CN104974030A - 用于纯化多不饱和脂肪酸的模拟移动床色谱分离方法 - Google Patents
用于纯化多不饱和脂肪酸的模拟移动床色谱分离方法 Download PDFInfo
- Publication number
- CN104974030A CN104974030A CN201510278939.9A CN201510278939A CN104974030A CN 104974030 A CN104974030 A CN 104974030A CN 201510278939 A CN201510278939 A CN 201510278939A CN 104974030 A CN104974030 A CN 104974030A
- Authority
- CN
- China
- Prior art keywords
- many
- acid
- district
- usually
- epa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/10—Selective adsorption, e.g. chromatography characterised by constructional or operational features
- B01D15/18—Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
- B01D15/1814—Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
- B01D15/1821—Simulated moving beds
- B01D15/185—Simulated moving beds characterized by the components to be separated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/47—Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B3/00—Refining fats or fatty oils
- C11B3/10—Refining fats or fatty oils by adsorption
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B3/00—Refining fats or fatty oils
- C11B3/12—Refining fats or fatty oils by distillation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
- C12P7/6409—Fatty acids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Diabetes (AREA)
- Sustainable Development (AREA)
- Zoology (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Dermatology (AREA)
- Cardiology (AREA)
- Endocrinology (AREA)
- Emergency Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Neurology (AREA)
- Pain & Pain Management (AREA)
- Neurosurgery (AREA)
- Rheumatology (AREA)
- Obesity (AREA)
- Biomedical Technology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明涉及用于纯化多不饱和脂肪酸(PUFA)的模拟移动床色谱分离方法。该方法包括将进料混合物引入到模拟的或实际的移动床色谱设备中,该色谱设备具有多个相连的色谱柱,该色谱柱包含作为洗脱液的含水醇,其中该设备具有包括至少第一区和第二区的多个区,每一个区具有抽取液流和提余液流,从抽取液流和提余液流可收集来自该色谱柱中的液体,其中a)从该第一区中的柱中收集包含PUFA产物连同较强极性的组分的提余液流并将其引入到该第二区中的不相邻的柱中,和/或b)从该第二区中的柱中收集包含PUFA产物连同较弱极性的组分的抽取液流并引入到该第一区中的不相邻的柱中,在每一个区中使该PUFA产物与该进料混合物的不同组分分离。
Description
本申请是申请日为2010年12月24日,申请号为201080064359.5,发明名称为“用于纯化多不饱和脂肪酸的模拟移动床色谱分离方法”的申请的分案申请。
本发明涉及用于纯化多不饱和脂肪酸(PUFA)及其衍生物的改进的色谱分离方法。具体地,本发明涉及用于纯化PUFA及其衍生物的改进的模拟的或实际的移动床色谱分离方法。
脂肪酸,特别是PUFA,及它们的衍生物是生物学上重要分子的前体,其在调节比如血小板聚集、炎症及免疫响应的生物功能中发挥着重要的作用。因此,在大范围的病理学病症(包括CNS病症)、神经病变(包括糖尿病神经病变)、心血管疾病、全身免疫系统和炎症病症(包括炎症性皮肤病)的治疗中,PUFA及它们的衍生物可能是治疗上有用的。
在天然原料比如植物油和深海鱼油(marine oil)中发现了PUFA。然而,存在于这样的油中的此类PUFA经常掺合了饱和脂肪酸和许多其它杂质。因此,在营养或药物使用之前,期望PUFA应该是纯化的。
遗憾地是,PUFA极其脆弱。因此,当在氧气的存在下加热时,它们易于异构化、过氧化和寡聚化。因此,分离和纯化PUFA产物以制备纯的脂肪酸是困难的。蒸馏,甚至在真空下,也能够导致不可接受的产物降解。
模拟的和实际的移动床色谱是为本领域的技术人员所熟知的已知技术。工作原理涉及液体洗脱液相和固体吸附剂相的逆流移动。该操作允许最少的溶剂用量,使得方法在经济上是可行的。这样的分离技术已经在不同领域中中获得了数种应用,包括烃、工业化学制品、油、糖及API。这样的分离技术还被用来纯化PUFA及其衍生物。
众所周知,在传统的固定床色谱系统中,使组分待分离的混合物渗透通过容器。容器为大体圆柱形的,且被典型地称作柱。柱包含表现出高的流体渗透性的多孔材料(通常称为固定相)的填充物。混合物的每一种组分的渗透速率取决于该组分的物理性能,使得组分相继且选择性地从柱中离开。因此,一些组分趋向于牢固地固定到固定相上且因此将缓慢地渗透,而其它组分趋向于弱固定且更快速地从柱中离开。已提出了许多不同的固定床色谱系统且出于分析和工业生产两者的目的使用。
相反,模拟移动床系统由包含吸附剂的许多单独的柱构成,所述柱被串联到一起。洗脱液在第一方向穿过柱。通过一系列的阀,周期性地改变系统中的进料和洗脱液的注入点及分离后的组分的收集点。整体效果是为了模拟包含固体吸附剂的移动床的单一柱子的操作。因此,模拟移动床系统由柱组成,所述柱和在传统的固定床系统一样包含洗脱液从其中穿过的固体吸附剂的固定床,但在模拟移动床系统中,这样的操作以模拟连续逆流的移动床。
用于模拟移动床色谱的方法和设备被描述在几个专利中,包括US2,985,589、US 3,696,107、US 3,706,812、US 3,761,533、FR-A-2103302、FR-A-2651148和FR-A-2651149,本文通过引用并入这些专利的全部内容。主题还被详细描述在“Preparative and Production Scale Chromatography”,由Ganetsos和Barker编辑,Marcel Dekker Inc,纽约,1993中,本文通过引用并入其全部内容。
实际的移动床系统在操作上类似于模拟移动床系统。然而,不是通过阀的系统改变进料混合物和洗脱液的注入点及分离后组分的收集点,而是使一系列的吸附装置(即,柱)相对于进料点和取出点物理地移动。此外,这样的操作以模拟连续逆流移动床。
用于实际的移动床色谱的方法和设备被描述在几个专利中,包括US6,979,402、US 5,069,883和US 4,764,276,本文通过引用并入这些专利的全部内容。
模拟和实际的移动床技术通常仅适用于分离二元混合物。因此,较强极性的组分将与洗脱液一起移动,并作为提余液流(raffinate stream)收集,且较弱极性的组分将与吸附剂一起移动,并作为抽取液流(extract stream)收集。因此,难于用模拟的或实际的移动床技术来使期望的产物与包含极性杂质和非极性杂质两者的粗混合物分离。这限制了此类技术在从例如鱼油中纯化PUFA产物的适用性。
因此,在以往中,当用模拟的或实际的移动床技术来使PUFA与天然油分离时,在用模拟的或实际的移动床技术纯化所得到的中间产物之前,通常需要首先使天然油经过初步分离步骤(例如,固定柱色谱)(参见,例如EP-A-0697034)。通常,初始纯化步骤除去了极性或非极性组分,从而产生基本上二元混合物,然后使所述二元混合物经过移动床色谱。
参考图1阐述这种分离二元混合物的方法。通过考虑包含固定相S的垂直色谱柱来解释模拟的或实际的连续逆流色谱分离方法的概念,所述固定相S划分成多个部分,更精确地说,从柱的底部到顶部划分成4个叠加的亚区I、II、III和IV。通过泵P在IE处从底部引入洗脱液。在亚区II和亚区III之间的1A+B处引入待分离的组分A和组分B的混合物。在亚区I和亚区II之间的SB处收集主要包含B的抽取液,且在亚区III和亚区IV之间的SA处收集主要包含A的提余液。
在模拟移动床系统的情况下,通过引入点和收集点相对于固定相的移动,引起固定相S的模拟向下移动。在实际的移动床系统的情况下,由多个色谱柱相对于引入点和收集点的移动引起固定相S向下移动。在图1中,洗脱液向上流动且在亚区II和亚区III之间注入混合物A+B。根据各组分与固定相的色谱相互作用例如在多孔介质上的吸附,各组分将移动。对固定相表现出较强亲和力的组分B(较慢的流动组分)将更为缓慢地由洗脱液带出且将延迟地跟随洗脱液。对固定相表现出较弱亲和力的组分A(较快的流动组分)将容易地由洗脱液带出。如果准确地估计并控制参数的正确组合,尤其是每个区中的流速,将在亚区III和亚区IV之间收集对固定相表现出较弱亲和力的组分A作为提余液,且将在亚区I和亚区II之间收集对固定相表现出较强亲和力的组分B作为抽取液。
因此,将理解,图解地阐述在图1中的传统的移动床系统限于二元分离。
因此,存在对可使PUFA或其衍生物与较快的流动组分和较慢的流动组分(即较强极性的杂质和较弱极性的杂质)分离的单一模拟的或实际的移动床色谱分离方法的需要,以生产基本上纯的PUFA或其衍生物。还期望的是,方法应涉及在标准温度和压力条件下操作的便宜的洗脱液。
现在,意外地发现用使用含水醇洗脱液的单一模拟的或实际的移动床设备可有效地纯化PUFA产物。因此,本发明提供用于从进料混合物中回收多不饱和脂肪酸(PUFA)产物的色谱分离方法,方法包括将进料混合物引入到模拟的或实际的移动床色谱设备中,色谱设备具有多个相连的色谱柱,所述色谱柱包含作为洗脱液的含水醇,其中设备具有包括至少第一区和第二区的多个区,每一个区具有抽取液流和提余液流,从抽取液流和提余液流可收集来自多个相连的色谱柱的液体,且其中(a)从第一区中的柱中收集包含PUFA产物连同较强极性的组分的提余液流并将其引入到第二区中的不相邻的柱中,和/或(b)从第二区中的柱中收集包含PUFA产物连同较弱极性的组分的抽取液流并将其引入到第一区中的不相邻的柱中,在每一个区中使所述PUFA产物与进料混合物的不同组分分离。
还提供通过本发明的方法可得到的PUFA产物。
以高收率生产通过本发明的方法所生产的PUFA产物,且PUFA产物具有高纯度。而且,通常由PUFA的蒸馏所产生的特殊杂质的含量是非常低的。如本文所使用的,用术语“同分异构杂质”来表示通常在含PUFA的天然油的蒸馏过程中所产生的那些杂质。这些杂质包括PUFA同分异构体、过氧化产物和寡聚化产物。
图1阐述了用于分离二元混合物的模拟的或实际的移动床方法的基本原理。
图2阐述了本发明的第一个优选实施方式,该实施方式适用于使EPA与较快流动的组分和较慢流动的组分(即,较强极性的杂质和较弱极性的杂质)分离。
图3阐述了本发明的第二个优选实施方式,该实施方式适用于使DHA与较快流动的组分和较慢流动的组分(即,较强极性的杂质和较弱极性的杂质)分离。
图4更为详细地阐述了本发明的第一个优选实施方式,该实施方式适用于使EPA与较快流动的组分和较慢流动的组分(即,较强极性的杂质和较弱极性的杂质)分离。
图5更为详细地阐述了本发明的第二个优选实施方式,该实施方式适用于使DHA与较快流动的组分和较慢流动的组分(即,较强极性的杂质和较弱极性的杂质)分离。
图6更为详细地阐述了用于本发明的第一个优选实施方式的可选择的方法,该方法适用于使EPA与较快流动的组分和较慢流动的组分(即,较强极性的杂质和较弱极性的杂质)分离。
图7更为详细地阐述了用于本发明的第二个优选实施方式的可选择的方法,该方法适用于使DHA与较快的流动组分和较慢的流动组分(即,较强极性的杂质和较弱极性的杂质)分离。
图8阐述了本发明的特别优选的实施方式,该实施方式用于从较快流动的组分和较慢流动的组分(即,较强极性的杂质和较弱极性的杂质)中纯化EPA。
图9阐述了本发明的特别优选的实施方式的可选择的方法,该方法用于从较快流动的组分和较慢流动的组分(即,较强极性的杂质和较弱极性的杂质)中纯化EPA。
图10阐述了本发明的特别优选的实施方式,该方法用于从较快流动的组分和较慢流动的组分(即,较强极性的杂质和较弱极性的杂质)中纯化EPA。
图11显示了根据本发明生产的EPA产物的GC分析。
图12显示了根据本发明得到的第一抽取液流和提余液流的GCFAMES图。
图13显示了根据本发明得到的第二抽取液流和提余液流的GCFAMES图。
图14显示了根据本发明生产的DHA产物的GCFAMES图。
图15显示了通过蒸馏所生产的DHA产物的GC FAMES图。
术语“多不饱和脂肪酸”(PUFA)是指包含多于一个双键的脂肪酸。这样的PUFA是本领域的技术人员所熟知的。如本文所使用的,PUFA衍生物是呈甘油一酯、甘油二酯或甘油三酯,酯,磷脂,酰胺,内酯或盐的形式的PUFA。优选甘油三酯和酯。更优选酯。酯通常为烷基酯,优选地C1-C6烷基酯,更优选地C1-C4烷基酯。酯的实例包括甲酯和乙酯。乙酯是最优选的。
如本文所使用的,术语“PUFA产物”是指包含一种或多种多不饱和脂肪酸(PUFA)和/或其衍生物的产物,其通常具有营养或药物的重要性。通常,PUFA产物为单一的PUFA或其衍生物。可选择地,PUFA产物为两种或更多种PUFA或其衍生物的混合物,例如两种。
如本文所使用的,术语“区”是指多个相连的色谱柱,该色谱柱包含作为洗脱液的含水醇,且具有用于进料混合物流的一个或多个注入点、用于水和/或醇的一个或多个注入点、提余液离开流(通过其可从所述多个相连的色谱柱中收集液体)及抽取液离开流(通过其可从所述多个相连的色谱柱中收集液体)。通常,每一个区仅具有一个用于进料混合物的注入点。在一个实施方式中,每一个区仅具有一个用于含水醇洗脱液的注入点。在另一个实施方式中,每一个区具有用于水和/或醇的两个或更多个注入点。
术语“提余液”是本领域的技术人员所熟知的。在实际的和模拟的移动床色谱的背景中,它是指比固体吸附剂相更快地与液体洗脱液相一起移动的组分的流。因此,与进料流相比,提余液流通常富含较强极性的组分且不含较弱极性的组分。
术语“抽取液”是本领域的技术人员所熟知的。在实际的和模拟的移动床色谱的背景中,它是指比液体洗脱液相更快地与固体吸附剂相一起移动的组分的流。因此,与进料流相比,抽取液流通常富含较弱极性的组分且不含较强极性的组分。
如本文所使用的,在应用于相同设备中的柱时,术语“不相邻”是指由一个或多个柱,优选地3个或更多个柱,更优选地5个或更多个,最优选地约5个柱隔开的柱。
因此,当(a)从第一区中的柱收集包含PUFA产物连同较强极性的组分的提余液流并将其引入到第二区中的不相邻的柱时,从第一区收集的提余液流为用于第二区的进料混合物。当(b)从第二区的柱收集包含PUFA产物连同较弱极性的组分的抽取液流并将其引入到第一区中的不相邻的柱时,从第二区收集的抽取液流为用于第一区的进料混合物。
通常,PUFA产物包含至少一种ω-3或ω-6PUFA,优选地至少一种ω-3PUFA。ω-3PUFA的实例包括α-亚麻酸(ALA)、十八碳四烯酸(SDA)、二十碳三烯酸(ETE)、二十碳四烯酸(ETA)、二十碳五烯酸(EPA)、二十二碳五烯酸(DPA)和二十二碳六烯酸(DHA)。优选SDA、EPA、DPA和DHA。更优选EPA和DHA。ω-6PUFA的实例包括亚油酸(LA)、γ-亚麻酸(GLA)、二十碳二烯酸、双高-γ-亚麻酸(DGLA)、花生四烯酸(ARA)、二十二碳二烯酸、肾上腺酸和二十二碳五烯(ω-6)酸。优选LA、ARA、GLA和DGLA。
在一个实施方式中,PUFA产物为EPA和/或EPA乙酯(EE)。
在另一个实施方式中,PUFA产物为DHA和/或EPA乙酯(EE)。
在又一个实施方式中,PUFA产物为EPA和DHA和/或EPA EE和DHAEE的混合物。
用于通过本发明的方法分离的合适的进料混合物可从以下得到:天然来源,包括植物油和动物油以及植物脂肪和动物脂肪;及合成来源,包括从转基因植物、动物及微生物(包括酵母)得到的油。实例包括鱼油、海藻和微藻油及植物油,例如玻璃苣油、蓝蓟属(Echium)油及月见草油。在一个实施方式中,进料混合物为鱼油。在另一个实施方式中,进料混合物为海藻油。当期望的PUFA产物为EPA和/或DHA时,海藻油是特别合适的。当期望的PUFA产物为GLA时,转基因红花油是特别合适的。当期望的PUFA产物为EPA时,转基因酵母是特别合适的。
在通过本发明的方法分镏之前,进料混合物可经历化学处理。例如,其可经历甘油酯酯交换或甘油酯水解,在某些情况下跟随着选择性的过程比如结晶、分子蒸馏、尿素分镏(urea fractionation)、用硝酸银或其它金属盐溶液提取、碘内酯化或超临界流体分离。
进料混合物通常包含PUFA产物和至少一种较强极性的组分及至少一种较弱极性的组分。与PUFA产物相比,较弱极性的组分对于用于本发明的方法的吸附剂具有更强的吸附。在操作的过程中,这样的较弱极性的组分通常优先于液体洗脱液相与固体吸附剂相一起移动。与PUFA产物相比,较强极性的组分对于用于本发明的方法的吸附剂具有较弱的吸附。在操作的过程中,这样的较强极性的组分通常优先于固体吸附剂相与液体洗脱液相一起移动。通常,较强极性的组分将被分成提余液流,且较弱极性的组分将被分成抽取液流。
较强极性的组分和较弱极性的组分的实例包括:(1)存在于天然油中的其它化合物(例如,深海鱼油或植物油);(2)在存储、精制和在先的浓缩步骤的过程中形成的副产物;及(3)来自于之前的浓缩或纯化步骤过程中所使用的溶剂或试剂的污染物。
(1)的实例包括其它不想要的PUFA;饱和脂肪酸;甾醇类,例如胆甾醇;维生素;及环境污染物,比如多氯联苯(PCB)、多芳香烃(PAH)杀虫剂、氯化杀虫剂、二噁英及重金属。PCB、PAH、二噁英及氯化杀虫剂都是高度非极性组分。
(2)的实例包括来自PUFA产物的同分异构体及氧化产物或分解产物,例如脂肪酸或其衍生物的自行氧化的聚合产物。
(3)的实例包括为从进料混合物中除去饱和或单饱和的脂肪酸而可能添加的尿素。
优选地,进料混合物为含PUFA的深海鱼油,更优选地为包含EPA和/或DHA的深海鱼油。
用于通过本发明的方法制备浓缩的EPA的典型的进料混合物包含50-75%的EPA、0-10%的DHA及含其它必需ω-3和ω-6脂肪酸的其它组分。
用于通过本发明的方法制备浓缩的EPA的优选的进料混合物包括55%的EPA、5%的DHA及含其它必需ω-3和ω-6脂肪酸的其它组分。DHA的极性要小于EPA。
用于通过本发明的方法制备浓缩的DHA的典型的进料混合物包括50-75%的DHA、0-10%的EPA及含其它必需ω-3和ω-6脂肪酸的其它组分。
用于通过本发明的方法制备浓缩的DHA的优选的进料混合物包括75%的DHA、5%的EPA及含其它必需ω-3和ω-6脂肪酸的其它组分。EPA的极性要大于DHA。
用于通过本发明的方法制备EPA和DHA的浓缩混合物的典型的进料混合物包括大于33%的EPA及大于22%的DHA。
本发明的方法需要在所述色谱设备中的多个区。通常,使用两个或更多个区。未具体限定区的数目,但通常为2-5个区。优选地,有2个或3个区,更优选地,有2个区。
通常,在用于本发明的方法的设备的每一个区中分离的组分具有不同的极性。
通常,a)存在于每一个区中的含水醇洗脱液具有不同的水:醇比;和/
或
(b)调节经由每一个区中的抽取液流和提余液流所收集的液体再循
环回到相同的区的速度,使得在每一个区中PUFA产物可与进料混合
物的不同组分分离。
当用于本发明的方法的设备具有两个区时,本发明通常提供用于从进料混合物中回收多不饱和脂肪酸(PUFA)产物的色谱分离方法,方法包括将进料混合物引入到模拟的或实际的移动床色谱设备中,该色谱设备具有多个相连的色谱柱,所述色谱柱包含作为洗脱液的含水醇,其中设备具有第一区和第二区,每一个区具有抽取液流和提余液流,从抽取液流和提余液流可收集来自所述多个相连的色谱柱的液体,且其中(a)从第一区中的柱中收集包含PUFA产物连同较强极性的组分的提余液流并将其引入到第二区中的不相邻的柱中,和/或(b)从第二区中的柱中收集包含PUFA产物连同较弱极性的组分的抽取液流并将其引入到第一区中的不相邻的柱中,在每一个区中使PUFA产物与进料混合物的不同组分分离。
通常,当用于本发明的方法的设备包含两个区时,第一区中的洗脱液比第二区中的洗脱液包含更多的醇,且其中相对于洗脱液在系统中的流动,第二区在第一区的下游。因此,系统中的洗脱液通常从第一区移动到第二区。相反地,固体吸附剂相通常从第二区移动到第一区。通常,两个区并不重叠,即,没有同时在两个区中的色谱柱。
在本发明的另外的实施方式中,设备具有第一区、第二区和第三区。存在于第一、第二和第三区中的含水醇洗脱液的水:醇比通常是不同的。正如对本领域的技术人员来说将是明显的一样,这具有以下结论:具有不同极性的杂质可在每一个区中被除去。
优选地,当设备具有三个区时,第一区中的洗脱液比第二区和第三区中的洗脱液包含更多的醇,且相对于洗脱液在系统中的流动,第一区在第二区和第三区的上游。通常,第二区中的洗脱液比第三区中的洗脱液包含更多的醇,且相对于洗脱液在系统中的流动,第二区在第三区的上游。通常,在第一区中,使所述PUFA产物与极性不如PUFA产物的进料混合物的组分分离。通常,在第二区中,使所述PUFA产物与极性不如PUFA产物但极性比在第一区中所分离的组分强的进料混合物的组分分离。通常,在第三区中,使所述PUFA产物与极性比PUFA产物强的进料混合物的组分分离。
在另一个实施方式中,在第一区中,使所述PUFA产物与极性不如PUFA产物的进料混合物的组分分离,在第二区中,使所述PUFA产物与极性比PUFA产物强的进料混合物的组分分离,且在第三区中,使所述PUFA产物与极性比PUFA产物强且极性还比第二区中所分离的组分强的进料混合物的组分分离。
具有三个区的这样的设置将适合用于使EPA和DHA与包含极性不如DHA和EPA的杂质且还包含极性比EPA强的杂质的混合物分离。在第一区中,除去作为抽取液流的极性不如DHA和EPA的组分,且收集包含DHA、EPA和极性比EPA强的组分的提余液流并将其引入到第二区。在第二区中,除去作为抽取液流的DHA,且收集包含EPA和极性比EPA强的组分的提余液流并将其引入到第三区。在第三区中,除去作为提余液流的极性比EPA强的组分且收集作为抽取液流的纯化的EPA。在这个实施方式中,纯化的EPA为纯化的PUFA产物。这样的设置具有以下优势:还可回收第二PUFA。在这种情况下,第二PUFA为作为抽取液流从第二区收集的DHA。
通常,除了所述PUFA产物外,在本发明的色谱分离方法中还收集额外的第二PUFA产物。优选地,PUFA产物为EPA且额外的第二PUFA产物为DHA。
在本发明的另一个实施方式中,设备被配置成收集PUFA产物,所述PUFA产物为EPA和DHA的浓缩混合物。因此,使用包含EPA、DHA、极性比EPA和DHA强的组分及极性不如EPA和DHA的组分的进料混合物。在第一区中,除去极性不如EPA和DHA的材料。在第二区中,除去极性比EPA和DHA强的材料,且收集作为PUFA产物的EPA和DHA的浓缩混合物。
任意已知的模拟的或实际的移动床色谱设备都可用于本发明的方法的目的,只要设备配置有多个区尤其是两个区,这是本发明的方法的特征。只要根据本发明的方法配置,在US 2,985,589、US 3,696,107、US 3,706,812、US 3,761,533、FR-A-2103302、FR-A-2651148、FR-A-2651149、US 6,979,402、US 5,069,883和US 4,764,276中所描述的那些设备都可使用。
未具体限定设备中所使用的柱的数目。技术人员将能够容易地确定要使用的柱的合适数目。柱的数目通常为8或更多,优选地15或更多。在更优选的实施方式中,使用15个或16个柱。在另一个更优选的实施方式中,使用19个或20个柱。在其它更优选的实施方式中,使用30个或更多个柱。通常,不多于50个柱,优选地不多于40个。
每一个区通常由总数目的大约相等份额的柱构成。因此,在设备配置有两个区的情况下,系统中的每一个区通常由大约一半的总数目的色谱柱构成。因此,第一区通常包含4个或更多个,优选地8个或更多个,更优选地约8个柱。第二区通常包含4个或更多个,优选地7个或更多个,更优选地约7个或8个柱。
未具体限定用于设备的柱的尺寸,且所述尺寸将取决于待纯化的进料混合物的体积。技术人员将能够容易地确定要使用的合适尺寸的柱。每一个柱的直径通常在10mm和500mm之间,优选地在25mm和250mm之间,更优选地在50mm和100mm之间,且最优选地在70mm和80mm之间。每一个柱的长度通常在10cm和200cm之间,优选地在25cm和150cm之间,更优选地在70cm和110cm之间,且最优选地在80cm和100cm之间。
每一个区中的柱通常具有相同的尺寸,但对于特定的应用,可具有不同的尺寸。
柱中的流速受到一系列柱的两端之间的最大压力的限制且将取决于柱的尺寸和固相(solid phase)的粒径。本领域的技术人员将能够容易地确立用于每一个柱尺寸的流速,以保证充分解吸。较大直径的柱通常将需要更高的流量,以维持线性流过柱。
对于上文所列出的典型的柱尺寸,且对于具有两个区的设备,洗脱液进入第一区的流速通常为1-4.5L/min,优选地1.5-2.5L/min。通常,来自第一区的抽取液的流速为0.1-2.5L/min,优选地0.5-2.25L/min。在来自第一区的一部分抽取液再循环回到第一区的实施方式中,再循环的流速通常为0.7-1.4L/min,优选地约1L/min。通常,来自第一区的提余液的流速为0.2-2.5L/min,优选地0.3-2.0L/min。在来自第一区的一部分提余液再循环回到第一区的实施方式中,再循环的流速通常为0.3-1.0L/min,优选地约0.5L/min。通常,进料混合物引入第一区中的流速为5-150mL/min,优选地10-100mL/min,更优选地20-60mL/min。
对于上文所列出的典型的柱尺寸,且对于具有两个区的设备,洗脱液进入第二区的流速通常为1-4L/min,优选地1.5-3.5L/min。通常,来自第二区的抽取液的流速为0.5-2L/min,优选地0.7-1.9L/min。在来自第二区的一部分抽取液再循环回到第二区的实施方式中,再循环的流速通常为0.6-1.4L/min,优选地0.7-1.1L/min,更优选地约0.9L/min。通常,来自第二区的提余液的流速为0.5-2.5L/min,优选地0.7-1.8L/min,更优选地约1.4L/min。
正如技术人员将理解的,提及经由各种抽取液流和提余液流收集或除去液体的速度是指在时间量中除去的液体的体积,通常以升/分钟计。类似地,提及液体再循环回到相同区中,通常再循环至相同的区中的相邻柱中的速度是指在时间量中再循环的液体的体积,通常以升/分钟计。
通常,使来自第一区的抽取液流、来自第一区的提余液流、来自第二区的抽取液流及来自第二区的提余液流中的一个或多个中的部分再循环回到相同的区,通常回到相同的区中的相邻柱中。
这种再循环不同于抽取液流或提余液流供给到另一个区中的不相邻的柱中。而是,再循环涉及自区中离开的抽取液流或提余液流的一部分回到相同的区,通常回到相同的区中的相邻柱中。
使经由来自第一或第二区的抽取液流或提余液流所收集的液体再循环回到相同的区的速度为使经由该流收集的液体供给回到相同的区,通常进入相同的区中的相邻的柱中的速度。参考图9,可以看出这一点。抽取液在第一区中的再循环速度为使从柱2的底部所收集的抽取液供给到柱3的顶部的速度,即液体进入柱3的顶部的流速。抽取液在第二区中的再循环速度为使在柱10的底部所收集的抽取液供给到柱11的顶部的速度,即液体进入柱11的顶部的流速。
抽取液流和/或提余液流的再循环通常受到以下的影响:使经由该流所收集液体进入容器,且然后将来自容器的该液体的量泵送回到相同的区中。在这种情况下,经由特定的抽取液流或提余液流所收集的液体再循环(通常回到相同的区中的相邻柱中)的速度为将液体泵送出容器回到相同的区,通常进入相邻的柱的速度。
如技术人员将理解的,经由洗脱液和原料流被引入到区中的液体的量与从区中除去且再循环回到相同的区的液体的量相平衡。因此,参考图9,对于抽取液流,洗脱液(解吸剂)进入第一或第二区(D)的流速等于经由来自该区的抽取液流所收集的液体在容器(E1/E2)中积累的速度加上使抽取液再循环回到相同的区(D-E1/D-E2)的速度。对于区中的提余液流,使抽取液再循环回到区(D-E1/D-E2)的速度加上将原料引入到区(F/Rl)的速度等于经由来自该区的提余液流所收集的液体在容器(R1/R2)中积累的速度加上使提余液再循环回到相同的区(D+F-El-R1/D+R1-E2-R2)的速度。
从来自区的特定的抽取液流或提余液流所收集的液体在容器中积累的速度还可当做从该区除去该抽取液流或提余液流的净速度。
通常,经由从第一区离开的抽取液流所收集的液体再循环回到第一区的速度与经由从第二区离开的抽取液流所收集的液体再循环回到第二区的速度不同,和/或经由从第一区离开的提余液流所收集的液体再循环回到第一区的速度与经由从第二区离开的提余液流所收集的液体再循环回到第二区的速度不同。
改变经由每一个区中的抽取液流和/或提余液流所收集的液体再循环回到相同的区的速度具有改变存在于其它抽取液流和提余液流中的较强极性的组分和较弱极性的组分的量的作用。因此,例如,较低的抽取液再循环速度导致该区中更少的较弱极性的组分被携带直至该区中的提余液流中。较高的抽取液再循环速度导致该区中更多的较弱极性的组分被携带直至该区中的提余液流中。例如,这可在如图6所示的本发明的特定的实施方式中看到。经由第一区中的抽取液流所收集的液体再循环回到相同的区(D-El)的速度将影响任意的组分A被携带直至第一区(R1)中的提余液流的程度。
通常,经由来自第一区的抽取液流所收集的液体再循环回到第一区的速度要比经由来自第二区的抽取液流收集的液体再循环回到第二区的速度快。优选地,从第一区中的柱中收集包含PUFA产物连同较强极性的组分的提余液流并将其引入到第二区中的不相邻的柱中,且经由来自第一区的抽取液流所收集的液体再循环回到第一区的速度要比经由来自第二区的抽取液流所收集的液体再循环回到第二区的速度快。
可选择地,经由来自所述第一区的抽取液流所收集的液体再循环回到第一区的速度要比经由来自第二区的抽取液流所收集的液体再循环回到第二区的速度慢。
通常,经由来自第二区的提余液流所收集的液体再循环回到第二区的速度要比经由来自第一区的提余液流所收集的液体再循环回到第一区的速度快。优选地,从第二区中的柱中收集包含PUFA产物连同较弱极性的组分的抽取液流并将其引入到第一区中的不相邻的柱中,且经由来自第二区的提余液流所收集的液体再循环回到第二区的速度要比经由来自第一区的提余液流所收集的液体再循环回到第一区的速度快。
可选择地,经由来自所述第二区的提余液流所收集的液体再循环回到第二区的速度要比经由来自第一区的提余液流所收集的液体再循环回到第一区的速度慢。
未具体限定步长时间(step time)(即在改变进料混合物和洗脱液的注入点与所收集的部分的多个离开点之间的时间),且步长时间将取决于所用的柱的数目和尺寸及通过设备的流速。技术人员将能够容易地确定用于本发明的方法的合适的步长时间。步长时间通常为100-1000秒,优选地200-800秒,更优选地约250-约750秒。在一些实施方式中,100-400秒,优选地200-300秒,更优选地约250秒的步长时间是合适的。在其它实施方式中,600-900秒,优选地700-800秒,更优选地约750秒的步长时间是合适的。
在本发明的方法中,实际的移动床色谱是优选的。
本领域已知的用于实际的和模拟的移动床系统的常规吸附剂可用于本发明的方法中。每一个色谱柱可包含相同的或不同的吸附剂。通常,每一个柱包含相同的吸附剂。这样的常用材料的实例为聚合物珠,优选的填充有DVB(二乙烯基苯)的聚苯乙烯;及硅胶,优选地用C8或C18,尤其是C18链烷烃反相键合的硅胶。优选C18键合反相硅胶。用于本发明的方法的吸附剂优选地为非极性的。
吸附剂固定相材料的形状可以为例如球形或非球形珠,优选地为基本上球形的珠。这样的珠通常具有40-500微米,优选地100-500微米,更优选地250-500微米,甚至更优选地250-400微米,最优选地250-350微米的直径。这些优选的粒径稍微大于以往用于模拟和实际的移动床方法的珠的粒径。使用较大的颗粒能够使较低压力的洗脱液用于系统中。反过来,这就成本节约、设备的效率和寿命而言具有优势。意外地发现,大粒径的吸附剂珠可用于本发明的方法中(具有它们的相关优势),而不会损失溶解性。
吸附剂通常具有10-50nm,优选地15-45nm,更优选地20-40nm,最优选地25-35nm的孔径大小。
用于本发明的方法的洗脱液为含水醇。含水醇通常包含水和一种或更多种短链醇。短链醇通常具有1-6个碳原子。合适的醇的实例包括甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、仲丁醇及叔丁醇。优选甲醇和乙醇。更优选甲醇。
通常,洗脱液并非处于超临界状态。通常,洗脱液为液体。
通常,洗脱液在整个设备中的平均水:醇比为0.1:99.9-9:91体积份,优选地0.25:99.75-7:93体积份,更优选地0.5:99.5-6:94体积份。
每一个区中的洗脱液的洗脱能力通常是不同的。优选地,第一区中的洗脱液的洗脱能力大于第二区和后续区中的洗脱液的洗脱能力。具体地,这可通过改变每一个区中的水和醇的相对量来实现。与水相比,醇通常是更有力的解吸剂。因此,第一区中的洗脱液中的醇的量通常大于第二区和后续区中的洗脱液中的醇的量。
在存在于每一个区中的含水醇具有不同的水醇含量的实施方式中,第一区中的洗脱液的水:醇比通常为0:100-5:95体积份,优选地0.1:99.9-2.5:97.5体积份,更优选地0.25:99.75-2:98体积份,且最优选地0.5:99.5-1.5:98.5体积份。在这些实施方式中,第二区中的洗脱液的水:醇比通常为3:97-7:93体积份,优选地4:96-6:94体积份,更优选地4.5:95.5-5.5:94.5体积份。
在存在于每一个区中的含水醇具有不同的水醇含量的特别优选的实施方式中,第一区中的洗脱液的水:醇比为0.5:99.5-1.5:98.5体积份,且第二区中的洗脱液的水:醇比为4.5:95:5-5.5:94.5体积份。
在调节经由每一个区中的抽取液流和提余液流所收集的液体再循环回到相同的区的速度,使得在每一个区中PUFA产物可以与进料混合物的不同组分分离的实施方式中,每一个区中的洗脱液的水:醇比可以是相同的或不同的。通常,每一个区中的洗脱液的水:醇比为0.5:99.5-5.5:94.5体积份。在一个实施方式中,第一区中的洗脱液的水:醇比低于第二区中的洗脱液的水:醇比。在另一个实施方式中,第一区中的洗脱液的水:醇比高于第二区中的洗脱液的水:醇比。在另一个实施方式中,第一区中的洗脱液的水:醇比与第二区中的洗脱液的水:醇比相同。
将理解,上文所提及的每一个区中的水和醇的比为整个区内的平均比。
通常,通过将水和/或醇引入到区中的一个或多个柱中来控制每一个区中的洗脱液的水:醇比。因此,例如,为了实现第一区的水:醇比低于第二区中的水:醇比,通常比第二区更缓慢地将水引入第一区中。在一些实施方式中,可在每一个区中的不同点处引入基本上纯的醇和基本上纯的水。这两个流的相对流速将决定整个区的整体溶剂分布。在其它实施方式中,可在每一个区中的不同点处引入不同的醇/水混合物。那将涉及将两种或更多种不同的醇/水混合物引入到区中,每一种醇/水混合物具有不同的醇:水比。在这个实施方式中的醇/水混合物的相对流速和相对浓度将决定整个区的整体溶剂分布。在每一个区中的洗脱液的水:醇比相同的其它实施方式中,可将相同的醇/水混合物引入到每一个区。
通常,本发明的方法是在15-55℃,优选地在20-40℃下,更优选地在约30℃下进行。因此,方法通常是在室温下进行,但可以在高温下进行。
本发明的方法涉及将进料流引入到一个区(例如第一区),收集富含PUFA产物的第一中间流并将第一中间流引入到另一个区(例如第二区)。因此,当设备具有两个区时,方法涉及(a)从第一区收集第一中间流且将其引入到第二区,或(b)从第二区收集第一中间流并将其引入到第一区。以这种方式,可在单一方法中使PUFA产物与较强极性的组分和较弱极性的组分分离。
(a)从第一区中的柱收集包含PUFA产物连同较强极性的组分的提余液流并将其引入到第二区中的不相邻的柱,或(b)从第二区中的柱收集包含PUFA产物连同较弱极性的组分的抽取液流并将其引入到第一区中的不相邻的柱中。
在特别优选的实施方式中,设备具有两个区,且本发明的方法包括:
(i)将进料混合物引入到第一区,且除去PUFA产物富集的第一提余液流和PUFA产物贫化的第一抽取液流,及
(ii)将第一提余液流引入到所述第二区,除去PUFA产物贫化的第二提余液流,且收集第二抽取液流以得到PUFA产物。
该特别优选的实施方式适合用于从进料混合物中纯化EPA。
该特别优选的实施方式阐述在图2中。将包含PUFA产物(B)和较强极性的组分(C)及较弱极性的组分(A)的进料混合物F引入到第一区。在第一区中,较弱极性的组分(A)作为抽取液流E1除去。PUFA产物(B)和较强极性的组分(C)作为提余液流R1除去。然后,将提余液流R1引入到第二区。在第二区中,较强极性的组分(C)作为提余液流R2除去。收集作为抽取液流E2的PUFA产物(B)。
在图4中更为详细地描述了该实施方式。图4与图2相同,除了显示出醇吸附剂(D)和水(W)引入到每一个区中的引入点。醇吸附剂(D)和水(W)一起组成了洗脱液。(D)相通常为基本上纯的醇,但在某些实施方式中,可以为主要包含醇的醇/水混合物。(W)相通常为基本上纯的水,但某些实施方式中,可以为主要包含水的醇/水混合物,例如98%水/2%甲醇混合物。
该特别优选的实施方式的进一步阐述显示在图6中。这里没有单独的水注入点,且相反在(D)处注入含水醇吸附剂。
通过改变每一个区内的洗脱液的解吸能力,可能有助于分离成提余液流和抽取液流。这可通过在每一个区中的不同点处引入洗脱液的醇(或富含醇)组分和水(或富含水)组分来实现。因此,相对于洗脱液在系统中的流动,通常在抽取液离开点的上游引入醇且在抽取液离开点和进料引入区中的引入点之间引入水。这显示在图4中。
可选择地,可通过改变经由来自两个区的抽取液流和提余液流所收集的液体再循环回到相同的区的速度而有助于分离。
通常,在这个特别优选的实施方式中,经由来自第一区的抽取液流所收集的液体再循环回到第一区的速度要比经由来自第二区的抽取液流所收集的液体再循环回到第二区的速度快;或第一区中的洗脱液的水:醇比要比第二区中的水:醇比低。
在这个特别优选的实施方式中,相对于第一区中的洗脱液的流动,通常在将进料混合物引入到第一区中的点的下游处,除去第一区中的第一提余液流。
在这个特别优选的实施方式中,相对于第一区中的洗脱液的流动,通常在将进料混合物引入到第一区中的点的上游处,除去第一区中的第一抽取液流。
在这个特别优选的实施方式中,相对于第二区中的洗脱液的流动,通常在将第一提余液流引入到第二区中的点的下游处,除去第二区中的第二提余液流。
在这个特别优选的实施方式中,相对于第二区中的洗脱液的流动,通常在将第一提余液流引入到第二区中的点的上游处,收集第二区中的第二抽取液流。
通常在这个特别优选的实施方式中,相对于第一区中的洗脱液的流动,在除去第一抽取液流的点的上游处,将醇或含水醇引入到第一区。
通常在这个特别优选的实施方式中,当将水引入第一区时,相对于第一区中的洗脱液的流动,在引入进料混合物的点的上游但在除去第一抽取液流的点的下游处,将水引入到第一区。
通常在这个特别优选的实施方式中,相对于第二区中的洗脱液的流动,在除去第二抽取液流的点的上游处,将醇或含水醇引入到第二区。
通常在这个特别优选的实施方式中,当将水引入第二区时,相对于第二区中的洗脱液的流动,在引入第一提余液流的点的上游但在除去第二抽取液流的点的下游处,将水引入到第二区。
在另一个特别优选的实施方式中,设备具有两个区,且方法包括:
(i)将进料混合物引入到第二区,且除去PUFA产物贫化的第一提余液流和PUFA产物富集的第一抽取液流,及
(ii)将第一抽取液流引入到第一区,除去PUFA产物贫化的第二抽取液流且收集第二提余液流以得到PUFA产物。
这个特别优选的实施方式适合用于从进料混合物中纯化DHA。
这个实施方式阐述在图3中。将包含PUFA产物(B)和较强极性的组分(C)及较弱极性的组分(A)的进料混合物F引入到第二区。在第二区中,较强极性的组分(C)作为提余液流R1除去。收集作为抽取液流E1的PUFA产物(B)和较弱极性的组分(A)。然后,将抽取液流E1引入到第一区。在第一区中,较弱极性的组分(A)作为抽取液流E2除去。收集作为提余液流R2的PUFA产物(B)。
在图5中更为详细地描述了该实施方式。图5与图3相同,除了显示了引入到每一个区中的短链醇吸附剂(D)和水(W)的引入点。如上,(D)相通常为基本上纯的醇,但在某些实施方式中,可以为主要包含醇的醇/水混合物。(W)相通常为基本上纯的水,但某些实施方式中,可以为主要包含水的醇/水混合物,例如98%水/2%甲醇混合物。
该特别优选的实施方式的进一步阐述显示在图7中。这里没有单独的水注入点,且相反在(D)处注入含水醇吸附剂。
通常在这个实施方式中,经由来自第二区的提余液流所收集的液体再引入到第二区的速度要比经由来自第一区的提余液流所收集的液体再引入到第一区的速度快;或第一区中的洗脱液的水:醇比低于第二区中的洗脱液的水:醇比。
在这个第二特别优选的实施方式中,相对于第二区中的洗脱液的流动,通常在将进料混合物引入到第二区的点的下游处,除去第二区中的第一提余液流。
在这个第二特别优选的实施方式中,相对于第二区中的洗脱液的流动,通常在将进料混合物引入到第二区的点的上游处,收集第二区中的第一抽取液流。
在这个第二特别优选的实施方式中,相对于第一区中的洗脱液的流动,通常在将第一抽取液流引入到第一区的点的下游处,收集第一区中的第二提余液流。
在这个第二特别优选的实施方式中,相对于第一区中的洗脱液的流动,通常在将第一抽取液流引入到第一区的点的上游处,除去第一区中的第二抽取液流。
通常在这个第二特别优选的实施方式中,相对于第二区中的洗脱液的流动,在除去第一抽取液流的点的上游处,将醇或含水醇引入到第二区。
通常在这个第二特别优选的实施方式中,当将水引入第二区时,相对于第二区中的洗脱液的流动,在引入进料混合物的点的上游但在除去第一抽取液流的点的下游处,将水引入到第二区。
通常在这个第二特别优选的实施方式中,相对于第一区中的洗脱液的流动,在除去第二抽取液流的点的上游处,将醇或含水醇引入到第一区。
通常在这个第二特别优选的实施方式中,当将水引入第一区时,相对于第一区中的洗脱液的流动,在引入第一提余液流的点的上游但在除去第二抽取液流的点的下游处,将水引入到第一区。
在本发明的优选的实施方式中,模拟的或实际的移动床色谱设备由15个色谱柱构成。这些柱被称为柱1到15。使15个柱串联布置,使得柱1的底部连接到柱2的顶部,柱2的底部连接到柱3的顶部等。这可任选地是经由保持容器,且再循环流进入下一个柱。洗脱液穿过系统的流动是从柱1到柱2到柱3等。吸附剂穿过系统的流动是从柱15到柱14到柱13等。
在本发明的一些实施方式中,(a)将醇引入到柱1中,和/或(b)将醇引入到柱9中,和/或(c)将水引入到柱4中,和/或(d)将水引入到柱12中。
在本发明的一些实施方式中,将含水醇引入到柱1和/或柱9中。
在最优选的实施方式中,第一区通常由8个相邻柱(柱1到柱8)构成,所述柱如上所述地连接。在这个最优选的实施方式中,第二区通常由7个柱(柱9到柱15)构成,所述柱如上所述地连接。为了避免疑问,第一区中的柱8的底部连接到第二区中的柱9的顶部。
最优选的实施方式阐述在图8中。将包含PUFA产物(B)和较强极性的组分(C)及较弱极性的组分(A)的进料混合物F引入到第一区中的柱5的顶部。将醇解吸剂引入到第一区中的柱1的顶部。将水引入到第一区中的柱4的顶部。在第一区中,较弱极性的组分(A)作为抽取液流E1从柱2的底部除去。PUFA产物(B)和较强极性的组分(C)作为提余液流R1从柱7的底部除去。然后,将提余液流R1从柱13的顶部引入到第二区。将醇解吸剂引入到第二区中的柱9的顶部。将水引入到第二区中的柱12的顶部。在第二区中,较强极性的组分(C)作为提余液流R2从柱15的底部除去。在柱10的底部,收集作为抽取液流E2的PUFA产物(B)。
在这个最优选的实施方式中,通常将醇引入到第一区中的柱1的顶部。
在这个最优选的实施方式中,通常将水引入到第一区中的柱4的顶部。
在这个最优选的实施方式中,通常将醇引入到第二区中的柱9的顶部。
在这个最优选的实施方式中,通常将醇引入到第二区中的柱12的顶部。
在这个最优选的实施方式中,通常将进料流引入到第一区中的柱5的顶部。
在这个最优选的实施方式中,通常从第一区中的柱7的底部收集第一提余液流并将其引入到第二区中的柱13的顶部。在被引入到柱13之前,第一提余液流可任选地被收集在容器中。
在这个最优选的实施方式中,通常从第一区中的柱2的底部除去第一抽取液流。第一抽取液流可任选地被收集在容器中且再引入到第一区中的柱3的顶部。在这个最优选的实施方式中,通常从第二区的柱15的底部除去第二提余液流。
在这个最优选的实施方式中,通常从第二区的柱10的底部收集第二抽取液流。这个第二抽取液流通常包含纯化的PUFA产物。第二抽取液流可任选地被收集在容器中且再次引入到第二区的柱11的顶部。
通常,在这个最优选的实施方式中,第一区中的水:醇比要比第二区中的水:醇比低。
另一个最优选的实施方式阐述在图9中。将包含PUFA产物(B)和较强极性的组分(C)及较弱极性的组分(A)的进料混合物F引入到第一区中的柱5的顶部。将含水醇解吸剂引入到第一区中的柱1的顶部。在第一区中,较弱极性的组分(A)作为抽取液流E1从柱2的底部除去。PUFA产物(B)和较强极性的组分(C)作为提余液流R1从柱7的底部除去。然后,将提余液流R1从柱12的顶部引入到第二区。将含水醇解吸剂引入到第二区中的柱9的顶部。在第二区中,较强极性的组分(C)作为提余液流R2从柱14的底部除去。在柱10的底部,收集作为抽取液流E2的PUFA产物(B)。
在这个最优选的实施方式中,通常将含水醇引入到第一区中的柱1的顶部。
在这个最优选的实施方式中,通常将含水醇引入到第二区中的柱9的顶部。
在这个最优选的实施方式中,通常将进料流引入到第一区中的柱5的顶部。
在这个最优选的实施方式中,通常从第一区中的柱7的底部收集第一提余液流并将其引入到第二区中的柱12的顶部。在被引入到柱12之前,第一提余液流可任选地被收集在容器中。
在这个最优选的实施方式中,通常从第一区中的柱2的底部除去第一抽取液流。第一抽取液流可任选地被收集在容器中且将一部分再次引入到第一区中的柱3的顶部。经由来自第一区的抽取液流所收集的液体再循环回到第一区的速度为将液体从该容器泵送到柱3的顶部的速度。
在这个最优选的实施方式中,通常从第二区的柱14的底部除去第二提余液流。
在这个最优选的实施方式中,通常从第二区的柱10的底部收集第二抽取液流。这个第二抽取液流通常包含纯化的PUFA产物。第二抽取液流可任选地被收集在容器中且将一部分再次引入到第二区的柱11的顶部。经由来自第二区的抽取液流所收集的液体再循环回到第二区的速度为将液体从该容器泵送到柱11的顶部的速度。
在这个最优选的实施方式中,经由来自第一区的抽取液流所收集的液体再循环回到第一区的速度通常要比经由来自第二区的抽取液流所收集的液体再循环回到第二区的速度快。
在这个最优选的实施方式中,含水醇洗脱液在每一个区中基本上是相同的。
在本发明的另一个优选的实施方式中,模拟的或实际的移动床色谱设备由19个色谱柱构成。这些柱被称为柱1到19。使这15个柱串联布置,使得柱1的底部连接到柱2的顶部,柱2的底部连接到柱3的顶部等。洗脱液穿过系统的流动是从柱1到柱2到柱3等。吸附剂通过系统的流动是从柱19到柱18到柱17等。
在这个实施方式中,第一区通常由10个相邻柱(柱1到柱10)构成,所述柱如上所述地连接。第二区通常由8个柱(柱11到柱19)构成,所述柱如上所述地连接。
这个进一步优选的实施方式阐述在图10中。将包含PUFA产物(B)和较强极性的组分(C)及较弱极性的组分(A和A')的进料混合物F引入到第一区中的柱7的顶部。将包含100%醇的第一吸附剂(D1)引入到第一区中的柱1的顶部。将包含水/醇混合物(优选地2%甲醇和98%水)的第二吸附剂(D2)引入到第一区中的柱5的顶部。在第一区中,分别从柱1和柱4的底部除去作为抽取液流E1'和E1的较弱极性的组分(A')和(A)。PUFA产物(B)和较强极性的组分(C)作为提余液流R1从柱10的底部除去。然后,将提余液流R1从柱17的顶部引入到第二区。将包含水/醇混合物(优选地2%甲醇和98%水)的第二吸附剂(D2)引入到第二区中的柱11的顶部。在第二区中,较强极性的组分(C)作为提余液流R2从柱19的底部除去。在柱14的底部,收集作为抽取液流E2的PUFA产物(B)。
在这个优选的实施方式中,通常将醇引入到第一区中的柱1的顶部。
在这个优选的实施方式中,通常将2%MeOH/98%水混合物引入到第一区中的柱5的顶部。
在这个优选的实施方式中,通常将2%MeOH/98%水混合物引入到第二区中的柱11的顶部。
在这个优选的实施方式中,通常将进料流引入到第一区中的柱7的顶部。
在这个优选的实施方式中,通常从第一区中的柱10的底部收集第一提余液流并将其引入到第二区中的柱17的顶部。在被引入到柱17之前,第一提余液流可任选地被收集在容器中。
在这个优选的实施方式中,通常从第一区中的柱1和柱4的底部除去抽取液流。从柱4的底部收集的抽取液流可任选地被收集在容器中且再次引入到第一区中的柱5的顶部。
在这个优选的实施方式中,通常从第二区的柱19的底部除去第二提余液流。
在这个优选的实施方式中,通常从第二区的柱14的底部收集第二抽取液流。这个第二抽取液流通常包含纯化的PUFA产物。第二抽取液流可任选地被收集在容器中且再次引入到第二区的柱15的顶部。
通常,在这个最优选的实施方式中,第一区中的水:醇比要比第二区中的水:醇比低。
与用传统的色谱技术可能得到的PUFA产物相比,本发明的方法允许纯度要高得多的PUFA产物的实现。通过本发明的方法所生产的PUFA产物还具有杂质概况的特别优势,这种杂质概况完全不同于在通过已知技术所制备的油中所观察到那些杂质概况。因此,本发明还涉及包含PUFA产物的组合物,例如通过本发明的方法可得到的PUFA产物。
因此,在一个实施方式中,本发明还提供包含PUFA产物的组合物,其中PUFA产物为EPA,PUFA产物以大于93wt%的量存在,且ω-6多不饱和脂肪酸的总含量最多至0.40wt%。
如本文所使用的,组分的wt%是相对于组合物的总重量。
任选地,PUFA产物和ω-6PUFA呈它们的烷基酯的形式,通常为乙酯。优选地,EPA PUFA产物呈其乙酯的形式。
通常,在这个实施方式中,EPA PUFA产物以大于94wt%,优选地大于95wt%,更优选地大于96wt%,甚至更优选地大于97wt%,且最优选地大于98wt%的量存在。
在这个实施方式中,ω-6多不饱和脂肪酸的总含量最多至0.40wt%。因此,通常,组合物包含最多至这个量的量的ω-6多不饱和脂肪酸。通常,ω-6多不饱和脂肪酸的总含量最多至0.35wt%,优选地最多至0.3wt%,更优选地最多至0.25wt%,且最优选地最多至0.22wt%。通常,ω-6多不饱和脂肪酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个实施方式中,花生四烯酸的含量最多至0.25wt%,优选地最多至0.24wt%,更优选地最多至0.23wt%,且最优选地最多至0.22wt%。因此,通常,组合物包含最多至这些量的量的花生四烯酸。通常,花生四烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个实施方式中,ω-3多不饱和脂肪酸的总量大于97wt%,优选地大于97.5wt%,更优选地大于97.9wt%。在某些实施方式中,ω-3多不饱和脂肪酸的总量大于99wt%。
通常,在这个实施方式中,DHA的总含量最多至1wt%,优选地最多至0.6wt%,更优选地最多至0.3wt%,最优选地最多至0.2wt%。因此,通常,组合物包含最多至这些量的量的DHA。通常,DHA的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个实施方式中,DHA的总含量最多至0.2wt%,优选地最多至0.175wt%,更优选地最多至0.16wt%。因此,通常,组合物包含最多至这些量的量的DHA。通常,DHA的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个实施方式中,α-亚麻酸的总含量最多至1wt%,优选地最多至0.6wt%,更优选地最多至0.3wt%。因此,通常,组合物包含最多至这些量的量的α-亚麻酸。通常,α-亚麻酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个实施方式中,α-亚麻酸的总含量最多至0.35wt%,优选地最多至0.3wt%,更优选地最多至0.29wt%。因此,通常,组合物包含最多至这些量的量的α-亚麻酸。通常,α-亚麻酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个实施方式中,十八碳四烯酸的总含量最多至1wt%,优选地最多至0.6wt%,更优选地最多至0.3wt%。因此,通常,组合物包含最多至这些量的量的十八碳四烯酸。通常,十八碳四烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个实施方式中,十八碳四烯酸的总含量最多至0.4wt%,优选地最多至0.35wt%,更优选地最多至0.34wt%。因此,通常,组合物包含最多至这些量的量的十八碳四烯酸。
通常,十八碳四烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个实施方式中,二十碳四烯酸的总含量最多至1wt%,优选地最多至0.75wt%,更优选地最多至0.5wt%。因此,通常,组合物包含最多至这些量的量的二十碳四烯酸。通常,二十碳四烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个实施方式中,二十碳四烯酸的总含量最多至0.5wt%,优选地最多至0.475wt%,更优选地最多至0.46wt%。因此,通常,组合物包含最多至这些量的量的二十碳四烯酸。通常,二十碳四烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个实施方式中,二十二碳五烯酸的总含量最多至1wt%,优选地最多至0.6wt%,更优选地最多至0.3wt%。因此,通常,组合物包含最多至这些量的量的二十二碳五烯酸。通常,二十二碳五烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个实施方式中,二十二碳五烯酸的总含量最多至0.4wt%,优选地最多至0.35wt%,更优选地最多至0.33wt%。因此,通常,组合物包含最多至这些量的量二十二碳五烯酸。通常,二十二碳五烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
在这个实施方式中,组合物优选地包含大于96.5wt%的EPA,最多至1wt%的DHA,最多至1wt%的α-亚麻酸,最多至1wt%的十八碳四烯酸,最多至1wt%的二十碳四烯酸,最多至1wt%的二十二碳五烯酸及最多至0.25wt%的花生四烯酸。
在这个实施方式中,组合物优选地包含大于96.5wt%的EPA,最多至0.2wt%的DHA,最多至0.3wt%的α-亚麻酸,最多至0.4wt%的十八碳四烯酸,最多至0.5wt%的二十碳四烯酸,最多至0.35wt%的二十二碳五烯酸及最多至0.25wt%的花生四烯酸。
在这个实施方式中,组合物更优选地包含96.5-99wt%的EPA,最多至0.6wt%的DHA,最多至0.6wt%的α-亚麻酸,0.15-0.6wt%的十八碳四烯酸,0.1-0.75wt%的二十碳四烯酸,最多至0.6wt%的二十二碳五烯酸及最多至0.6wt%的花生四烯酸。
在这个实施方式中,组合物更优选地包含96.5-99wt%的EPA,最多至0.2wt%的DHA,最多至0.3wt%的α-亚麻酸,0.15-0.4wt%的十八碳四烯酸,0.1-0.5wt%的二十碳四烯酸,最多至0.35wt%的二十二碳五烯酸及最多至0.25wt%的花生四烯酸。
在这个实施方式中,组合物最优选地包含98-99wt%的EPA,0.1-0.3wt%的DHA,0.3-0.35wt%的十八碳四烯酸,0.1-0.3wt%的二十碳四烯酸,及0.3-0.35wt%的二十二碳五烯酸。
在这个实施方式中,组合物最优选地包含96.5-99wt%的EPA、0.1-0.5wt%的DHA,0.1-0.5wt%的十八碳四烯酸、0.1-0.5wt%的二十碳四烯酸、0.1-0.5wt%的二十二碳五烯酸及0.1-0.3wt%的花生四烯酸。
在这个实施方式中,组合物最优选地包含98-99wt%的EPA,0.1-0.2wt%的DHA,0.3-0.35wt%的十八碳四烯酸,0.1-0.2wt%的二十碳四烯酸,及0.3-0.35wt%的二十二碳五烯酸。
在这个实施方式中,组合物最优选地包含96.5-97.5wt%的EPA,0.25-0.35wt%的α-亚麻酸,0.18-0.24wt%的十八碳四烯酸,0.4-0.46wt%的二十碳四烯酸,及0.15-0.25wt%的花生四烯酸。
通常,在这个实施方式中,同分异构杂质的含量最多至1.5wt%。通常,同分异构杂质的含量最多至1wt%,优选地最多至0.5wt%,更优选地最多至0.25wt%,甚至更优选地最多至0.25wt%,且最优选地最多至0.1wt%。
在进一步的实施方式中,本发明还提供包含PUFA产物的组合物,其中PUFA产物为EPA和DHA的混合物,其中(i)EPA和DHA的总含量为80wt%或更大,(ii)EPA的含量为41-60wt%且DHA的含量为16-48wt%,且(iii)ω-3多不饱和脂肪酸的总含量为94wt%或更大和/或ω-6多不饱和脂肪酸的总含量最多至4wt%。
任选地,PUFA产物、ω-3PUFA和ω-6PUFA呈它们的烷基酯的形式,通常为乙酯。优选地,EPA/DHA PUFA产物呈其乙酯的形式。
因此,在这个另外的实施方式中,组合物通常为包含PUFA产物的组合物,其中PUFA产物为EPA和DHA的混合物,其中(i)EPA和DHA的总含量为80wt%或更大,(ii)EPA的含量为41-60wt%且DHA的含量为16-48wt%,且(iii)ω-3多不饱和脂肪酸的总含量为94wt%或更大。
可选择地,在这个另外的实施方式中,组合物为包含PUFA产物的组合物,其中PUFA产物为EPA和DHA的混合物,其中(i)EPA和DHA的总含量为80wt%或更大,(ii)EPA的含量为41-60wt%且DHA的含量为16-48wt%,且(iii)ω-6多不饱和脂肪酸的总含量最多至4wt%。
通常,在这个另外的实施方式中,EPA和DHA的总含量为82wt%或更大,优选地83wt%或更大,更优选地84wt%或更大,甚至更优选地85wt%或更大,且最优选地86wt%或更大。
通常,在这个另外的实施方式中,EPA的含量为41-60wt%,优选地45-60wt%,更优选地47-60wt%,甚至更优选地47-57wt%,且最优选地50-55wt%。
通常,在这个另外的实施方式中,DHA的含量为16-48wt%,优选地20-45wt%,更优选地25-42wt%,甚至更优选地28-38wt%,且最优选地30-35wt%。
通常,在这个另外的实施方式中,ω-3多不饱和脂肪酸的总含量为94wt%或更大,优选地95wt%或更大,更优选地96wt%或更大,且最优选地97wt%或更大。
通常,在这个另外的实施方式中,α-亚麻酸的总含量最多至0.4wt%,优选地最多至0.35wt%,更优选地最多至0.31wt%。因此,通常,组合物包含最多至这些量的量的α-亚麻酸。通常,α-亚麻酸的总含量为0.05wt%或更大,优选地0.1wt%或更大,更优选地0.2wt%或更大,且甚至优选地0.2-0.4wt%。
通常,在这个另外的实施方式中,十八碳四烯酸的总含量最多至1.9wt%,优选地最多至1.5wt%,更优选地最多至1.25wt%。因此,通常,组合物包含最多至这些量的量的十八碳四烯酸。通常,十八碳四烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个另外的实施方式中,二十碳四烯酸的总含量最多至2.0wt%,优选地最多至1.9wt%。因此,通常,组合物包含最多至这些量的量的二十碳四烯酸。通常,二十碳四烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大,更优选地1.0wt%或更大,且甚至更优选地1.0-1.9wt%。
通常,在这个另外的实施方式中,二十一碳五烯酸的总含量最多至3.0wt%,优选地最多至2.75wt%。因此,通常,组合物包含最多至这些量的量的二十一碳五烯酸。通常,二十一碳五烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大,更优选地2wt%或更大,且甚至更优选地2-2.75wt%。
通常,在这个另外的实施方式中,二十二碳五烯酸的总含量最多至6wt%,优选地最多至5.5wt%,更优选地最多至5.25wt%。因此,通常,组合物包含最多至这些量的量的二十二碳五烯酸。通常,二十二碳五烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大,更优选地4wt%或更大,且甚至更优选地4-5.25wt%。
在这个另外的实施方式中,ω-6多不饱和脂肪酸的总含量通常最多至4wt%。因此,通常,组合物包含最多至这些量的量的ω-6多不饱和脂肪酸。通常,ω-6多不饱和脂肪酸的总含量最多至3.75wt%,优选地最多至3.5wt%,更优选地最多至3.25wt%,甚至更优选地最多至3wt%,最优选地最多至2.85wt%。通常,ω-6多不饱和脂肪酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个另外的实施方式中,亚油酸的总含量最多至0.5wt%,优选地最多至0.4wt%,更优选地最多至0.25wt%。因此,通常,组合物包含最多至这些量的量的亚油酸。通常,亚油酸的总含量为0.05wt%或更大,优选地0.1wt%或更大,更优选地0.15wt%或更大,且甚至更优选地0.15-0.25wt%。
通常,在这个另外的实施方式中,γ-亚麻酸的总含量最多至0.19wt%,优选地最多至0.15wt%,更优选地最多至0.1wt%。因此,通常,组合物包含最多至这些量的量的γ-亚麻酸。通常,γ-亚麻酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个另外的实施方式中,双高-γ-亚麻酸的总含量最多至0.1wt%。因此,通常,组合物包含最多至这些量的量的双高-γ-亚麻酸。通常,双高-γ-亚麻酸的总含量为0.05wt%或更大。
通常,在这个另外的实施方式中,花生四烯酸的总含量最多至2.5wt%,优选地最多至2.25wt%,更优选地最多至2.1wt%。因此,通常,组合物包含最多至这些量的量的花生四烯酸。通常,花生四烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
通常,在这个另外的实施方式中,肾上腺酸的总含量最多至0.1wt%。因此,通常,组合物包含最多至这些量的量的肾上腺酸。通常,肾上腺酸的总含量为0.05wt%或更大。
通常,在这个另外的实施方式中,二十二碳五烯(ω-6)酸的总含量最多至0.9wt%,优选地最多至0.75wt%。更优选地最多至0.65wt%。因此,通常,组合物包含最多至这些量的量的二十二碳五烯(ω-6)酸。通常,二十二碳五烯(ω-6)酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
在这个另外的实施方式中,组合物优选地包含50-55wt%的EPA,30-35wt%的DHA,最多至0.4wt%的α-亚麻酸,最多至1.25wt%的十八碳四烯酸,最多至1.9wt%的二十碳四烯酸,最多至2.75wt%的二十一碳五烯酸,最多至5.25wt%的二十二碳五烯酸,最多至0.25wt%的亚油酸,最多至0.1wt%的γ-亚麻酸,最多至0.1wt%的双高-γ-亚麻酸,最多至2.1wt%的花生四烯酸,最多至0.1wt%的肾上腺酸及最多至0.75wt%的二十二碳五烯(ω-6)酸。
在这个另外的实施方式中,组合物更优选地包含50-55wt%的EPA,30-35wt%的DHA,0.2-0.4wt%的α-亚麻酸,最多至1.25wt%的十八碳四烯酸,1.0-1.9wt%的二十碳四烯酸,2-2.75wt%二十一碳五烯酸,4-5.25wt%的二十二碳五烯酸,0.15-0.25wt%的亚油酸,最多至0.1wt%的γ-亚麻酸,最多至0.1wt%的双高-γ-亚麻酸,最多至2.1wt%的花生四烯酸,最多至0.1wt%的肾上腺酸及最多至0.75wt%二十二碳五烯(ω-6)酸。
通常,在这个另外的实施方式中,同分异构杂质的含量最多至1.5wt%。通常,同分异构杂质的含量最多至1wt%,优选地最多至0.5wt%,更优选地最多至0.25wt%,甚至更优选地最多至0.25wt%,且最优选地最多至0.1wt%。
发明人还意外地发现可生产具有与已知的油相比环境污染物的量减少的油。因此,在另外的实施方式中,本发明还提供包含PUFA产物的组合物,如本文所定义的,其中(a)组合物中的多芳香烃的总量最多至0.89μg/kg,(b)二噁英类、呋喃类、二苯并-对-二噁英及多氯代二苯并呋喃类的总量最多至0.35pg/g,(c)多氯代联苯类的总量最多至0.0035mg/kg,和/或(d)二噁英类、呋喃类、二苯并-对-二噁英、多氯代二苯并呋喃类及二噁英样多氯代联苯类的总量最多至1pg/g。
通常,本发明提供包含PUFA产物的组合物,如本文所定义的,其中(a)组合物中的多芳香烃的总量最多至0.89μg/kg,(b)二噁英类、呋喃类、二苯并-对-二噁英及多氯代二苯并呋喃类的最多量最多至0.35pg/g,和/或(d)二噁英类、呋喃类及二噁英样多氯代联苯类的总量最多至1pg/g。
还在这个另外的实施方式中,组合物中的多芳香烃的总量最多至0.89μg/kg。因此,通常,组合物包含最多至此量的量的多芳香烃。通常,组合物中的多芳香烃的总量最多至0.85μg/kg,优选地最多至0.8μg/kg,更优选地最多至0.7μg/kg,甚至更优选地最多至0.6μg/kg,还更优选地最多至0.5μg/kg,还更优选地最多至0.4μg/kg,还更优选地最多至0.3μg/kg,还更优选地最多至0.2μg/kg,还更优选地最多至0.1μg/kg,且最优选地最多至0.05μg/kg。
典型的多芳香烃是本领域的技术人员所熟知的且包括二氢苊、苊、蒽、苯并[a]蒽、苯并[a]芘、苯并[b]芘、苯并[b]荧蒽、苯并[ghi]苝、苯并[j]荧蒽、苯并[k]荧蒽、屈、二苯并(ah)蒽、荧蒽、氟、茚并(l,2,3-cd)芘、菲、芘、六苯并苯、碗烯(corannulene)、并四苯、萘、并五苯,苯并[9,10]菲及卵烯。通常,上面提及的量是指苯并[a]芘的含量。
还在这个另外的实施方式中,二噁英类、呋喃类、二苯并-对-二噁英及多氯代二苯并呋喃类的总量最多至0.35pg/g。因此,通常,组合物包含最多至这个量的量的二噁英类、呋喃类、二苯并-对-二噁英及多氯代二苯并呋喃类。通常,二噁英类、呋喃类、二苯并-对-二噁英及多氯代二苯并呋喃类的总量最多至0.325pg/g,优选地最多至0.3pg/g,更优选地最多至0.275pg/g,甚至更优选地最多至0.25pg/g,还更优选地最多至0.225pg/g,还更优选地最多至0.2pg/g,且最优选地最多至0.185pg/g。用WHO-毒性当量因子(TEF),以世界卫生组织(WHO)毒性当量表示这些量。WHO-毒性当量因子是本领域的技术人员所熟知的。
二噁英类、呋喃类、二苯并-对-二噁英(PCDD)及多氯代二苯并呋喃类(PCDF)是本领域的技术人员所熟知的。通常,这些被定义在社区管理(Community regulations)(EC)第1881/2006和1883/2006号中,本文通过引用并入其全部。
被定义在社区管理(EC)第1881/2006和1883/2006号中的PCDD、PCDF和二噁英样PCB连同它们的TEF值定义如下。
通常,根据社区管理(EC)第1881/2006和1883/2006号中陈述的方法确定PCDD、PCDF和二噁英样PCB的量。
还在这个另外的实施方式中,多氯代联苯类的总量最多至0.0035mg/kg。因此,通常,组合物包含最多至这个量的多芳香烃的量。通常,多氯代联苯类的总量最多至0.003mg/kg,优选地最多至0.0025mg/kg,更优选地最多至0.002mg/kg,甚至更优选地最多至0.0015mg/kg,还更优选地最多至0.001mg/kg,还更优选地最多至0.00075mg/kg,且最优选地最多至0.0007pg/g。
多氯联苯(PCB)是本领域已知的且包括联苯、单氯联苯、二氯联苯、三氯联苯、四氯联苯、五氯联苯、六氯联苯、七氯联苯、八氯联苯、九氯联苯及十氯联苯。
还在这个另外的实施方式中,二噁英类、呋喃类、二苯并-对-二噁英、多氯代二苯并呋喃类及二噁英样多氯代联苯类的总量最多至1pg/g。因此,通常,组合物以最多至这个量包含二噁英类、呋喃类、二苯并-对-二噁英、多氯代二苯并呋喃类及二噁英样多氯代联苯类的量。通常,二噁英类、呋喃类、二苯并-对-二噁英、多氯代二苯并呋喃类及二噁英样多氯代联苯类的总量最多至0.75pg/g,优选地最多至0.5pg/g,更优选地最多至0.45pg/g,甚至更优选地最多至0.4pg/g,还更优选地最多至0.35pg/g,且最优选地最多至0.3pg/g。
二噁英类、呋喃类、二苯并-对-二噁英(PCDD)、多氯代二苯并呋喃类(PCDF)及二噁英样多氯代联苯类是本领域的技术人员所熟知的。通常,这些被定义在社区管理(EC)第1881/2006和1883/2006号中,本文通过引用并入其全部内容。
被定义在社区管理(EC)第1881/2006和1883/2006号中的PCDD、PCDF和二噁英样PCB连同它们的TEF值如上所定义。
还在这个另外的实施方式中,优选地(a)组合物中的多芳香烃的总量最多至0.05μg/kg,(b)二噁英类、呋喃类、二苯并-对-二噁英及多氯代二苯并呋喃类的总量最多至0.2pg/g,(c)多氯代联苯类的总量最多至0.0015mg/kg,和/或(d)二噁英类、呋喃类、二苯并-对-二噁英、多氯代二苯并呋喃类及二噁英样多氯代联苯类的总量最多至0.3pg/g。
还在这个另外的实施方式中,优选地(a)组合物中的多芳香烃的总量最多至0.05μg/kg,(b),二噁英类、呋喃类、二苯并-对-二噁英及多氯代二苯并呋喃类的总量最多至0.2pg/g和/或(d)二噁英类、呋喃类、二苯并-对-二噁英、多氯代二苯并呋喃类及二噁英样多氯代联苯类的总量最多至0.3pg/g。
还在这个另外的实施方式中,更优选地(a)组合物中的多芳香烃的总量最多至0.05μg/kg,(b),二噁英类、呋喃类、二苯并-对-二噁英及多氯代二苯并呋喃类的总量最多至0.2pg/g,(c)多氯代联苯类的总量最多至0.0015mg/kg且(d)二噁英类、呋喃类、二苯并-对-二噁英和多氯代二苯并呋喃类及二噁英样多氯代联苯类的总量最多至0.3pg/g。
还在这个另外的实施方式中,更优选地(a)组合物中的多芳香烃的总量最多至0.05μg/kg,(b),二噁英类、呋喃类、二苯并-对-二噁英及多氯代二苯并呋喃类的总量最多至0.2pg/g,且(d)二噁英类、呋喃类、二苯并-对-二噁英和多氯代二苯并呋喃类及二噁英样多氯代联苯类的总量最多至0.3pg/g。
通常,还在这个另外的实施方式中,同分异构杂质的含量最多至1.5wt%。通常,同分异构杂质的含量最多至1wt%,优选地最多至0.5wt%,更优选地最多至0.25wt%,甚至更优选地最多至0.25wt%,且最优选地最多至0.1wt%。
发明人还发现可生产高纯度的油,其避免了与蒸馏油相关的异构化、过氧化及寡聚化的问题。存在于本发明的PUFA产物中的同分异构杂质的量将取决于存在于进料混合物中的同分异构杂质的量。至关重要地,但是,与蒸馏不同,通过本发明的方法并不使同分异构杂质的量增加。因此,PUFA产物中的同分异构体的含量的限度为起始材料的同分异构含量。如果起始材料不具有同分异构体的存在,那么生成物PUFA产物也将基本上不含同分异构体。该优势在蒸馏中是观察不到的。
因此,在一个实施方式中,相对于存在于进料混合物的同分异构杂质的量,本发明的色谱分离方法基本上不增加PUFA产物中的同分异构杂质的量。“基本上增加”通常被理解为是指增加10wt%或更少,优选地5wt%或更少,更优选地3wt%或更少,甚至更优选地1wt%或更少,还更优选地0.5wt%或更少,且最优选地0.1wt%或更少。因此,还在另外的实施方式中,本发明还提供包含PUFA产物的组合物,其中同分异构杂质的含量最多至1.5wt%。通常,组合物包含最多至这个量的同分异构杂质的量。通常,同分异构杂质的含量最多至1wt%,优选地最多至0.5wt%,更优选地最多至0.25wt%,且最优选地最多至0.1wt%。由于分离需要较高的温度,因此在通过蒸馏的高纯度DHA的分离中,异构化是特别成问题的。通常,PUFA产物为DHA,任选地以它的乙酯的形式。通常,组合物包含大于85wt%的PUFA产物,优选地大于90wt%,更优选地大于92.5wt%,最优选地大于95wt%。优选地,组合物包含大于85wt%的DHA,任选地以它的乙酯的形式,优选地大于90wt%,更优选地大于92.5wt%,最优选地大于95wt%。在这个实施方式中,组合物通常以大于95wt%的量包含作为PUFA产物的DHA,任选地呈其乙酯的形式,其中同分异构杂质的含量最多至1wt%,优选地最多至0.5wt%,更优选地最多至0.25wt%,且最优选地最多至0.1wt%。
本发明的改进的方法允许有效地获得更加高纯度的PUFA产物,同时在单一方法中可除去较强极性的杂质和较弱极性的杂质两者。
本发明的PUFA产物通常具有大于80重量%,优选地大于85重量%,更优选地大于90重量%,甚至更优选地大于95重量%,还更优选地大于97重量%,且最优选地大于99重量%的纯度。当PUFA产物为单一的PUFA或其衍生物时,上面的浓度是指PUFA或衍生物的浓度。当PUFA产物为两种或更多种PUFA或其衍生物的混合物时,例如两种,上面的浓度是指PUFA或其衍生物的结合浓度。
本发明的方法还避免了与蒸馏油相关的异构化、过氧化和寡聚化的问题。本发明的PUFA产物具有小于5重量%,优选地小于3重量%,且更优选地小于1重量%的同分异构杂质的含量。如上所述,同分异构杂质包括PUFA同分异构体、过氧化产物和寡聚化产物。PUFA同分异构体包括位置和/或几何异构体。EPA的位置和/或几何异构体的实例包括17E-EPA、5E-EPA、5E,8E-EPA、8E,11E-EPA、5E,14E-EPA和5E,8E,11E,17E-EPA。这样的同分异构体在Wijesundera,R.C.等,Journal of the American OilChemists Society,1989,第66卷,第12期,1822-1830页中更为详细地描述,本文通过引用并入其全部内容。
实际上,本发明的方法通常将通过计算机来控制。因此,本发明还提供用于控制如本文所定义的色谱设备的计算机程序,计算机程序包括当实行时指示设备进行本发明的方法的代码手段。
以下的实施例阐述本发明。
实施例
实施例1
根据图8所示意性阐述的系统,使用用键合C18的硅胶(粒径300μm)作为固定相且用含水甲醇作为洗脱液的实际的移动床色谱系统来分离鱼油衍生的原料(55重量%的EPA EE,5重量%的DHA EE)。如图8所示,串联连接15个柱(直径:76.29mm,长度:914.40mm)。
对于8种不同的情况,操作参数和流速如下。关于下面的条件,以高水平的纯度(通过GC FAMES的85-98%)生产EPA EE。区1的抽取液和提余液及区2的抽取液和提余液的GC FAMES图分别显示在图11和图12中。
实施例1a
步长时间:750秒
循环时间:200分钟
原料(F)进料速度:70ml/min
解吸剂(D)进料速度:850ml/min
抽取液速度:425ml/min
提余液速度:495ml/min
实施例1b
步长时间:250秒
循环时间:66.67分钟
原料(F)进料速度:210ml/min
解吸剂(D)进料速度:2550ml/min
抽取液速度:1275ml/min
提余液速度:1485ml/min
实施例1c
步长时间:500秒
循环时间:133.33分钟
原料(F)进料速度:25ml/min
第一区中的解吸剂进料速度(Dl):2050ml/min
第一区中的抽取液容器积累速度(El):1125ml/min
第一区中的抽取液再循环速度(Dl-El):925ml/min
第一区中的提余液速度(R1):950ml/min
第二区中的解吸剂进料速度(D2):1700ml/min
第二区中的抽取液容器积累速度(E2):900ml/min
第二区中的抽取液再循环速度(D2-E2):800ml/min
第二区中的提余液速度(R2):800ml/min
实施例1d
步长时间:250秒
循环时间:66.67分钟
原料(F)进料速度:50ml/min
第一区中的解吸剂进料速度(Dl):4125ml/min
第一区中的抽取液容器积累速度(El):2250ml/min
第一区中的抽取液再循环速度(Dl-El):1875ml/min
第一区中的提余液速度(R1):1925ml/min
第二区中的解吸剂进料速度(D2):3375ml/min
第二区中的抽取液容器积累速度(E2):1800ml/min
第二区中的抽取液再循环速度(D2-E2):1575ml/min
第二区中的提余液速度(R2):1575ml/min
实施例1e
步长时间:500秒
循环时间:133.33分钟
原料(F)进料速度:50ml/min
第一区中的解吸剂进料速度(Dl):4000ml/min
第一区中的抽取液容器的积累速度(El):2250ml/min
第一区中的抽取液再循环速度(Dl-El):1750ml/min
第一区中的提余液速度(R1):1800ml/min
第二区中的解吸剂进料速度(D2):3200ml/min
第二区中的净抽取液积累速度(E2):1750ml/min
第二区中的抽取液再循环速度(D2-E2):1450ml/min
第二区中的提余液速度(R2):1450ml/min
实施例1f
步长时间:250秒
循环时间:66.67分钟
原料(F)进料速度:100ml/min
第一区中的解吸剂进料速度(Dl):4050ml/min
第一区中的抽取液容器的积累速度(El):2100ml/min
第一区中的抽取液再循环速度(Dl-El):1950ml/min
第一区中的提余液速度(R1):2050ml/min
第二区中的解吸剂进料速度(D2):3300ml/min
第二区中的净抽取液积累速度(E2):1700ml/min
第二区中的抽取液再循环速度(D2-E2):1600ml/min
第二区中的提余液速度(R2):1600ml/min
实施例1g
步长时间:500秒
循环时间:133.33分钟
原料(F)进料速度:25ml/min
第一区中的解吸剂进料速度(Dl):1275ml/min
第一区中的抽取液容器的积累速度(El):750ml/min
第一区中的抽取液再循环速度(Dl-El):550ml/min
第一区中的提余液速度(R1):575ml/min
第二区中的解吸剂进料速度(D2):1275ml/min
第二区中的净抽取液积累速度(E2):950ml/min
第二区中的抽取液再循环速度(D2-E2):325ml/min
第二区中的提余液速度(R2):325ml/min
实施例1h
步长时间:250秒
循环时间:66.67分钟
原料(F)进料速度:50ml/min
第一区中的解吸剂进料速度(Dl):2550ml/min
第一区中的抽取液容器的积累速度(El):1500ml/min
第一区中的抽取液再循环速度(Dl-El):950ml/min
第一区中的提余液速度(R1):1000ml/min
第二区中的解吸剂进料速度(D2):2000ml/min
第二区中的净抽取液积累速度(E2):900ml/min
第二区中的抽取液再循环速度(D2-E2):600ml/min
第二区中的提余液速度(R2):600ml/min
实施例2
根据图10示意性阐述的系统,使用用键合C18的硅胶(粒径40-60μm)作为固定相且用含水甲醇作为洗脱液的实际的移动床色谱系统来分离鱼油衍生的原料,所述进料包含二十碳四烯酸乙酯(ETA EE)、EPA EE、其同分异构体及DHA EE。如图10所示,串联19个柱(直径:10mm,长度:250mm)。
操作参数和流速如下。
循环时间:600秒
原料(F)进料速度:0.5ml/min
进入第一区的解吸剂(Dl,100%甲醇)进料速度:6ml/min
进入第一区的解吸剂(D2,99%甲醇/1%水)进料速度:6ml min
来自第一区的抽取液(E1')速度:3ml/min
来自第一区的抽取液(El)速度:1.9ml/min
来自第一区的提余液(Rl)速度:4.6ml/min
进入第二区的解吸剂(D2,97%甲醇/3%水)进料速度:6ml/min
来自第二区的抽取液(E2)速度:2.4ml/min
来自第二区的提余液(R2)速度:4.6ml/min
再次,以高水平的纯度(大于90重量%,大于95重量%,大于98重量%)生产EPA EE。
实施例3
根据图8示意性阐述的系统,使用用键合C18的硅胶(粒径300μm,粒子孔隙度150埃)作为固定相且用含水甲醇作为洗脱液的实际的移动床色谱系统来分离鱼油衍生的原料(55重量%的EPA EE,5重量%的DHAEE)。如图8所示,串联连接15个柱(直径:10mm,长度:250mm)。
操作参数和流速如下。
循环时间:380秒
原料(F)进料速度:0.5ml/min
进入第一区的解吸剂(D,98.5%甲醇/1.5%水)进料速度:9ml/min
进入第一区的富水相(W,85%甲醇/15%水)进料速度:3.1ml/min
来自第一区的抽取液(El)速度:4ml/min
来自第一区的提余液(Rl)速度:8.6ml/min
进入第二区的解吸剂(D,97%甲醇/3%水)进料速度:10.8ml/min
进入第二区的富水相(W,85%甲醇/15%水)进料速度:3.1ml/min
来自第二区的抽取液(E2)速度:4.1ml/min
来自第二区的提余液(R2)速度:10.3ml/min
以高水平的纯度(>95%纯度)生产EPA EE。产物的GC图显示在图13。
实施例4
根据图8示意性阐述的系统,使用用键合C18的硅胶(粒径300μm)作为固定相且用含水甲醇作为洗脱液的实际的移动床色谱系统来分离鱼油衍生的原料(70重量%的DHA EE,7重量%的EPA EE)。如图8所示,串联连接15个柱(直径:76.29mm,长度:914.40mm)。
操作参数和流速如下。
步长时间:600秒
循环时间:160分钟
原料(F)进料速度:25ml/min
第一区中的解吸剂进料速度(Dl):2062.5ml/min
第一区中的抽取液速度(El):900ml/min
第一区中的提余液速度(R1):1187.5ml/min
第二区中的解吸剂进料速度(D2):1500ml/min
第二区中的抽取液速度(E2):450ml/min
第二区中的提余液速度(R2):1050ml/min
以高水平的纯度(通过GC FAMES,>97%)生产DHA EE。2区的抽取液的GC FAMES图显示在图14。
实施例5
根据图8示意性阐述的系统,使用用键合C18的硅胶(粒径300μm)作为固定相且用含水甲醇作为洗脱液的实际的移动床色谱系统来分离鱼油衍生的原料(33重量%的EPA EE,22重量%的DHA EE)。如图8所示,串联连接15个柱(直径:76.29mm,长度:914.40mm)。
操作参数和流速如下。
步长时间:380秒
循环时间:101.33分钟
原料(F)进料速度:40ml/min
第一区中的解吸剂进料速度(Dl):1950ml/min
第一区中的抽取液速度(El):825ml/min
第一区中的提余液速度(R1):1165ml/min
第二区中的解吸剂进料速度(D2):1425ml/min
第二区中的抽取液速度(E2):787.5ml/min
第二区中的提余液速度(R2):637.5ml/min
以高水平的纯度(>80%的总的EPA EE和DHA EE)生产EPA EE和DHA EE的混合物。
实施例6
进行试验,以比较存在于根据本发明的两份PUFA产物和存在于通过蒸馏所制备的类似油中的环境污染物的量。油的污染物概况显示在下面的表1中。
表1
1)二噁英限制包括多氯代二苯并-对-二噁英(PCDD)和多氯代二苯并呋喃类(PCDF)的总和且用WHO-毒性当量因子(TEF)以世界卫生组织(WHO)毒性当量表示。这意味着涉及毒理学关注的17种单独的二噁英同种类物的分析结果以单一的可量化单位表示:TCDD毒性当量浓度或TEQ
2)二噁英和呋喃类的最大浓度仍然为2pg/g
实施例7
进行试验,以确定与通过蒸馏制备的等量的油相比,存在于根据本发明所制备的油中的同分异构杂质的量。
根据本发明制备的富含DHA的油的GC图显示在图14。在GC图中无同分异构杂质的迹象。
通过蒸馏制备的油的GC图显示在图15。具有比DHA峰的洗脱时间长的四个峰对应于DHA同分异枸体。从GC图可以看到,通过蒸馏制备的油包含约1.5wt%的同分异构杂质。
实施例8
比较本发明的方法的两份富含EPA的产物与通过蒸馏制备的富含EPA的油。它们的组分PUFA的wt%分析显示在下面。
实施例9
比较本发明的方法的富含EPA/DHA的产物与通过蒸馏制备的富含EPA/DHA的油。它们的组分PUFA的wt%分析显示在下面。
Claims (15)
1.一种组合物,其包含多不饱和脂肪酸(PUFA)产物,所述PUFA产物通过用于从进料混合物中回收PUFA产物的色谱分离方法可获得,所述方法包括将所述进料混合物引入到模拟的或实际的移动床色谱设备中,所述色谱设备具有多个相连的色谱柱,所述色谱柱包含作为洗脱液的含水醇,其中所述设备具有包括至少第一区和第二区的多个区,每一个区具有抽取液流和提余液流,能够从所述抽取液流和所述提余液流收集来自所述多个相连的色谱柱的液体,且其中(a)从所述第一区中的柱中收集包含PUFA产物连同较强极性的组分的提余液流并将该提余液流引入到所述第二区中的不相邻的柱中,和/或(b)从所述第二区中的柱中收集包含PUFA产物连同较弱极性的组分的抽取液流并将该抽取液流引入到所述第一区中的不相邻的柱中,在每一个区中使所述PUFA产物与所述进料混合物的不同组分分离。
2.根据权利要求1所述的组合物,其中所述PUFA产物为EPA,所述PUFA产物以大于93wt%的量存在,ω-6多不饱和脂肪酸的总含量最多至0.40wt%,且二十碳四烯酸的总含量最多至1wt%。
3.根据权利要求2所述的组合物,其中所述二十碳四烯酸的总含量为0.05wt%或更大,优选地0.1wt%或更大。
4.根据权利要求2所述的组合物,其中所述组合物(a)包含大于96.5wt%的EPA、最多至1wt%的DHA、最多至1wt%的α-亚麻酸、最多至1wt%的十八碳四烯酸、最多至1wt%的二十碳四烯酸、最多至1wt%的二十二碳五烯酸以及最多至0.25wt%的花生四烯酸;或
(b)包含大于96.5wt%的EPA、最多至0.2wt%的DHA、最多至0.3wt%的α-亚麻酸、最多至0.4wt%的十八碳四烯酸、最多至0.5wt%的二十碳四烯酸、最多至0.35wt%的二十二碳五烯酸以及最多至0.25wt%的花生四烯酸。
5.根据权利要求2所述的组合物,其中所述组合物(a)包含96.5-99wt%的EPA、最多至0.6wt%的DHA、最多至0.6wt%的α-亚麻酸、0.15-0.6wt%的十八碳四烯酸、0.1-0.75wt%的二十碳四烯酸、最多至0.6wt%的二十二碳五烯酸以及最多至0.6wt%的花生四烯酸;或
(b)包含96.5-99wt%的EPA、最多至0.2wt%的DHA、最多至0.3wt%的α-亚麻酸、0.15-0.4wt%的十八碳四烯酸、0.1-0.5wt%的二十碳四烯酸、最多至0.35wt%的二十二碳五烯酸以及最多至0.25wt%的花生四烯酸。
6.根据权利要求2所述的组合物,其中所述组合物(a)包含98-99wt%的EPA、0.1-0.3wt%的DHA、0.3-0.35wt%的十八碳四烯酸、0.1-0.3wt%的二十碳四烯酸、以及0.3-0.35wt%的二十二碳五烯酸;或
(b)包含96.5-99wt%的EPA、0.1-0.5wt%的DHA、0.1-0.5wt%的十八碳四烯酸、0.1-0.5wt%的二十碳四烯酸、0.1-0.5wt%的二十二碳五烯酸以及0.1-0.3wt%的花生四烯酸;或
(c)包含98-99wt%的EPA、0.1-0.2wt%的DHA、0.3-0.35wt%的十八碳四烯酸、0.1-0.2wt%的二十碳四烯酸、以及0.3-0.35wt%的二十二碳五烯酸;或
(d)包含96.5-97.5wt%的EPA、0.25-0.35wt%的α-亚麻酸、0.18-0.24wt%的十八碳四烯酸、0.4-0.46wt%的二十碳四烯酸、以及0.15-0.25wt%的花生四烯酸。
7.根据权利要求1所述的组合物,其中所述PUFA产物为EPA和DHA的混合物,其中(i)EPA和DHA的总含量为80wt%或更大,(ii)EPA的含量为41-60wt%且DHA的含量为16-48wt%,且(iii)ω-3多不饱和脂肪酸的总含量为94wt%或更大和/或ω-6多不饱和脂肪酸的总含量最多至4wt%;并且其中
(a)ω-3多不饱和脂肪酸的总含量为97wt%或更大,和/或
(b)十八碳四烯酸的总含量最多至1.5wt%,和/或
(c)二十二碳五烯酸的总含量为从4至5.25wt%,和/或
(d)肾上腺酸的总含量最多至0.1wt%。
8.根据权利要求7所述的组合物,其中十八碳四烯酸的总含量最多至1.5wt%且为0.05wt%或更大,优选地0.1wt%或更大。
9.根据权利要求7所述的组合物,其中肾上腺酸的总含量最多至0.1wt%且为0.05wt%或更大。
10.根据权利要求7所述的组合物,其中所述组合物包含50-55wt%的EPA、30-35wt%的DHA、最多至0.4wt%的α-亚麻酸、最多至1.25wt%的十八碳四烯酸、最多至1.9wt%的二十碳四烯酸、最多至2.75wt%的二十一碳五烯酸、最多至5.25wt%的二十二碳五烯酸、最多至0.25wt%的亚油酸、最多至0.1wt%的γ-亚麻酸、最多至0.1wt%的双高-γ-亚麻酸、最多至2.1wt%的花生四烯酸、最多至0.1wt%的肾上腺酸以及最多至0.75wt%的二十二碳五烯(ω-6)酸。
11.根据权利要求7所述的组合物,其中所述组合物包含50-55wt%的EPA、30-35wt%的DHA、0.2-0.4wt%的α-亚麻酸、最多至1.25wt%的十八碳四烯酸、1.0-1.9wt%的二十碳四烯酸、2-2.75wt%二十一碳五烯酸、4-5.25wt%的二十二碳五烯酸、0.15-0.25wt%的亚油酸、最多至0.1wt%的γ-亚麻酸、最多至0.1wt%的双高-γ-亚麻酸、最多至2.1wt%的花生四烯酸、最多至0.1wt%的肾上腺酸以及最多至0.75wt%的二十二碳五烯(ω-6)酸。
12.根据权利要求1-11中任一项所述的组合物,其中(a)所述组合物中的多芳香烃的总量最多至0.89μg/kg,(b)二噁英类、呋喃类、二苯并-对-二噁英类以及多氯代二苯并呋喃类的总量最多至0.35pg/g,(c)多氯代联苯类的总量最多至0.0035mg/kg,和/或(d)二噁英类、呋喃类、二苯并-对-二噁英类、多氯代二苯并呋喃类以及二噁英样多氯代联苯类的总量最多至1pg/g。
13.根据权利要求1-12中任一项所述的组合物,其中同分异构杂质的含量最多至1.5wt%。
14.根据权利要求13所述的组合物,其中同分异构杂质的含量最多至1wt%,优选地最多至0.5wt%,更优选地最多至0.25wt%,最优选地最多至0.1wt%。
15.根据权利要求13或14所述的组合物,其中所述PUFA产物为DHA,且所述组合物包含大于85wt%的PUFA产物,优选地大于90wt%,更优选地大于92.5wt%,最优选地大于95wt%。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29118409P | 2009-12-30 | 2009-12-30 | |
GB0922707.5 | 2009-12-30 | ||
GB0922707A GB0922707D0 (en) | 2009-12-30 | 2009-12-30 | New process |
US61/291,184 | 2009-12-30 | ||
GB1015343.5 | 2010-09-14 | ||
GBGB1015343.5A GB201015343D0 (en) | 2010-09-14 | 2010-09-14 | New process |
CN201080064359.5A CN102811781B (zh) | 2009-12-30 | 2010-12-24 | 用于纯化多不饱和脂肪酸的模拟移动床色谱分离方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080064359.5A Division CN102811781B (zh) | 2009-12-30 | 2010-12-24 | 用于纯化多不饱和脂肪酸的模拟移动床色谱分离方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104974030A true CN104974030A (zh) | 2015-10-14 |
Family
ID=44246942
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510278939.9A Pending CN104974030A (zh) | 2009-12-30 | 2010-12-24 | 用于纯化多不饱和脂肪酸的模拟移动床色谱分离方法 |
CN201080064359.5A Active CN102811781B (zh) | 2009-12-30 | 2010-12-24 | 用于纯化多不饱和脂肪酸的模拟移动床色谱分离方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080064359.5A Active CN102811781B (zh) | 2009-12-30 | 2010-12-24 | 用于纯化多不饱和脂肪酸的模拟移动床色谱分离方法 |
Country Status (15)
Country | Link |
---|---|
US (2) | US9321715B2 (zh) |
EP (3) | EP2519332B1 (zh) |
JP (6) | JP5872483B2 (zh) |
KR (2) | KR101761959B1 (zh) |
CN (2) | CN104974030A (zh) |
AU (1) | AU2010338031B2 (zh) |
BR (1) | BR112012016308B1 (zh) |
CA (3) | CA2785742C (zh) |
DK (1) | DK2519332T3 (zh) |
ES (2) | ES2459951T3 (zh) |
PE (1) | PE20130491A1 (zh) |
PL (1) | PL2519332T3 (zh) |
PT (1) | PT2519332E (zh) |
RU (2) | RU2538981C2 (zh) |
WO (1) | WO2011080503A2 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107586259A (zh) * | 2017-07-10 | 2018-01-16 | 乔璞科技有限公司 | 纯化不饱和脂肪酸以及二十碳五烯酸的方法 |
CN108728247A (zh) * | 2017-04-13 | 2018-11-02 | 义守大学 | 纯化共轭次亚麻油酸的方法 |
CN114790142A (zh) * | 2022-04-26 | 2022-07-26 | 江苏科技大学 | 一种模拟移动床色谱技术分离蚕蛹油中甘油三酯型α-亚麻酸单体的方法 |
CN115073292A (zh) * | 2022-07-01 | 2022-09-20 | 江苏汉邦科技股份有限公司 | 一种二十碳五烯酸乙酯的制备方法 |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2519332B1 (en) * | 2009-12-30 | 2014-03-05 | BASF Pharma (Callanish) Limited | Simulated moving bed chromatographic separation process for the purification of polyunsaturated fatty acids |
US8999663B2 (en) | 2011-02-11 | 2015-04-07 | E L Du Pont De Nemours And Company | Method for obtaining a lipid-containing composition from microbial biomass |
FR2976500B1 (fr) * | 2011-06-16 | 2013-05-31 | IFP Energies Nouvelles | Procede et dispositif de sepation chromatographique a contre-courant simule a faible perte de charge et nombre de zones eleve. |
GB201111589D0 (en) | 2011-07-06 | 2011-08-24 | Equateq Ltd | New modified process |
GB201111601D0 (en) | 2011-07-06 | 2011-08-24 | Equateq Ltd | New process |
GB201111594D0 (en) * | 2011-07-06 | 2011-08-24 | Equateq Ltd | New improved process |
GB201111591D0 (en) | 2011-07-06 | 2011-08-24 | Equateq Ltd | Further new process |
GB201111595D0 (en) | 2011-07-06 | 2011-08-24 | Equateq Ltd | Improved process |
ES2395320B1 (es) | 2011-07-14 | 2013-12-18 | Soluciones Extractivas Alimentarias, S.L. | Nuevo método para la reducción de contaminantes en grasas y aceites a partir de aceites y sus derivados. |
WO2013083482A1 (en) * | 2011-12-05 | 2013-06-13 | Chromacon Ag | Chromatographic method for the separation of fatty acid mixtures |
US8258330B1 (en) | 2012-01-04 | 2012-09-04 | Naturalis, S.A. | Carrier fluid composition comprising fatty acids ethyl esters and process for reducing the concentration of persistent organic pollutants in fish oil |
KR102117725B1 (ko) | 2012-05-14 | 2020-06-01 | 닛폰 스이산 가부시키가이샤 | 환경 오염 물질을 저감시킨 고도 불포화 지방산 또는 고도 불포화 지방산 에틸에스테르 및 그 제조 방법 |
US8658845B2 (en) * | 2012-05-23 | 2014-02-25 | Orochem Technologies, Inc. | Process and adsorbent for separating ethanol and associated oxygenates from a biofermentation system |
CN102936534A (zh) * | 2012-12-07 | 2013-02-20 | 江南大学 | 一种从棉籽油中同时提取磷脂、棉酚和色素的工艺 |
US10123986B2 (en) | 2012-12-24 | 2018-11-13 | Qualitas Health, Ltd. | Eicosapentaenoic acid (EPA) formulations |
US9629820B2 (en) | 2012-12-24 | 2017-04-25 | Qualitas Health, Ltd. | Eicosapentaenoic acid (EPA) formulations |
GB201300354D0 (en) | 2013-01-09 | 2013-02-20 | Basf Pharma Callanish Ltd | Multi-step separation process |
US9074160B2 (en) * | 2013-03-07 | 2015-07-07 | Algisys, Llc | Production of omega-3 fatty acids from pythium species |
CN109679768A (zh) | 2013-05-07 | 2019-04-26 | 诺瓦塞普集团 | 用于生产高度纯化的多不饱和脂肪酸的色谱方法 |
US8802880B1 (en) | 2013-05-07 | 2014-08-12 | Group Novasep | Chromatographic process for the production of highly purified polyunsaturated fatty acids |
EP2801604B1 (en) | 2013-05-07 | 2017-04-12 | Groupe Novasep | Chromatographic process for the production of highly purified polyunsaturated fatty acids |
US9428711B2 (en) | 2013-05-07 | 2016-08-30 | Groupe Novasep | Chromatographic process for the production of highly purified polyunsaturated fatty acids |
US20160193546A1 (en) | 2013-07-31 | 2016-07-07 | Bizen Chemical Co., Ltd. | Method for separating fat-soluble substance by simulated moving bed chromatography - and device for same |
US11330817B2 (en) | 2013-12-04 | 2022-05-17 | Nippon Suisan Kaisha, Ltd. | Microbial oil, production method for microbial oil, concentrated microbial oil, and production method for concentrated microbial oil |
FR3014436B1 (fr) * | 2013-12-11 | 2016-10-21 | Novasep Process | Procede de purification chromatographique d'un acide gras |
FR3014435B1 (fr) | 2013-12-11 | 2016-10-21 | Novasep Process | Purification d'acides gras par un procede chromatographique |
EP2883860B1 (fr) * | 2013-12-11 | 2016-08-24 | Novasep Process | Procédé chromatographique de production d'acides gras polyinsaturés |
WO2015104464A1 (fr) | 2014-01-07 | 2015-07-16 | Novasep Process | Procédé de purification d'acides aminés aromatiques |
US9163198B2 (en) * | 2014-01-17 | 2015-10-20 | Orochem Technologies, Inc. | Process for purification of EPA (eicosapentanoic acid) ethyl ester from fish oil |
CN105272844B (zh) * | 2014-06-09 | 2017-05-17 | 河北海德生物科技有限公司 | 一种提纯高纯鱼油epa乙酯和dha乙酯的方法 |
US9918953B2 (en) * | 2014-09-17 | 2018-03-20 | Nippon Suisan Kaisha, Ltd. | Composition containing eicosapentaenoic acid alkyl ester, and method for producing same |
CN104529772B (zh) * | 2014-12-17 | 2016-12-07 | 浙江大学 | 一种模拟移动床色谱制备高纯度epa酯和dha酯单体的方法 |
US9546125B2 (en) * | 2015-02-11 | 2017-01-17 | Orochem Technologies, Inc. | Continuous process for extraction of unsaturated triglycerides from fish oil |
WO2016164748A1 (en) | 2015-04-08 | 2016-10-13 | Invista North America S.A.R.L. | Materials and methods for the selective recovery of monovalent products from aqueous solutions using continuous ion exchange |
US10265642B2 (en) | 2015-04-10 | 2019-04-23 | Invista North America S.A.R.L. | Process for separation of diamines and/or omega-aminoacids from a feed fixture |
CA2990140A1 (en) * | 2015-06-26 | 2016-12-29 | Pronova Biopharma Norge As | Composition for treatment of nafld |
KR20180063217A (ko) * | 2015-10-05 | 2018-06-11 | 디에스엠 아이피 어셋츠 비.브이. | 오일 조성물 및 제조 방법 |
TWI578985B (zh) * | 2016-05-02 | 2017-04-21 | Extraction and purification of conjugated triene linoleic acid (CLN) | |
TWI635075B (zh) * | 2017-03-24 | 2018-09-11 | 義守大學 | 純化共軛次亞麻油酸的方法 |
TWI648393B (zh) * | 2017-08-15 | 2019-01-21 | 喬璞科技有限公司 | 純化不飽和脂肪酸以及純化亞麻酸的方法 |
CN107556187A (zh) * | 2017-08-31 | 2018-01-09 | 江苏科技大学 | β‑环糊精包埋联合模拟移动床色谱分离法制备高纯度α‑亚麻酸的方法 |
EP3586640A1 (en) | 2018-06-21 | 2020-01-01 | Nuseed Pty Ltd | Dha enriched polyunsaturated fatty acid compositions |
WO2020060970A1 (en) | 2018-09-18 | 2020-03-26 | Invista North America S.A.R.L. | Systems and methods for recovering amines and their derivates from aqueous mixtures |
CN109589644B (zh) * | 2018-12-25 | 2021-01-22 | 杭州奕安济世生物药业有限公司 | 一种缩小模型的层析柱及其制备方法 |
CN112592268B (zh) * | 2020-12-18 | 2022-12-09 | 江苏汉邦科技股份有限公司 | 一种利用连续色谱系统分离鱼油中epa的方法 |
LU500093B1 (de) * | 2021-04-27 | 2022-10-31 | K D Pharma Bexbach Gmbh | Verfahren zum Trennen einer Stoffmischung |
JP2024518338A (ja) * | 2021-04-27 | 2024-05-01 | カーデー・ファルマ・ベクスバッハ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 物質混合物を分離するための方法 |
AU2022413641A1 (en) | 2021-12-17 | 2024-07-04 | Basf Se | Chromatographic separation process for efficient purification of polyunsaturated fatty acids |
US11548864B1 (en) | 2022-06-15 | 2023-01-10 | Zaiput Flow Technologies LLC | Separation of chemical species using multiple liquid phases and related systems |
CN116082208A (zh) * | 2023-02-14 | 2023-05-09 | 山东新和成维生素有限公司 | 一种伞花烃氧化产物的吸附分离方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656667A (en) * | 1988-08-11 | 1997-08-12 | Norsk Hydro As | Fatty acid composition |
EP1157692A1 (en) * | 2000-05-22 | 2001-11-28 | Quatex N.V. | Composition of fatty acids containing at least 80% by weight of EPA and DHA or their derivatives and its pharmaceutical use |
WO2007017240A2 (en) * | 2005-08-10 | 2007-02-15 | Tiberio Bruzzese | Composition of n-3 fatty acids having high concentration of epa and/or dha and containing n-6 fatty acids |
WO2008004900A1 (en) * | 2006-07-05 | 2008-01-10 | Photonz Corporation Limited | Production of ultrapure epa and polar lipids from largely heterotrophic culture |
Family Cites Families (171)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2985589A (en) | 1957-05-22 | 1961-05-23 | Universal Oil Prod Co | Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets |
US3761533A (en) | 1970-07-23 | 1973-09-25 | Toray Industries | Separation process of components of feed mixture utilizing solid sorbent |
US3706812A (en) | 1970-12-07 | 1972-12-19 | Universal Oil Prod Co | Fluid-solid contacting apparatus |
US3696107A (en) | 1971-05-27 | 1972-10-03 | Richard W Neuzil | Improved hydrocarbon separation process |
US4048111A (en) | 1975-06-12 | 1977-09-13 | Uop Inc. | Method for manufacturing an adsorbent useful for olefin separation |
US4036745A (en) | 1975-09-24 | 1977-07-19 | Uop Inc. | Process for separating normal and isoparaffins |
US4049688A (en) | 1976-08-02 | 1977-09-20 | Uop Inc. | Process for separating esters of fatty acids by selective adsorption |
US4048205A (en) | 1976-08-02 | 1977-09-13 | Uop Inc. | Process for separating an ester of a monoethanoid fatty acid |
US4313015A (en) | 1980-02-07 | 1982-01-26 | Uop Inc. | Separation process |
US4353838A (en) | 1981-02-13 | 1982-10-12 | Uop Inc. | Process for separating a monoethanoid fatty acid |
US4353839A (en) | 1981-02-25 | 1982-10-12 | Uop Inc. | Process for separating saturated fatty acids |
US4329280A (en) | 1981-04-10 | 1982-05-11 | Uop Inc. | Process for separating esters of fatty and rosin acids |
US4522761A (en) | 1981-04-10 | 1985-06-11 | Uop Inc. | Process for separating fatty acids from rosin acids |
IN158368B (zh) | 1981-04-10 | 1986-11-01 | Uop Inc | |
US4524030A (en) | 1981-04-10 | 1985-06-18 | Uop Inc. | Process for separating fatty acids |
US4404145A (en) | 1981-04-10 | 1983-09-13 | Uop Inc. | Process for separating fatty acids from rosin acids |
US4519952A (en) | 1981-04-10 | 1985-05-28 | Uop Inc. | Process for separating fatty acids from unsaponifiables |
US4511514A (en) | 1981-04-10 | 1985-04-16 | Uop Inc. | Process for separating oleic acid from linoleic acid |
US4486618A (en) | 1981-07-30 | 1984-12-04 | Uop Inc. | Process for separating C6 olefin hydrocarbons |
JPS58109444A (ja) | 1981-11-19 | 1983-06-29 | Kureha Chem Ind Co Ltd | エイコサペンタエン酸又はそのエステル、ドコサヘキサエン酸又はそのエステルの分離精製法 |
JPS5888339A (ja) | 1981-11-20 | 1983-05-26 | Kagakuhin Kensa Kyokai | エイコサペンタエン酸又はそのエステルとドコサヘキサエン酸又はそのエステルの分離精製方法 |
JPS5888339U (ja) | 1981-12-10 | 1983-06-15 | 株式会社 カネノ製作所 | 不透明シ−ト入り物品収容具 |
JPS58109444U (ja) | 1982-01-20 | 1983-07-26 | ミサワホ−ム株式会社 | 収塵装置 |
US4560675A (en) | 1982-08-13 | 1985-12-24 | Uop Inc. | Adsorbent for separating fatty acids from rosin acids |
US4495106A (en) | 1982-08-13 | 1985-01-22 | Uop Inc. | Adsorbent and process for separating fatty acids from rosin acids |
US4521343A (en) | 1983-02-04 | 1985-06-04 | Uop Inc. | Process for separating fatty acids from rosin acids with phosphorus modified alumina molecular sieve |
US4433195A (en) | 1983-03-02 | 1984-02-21 | Uop Inc. | Separation of trans- and cis-olefins |
US4524049A (en) | 1983-08-31 | 1985-06-18 | Zimpro Inc. | Process for concurrent steam generation and metal recovery |
US4524029A (en) | 1983-09-22 | 1985-06-18 | Uop Inc. | Process for separating fatty acids |
JPS60208940A (ja) | 1984-03-31 | 1985-10-21 | Nippon Zeon Co Ltd | 長鎮不飽和脂肪酸化合物の分離精製法 |
JPS6137752A (ja) * | 1984-07-30 | 1986-02-22 | Kuraray Co Ltd | 高度不飽和長鎖脂肪酸またはそのエステルの分離精製法 |
US4764276A (en) | 1984-07-30 | 1988-08-16 | Advanced Separation Technologies Incorporated | Device for continuous contacting of fluids and solids |
JPS61192797A (ja) | 1985-02-21 | 1986-08-27 | 日本油脂株式会社 | 高度不飽和酸の濃縮方法 |
US4605783A (en) | 1985-03-21 | 1986-08-12 | Uop Inc. | Process for separating monoterpenes |
JPH0317755Y2 (zh) | 1985-05-24 | 1991-04-15 | ||
NO157302C (no) | 1985-12-19 | 1988-02-24 | Norsk Hydro As | Fremgangsmaate for fremstilling av et fiskeoljekonsentrat. |
JPS6388159A (ja) * | 1986-09-30 | 1988-04-19 | Nippon Oil & Fats Co Ltd | ドコサヘキサエン酸エステルの製造法 |
JPS6388159U (zh) | 1986-11-27 | 1988-06-08 | ||
US4720579A (en) | 1986-12-18 | 1988-01-19 | Uop Inc. | Separation of citric acid from fermentation broth with a neutral polymeric adsorbent |
US5068419A (en) | 1986-12-18 | 1991-11-26 | Uop | Separation of an organic acid from a fermentation broth with an anionic polymeric adsorbent |
US4882065A (en) | 1987-12-11 | 1989-11-21 | Uop | Purification of sterols with activated carbon as adsorbent and chlorobenzene as desorbent |
NO163139C (no) * | 1988-01-22 | 1990-04-11 | Norsk Hydro As | Fremgangsmaate for fremstilling av n-3 flerumettede fettsyrer og deres derivater, spesielt lavere alkylestere fra tidligere oppkonsentrert foede. |
JPH0692595B2 (ja) | 1988-02-01 | 1994-11-16 | 鐘淵化学工業株式会社 | 脂肪酸とトリグリセリドの分離方法 |
US4961881A (en) | 1988-02-17 | 1990-10-09 | Uop | Process for separating triglycerides and regenerating absorbent used in said separation process |
JPH0225447A (ja) * | 1988-07-13 | 1990-01-26 | Nippon Oil & Fats Co Ltd | 高度不飽和脂肪酸類の製造方法 |
SU1631067A1 (ru) * | 1988-09-16 | 1991-02-28 | Институт Биологии Моря Дальневосточного Отделения Ан Ссср | Способ получени докозагексаеновой, эйкозапентаеновой и арахидоновой кислот или их смеси |
ZA895758B (en) | 1988-09-29 | 1990-04-25 | Fishing Ind Research I | Polyunsaturated fatty acids |
US4902829A (en) | 1988-11-16 | 1990-02-20 | Uop | Process for the adsorptive separation of hydroxy paraffinic dicarboxylic acids from olefinic dicarboxylic acids |
US5068418A (en) | 1989-05-08 | 1991-11-26 | Uop | Separation of lactic acid from fermentation broth with an anionic polymeric absorbent |
FR2651148B1 (fr) | 1989-08-28 | 1992-05-07 | Inst Francais Du Petrole | Procede continu et dispositif de separation chromatographique d'un melange d'au moins trois constituants en trois effluents purifies au moyen de deux solvants. |
FR2651149B1 (fr) | 1989-08-28 | 1992-06-05 | Inst Francais Du Petrole | Procede continu et dispositif de separation chromatographique d'un melange d'au moins trois constituants en trois effluents purifies au moyen d'un seul solvant a deux temperatures et/ou a deux pressions differentes. |
US5069883A (en) | 1989-10-20 | 1991-12-03 | Progress Water Technologies Corp. | Device for continuous contacting of liquids and solids |
JP2895258B2 (ja) * | 1990-04-24 | 1999-05-24 | ハリマ化成株式会社 | 高度不飽和脂肪酸類の選択的取得方法 |
US5225580A (en) | 1990-08-16 | 1993-07-06 | Uop | Process for separating fatty acids and triglycerides |
US5179219A (en) | 1990-11-19 | 1993-01-12 | Uop | Process for separating fatty acids and triglycerides |
JPH07106281B2 (ja) | 1991-01-16 | 1995-11-15 | 綜研化学株式会社 | 多成分混合物の分離精製方法及び装置 |
JP3400466B2 (ja) * | 1991-10-28 | 2003-04-28 | 日本水産株式会社 | 高純度エイコサペンタエン酸またはそのエステルの製造方法 |
JP2957045B2 (ja) * | 1992-04-10 | 1999-10-04 | 株式会社資生堂 | ドコサヘキサエン酸又はその類縁体の分離精製方法 |
JPH07500771A (ja) | 1992-04-29 | 1995-01-26 | アンスティテュ フランセ デュ ペトロール | 圧縮ガス、超臨界流体、または臨界未満液体の存在下における、模擬移動床での混合物の分別方法および装置 |
JP3025590B2 (ja) | 1992-10-14 | 2000-03-27 | エーザイ株式会社 | 粗製物の精製法 |
JPH07242895A (ja) * | 1993-03-16 | 1995-09-19 | Ikeda Shiyotsuken Kk | 高純度エイコサペンタエン酸又はその低級アルコールエステルの分離精製法 |
JP3340182B2 (ja) | 1993-03-31 | 2002-11-05 | 雪印乳業株式会社 | ドコサヘキサエン酸含有トリグリセリドの製造法 |
JPH078268A (ja) * | 1993-04-26 | 1995-01-13 | Kawasaki Steel Corp | 海洋性微細藻類の培養方法およびこれを用いたドコサヘキサエン酸の製造方法 |
US5719302A (en) * | 1993-04-29 | 1998-02-17 | Pronova A.S | Processes for chromatographic fractionation of fatty acids and their derivatives |
GB9404483D0 (en) | 1994-03-08 | 1994-04-20 | Norsk Hydro As | Refining marine oil compositions |
RU2127115C1 (ru) * | 1994-03-28 | 1999-03-10 | Владимир Константинович Гаврисюк | Смесь омега-3 полиненасыщенных жирных кислот |
JPH08100191A (ja) * | 1994-09-30 | 1996-04-16 | Nisshin Flour Milling Co Ltd | 高度不飽和脂肪酸またはそのエステルの精製方法 |
JPH08218091A (ja) * | 1995-02-17 | 1996-08-27 | Maruha Corp | 高純度の高度不飽和脂肪酸およびその誘導体の製造方法 |
DE59610489D1 (de) | 1995-08-17 | 2003-07-10 | Hoffmann La Roche | Chromatographie-Verfahren |
JPH0959206A (ja) * | 1995-08-25 | 1997-03-04 | Nippon Oil & Fats Co Ltd | エイコサペンタエン酸およびエイコサペンタエン酸エステルの製造方法 |
FR2740451B1 (fr) | 1995-10-27 | 1998-01-16 | Seripharm | Nouveaux intermediaires pour l'hemisynthese de taxanes, leurs procedes de preparation et leur utilisation dans la synthese generale des taxanes |
JPH09151390A (ja) * | 1995-11-30 | 1997-06-10 | Bizen Kasei Kk | 高度不飽和脂肪酸及びその誘導体の精製方法 |
JPH09157684A (ja) | 1995-12-08 | 1997-06-17 | Chlorine Eng Corp Ltd | 高度不飽和脂肪酸エステルの精製方法 |
US5917068A (en) | 1995-12-29 | 1999-06-29 | Eastman Chemical Company | Polyunsaturated fatty acid and fatty acid ester mixtures free of sterols and phosphorus compounds |
JPH09263787A (ja) * | 1996-01-26 | 1997-10-07 | Nof Corp | 高度不飽和脂肪酸又はそのアルキルエステルの製造方法 |
JP3880095B2 (ja) * | 1996-03-07 | 2007-02-14 | 大阪市 | 高度不飽和脂肪酸の精製方法 |
JP3892497B2 (ja) * | 1996-06-25 | 2007-03-14 | タマ生化学株式会社 | エイコサペンタエン酸エステルの製造方法 |
JPH1095744A (ja) * | 1996-09-20 | 1998-04-14 | Nof Corp | 高度不飽和脂肪酸又はそのアルキルエステルの製造方法 |
FR2754731B1 (fr) | 1996-10-18 | 1999-07-02 | Novasep Sa | Perfectionnement aux procedes d'enrichissement d'isomeres optiques par lit mobile simule |
GB9701705D0 (en) | 1997-01-28 | 1997-03-19 | Norsk Hydro As | Purifying polyunsatured fatty acid glycerides |
AU6043598A (en) | 1997-01-29 | 1998-08-18 | Amalgamated Research, Inc. | Method of displacement chromatography |
JPH10310555A (ja) * | 1997-05-12 | 1998-11-24 | Y M Shii:Kk | 多価不飽和脂肪酸エステルの分離精製方法 |
JPH10310556A (ja) | 1997-05-12 | 1998-11-24 | Y M Shii:Kk | 微生物由来の多価不飽和脂肪酸エステルの分離精製方法 |
US6063284A (en) | 1997-05-15 | 2000-05-16 | Em Industries, Inc. | Single column closed-loop recycling with periodic intra-profile injection |
FR2764822B1 (fr) | 1997-06-19 | 1999-08-13 | Novasep | Methode pour optimiser le fonctionnement d'un systeme de separation des constituants d'un melange |
FR2766385B1 (fr) | 1997-07-24 | 1999-09-03 | Novasep | Procede pour le controle de la pression dans un systeme de separation a lit mobile simule |
US5840181A (en) | 1997-10-14 | 1998-11-24 | Uop Llc | Chromatographic separation of fatty acids using ultrahydrophobic silicalite |
JP3836231B2 (ja) * | 1997-10-17 | 2006-10-25 | 日本化学飼料株式会社 | ホタテガイ中腸腺から得られる高度不飽和脂肪酸含有油及びその製造方法 |
JP2872986B1 (ja) | 1998-01-21 | 1999-03-24 | 池田食研株式会社 | 高純度高度不飽和脂肪酸の低級アルコールエステル精製方法 |
US6350890B1 (en) | 1998-07-22 | 2002-02-26 | Axiva Gmbh | Method for obtaining fatty acids from biomass by combined in/situ extraction, reaction and chromatography using compressed gases |
FR2781388B1 (fr) | 1998-07-24 | 2000-08-25 | Inst Francais Du Petrole | Dispositif de regulation en continu de la composition d'un melange de composants et systeme de separation de constituants incorporant ce dispositif d'analyse |
JP2000044983A (ja) * | 1998-07-31 | 2000-02-15 | Maruha Corp | 二重結合を有する脂肪酸またはその誘導体の精製法 |
DK1128881T3 (da) | 1998-10-29 | 2005-10-03 | Inst Francais Du Petrole | Fremgangsmåde til adskillelse med kromatografiske områder med variabel længde |
FR2785196B1 (fr) | 1998-10-29 | 2000-12-15 | Inst Francais Du Petrole | Procede et dispositif de separation avec des zones chromatographiques a longueur variable |
US6413419B1 (en) | 1998-10-29 | 2002-07-02 | Institut Francais Du Petrole | Process and device for separation with variable-length chromatographic |
US6375839B1 (en) | 1998-10-29 | 2002-04-23 | Institut Francais Du Petrole | Process and device for separation with variable-length chromatographic zones |
NO312973B1 (no) | 1999-02-17 | 2002-07-22 | Norsk Hydro As | Lipase-katalysert forestring av marine oljer |
IT1308613B1 (it) | 1999-02-17 | 2002-01-09 | Pharmacia & Upjohn Spa | Acidi grassi essenziali nella prevenzione di eventi cardiovascolari. |
JP2000280663A (ja) | 1999-03-30 | 2000-10-10 | Dainippon Printing Co Ltd | Idカードおよびその判別方法 |
CA2311974A1 (en) | 1999-06-28 | 2000-12-28 | Nisshin Flour Milling Co., Ltd. | Processes of selectively separating and purifying eicosapentaenoic and docosahexaenoic acids or their esters |
JP2001072993A (ja) | 1999-06-28 | 2001-03-21 | Nisshin Flour Milling Co Ltd | エイコサペンタエン酸およびドコサヘキサエン酸またはそれらのエステルを選択的に分離精製する方法 |
WO2001033210A1 (fr) | 1999-11-02 | 2001-05-10 | Daicel Chemical Industries, Ltd | Dispositif de simulation d'un lit mobile |
JP4170542B2 (ja) | 1999-11-18 | 2008-10-22 | 日油株式会社 | 高度不飽和脂肪酸誘導体の製造方法及び高純度エイコサペンタエン酸誘導体 |
CA2290885A1 (fr) | 1999-12-02 | 2001-06-02 | Universite De Sherbrooke | Methode pour la transformation des tissus du loup marin |
DK1106602T3 (da) | 1999-12-09 | 2008-11-03 | Archer Daniels Midland Co | Kromatografisk simulated moving bed-oprensning af aminosyrer |
JP2001240893A (ja) * | 1999-12-20 | 2001-09-04 | Q P Corp | エイコサペンタエン酸又はその誘導体の精製方法 |
WO2001050884A1 (en) | 2000-01-14 | 2001-07-19 | Baldur Hjaltason | Marine lipid composition for feeding aquatic organisms |
ES2324975T3 (es) | 2000-01-14 | 2009-08-21 | Epax As | Metodo para el cultivo de organismos presa ricos en adh para especies acuaticas. |
US20020010566A1 (en) | 2000-04-11 | 2002-01-24 | Chester Thomas Lee | Methods for modeling, predicting, and optimizing high performance liquid chromatography parameters |
WO2001087924A2 (en) | 2000-05-16 | 2001-11-22 | Purdue Research Foundation | Insulin purification using simulated moving bed technology |
AU2001274836A1 (en) | 2000-05-16 | 2001-11-26 | Purdue Research Foundation | Standing wave design of a nine-zone smb for the recovery of a solute with intermediate affinity in a ternary mixture |
WO2001087452A2 (en) * | 2000-05-16 | 2001-11-22 | Purdue Research Foundation | Standing wave design of single and tandem simulated moving beds for resolving multicomponent mixtures |
FR2810897B1 (fr) | 2000-06-28 | 2002-10-11 | Novasep | Procede et dispositif de separation en lit mobile simule d'au moins un constituant dans des colonnes ayant un rapport longueur sur diametre approprie |
KR20010008387A (ko) * | 2000-11-30 | 2001-02-05 | 이성권 | 결정화방법을 이용한 고순도 불포화지방산의 분리 정제 방법 |
FR2823134B1 (fr) | 2001-04-10 | 2003-09-19 | Novasep | Dispositif de protection du lit chromatographique dans les colonnes chromatographiques a compression axiale dynamique |
FI20010977A (fi) | 2001-05-09 | 2002-11-10 | Danisco Sweeteners Oy | Kromatografinen erotusmenetelmä |
US20030216543A1 (en) | 2001-05-16 | 2003-11-20 | Wang Nien-Hwa Linda | Insulin purification using simulated moving bed technology |
DE10151155A1 (de) | 2001-10-19 | 2003-05-08 | Nutrinova Gmbh | Native PUFA-Triglyceridmischungen mit einem hohen Gehalt an mehrfach ungesättigten Fettsäuren sowie Verfahren zu deren Herstellung und deren Verwendung |
FR2836230B1 (fr) | 2002-02-15 | 2004-04-23 | Novasep | Protection du lit chromatographique dans les dispositifs de chromatographie a compression axiale dynamique |
FR2836396B1 (fr) | 2002-02-22 | 2004-06-18 | Novasep | Procede et dispositif de chromatographie avec recuperation de solvant |
EP2295529B2 (en) | 2002-07-11 | 2022-05-18 | Basf As | Use of a volatile environmental pollutants-decreasing working fluid for decreasing the amount of pollutants in a fat for alimentary or cosmetic use |
SE0202188D0 (sv) | 2002-07-11 | 2002-07-11 | Pronova Biocare As | A process for decreasing environmental pollutants in an oil or a fat, a volatile fat or oil environmental pollutants decreasing working fluid, a health supplement, and an animal feed product |
KR100481663B1 (ko) | 2002-09-24 | 2005-04-08 | 김희찬 | 중기공성 백금을 포함하는 바이오센서 및 이를 이용한글루코스 농도 측정방법 |
DK1549753T3 (da) | 2002-10-11 | 2010-10-18 | Nippon Suisan Kaisha Ltd | Fremgangsmåde til fremstilling af mikrobielt fedt eller olie med nedsat uforsæbeligt stofindhold |
FR2846252B1 (fr) | 2002-10-29 | 2005-07-01 | Novasep | Procede et dispositif de chromatographie integrant une etape de concentration |
NO319194B1 (no) | 2002-11-14 | 2005-06-27 | Pronova Biocare As | Lipase-katalysert forestringsfremgangsmate av marine oljer |
US7114844B2 (en) | 2003-03-03 | 2006-10-03 | Spx Corporation | Aeration apparatus and method |
ITMI20032247A1 (it) | 2003-11-19 | 2005-05-20 | Tiberio Bruzzese | Interazione di derivati polari di composti insaturi con substrati inorganici |
US6979402B1 (en) | 2003-12-19 | 2005-12-27 | Uop Llc | Miniature actual moving bed assembly |
CN103357199B (zh) | 2003-12-30 | 2019-02-01 | 帝斯曼知识产权资产管理有限公司 | 脱气方法 |
MY150129A (en) | 2004-04-09 | 2013-11-29 | Archer Daniels Midland Co | Method of preparing fatty acid alkyl esters from waste or recycled fatty acid stock |
US20060086667A1 (en) | 2004-09-13 | 2006-04-27 | Cephalon, Inc., U.S. Corporation | Methods for the separation of enantiomeric sulfinylacetamides |
JP4652774B2 (ja) | 2004-11-09 | 2011-03-16 | ダイセル化学工業株式会社 | 擬似移動床式クロマトグラフィー分離装置及びそれを用いる目的の物質の製造方法 |
FR2889077B1 (fr) | 2005-07-26 | 2007-10-12 | Novasep Soc Par Actions Simpli | Procede et dispositif de separation chromatographique de fractions d'un melange |
PE20070482A1 (es) | 2005-08-26 | 2007-06-08 | Ocean Nutrition Canada Ltd | Metodo para remover y/o reducir esteroles a partir de aceites |
US7544293B2 (en) | 2005-09-26 | 2009-06-09 | Semba Inc. | Valve and process for interrupted continuous flow chromatography |
BRPI0620310B1 (pt) * | 2005-12-16 | 2017-12-05 | Archer-Daniels-Midland Company | A method for preparing a composition enriched in compounds containing unsaturated carbon chains by simulated moving bed chromatography using an adsorbent containing silver ions |
US7828978B2 (en) | 2006-01-11 | 2010-11-09 | Doug Geier | Simultaneous synthesis and purification of a fatty acid monoester biodiesel fuel |
EP1996686A1 (en) * | 2006-02-07 | 2008-12-03 | Universitetet I Oslo | Omega 3 |
FR2897277B1 (fr) | 2006-02-10 | 2008-04-18 | Novasep Soc Par Actions Simpli | Procede et dispositif de separation. |
FR2897238A1 (fr) | 2006-02-15 | 2007-08-17 | Novasep Soc Par Actions Simpli | Procede de purification de la thaumatine |
FR2898064A1 (fr) | 2006-03-03 | 2007-09-07 | Novasep Soc Par Actions Simpli | Dispositif de chromatographie modulaire |
FR2898283B1 (fr) | 2006-03-08 | 2011-07-15 | Novasep | Procede et dispositif de separation de fractions d'un melange. |
WO2007106905A2 (en) | 2006-03-15 | 2007-09-20 | Martek Biosciences Corporation | Polyunsaturated fatty acid production in heterologous organisms using pufa polyketide synthase systems |
DK2006389T3 (en) | 2006-04-13 | 2017-08-28 | Nippon Suisan Kaisha Ltd | Process for preparing concentrated polyunsaturated fatty acid oil |
WO2008149177A2 (en) | 2006-05-05 | 2008-12-11 | Natural Asa | Marine lipid compositions and uses thereof |
WO2007144476A1 (fr) | 2006-06-16 | 2007-12-21 | Groupe Novasep | Procede de separation sequence multicolonnes |
WO2007147554A2 (en) | 2006-06-19 | 2007-12-27 | K.D. Pharma Bexbach Gmbh | Improved cromatography process for recovering a substance or a group of substances from a mixture |
WO2008025887A1 (fr) | 2006-08-28 | 2008-03-06 | Novasep | Procede d'enrichissement d'un ou plusieurs composes d'un melange utilisant une phase mobile liquide contenant un gaz |
JP2008061571A (ja) | 2006-09-07 | 2008-03-21 | Toyomac Ltd | 飼料用液状油脂の製造方法および配合飼料 |
NO325550B1 (no) | 2006-10-31 | 2008-06-16 | Due Miljo As | Fremgangsmate for rensing av oljer og anvendelse av slike i mat og fôr |
FR2911793B1 (fr) | 2007-01-26 | 2010-07-30 | Novasep | Procede de separation par chromatographie |
DE502007004854D1 (de) | 2007-04-17 | 2010-10-07 | Max Planck Gesellschaft | Verfahren und Vorrichtung zur chromatographischen Trennung von Komponenten mit teilweiser Rückführung von Gemischfraktionen |
US7901581B2 (en) | 2007-06-15 | 2011-03-08 | Ge Healthcare Bio-Sciences Ab | Chromatography method |
CA2692355C (en) | 2007-06-29 | 2018-09-11 | Martek Biosciences Corporation | Production and purification of esters of polyunsaturated fatty acids |
US20100197785A1 (en) | 2007-07-25 | 2010-08-05 | Epax As | Omega-3 fatty acid fortified composition |
FR2919200B1 (fr) | 2007-07-27 | 2009-10-30 | Novasep | Procede de cristallisation en continu |
EP2172558B1 (en) | 2007-07-30 | 2017-07-19 | Nippon Suisan Kaisha, Ltd. | Method for production of epa-enriched oil and dha-enriched oil |
US20100331559A1 (en) | 2008-02-21 | 2010-12-30 | Dow Global Technologies Inc. | Separation of natural oil-derived aldehydes or hydroxy methyl esters using process chromatography |
FR2929533B1 (fr) | 2008-04-03 | 2010-04-30 | Novasep | Procede de separation multicolonnes a gradient. |
KR101357298B1 (ko) | 2008-06-20 | 2014-01-28 | 에이케이 앤 엠엔 바이오팜 주식회사 | 오메가-3계 고도불포화 지방산의 고순도 정제방법 |
WO2010018422A1 (en) | 2008-08-14 | 2010-02-18 | Novasep | Process for the enrichment of isotopes |
CN110538148A (zh) | 2009-03-09 | 2019-12-06 | 巴斯夫股份公司 | 含有脂肪酸油混合物和表面活性剂的组合物及其方法和用途 |
RU2538691C2 (ru) | 2009-04-29 | 2015-01-10 | Амарин Фарма, Инк. | Стабильные фармацевтические композиции и способы их применения |
EP2319329A1 (en) | 2009-10-22 | 2011-05-11 | Consejo Superior De Investigaciones Científicas (CSIC) | High melting point sunflower fat for confectionary |
EP2519332B1 (en) | 2009-12-30 | 2014-03-05 | BASF Pharma (Callanish) Limited | Simulated moving bed chromatographic separation process for the purification of polyunsaturated fatty acids |
GB201111594D0 (en) | 2011-07-06 | 2011-08-24 | Equateq Ltd | New improved process |
GB201111601D0 (en) | 2011-07-06 | 2011-08-24 | Equateq Ltd | New process |
GB201111591D0 (en) | 2011-07-06 | 2011-08-24 | Equateq Ltd | Further new process |
GB201111589D0 (en) | 2011-07-06 | 2011-08-24 | Equateq Ltd | New modified process |
GB201111595D0 (en) | 2011-07-06 | 2011-08-24 | Equateq Ltd | Improved process |
-
2010
- 2010-12-24 EP EP10818131.4A patent/EP2519332B1/en active Active
- 2010-12-24 US US13/519,618 patent/US9321715B2/en active Active
- 2010-12-24 EP EP13154052.8A patent/EP2591778B1/en active Active
- 2010-12-24 ES ES10818131.4T patent/ES2459951T3/es active Active
- 2010-12-24 KR KR1020127020135A patent/KR101761959B1/ko active IP Right Grant
- 2010-12-24 PT PT108181314T patent/PT2519332E/pt unknown
- 2010-12-24 JP JP2012546499A patent/JP5872483B2/ja active Active
- 2010-12-24 BR BR112012016308-6A patent/BR112012016308B1/pt active IP Right Grant
- 2010-12-24 KR KR1020177020219A patent/KR101801011B1/ko active IP Right Grant
- 2010-12-24 RU RU2012131913/05A patent/RU2538981C2/ru not_active IP Right Cessation
- 2010-12-24 RU RU2014146265/05A patent/RU2014146265A/ru not_active Application Discontinuation
- 2010-12-24 CA CA2785742A patent/CA2785742C/en active Active
- 2010-12-24 AU AU2010338031A patent/AU2010338031B2/en not_active Ceased
- 2010-12-24 CA CA2873141A patent/CA2873141C/en active Active
- 2010-12-24 EP EP20208062.8A patent/EP3865469A3/en active Pending
- 2010-12-24 PE PE2012000901A patent/PE20130491A1/es active IP Right Grant
- 2010-12-24 DK DK10818131.4T patent/DK2519332T3/da active
- 2010-12-24 CN CN201510278939.9A patent/CN104974030A/zh active Pending
- 2010-12-24 CA CA3000662A patent/CA3000662C/en active Active
- 2010-12-24 CN CN201080064359.5A patent/CN102811781B/zh active Active
- 2010-12-24 PL PL10818131T patent/PL2519332T3/pl unknown
- 2010-12-24 WO PCT/GB2010/002339 patent/WO2011080503A2/en active Application Filing
- 2010-12-24 ES ES13154052T patent/ES2862980T3/es active Active
-
2015
- 2015-01-23 JP JP2015010829A patent/JP6474621B2/ja active Active
- 2015-09-30 US US14/870,873 patent/US9790162B2/en active Active
-
2017
- 2017-11-01 JP JP2017211856A patent/JP2018058850A/ja not_active Withdrawn
-
2019
- 2019-02-12 JP JP2019022763A patent/JP6987804B2/ja active Active
-
2021
- 2021-11-30 JP JP2021195019A patent/JP7364651B2/ja active Active
-
2023
- 2023-10-05 JP JP2023173383A patent/JP2024012306A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656667A (en) * | 1988-08-11 | 1997-08-12 | Norsk Hydro As | Fatty acid composition |
EP1157692A1 (en) * | 2000-05-22 | 2001-11-28 | Quatex N.V. | Composition of fatty acids containing at least 80% by weight of EPA and DHA or their derivatives and its pharmaceutical use |
WO2007017240A2 (en) * | 2005-08-10 | 2007-02-15 | Tiberio Bruzzese | Composition of n-3 fatty acids having high concentration of epa and/or dha and containing n-6 fatty acids |
WO2008004900A1 (en) * | 2006-07-05 | 2008-01-10 | Photonz Corporation Limited | Production of ultrapure epa and polar lipids from largely heterotrophic culture |
Non-Patent Citations (1)
Title |
---|
陶遵威等: "硝酸银-水法提纯高含量DHA和EPA的实验研究", 《中国海洋药物》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108728247A (zh) * | 2017-04-13 | 2018-11-02 | 义守大学 | 纯化共轭次亚麻油酸的方法 |
CN107586259A (zh) * | 2017-07-10 | 2018-01-16 | 乔璞科技有限公司 | 纯化不饱和脂肪酸以及二十碳五烯酸的方法 |
CN114790142A (zh) * | 2022-04-26 | 2022-07-26 | 江苏科技大学 | 一种模拟移动床色谱技术分离蚕蛹油中甘油三酯型α-亚麻酸单体的方法 |
CN114790142B (zh) * | 2022-04-26 | 2024-03-15 | 江苏科技大学 | 一种模拟移动床色谱技术分离蚕蛹油中甘油三酯型α-亚麻酸单体的方法 |
CN115073292A (zh) * | 2022-07-01 | 2022-09-20 | 江苏汉邦科技股份有限公司 | 一种二十碳五烯酸乙酯的制备方法 |
CN115073292B (zh) * | 2022-07-01 | 2023-10-03 | 江苏汉邦科技股份有限公司 | 一种二十碳五烯酸乙酯的制备方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102811781B (zh) | 用于纯化多不饱和脂肪酸的模拟移动床色谱分离方法 | |
CN103764242B (zh) | Smb方法 | |
CN103796724B (zh) | 新型smb方法 | |
CN103764241B (zh) | 改进的smb方法 | |
KR101757132B1 (ko) | 생선 오일로부터 고순도 epa를 생산하기 위한 smb 공정 | |
AU2013204090B2 (en) | Simulated moving bed chromatographic separation process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151014 |