05 キヤノン株式会社 光電変換装置およびそれを用いた撮像システム
US9019830B2 (en) * 2007-05-15 2015-04-28 Imagine Communications Corp. Content-based routing of information content
JP5180537B2 (ja) * 2007-08-24 2013-04-10 キヤノン株式会社 光電変換装置及びマルチチップイメージセンサ
EP2037667B1 (de) * 2007-09-14 2017-08-23 Canon Kabushiki Kaisha Bildabtastvorrichtung und Bildgebungssystem
US8395686B2 (en) * 2007-12-06 2013-03-12 Sony Corporation Solid-state imaging device, method of manufacturing the same, and camera
JP5142696B2 (ja) * 2007-12-20 2013-02-13 キヤノン株式会社 光電変換装置、及び光電変換装置を用いた撮像システム
KR100967477B1 (ko) * 2007-12-24 2010-07-07 주식회사 동부하이텍 이미지 센서 및 그 제조 방법
JP5268389B2 (ja) * 2008-02-28 2013-08-21 キヤノン株式会社 固体撮像装置、その駆動方法及び撮像システム
JP5178266B2 (ja) * 2008-03-19 2013-04-10 キヤノン株式会社 固体撮像装置
JP5094498B2 (ja) * 2008-03-27 2012-12-12 キヤノン株式会社 固体撮像装置及び撮像システム
JP5328207B2 (ja) * 2008-04-01 2013-10-30 キヤノン株式会社 固体撮像装置
JP2009252983A (ja) * 2008-04-04 2009-10-29 Canon Inc 撮像センサー、及び撮像センサーの製造方法
JP5086877B2 (ja) * 2008-04-11 2012-11-28 シャープ株式会社 固体撮像素子およびその製造方法、電子情報機器
US7710667B2 (en) 2008-06-25 2010-05-04 Aptina Imaging Corp. Imaging module with symmetrical lens system and method of manufacture
JP5274166B2 (ja) * 2008-09-10 2013-08-28 キヤノン株式会社 光電変換装置及び撮像システム
JP5478905B2 (ja) * 2009-01-30 2014-04-23 キヤノン株式会社 固体撮像装置
JP2010239076A (ja) * 2009-03-31 2010-10-21 Sony Corp 固体撮像装置とその製造方法、及び電子機器
JP2010251489A (ja) * 2009-04-15 2010-11-04 Sony Corp 固体撮像装置および電子機器
JP5529613B2 (ja) 2009-04-17 2014-06-25 キヤノン株式会社 光電変換装置及び撮像システム
JP2009296016A (ja) * 2009-09-18 2009-12-17 Renesas Technology Corp 固体撮像素子
JP5556122B2 (ja) * 2009-10-27 2014-07-23 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法、電子機器
JP2011100900A (ja) 2009-11-06 2011-05-19 Sony Corp 固体撮像装置及びその製造方法と設計方法並びに電子機器
JP5679653B2 (ja) * 2009-12-09 2015-03-04 キヤノン株式会社 光電変換装置およびそれを用いた撮像システム
JP5780711B2 (ja) 2010-04-06 2015-09-16 キヤノン株式会社 固体撮像装置
JP2012084815A (ja) * 2010-10-14 2012-04-26 Sharp Corp 固体撮像装置および電子情報機器
JP5736755B2 (ja) * 2010-12-09 2015-06-17 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
JP6045136B2 (ja) 2011-01-31 2016-12-14 キヤノン株式会社 光電変換装置
JP5744545B2 (ja) * 2011-01-31 2015-07-08 キヤノン株式会社 固体撮像装置およびカメラ
JP5783741B2 (ja) * 2011-02-09 2015-09-24 キヤノン株式会社 固体撮像装置、及び固体撮像装置の製造方法
JP5901186B2 (ja) 2011-09-05 2016-04-06 キヤノン株式会社 固体撮像装置及びその駆動方法
JP5858695B2 (ja) 2011-09-08 2016-02-10 キヤノン株式会社 固体撮像装置及び固体撮像装置の駆動方法
JP5806566B2 (ja) 2011-09-15 2015-11-10 キヤノン株式会社 A/d変換器および固体撮像装置
JP5801665B2 (ja) 2011-09-15 2015-10-28 キヤノン株式会社 固体撮像装置、a/d変換器およびその制御方法
JP5484422B2 (ja) 2011-10-07 2014-05-07 キヤノン株式会社 固体撮像装置
JP5930651B2 (ja) 2011-10-07 2016-06-08 キヤノン株式会社 固体撮像装置
JP5901212B2 (ja) 2011-10-07 2016-04-06 キヤノン株式会社 光電変換システム
CN103066090B (zh) * 2012-12-26 2017-11-07 上海集成电路研发中心有限公司 具有凸透镜结构的像元结构及制造方法
JP6319946B2 (ja) 2013-04-18 2018-05-09 キヤノン株式会社 固体撮像装置及び撮像システム
JP6100074B2 (ja) 2013-04-25 2017-03-22 キヤノン株式会社 光電変換装置及び撮像システム
JP6274788B2 (ja) 2013-08-28 2018-02-07 キヤノン株式会社 撮像装置、撮像システム及び撮像装置の駆動方法
JP5886806B2 (ja) 2013-09-17 2016-03-16 キヤノン株式会社 固体撮像装置
JP6207351B2 (ja) 2013-11-12 2017-10-04 キヤノン株式会社 固体撮像装置および撮像システム
JP6239975B2 (ja) 2013-12-27 2017-11-29 キヤノン株式会社 固体撮像装置及びそれを用いた撮像システム
JP6541347B2 (ja) 2014-03-27 2019-07-10 キヤノン株式会社 固体撮像装置および撮像システム
JP6548391B2 (ja) 2014-03-31 2019-07-24 キヤノン株式会社 光電変換装置および撮像システム
JP6412328B2 (ja) 2014-04-01 2018-10-24 キヤノン株式会社 固体撮像装置およびカメラ
US9979916B2 (en) 2014-11-21 2018-05-22 Canon Kabushiki Kaisha Imaging apparatus and imaging system
KR102372856B1 (ko) * 2014-11-28 2022-03-10 엘지전자 주식회사 마이크로 렌즈 어레이를 구비하는 광 검출 센서
US9900539B2 (en) 2015-09-10 2018-02-20 Canon Kabushiki Kaisha Solid-state image pickup element, and image pickup system
JP6703387B2 (ja) * 2015-10-02 2020-06-03 エルジー ディスプレイ カンパニー リミテッド 薄膜光センサ、2次元アレイセンサ、および指紋センサ付きモバイル用ディスプレイ
JP6740067B2 (ja) 2016-09-16 2020-08-12 キヤノン株式会社 固体撮像装置及びその駆動方法
JP6750876B2 (ja) 2016-10-07 2020-09-02 キヤノン株式会社 固体撮像装置及びその駆動方法
JP2018082261A (ja) 2016-11-15 2018-05-24 キヤノン株式会社 撮像素子
JP6806553B2 (ja) 2016-12-15 2021-01-06 キヤノン株式会社 撮像装置、撮像装置の駆動方法及び撮像システム
JP6871797B2 (ja) 2017-04-24 2021-05-12 キヤノン株式会社 光電変換装置
JP7299680B2 (ja) 2018-08-23 2023-06-28 キヤノン株式会社 撮像装置及び撮像システム
JP7245014B2 (ja) * 2018-09-10 2023-03-23 キヤノン株式会社 固体撮像装置、撮像システム、および固体撮像装置の駆動方法
US11425365B2 (en) 2018-12-14 2022-08-23 Canon Kabushiki Kaisha Photoelectric conversion device, method of manufacturing photoelectric conversion device, and method of manufacturing semiconductor device
JP2022088086A (ja) * 2020-12-02 2022-06-14 シャープ福山レーザー株式会社 画像表示素子

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199874A (ja) * 1990-11-29 1992-07-21 Matsushita Electric Ind Co Ltd 固体撮像装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118924A (en) * 1990-10-01 1992-06-02 Eastman Kodak Company Static control overlayers on opto-electronic devices
JP3200856B2 (ja) * 1991-02-12 2001-08-20 ソニー株式会社 固体撮像装置
JP2833941B2 (ja) * 1992-10-09 1998-12-09 三菱電機株式会社 固体撮像装置とその製造方法
JPH06232379A (ja) * 1993-02-01 1994-08-19 Sharp Corp 固体撮像素子
JP2950714B2 (ja) * 1993-09-28 1999-09-20 シャープ株式会社 固体撮像装置およびその製造方法
US5644123A (en) * 1994-12-16 1997-07-01 Rocky Mountain Research Center Photonic signal processing, amplification, and computing using special interference
US5739548A (en) * 1995-05-02 1998-04-14 Matsushita Electronics Corporation Solid state imaging device having a flattening layer and optical lenses
JP3405620B2 (ja) * 1995-05-22 2003-05-12 松下電器産業株式会社 固体撮像装置
JP3031606B2 (ja) * 1995-08-02 2000-04-10 キヤノン株式会社 固体撮像装置と画像撮像装置
US5693967A (en) * 1995-08-10 1997-12-02 Lg Semicon Co., Ltd. Charge coupled device with microlens
JPH0964325A (ja) 1995-08-23 1997-03-07 Sony Corp 固体撮像素子とその製造方法
NL1011381C2 (nl) * 1998-02-28 2000-02-15 Hyundai Electronics Ind Fotodiode voor een CMOS beeldsensor en werkwijze voor het vervaardigen daarvan.
JP4109743B2 (ja) * 1998-03-19 2008-07-02 株式会社東芝 固体撮像装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199874A (ja) * 1990-11-29 1992-07-21 Matsushita Electric Ind Co Ltd 固体撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 535 (E - 1288) 5 November 1992 (1992-11-05) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3776654B1 (de) * 2018-04-10 2022-04-27 Nthdegree Technologies Worldwide Inc. Selbstjustierung von optischen strukturen auf eine zufällige anordnung von gedruckten mikro-leds

Also Published As

Publication number Publication date
JP3571909B2 (ja) 2004-09-29
EP0948055A3 (de) 2000-09-27
EP0948055A2 (de) 1999-10-06
JPH11274443A (ja) 1999-10-08
US6605850B1 (en) 2003-08-12
DE69935751D1 (de) 2007-05-24
US6188094B1 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
EP0948055B1 (de) Festkörper-Bildaufnahmevorrichtung
KR101893325B1 (ko) 고체 촬상 장치와 그 제조 방법, 및 전자 기기
US20220190022A1 (en) Image sensors
US7662656B2 (en) Light block for pixel arrays
KR101036290B1 (ko) 고체촬상장치 및 그 제조방법
US7791158B2 (en) CMOS image sensor including an interlayer insulating layer and method of manufacturing the same
US7875840B2 (en) Imager device with anti-fuse pixels and recessed color filter array
KR20080089436A (ko) 이미저의 리세스 영역에 균일 컬러 필터를 제공하는 방법및 장치
KR20060108378A (ko) 3차원 구조를 갖는 이미지 센서의 분리형 단위화소 및 그제조방법
JP2009506547A (ja) 撮像装置での垂直方向ブルーミング防止制御およびクロストーク軽減のためのBtFried添加領域
US11688749B2 (en) Image sensing device
US11742368B2 (en) Image sensing device and method for forming the same
JP2009534836A (ja) ブルーミングおよびクロストークからのダーク基準列とダーク基準行の保護を改良するnウェル障壁画素
US20090160001A1 (en) Image sensor and method for manufacturing the sensor
KR100239412B1 (ko) 고체 촬상 소자 및 그의 제조 방법
KR100769563B1 (ko) 누설 전류를 감소시킨 이미지 센서
US20240072086A1 (en) Image sensing device
US20230299096A1 (en) Image sensor and manufacturing method of the same
US20230402476A1 (en) Image sensor
KR20060072172A (ko) 높은 광 감도를 가지는 이미지 센서 및 그 제조 방법
KR20060020852A (ko) 시모스 이미지센서 및 그의 제조방법
CN118158556A (zh) 图像传感器
CN117542869A (zh) 图像传感器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010219

AKX Designation fees paid

Free format text: DE FR GB IT NL

17Q First examination report despatched

Effective date: 20040825

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69935751

Country of ref document: DE

Date of ref document: 20070524

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071207

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170322

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180318